
 
 

Delft University of Technology

Global regulators enable bacterial adaptation to a phenotypic trade-off

Deyell, Matthew; Opuu, Vaitea; Griffiths, Andrew D.; Tans, Sander J.; Nghe, Philippe

DOI
10.1016/j.isci.2024.111521
Publication date
2025
Document Version
Final published version
Published in
iScience

Citation (APA)
Deyell, M., Opuu, V., Griffiths, A. D., Tans, S. J., & Nghe, P. (2025). Global regulators enable bacterial
adaptation to a phenotypic trade-off. iScience, 28(1), Article 111521.
https://doi.org/10.1016/j.isci.2024.111521

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.isci.2024.111521
https://doi.org/10.1016/j.isci.2024.111521


Article
iScience
Global regulators enable b
acterial adaptation to a
phenotypic trade-off
Graphical abstract
Highlights
d Growth and motility both determine fitness but are in a trade-

off

d Genetic perturbations in local regulators affect mostly

motility

d Genetic perturbations in global regulators affect growth and

motility simultaneously

d During evolution, global regulators are mutated last to tune

the phenotypic trade-off
Deyell et al., 2025, iScience 28, 111521
January 17, 2025 ª 2024 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.isci.2024.111521
Authors

Matthew Deyell, Vaitea Opuu,

Andrew D. Griffiths, Sander J. Tans,

Philippe Nghe

Correspondence
philippe.nghe@espci.fr

In brief

Microbiology; Evolutionary biology
ll

mailto:philippe.nghe@espci.fr
https://doi.org/10.1016/j.isci.2024.111521
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.111521&domain=pdf


iScience

Article

Global regulators enable bacterial
adaptation to a phenotypic trade-off
Matthew Deyell,1,2,3,4,8 Vaitea Opuu,5,8 Andrew D. Griffiths,1 Sander J. Tans,6,7 and Philippe Nghe1,5,8,9,*
1Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin,

75005 Paris, France
2Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
3Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
4Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
5Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10

Rue Vauquelin, 75005 Paris, France
6AMOLF, Science Park 104, XG, Amsterdam 1098, the Netherlands
7Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
8These authors contributed equally
9Lead contact
*Correspondence: philippe.nghe@espci.fr

https://doi.org/10.1016/j.isci.2024.111521

SUMMARY

Cellular fitness depends on multiple phenotypes that must be balanced during evolutionary adaptation. For
instance, coordinating growth and motility is critical for microbial colonization and cancer invasiveness. In
bacteria, these phenotypes are controlled by local regulators that target single operons, as well as by global
regulators that impact hundreds of genes. However, how the different levels of regulation interact during evo-
lution is unclear. Here, we measured in Escherichia coli how CRISPR-mediated knockdowns of global and
local transcription factors impact growth and motility in three environments. We found that local regulators
mostly modulate motility, whereas global regulators jointly modulate growth and motility. Simulated evolu-
tionary trajectories indicate that local regulators are typically altered first to improve motility before global
regulators adjust growth and motility following their trade-off. These findings highlight the role of pleiotropic
regulators in the adaptation of multiple phenotypes.

INTRODUCTION

The fitness of cells depends on multiple phenotypes, but it is not

always possible to optimize all of them simultaneously due to

trade-offs.1 A trade-off means that improving one trait may

come at the cost of another. A key example is the trade-off be-

tween growth andmotility, which has been demonstrated in bac-

teria and cancer cells.2–6 For example, disseminated tumor cells

are highly mobile, which promotes metastasis, but have a slow-

cycling state that makes radiation therapy and chemotherapies

poorly effective.2 In bacteria, the trade-off between mobility

and growth underlies the maintenance of population diversity

through niche formation.6,7 In the presence of a trade-off, evolu-

tionary adaptation requires adjusting several phenotypes, either

leading to specialization or a balance between traits.8

Here, we investigated the role of bacterial global regulators in

coordinating multiple traits when these face a trade-off, and

examined the evolutionary interplay between local and global

regulators in the context of such a trade-off. Global regulators

are defined as transcriptional factors that bind hundreds of op-

erons, in contrast to local regulators that are dedicated to one

or a few.9 Global regulators are primarily characterized at the

molecular level, based on the knowledge of their binding sites.10

Due to the number and diversity of operons they regulate, global

regulators are expected to alter several phenotypes. For

instance, cAMP receptor protein (CRP) regulates the expression

of secondary catabolites in response to cyclic AMP (cAMP)11

and is implicated in biofilm formation.12 Other global regulators

(so-called nucleoid associated proteins or NAPs) such as the his-

tone-like nucleoid structuring protein (HNS) and the factor for

inversion stimulation (Fis) alter the compaction of the bacterial

genome13 depending on the growth phase,14 and participate in

the stress response15 and biofilm formation.16 However so far,

studies of global regulators have focused on molecular mecha-

nisms and a single phenotype.17 Thus, how global regulators

may coordinate multiple phenotypes in an evolutionary context

is an open question.

To investigate the role of global regulators during adaptation to

a phenotypic trade-off, we used a model system in which local

and global regulators regulate growth and swimming in E. coli.

CRISPR interference (CRISPRi) allowed us to knock down

(denoted KD) transcription factors in combination, and hence

study their genetic interactions. We chose 2 local (FlhDC and

FliZ), 2 intermediate (mcaS and CsgD), and 3 global regulators
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(CRP, Fis, and HNS), known to regulate each other10 (Figure 1A).

The local regulators FliZ and FlhDC directly control the expres-

sion of the flagella operon essential for swimming mobility.18 In

contrast, the intermediate regulators indirectly control swimming

mobility through acting on the local regulators. CsgD controls the

expression of the Curli motility pathway and adhesion pili while

repressing swimming.19 CsgD is itself controlled by the small

inhibitory RNA mcaS.20 These mobility-regulating transcription

factors are themselves regulated by upstream global transcrip-

tion factors CRP, Fis, and HNS,10 described above. This creates

a regulatory hierarchy between the transcription factors, with

local regulators on the bottom directly controlling one pheno-

type, intermediate regulators above them, and finally at the

apex are global regulators which control both lower levels and

phenotypes directly.

Our approach allowed us to analyze the coupled variations of

growth and swimming in response to KD of genes with different

positions in the regulatory hierarchy (upstream, intermediate, or

downstream), alone or in combination. We examined the genetic

interactions (epistasis) between pairs of regulators and found

Figure 1. Quantification of swimming and growth

(A) Regulatory relationships between the selected panel of transcription factors. Each of these transcription factors was targeted with CRISPRi perturbation,

either alone or in combination, and compared with a reference strain (RS) harboring a non-targeting crRNA.

(B) The swimming phenotype was determined through inoculation in the center of soft agar plates and measurement of the diameter up to the swimming front.

(C) The growth phenotype was determined as the change in fluorescence over time of the perturbation strain (cyan fluorescent) grown in competition with a

reference strain (red fluorescent).

Phenotypic data for the RS (D) the HNS perturbation (E), and the CsgD perturbation (F). Left shows the direct image of the cells swimming in soft agar with the

image analysis of the swimming photograph plotting the intensity of the bacterial signal, with the swimming front indicated by blue dots. The middle shows the

growth curve in absorbance at 595 nm, with the exponential growth phase highlighted in light gray. The right shows the change in cyan vs. red fluorescence during

the exponential growth phase. The slope is the relative growth phenotype.
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that epistasis differs between the two phenotypes and is modu-

lated by the environment, demonstrating higher-order interac-

tions. Despite this complexity, the phenotypic effects of genetic

perturbations follow typical patterns when grouping genes by

their position in the regulatory hierarchy: mutations in local reg-

ulators mostly improve swimming while global regulators adjust

the balance between growth and swimming. Based on these

measurements, we simulated evolution in variable environments

where fitness depends on both phenotypes. We found that ge-

netic changes in local and global regulators both contribute to

improving fitness. However, genetic modifications are con-

strained by regulatory hierarchy: early evolutionary steps typi-

cally involve changes in local regulators, which are required to

improve poor motility, whereas changes in global regulators

tend to occur last, as only these allow fine-tuning the relative

contribution of growth and motility.

RESULTS

Relation between genetic perturbations, phenotypes,
and environments
We used CRISPRi to generate single and double knock down

(KD) perturbations of 7 transcription factors (CRP, Fis, HNS,

mcaS, CsgD, FliZ, and FlhDC). Cells were transformed with

vectors expressing an inducible catalytically deactivated Cas9

(dCas9), mCerulean to fluorescently tag the cells, and a

CRISPR RNA (crRNA) that targets the transcription start

sequence of the relevant transcription factor (see Methods).

CRISPRi represses gene expression by using the dCas9 as a

programmable transcription factor.21 We then quantified the

swimming and growth phenotypes for this E. coli strain library

(Figure 1), and the unperturbed reference strain (RS).

Swimming was quantified using amigration assay in 0.3% soft

agar plates. Mobile bacteria form concentric bands while swim-

ming in soft agar plates (Figures 1B, 1D–1F), driven by local

nutrient gradients that form due to cellular consumption.22,23

We quantified swimming as the diameter of the first swimming

wave after 16 h in LB (Lysogeny Broth) media (rich) or 24 h in

M63 lactose and M63 glucose media (minimal). Growth was

quantified using a competition assay against a common unper-

turbed reference strain (RS).24 This was done in microwell plates

with constant shaking in these same media (Figures 1C, 1D–1F)

using 3 signals: optical density, mCerulean fluorescence (emis-

sion 430 nm) of the query strain, and mCherry fluorescence

(emission 560 nm) of the reference stain. The relative growth

rate is computed as the slope of the logarithm of the ratio be-

tween fluorescence signals and is restricted to the exponential

phase as controlled using optical density at 595 nm (OD for

‘Optical Density’). This growth rate is normalized using the OD

and fluorescent measurements to remove contributions due to

differences between constructs and fluorescent markers,

including maturation times, degradation rates, and expression

costs (see Methods).

Swimming and growth were both measured over 9 replicates,

consisting of 3 biological replicates (different days and initial

colonies), each comprising 3 technical replicates (same day,

different wells or plates). The swimming and growth values

were taken as the median of all 9 measurements during the

exponential growth phase and were highly reproducible (Fig-

ure 2A). Within each medium, differences between swimming

and growth values across strains were significant, confirming

the effectiveness of the KDs on these phenotypes (Figure 2A).

Regulatory mutants are bound by a growth-motility
trade-off
To understand how genetic perturbations impact phenotypes,

we examined the distribution of phenotypes within the plane of

the growth rate (x axis) and swimming distance (y axis) for all

the strains, including single and double KDs (28 KD strains in to-

tal), in the 3 environments (Figure 2B). Single and double KDs

cause mild to strong effects on both phenotypes, with growth

rate changes ranging from�0.17 h�1 to 1.09 h�1, and swimming

diameter ranging from 0.4 cm to 3.4 cm after 16 h (see Table S1

for RS values). Growth is observed to increase or decrease

due to genetic perturbations while swimming distance only

decreases.

Environments have contrasting effects on the phenotypes. On

the one hand, they alter the range of accessible growth values,

which varies less for rich media (Figure 2B). Indeed, the largest

changes in growth rates are observed in the poorest medium

M63 Lactose (1.24-fold change), followed by M63 Glucose

(0.97) and finally LB (0.32). On the other hand, the range of

accessible swimming performances is quite similar across envi-

ronments. The best-performing strain in LB swims 0.35-fold and

0.25-fold further than the best strains in M63 with glucose and

lactose media, respectively.

Moreover, the distribution of genetic variants in the phenotypic

space of Figure 2B displays a trade-off: some mutants have a

growth rate higher than the unperturbed RS (squares in Fig-

ure 2B) but at the expense of deteriorated swimming. This

trade-off between growth and swimming was formerly charac-

terized in experimental adaptive evolution experiments and mu-

tants.25,26 Such trade-offs can be analyzed using the concept of

Pareto optimality,8 where organisms that cannot be outcom-

peted on all functions simultaneously are said to be Pareto

optimal. In Figure 2B, Pareto optimal strains are those where

no other strain grows more without swimming less. Pareto

optimal strains localize on a line called the Pareto front [1].

Respectively 4, 6, and 3 Pareto-optimal strains are observed in

LB, M63 Glucose, and M63 Lactose (solid symbols in Figure 2B).

The coupling between phenotypes depends on gene
hierarchy
To analyze the relationship between regulatory network struc-

ture and phenotypic effects, we first examined whether changes

in growth and swimmingwere associatedwith the specific genes

being perturbed (Figure 3). Each panel of Figure 3 reports the

phenotypic effects of a given KD across all genetic backgrounds

and environments. A vector along the x axis means the KD af-

fects growth only, while a vector along the y axis means the

KD affects swimming only. Diagonal vectors indicate pleiotropy,

in other words, a coupling between growth and swimming. If the

coupling is positive, growth and swimming both improve (top-

right quadrant) or both deteriorate (bottom-left quadrant). If

the coupling is negative, improved growth comes at the expense

of deteriorated swimming (bottom-right quadrant), or vice
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Figure 2. Growth-swimming phenotype space displays a Pareto front

(A) Median values for growth and swimming fitness, normalized to the reference strain (n = 9). Growth for each CRISPRi perturbation grown was in competition with

non-targeting reference for 20 h. Swimming distance was measured in soft agar after 16 h. Error bars represent SEM (standard error of the mean). Pareto optimal

strains within eachmedia aremarkedwith a star and are defined as any strain in which no other strain has significantly higher (p < 0.05) growth and swimming fitness.

(B) The distance that each strain can swim (in 16 h for LB or 24 h for M63) is plotted against the growth rate difference with the RS (squares) for each KD strain

(circles). Solid symbols are Pareto optimal strains.
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versa, growth deteriorates while swimming improves (top-left

quadrant).

KDs yield a varying range of couplings between phenotypes

depending on the gene being perturbed. CRP, Fis, and HNS

show themost diverse responses to their KD, where different ge-

netic backgrounds and environments lead to changes in growth

exclusively, swimming exclusively, or both (Figure 3). Perturba-

tions of mcaS and csgD also had varied effects but were of

low magnitude as the majority are not statistically significant

(p > 0.05, Welch’s t-test, n = 9). In contrast, FliZ and FlhDC

had strong effects on motility regardless of the environment

but showed a mild positive or negative impact on growth.

The three classes of responses described above correspond

to different positions of the regulators within the regulatory

network hierarchy (Figure 1). CRP, Fis, and HNS are up-

stream global regulators. Together, they accounted for 69% of

Figure 3. Impact of regulatory structure on the magnitude and direction of phenotypic effects

The vectors represent the phenotypic difference in the growth-swimming space for each given KD, where the strain without the KD is at the origin irrespective of

its genotype. If the KD is the only perturbed gene in a genotype, it is represented as a solid line (Single). If there is another perturbation in the same genotype, it is

represented as a dashed line (Double). The top row contains all the global regulators, the middle row contains the intermediate regulators, and the bottom row

contains the local regulators.
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perturbations that show negative growth-motility coupling (vec-

tors that point top-left or bottom-right in Figure 3), mostly caused

by HNS (n = 16). Such negative couplings are of particular inter-

est as they are manifestations of the growth-motility trade-off.

The regulators with the mildest effects, mcaS, and csgD, occur

in an intermediate position in the network hierarchy. Finally,

FliZ and FlhDC had the strongest impact on swimming but little

impact on growth. This is consistent with their position as down-

stream transcription factors dedicated to flagella regulation. FliZ

and FlhDC accounted for 60% (6/10) of the few cases where

swimming and growth both phenotypes decreased (7% of all

perturbations).

This analysis indicates that the downstream local transcription

factors mostly modulate swimming, as may be expected. How-

ever, the upstream global transcription factors couple growth

and swimming in a variety of ways. For example, swimming

and growth may both increase or decrease together, move in

opposite directions, or vary independently. However, it remains

unclear at this stage how the diversity of effects caused by per-

turbations in global regulators leads to the distribution of pheno-

types observed in Figure 2B.

Genetic interactions are high-order but consistent with
regulatory hierarchy
To understand the influence of regulatory interactions on pheno-

typic effects, we first examined the epistasis between each pair

of transcription factors,27 which quantifies the departure from

additive effects. Epistasis may take various forms including

magnitude or sign epistasis (Figure 4A). Magnitude epistasis

conserves the sign of the fitness effect across backgrounds

but not the amplitude of the effects. We denote here the extreme

form of magnitude epistasis as ‘masking epistasis’, in which a

genetic perturbation has no further effect if another perturbation

has already occurred (by the classical definition of phenotypic

epistasis). Sign epistasis refers to the case where a mutation

causes a fitness increase in one background but a decrease in

another background. When sign epistasis applies to both genes

being perturbed, it is referred to as reciprocal sign epistasis.

In total, we categorized 126 epistasis interactions, resulting

from 21 gene pairs for two phenotypes across three environ-

ments (Figures 4B and 4C, detailed in Figures S1–S3). Epistasis

is pervasive with only 22%of gene pairs showing additive effects

across all environments for both phenotypes (Figures 4B and

4C). Epistasis generally differs for growth and mobility pheno-

types: over 21 gene pairs, epistasis differs between growth

and motility in 17 cases in LB, 13 cases in M63 Glucose, and

13 in M63 Lactose (compare the color of the squares positioned

symmetrically across the diagonal in Figure 4B). This observation

is consistent with the two phenotypes being differentially regu-

lated by the same regulatory network and shows that the wiring

between genes is not the only determinant of epistasis.28,29

Furthermore, genes display a higher-order effect with the envi-

ronment: for a given gene pair and a given phenotype, epistasis

differs in at least one of the 3 environments in 27 over 42 cases,

consistent with other studies.30

The above analysis reveals complex genetic interactions but

not any obvious relationship between genes, phenotypes, and

environments. However, examining the combined effects of

Figure 4. Epistasis between regulatory gene knock-downs

(A) Additive case (no epistasis, parallel edges): mutation A has the same effect irrespective of the background (RS or mutant B), and mutation B has the same

effect irrespective of the background (wild-type [ref] or mutant A). Magnitude epistasis: the effect of mutation A is increased or decreased by the presence of

mutation B, but the direction of the effect is the same (same for mutation B in the presence or not of mutation A). Masking epistasis: mutation A has no effect in the

presence of mutation B. Sign epistasis: the direction of the effect of mutation A is changed by the presence of mutation B.

(B) Calculated Epistasis for each fitness metric in each growth media, with Growth epistasis above the diagonal and Swimming epistasis below. Epistasis was

calculated as described in Figure 4. The total number of conditions tested is 126, n = 9.

(C) Epistasis statistics observed across all perturbation pairs and media.
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gene KDs in the joint space of growth and swimming

(Figures S1–S3) points to typical patterns when grouping genes

as upstream (global regulators CRP, Fis, HNS), intermediates

(mcaS, CsgD), and downstream (local regulators FlhDC, FliZ).

For instance, interactions between upstream and other up-

stream or intermediate genes (first 3 columns, top 5 rows in

Figures S1–S3) lead to triangular patterns. Interactions between

upstream and downstream genes (first 3 columns, bottom 2

rows) tend to yield larger perturbations in both swimming and

growth as compared to interactions between other ensembles.

Interactions between downstream genes (bottom 2 rows) and

other downstream intermediate genes (last 4 columns) are domi-

nated by a strong decrease in swimming with little impact on

growth.

The insight gained from the hierarchical grouping of genes in-

vites us to re-examine the overall set of perturbations in the

phenotypic space (Figure 5). We colored each edge by which

of the three gene groups was affected by the genetic perturba-

tion: upstream global (yellow), intermediate (purple), or down-

stream local (blue) regulators. In this representation, the overall

structure of gene perturbation effects appears consistent across

environments (Figures 5A–5C) even though epistasis for a spe-

cific pair of KDs may not be (Figures 4 and S1–S3). In Figure 5,

we observe that significant changes in swimming (vertical edges)

are mainly attributed to local (blue) or global (yellow) perturba-

tions. Significant changes in growth (horizontal edges) mostly

occur via global regulators (yellow) irrespective of the swimming

value, and intermediate regulators (purple) for strains that swim

moderately well. Positively coupled changes in phenotypes (ob-

lique edges with a positive slope) occur mostly via local regula-

tors, starting from low swimming strains. Negatively coupled

changes in phenotypes (oblique edges with a negative slope)

occur almost only via global regulators, and trade swimming

for growth.

Overall, local regulator perturbations mostly connect strains

which perform poorly at both phenotypes to strains near the Par-

eto front, which are either good swimmers or moderate swim-

mers with large growth. In contrast, global regulator perturba-

tions have a strong effect on growth in the low swimming

region, but trade swimming for growth in the Pareto front region.

The trajectories of Figure 5 show that, when starting from a ge-

notype with poor motility and growth, evolution of both local

and global regulators can improve one phenotype or the other.

However, such an evolutionary optimization faces constraints:

improving motility requires changes in local regulation at some

point (blue lines in Figure 5), but adjusting the relative perfor-

mance of motility and growth along the Pareto front can only

be done by changes in global regulators (yellow lines in Figure 5).

Evolution under complex selection pressures involves
local and then global regulators
To investigate the role of local and global regulators during adap-

tation, we computed evolutionary trajectories in variable environ-

ments where fitness depends on the two phenotypes. We

consider here the regime where environments vary on time-

scales longer than the typical time for mutations to fixate. For

simplicity, we call ‘mutation’ any genotypic perturbation which

may correspond to a loss of function (KD) or a gain of function

(KD taken in reverse, or knock-up KU). Mutations perturb the

two phenotypic values, growth and motility, which are experi-

mentally found to display trade-offs for all pairs of mutations

(Figure 2B).

To simulate the evolution over the four mutations and associ-

ated phenotypic values, we consider all possible scenarios

where growth and swimming may have more or less relative

importance for fitness. For this, we vary a parameter l that line-

arly weights the contribution of growth and swimming: When

l = 0, only swimming determines fitness;When l= 1, only growth

determines fitness; For intermediate values of l, both growth and

swimming contribute to fitness, but growth contributes more for

larger l. When l = 0, we defined the positive contribution of

swimming to fitness using a sigmoidal function of the swimming

Figure 5. Relationship between regulatory network structure and response in phenotype space

The trajectories for each perturbation are colored by the group of the transcriptional regulator: Global (yellow), Intermediate (Purple), or Local (blue). The reference

strain is represented as a black circle, single perturbations are represented as a square, and double perturbations are represented as a diamond. In all three

environments, genotypic modifications in local motility regulators connect poor swimmers (low yvalues) to better swimmers (vertical or nearly vertical blue lines).

Genotypic modifications in intermediate regulators typically lead to changes in growth (horizontal purple lines). Genotypicmodifications in global regulators either

affect growth for poor swimmers (yellow horizontal lines at low yvalues), or jointly modulate growth and swimming (yellow oblique lines for upper yvalues).
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distance with parameters s0 and k (Figure 6A). The parameter s0
is the typical swimming distance difference with the reference

strain allowing survival, which we set to �1 cm, the middle of

the range of the measured values (a higher or lower s0 would

make swimming differences irrelevant to selection). The param-

eter k determines the sigmoid sharpness, where a very small k

makes the response flat (no impact of swimming) and a very

large k tends to a step function (threshold selection). When

l = 1, fitness is taken as the differential growth rate normalized

over the range of growth in a given medium. Intermediate values

of l interpolate between swimming and growth fitness functions.

We explored the regime of strong selection for evolutionary

trajectories within the 6 landscapes generated by KD pairs

comprising a global regulator (CRP, Fis, or HNS) and a local

regulator (FlhDC or FliZ). For each landscape, we used the

experimentally measured phenotypic values of the 4 genotypes

and simulated evolutionary trajectories in an environment that

varies randomly between the three media, as exemplified for

the pair HNS-FlhDC in Figure 6B. The starting genotype is taken

randomly for each realization of the simulation, which allows us

to record statistics of the mutational paths over all possible

adaptation scenarios. Populations rapidly reach an equilibrium

between mutation and selection after each environmental

change, where they display small fluctuations around average

proportions between genotypes (Figure 6B).

We first focused on regimes where the contributions of growth

and swimming to fitness are well-balanced. This is realized

around l = 0.3, where the fitness range is similar on the x

and y axes (equivalently, isofitness lines are oblique, see

Figures 6C–6E for the pair FlhDC-HNS; Figure S4B for all pairs).

In the following, DL denotes the strain with a local regulator KD,

DG the strain with a global regulator KD, and DL+DG the double

KD. Figures 6C–6E and Figure S4 depict the mutational land-

scapes in different environments and for different choices of

local-global regulator pairs, with arrows representing mutations

between genotypes. The thickness of the arrows is proportional

to the probability of mutating from one genotype to another.

We observe typical trajectories that are reproduced between

all mutational landscapes. For instance, in panels, C-E of Fig-

ure 6, thick arrows depart from the DL and DL+DG genotypes,

but those genotypes have weak incoming arrows. This indicates

that DL and DL+DG are populated only transiently and tend to

evolve irreversibly toward other genotypes. In contrast, the RS

and DG genotypes have strong incoming and outgoing arrows,

indicating that evolution can occur back and forth between those

two genotypes located on the Pareto front (Figures 6C–6E). The

dynamics just described in the case of the HNS-FlhDC pair are

also observed in 14 of the 18 landscapes (Figure S4B), with first

a knock-up of the local regulator (from DL to RS or from DL+DG

to DG, depending on the starting genotype), then an exchange

between the RS and the DG genotypes via the global regulator.

Exceptions occur in lactose, with the above-mentioned FlhDC-

HNS pair which includes the DL+DG genotype on the Pareto

front (Figure 6E) and the pairs FlhDC-CRP, FliZ-CRP, and

Figure 6. Evolution in variable environments

(A) Distribution of swimming distance (histogram) and examples of swimming-to-fitness relationships, computed as a sigmoid of the swimming distance

parameterized by a steepness parameter k, here centered on s0 = �1 cm.

(B) Example of evolutionary trajectory between the 4 genotypes (RS, DL, DG, DL+DG) generated by HNS and FlhDC knock-outs in a variable environment

randomly alternating between LB (‘LB’), M63 Glucose (‘glu’) and M63 Lactose (‘lact’) every 200 generations.

(C–E) Mutational trajectories for the HNS-FlhDC in the three environments. Arrow thickness is proportional to the rate of transition during evolution. The fitness

landscape is depicted by a gradient of blue.

(F) Proportion of local and global mutations as a function of k and l (s0 =�1 cm), where the color scale indicates the proportion of DGmutations (from blue, with

only DL mutations, to red, with only DG mutations).
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FliZ-Fis, which display collapsed trajectories dominated by an

exchange betweenDL and RS (Figure S4B). Nevertheless, geno-

type exchange via the global regulator is the dominant mode of

long-term evolution in variable environments, as confirmed on

average over all simulated evolutionary trajectories (Figure 5F,

l=0.3), aswell as for each pair considered separately (Figure S4,

l = 0.3).

In regimes where fitness is dominated by growth or swimming,

the local or global regulator may be the ultimate target of adap-

tation. Fitness is dominated by growth when k is close to 0 or l is

close to 1 (Figure S4A). In these cases, mutations in local regu-

lators dominate (Figures 6F and S5), due to genotypes with

maximal growth being in large majority DG, with DL+DG coming

second, both exchanging via a local regulator mutation (12 over

18 pairs over the 3 media, Table S2 and Figure S5). In contrast,

fitness is dominated by swimmingwhen k is not too small and l is

close to 0 (Figure S4C). Mutations occur mostly in the global

regulator (Figures 6F and Figure S5) due to the RS swimming

the furthest and the DG coming second (Figure S4C).

DISCUSSION

Transcription factors CRP, HNS, and Fis are global regulators

that regulate hundreds of operons in bacteria.10 They have

been detected by large-scale mapping of binding sites and are

known to be implicated in various phenotypes, such as meta-

bolism, biofilm formation, and motility.31 Furthermore, global

transcription factors are frequently modified when bacteria un-

dergo directed evolution in unforeseen complex environments.32

Overall, this hints at their role in adapting tomultiple phenotypes.

However, few studies have examined the impact of evolutionary

perturbations when multiple phenotypes determine fitness. On

the one hand, evolutionary constraints in gene networks are

generally studied for single traits. On the other hand, studies

that examine multiple traits focus on the best-adapted strains

that are Pareto optimal. Therefore, the contribution of global reg-

ulators during adaptation to a phenotypic trade-off remains

poorly understood.

Here, using genetic perturbations in E. coli, we have shown

that global regulators help adjust the relative contribution of

growth and swimming, when those two phenotypes reach nearly

optimal values. This is important because there is a trade-off be-

tween growth and swimming which requires a mechanism to

tune the balance between these two phenotypes depending on

selective pressures. Additionally, our analysis of evolutionary

scenarios shows that global regulators may not act alone: they

must interplay with local regulators that are required in early

evolutionary steps to improve the swimming phenotype.33 The

model we studied is likely typical for regulatory architectures,

at least in the case of E. coli, whose regulatory network was

shown to be mainly composed of hierarchical regulatory motifs

with 2 or 3 layers, where global regulators regulate intermediate

then local regulators, the latter being specific to single operons.9

These findings invite us to reconsider possible explanations

for the origin of global regulators. One explanation is that they

are regulatory ‘hubs’ that result from a random process of

network wiring.34 Network hubs can result from the rule of pref-

erential attachment, where transcription factors targeting many

genes have more chance to regulate newly appeared genes

than those dedicated to a single operon (e.g., following gene

duplication-divergence events).35 However, it is unclear whether

such a network wiring process makes sense in the context of

selection.

A contrasting explanation of global regulators is that the co-

regulation of operons by global and local regulators reflects

cellular decision-making. For instance, alternative sugar op-

erons are triggered only in the absence of glucose when CRP

is activated. This is the case of the lac operon, which addition-

ally requires the allosteric suppression of LacI repression in the

presence of lactose. The underlying rationale is a prioritization

between carbon sources depending on their quality to ensure

optimal metabolic efficiency.36 Even though HNS and Fis may

potentially follow a similar logic, for example, triggering biofilm

formation as a function of the growth phase, this has not

been demonstrated. Global regulation may also come with an

evolutionary cost due to their highly pleiotropic character, as

mutating them can cause a large number of deleterious

effects.37

The present study highlights an additional ingredient central

to complex adaptations: the existence of phenotypic trade-

offs. Such phenotypic trade-offs are common and have been

observed in complex diseases,38,39 including aggressive brain

cancers40 and metastatic solid tumors.2 These traits have

been linked to highly pleiotropic regulators such as c-myc

and NF-kB.41–43 While specific mutations have been shown to

optimize cancer toward a specific trait,44 there lacks any clear

mutational drivers for metastasis in general.45 Understanding

how phenotypes, such as mobility and growth, are coupled

and evolve has become a critical question in health sciences.

Adaptation in the presence of trade-offs is complex because

of the requirement of simultaneous and coordinated optimiza-

tion of multiple phenotypes. Evolution becomes dependent

on genetic changes that couple variations in multiple pheno-

types.46 In this context, accessible evolutionary trajectories

require some degree of pleiotropy, as we observed when only

global regulators can adjust two optimal phenotypes. Pleiot-

ropy may be a necessary evil to adapt to phenotypic trade-

offs, thus illustrating how network complexity may find its roots

in functional complexity.47

Limitations of the study
Genetic perturbations considered here consist of knock-down.

Whether the findings are preserved for mutations with intermedi-

ate effects, or for complete knock-out with stronger effects

needs to be tested. Other evolutionary may be studied, such

as weak selection, in which case the order of mutations is ex-

pected to be less constrained. An exciting perspective is to

leverage the CRISPRi approach in high-throughput bar-coded

screens and examine the generality of the local–global impact

of regulators at a genomic scale.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Microbe strains used
Escherichia coli K-12 MG1655 was used for all fitness experiments. Escherichia coli NEB Stable Competent E. coli (High Efficiency)

(Catalog #C3040I) was used for creation of all vectors.

Growth conditions of cultures
The host strain for all pCRRNA vectors is MG1655 with the pdCas9 vector from Stanley Qi (provided by Lun Cui and David Bikard).

Glycerol stocks of each culture were streaked onto individual Lysogeny Broth (LB) agar plates containing 34 mg/mL of Chloramphen-

icol and 50 mg/mL of Kanamycin. Single colonies were inoculated into 2 mL of selected media (either LB or M63 supplemented with

0.4%Glucose or Lactose) containing 34 mg/mLChloramphenicol and 50 mg/mLKanamycin. Cultureswere placed in a 37�C incubator

for 16 h for LB cultures or 24 h for M63 cultures.

METHOD DETAILS

Creation of vectors
pCRRNA mCherry and pCRRNA EGFP were made by Gibson Assembly. PCR was performed on pMD019 (pGFP) and pMD024

(pmCherry) with primers oMD546 and oMD547, and on pCRRNA with primers oMD545 and oMD548. PCR products were purified

with a PCR clean-up kit from Macherey-Nagel. Equal molar concentrations of the PCR product were mixed (one from either

pMD019 or pMD024 and one from pCRRNA) and 5 mL of the mix was added to 15 mL of Gibson Master mix to create pCRRNA Green

and pCRRNA Red respectively. Golden Gate Assembly was used to replace the TrrnB terminator from pMD019 and pMD024 with

B0014 as the TrrnB terminator contained 2 BsaI sites. PCR was done on pCRRNA Green and pCRRNA Red with primers

oMD609 and oMD610, and on pCKDL with primers oMD607 and oMD608. PCR products were joined with Golden Gate Assembly

using BsmBI enzyme to create pCRRNA EGFP and pCRRNAmCherry. pCRRNAmCerulean was created by Gibson Assembly. PCR

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

NEB� Stable Competent E. coli (High Efficiency) New England Biolabs Cat# C3040I

Escherichia coli (Migula) Castellani and Chalmers ATCC Cat# 700926

Chemicals, peptides, and recombinant proteins

Chloramphenicol Sigma-Aldrich Cat# C0378

Kanamycin Sigma-Aldrich Cat# K1377

Anhydrotetracycline hydrochloride Sigma-Aldrich Cat# 94664

Oligonucleotides

See Table S3 Integrated DNA Technologies N.A.

Recombinant DNA

pdCas9 Addgene Plasmid #46569

Software and algorithms

Python Python Software Foundation Version 3.10.9

The code to perform the simulations

and reproduce the figures

Zenodo https://doi.org/10.5281/zenodo.10201172

Data

Data used in figures Zenodo https://doi.org/10.5281/zenodo.10201172

Raw data lead contact N.A.
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was performed on pMD027 (pCerulean) with primers oMD704 and oMD705, and on pCRRNA mCherry with primers oMD706 and

oMD707). PCRproducts were purifiedwith a PCR clean-up kit fromMacherey-Nagel. Equal molar concentrations of the PCRproduct

were mixed and 5 mL of mix was added to 15 mL of Gibson Master mix. All vectors were sequenced by GATC Biotech before use.

Growth competition assays
Assayswere performed by diluting 220 mL pCRRNAmCherry NT pre-culture into 22mL of selectedmedia containing 34 mg/mLChlor-

amphenicol, 50 mg/mL Kanamycin, and 25 ng/mL anhydrotetracycline. A Greiner, 96 Well, PS, F-Bottom, mCLEAR, Black microplate

was filled with 198 mL of diluted culture per well. For each pCRRNA EGFP knock down vector, 2 mL of pre-culture was inoculated into

3 individual wells. For the Non-targeting Control strain ‘RS, 2 mL of pre-culture was inoculated into 15 individual wells. A volume of

60 mL of mineral oil was added to each well of the microplate. The absorbance at 595 nm, as well as fluorescence at 480/510 nm and

580/610 nm (excitation/emission), were recorded every 10 min for 20 h with a SpectraMax i3x. Microplates were incubated at 37�C
and shook for 90 s before and after each measurement. The absolute growth rate of the reference strain was determined by the

change in the log2(OD595nm)/time of the exponential growth phase (50mins–170mins in LB, 50mins–230mins in M63). To determine

the fitnessmeasurement of each knock down, the ratio of the green and red fluorescence of the strain was divided by themedian ratio

of the green and red fluorescence of the 12 additional wells for the non-targeting control. Fitnessmeasurements for each knock down

were made for LB media, and M63 media containing 0.4% of either glucose or lactose.

Swimming assays
For each knock down, 10 mL of pre-culture was spotted in the middle of 15 mL of selected media soft agar (0.3%) plates. Plates were

then incubated at 37�C for either 16 h for LB plates or 24 h for M63 plates. Plates were then imaged using a USB Camera and Python

viewer. An image of a non-inoculated plate was subtracted fromeach image. The fitnesswas determined by the ratio of the swimming

area diameter of each knock down strain to that of the non-targeting control strain.

EVOLUTIONARY SIMULATION

We defined our fitness function as: F = lg+ ð1 � lÞSigðk 3 ðs � s0ÞÞ, where g and s are the growth and swim phenotypic values,

respectively. The parameter l controls the relative importance of both phenotypes in determining fitness, but note that l itself does

not impose a trade-off, it only determines which phenotype has most importance when there is a pre-existing trade-off. SigðxÞ =
1

1+e� x, s0 is the inflection point of the sigmoid function, and k determines its steepness. For each KD landscape, we have four values

of measured growth and four values of measured swim for each pair of genes, allowing us to simulate their dynamics.

We simulated the gene dynamics using the following genetic algorithmwith mutation and bottleneck, looped through steps 2–4 for

N generations.

(1) Initialization: We initialized a population of P individuals, each randomly assigned to one of the four possible genotypes: RS,

local KD, global KD, and double KD.

(2) Mutation: 2% of the population was mutated (strong selection regime). For this subset, we randomly chose one of the two

genes and knocked its state either up or down.

(3) Evaluation: We computed the fitness for each individual in the population.

(4) Selection: We implemented a selection process by subsampling the population based on the probability of each individual i:

pðiÞ =
exp

�
Fi

T

�
Pn

j = 0
exp

�
Fj

T

�, where T represents a fictitious temperature that allows us to adjust the strength of the selection, and j

runs over all n genotypes in the population.

For each KD pair, the environment was randomly changed every 200 generations, for a total of 2000 generations at T = 7.

Code
The code is written in Python version 3.10.9 and has been run on a Linux machine with 20 cores 12th Gen Intel(R) Core(TM) i7. A

simulation for a population size of 2000 and 2000 generations takes less than a minute. The code to perform the simulations and

reproduce the figures is provided at https://doi.org/10.5281/zenodo.10201172, which is in the format of notebooks for the analysis,

and Python scripts for the routines.

The routine evo_loop_env_change from the src/evo_four_states.py script performs the evolutionary simulation. It requires the

measured phenotypic parameters located in the data directory. The user can choose the population size, the maximum number

of generations, the frequency at which the environment is changed, and the mutation rate in the population.

In the output of the simulation routine, the populations as well as the mutations accepted are recorded for each generation in two

variables. In these variables, genotypes are encoded in the following way RS = (�1, �1); Delta Local = (1, �1); Delta Global (�1, 1);

and double knock down = (1, 1).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Computation of relative growth rates
Fitness differences between a mutant and the reference strain (respectively denoted with superscripts ‘m’ and ‘w’) are measured as

the slope of the function:

log

�
Fm
r

Fw
b

�
� log

�
Fw
r

Fw
b

�

where F is the fluorescence measured over time with indices ‘r’ and ‘b’ for mCherry and CFP fluorescent reporter strains. To show

that this measurement is appropriate, let us first evaluate how a fluorescent intensity Fi depends on time. First, given the fluorescence

intensity ai per protein of type ‘i’ and a maturation time ti, fluorescence is delayed compared to the number of accumulated fluores-

cent proteins Ni, so that:

FiðtÞ = aiNiðt � tiÞ (Equation 1)

Second, during steady exponential growth at rate li, proteins are produced at a rate proportional to the total mass of the cell, and

considering the degradation rate di:

dNi

dt
= N0

i e
li t � diNi

The solution to the above equation is:

NiðtÞ = N0
i e

li t
1 � e�ðli+diÞt

li+di

The term e�ðli+diÞt fades exponentially compared to 1, with a characteristic time shorter than a cell cycle by definition of li. Conse-

quently, after a few cycles, Ni is very well approximated as

NiðtÞzN0
i e

li t

li+di

In combination with 1, this gives:

FiðtÞ =
aiN

0
i

li+di

eliðt� tiÞ

The ratio between the intensity of any two fluorescent signals is:

log

�
F2

F1

�
=

"
a2N

0
2

a1N
0
1

l1+d1

l2+d2

+ l1t1 � l2t2

#
+ ðl2 � l1Þt

Therefore, the slope ðl2 � l1Þ as a function of time corresponds to the fitness difference, any dependence in maturation time, initial

amount, and degradation rate being accounted for by the bracketed constant term. Still, a fluorescent strain may be affected by a

growth cost ci specifically associated with the fluorescent protein being expressed, so that it measured fitness li differs from its

fitness mi in the absence of the reporter:

li = mi � ci

The contribution of ci is removed when computing the slope of log
�
Fm
r

Fw
b

�
� log

�
Fw
r

Fw
b

�
, as, given the above, this slope equals the

fitness difference independently of the construct and initial conditions:�
lmr � lwb

� � �
lwb � lwr

�
=

�
mm � cm

r � mw + cw
b

� � �
mw � cw

b � mw + cw
r

�
= mm � mw

Statistical methods used
For each condition, 3 independent biological replicates were grown from single colonies. For each biological replicate, 3 independent

technical replicates were performed for each experiment, for a total number of replicates for each condition of n = 9. Fitness data is

presented as themedian of all biological and technical replicates (n= 9) for a given condition. Error is represented as Standard Error of

the Median (SEM). Significance is determined by Welch’s t-test with a p value of %0.05.
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