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1. INTRODUCTION

The past decade has witnessed the development of sophisticated constitu-
tive models for engineering materials. An overwhelming number of
models which aim at describing the mechanical behaviour of steel, soils,
concrete, rock etc. has been put forward. At present, the evolution has
come to a stage at which the development of constitutive laws itself is no
longer the limiting factor in an engineering analysis. Rather, a paucity of
experimental data to support the models and an inability to obtain a con-
verged solution in a numerical analysis pose the major limitations.
Indeed, most civil engineering materials (soils, rock, concrete) are
difficult materials in the sense that complicated constitutive models are
needed to describe their basic characteristics. Moreover, when we scru-
tinise such models, we observe that neither stability nor uniqueness is
guaranteed for all load levels, but that these favourable properties can
only be established below a threshold load level. These instabilities are
also encountered in a numerical analysis, and even when we are able to
obtain a converged solution we often achieve this goal at the sacrifice of
extremely high computational costs.

1.1. Aims and scope of this study

In this study we shall develop constitutive models for continua and
numerical techniques which can be used in the analysis of granular
materials. Here, the conception of a continuum is taken rather wide as
we will also consider cracked concrete as a continuum. As in the sequel of
this study, we shall understand by 'granular materials’, materials with a
granular structure, either loose like sand or cemented like concrete,
sandstone or rock. A common characteristic of these materials is that
their strength significantly depends upon the stress level, or in other
words, the behaviour of these materials is different in compression than
in tension.

Ideally, the development of constitutive models and their application
in numerical programs should go hand in hand with each other. Yet, we
observe an increasing discrepancy between the relatively simple models
which are employed by numerical analysts and the often very compli-
cated material models developed by materials scientists. This study aims
to bridge this gap and so the development of the constitutive models will
be such that on the one hand the basic characteristics which we observe
in testing devices can be represented, but that on the other hand the
degree of sophistication does not preclude successful use of the models




-4 -

in numerical programs. Consequently, some phenomena exhibited by this
class of materials can be described more accurately by other models
than those discussed here, but for the models which we will discuss, we
will investigate the impact on convergence and stability of the numerical
procedures in greater detail than is usually done.

When we consider constitutive models for granular materials, we
observe that uniqueness and stability are guaranteed only below a thres-
hold level, unless the models are so rough that they cannot reasonably
represent the material behaviour, For instance, when we try to construct
a plasticity model of the response of a granular material in triaxial
compression, we are forced to abandon the associated flow rule of classi-
cal plasticity as it is not able to describe the inelastic volume changes
which are measured in experiments. Accordingly, Drucker’s Postulate is
no longer valid and non-unique solutions are possible already in the har-

‘dening regime. A similar situation occurs with respect to the cohesive
strength of cemented granular materials. Here, continued loading
results in micro-cracking and ultimately in a degradation of the strength
with accumulation of inelastic deformation (softening).

The lack of uniqueness and stability above some threshold level of
loading is also reflected in a numerical analysis and we encounter bifur-
cations and softening branches also in discretized systems. Indeed, the
spatial discretization, the numerical integration of the stress-strain law,
the iterative solution procedure and so on tend to destabilize the numeri-
cal solution already before bifurcation or limit points of the underlying
continuum are encountered. The iterative solution procedure then breaks
down and the structure is said to have "failed", In this study we adopt the
philosophy that such a judgement is not adequate and that an analysis of
the post-bifurcation or the post-limit path is required for a proper
assessment of the structural behaviour. Tracing of these paths is notori-
ously difficult and is only feasible if a constitutive model is employed
which strikes a balance between simplicity and an accurate description of
the material behaviour, if the numerical integration of the differential
stress-strain law does not entail significant inaccuracies, if the mechani-
cal system which arises upon discretization of the underlying continuum
resembles the original system closely enough and if the iterative solution
techniques permit tracing such paths.

1.2. Contents of this study

This study starts with a brief description of the basic 1fin_erna‘tic and
static relationships of continuum mechanics whereby restriction is made
to small displacement gradients. Equilibrium is formulated by r.neans of
the virtual work principle in a form which is attributable to Pmlfi. T%le
class of constitutive laws to which we will confine our attention is dis-
cussed. In particular, we will restrict attention to rate type laws and w.e
will not employ functional type constitutive laws. Furthermore, condi-
tions for uniqueness and stability under dead loading are formulated.

Chapter 3 addresses the numerical representation of these 1.aws of
continuum mechanics. The stability condition is elaborated for discrete
systems, and an interpretation of unstable behaviour is giv«'en. It appears
that the theory for non-symmetric systems is much less satisfactory t%'lan
that for symmetric systems as the latter not only allows for the esta}:hsh-
ment of a sufficient condition, but also of a necessary condition for insta-
bility under dead loading. It is furthermore shown that the response of
discretized systems may differ fundamentally from the response of the
underlying continuurm. ‘ .

In Chapter 4, we will outline the constitutive models employec% in this
study. The most important feature is perhaps the addition of strain rates
due to the different non-linear phenomena. Fracture in cohesive granular
materials is treated using a smeared concept and a new model which per-
mits non-orthogonal cracks is outlined. For compressive loadings, a
hardening-softening plasticity model with a non-associated flow rul:? is
used. The fracture model and the plasticity model are then combined in a
plastic-fracture model and some consequences of the use of a non-
associated flow rule and of strain-softening, both of which are employed
in the model, are reviewed. .

Chapter 5 is concerned with the derivation of sound numerical al'go~
rithms for the constitutive models which were discussed in the preceding
chapter. On a local level, particular attention is devoted to sing'ularities
in a yield surface and to the combination of fracture and plastic:!ty, Qn _a
structural level, techniques are discussed which permit overcoming limit
points in an economic and elegant manner and which permit branching
off on alternative equilibrium branches at a bifurcation point. These tech-
niques are combined with fast iterative procedures to achieve conver-

gence within a loading step.
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The last two chapters present applications to some typical bifurca-
tion and limit problems in soil and concrete mechanics. We will concen-
trate on the ability to trace post-bifurcation and post-failure branches
and we will give some solutions not presented before.

1.3. Notation

In this study we will use tensor as well as matrix-vector notation, where
the former notation will primarily be used for continuous systems while
the latter notation is usually adopted for the description of discretized
systems. Restriction will be made to Cartesian tensors in order not to
obscure the physics behind mathematical expressions. Hence, all indices
will be lower indices, and the summation convention is adopted for
repeated latin subscripts. Matrices and vector are distinguished by bold-

‘faced symbols. It is furthermore noted that a global list of symbols is not

included because several symbols have more than one meaning. Instead,
symbols are defined when they first appear in the text.

- '? =
2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

In this chapter we shall derive the differential equations for the non-
linear behaviour of a continuum. We shall restrict ourselves to a class of
materials for which the material response can be formulated using a local
rate law. Frictional materials exhibit all sorts of 'undesirable’ phenomle‘na
like softening, cracking, dilatancy and so on. This implies that stability
and uniqueness are guaranteed only below a certain load level. Therefore,
conditions for stability and bifurcation are discussed in detail.

2.1. Kinematic and static preliminaries

In the light of the derivation of the finite element equations in. the next
chapter, equilibrium is most conveniently expressed via the prmcllplf.: of
virtual work. In particular, we shall employ a version of this principle
which is attributable to Piola'® and which reads;

"The virtual work of the external forces is in case of equilibrium equal to
zero for all virtual displacements which yield no deformations".
Mathematically, this is expressed by the condition that

Jti6u;dS+ [pg;6u;dV=0 (2.1)
S5 v

for all virtual displacements du; subject to the subsidiary condition that
the associated virtual strain field d&y;

B douy +6‘6ui 2.2)
i 2 ij 631,

vanishes (8&4;=0) for all points of V. Here, t; are the boundary tr'.-fctions,
p is the specific mass of the material, g; is the gravity acceleration ar}d
x; are spatial coordinates. In this study, attention is restricted to stat.lc
problems, and consequently, a term due to inertia forces has been omit-
ted in equation (2.1). o

Introducing a tensor field of Lagrangean multipliers oy, We can
comprise equations (2.1) and (2.2) to a single equation:

Sti0u;dS+ [pg;oudV— [ 04;68,dV=0 (2.3)
S v v

It follows that equation (2.3) indeed expresses equilibrium as ir.merting
equation (2.2) and application of the divergence theorem to equation (2.3)

gives:

_g(t,,—o',;jn])dmd5+fv

0g;+ 90y ]Gui dV=0 (R.4)
63‘:3‘
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with n; the outward normal to the surface of the body. A sufficient condi-
tion for this equation to hold for any virtual displacement 6w is that

+ 2% _g

in the interior of the body and
t,& —Uﬁﬂj =0 (26)

on the boundary 5. We can thus identify the Lagrangean multipliers Oy
with the so-called Cauchy stress tensorl®1113.111

For deformation problems in solid mechanics, equation (2.3) is not
very suitable as it takes the current, yet unknown configuration as the
reference configuration. It is more convenient to take a previous
configuration as reference configuration, e.g. the original configuration of
the undeformed body or some intermediate configuration. Such a choice
is reasonable as long as the inelastic strains remain small. Indeed, we will
assume throughout this study that all strains, inelastic and elastic,
remain small. Transforming equation (2.3) to the reference configuration
10 yields

S 1060, 0.5+ [ pOg; Su, dVO~ [ S;;67,;dV0=0 (2.7)
50 w 7w
with 7;; the Green-Lagrange strain tensor
8z, Oz
1 k k
Vi =5 ——--———5--] (2.8)
w2 o€ afj_ ]
so that
Oz, 00z, 00z, Oxy
Sv..=L + 2.9
%™ [a& o, ' ok o wH

and S;; the second Piola-Kirchhoff stress tensor which is related to the
Cauchy stress tensor by

9¢; B¢,
aﬂfk Tkl ax'; (210)

S‘ij =J
§€; are material coordinates which are related to the spatial coordinates
z; by

T =ty (2.11)

and J represents the functional determinant of the mapping T =x; (Ej)-
tic is the so-called nominal traction and represents the current traction,
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but referred to the reference configuration and p? is the specific mass of
the material in the reference configuration Vo,

In order to clarify the physical meaning of equation (2.7) and the
employed stress measure, we rewrite equation (2.7) as follows:

adu,;
ftfé’zqu%fp“gﬁézquo—fEﬁ FdVOZO (2.12)
i w P J
where the first Piola-Kirchhoff stress tensor Eg :
B 2.13
Ei‘f:JUﬁc axk ( )

has been introduced. Proceeding in the same way as when formulating
equilibrium with respect to the current configuration, we can derive that

%+ E":"?.——=0 (2.14)
a¢;
in the interior of the body and
t0—Tyn =0 (2.15)

on the boundary S°. njo is the outward normal to the surface of the body

in the reference configuration.
Inelastic processes are often path-dependent and the stress tensor

must then be integrated along the loading path. To this end we rewrite
equation (2.7) as follows

t
[lstt+ [ 5, (r)ar|8yydVO— [t26u;dSO- [pOg;6usdV0=0 (2.16)
W t=At 8o w

with S,-é the material derivative of the stress tensor and S%‘at the stres.s
tensor at 7=t —At. It is now important to recall that although all quanti-
ties are referred to some past reference configuration, the virtual work
equation has been set up at 7=t. This implies that the variation 67,-‘,- has
to be evaluated for 7=t and consequently, the spatial coordinates I
which enter equation (2.9) are coordinates at 7=t. Using identity (2.11)
and operating on the displacements in a similar manner as on the stress
tensor, namely by putting

wf=uf 8+ Ay, (2.17)

we can rewrite 07;; as follows:

Bdﬂuk a!.\.uk ﬂﬂuk aéﬁuk

— 2.18
67,-0-—67"“+é— 6¢;  6&; * 6¢; O \e18)




= {0 =

with
. B0Mu;  B0Auy, BufTA Aup~At 35w,
by g =L Bofuy Body k O | 0% k
2| o0& 0¢; 6¢; 6¢; 6&; 0¢;

Inserting these identities in the virtual work expression (2.16), we obtain:

(2.19)

. 86 Ay, 8l
d 6y, dVO+ SEot dyo
fd Satnarondvs [ =St
= [t96u;dS+ [ p°g; by dVO— [ Sty ;d VP (2.20)
S° w Vo

This equation can only be developed further if we make assumptions on
how S.ij depends on the strain rate and the strain history. This matter
will be considered in the next section and the evaluation of the integrand

will be treated in Chapter 5.

The derivative S'i,j of the second Piola-Kirchhoff stress tensor merits
some further discussion as the issue of the choice of a proper stress rate
is somewhat controversial in continuum mechanics. With definition (2.10)
we obtain

ag; |. Oy, oy, oy | B¢,
S4=) gy [P By O Bz O |om, B2V

with 7; the velocity of a material point,
Uy =t =k (2.22)

The stress rate S',;j is an example of an objective stress rate. It contains
the so-called Truesdell stress rate!!
o By

LA au,,
S@'.j:Ji.j"'U«Lj aZm '_Umj azm —0Tim, axm (223)

as a special case which is obtained when the reference configuration is
instantaneously updated to coincide with the actual configuration

BE.
because then %zﬁij and J=1. The above stress rates are merely
J

examples of objective stress rates as there is an abundance of other pos-
sible choices. Prominent amongst these is the so-called Jaumnann deriva-

tive of the Cauchy stress tensor

v |6u.‘ oy |, [ow eu; —

- 1
= 1 5. ey
9§ =% "7 i oz, o=z | 2 *|oxz; o

the difference with the Truesdell stress rate being given by

I

vy oy

a'u.t a’u-k
Sf’j‘“ i 0'13 ax 'E—O'kj

Bx,c

-L w[%+—] (2.25)

We observe that objective stress rates differ merely by terms ’stress
component times velocity gradient component’ %8, In fact, it does not
matter very much which objective stress rate is employed provided that
the constitutive law is properly adapted to the choice of the stress rate
tensor.

2.2. Constitutive equations

Broadly speaking, there are two ways to formulate constitutive laws"111,
The most general approach is probably to consider the stress in a
material point with coordinates & to be a functional F of the deformation
history of all points (with material coordinates 7;) of the body B:

%
Uﬁ(skst)= s F xm(nm-t_T)-fk] (2-26)
T7=0 npeB

where 7 is the time parameter. Some caution should be exercised when
referring to 7 as a time because for short-term loadings, time-dependent
effects can be disregarded and 7 attains the role of a parameter which
merely orders the loading process. In this study for instance, time-
dependent effects are not considered, but when we divide the (continu-
ous) loading process in a number of finite load increments, we will speak
of this discretization as a 'temporal discretization’.

The above c~ncept can be simplified if we assume that only the neigh-
bourhood of a material point influences the stress. Then, z, can be
developed in a Taylor series. The most simple approach is of course to
re.ain only the linear term. In doing so, we can rewrite equation (2.26) as:

0 (£)= F (7366t 7)) (227)

In Coleman’s terminology®’, such a material in which the stress in a
material point is determined only by the strain history of the same
material point, is called a 'simple solid’.

Especially the advent of digital computers and numerical techniques
have rendered the functional approach less suitable for practical applica-
tions, as in a numerical analysis such a model requires the storage of the
entire strain history, which clearly exceeds storage capacity even of
modern computers. As this study primarily aims at developing tools for
practical analyses of granular materials, we will follow the differential
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approach, in which constitutive laws are formulated via rate laws. In this
approach, the stress rate tensor is a function of the stress tensor, the
strain tensor, the strain rate tensor and a finite number of internal vari-
ables H,, which intrinsically reflect the strain history:

Si5=Sij (S Vi, Vet H o) (2:28)

Furthermore, we will only consider the case that this expression is linear
in the strain-rate tensor 7y, so that

Si5=Digit (St Vi Ha) Vit (@59

with Dy a fourth-order tensor which contains the stiffness moduli and
which is a function of Sy; 74 and H,. Equation (2.29) is a linear relation-
ship between the stress-rate tensor and the strain-rate tensor of a partic-
ular material. In the sequel, we will only consider constitutive laws which
are expressible in such a form. This means that for instance
inerementally-nonlinear constitutive laws such as Valanis' endochronic
model'? are not considered. Also, non-local rate equations are excluded.
Recently, there have been some attempts to model softening in concrete
by means of non-local rate equations® %, so exclusion of these laws is to a
certain extent questionable.

Restricting the treatment to incrementally-linear, local rate laws, we
can derive the governing field equation. To this end, we substitute equa-

tion (2.29) in equation (2.20). This gives:

t 06 Ay, 0l
Dyt ¥ 70735 V0+ Sl —diP
'vj;t'—f;t W ‘l!; 08 v

= [t06u;dS%+ [ pOg; 6wy dVO— [ Sk 86y, d 1P (2.30)
50 w Vo

2.3. Stability and uniqueness

An equilibrium state is called stable if the response on a vanishingly small

disturbance also remains vanishingly small®?883 Suppose now that we

have an equilibrium state at 7=% with a stress field Eﬁ. We consider an

infinitesimal displacement field du;=;0%. A stress rate ¥;; can be calcu-
duy;

lated by multiplying the velocity gradient a?’*with a stiffness tensor. All
J

rates are referred to time 7=t and we assume that the external forces do

not depend on the position (dead loading). In an infinitesimal time 6t the

increase in internal energy minus the work of the external forces equals

_13_

(to second order)%3:98
5 L
= oo A g i . '
U= Bt Rty -otav=[taisotas— [pgsisotay (s
v

along any kinematically admissible path which starts in the direction 2,
Subtracting the equilibrium equation .

duy .
{ i Ea?éth— { £ 0tdS — { PG; Uy 6tdV=0 (2.32)
results in
U'-__—-i_ 52)2 [ - aﬂi
1(ot) j; Ty o, av (2.33)

We .will hefn.ceforth assume that stability under dead loading is ensured if
U 1.s_ pc.nsmv_e for all kinematically admissible velocity fields, while the
equilibrium is unstable under dead loading if U becomes negative for at

. Oy
)y ales SRR
_If;‘bj aa:j >0 (2.34)

for all kinematically admissible velocity gradient distributions :

is
- - e x .
sufficient for stability under dead loading, and the beginning of an
unsta.ble hralnch Is marked by the vanishing of this expression for at least
one kinematically admissible velocity gradient distribution.
- :o ;ar,ttlg,e stability condition has been expressed in terms of the rate
e first Piola-Ki )
; iola-Kirchhoff stress tensor E,;’- and the velocity gradient

T both referred to the configuration at 7=¢, A number of alternative

]
:ut. esse'ntially equivalent formulations exist. For instance, a rather long
ut straightforward derivation shows that U is also given by

U=1 (602 [, 50+ 25, P
2 -{0- 15 Vg ¢, S‘l.j afj A% (2.35)

& .
: other el‘egant and useful formulation can be derived when the constitu-
ve equation is phrased in terms of the Truesdell stress rate S:_f and the

rate of deformation tensor 81:3
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o, o,
N = ] (2.36)
ox; O
such that
v .
Sij=Digiet €t (2.37)
Then, we can deduce that
du; — 0y
_ 2% 5 Y%k
U=1(st) { 5z, Dijwt 52, ayv (2.38)
where
Dijiet = Dijiey + 0y O (2.39)

Next consider uniqueness. We again suppose that we have an equili-
brium state and that there exist two kinematically admissible strain rate
distributions which both satisfy compatibility and which do not differ

AL

merely by a rigid body motion. Let A % be the difference between
J \

both velocity gradient distributions and let AL;; be the difference

between both stress rate distributions. Now consider the integral

: o,
W=_{:AE,;§ Algg]dv (2‘40)
By virtue of the divergence theorem we obtain
: . 0(ALy)
= s AL - e 241
w _g&i?wnjﬁ%ds jV'Au, oz, av (2.41)

In order that both solutions follow an equilibrium path, they must both
satisfy equation (2.14) within the body and equation (2.15) on the part of
the boundary where the tractions f; are prescribed. Subtracting the
equilibrium equation of one stress rate field from the equilibrium equa-
tion of the other stress distribution yields

dx;
for points within the body and
AL;m; =0 (2.43)

for points on the part of the boundary where tractions are prescribed.

..15_

Together with the observation that on the remainder of the boundary, we
have Aw; =0, this leads to the conclusion that

. (6

[ 85852 |dv=0 (2.44)

v 0z;

for two different solutions. Uniqueness is therefore guaranteed if5®58

. (6w

[85,; Al =+ |dv>0 (2.45)
i ax.:

v J

and we have a bifurcation point if the integral vanishes for two different
admissible solutions. It is noted that the condition that W<O0 is also a
sufficient condition for uniqueness, but this possibility seems not impor-
tant as according to condition (2.34) such a situation will probably be
unstable. It is noted that alternative formulations such as derived for the
stability condition, can also be deduced for the uniqueness condition.

We observe that stability and uniqueness may give rise to different
requirements. Essentially, the stability requirement is single-valued, that
is the stress rate E,-J- can be associated with a unique velocity gradient
ai. However, the uniqueness requirement is multi-valued when both

0x;
posjsible velocity gradient distributions are related to stress rates by
different values for Dy, which happens when we have different
behaviour in loading and unloading, e.g. elastic-plastic solids. Strictly
speaking, we have to investigate all possible combinations of loading and
unloading for such a multi-valued constitutive law in order to determine

whether the uniqueness integral vanishes for some combination.
2.4. Geometrical linearization

Unstable structural behaviour and non-unique solutions may either be
caused by geometrical nonlinearities or by physical nonlinearities or by a
combination of both. It depends on the material and the type of structure
which cause (physical or geometrical) will prevail. In steel structures, the
material behaviour is usually stable and geometrical nonlinearities as
represented by the second term in equations (2.20) or (2.35) are the
major factor which cause unstable structural behaviour. For materials
like sand, rock and concrete, we only have material stability below some
threshold load level and geometrical nonlinearities play a minor role in
causing structural instability. An exception is formed by slender concrete
structures such as tall reinforced or prestressed columns, but for mass
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concrete and earth and rock masses, geometrical nonlinearities are
unlikely to contribute significantly to unstable behaviour.

As for the class of materials and kind of structures which we will con-
sider, material instability will be the governing factor which causes insta-
bility, and as the constitutive models unfortunately still entail significant
errors in describing the materials considered here, we will omit geometr-
ically nonlinear terms in the sequel of this study. A further advantage of
neglecting possible geometrical nonlinear effects is the fact that we are
then able to concentrate fully on the consequences of the material
models for structural stability. By neglecting geometrical nonlinearities,
we in fact isolate the consequences of material behaviour for structural
stability.

When introducing the assumption that the geometrical nonlinear
terms can be disregarded, the equilibrium equation (2.30) and the stabil-
ity and uniqueness conditions (2.34) and (2.45) simplify considerably. A
first consequence of the assumption that the displacement gradients
remain small throughout the loading process is that the difference
between the Cauchy and Picla-Kirchhoff stress tensors vanishes and the
additional terms in the expressions for the stress rates can also be disre-
garded. Furthermore, no distinction need be made between the current
and the reference configuration when evaluating the integrals, and the
linearized 'engineering’ strain &;;,

_1_[%+?_“L

=% |3 z; | oz (2.46)

replaces the Green-lLagrange strain 7;;. With these simplifications, the
virtual work expression reduces to

t
_{;tj‘;tﬂijﬂe':udrda,-jdV=_£t£5'LL,;dS+h{:pg,;5u¢th‘£U%‘M68¢jdV (2.47)

while the stability and the uniqueness condition respectively reduce to

S bi;845dV>0 (2.48)
|4

and

{ MGy Az d V>0 (2.49)
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3. DISCRETIZATION OF THE BOUNDARY VALUE PROBLEM

In this chapter we shall consider a finite element discretization of the
differential equations for a non-linear continuum which were derived in
the preceding chapter. As material rather than geometrical instabilities
are the central theme of this study and as the examples which are con-
sidered in the final chapters have been performed under the assumption
of small displacement gradients, we will take the linearized differential
equations (in the sense that geometry changes are neglected) as starting
point of the derivation. Furthermore, we will investigate the implications
of the conditions for stability and uniqueness discussed in the preceding
chapter for discretized systems.

3.1. Finite element representation

Let the continuum be divided in an arbitrary number of finite elements,
and let the continuous displacement field 2 be interpolated as follows

u=Ha (3:1)

in which the matrix H contains the interpolation polynomials and @ is a
vector which contains the nodal displacements (see for instance Bathe?).
The relation between the displacement field 2 and the linearized strain &

can formally be written as
e=Lu (3.2)

with I, a matrix which contains differential operators. The relation
between the nodal displacements and the linearized strain then becomes

e=Ba T (3.3)
or upon differentiation
¢&=Ba (3.4)

while the notation B =I5 H has been introduced for the strain-nodal dis-

placement matrix.
Substitution of equation (3.4) in the linearized (in the sense that
geometry changes are neglected) virtual work expression (2.47)

t
S8eT [ DidrdV=[ouTtdS+ [péulgdV-[deTaodV  (35)
voot-at S v vV

gives after rearranging
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da’if fBTDBu deV—fHTtdS—prng.V+fBTcrng =0 (3.6)
Vi—At

We note that of~2 has been replaced by the shorter notation @y As
equation (3.6) must hold for any virtual displacement da, we obtain the
following set of algebraic equations

[ f B'DBa cz-rdV—fHTtdS+prngv—fBTc0dV (3.7)
Vi-At
On integration point level, accurate evaluation of the integral
f BTDBadris very important and various possibilities exist, ranging
from a simple Euler forward method to sophisticated Runge-Kutta
methods. A simple, but accurate method is derived in Section 5.1 where
we will devote special attention to singularities which may complicate the
evaluation of the integral. On structural level, however, other methods
than a forward Euler method are seldom employed. Hence, for the solu-
tion of the non-linear equation on a structural level which is described in
Section 5.2, we can integrate equation (3.7) in a straightforward manner,
yielding:

SB"DyBdV Aa= [HTtdS + [pH gdV— [ BTa,dV (3.8)
14 S 4 v
where the notation By means that the stress-strain matrix D is

evaluated at the beginning of the loading step. We next introduce the
notations

Ko=[B"Dy,BdV (3.9)
v

for the stiffness matrix evaluated at the beginning of the loading step and
q=[H"tdS+ [pH gdV (3.10)

S 14
for the external load vector. For proportional loading we may replace g

by uq"® with ¢° a normalized load vector and M a load parameter. With
the additional definition

pozp{,q‘—{s%odv (3.11)

we have for the initial estimate of the increment in nodal displacements
within a loading step Aa,

«iQw

An1=K5‘[ﬂmq’ +Po] (B:iR)

Anticipating the treatment in Chapter 5, the load parameter u ha.Ls also
been labelled, as it may change from iteration to iteration. In particular,
g is the value of the load parameter at the end of the previcu§ load?ng
step and Au, is the value of the load increment in the first iteration
within the current step. As we will see in Chapter 5, Ay need not be equal
to the value of the load increment in subsequent iterations Ap;.

Because of the forward integration of equation (3.7), A@; mostly
does not lead to a stress field 0,=0y+A@; which satisfies equilibrium.

Therefore, a correction da,
JazzKi‘llaluzq' tp 1] (3.13)

is calculated with

plzuuq'—-fBTo‘ldV (3.14)
v

and K; a possibly updated stiffness matrix. It is further noted that the
notation & no longer denotes a virtual quantity, but a small increment.
The correction d@; is added to the first estimate of nodal displac.ements
Aa ,, so that we obtain as improved estimate of the incremental displace-

ments:
Aa,=Aa+da, (3.15)

This process can be repeated until convergence has been achie.wed.
For iteration number %, the process can be summarised by the equations

I @10
v

da; =K [AM q’ +Pa;—1] (3.17)

Aa;=Aa,_,+da; (3.40)

3.2. Bifurcation and limit points

In Section 2.3 a structure was defined to be in a state of stable equili-
brium if
S&'adv>0 (3.19)
Vv
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for all kinematically admissible strain-rate vectors #, while it was said to
be in a critical state of neutral equilibrium if f&T&dV vanishes for at
least one kinematically admissible strain-rate vector. With the notations

and the definitions of the preceding section, we can rewrite the integral
of (3.19) as

JE'adv=[a"B"DBa dv=a’Ka (3.20)
14 Vv

so that a discrete mechanical system is in a state of stable equilibrium
under dead loading if

a’ Ka>0 (3.21)

for all admissible velocity vectors @ while it is said to be in a critical
state of neutral equilibrium if

a’ Ka=0 (3.22)

for at least one admissible vector @. A sufficient condition for equation
(3.22) to be satisfied is that

det(K)=0 (3.23)

which according to Vieta’s rule,
T
det(K) =il;{1 N (3.24)

with A; the eigenvalues of K, implies that at least one eigenvalue van-
ishes. It is noted that the vanishing of det(K) is a sufficient condition for
equation (3.22) to hold, but is only a necessary condition in case of sym-
metric matrices. For non-symmetric matrices, which for instance arise in
non-associated plasticity, @’ Ka also vanishes when Ka is orthogonal to
@ . We will come back to this issue in a subsequent paragraph.

Let now wy, vy, ..., w, be the right eigenvectors and w,, Wy,
......... » W, be the left eigenvectors of K corresponding to the eigenvalues
A Az, A (in ascending order):

Kv,=\v,; (3.25)
""s‘TK:Ai‘”v‘.T (3.28)
the summation convention not being implied in this case. Between the

left and right eigenvectors w; and w;, there exists the relationship (see
for instance Ralston and Rabinowitz®7)

wfv;=0 i#j (3.27)

- ;.

Further, w; and w; can be normalized such that

Wir"i:l (328)

It is noted that the left and right eigenvectors coincide for the special
case of a symmetric matrix, i.e. w;=w;. If K is not defect?, ie. if the n
(either right or left) eigenvectors span a n-dimensional vec,?tor space, any
vector can be written as a linear combination of the right eigenvectors

=3 (wia)v, wze)
i=1

or alternatively of the left eigenvectors

=3 (v]a)w, (590
j=1

The vanishing of det(K) implies that the corresponding set of alge-
braic equations
Ka=.q" (3.31)
becomes singular. It is noted that in equation (3.31) we consider a velo-
city field @ and a loading rate ji rather than a finite displacement incre-
ment Aa and finite load increment Au. It is furthermore assumed that
we have a converged equilibrium state in our numerical process, so that
at the beginning of the new loading step, de unbalanced force vector Py
is vanishingly small. The velocity vector @ and the normalized load vector
g’ are now decomposed in the sense of equation (3.29). Substituting the
result in (3.31) gives

K[f](ﬂft’l)%]#&i(iﬂfq’)w (3.32)
i=1 i=

With aid of equation (3.25), we can modify (3.32) as follows

3 [Mwé"d)—ﬂ(wé‘" q')]v-;=0 (3.33)
i=1
As K is not defect, the eigenvectors w; (i=1,...... ,n) constitute a set of n

linearly independent vectors, which implies that equation (3.33) can only
be satisfied if

A (wla)—jwig*)=0 (3.34)
for each eigenvector ;. In particular, we have for =1

A(wa)—j(wlg*)=0 (3.35)
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Figure 3.1. Limit point and unstable path beyond a limit point.

When the eigenvalues are in ascending order, the vanishing of det(K)
implies that A;=0. Ag,Ag etc. may also vanish, but we shall restrict atten-
tion to the case that only A; vanishes in the understanding that generali-
sation to more vanishing eigenvalues poses no serious problem. With A;=0
we obtain instead of equation (3.35)

fo(wig*)=0 (3.36)
This equation is satisfied when either

=0 (3.37)
or

wiq*®=0 (3.38)

or when both conditions are met. The first possibility is usually called a
limit point and is by far the most common. A typical example of such a
peoint, in which the load becomes stationary ({t=0), is plotted in Figure
3.1. Condition (3.38) determines a bifurcation point of equilibrium states
from which various equilibrium branches emanate. Equation (3.38)
implies that the load vector is orthogonal to the left eigenvector w; so
that equation (3.36) is satisfied while the load does not necessarily
become stationary for all solutions at the bifurcation point. Figure 3.2
shows some possibilities of bifurcation points and post-bifurcation
behaviour. The classification of Figure 3.2 stems from the field of elastic
stability!!%, but does not have much meaning for bifurcations of elastic-
plastic or elastic-fracturing solids, as for such types of material
behaviour we mostly can only establish a load level beyond which bifurca-
tion is possible, rather than discern discrete bifurcation points. In
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Figure 3.2. Bifurcation points and various possibilities of post-bifurcation
behaviour. (a) Asymmetric bifurcation point. (b) Symmetric bifurcation
point with stable post-bifurcation paths. (c) Symmetric bifurcation point
with unstable post-bifurcation paths.

reality, bifurcation points are rather rare, as they mainly occur in per-
fect structures, and they are transferred into limit points upon introduc-
tion of an imperfection. The third case, i.e. 4=0 and w{q*=0 for all pos-
sible solutions, constitutes a point which is a limit point as well as a bifur-
cation point. This somewhat rare case will not be considered here in
detail.

The vanishing of f for a limit point implies that

Ka=0 (3.39)
or substituting equations (3.25) and (3.29)

3 A (wfd)v; =0 (3.40)
i=1
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With the same arguments as used in the preceding, we can deduce that
7 g
w;a=0 (3.41)
for each 2 #1 since then A;>0. Equation (3.41) can only be satisfied if

a=ow, (3.42)

with a some indeterminate scalar. Hence, a multiple of the right eigen-
vector belonging to the lowest eigenvalue is the only possible solution at a
limit point.

With regard to bifurcation points, we assume that @"is a solution to
equation (3.31) so that

Ka'=q° (3.43)

and we will henceforth call this solution the fundamental or basic solu-
tion. It is noted that u#0 for this solution. We will now investigate
whether the equations

Ai(wia)—ji(wiq*)=0 (3.44)

for #1 admit other solutions than the fundamental solution @®. Substi-
tution of equation (3.43) yields:

A (wia)-(wiKa®)=0 (3.45)

and decomposing @" in the sense of equation (3.29) and using (3.25)
results in

Ty T D g T
N(wia)-Nw| ) (wfa)v,|=0 (3.48)
=

Because A;>0 for i#1 and because of the orthogonality of w; and vy,
equation (3.46) reduces to

wl(a—a*)=0 . (847
This equation will be satisfied for each w; if and only if

. . _

a-a’=pv, (3.48)
with 8 some scalar. Hence, all solutions

a=a’+pwv, (3.49)

are possible at a bifurcation point. It is noted that equation (3.49) con-
tains the fundamental solution as a special case when $=0, but that

a=fv, (3.50)
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is not contained in the set of solutions (3.49). Nevertheless, (3.50) always
constitutes a solution to (3.31). To show this, we first substitute (3.50) in

equations (3.44), yielding

BN (wiw ) —j(wq*)=0 (3.51)
Because of orthogonality of w; and w; this reduces to

wlq*)=0 i>1 (3.52)

and as g ° is not a null vector by definition, this implies that 4 must van-
ish. Hence, a solution of the kind (3.50) must be associated with a bifur-
cation branch with a zero slope at the bifurcation point. The observation
that the set of solutions (3.49) as well as solution (3.50) are permitted,
can be comprised in the single equation

a=aa’+pv, (3.53)

where the scalars a and 8 may both vanish (but of course not simultane-
ously). A procedure for determining « and g for a finite displacement
increment Aa will be outlined in Chapter 5.

In numerical processes, limit or bifurcation points are extremely
difficult to isolate. Rather, distinction is made between stable equilibrium
states for which equation (3.21) holds, and equilibrium states which are
unstable under dead loading, i.e.

al Ka<0 (3.54)

for at least one kinematically admissible field @& . Substituting expressions
(3.29) and (3.30) in inequality (3.54) gives

i il("e: a)(wja)w]Kv; <0 (3.55)
i=1j=

or using equations (3.25) to (3.28)
3 (wfd)(wla); <0 (3.56)
i=1

This inequality will certainly be satisfled if one or more eigenvalues
become negative . Suppose for instance that we have encountered two

t It is noted that the fact that the stifiness matrix K may be non-symmetric im-
plies that the eigenvalues of the stiffness matrix may be complex even if the
stiffness matrix only has real coefficients. The bulk of the literature on finite ele-
ment methods only deals with the sub-class of symmetric, real matrices and then
the eigenvalues can be proved to be real. It seems however, that the possibility of
complex eigenvalues of a tangent stiffness matrix which arises in structural
mechanies is rather academic since this would according to equation (3.57) imply
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negative eigenvalues A; and Az with corresponding (right) eigenvectors
w; and wp. Choosing @=aw; with a some real scalar, we obtain with
(3.27) and (3.28)

f: (vfa)(wia)\ =aPv v A <0 (3.57)
i=1
a A
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Figure 3.3. Unstable branches after a bifurcation.
(a) The load rises on the basic path and there are m alternative equilibri-
um states. (b) The load decreases on the basic path after bifurcation.

Similarly, if we choose @ =fw swith § some other scalar, then
n
Y, (wfa)(wla)r=p%wfw ;<0 (3.58)
i=1

that the corresponding eigenvector would alsc be complex, which seems physical-
ly inconceivable.

o

. e ———— —_—

Figure 3.4. Load versus transverse displacement for perfect Euler strut.

so that there exist at least two independent kinematically admissible
velocity vectors for which inequality (3.64) holds, and consequently, the
equilibrium is unstable under dead loading.

There are two possible interpretations of negative eigenvalues. The
first is that we have passed a limit point, which implies that the load is
descending. In this case, we find a negative eigenvalue which is associated
with the descending branch (see Figure 3.1). The other possibility is that
the negative eigenvalues belong Lo alternative equilibrium states and that
we have passed a bifurcation point. Again, two possibilities arise, as the
basic path after bifurcation may either be ascending or descending. If it
is still ascending (Figure 3.3a), all the, say m negative eigenvalues can be
associated with m alternative equilibrium states which can in principle
be reached through a suitable combination of the incremental displace-
ment vector of the basie path and the corresponding eigenvector {. If the

1 The question now arises whether the alternative equilibrium states are indeed
accessible. If a mechanical system is undergoing a continuous process, such an al-
ternative equilibrium state can only be reached via an equilibrium path. If a bifur-
cation point has been passed and the system is in a state of unstable equilibrium
thereafter, the point will continue on this unstable path because other equilibri-
um states cannot be reached under static dead loading conditions. This implies
that for a continuous loading process branching off on other equilibrium paths
can only take place at a bifurcation point. If a temporal discretization of the load-
ing process is employed, this is no longer true as alternative equilibrium states
can in that case also be reached via non-equilibrium paths, because we then
essentially deal with equilibrium states and not with equilibrium paths. In fact, we
actually follow a non-equilibrium path when iterating to a converged solution. We
will come back to this issue in Chapter 5 and we will give an example in Chapter 7.




-28-

basic path is descending after passing a bifurcation point (Figure 3.3b),
one negative eigenvalue is associated with the descending basic path, and
the remaining m —1 negative eigenvalues correspond to m —1 alternative
equilibrium paths.

An example of a bifurcation after which all negative eigenvalues
belong to alternative equilibrium states which can in principle be reached
via some kinematically admissible displacement vector, is the perfect
Euler strut. When we load a perfect strut centrically, we can continue the
solution indefinitely. After the first bifurcation point (labelled "A" in Fig-
ure 3.4) we encounter a negative eigenvalue, which indicates the
existence of a (in this case stable) alternative equilibrium branch (dashed
in Figure 3.4). Similarly, we get two negative eigenvalues when the second
bifurcation point ("B" in Figure 3.4) is passed as beyond point B there
exist two alternative equilibrium branches, namely the branch which
emanates from point A (dashed) and the branch which emanates from
point B (dash-dotted). It is noted that in the terminology of elastic stabil-
ity as quoted above, the bifurcation points of this example are stable
symmetric bifurcation points.

by - F/2
1 N N | S i
F
A

- basic path

I Iy
localization in one
or more elements

—

displacement

Figure 3.5. Load-displacement curve for axially loaded bar.

An example in which one negative eigenvalue belongs to the descend-
ing branch and the remaining negative eigenvalues correspond to alter-
native equilibrium branches is the axially loaded bar of softening material
as shown in Figure 3.5. In this figure, the most shallow post-peak curve
corresponds to the basic path at which the bar deforms homogeneously.
As we will derive in greater detail in Sections 4.4 and 6.1, the employed
softening model permits localisation in one or more elements. These
alternative equilibrium paths after peak load are the steeper curves of
Figure 3.5 and the remaining negative eigenvalues correspond to these
paths. For convenience of readers who are more familiar with
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bifurcations in elastic-plastic solids, it is noted that the above example is
not a necking type bifurcation.

We have seen that the existence of negative eigenvalues is a sufficient
condition for unstable structural behaviour under dead loading, i.e. the
structure is in a state of unstable equilibrium if we extract negative
eigenvalues from the tangent stiffness matrix. It is not a necessary condi-
tion, as inequality (3.56) may be satisfied for particular choices of @ with
all eigenvalues A; still being positive. For the particular case of sym-
metric systems however, the existence of negative eigenvalues is not only
a sufficient, but also a necessary condition for unstable behaviour under
dead loading. In this case, the difference between the left and the right
eigenvectors vanishes (w; =w;) and (3.56) reduces to

3 wla)n<o (3.59)

This inequality can only be satisfied if one or more eigenvalues become
negative. Hence, the case of symmetric matrices is more satisfactory
than the more general case of unsymmetric matrices, as jfor non-
symmeltric malrices instabilily may occur prior to the occurrence of
negative eigenvalues, whereas this cannof happen for symmelric
mairices. The type of instability for which a” Ka vanishes for at least
one admissible vector @&, but in which all eigenvalues are still positive,
may be called a 'flutter’ type instability™, as it is not necessarily a diver-
gence type instability (i.e. a bifurcation or an unstable post-limit
response). The possibility that for a non-symmetric system the stability
expression vanishes for some admissible velocity field while all eigen-
values are still positive is not merely an academic case. We will derive in
Chapter 4 that this actually happens for some plasticity models with a
non-associated flow rule.

If the constitutive law is multi-valued, there exist other stiffness
matrices which may produce more negative eigenvalues than the number
found for the current tangent stiffness matrix. Strictly speaking, we will
only detect bifurcations for which the tangent moduli show, at least ini-
tially, loading on the localisation branch. Yet, we will probably locate all
bifurcation points by only considering such a solid, as the case that all
points show loading gives the weakest response to additional loading.
Indeed, for some models it can be proved that the case that all material
points show loading is always critical!!”. Such a solid in which loading is
assumed for all material points, has been named a 'linear comparison
solid’ %8, In conclusion, we can state that there may be more alternative
equilibrium states than calculated on basis of the stability expression,
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but this is not likely to occur. Nevertheless, we should investigate all pos-
sible combinations of loading and unloading for a rigorous establishment
of uniqueness.

Finally, it is emphasised that the above statements only hold for
load-controlled problems, but not necessarily when the load is applied by
prescribing displacements as we then deal with a different stiffness
matrix. Negative eigenvalues which correspond to descending branches
disappear and we only retain negative eigenvalues which correspond to
alternative equilibrium states.

3.3. Consequences of spatial discretization

In spite of the fact that a continuum can be approximated by a discrete
system to an arbitrary degree of accuracy, it should be realised that
when we analyse a discrete system, the response will never be exactly
that of the underlying continuum. Strictly speaking, we can only calcu-
late limit and bifurcation points of the discrete system, but we can not
rigorously identify them with limit or bifurcation points of the underlying
continuum, although it may be expected that upon mesh refinement, i.e.
when we improve the spatial approximation, 'spurious’ limit or bifurca-
tion points gradually vanish. Such observations have for instance been
made in fluid mechanics®, where non-physical bifurcations appeared to
vanish upon mesh refinement. An example within the realm of solid
mechanics was encountered by the Author®®?® when analyzing a rein-
forced concrete beam. In this case, a 'snap-back’ phenomenon appeared
to vanish on mesh refinement.

As the results, at least below some threshold level, are sensitive for
the degree of spatial discretization, they will certainly also depend on the
type and degree of interpolation and also on the order of numerical
integration. This seems a truism with regard to the finite element
method, but here we mean that the choice of interpolation polynomials
and of quadrature rules not only affects the accuracy of the results, but
may even dominate the computational results to such an extent that an
improper choice may entail solutions which are fundamentally different
from the actual response of the underlying structure.

An example of the impact of spatial discretization and the order of
numerical integration on the computational results is given below. It con-
cerns the axisymmetric slab of Figures 3.6 and 3.7. The properties of the
concrete are assumed to be: Young's modulus E,=28000 N/mma,
Poisson’s ratio ¥=0.2, tensile strength f,;=2.6 N/mm?, shear reduction
factor B°=0.25 and fracture energy Gy =0.08 N/mm. The simplified
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Figure 3.7. Refined mesh for axisymmetric slab.

elastic-perfectly plastic version of the constltutwe model (see Section
4.2) was employed with a cohesion ¢ =9.6 N/mm? and a friction angle
©=30°. The slab is reinforced isotropically with a reinforcement ratio of
1% and the properties of the reinforcement are Eg=205000 N/mm? and
o, =465 N/mm?. The expenmental failure mechanism of the slab is ulti-
mately due to punching shear!??

The first analysis was carried out for the coarse mesh of Figure 3.6
and the displacement up to a deflection of 9.6 mm no convergence
appeared possible although very small displacement increments were
imposed (see Figure 3.8). However, when the analysis was repeated with
exactly the same mesh and the same material parameters, but with "full’
9-point integration, displacements could be imposed until and beyond a
plateau in the load-displacement curve. The same trend was observed for
computations with the refined mesh of Figure 3.7, i.e. the analysis with
while the analysis with reduced integration diverged at some displace-
ment level (Figure 3.8). Yet, the latter calculation with 'reduced’ integra-
tion could be continued much further than the computation with
'reduced’ integration for the coarser mesh. This indicates that spurious
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Figure 3.8. Load-deflection curves for axisymmetric slab.

snap-backs and divergence gradually disappear with mesh refinement.

The poor behaviour of reduced integration in conjunction with crack
formation has been explained to be caused by the introduction of spuri-
ous zero-energy modes upon the formation of cracks in 'reduced’
integrated elements®®. With the formation of a new crack, an extra spuri-
ous zero-energy mode is introduced, so that we have four additional
zero-energy modes when all four integration points are cracked. Observa-
tions about incorrect predictions of structural behaviour when using
reduced integration have also been reported by Crisfield35:38.
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4. CONSTITUTIVE MODELS

In this chapter, we will describe the constitutive models for soil and con-
crete which have been adopted in the sample problems which we will dis-
cuss. Restriction is made to time-independent phenomena and in particu-
lar we will confine the treatment to cracking and the non-linear
behaviour in triaxial compression. Cracking is described using a smeared
approach and the behaviour under triaxial stress states is modelled using
a non-associated plasticity model with hardening on the frictional and
softening on the cohesive properties.

4.1. Fracture in cohesive granular materials

In the smeared crack concept which is utilised in this study, a crack is
conceived to be distributed over the entire area belonging to an integra-
tion point. Indeed, we look upon the smeared crack concept as a genuine
continuum approach in the sense that there is a representative domain
for which we can define notions like ‘stress’, ‘strain’ and so on. We recog-
nise that objections may be raised against such a conception, owing to
the heterogeinity of concrete and the discontinuous nature of dominant
cracks. Nevertheless, the examples of the final chapters indicate that
concrete including phenomena like crack propagation can be described
sufficiently accurately within the framework of continuum mechanics.

In this section, we will outline the fundamentals of a smeared crack
model which is capable of properly combining crack formation and the
non-linear behaviour of the concrete between the cracks and of handling
secondary cracking owing to rotation of the principal stress axes after
primary crack formation. In the present approach, a secondary crack is
allowed if the major principal stress exceeds the tensile strength and if
the angle between the primary crack and the secondary crack exceeds a
threshold angle «. This threshold angle need not be equal to 907, so that
the model permits non-orthogonal cracks.

4.1.1 Multiple cracking

The basic assumption of the smeared crack model is that the total strain
rate £ is composed of a concrete strain rate &g and several crack
strain rates which we will denote by &{;, £{ etc., so that

e=ellt+el+élls. . ... (4.1
K=kl tEp ek

For the present, we will restrict ourselves to two active cracks, so that we
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have

g =t il (4.2)
This restriction is not essential and we will generalise to an arbitrary
nummber of cracks in the next chapter, but it serves the purpose of simpli-
fying the algebraic expressions. The concrete strain rate is assumed to be

related to some objective stress rate ('T,fg- (e.g. the Jaumann derivative of
the Cauchy stress tensor) via
03 =Dffutil (4.3)

The fourth-order tensor Df}; contains the instantaneous moduli of the
concrete. It is noted that such a formalism can not describe time-
dependent effects, nor can autogeneous strain rates be taken into
account (e.g. thermal dilatation or shrinkage). However, generalisation of
the constitutive law to include such effects is not difficult and a success-
ful implementation has already been achieved®?. It is noted that the con-
crete strain rate itself may also be conceived as a summation of several
components, for instance of an elastic and a plastic part.

The relation between the stress rate in the crack é‘ié and the crack
strain rate &£'; of the primary crack is assumed to be given by

04 =D i1y &'pa (4.4)

where the primes signify thal the stress rate respectively the crack
strain rate components of the primary crack are taken with respect to
the coordinate system of the crack. The fourth-order tensor D'y,
represents the stress-strain relation within the primary crack. Analo-
gously, we have for a secondary crack

0" =D" k1 &" s (4.5)

The double primes mean that the stress rate respectively crack strain
rate components of the secondary crack are taken with respect to the
coordinate system of the secondary crack.

The sirain rate tensor is a second order tensor. If, now, oy are the
direction cosines of the global coordinate system with respect to the
coordinate system of the primary crack, and if By are the direction
cosines of the global coordinate system with respect to that of the secon-
dary crack, we have the identities

o« Ji N
4 = Qi X1 &'k (4.6)

-35-

Moreover, as we restrict our considerations to Cartesian tensors we also

have
(4.8)

(4.9)

0’45 =0 Oy Okl

055 =BriBii Tkt

To derive the final stress-strain law of the cracked concrete, we

proceed as follows. First substitute the fundamental decomposition (4.‘1}

in the constitutive law for the concrete and transform the crack strain

rates in global coordinates é{;- and b.g to local coordinates according to
equations (4.6) and (4.7). This results in

' : : g 10
11 = Dfmn (Emn —%mo %np &' op ~Bmo Prp &' op) (4.10)

Transforming this expression for the stress rate to local coordinates

according to the identities (4.8) and (4.9), equating the resx'llting expres-
sions to the right-hand sides of the crack stress-strain relations (4.4) and

(4.5) and rearranging gives respectively

Aig'ap z;;lcap +Bijop S3”1:-3: =g Ay DffmnEmn (4.11)

cﬁcp é‘op +E1‘Jop é"op =Bi By DffnnEmn (4.12)
wherein we have put

Aijop=D"ijop t ki A1j Xmo np Diimn, (4.13)

Bijop = %ki Qi Bmo Brp Dkimn (4.14)

Cijop =B Blj Xmo Xnp Dfnn (4.15)

(4.16)

Eijop =D"1jop +Bi Bij Bmo Brp Diimn
Solving for &'y, and £'py, and substituting these expressions in equation
(4.10) finally gives

&4 = D — Dy %ac %va (Acdes ~Deauw Bk Cuney ) " 0tse Oty
+ D55 Aa ®ba(Acdes ~Boduw Etoz Cuner ) Beggn EghmnBsm Bin
+D85 Bac Bva Ecaes Cetan (Agnmn —Bghuv EzLos Cumemn) " 0eim Otn
—DE5 Bac Boal Ecagr+ Egas g Copgh (Aghmn —Bghuv BoahiaBogman)
Buunop Fopie JBsa Ber DS8u s (4.17)

It is noted that as long as the constitutive tensors Dy, D'y and D" e
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remain symmetric with respect to the interchange of ij and kl, also the
symmetry of the total stress-strain law (4.17) with respect to 4j and kl is
preserved.

The constitutive law (4.17) of the cracked concrete obeys the princi-
ple of material frame indifference (objectivity) if the constitutive law for
the intact concrete (4.3) obeys this principle. This follows immediately
from the objectivity of stress and strain rates, from the objectivity of the
stress-strain relation for the cracks as expressed through equations (4.4)
to (4.9), and from the assumed objectivity of equation (4.3). Hence, all
quantities and constitutive assumptions which we use in deriving equation
(4.17) are objective, and so equations (4.17) is objective as this equation
is simply the result of algebraic manipulations with objective quantities.
It is obvious that a generalisation to an arbitrary number of eracks also
results in an objective stress-strain relationship for the cracked concrete
since an extra term in equation (4.1) does not affect the objectivity of
this equation, and since the definition of the stress-strain law in subse-
quent cracks is essentially similar to the definitions (4.4) to (4.9) for the
first two cracks.

In fact, the structure of equation (4.17) is quite similar to the struc-
ture of an elastoplastic stiffness tensor at a yield vertex. Indeed, any
constitutive law in which a decomposition in the sense of equation (4.1) is
assumed, will lead to an equation with a similar structure. This holds true
for a yield vertex in which two yield surfaces are active, but for instance
also for the intersection of a yield surface and a fracture surface, issues
to which we will return in subsequent sections.

4. 1.2 Crack stress-strain relation

When we consider the physical phenomenon of crack formation, we
observe that the behaviour of a concrete element is approximately isotro-
pic and linearly elastic until a crack arises for some combination of ten-
sile and compressive stresses. Below this threshold stress level, no crack
strains exist (81-_5-=0 ete.), and all strain rales are concrete strain rates.
Above the critical stress level, i.e. after crack formation, the strain rates
are decomposed according to equation (4.1). As a criterion for crack for-
mation we can analogous to plasticity introduce a scalar function of the
stresses (and possibly of the strain history) which may be called a frac-
ture function and which distinguishes between cracked and uncracked
states. In this study it is superfluous to introduce such a formalism
because we will always assume that a crack is initiated if the major prin-
cipal stress 0 exceeds the tensile strength f.;. Hence, a crack will arise
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if
01=f ct (4.18)
and the direction of the crack is assumed to be orthogonal to the princi-
pal major stress. Moreover, the crack direction is assumed not 1',0 change
with (possible) rotation of principal stresses in subsequent l‘oadn?xg steps,
or put differently, the crack has a memory for the damage .d]re Ct].Ol?l. .
There is some argument in literature whether such a simple crlt.erl.on
complies with experimental data or more precisely, how compressive
stresses orthogonal to the major principal tensile stress dec?ease the
apparent tensile strength®. Most researchers agree that Lhe' existence of
such compressive stresses decreases the tensile stress that is neejded f_or
crack formation, but there is no communis opinio about the rela‘uonshu?,
and the simple relation (4.18) has been adopted because of tr_le experi-
mental scatter. It is noted that this effect is also partially obtained when
we limit the compressive stresses by a yield function as will be discussed

in a subsequent section.

ol Lo,

crackplane

Figure 4.1. Local coordinate system of a crack and sign convention.

Another salient characteristic of crack formation concerns the fact
that in the most general case of a three-dimensional solid, only 3 oyt of 6
components of the crack strain-rate vector are possibly non-zero, viz. the
normal strain rate and two shear strain rates. We therefore assume that
the stress-strain law for the crack has a structure such that the other
strain-rate components vanish. Moreover, we assume that the non-
vanishing strain-rate components are related to the components of the

stress-rate vector via
. L
0'2z| |D'11 D'z D'13|| ==
ooy |=|D'21 D'2z D'z|[¢zy
0'2e| |P's1 D'se D'ssl|é'ze

(4.19)
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the meaning of the subscripts being explained in Figure 4.1.

Equation (4.19) is a very general constitutive law for a crack as it
allows for coupling effects in the sense that e.g. the normal stress rate in
the crack not only depends on the normal crack strain rate but also on
both shear crack strain rates. Similarly, any one of the shear stress rates
may fiepend on all non-vanishing crack strain-rate components. Such
coupling effects for instance occur in crack-dilatancy theories®! ﬁost of
our applications are however restricted to small crack strains z;.nd then
the off-diagonal terms in (4.19) are less important. Consequently, we have

set the off-diagonal terms equal to zero in the sample problems, so that
(4.19) reduces to: '

d=| [C 0 0 ||z
o'w|=[0 B © s (4.20)
we| [0 O B ulle
Tz
Herein, the tangent modulus C represents the relation between the nor-

mal crack strain increment and the normal stress increment (see Figure

4.2), 1 is the elasti .. :
factof_’ ic shear modulus and g is a shear stiffness reduction

sn
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e linear softening

~unloading / reloadin
s 9 9

- Nonlinear softening

Ty

or
e,

Figure 4.2. Normal stress versus normal crack strain.

In practice, the modulus C will be negative as we will normally have a
descending relation between the stress rate normal to a crack and the
norrna_l crack strain rate. Various possibilities exist for the shape of the
softe%'ung curve. In the examples of the last chapters a linear as well as a
non-linear curve®! have been employed, the latter curve being more
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consistent with experimental evidence. However, recent research” indi-
cates that a straightforward translation from experimental data in a
value for C leads to results which are not objective with regard to mesh
refinement as we will discuss in somewhat greater detail in Section 4.4. To
overcome this problem, it has been proposed to consider the fracture
energy Gf which is defined as the amount of energy needed to create one
unit of area of a continuous crack™® as the fundamental parameter
which governs crack propagation. This so-called ‘fictitious crack’ or
'tension-softening” model has also been adopted in this study, although it
is beginning to emerge that the concept is not entirely free from
deficiencies. This is particularly so when we allow for the possibility of
multiple cracks. Suppose that a primary crack has been created with a
softening modulus C determined from the fracture energy Gf. If upon
formation of a secondary crack the same crack stress-strain relation is
adopted for the second crack, the fracture energy will be consumed
twice. If both cracks are orthogonal to each other, this seems not unreal-
istic, but for any other inclination angle it seems incorrect. A solution to
this problem seems only possible if a comprehensive stress-strain rela-
tion within a crack has been developed which incorporates at least an
objective (with regard to mesh refinement) relation for shear softening
and possibly also some theory for normal-shear coupling. Hence, the
concept of a fracture energy as outlined above seems not to suffice for
multiple crack formation. Indeed, a solution in which the fracture energy
is distributed over both cracks is not correct as the fracture energy Gf
is not a scalar, but a vector although this seems not to have been recog-
nised widely. In this respect, use of the term fracture energy for Gf is
perhaps somewhat misleading.

Other problems with the application of fracture energy concepts in
smeared crack analysis relate to axisymmetric configurations where the
integration of the strain over the crack band width entails complications
owing to the 1/7 term, and to the shape of the softening branch which
may influence the results significantly®.

The term 1 gives the relation between the shear stress increment
in a crack and the shear crack strain increment and accounts for effects
like aggregate interlock. The meaning of the reduction factor g® differs
from the classical shear retention factor § as introduced by Suidan and
Schnobrich!®, A relation between g and 8* can be derived from the con-
sideration that the total shear strain increment is resolved in a crack
strain increment and a concrete strain increment. Assuming that the
concrete behaves in a linearly elastic manner, we may then derive that
B° =B/ (1—P) if we have only one crack and B* =28/ (1—g) if we have two
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orthogonal cracks. For multiple non-orthogonal cracks or for inelastic
concrete behaviour, more complicated relations ensue. It should be
emphasised that in the present approach, the relation between the shear
stress artd the shear crack strain is considered as being fundamental.
Hence, §° is conceived as a material parameter and the relation with the
more familiar 8 has only been derived to give the reader an idea of the
range of values which can be used for 8°. In the sample problems which
we will present, 8 has been assumed to be a constant both for loading
and unloading, but a more realistic approach would be to make B* a func-
tion at least of the crack strain®. Unfortunately, few experimental data
exist to support a particular expression for ﬁ".

Especially when we allow the formation of non-orthogonal multiple
cracks, we face the problem of crack arrest, unloading and even closing
f)f existing cracks. This occurs for instance when a new crack arises in an
integration point. It is therefore important to carefully handle closing
and eventually reopening of cracks. For the unloading branch we have
adopted a secant approach as is shown in Figure 4.2. So when a crack
starts unloading, expression (4.20) is replaced by:

Ce| |S 0 0 &'z
c‘JJ_.,:y =10 B'u E} &y (4.21)
Tue| [0 O B yle,,

?\fhere S is the secant modulus of the unloading branch. This assumption
is too simple as in reality we may expect some residual strain upon clos-
ing of a crack®, but current experiences indicate that this procedure is
numerically stable.

When a crack fully closes, i.e. when the normal stress in the crack
changes from tension into compression, the stiffness of the uncracked
concrete is inserted again, so that é"kﬂ" =D&, Although upon closing of
a crack, the normal strain and the normal stress both vanish in the
present conception, this need not be true for the shear stress and the
.shear strain. Consequently, these stresses and strains are considered as
initial stresses and initial strains upon closing of the crack and the stress
after closing formally follows from:

el :
oy=0+ [ Dty dr (4.22)

;\rhere 0’% is the stress state that exists when the crack closes. If we have

inear-elastic material behaviour in com i co = i
pression (DR, =Df;), equat

(4.22) reduces to: G g iy

045 =0+ Dy (10 —8),) (4.23)
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with 8& the strain that exists in the sampling point upon closing of the
crack. When a crack opens again the shear crack strain is initialized with
the value which follows from the crack strain which existed when the
crack closed. During reloading equation (4.21) is used for the incremental
relation between the crack stresses and the crack strains. If the normal
strain in the crack exceeds the previously reached maximum strain, rela-
tion (4.21) is replaced by equation (4.20) for the softening branch.

4.1.3 Threshold angle for non-orthogonal cracks

With the crack model as outlined in the preceding sub-sections, it is pos-
sible to permit an arbitrary number of cracks in an integration point.
Yet, allowing new cracks to form every time that the stresses rotate
slightly and violate the tensile strength in the new principal direction,
leads to excessive cracking and closing of existing cracks. Moreover, the
existence of multiple cracks in an integration point results in a rapid
decrease of the shear stiffness of the total system of concrete and
cracks, which may lead to premature ill-conditioning of the stiffness
matrix. For this reason, a threshold angle « has been introduced which
allows new cracks to form only when the angle between the current direc-
tion of the major principal stress and the normal to the existing cracks
has exceeded a.

The threshold angle « has a similar influence on the results as the
shear reduction factor B° since a low value for a also decreases the shear
capacity of the system. For the particular case of two orthogonal cracks
(a=90°), an expression between the shear stiffness of the system of con-
crete and cracks and the shear reduction factor B® as used here can be
derived analytically®*. For the more general case of non-orthogonal
cracks, such a derivation is very cumbersome and the exact way in which
the values of & and B° interact, is difficult to assess. We will therefore
demonstrate the possible impact of the value of a on the computational
results by means of a moderately deep shear-critical beamn?!.

The beam which we will consider is shown in Figure 4.3. The analysis
has been carried out using 8-noded plane stress elements with 8-point
Gaussian integration to reduce the possibility of the occurrence of spuri-
ous zero-energy modes. The properties of the concrete were assumed to
be: Young's modulus E,=28000 N/mm?, Poisson’s ratio v=0.2, tensile
strength f.;=2.5 N/mm?, shear reduction factor §°=0.087 and fracture
energy Gf =0,06 N/mm. The beam has a thickness of 200 mm and has no
shear reinforcement. The reinforcement at the bottom of the beam has a
Young's modulus £ =210000 N/mm? and a yield stress o, =440 N/mm?.
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Figure 4.3. Finite element mesh for moderately deep beam.

Numerical analyses have been carried out for two different threshold
angles, namely for «=60° and a=30°. In both analyses we observe that
vertical cracks due to bending arise first. On subsequent loading the
stresses rotate and new, non-vertical crack form in the region between
the point load and the support (see Figure 4.4). Now we observe a marked
difference between the results for both threshold angles. The diagonal
cracks in the analysis for the high threshold angle tend to run rather
steep (Figure 4.5). For the lower threshold angle (a=30°), the shear capa-
city at a cross-section is exhausted more quickly. The formation of cracks
between the load and the support remains more or less near the rein-
forcement and the initiation of diagonal cracking is forced to move to the
centre of the beam (Figure 4.6). A similar trend has been observed for
another beam upon reduction of the shear reduction factor °, as in that
case inclined cracks tended to propagate along the reinforcement for
very low values of 8° %,

The difference between the results for both thresheld angle becomes
even more apparent when only those cracks are plotted which are out of
the softening branch, which may be interpreted as micro-cracks which
have coalesced into one macro-crack (Figures 4.7 and 4.8). These figures
also serve the purpose of demonstrating that the somewhat diffuse crack
pattern which is observed in most smeared crack analyses largely disap-
pears when we plot only those cracks which really open. Indeed, the
crack patterns of Figures 4.7 and 4.8 clearly show strain-localisation
including the initiation of a diagonal crack?"2%23,

4. 1.4 Discussion

In the past, various other smeared crack models have been developed
and definite relations can be elaborated with some of these models. The
first smeared crack analysis has probably been performed by Rashid®. In
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Figure 4.4. Experimentally recorded crack pattern at impending failure.
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Figure 4.5. Calculated crack pattern at impending failure for high thres-

hold angle (all cracks plotted).
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Figure 4.6. Calculated crack pattern at impending failure for lower thres-
hold angle (all cracks plotted).

his approach the normal stress was set to zero immediately upon crack
formation. Moreover, no shear resistance across a crack was permitted as
the shear modulus p was also assumed to vanish upon crack formation.
Later, it was recognised that such an approach grossly underestimates
the stiffness of a structure after crack formation and a reduced shear
stiffness was inserted in the stiffness matrix after crack formation'®.
Also, the sudden drop in normal tensile stress across a crack was
replaced by a gradual softening branch. Initially, this softening branch
was attributed to the contribution of the stiffness of the concrete
between the cracks to the stiffiness of the reinforcement, but later”®, it
was also related to the softening of the concrete itself. Further, BaZant
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Figure 4.7. Cracks that transfer no normal stress at impending failure for
high threshold angle.
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Figure 4.8. Cracks that transfer no normal stress at impending failure for
lower threshold angle.

and Oh” proposed to start from a compliance approach instead of a
stiffness approach, so that off-diagonal terms in the orthotropic stiffness
matrix of the cracked concrete were retained. The present approach
relates to their approach because for the case of only one crack and elas-
tic concrete behaviour (to which their treatment was restricted), their
model is recovered as a special case of the present approach®.

The introduction of a reduced shear stiffness to represent aggregate
interlock and possibly dowel action, and the gradual decrease of the nor-
mal tensile stress after crack formation introduced the problem that on
subsequent loading, the direction of the current major principal stress
may deviate from the normal to the crack and moreover, the current
major principal stress may exceed the tensile strength. An approach
which is often adopted is to allow a secondary crack to form only orthogo-
nal to a primary crack™. Again this approach is recovered as a particular
case of the model adopted here if the threshold angle is set equal to 90°
22 The problem of rotation of principal stress axes after primary crack
formation was also recognised by Cope et al.?82® who proposed to co-
rotate the material axes with the rotation of principal stress axes, either
without?®®, or with a threshold value for the angle between the current
direction of the major principal stress and the original crack direction
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after which the material axes are rotated®®. Although this approach was
criticised by BaZant because it violates the principle of material frame
indifference®1%111 recent research has indicated that results obtained
using such a 'rotaling crack model’ are often superior to results obtained
using the traditional fixed crack models™. Other models which allow for
the possibility of multiple crack formation to solve this problem have
been proposed by Ebbinghaus®?, Kristjansson®® and Litton®. Neverthe-
less, these models have limited capabilities in describing the stress-
strain relation within a crack, and a priori assume linear-elastic material
behaviour of the concrete between the cracks. Owing to the rigorous
decomposition of strain increments, such limitations do not have to be
imposed in the approach outlined here. Moreover, the model complies
with the principle of material frame indifference.

4.2. Granular materials in triaxial compression

In this section we shall outline a plasticity model which is able to describe
some of the basic characteristics which concrete displays in triaxial
compression.The treatment involves as salient characteristics hardening
on the frictional and softening on the cohesive properties of concrete as
originally conceived by Vermeer!'®, while a non-associated flow rule is
employed to control the inelastic volume changes.

4.2.1 The yield function

A first observation with regard to the strength properties of materials
like concrete, rock and soils is that their strength depends on the first
stress invariant. The oldest criterion which implies a dependence of the
strength on the stress level, is the Mohr-Coulomb criterion. Let f be the
yield function, ¢y be the minor and ¢3 be the major principal stress (ten-
sion being taken as positive in accordance with the sign convention in
continuum mechanics). Then, this criterion reads:

:é—(f’s_Ul)*’ é—(aﬁal)sin@'—c § (4.24)

The Mohr-Coulomb criterion has two strength parameters, namely the
so-called mobilised friction angle ¢ and a mobilised cohesion ¢* (which
has a slightly different definition than is normally given to a cohesion as
we observe from equation (4.24)). We have introduced the notation * to
indicate that ¢* and ¢* are no constants, but depend on the plastic
strain history through a hardening parameter .
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The Mohr-Coulomb criterion is simple and has a clear physical mean-
ing. Moreover, extensive testing on sand has shown that it matches test
data quite reasonably*®. For materials which in addition to frictional
strength also possess a cohesive strength, deviations occur and the
Mohr-Coulomb criterion appears to be conservative, see for instance test
data by van Mier™ and Gerstle et al.*847. Although more sophisticated
criteria exist?®671% we will adhere to the Mohr-Coulomb idea in order to
preserve a transparency in the mathematical model which we will develop
to describe the inelastic behaviour of concrete in triaxial compression.
Another reason is that in actual computations in which triaxial stress
states occur in concrete structures, other criteria are seldom employed.
Here, we see an example of the discrepancy between the levels of sophis-
tication of constitutive modelling and of numerical modelling, which was
discussed in the introduction.

The strength parameters qo' and ¢” can both depend on the strain
history through the hardening parameter . The choice of a correct
definition for & is difficult as its definition should be such that it attains
the same value for all points on the yield surface f. Schreyer!®:103 for
instance uses a linear combination of all three inelastic strain invariants
weighted by the stress level for k¥ and found that for a low strength con-
crete, only the first and the third inelastic strain invariants are of impor-
tance. Vermeer!'®117 on the other hand only uses the second inelastic
strain invariant in describing another granular material, namely sand. In
this study, the definition

w=f/ZiFehdt (4.25)

has been employed with 5:,3; the plastic strain-rate tensor, but it seems
that a proper choice for k£ is still an open question which has to be
answered by considering a great deal of experimental data.

In spite of the paucity of experimental data to support a definition of
k&, we are able to say something about the dependence of sing® and ¢* on
K, for sing® should generally be an ascending function of «, while ¢ * may
expected to be a descending function of k. The rationale behind the latter
assumption is that during loading of a specimen of originally intact con-
crete, micro-cracks gradually develop. So, the cementation gradually
vanishes at continued loading which leads to a degradation of the
cohesive strength. A possible choice which expresses such a softening on
the cohesive strength mathematically, is:

2
c*=c exp[—lf—] ] (4.26)
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Figure 4.9. Possible relations for the hardening /softening model.
(a) ¢ * —« relation (b) sin¢* —« relation.

with ¢ the cohesion of the intact material. The meaning of &, is shown in
Figure 4.9a, in which relation (4.26) has been plotted. It is noted that the
softening on the cohesion as formulated here implies that softening is
conceived as a material property. Lately, there has been much debate
whether softening is indeed a material property or whether it is a struc-
tural property® and we will return to this issue in a subsequent section.

At continued loading, concrete becomes more and more cracked and
the initially cemented material very much begins to resemble a particu-
late material with only frictional resistance. The frictional resistance gra-
dually increases in the loading process as the asperities protruding from
the faces of the micro-cracks offer more and more resistance to subse-
quent sliding. This phenomenon may be modelled by applying hardening
on the friction angle in addition to the softening on the cohesion. A possi-
ble sing” — relation is:

Y .‘Cﬁf
FC+8f

sing®=2 sing K<

o (4.27)
sing =sing J‘C)Ef
which has been plotted in 4.9b. In it, &7 is the value which « attains when

the frictional strength has been mobilised fully (" =g).

Let us now explore the implications of the combination of friction
hardening and cohesive softening. This is done most easily by simulating
a triaxial test for different levels of confining pressure, the results of
which have been plotted in Figure 4.10. Two important observations can
be made from these results. First, the model predicts an increased duc-
tility with higher confining pressure, and secondly, the amount of post-
peak softening gradually vanishes at higher load levels. At a first sight,
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Figure 4.10. Model simulation with friction hardening and cohesion soften-
ing of the behaviour of concrete in triaxial tests.

especially the latter result seems peculiar, because the cohesion is
assumed to vanish entirely for all stress levels. It is however not correct
to identify the entire degradation of the cohesion at all stress levels with
a vertical shift of the limit surface'®® Indeed, the softening on the cohe-
sion corresponds to a vertical shift, but the hardening on the friction
angle corresponds to a rotation of the yield surface. These effects
interact and cause the amount of softening to vanish with increasing
stress level, so that for high stress levels we end up with a ductile, non-
softening material.

An inherent drawback in adopting a Mohr-Coulomb yield function is
that it possesses straight meridians. Hence, the ultimate yield surface
(that is the yield surface which is reached when all cohesion has vanished
and when the frictional resistance has been mobilised fully), also has
straight meridians. For high stress levels, it was argued that the
difference between the failure surface (which gives the peak stress
states) and the ultimate yield surface vanishes asymptotically, but for
low stress levels the ultimate yield surface is clearly inside the failure
surface. As the ultimate yield surface is straight, these observations
imply that the failure surface is not convex. A possible solution is to
slightly modify the yield function as follows:
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=-:2[-—(Ua—'0'1)—[c.—;—(0‘3+01)Si1‘1¢']m (4.28)

with m an additional parameter. For m =1 we recover the linear relation-
ship (4.24) and for m =} we obtain a parabolic relationship. Yet, equation
(4.28) is still formulated in the spirit of the Mohr-Coulomb idea as i_t
neglects any possible dependence of the yield function on the intermedi-

ate stress.
4.2.2 Plastic potential ond flow rule

Another salient characteristic of granular materials including concrete is
the observed shear-enhanced inelastic volume changes. When a concrete
specimen is sheared, we not only measure a shear strain, but also a
volumetric strain. In the early stages of the loading process, this
volumetric strain appears to be negative (so that we have contraction),
but at continued loading the volumetric strain rate becomes positive (see

Figure 4.11).

EVU|{%}
E - 39000 N/mm? @ =37° €,=003
03k v = 016 P, 260 €. = 001
Model simulation
-0.3 -06 -0.9 -2 L -18 /
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Figure 4.11. Axial strain versus volumetric strain for triaxial test results
on a high-strength concrete® and model simulation using equation (4.34).

Confining pressure 03=-13.78 N/mm?,

This phenomenon is not captured within classical plasticity theory, as the
associated flow rule which is based on normality of plastic strain rate and
yield surface predicts positive volumetric strain rates from the onset of
inelastic behaviour. Moreover, the predicted rate of volume production
greatly exceeds the experimental data, as application of an associated
flow rule

sp=n 2L (4.29)

aﬂ'ﬁ'

with A a non-negative multiplier, gives in conjunction with a Mohr-
Coulomb yield function the relation
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ep= 2L tsat)
1—sing

between the inelastic volumetric strain rate and the inelastic axial strain

rate. For realistic values of ¢’, however, this leads to a large deviation

from the experimental curve of Figure 4.11. Therefore, ¢* is replaced by

the so-called mobilised dilatancy angle %". Rewriting equation (4.30) with

¥* in place of ¢°, gives

&f

sing’=—Y
¥ —2eP+&P

(4.31)
which can be regarded as the definition for the mobilised dilatancy angle
¥" and which is valid for general triaxial stress states!!®, Mathematically,
this phenomenon can be incorporated within plasticity theory via a non-
associated flow rule. Then we must define an independent function g

g=1(05-0y)+ > (o5toy)siny” —c* (4.32)

which differs from the yield function f as the mobilised friction angle p°
is replaced by the mobilised dilatancy angle %" . Replacing the yield funec-
tion f in equation (4.29) by the plastic potential function g, we precisely
obtain expression (4.31) for siny°. It is noted that for ¢*=9°, we have
J =g and the classical associated flow rule is recovered.

From Figure 4.11, we observe that &,/ ¢, is initially positive (con-
traction) and then becomes more and more negative (dilatation) until a
limiting value is attained at and beyond peak stress level. Noting that for
compressive loadings, the elastic volumetric strain is negative, the gra-
dual decrease of the dilatation rate &,/ &; can only be modelled by mak-
ing the plastic dilatation rate £J/ &7 a function of some stress measure.
An example thereof is Rowe's® stress-dilatancy theory which states Lhat:

. 2
.p,.p_) tan(45° +¢*/ 2)
1-&3/ &= 4.33
e Itan(45°+saw/2) k)

with ¢¢, a constant, which is usually referred to as the 'friction angle of
constant volurne’, which stems from the fact that equation (4.33) gives
£P=0 for qo'=qu. As a matter of fact, the equation predicts negative
plastic dilatation for small friction angles (;0'<qacv) and positive plastic
dilatation for larger values (¢’ >¢.,). Hence, ¢,, marks a turning point
at which plastic contraction stops and dilatation starts. Rowe's stress-
dilatancy equation (4.33) has originally been proposed to describe the
dilatant behaviour of soils and it has been proved to be accurate for
sand'®. Figure 4.11 shows a model simulation for concrete and
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comparison with the experimental data shows that equation (4.33) may
also be useful for concrete and probably also for other cemented granu-
Jar materials like rock, although it should be added that the precise out-
come of the model depends on the values of the parameters, es'pet?ially
those for 7 and &;. Furthermore, preliminary results seem to indicate
that equation (4.33) should be amended for the behaviour of concrete at
lower stress levels because of the increased brittleness.

It is convenient to use equation (4.33) in a somewhat different form.
Fliminating £2/ &P from (4.31) and (4.33), we obtain the more suitable

form
sing® —singq, (45)
1—sing’ sing,,

siny’ =

This is a useful relationship between the mobilised dilatancy angle afxd
the effective strain as ¢’ is a function of . The constant g, 1s readily
calculated from the limit dilatancy angle ¥ and the limit friction angl_e ®.
Substituting %' =¥ and ¢’ =¢ and rearranging equation (4.34) we obtain

sin o Sinp—siDY (4.35)
Pev 1—singsiny

For the concrete of Figure 4.11%! we have ¢=37°, Y=12.5° and‘ conse-

quently ¢,,=26°, which agrees remarkably well with values which are

reported for sands (25° <@¢y, <33%).
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Figure 4.12. Hydrostatic loading of concrete specimen®’.

The above formulated constitutive model is not able to represent all
characteristics of concrete. An example thereof is the inelastic behav%our
of concrete in pure hydrostatic loading (see Figure 4.12). This behaviour
may be explained from the consideration that above some threshold
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stress level, the pores collapse and a softer response to subsequent load
increments is obtained. At a later stage in the loading process, a
stiffening is again observed. However, the Mohr-Coulomb yield function is
open in the hydrostatic direction, so that the response of a concrete
specimen will be purely elastic when it is loaded hydrostatically. In order
to capture plastic volume changes under hydrostatic stressing, we need a
yield cap that closes the Mohr-Coulomb surface!!8117,

4.2.3. A simplified model

The constitutive model for granular materials as formulated in the
preceding attempts to strike a balance between accuracy in describing
the basic characteristics of granular materials in triaxial compression
and simplicity which is necessary for successful use in numerical calcula-
tions. In a considerable number of problems, however, we can suffice by
using a simpler model.

In the hardening-softening model ¢, " and ¥" all depend on the
plastic strain history through the hardening parameter k. A considerable
simplification occurs if we neglect this dependence, i.e. we assume c_', go'
and ¥* to be constants:
c'=c  ¢'=p Y=y
This elastic-perfectly plastic model is especially useful for limit load cal-
culations. For accurate predictions of stresses and strain under working
loads the simplified model is less suitable, but as in this study attention is
primarily concentrated on calculating limit points and post-peak
behaviour, there is little restriction employing such a relatively simple
model.

The determination of the parameters ¢ and Y for such a model is
straightforward, as ¢ simply is the limit friction angle, i.e. the value
which ¢ attains when the frictional resistance has been mobilised fully. ¥
is the value for the dilatancy angle which belongs to the straight part of
the curves of Figure 4.11 and which can e.g. be calculated from

sing—sing,

1—singsing,, (4.36)

siny=
The value for ¢ is more difficult to estimate, as for cemented granular
materials, the cohesion gradually vanishes. Depending on the amount of
plastic straining in the limit state, an estimate for ¢ can be used, but if
the total structural response depends significantly on the compressive
strength of the material, softening under compressive stresses cannot be
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disregarded and the simplified model cannot be used for accurate predic-
tions of the limit load and the post-peak behaviour.

4.3. A plastic{racture model

A merit of the smeared crack model described in this chapter is that it
can be combined easily with models which describe the non-linear
behaviour of the concrete between the cracks. We will now outline the
mathematical structure of a model which permits crack formation and
plasticity to occur simultaneously in a representative volume.

The starting point of the model is again the decomposition of strain
rates. Recalling that application of a plasticity model to the concrete
implies that the concrete strain rate is divided into an elastic strain rate
£g, and plastic strain rate &f, we have the following decomposition of the
total strain rate

bu=tatehted (4.37)
where the notation &g/ has been introduced as the sum of the individual
crack strain rates a;{be,{{ ete. This decomposition may be interpreted as a
vertex in which a yield surface and a fracture surface intersect (see Fig-

ure 4.13).

vertex

elastic
domain

yield fracture

surface surface
Figure 4.13. Fan of possible strain rates at the intersection of a yield and
a fracture surface.

In plasticity theory, the elastic strain rate tensor &g is assumed to

be related to the stress rate tensor via the elasticity tensor Dfy,

&ij: %Még;_ (4.38)

while the plastic strain rate tensor is assumed to be derivable from the
plastic potential g

apy, B (4.39)
R =A 30,
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with A some non-negative multiplier which can be determined from the
condition that during loading, the stress tensor must satisfy the con-
sistency condition f =0. In the preceding, f has been assumed to be a
function of 03 and of the plastic strain history through the hardening
parameter k: f =f (U{JJC). Consequently, the consistency condition f =0
can be elaborated as

_f’f_%_ 2L %k 89 _, (4.40)
60’@ arx 88,{, 60.&5.-

We can write this equation in a more compact form. If we define

ph=-0f 06x 38g o
il aE.U 60@

as the hardening modulus, we get

2L —Ah=0 (4.42)
Okt

For the hardening/softening model of the preceding section, h can be
elaborated to be

NN - Y S asing' *ac‘
Byl (1+sin®y )’5(03"'01) e e } (4.43)

We now proceed in a way which is essentially similar to the derivation
for the elastic-fracturing material and we first substitute the decomposi-
tion (4.37) into equation (4.38). With the relations (4.6), (4.7) and (4.39)
for &£ and &£, we obtain

d

30, (4.44)

01 = Diymn, [émn X Opp éfop “Bmo Brp é”ap —A

Multiplying this equation with a—?ILand invoking equation (4.42) gives
Kl

09 +h'.ll+ a*?}.LD;gzmnamo
kL

B £
T Q
3G p Y op

of
do

Deimm,
ki

Of o Of ;
* B0, Diymin Brmo Brp € ® 50, BlivinErini (4.45)

Similarly, multiplying equation (4.44) with Qi &, invoking (4.8) and the
stress-strain law for the crack (4.4), we get

[D 'ijop +oyg Q5 O Ay Df!mn]i?’op +aﬁaljﬁmo B‘np Dg.'.mn é”ap

dg g
+Aa"‘fva3.f Dymn 00 T Xy DimnEmn (4.46)
m
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while multiplying with B;f;; gives with equations (4.5) and (4.9)
Bii Bl Xmo Cnp Diimn '.s’ap +[D "4jop TBkiB1j Brmo Brp D.ftmn]suop

dg ;
+M\Bii B1j Dktmn =Bri By Dkimn Emn (4.47)
00 mn
Solving for A, &'pp and &'y, and substituting these expressions in equa-
tion (4.44) finally yields

_09  Of per
D-;‘j{m 0pmn 80p Do

r..=Def, — (4.48)
O'I-J 1..?£l h+§LDef —ag:_

ki

with D{;{l the elastic-fracture tensor,
Df;‘lf:’:l =D —Dfjab %ac Xbd [Acdef T Cuzef |Tlase g o
+D§jabaac Cpd [Acdef _Bcduv E-r:u'lwz sze_f ]-1Befgh. Eg?t.}'nnﬁsm Bin
+DfiabBac Pod Ec:l}zf Cefgn [Agnmn —Bghuw wvwz Cwzmn 17 osm i

= = -1
"Di.ejmb Bac Bva [Ecrix}rr +Ecdé f Ce fah [Ag:‘nnn #thwu Bz szmn]

Bmmp Eo;clarr]ﬁsq Bir Dstrr (4.49)

wherein Aijkl'Bijki‘Cijkl and Eijkl are given by (4.13).t0 (416) P

In fact, expression (4.48) for the plastic-fracturing material is insen-
sitive to the number of cracks as only the tensor D¢}, is affected by the
number of cracks. For one crack for instance, Dy, reduces to

Dify= D~
Dst Osm Xt [Dfr:.mp Fogm O Degrst so Otp ]_IDgpuv Oy Oryy (4.50)
and for the case that we have no cracks, D.,f?{,; simply reduces to Dy _
One might wonder why the cumbersome derivation from equation
(4.37) to equation (4.49) has been presented, because a constitutive equa-

tion for a plastic-fracturing material can also be obtained by replacing
the stiffness tensor of the concrete Ui, in equation (4.17) by the elasto-
plastic stiffness tensor Di;, so that
a a
o 2 2L .
4.
= —ne.  —
D%%L—Dfﬂt_Dmkl W af 2 : dg
B0gr T Bogt
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Indeed, for infinitesimally small increments, both expressions for the
tangent stiffness tensor of the plastic-fracturing material are entirely
equivalent. However, equation (4.48) with D,f,ﬁ given by (4.49) is more
suitable for integration to finite load increments than equation (4.17) with
Dgf, given by (4.51), because under certain condition which will be dis-
cussed in the next chapter, equation (4.48) can be integrated numerically
such that the stress at the end of the loading step exactly satisfies the
yield function as well as the fracture function.

4.4. Consequences of strain-softening and non-associated plasticity

In Section 2.3 it was argued, that for small displacement gradients, sta-
bility of a structure under dead loading was ensured as long as

JSoi5845dV>0 (4.52)

v
Thus, a sufficient condition stability of a structure under dead loading is
that everywhere in the structure, we have

c'r,gj &4;=0 (4.53)
while in a part of the structure we have

045845 >0 (4.54)

Consequently, structural stability is guaranteed if the constitutive law
meels this requirement, but the equilibrium may be potentially unstable
if the stress-strain law is such that strain paths exist for which

04545 <0 (4.55)
With a local, inerementally-linear constitutive model
35 = Dijrr &1 (4.56)

as we employ throughout this study, we find that the equilibrium is poten-
tially unstable if

Dijir 845 €1 <0 (4.57)

We will show in the next sub-sections that strain-softening, either under
compressive or under tensile loadings, and non-associated flow rules may
both give rise to unstable material behaviour in the sense of equations
(4.55) or (4.57). To this end, we will restrict the treatment to homogene-
ous deformations prior to the occurrence of instability, so that we can
replace the stability condition for a body (4.52) by the local stability

- 5'? Y
condition (4.54). Instability then occurs if 64;&;; vanishes pointwise.

4.4.1 Non-associated plasticily

In classical associated small deformation plasticity, material stability is
ensured by Drucker’s postulate®!5?: 0
Consider a material point of a body in some initial state of stress oy;, and
let an external agency slowly apply and remove additional stresses. Dur-
ing a complete cycle of application and removal of the added stresses,
the work performed by the external agency is then non-negative.
Mathematically, this is expressed by

[(oy—02)eBdt=0 [ (0)=<0 (4.58)
A sufficient condition for this inequality to hold, is that

(0y—of)ef=0  f(0§)=0 (4.59)
When we choose 035 =0 +0ydt, we get

0;;85=0 (4.60)

For the elastic strain rates, we have

0'1"3 C%EO (461)

so that we obtain equation (4.53) when adding equations (4.60) and (4.61).
Hence, material stability is ensured if we take Drucker’s Postulate as
starting point for the formulation of the constitutive law.
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Figure 4.14. Computed responses of sand in simple shear usiéng the non-
associated perfect-plasticity model of the preceding section''®.

Adoption of this postulate implies that the plastic potential g is a
function of the yield function f. This situation is also referred to by the
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statements that the flow rule is associated, or that the plastic potential g
and the yield function f coincide (f =g). For f #g the inner product
d‘-j 8.{; becomes negative for certain stress paths, thus vicolating Drucker’s
Postulate. As a consequence, the inner product c'r,;j é,-_j may also become
negative for particular stress paths, so that we have unstable material
behaviour. An example is given in Figure 4.14, which shows a granular
material with a non-associated flow rule subjected to an isochoric defor-
mation in a shear box. Depending on the initial stress conditions, the
stress path may be such that we encounter softening as a consequence of
the negativeness of the inner product 6'173- a:{';

We will now become more precise and investigate under which condi-
tions stability fails. To this end we will consider a Mohr-Coulomb friction-
hardening solid without cohesion, i.e.

J= —é— (05—0y)+ ;— (o5+0,)sing® (4.62)

and the functional relation between the mobilised friction angle ¢* and
the hardening parameter i is assumed to be given by the relationship
(4.27). For planar deformations, the relation between the stress-rate vec-
tor & and the strain-rate vector & formally reads

2z | |D1111 Dirzz Dinse|ffas

Oyy |=|P2211 Dazez Daziz|[Eyy (4.63)
Ooy| [P1211 D122z Diziz[é,y,

Dyy1, ete. are the components of the stiffness tensor Dyjy. With aid of

equations (4.32), (4.48) and (4.62), we can derive that

§_+@¢ s_,,M
D i 2(1—v) 1—-2v 1—Rv (4.64)
11117 e - .
1-2v +1 + sing"’ siny’
M 1-2v
s_ 4 Sing” |fs  siny®
D |l 2y " 1-2v ||r 1-Rv (4.65)
22117M| 7 .
1—2v h iy sing” siny”
I 1—2v
s , sing® | %y
—u|=+ =
Mr " 1=ew |
Diz11= (4.66)

h_ 4 sing’sing’
M 1—2v
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oy r 1—-Rv 1 Bu
D1 122=p) += (4.67)
,u. 1— v
' * L] )
S _ sing “s__ siny
2(1—y r 1-2v 1—2v
Doge=pt 1(_2v) + : (4.68)
+1 + sing” siny"
1-2v
Sl Q Umy
D 'r 1—-2v
= 4.69
s _+1+ sing sm}g ( )
M 1-2v
m}l_z ny
D 1-2v ( )
1112~ 4.70
_+1+M
M 1-2v
| S-Sy | sy
D r 1-2v o
= 4.7
2212~ A, sn sy (4.71)
M 1-2v
2
Dyp1p=pt 1— 472
12 s sing” siny" ( )
1-Rv

with p the elastic shear modulus and v Poisson’s ratio. Further, the auxi-
liary stress measure §

s:é—{om —Gy) (4.73)
and the radius of Mohr’s circle 7
2
r =\/[é— (Og —O‘w)] oS, (4.74)

have been used.
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Without loss of generality, we may evaluate the stability condition
U>0 with U=('J',;j &4, in terms of principal stresses and principal strains.
When the subscripts 1 and 3 refer to principal directions, equation (4.63)
can be replaced by

oyl D D &
1 1111 “1122])%1 (4.75)

sl |P2211 Daeez|lés

where the coefficients D;qy; ete. are given by equations (4.84) to (4.72)
with the simplification that s /7=1 because 0z, =0. In terms of principal
stresses and principal strains, U can be written as

U=0y&,+03¢3 (4.76)
or upon substitution of equation (4.75)

U=Di11162+(D 1122+ Daer1)é16 5+ Dozt d (4.77)
U becomes stationary when

U 5 aa oo (4.76)

0g4 deg

Without further proof, we will consider this stationary value of Utobea
minimum. Elaboration of conditions (4.78) gives with (4.77)

2D111181+(D 1122+ Da211)83=0
(D122t Doz11)€1+RD322285=0

This set of equations has a non-trivial solution if and only if the deter-

minant vanishes:

4D1111D2222 — (D1122+ D2211)?=0 (4.80)

Inserting the expressions for Dj;q; ete. in (4.80) yields after some alge-
braic manipulations

L - 2 . L ) *
h 509 sing” | _|;  Sing siny
M 1—2v 1-Rv

(4.79)

h_, 4 5ing siny ]
e 1—2v

_ (sing’ —siny")? _ 8
4(1-2v) ¢ 84

Solving this quadratic equation in h yields after some minor rearrange-

ments

h in20®
2—f:‘\/l1+ SIn ¢ ]1+
M 1—2v

sin®y® |_|,, sing’ siny’ (4.62)
1-2v 1—2v
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as expression for the critical hardening modulus hf at which U becomes
stationary. It is noted that the other solution for A is negative and there-
fore of no interest.

Expression (4.82) merits some further discussion. First, we observe
that for associated plasticity, i.e. ¢° =", the expression for h; reduces
to

hy=0 (4.83)

so that instability is not possible as long as h>0. This is not surprising as
the material then obeys Drucker’s Postulate, but it is satisfying that it is
obtained as a limiting case of expression (4.82). Secondly, the stability
criterion derived here coincides with the expression which is obtained
when the general stability criterion for elastic-plastic solids with a non-
associated flow law

= 89 ne 89 OF pe af _ 89 pe Of
2hf \/aaij Dtjkt 00y 6am Dmmp 3Uap 60'1;}‘ D‘l._}'k.", 6(}'& (484)

as formulated by Vermeer!'” and Maier & Hueckel™, is applied to a Mohr-
Coulomb friction hardening meodel, although all derivations run along
different lines.

Equation (4.82) gives the expression for A for which U becomes sta-
tionary, but U does not vanishes for all strain-rate directions. To investi-
gate for which strain-rate direction U vanishes, we again consider equa-

&
tion (4.77) and require that U=0. Solving for ,—Lgives

€3
% _ ~(P1122+ D2211)+ V (D122 D2211)*~4D 1111 Doz (4.85)
&3 RD1111
or invoking equation (4.80)
&1 _ ~(DiizetDaen) (4.86)

&3 RD1111

where D4, etc. are given by equations (4.64) to (4.72).

To illustrate the significance of the above equations, we will apply
them to a particular granular material with ¥=0.2, ¢=40° and €;=0.02,
being typical for a sand. For sake of simplicity, expression (4.34) for the
mobilised dilatancy angle ¥ has been replaced by the simple relation
¥°=0°. With these data we can derive

h,[
=0.1359
o



o

and
l’Pf = 37 490

for the corresponding friction angle ¢ ;. We observe that ¢, is appreci-
ably lower than the limit friction angle ¢. With aid of equation (4.88) we
can derive that

%1 y.205

&3
for the critical strain-rate direction for which U vanishes. This strain-
rate direction and the corresponding stress rate direction have been
plotted in Figure 4.15.
EH
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Figure 4.15. Strain-rate and corresponding stress-rate direction for which
b’,;jé,;j vanishes at the critical load in the hardening regime.

Having determined a critical value of the hardening modulus for
which stability is no longer assured, i.e. a value of the rate of hardening
for which there exists a particular strain-rate direction for which é’,;j E44
vanishes, we will investigate the nature of this instability. It was pointed
out in Section 3.2 that for non-symmetric systems, stability may fail
prior to the vanishing of the determinant of the stiffness matrix, or
equivalently before the lowest eigenvalue A of the stiffness matrix van-
ishes. We will therefore derive the critical hardening modulus h, for
which, again under the assumption of homogeneous deformations, the
determinant of the stiffness matrix I first vanishes. When the critical
hardening modulus h, equals the hardening modulus hy for which &;;&;;
vanishes in some strain-rate direction, the instability can be associated
with a bifurcation or a limit point. If h.f >h,, we apparently have a
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'flutter’~type instability prior to the occurrence of a limit or bifurcation
type instability.
At a first sight, the evaluation of det(D)

Dy111 Di1ze Dz
det(D)=|Dzz211 Dagze Daziz (4.87)

1211 D122z Diziz

with the coefficients D;;4; etc. again given by equations (4.64) to (4.72),
seems rather intractable, but a straightforward although somewhat long
derivation shows that most terms cancel and that it can be simplified to

h

M
h 4 sing’sing’
M 1—2v
This relation between det(D) and h/u is plotted in Figure 4.16. We
observe that the first value of A for which det()) vanishes is zero, either
when the flow is associated or non-associated. This implies that a bifurca-
tion or a limit type instability for which the lowest eigenvalue must van-
ish, can only occur at the peak of the stress-strain curve and not already
in the hardening regime. Consequently, the stability criterion (4.83) and
also the more general criterion by Vermeer!!? and Maier & Hueckel™ gen-
erally define 'flutter’ type instabilities, and not necessarily bifurcation
Lype instabilities, as the lowesl eigenvalue A; does nol vanish for h.=hf,
but first vanishes for h =0.

det (D)

det(D)=u? (4.88)
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Figure 4.16. det(D) as a function of h/ u.
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discontinuity
surface

Figure 4.17. Coordinate system and discontinuity in the velocity field.

Nevertheless, the observation that bifurcation instabilities can not
occur prior to peak seems to be in contradiction with the literature on
shear-band bifurcations in soil bodies. Indeed, bifurcations of originally
homogeneously deformed bodies are possible in the hardening regime,
but these bifurcations at most lead to piecewise homogeneous deforma-
tions in the post-bifurcation regime. Hence, the assumption of continuing
homogeneous deformations precludes bifurcation in the hardening
regime. In other words, the constitutive law is such that bifurcations with
homogeneous deformations in the post-bifurcation regime are not possi-
ble. It is noted that for rubber-like materials the inherent geometrical
nonlinearity in combination with some constitutive laws also admits bifur-
cations with homogeneous deformations in the post-bifurcation regime.
An example thereof has been given by Rivlin® who considers a cube of
rubber-like material under all-round dead loading. At some critical stress
level, a bifurcation point is encountered and the cube can attain the
shape of a box with unequal sides.

Considering velocity fields which are only piecewise homogeneous, we
find that bifurcations are already possible in the hardening regime for a
critical hardening modulus h=hg. The subscript s is employed to denote
that these bifurcations are associated with discontinuities in the velocity
gradient, so-called shear bands. A homogeneous velocity field u; is
characterised by

Uy =Fry 2 (4.89)

with z; the spatial coordinates and Fj; a second-order tensor which does
not depend upon z;. Alternatively, (4.89) can be written as
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ﬂ‘l=f‘k}‘ Vj (4.90)

with f;; a second-order tensor function
Fij=Fyxe v (4.91)

and ¥ a unit vector with the same direction as .

For a piecewise homogeneous velocity field with a discontinuity in the
velocity gradient with a unit normal vector m pointing in an arbitrary but
fixed half-space (see Figure 4.17), we have

U =f i (T )V (4.92)

where f; () is defined as

F;;}’zk Vi, ZpTy >0 (4 93)

with F',;}' and £73; constant tensors which do not depend on the place, the
generalisation to several parallel surfaces of a discontinous velocity gra-
dient being obvious. Because of continuity in the velocity field, the
discontinuity in the velocity gradient must be such that

with I an arbitrary vector in the discontinuity plane.

Considering a linear comparison solid, i.e. a solid for which all roduli
are plastic for points which are in a plastic state, the condition for bifur-
cation becomes equivalent to the condition that stability fails, i.e.
Differentiating (4.92) yields for the strain-rate tensor éig‘

where the primes signify differentiation with respect to 2y ny § .
Inserting this identity in (4.95) results in

f!.w Vo nJ D‘f.jklf Ikp VP’R,;:O (497)
t Evaluation of f';; for Z7, >0 gives
T 'g=veme Iy
For the strain-rate tensor &, this results in
TR |
by =5 (Ff+Fyg)
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A sufficient condition for this equation to be satisfied for arbitrary vec-
tors with components Vi is that

det(n; Dy my ) =0 (4.98)

which is Hill's®” bifurcation criterion for a velocity field with a discon-
tinous velocity gradient, although Hill's derivation includes large velocity
gradients. Without loss of generality, we can elect a coordinate system
x'y,%'5,2'y which is aligned with the discontinuity surface (see Figure
4.17). Then

n; =6, (4.99)
so that the bifurcation criterion (4.98) reduces to
dBt(thka):O (4 100)

which is in fact the bifurcation criterion given by Rudnicki and Rice®®, but
for the fact that large velocity gradients have not been taken into
account in the present analysis. As indicated in Chapter 2, such terms
could have been included by a suitable redefinition of the the constitutive
tensor Dy, . Again, equations (4.98) and (4.100) are sufficient conditions
for instability of a velocity field with discontinous velocity gradients, but
only necessary conditions in case of a symmetric tensor Dy -
For planar deformations (4.100) reduces to

Dogas Daaia

Digns Dygial (4.101)

As Vermeer!'® observed, this is equivalent to
C1111=0 (4.102)

since det(C) does not vanish prior to peak, and Cy;q4 is a coefficient of
the compliance relation

&2z | [Cii11 Cozir Cizn|[0zs
Eyy |=[Cr122 Cazez Cizez||0yy (4.103)
Ery| |C1112 Caz12 Ci1212)|04y

Elaboration of this condition for a Mohr-Coulomb friction hardening solid

yields the following expression for the critical hardening modulus for
shear-band bifurcation”118

hs _ (sing’—siny’)?
n . 8(1-v) (4.104)
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For the data considered above, we can calculate a critical hardening

modulus
hs =0.0547

and a corresponding mobilised friction angle
ps=39.23°

Comparing these data with the data derived for h,f and ¢y, we observe
that for this particular material, stability fails prior to the possibility of
development of shear bands.

4.4.2 Strain-soflening

In stress-strain relations where we have a negative modulus for the rela-
tion between the normal stress and the normal strain or between the
shear stress and the shear strain (which we shall here refer to as soften-
ing stress-strain relations), we either have &;;£§<0 or & &4 <0, so that
again we have the possibility of 0;;&45 <0, implying material instability. In
this study we will consider strain-softening as a material property. Gradu-
ally, however, it begins to emerge that this is generally not true as most
and perhaps all softening which is observed in experiments, is due to
non-homogeneous deformations and the stiffness of the test equip-
ment49473.80.118 Leing only triggered by material or geometric instabili-
ties. Hence, the observed softening is a structural effect rather than a
material property.
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Figure 4.18. Stress-strain law for concrete in tension. The stress is plot-

ted against the total strain, i.e. the sum of crack strain and concrete

strain.
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Figure 4.19. Model of bar composed of strain-softening material.

Nevertheless, it is interesting to investigate whether strain-softening
can still be used as a working hypothesis for the formulation of constitu-
tive laws in finite element programs. To this end, we consider an unrein-
forced bar which is subjected to pure tension®. We model the material of
the bar as elastic-softening with an ultimate strain &, at which the ten-
sile strength has vanished completely (see Figure 7.18). We assume that
&, is equal to n times the strain at the tensile strength. The bar is
modelled with m elements (see Figure 4.19). If we have a perfect bar, so
that all elements have exactly the same tensile strength and so on, the
bar deforms uniformly throughout the loading process and the load-
deflection curve is simply a copy of the imposed stress-strain law. How-
ever, if one element has a slight imperfection, only this element will show
loading while the other elements will show unloading. In this situation, the
imposed stress-strain law at local level is not reproduced. Instead, an
average strain is calculated in the post-peak regime which is smaller than
the strain of the stress-strain law. This may be explained as follows. The
element which shows loading, will follow the path A-B in Figure 4.18, while
the other elements will follow the path A-C. This implies that when all ele-
ments have the same dimensions, we have for the average strain incre-
ment AE

__bdo
E/(n-1)

=1 | _(m—1)l0
Asum (m 1)E+ T i

:[1‘__1]5_" (4.105)

Consequently, if we increase the number of elements while keeping the
length of the bar fixed, the average strain in the post-peak regime gradu-
ally becomes smaller and for m >n the average strain in the post-peak
regime even becomes smaller than the strain at peak load (Figure 4.20).
This implies that for m>n, the load-deflection curve shows a 'snap-
back’™,

The above result implies that computational results for materials
with a local softening constitutive law are not objective upon mesh
refinement. To remedy this disease, it has been proposed to make the
softening modulus dependent on the element size”®. Numerical experi-
ments for tensile loadings have confirmed that numerical results are

- B9 -
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Figure 4.20. Average strain for different numbers of elements.

then objective with regard to mesh refinement”®. For softening under
compressive stresses, numerical studies are not decisive as contradic-
tory results have been reported®1#° The problem of making the soften-
ing modulus dependent on the element size is that for an arbitrary con-
crete structure, the spread of the softening region is not known in
advance. Consequently, the observation that use of a local softening law
may involve snap-back behaviour on structural level also holds when we
use a model in which the softening modulus has been adapted to some
structural size.

The fact that local softening laws may involve snap-back phenomena
and other numerical instabilities, makes it questionable whether such a
constitutive law in which the stress increment only depends on the strain
inecrement and the strain history of the same material point, is suitable
for describing structural softening. Indeed, some attempts have recently
been published®!% which aim at describing the behaviour of concrete by
a non-local constitutive law, in which the stress increment in a material
point also depends on the neighbourhood, either via the strain gradient
or via the strain increment and strain history of nearby material points.
The difficulty of this approach is that it does not fit the nature of the
finite element method.
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9. SOLUTION OF THE BOUNDARY VALUE PROBLEM

In this chapter, an accurate yet simple procedure for the integration of
stress-strain laws which were derived in the preceding, is presented. Spe-
cial attention is devoted to singularities in the stress-strain law which are
repeatedly reported to lead to numerical instabilities and mnon-
convergence. Another aspect which is important for a successful solution
of the boundary value problem especially near limit states, is the itera-
tive solution procedure to solve the set of algebraic equations on struc-
tural level. This matter will be discussed in the second part of the
chapter.

5.1. Numerical integration of the stress-strain law

For computational purposes, matrix-vector notation is usually preferable
over tensor notation which was employed in the preceding chapter. We
will therefore restate the constitutive equation (4.48) for the plastic-
fracture model outlined in the preceding chapter in matrix-vector nota-
tion. This gives

per 99 _L per

. il s .
o={D°f — & (5.1
h+ ._L De)‘ 5& )
o

where the symbol T denotes a transpose, and the other symbols are
defined in accordance with the definitions of the preceding chapter.

A further advantage of matrix-vector notation is that we can write
the expression for the elastic-fracture matrix D¢/

D¢/ =D°—D° N;MN/D° +D° N,MBE N}, D¢
+D¢ N E-'CMN/D° +D° N, [E-1+E"ICHBE-1]N}}D¢ (5.2)

in a more compact form and that we can generalise to in infinite number
of cracks. For convenience we will first define the matrices AB.CE
and M:

A=D'+N/D° N, (5.3)
B=N[D* Ny (5.4)
C=N}D° N, (5.5)
E=D"+N}D¢ N, (5.8)

._'?1-

H=[A“BE_1 -l (57)

and the transformation matrices N, Ny for the stress or strain vectors
from the coordinate system of the first resp. the second crack to the glo-
bal coordinate system:

l'«xz Lymy, Lemy
L ymy Lymy
lza l,m, .

_ 5.8
N;= Rlyhy Lty thymy Ltytlyn, (5.8)

zlylz Lymz Hzmy lynz +Z’zn‘y

Rlyl, lymy,+l,m, L,n, +lx'nz-

the matrices Nj;, Ny ete. being defined similarly. l;, I, and [, are the
cosines of the angle between the x'-axis and the z-axis, resp. the y-axis
and the z-axis, and the other direction cosines are defined in accordance
with this convention. As the stress-rate vector and the strain-rate vectors
normally have six independent components, we would expect N; ete. to
be 6*6 matrices and not 6*3 matrices. However, it is recalled from the
preceding chapter that the only non-vanishing crack strain components
are the strain component normal to the crack and two shear crack strain
components. If we also assume that the non-vanishing components of the
crack strain rate are only related to the corresponding components (that
is the normal and the two shear stress rates) of the stress-rate vector in
the coordinate system of the crack (see equation (4.19)), we may delete
the appropriate columns from the transformation matrices N;, Ny, etc,,
so that we end up with the 6*3 matrix (5.8).

As a first step to express Def in a more compact form, we note that

equation (5.2) is equivalent to

[ ]_1 N[T (5.9)
ef..‘: e_pe [N .N ] >
D¢/ =D°—-D°|N; Ny Nﬁ
Next define

D= 6 ’ g’“ (5.10)

so that the stress-rate vector §,

""'] (5.11)

'&:ir”
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which assembles the stress-rate components in the local coordinate sys-
tems of the cracks and the crack strain-rate vector ",

-
“ Tl (5.12)

which contains the crack strain-rate components in the local coordinate
systems, are related by

s=D"e (5.13)
With the additional definition

N=[N1 NH] (5.14)
we can derive that

Def=D¢—-D°N(D"+NTD°N)"NT De (5.15)

It is i.mportant to distinguish €°” which assembles all individual
cr&fck strain rates with respect to their own coordinate system from ~ad
whlch. is the sum of all crack strain rates defined in the global zyz-
cocrdlnj;e system. With the definition of the composite transformation
matrix N, we observe that £ and € are r
: elated through -
tions (4.8) and (4.7)): A

- CT — Al CT
s (5.16)

Si:rm'larly., the vector § which assembles the stress rates in the individual
cracks with respect to their own coordinate system is related to the glo-
bal stress rate @ by
$s=NTo
(5.17)

. Tl‘w generalisation to more than two cracks in the same integration
point is now straightforward, as we only have to expand the vectors §:

o'
. b.ll
s=|.,
o (5.18)
and € °":
.EI
écr: éll
L (5.19)
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and the matrices D°" and N to

D' 0 0
- o Do - (5.20)
D _— 0 0 Dn! . .

and
(5.21)

N=[N1 Ny Ny -

while equation (5.15) is unaffected.
We can now integrate equation (5.1) for a finite stress increment:

i Def QE_ ?LT Def

do do .
Ao= ef — gdT (5.22)
t—fm h+ oy’ Der 99

oo do

During the calculation of the test stress increment Ao?,

Acot=D¢f A (5.23)

no plasticity is assumed to occur, but only the possibility of cracking is
considered. This implies that during this predictor phase, we have the

identities

D g=é (5.24)
T :
9 at=f (5.25)
so that we can rewrite equation (5.22) as
: joet 3L
Ao= [ {ot- 22— \dr (5.26)
ton|  pa QL per 89
do do
Introducing the notation
ot=0+Ad’ (5.27)
tress path

with @° either the contact stress at the intersection of the s
and the yield surface or the stress at the beginning of the loading step
(see Figure 5.1), we get with a single-point numerical integration rule

ol I (ﬂx"c) ef 99 28
Ao=Ac h+QI_TDef 39 D oy (5.28)
oo 8o
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as by definition, we have f (D‘O,K;)=0. Numerically, this condition need not
be satisfied as the stresses resulting from the previous step may violate
the yield criterion slightly. However, by putting f (ao,rc) =0 we strive to
satisfy the yield criterion at any stage of the loading process, rather than
to satisfy the consistency condition f =0, so that inaccuracies from pre-
vious loading steps are not carried along.

Figure 5.1. Stress correction for plasticity.

The approach becomes very simple if the gradients to the yield fune-
tion f and the plastic potential g are evaluated for o=o'. In this
approach, there is no need to determine the intersection point of the
stress path with the yield function if the response is partly elastic and
partly plastic within the loading step, which may simplify the computer
code significantly. In fact, the algorithm then may be conceived as a sin-
gle step Euler backward integration method.

The algorithm for handling plasticity and fracture is not only rela-
tively simple, but it is also quite accurate. Indeed, if we have linear har-
dening or softening for the yield function and for the fracture function, if
we have a constant shear reduction factor in the crack B° and if we have
no physical changes during the loading step (e.g. crack closing), we can
prove that the algorithm guarantees a rigorous return to the fracture
surface as well as to the yield surface for linear yield and fracture sur-
faces. Assume for this matter that some test stress @' has been com-
puted:

o'=0"+DI Ae (5.29)

If ot subsequently appears to lie outside the yield surface, a correction
must be applied so that the final stress will be on the yield surface. The
plastic part of the strain increment follows from,

Az =Ae—Ae®—Ac°" (5.30)

-5 -

but we must also require:

Aep =229 (5.31)
do

By virtue of equations (5.29) to (5.31) and the identity

Def]_1[u1—ar°] (5.32)

Ae® +A" =
we obtain for the final stress state ol

o'=gt —AD®S gg_ (5.33)
[/}

The multiplier A is determined implicitly by the condition that the final
stress be on the yield surface:

f (ol x1)=0 (5.34)

and must generally be determined by an iterative procedure. Alten:la-
tively, A may be determined by expanding f(loK) in a Tayl?r series
around o=6", k=x°. Omitting second and higher order terms, this yields:

Of " pper 29_|- 5.35
1 (01 k%) A h+5-”L s 3L |=o (5.35)
so that the following stress-strain relation is obtained:
olegt —— L(0°6°)  per 89 (5.36)
h+ QLTD‘*J' Q& oo
do oo

Comparing equations (5.27), (5.28) and (5.36), we o}?serv.e: that :l.hls
approach results in the same integration scheme as c‘ierlved m‘equatu?ns
(5.22) to (5.28). Hence, we can conclude that for all yield functions which
are linear in the principal stress space (such as the Mohr-Coulomb and
Tresca criteria), the present procedure offers a rigorous return to t,.he
yield surface. No drifting error is committed as may be the case with
some other integration schemes. Especially when the stresses rote.ate
strongly, these drifting errors may be considerable. Then, a correct..mn
procedure should be applied to bring the stresses back to the' yield
locus”®. With the present scheme, such a correction procedure is not
needed. _

It is noted that several restrictions have been imposed in proving the
rigorous return to the yield surface. When these restrictions are violiilted.
the rigorous return is not obtained, although in these cases thr? algorithm
is still competitive. The restriction which entails the most serious errors
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is the assumption that no physical changes may occur during the loading
step. If the errors caused by this assumption cannot be tolerated, an
inner iteration loop must be applied, or we must divide the strain path in
several parts which are bounded by physical changes (e.g. crack forma-
tion).

Algorithms for the combination of cracking and plasticity in smeared
models are not often described in literature, but an example thereof has
been discussed by Owen et al.®® for the combination of cracking and
visco-plasticity. Their algorithm bears some resemblance to the treat-
ment given here, as they employ a decomposition of the concrete strain
rate into several components, but a rigorous decomposition of the total
strain rate into several crack strain-rate and into several concrete
strain-rate components in the sense of equation (4.32) is not utilised.
Such a decomposition would however have been implied in their equa-
tions if they had adopted a compliance formulation as given by Bazant
and Oh for their elastic-fracture matrix instead of a stiffness formula-
tion™?2 Then, the explicit formulation of their algorithm would have been
the only difference with the algorithm presented here, at least for only
one active crack.

5. 1.1 Relation with the radial refurn scheme

The present algorithm in fact constitutes a far-reaching generalisation of
the elastic predictor-radial return scheme used in metal plasti-
city®®85100.104 1 eaving out cracking (D =D*¢) and adopting an associ-
ated flow rule (f =g), equation (5.36) reduces to

t 0
® pellTpe 8L 00 \53H)
(/] do

where the trial stress vector @! has been separated into a volumetric
part p,

p=p[111000]" (5.38)

with p the hydrostatic pressure and s, a deviatoric stress vector. For a
von Mises yield criterion

f=N3J3 —ay (k) (5.39)

with J, the second invariant of the deviatoric stress tensor and oy the
yield stress, we can work out that

e§L= 3& i
D e VT s (5.40)
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where it is recalled that u is the shear modulus. Premultiplying with %

gives
of T pe Of _ 5.41
do D do W ( )

so that we get for the final stress o' after some algebraic manipulations

_o() | su (5.42)

-,/SJ% h+3u

where it is recalled that the superscripts 0 and f refer to the initial state
and the trial state respectively. It is observed that equation (5.42) indeed
gives a radial correction in the deviatoric stress space. For a non-
hardening material, expression (5.42) reduces to

ol=p+{1—|1

0
O-y—(m)—st (5.43)

V3J%

which is exactly the elastic predictor-radial return scheme for non-
hardening Jp-plasticity, which has been shown to be very competilive

amongst the single step methods®.
Equation (5.4R) slightly differs from Schreyer's'% expression for use
of the radial corrector scheme for a hardening solid because he used

f =20 —%0§(k) (5.44)

ol=p+

as definition of the yield function. We prefer definition (5.39) as it can be
proved that for this particular choice of f, we have no drifting errors for
a linear-hardening solid, which is not the case for definition (5.44) where
this property can only be proved for a non-hardening solid. In fact, it is a
peculiarity that the resulting stress exactly complies with the yield func-
tion because the von Mises function is not a linear yield function in the
principal stress space, while the rigorous return to the yield surface was
only demonstrated for such yield functions. For the particular choice
(5.39) however, the higher order terms happen to vanish.

5. 1.2 Singularities in the yield surface
A major advantage of the scheme discussed in the preceding chapter is

the easy manner in which singularities which occur in Mohr-Coulomb type
yield functions can be dealt with'®!8, These singularities occur if two
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principal stresses are equal, either 0y and 0y, or 05 and 3. Koiter8!62 has
shown that in such cases in which in fact two yield functions are active
the plastic strain rate can be derived as follows:

89, 892
P =\, —— s (5.45)

Here g, and g, are the plastic potential functions which belong to the
yield functions which are active (f ; and f,, see Figure 5.2). We observe
that we now have two non-negative multipliers (A; and A,) instead of one.

As we must require that at the end of the loading step, that is after
stress correction, neither of both yield functions is violated, we can
determine these multipliers from the conditions f1(e1)=0 and
J 2(@1)=0. Noting that by virtue of equation (5.45), we have at a singular-
ity:

99 ¢ a
l—gf— ef ef 92
o ND = —AD 30 (5.46)
we may elaborate these conditions to yield the following equations:
ag a
$_ ef 1 ef 92
[ (ot =D o= Ao D ,i€)=0 (5.47)
ag a
o f 9'2
f oot =\ De e Dl —= )=0 (5.48)

When we develop these equations in a Taylor series around o=at, =/
we get: '

\T
3]
f;(ul,fcﬂ):)\I[hl-P f1 per 591 ]
do J
af
+?\2[h’2+ 50'1J De'f ] (5-49)
af ag
£ 201,60 = [h o Def 1
2 ) 11743 Ao J Ao
of 2 |
+Ag) byt et 2
2[ " J D 30 ] (5.50)
with h’l' ha, ha and h'a defined as
no=_01 | ok T ag,
1™ "8k |ger | do (550
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hzz_égc ) ai‘; IT";? (5.52)
g
.y 6;': aiz ) Zg:f (5.54)

: 9 92

Figure 5.2. Plastic flow at a singularity in the yield surface.

Again only the linear terms have been retained. With respect to the yield
surface this is no limitation, as any yield function may be linearized
around a singularity without loss of generality (see Figure 5.2). With
respect to the dependence of the yield function on the hardening param-
eter Kk, neglecting higher order terms means that the treatment is only
exact for linear-hardening solids. Furthermore, the assumption that £ is
a linear function of &P which has been made implicitly, is not valid for
important hardening hypotheses like the strain-hardening assumption
(equation (4.25)). For regular parts of the yield surface, the non-linear
dependence of i on &P does not entail errors, but for the corner regimes
an additional error is introduced.

With aid of Cramer’s rule, we can obtain explicit expressions for the
scalars A; and Az. Introducing the auxiliary variables

\7
Bf 1 e agl
- i
M1 {h'l"'k oo | 2 oo yeioe)
" \T
af er 992
s f
M lhz*" oo | DY e S
T
afg e agl
= f .57
M {h'3+ | 80 D oo R
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we get for A; and Ag:
s pg f 1(08 )=z f o(0?)
M

(5.59)
My g~ g (s
at)— =
)\2:“”’2( )—sf 1(0*) G0
My My —[M2 (3

It is finally noted that the procedure as described in this section for
handling corner points in a yield surface, is in full agreement with the
requirements as formulated by Koiter®®2 It differs from some previous
studies, in thal corners are not 'rounded-ofl’, butl are treated in a more
exact manner.

5. 1.3 Mohr-Coulomb type yield surfaces

Recalling the definition of the Mohr-Coulomb yield function

f=;—(0'3—01)+ 21!—(03+01)singo‘—6' (5.61)
where
0'320220'1 (562)

we observe that we have to determine the principal stresses if we want to
employ this criterion. For a general three-dimensional stress state, the
principal stresses can be found as the roots of the cubic equation

0'3"110'24'}—20—4{3:0 (563)

with 7, I and /3 the stress invariants, see for instance Fung?¢. Using the
devialoric stress invariants J» and J,

Jg=é— (s — Ty 2 (O — 0 VPt (05— 0 )P toZ,+0Z,+02, (5.64)
J3=(025 =P )0y =P )02z =P ) 20,4y 0y, 0,
~(0s—p )ofs—(0p, )05 —(0s—p)03, (5.85)
with
P=3 (g +0yy+0,,) (5.66)

we may replace equation (5.63) by:

_81-

sa—st—J3=0 (567)

as the first deviatoric stress invariant vanishes by definition. The notation
s is again employed to denote deviatoric stresses. Equation (5.67) can be
solved using Cardano’s formulas. For the case of three real roots (which
holds true because of the symmetry of the stress tensor), they read:

s sin(a—2m)
Sa|= 5 J2 [sina (5.68)
s 5 sin(a+2 )

where «, which can be interpreted as an angle in the 7-plane, follows
from

J
sin(8a)=—2+/3 —2 (5.69)

JaVJ g

Hence, we obtain for the total principal stresses:

U2 =2\/~;-J2 sina +p|1 (5.70)
s sin(act+ £ ) 1

We next assume that we have the situation in which the strict ine-
quality signs of equations (5.62) hold. Then, we may substitute the expres-
sions (5.70) for 0, and 03 in equation (5.61). This yields:

f=Tzcosa—[2~/5Jo—p]sing"—c"* (5.71)
so that we have for the gradient to the yield surface:

aJ a7
8f _ . +8p +h 8 2 4 3]s 3
a0 S 3g T|* s, |20 7 as; oo

(5.72)

with the scalars @ and b given by

gt cosa—\/g— sinasinrp’l (6.73)

272

and
b=—+~/Jz sina+\/€-cosasingo'] (5.74)

The derivatives which occur in expression (5.72) can be determined by
differentiation of equation (5.69) and the expressions for Jp and Jg 18 It
is further noted that the manner in which the the gradient to the plastic
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potential function g is computed, is essentially similar to the computa-
tion of the gradient to the yield function S, but for the fact that the fric-

tion angle ¢* in formula (5.72) is replaced by the dilatancy angle 9°.

Figure 5.4. Active part of Mohr-Coulomb surface in the 7r-plane.

When the strict inequality signs of (5.62) do not hold, i.e. if two princi-
pal stresses become equal, the stress point is in a ridge of the Mohr-
Coulomb yield surface (see Figure 5.3). In such a point, the yield function
S is continuous, but not continuous differentiable and the plastic strain
rate is determined via Koiter's generalisation (5.45). Tor the Mohr-
Coulomb surface, Figure 5.4 shows that we essentially have two yield
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corners when we order the principal stresses according to equat?on (5.62)
1. Furthermore, the yield function (5.61) is active for all cases, either at a
smooth part of the yield surface, or at a singularity. Henc'e, one of the
two required gradients to the yield surface is given by equations (5.72) to
(5.74). . ‘

First suppose that we have the case in which 0;=05, so that the yield
function

ing’—c"* 575
[ =3 (03—02)+ +-(0g+0p)sing” —c (6.75)
is also active. Substituting equation (5.70) for the principal stresses, and

of but

differentiating again results in equation (5.72) for the gradient

do’
now the scalars @ and b are given by:
a=—1 cosa—-Vﬁsina+[\/§—sina+cosa]singo'] (5.78)
a7,
and
b=1 \/Jz{—sinrx—\/ﬁ cosa+[ -\/g— cosa—sina]sing } (5.77)
Similarly, for op=03, we obtain
=—L_lsina+ V3 cosa+[\/§— sina—cosa]sin¢'] (5.78)
T,
and
b= %-\/ Jp [—sinoﬁﬁ cosot| '\f;— cosa+sina]sing ] (5.79)

The gradients to the plastic potential are determined i-n‘ a similar
manner, but for the fact that the angle of internal iriction ¢ is replaced
; L]
by the dilatancy angle ¢ . ‘
Finally, it has to be determined whether the stress is such that we
have a corner regime or whether the stress correction can be calculated
for a regular part of the yield surface. Figure 5.4 shows two test stress

i ity i i t the apex of the
ularity in the Mohr-Coulomb yield surface occurs a -
;ﬁﬁijtic}?rxreSI?r% fact {he numerical algorithm should :ggctk wglet};?;ei;:ht?aitrs';is m:g
: ' i itional ¢
beyond the apex. If this happens to be the case, an itional i g
i i int to the apex of the yield cone ’
be applied as to bring the stress poin 1 ) Tl om0, T
se does only arise for cohesionless materials su . b
g;z:ilaerf:::rﬂi;:ﬁ::ive materia});, the fracture model bounds the allowable tensile
stresses.
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points, 4 and B. It is evident that for point 4 a flow rule in the sense of
equation (4.39) can be used, but that for point B, application of such a
rule would lead to a final stress lying outside of the yield surface, so that
in the latter case we have to apply Koiter's generalisation for the flow
rule. The selection of the precise flow equation might be made on basis of
trial and error, but in the calculations reported here, we have adopted a
H‘“lUI'E simple and elegant procedure. If we have perfect plasticity, the
yield surface remains fixed, so that the position of the corner point is
ugiquely determined in stress space. It is then easy to analytically deter-
mine a plane which passes through the corner points and which has the
direction

per 89
oo

The projections of these lines on the m-plane are plotted in Figure 5.4.
The derivation of an analytical expression for these planes is straightfor-
ward, and it can be derived that if

h1<0 and h.a(O (580)

we are on a regular part of the yield surface. In it, b, and hj are defined
as

B = i 1—2y+singsiny _
=IO, +ev)sing (209) (5.81)

and

- ¢y 1—2v+singsiny
he=f(0%) 1—-2v—(1+2v)siny (0g—0y) (5.62)

If we have the situation

h>0 and hy<0 (5.83)
we are in a corner regime for 0,=03, whereas for

h;<0 and hy>0 (5.84)

we have a corner regime for 02=04. For hardening plasticity, this pro-
c.edure can not rigorously predict the correct regime, because the posi-
tion of the yield surface is unknown. In particular, we may erroneously
a_rltive at the conclusion that we have a corner regime for hardening plas-
ticity or that we have a smooth regime when we have softening. Mostly
?,he prediction on basis of equations (5.80) to (5.84) will be adequate, buil,
if necessary, an a posteriori check may be performed so that the errone-
ous assumption can be corrected.
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A particular problem is sometimes said to arise if two principal
stresses of the test stress become exactly equal, as then the derivatives
oJ J

£ and 3 would become indeterminate. However, in practice no

oo do
difficulties are encountered, as even when two stresses are exactly equal,

the entire expression (5.72) for the gradient to the yield surface remains
determinate.

5.2. Solution of the non-linear algebraic equations

Having discussed the evaluation of the stress-strain law on integration
point level, we will now turn our attention to the solution of the algebraic
equations on structural level. These equations may be highly non-linear,
and an incremental-iterative solution procedure is usually needed for an
accurate solution. Various procedures exist for controlling this process.
Analogous to experiments, we have load control and (direct) displace-
ment control. However, either of these procedures may fail in particular
circumstances. With load control, we are not able to overcome limit
points at all, and with direct displacement control it is not possible to
properly analyse 'snap-back’ behaviour (see for instance Figure 4.20).
Fortunately, a very general and powerful method has been developed
within the realm of geometrically non-linear analysis. In this method, the
incremental-iterative process is controlled indirectly using a norm of
incremental displacements®88, For this reason, the name 'arc-length
method’ has been coined for the procedure. For materially non-linear
analysis, a global norm on incremental displacements is often less suc-
cessful, due to localisation effects and it may be more efficient to employ
only one dominant degree of freedom or omitting some degrees of free-
dom from the norm of incremental displacements. The name arc-length
control then no longer seems very appropriate, and instead we will use
the term indirect displacement control.

5.2.1 Indirect displacement control

It is recalled from Chapter 3, that the iterative improvement da; to the
displacement increment Aa;_, is given by

ba; x-&_—ll[f'i—-l"'ﬁﬂiq i (5.85)

The essence of controlling the iterative solution procedure indirectly by
displacements, is that @, is conceived to be composed of 2 contributions
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da, =dal+ Ay, Sal! 685
with
and

After calculating the displacement vectors da/ and da/’, the value for
% Is determined from some constraint equation on the displacement
increments. Crisfield® for instance uses the norm of the incremental dis-
placements as constraint equation

AaTAa. =Al?
@ Aa; =0l (5.89)

w’here Al is the arc-length of the equilibrium path in the n-dimensional
displacement space. The draw-back of this so-called spherical arc-length
n}ethod is that it yields a quadratic equation for the load increment gTc:
circumvent this problem, one may linearize equation (5.89), yieldingaa:

AalAa. ,=Al?

'I.'hjs methoc.l, known as the updated normal path method, results in a
linear equation for the load increment.

. Equation (5.90) may be simplified by subtracting the constraint equa-
tion of the previous iteration. This gives

Aal_, (Aa;,-Aa;_5)=0 (5.91)
When we furthermore make the approximation

da;~2(Aa;—Aa; ) (5.92)
we obtain

Aal | da;=0 (5.93)
Substituting equation (5.86) then gives for Ay

A= — Aa/ da/

_—__-Adg.,l dajl (5.94)

Bo_th ‘equat.ions (5.89) and (5.90) have been employed very success-
f!..llly within the realm of geometrically non-linear problems, where snap-
ping and buckling of thin shells can be traced very elegantiy Neverthz-
les.s, for physically non-linear problems the method someltimes fails
which may be explained by considering that for physically non-linea:,-
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problems, failure or bifurcation modes are often highly localised. Hence,
only a few nodes contribute to the norm of displacement increments, and
failure is not sensed accurately by such a global norm. As straightforward
application of equations (5.89) or (5.90) is not always successful, we may
amend these constraint equations by applying weights to the different
degrees of freedom or omitting some of them from the constraint equa-
tion. Examples thereof are given in the next chapters. The disadvantage
of modifying the constraint equation is that the constraint equation
becomes problem dependent. As a consequence, the method loses some
of its generality and elegance.

5.2.2 Continuation beyond bifurcation points

The procedure of indirect displacement control discussed in the preced-
ing sub-section in principle allows for overcoming limit points and tracing
post-peak behaviour. If we have the rare case of a genuine bifurcation
point, we will generally continue on the fundamental path, but this is an
unstable equilibrium path after the bifurcation point and it is desirable to
have a procedure to continue on the lowest bifurcation path after passing
a bifurcation point. It has been demonstrated in Section 3.2, that for
infinitesimally small increments, the velocity vector of the bifurcation
path can be written as a linear combination of the velocity field belonging
to the fundamental path @’ and the eigenmode w ;. For finite increments

this may be integrated to yield®
Aa=uo(Aa’+pv ) (5.95)

with « and B scalars. The magnitude of these scalars is fixed by second-
order terms or by switch conditions for elastoplasticity or for plastic-
fracturing materials. The most simple way to determine g numerically is
to construct a trial displacement increment Aa such that it is orthogo-

nal to the fundamental path:
AaTAa’=0 (5.96)
Substituting equation (5.95) in this expression yields for B

T .
fo-lAn ) Ax (5.97)
(Aa”)"w,
so that we obtain for Aa

Au:a‘.&:f _{(Aa’)TAa’

(Aa*)Tw,

v, (5.98)
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. Equation (5.98) fails when (Aa*)"w,=0, i.e. if the bifurcation mode
:;orthogonal to the basic path. A simple remedy is to normalize Aa such
at

(Aa*)"Aa'=Aa’Aa (5.99)

This results in:

Aa= 1 . .
: V(Aa®)TAa’ [(Aa®) v, TP [(A“ )'v,Aa

—(Aa’)"Aa’v 1] (5.100)

The denominator of this expression never vanishes, since this would impl
that the eigenmode is identical with the fundamental path. ’
In general the bifurcation path will not be orthogonal to the funda-
mental path, but when we add equilibrium iterations, the orthogonalit
con‘dition (5.96) will maximise the possibility that we converge on a bifurjj
cation branch and not on the fundamental path, although this is not
necessarily the lowest bifurcation path when there emanate more equili-
brium branches from the bifurcation point. When we do not converge
on the lowest bifurcalion path, this will be revealed by negative eigen-
values of the bifurcated solution. The above described procedure can

thz:;ll be repeated until we ultimately arrive at the lowest bifurcation
path.

5.2.3 Jumping over spurious snap-behaviour

Closely related to the determination of bifurcation and limit points and
the Lr.acing of snap-behaviour is the issue of avoiding 'spurious’ snap-
Pehavmur. It was argued in Chapter 3 that spatial discretization ma

introduce spurious, non-physical limit points and snap-behaviour. Also i{
was noted that owing to temporal discretization, we deal with equih‘bril:lm
states rather than equilibrium paths. The question therefore arises
whether other equilibrium states can be reached via non-equilibrium
paths. If there exists another equilibrium state which is "not too far
9w§y" from the current state, the examples of the subsequent chapters
indicate that this is often possible when we adopt direct displacement
control, i.e. we prescribe one or more displacements while the resultin

nodal forces provide the applied load. When we obtain a converged stati
after a number of non-equilibrium states, i.e. non-converged states, we
can generally conclude that we indeed have arrived on a new equjlibr'ium
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path, although such a procedure may be quite dangerous and it can only
be successful if the new equilibrium state is located “sufficiently close” to
the old equilibrium state.

Under load control, such “jumping” is much more difficult and the
danger of divergence is appreciably greater. An idea, not yet tried out, to
enhance the possibility of traversing such a non-equilibrium path under
load control, is to suppress the failure or the bifurcation mode.
Effectively, this means that we remove the contribution of the eigenvec-
tor w4 from the incremental displacement vector Aa’

Aa=Aa’—ow, (5.101)
with o some scalar which is found by premultiplying Aa’ with the left
eigenvector w ; (see Section 3.2):

a=w{Aa’ (5.102)

5.2.4 Quasi-Newton methods

Equation (5.85) not only implies that the internal force vector is updated
every iteration, but also that the tangent stiffness matrix K; is recom-
puted and factorised at each iteration. Although this Newton-Raphson
method® is very powerful, it is expensive and therefore, modified pro-
cedures are often applied in structural analysis. The oldest modification
is to update the stifiness matrix only at the beginning of a loading step,
or only once every say 5 loading steps. Indeed, sometimes no update at
all is done in the loading process and all equilibrium iterations are car-
ried out with the initial, elastic stiffness matrix. Although convergence
may be rather slow, especially in the vicinity of limit points, this method
may still be competing when non-symmetric systems are considered.

In the last few years, there has been a search for iterative solution
procedures which are faster than modified Newton-Raphson methods, but
which avoid the costly calculating and factorising of the tangent stiffness
matrix at every iteration. In particular, there has been a proliferation of
so-called Quasi-Newton methods 38 Amongst this class, especially the
BFGS-update™ has gained much popularity, although the author has
found that the simpler Broyden formula may also be very efficient, espe-
cially for non-symmetric systems'®*> In the first applications of Quasi-
Newton methods?® 7, the analyses were carried out under load control or
under direct displacement control. In this section, a derivation is
presented for the application of Quasi-Newton methods in conjunction
with indirect displacement control, so that the load level is variable
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Figure 5.5. One-dimensional graph of Quasi-Newton procedure.

during the loading step!®.

The essence of the difference between the various iteration pro-
cedures lies in the manner in which the stiffness matrix K is computed
When applying a Quasi-Newton method, this matrix is calculated from the

previous stiffness matrix K,_, in such a way, that it satisfies the condi-
tion

which is known as the Quasi-Newton equation®®®!. &p, represents the
variation in the internal force field and is defined as (see also Figure 5.5)

= (BTo.dV— BT
op; {B o;dV {’B 0;_dV (5.104)

F)ne of the simplest update formulae satisfying the Quasi-Newton equation
is Broyden's update'®3843  for which the new stiffness matrix K; is
obtained from the previous matrix K _, by the formula:

_ wda/

K=Kyl dalda, (5.105)

where the auxiliary vector m; has been introduced:
u; =da;,—K;_ dp; (5.108)

Broyden's first order update formula satisfies the Quasi-Newton formula
asl can be verified by simple substitution. Approximating the true tangent
stiffness matrix by a secant formulation in the sense of equation (5.105)
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avoids the expensive calculation of the tangent element stiffness
matrices. However, the cost of factorising the updated stiffness matrix
remains, so that when the updating is applied to the tangent stiffness
matrix, the gain in computational effort remains moderate, especially
when we consider that the number of iterations generally increases com-
pared to a full tangent stiffness approach. To overcome this difficulty, we
can make use of the Sherman-Morrison formula3®8!-

-1 T a-1
(_A+GII.UT)_1=A_1—CIA—“P—‘4“_ (5_107)
l+ovTA 'u
with A a matrix, ¥ and @ vectors and « a scalar. Application of this

identity to Broyden's update formula gives
w; ba /K"
T A (5.108)
ba; K", op;
This result implies that the factorisation of the updated stiffness matrix
can be avoided as we can apply the updating directly to the inverse of the
stifiness matrix. The added cost if compared to a Modified Newton-
Raphson iteration without updating, is only a matter of a few matrix-
vector multiplications. As we will derive in the sequel, even such matrix-
vector multiplications need not performed in the actual algorithm, as the
algorithmic implementation merely requires the calculation of a few
inner products and multiplications of vectors by scalars.

Using equations (5.86) to (5.88), we can obtain an alternative expres-
sion for wu,;:

u; =Au; e+ KT\, (5.109)

Applying Broyden's formula repeatedly to the last term gives:

K=K+

i—1
m:ﬁmﬁa{f+j£11[f+ajuj da/|K;'p; (5.110)
with
a;=[ba(da;—u;)]™ (5.111)

It is noted that equation (5.110) can be used directly to calculate ;.
Next, the vectors ﬁl{ and Jn.,’H can be computed by inserting the update
formula (5.108) in equations (5.87) and (5.88). This gives:

da/=[I+o;u;da]|(u,~Ay; sal) (5.112)
da/'=dall, +o;(da]da/ yu, (5.113)
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Thereafter, the load increment Ay; is calculated in the usual way, either
via the normal, via the spherical path method or via some other dis-
placement parameter. Then, the new incremental displacement vector is
calculated via equations (5.86) and (3.18). The construction of formulae of
other first order Quasi-Newton updates with indirect displacement con-
trol runs along the same lines.

Construction of formulae for second order update methods like the
BFGS method is essentially similar, although the derivation is more
cumbersome. A number of equivalent formulations exist for the BFGS-
update, but here

w;ba/+éa,u!  ulép,
dasp; (6a/op, )
is employed as update formula for the inverse of the stiffness matrix,

where %; is again defined according to equation (5.106). Repeated appli-
cation of the BFGS-formula on #; now results in

K=K\ + da;da (5.114)

= %=1
u; =AM6¢‘LH+KO 1P‘<+j§1 (xj'yjuj '|‘C(j(!€j +agﬁg73 )6&5, (5A 1 15)

in which the auxiliary scalars a;, £;, 7; and k; have been introduced
which are defined as

o;=(8ada;)! (5.116)
B;=—ujda; (6.117)
7;=6ap, (5.118)
K; ="-3TP~; (5.119)

Again, equation (5.115) can be used directly to calculate ;. The new dis-
placement vectors 8/ and 8a/’ can subsequently be calculated from

T .. =
Ja.“_l —(1+ai7.£)u,;+a,-_ (;ci+a,;ﬁ,;')'i)6a.,; ~ﬁ;.a,,6a{” (5120)
and
i -
oafl,=8al"+0;(8a]q" Yu;+o;[ulq’ +a;6;6alq" 16a;,  (5.121)
In fact, the above described procedures may be conceived as
accelerated Modified Newton-Raphson procedures, where the acceleration
factors are calculated automatically. However, the methods become less
efficient when the number of updates increases, because the evaluation

of 22; takes more and more computational effort. In structural analysis,
this generally constitutes no problem as the load is applied in small
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increments. In an incremental-iterative procedure, a new tangent
stiffness can then be formed at the beginning of the loading step, and the
acceleration via the Quasi-Newton method can be applied in the subse-
quent equilibrium iterations. Yet, if we allow for instance 20 equilibrium
iterations, this may still constitute a problem when we consider larger
systems, because this may require storage of 20 vectors with a length
equal to the number of degrees of freedom for Broyden's method and of
40 vectors for the BFGS method. To avoid memorising these vectlors,
Crisfield®33 has proposed to apply a single cycle update which is related
to the BFGS-formula and which is given by:

dal,=(1+0;7;) Kg P+ (B +7i i i 7:) 0y (5.122)
and
dall,=0;(8a/q")K5'q"
+o;[dalq’ —a;p;(8a/q")op/K;'q " |oa, (5.123)
but §; is now given by
B,=—8p/K;'p; (5.124)

It is the author’s experience that this update formula is nearly as
efficient as the original Quasi-Newton methods, but it has the advantage
that only 2 vectors of n degrees of freedom need to be stored. However,
this update formula no longer satisfies the Quasi-Newton equation (5.103),
but merely satisfies the n.-dimensional Secant-formula

opla; . =a](p;+Auiq") (6.125)

Therefore, the name Secant-Newton methods has been coined for this

class of methods®33,

5.2.5 Fxamples

We will demonstrate the efficiency of Quasi and Secant-Newton methods
by means of two examples. The first example concerns a crack propaga-
tion problem in a notched, unreinforced concrete beam (Figure 5.6). The
loading is applied symmetrically, so that the crack only shows opening,
but no sliding. As attention was focussed on the tensile behaviour of the
concrete, the simple elastic-fracture model with a linear softening
branch was adopted.

Several Newton-Raphson type iterative procedures and Quasi and
Secant-Newton updates were tested for the same energy criterion
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Figure 5.6. Load-displacement curve, geometry and material data for
crack propagation problem.

Table 5.1. Number of iterations and CPU-times for crack propagation

problem.

Method Number of iterations | CPU-time in seconds
Newton Raphson 357 7836
Modified Newton 384 5490
BFGS 159 2776
Broyden 174 2981
Davidon 407 6088
Secant-Newton 167 2907
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Table 5.2. Number of iterations and CPU-times for slope stability problem.

Method Restart Iterations | CPU-time (sec.)
Constant stiffness | elastic stiffness 563 12165
BFGS elastic stiffness 294 6959
Broyden elastic stiffness 190 4490
Secant-Newton elastic stiffness 257 6156
Constant stiffness | equation (5.126) 300 6274
BFGS equation (5.126) 179 4430
Broyden equation (5.126) 151 3605
Secant-Newton equation (5.126) 1658 3771

(£=0.000001). All Quasi and Secant-Newton updates were obtained using a
tangential restart in the first iteration. The results which have been sum-
marised in Table 1, reveal that Quasi and Secant-Newton methods indeed
yield a considerable savings in computer time for this particular prob-
lem.

An important observation is that Quasi and Secant Newton methods
sometimes produce worse solutions for the contribution to the incremen-
tal displacement vector than would have been obtained using a Newton-
type method. This is in accordance with observations of other research-
ers® ™, who note that these especially seem to occur if the ratio between
the factors in equations (5.112) and (5.113) or (5.120) and (5.121) for the
contributions to the incremental displacement vectors become dispro-
portional. It has been proposed to define bounds between which the
acceleration factors o; etc. should remain®. If these bounds, also called
"cut-out criteria", are violated, the updating according to a Quasi-Newton
formula is omitted and a conventional (Modified) Newton-Raphson method
is applied. For the problem considered here, it appeared that all Quasi
and Secant-Newton methods performed optimal when rather loose "cut-
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with and without the modification of equation (5.128).

P oy oy oy ey e
1 ' Ko

T s G, . SR . v W™

R
T =

Figure 5.8. Incremental deformations of slope stability problem at failure.

out criteria” were employed.

The other example problem concerns a slope stability analysis for
which the non-associated perfectly-plastic model was used. In this exam-
ple, the loading was applied by incrementing the self-weight of the soil
while a global updated normal path method was used as control parame-l
ter of the solution process. The results of the various calculations are
given in Table 5.2. As can be observed, Broyden's method and particularly
the variant in which the incremental displacements in the first iteration
Aa; were estimated from the result Aa of the preceding loading step,

_g'?-

Aﬂq:%ﬁ“o (5.126)

with Ay and Aw, the load increment in the preceding step and in the
first iteration of the current step respectively, appeared to be the
fastest, and performed better than the BFGS-formula which appeared to
be superior in almost all problems with a symmetric tangent matrix
which have been tested by the Author. Apparently, the non-symmetric
character of Broyden’s update formula is indeed beneficial for problems
which generate non-symmetric tangent stiffness matrices.

Just as with the concrete beam, the results depend on the particular
cut-out criteria which were employed. Again, it appeared that the best
results were obtained with rather loose cut-out criteria. Nevertheless, a
general recommendation to use loose cut-out criteria does not seem to
be appropriate as this may lead to poor results in some particular cases.

Another problem with Quasi and Secant Newton methods is that they
sometimes lead to what might be named as 'rogue solutions’. This is illus-
trated in Figure 5.7, where solutions obtained with Broyden's method are
shown. In the vicinity of the limit load, and especially when the shear
band leading to failure begins to develop (see Figure 5.8), the Quasi-
Newton method gives an oscillatory load-deflection curve. However, when
the incremental displacements in the first iteration were determined
according to equation (5.126), the Quasi-Newton method yielded a smooth

load-deflection curve.
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6. BIFURCATION POINTS AND OF POST-BIFURCATION BEHAVIOUR

In this chapter, we shall apply the models and the techniques discussed
in the preceding chapters to some typical bifurcation problems in soil
and concrete mechanics. In contrast to many bifurcation problems, the
bifurcations considered here are solely caused by material behaviour and
not by geometrically non-linear effects.

6.1. Strain localisation in conerete members

The first bifurcation problem which we will consider is a perfect bar of
elastic-softening material which is subjected to a uniformly distributed
(tensile) load. The associated limit problem has already been introduced
in Section 4.4.2, where it has been explained that the response of an
imperfect bar in the post-failure regime will depend upon the number of
elements and the degree of interpolation within the elements. For sake of
simplicity, the latter variable is eliminated by electing 4-noded elements
with a bilinear displacement interpolation, so that we have a constant
strain in the axial direction for each element. Then, the response in the
post-peak regime only depends upon the number of elements.

T 11 =

basic path

| A,
localization in one
or more elements

=

displacement
Figure 6.1. Possible post-bifurcation behaviour for a bar loaded in ten-

sion. Which equilibrium path is followed depends on the number of ele-
ments in which the crack localises.

In the spirit of Section 4.2.2 we suppose that the bar is modelled by
m elements. Then, the limit point is an m —1 fold bifurcation point in the
sense that m—1 alternative equilibrium branches emanate from this
point apart from the fundamental mode which continuous to deform
homogeneously. The other bifurcation branches are associated with local-
isation modes in one or more elements, whereby the other elements
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unload. This results in a fan of possible bifurcation branches twhich
emanate from the bifurcation point. Which equilibrium path will be
traversed depends on the number of elements in which the crack local-
i e Figure 6.1).

. ’E:;en nlfe introguce no imperfections, so that we do not trans{er the
bifurcation problem into a pure limit problem, a 64-bit processor 1s usu-
ally sufficient to guarantee that the bar deforms hon?mgeneously al_s'o
after the bifurcation point has been passed. Continuation on an e.qulh-
brium path which shows strain localisation is then poss_ible by adding a
part of the eigenvector which corresponds to a zero e1ge‘nva1ue .Lo the
fundamental solution (see the preceding chapter). In practice, a. blfurc_a—
tion point cannot be isolated exactly since we work with finite arlth_metlc.
Consequently, we load the bar slightly, say 1 percent, beyond the b1f1.1rca-
tion point and negative rather than zero eigenvalues are obtained.
Nevertheless, this does not affects the essentials of the procedure.
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| |
1 L —"'F/Q
a . —l—-F/?_
| I
! -l—--F/2

Figure 8.2. Eigenmodes for two-element bar.

; ] T —-—Ffz

| |
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Figure 8.3. Final displacements when the load has come down to zero.

In the example, we consider a material with a linear softening branch
for which the ultimate strain &, at which the crack transfers no more
normal stress, equals 10 times the strain at peak load. Let us ﬁrst. assur.ne
that the bar is modelled by only two elements in the axial dirt'ectlon. (Fig-
ure 6.2). The bar is loaded by a uniformly distributed traction slightly
beyond the peak load, using indirect displacement contro.l th overcome
the limit point properly. Next, the tangent stiffness matrix 1s.refm?med
and two negative eigenvalues are calculated, the correspondl.ng eigen-
modes being plotted in Figure 8.2. Adding a part of the latter elge%um?de
to the fundamental solution resulted in continuation on the localisation
path (A-C in Figure 4.20). The resulting displacements when the load has
become zero have been plotted in Figure 6.3.
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Figure 6.4. Eigenvector for bar when divided in 10 elements when all 10
elements show loading.

T T T T | T T T | n—=Fs2
I | I | | I [ | | |
1 1 1 i 1 1 I 1 1 A

_-F/Z

Figure 6.5. Eigenvector for bar when divided in 10 elements when 5 ele-
ments show loading and the other 5 show unloading.
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Figure 6.6. Eigenvector for bar when divided in 10 elements when 3 ele-
ments show loading.
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Figure 6.7. Eigenvector for bar when divided in 10 elements when only 2
elements still show loading.
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Figure 6.8. Final displacements for bar composed of 10 elements showing
localisation in only one element.

As explained in Section 4.4.2, we obtain a multiple bifurcation point
when we model the bar by more than 2 elements. Indeed, we calculate m
negative eigenvalues beyond peak load when we divide the bar in m ele-
ments. The selection of an appropriate eigenvector which gives localisa-
tion in only one element then becomes a somewhat tedious task. As indi-
cated in the preceding chapter, the most simple way to solve this
difficulty in practice, is to take the eigenvector corresponding to the
lowest eigenvalue and add it to the fundamental solution. We will then
converge on a localisation branch which is not necessarily the lowest
bifurcation branch. However, when we extract the lowest eigenvalue and
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the corresponding eigenvector for the new state and add them to the
current displacement increment, we generally arrive at a lower bifurca-
tion branch, whereby it seems superfluous to remark that an extremely
small increment must be employed. Repeating this process several times
finally results in convergence on the lowest bifurcation branch. For the
present example, this implies that we finally converge on a branch in
which the softening localises in only one element while the other ele-
ments show unloading.

The above procedure is illustrated by an analysis in which the bar is
divided in 10 elements. An eigenvalue analysis slightly beyond peak
strength with a Jacobi-subspace method® resulted in 10 negative eigen-
values, the eigenvector belonging to the lowest eigenvalue having been
plotted in Figure 6.4. Adding this eigenvector to the fundamental mode
did not result in localisation in one element, but in 5 elements, which is
not surprising in view of Figure 8.4. Performing an eigenvalue analysis for
this tangent stiffness, in which the moduli of 5 elements are softening and
the moduli of the remaining 5 elements unload via the secant branch of
equation (4.21), resulted in 5 negative eigenvalues, the eigenvector
corresponding to the lowest eigenvalue being plotted in Figure 6.5. Adding
this eigenvector to the current (small) displacement increment with
localisation in 5 elements, resulted in a new equilibrium state with locali-
sation in 3 elements. A new eigenvalue analysis yielded 3 negative eigen-
values and addition of the eigenvector (Figure 6.8) corresponding to the
lowest eigenvector to the current displacement increment resulted in
localisation in 2 elements. A final loop with the eigenvector of Figure 6.7
yielded localisation in 1 element (Figure 6.8).

The case when the bar is modelled with 10 elements represents a
critical case when the load falls down on the localisation path without any
additional displacement of the end of the bar (line A-D in Figure 4.20), i.e.
the strain increment in the element in which the deformation has local-
ised together with the strain increments of the unloading elements is
exactly zero. For a smaller number of elements the additional displace-
ment at the end of the bar is positive, but for a greater number of ele-
ments, the additional displacement is negative, so that the total displace-
ment at the end of the bar becomes smaller after the peak has been
passed (line A-F in Figure 4.20 which is for 20 elements). Obviously, such
a 'snap-back’ behaviour cannot be analysed under direct displacement
control, but only with indirect displacement control. Yet, many analysts
have ignored the possibility of this phenomenon in the past, and many
analyses have been terminated at such a point because of divergence of
the iterative procedure. A further parallel can be drawn with experiments
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which can not be performed properly under displacement control, e.g.
with shear or other brittle failures. The observed explosive failure is then
simply the result of an attempt to traverse an equilibrium path under
immproper static loading conditions.

6.2. Shear-band formation in the biaxial test

The examples in the preceding section are interesting as a thorough
insight can be gained in bifurcation and localisation phenomena in soften-
ing media and as they present a nice illustration that the procedure for
continuation on alternative equilibrium branches is versatile also for
non-linear analyses of materials with a non-unique stress-strain law. In
the present section a more challenging problem will be analysed, namely
plane strain compression of dry sand in a biaxial testing device. In recent
years, this problem has received much attention from a theoretical side
as well as from an experimental side® 113114118 byt it seems that a proper
numerical bifurcation analysis has not yet been published. Only some
numerical approaches exist®1® in which the bifurcation problem is
transferred into a limit problem by introducing a small imperfection,
either material or geometrical.

It was noted in Chapter 4 that non-associated flow laws may cause
unstable material behaviour and non-unique solutions before peak
strength has been reached. Considering a plane strain compression test
on dry sand in a biaxial device, this implies that the sample can bifurcate
before the limit friction angle ¢ has been attained, i.e. when the harden-
ing modulus is still positive. Neglecting the possible impact of large defor-
mation gradients, it was derived in Chapter 4 that for the friction-
hardening Mohr-Coulomb elasto-plastic model, the critical hardening
modulus hg for which shear-band bifurcation is first possible, is given by
the expression?!118

hs _ (sing® —siny*)?

wo 8(1—v)
After the cricital hardening modulus has been reached or alternatively if
the mobilised friction angle ¢® has attained some ecritical value, all
further deformation is localised in a thin layer, while the remainder of
the sample experiences no additional straining. In the classical view, the
inclination angle ¥ of such a shear band with the axis of minor principal
stress is given by 15':45°+é— ¢*, but careful experiments by Vardoulakis
et al.!®® and Arthur et al.? have revealed that the expression

(6.1)
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¥=45° +1 (" +9") (8.2)

better matches experimental data. Indeed, for a material model which
slightly differs from the model employed here and including large d.is-
placement gradients, Vardoulakis''* showed that a proper bifurcation
analysis approximately predicts such an inclination angle for a shear
band. Later, Vermeer'!® showed that the inclination angle is relatively
insensitive to the employed material model and also holds for the
friction-hardening Mohr-Coulomb model. Moreover, Vermeer!'® showed
that the impact of the large displacement gradients on the bifurcation
Joad is not very significant and that non-normality is the governing factor
which causes shear-band bifurcation in sand samples.

Figure 6.9. Eigen-displacement field at bifurcation.

In the numerical analyses, a cohesionless sand has been considered
with E=100 N/mm?, v=02, ¢=40°, £,=0.02, 9" =0° and the confining
pressure has been taken equal to -0.4 N/mm?. The value for Poisson’s
ratio is perhaps somewhat high considering the fact that no yield_ cap has
been used to close the Mohr-Coulomb surface in the hydrostatic direc-
tion. Further, the assumption of a non-dilatant material is not very realis-
tic near peak strength, but has been adopted for sake of simplic%ty‘

Load incrementation was started from a strain free initial stress
state of 04y =0y =0,,=-0.4 N/mm?. The load was applied to the top of
the sample using indirect displacement control of the top of the sample
(see Chapter 5). Dependence relations have been employed to ensure that
all nodal points at the top displaced the same amount. Perfect
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Figure 6.10. Load-displacement curves for biaxial test on dry sand.
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Figure 6.11. Velocity field at limit point of the localisation branch.

lubrication was assumed between the platens and the sample, so that the
sample could deform homogeneously.

The sample was loaded until Oy =-1.802 N/mm?, which corresponds
to a mobilised friction angle ¢’ =39.55°. Then, a negative eigenvalue was
fza.lculated after assembling the tangent stiffness matrix. Since load
11}crements of 0.001 N/mm? have been used near bifurcation, the bifurca-
tion load is actually between -1.801 N/mm? and -1.802 N/mm?®. The
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]

Figure 6.12. Elastic and plastic zones at limit point of localisation branch.
The shaded area is still plastic.

corresponding eigenmode is plotted in Figure 6.9. For a proper interpre-
tation of this figure, it is necessary to look at it from the bottom lefthand
corner. Then, we observe a number of 'waves’, quite similar to the wave
pattern which we observe for buckled shells or plates. The 'wave' pattern
of Figure 6.9 has an inclination angle which reasonably corresponds with
formula (6.2), but the shear-band mode itself is not an eigenmode. This
might be due to the spatial discretization so that we would obtain a
shear-band mode as eigenmode for a finer element mesh.

It is well possible that more negative eigenvalues exist at the numeri-
cal bifurcation point, but because the power method has been employed,
only the lowest eigenvalue could be extracted. It is noted that the power
method generally converges to the absolutely smallest eigenvalue, but
convergence to the lowest eigenvalue was obtained because a shift was
applied to the stiffness and identity matrices.

After locating the bifurcation point, the analysis proceeds in the
same manner as described in the preceding section but for the added
complexity that we now have a non-symmetric tangent stiffness matrix.
The resulting load-displacement diagram is given in Figure 6.10 in which
we have also plotted the solution which has been obtained for continued
homogeneous deformations, i.e. when the solution is obtained without
perturbation. Figure 6.11 shows the velocity field after bifurcation. It is
noted that the inclination angle of shear band approximately equals 53°
which is in reasonable agreement with equation (6.2) which would predict

YRIH5°
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Figure 8.13. Enlarged graph of finite element results of post-bifurcation
behaviour.

Let us consider the post-bifurcation behaviour of the localised solu-
tion in somewhat greater detail (Figure 6.13). We observe that we obtain a
stable solution for the localisation path after bifurcation. Indeed, no
negative eigenvalues were calculated for the tangent stiffness matrices in
this regime. Subsequent states of stable equilibrium were computed until
the load was incremented to Oyy=-1.8128 N/mm®? After this point, a
negative eigenvalue was extracted after assembling the tangent stiffness
matrix. A converged solution could not be obtained by incrementing the
axial load any further, and use of indirect displacement control resulted
in a converged solution at a lower load level. Apparently, the equilibrium
path of the localised solution has a limit point for Oy =-1.8128 N/mm?.
Continuation of the solution resulted in the descending branch of Figure
6.13 and ultimately resulted in a residual load of Oy =-1.7594 N/mm?.

At a first sight, the initial rise of the localisation path before des-
cending seems somewhat peculiar. A possible explanation is that the
shear band needs some time to develop. Especially at the ends of the
shear band, stresses must be mobilised which can support the shear-
band mechanism. Indeed, immediately after bifurcation, the incremental
displacement or velocity field is still very much alike the incremental dis-
placement fleld of the homogeneous solution. It is between the
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bifurcation point and the limit point of the localisation path that the
shear band gradually develops culminating in the velocity field at t}Te
limit point (Figure 6.11). A similar observation holds for the plastic
regions. Here, unloading of plastic to elastic states progresses graflually
between the bifurcation and the limit point, until only the band of 11’1?.61‘}"
sively sheared elements is still plastic (Figure 6.12). It‘ is noted that simi-
lar results, i.e. the bifurcation path showed an initial rise before d'escend-
ing, have been reported by Hutchinson® in connection with plastic buck-
ling of Shanley type columns. It is furthermore notefl that the observed
initial post-bifurcation behaviour will probably sigmﬁcantly‘depel?d on
the adopted mechanical model. Another material rno.del or inclusion of
large displacement effects may well change the precise outcome of the

analysis. ! F

smooth, rigid i

smooth, rigid
Figure 6.14. Finite element mesh composed of 8-noded quadrilateral ele-

ments.

The above results in which we computed a bifurcation point lfor a
mobilised friction angle ¢'=39.55°, were obtained for the mesh of Flg'ure
8.14, which is composed of 8-noded quadrilateral elements with full' 9-
point Gaussian integration. This result is significantly higher. than the
critical friction angle ¢, =39.23° which can be computed on basis of L
tions (6.1) and (4.27). In fact, the too ’stiff’ behaviour f)f the numerlcai
analysis is not so surprising in the light of the absewatmr}s of Nagtegaa
et al.™® who demonstrated that the kinematical constraints which are
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Figure 6.15. Finite element meshes composed of 15-noded triangular ele-
ments. Left: fine mesh. Right: coarse mesh.

imposed by the incompressibility constraint for a fully plastic solution, a
situation which occurs at complete collapse, may cause 'locking’ of ele-
ments, thus postponing or even avoiding failure. Eight-noded elements
with 8-point integration represent a critical case for planar deformations,
in the sense that failure loads can be computed with such an assembly,
but that the limit load is usually overestimated unless very fine element
divisions are employed. Because of the overstiff behaviour of the dis-
placement based version of the finite element method, the bifurcation
load is also overestimated. To alleviate this problem, Zienkiewicz et al. 17
advocated the use of so-called 'reduced’ 4-point integration which tech-
nique has been widely employed in soil mechanics!™9%1%8 Uge of such an
integration rule resulted in a critical friction angle of ¢, =39.41° (Oyy =~
1.791 N/mm?), which is appreciably lower than the critical friction angle
which was obtained in the analysis with full integration.

Nevertheless, it has been shown that especially in non-linear analysis,
the use of reduced integration may be dangerous, see for instance
Chapter 3 for use in conjunction with cracking and de Borst!8?! for plasti-
city calculations. For cracking analyses it was concluded in Chapter 3,
that 'full’ 9-point integration largely avoids difficulties, but as argued,
such a rule results in a too stiff behaviour for plasticity calculations. At

- 109 -

1.64 Limit load for pos
1G,- G, homogeneous
deformations

(N/mm?)

142}

“a—— Quadrilaterals, full integration
~— Triangles, coarse mesh
s—— Quadrilaterals, reduced integration

——— Triangles, fine mesh
138 :
Theory: lowest

bifurcation load

136 |-

1 L Il 1 1 | J
0 Y -0.025 -0.026 -0.027 -0.028 -0.029 -0.030 -0.031
EI

Figure 6.16. Bifurcation points for different discretizations.

present, the most reliable technique seems to be the use of 15-noded dis-
placement based triangular elements with a 12-point integration
rule!821105  Repeating the analysis with such an assembly (Figure 6.15a
which has approximately the same number of nodes as the mesh of Fig-
ure 6.14) resulted in a critical friction angle ¢,=39.81° (0, =-1.783
N/mm?), while an analysis with a coarser mesh (Figure 6.15b) resulted in
P =39.48° (Ogy =-1.797 N/mim?), which is still lower than the results with
9-point integration for the much finer mesh of Figure 6.14. The fact that
for the triangles a lower bifurcation load was obtained for the finer mesh
confirms the well-known fact that the numerical solution converges to the
'true’ solution upon mesh refinement. The results for the bifurcation load
for the different assemblies are summarised in Figure 6.16.

A final remark concerns the relatively small differences between the
various friction angles, e.g. the difference between the friction angle at
which bifurcation is theoretically possible and the limit friction angle
amounts less than 2 percent. This is caused by the convex relationship
(4.27) between sing * and the hardening parameter k. Indeed, when the
rate of hardening equals the critical hardening modulus hg, the mobilised
friction angle is less than 2 percent below the limit friction angle, but the
hardening parameter k is only about 75 percent of &g, i.e. the value
which k attains when ¢ =¢.
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7. CALCULATION OF LIMIT POINTS AND OF POST-PEAK BEHAVIOUR

In the preceding chapter, we demonstrated how solutions can be obtained
in the post-bifurcation regime. Bifurcations however are rather rare in
normal structures owing to imperfections, and even if a bifurcation point
exists in a structure, numerical round-off errors and spatial discretiza-
tion usually transfer the bifurcation point into a limit point unless we
have a homogeneous stress field as was the case in the examples of the
preceding chapter. This observation does not render the approach pur-
sued in the preceding chapter worthless as it provides a thorough insight
which is of importance for the associated limit problems, but it is obvious
that numerical procedures must also be capable of locating limit points
and tracing post-limit behaviour. In the present chapter, we will show
that the models and techniques developed in the preceding allow for trac-
ing limit and post-limit behaviour. Furthermore, we will show that some
theses postulated in the preceding concerning the consequences of
strain-softening and non-associated plasticity are not merely academic,
but that they are encountered in realistic soil and concrete structures,

7.1. Mixed-mode fracture in a notched specimen

The first example which we consider, is the notched unreinforced beamn of
Figure 7.1. The beam has been analysed using 8-noded plane stress ele-
ments and B-noded triangles have been used in the transition region
between the coarse part and the fine part of the mesh. Nine-point Gauss
quadrature was applied for the quadrilateral elements. The concrete has
been modelled as linearly elastic in compression with a Young's modulus
£, =24800 N/mm? and a Poisson’s ratio ¥=0.18. This approach is justified
in this case, because the compressive stresses remain low enough to
avoid yielding in compression. In tension, the erack model as outlined in
the preceding has been employed. The crack parameters have been taken
as: tensile strength f.;=2.8 N/mm? and fracture energy Gf =0.055
N/mm. The width of the crack band was assumed to be h=10.167 mm.

Figure 7.1 also gives the loading configuration which shows that the
beam is loaded asymmetrically so that the crack propagating from the
notch shows opening as well as sliding. In the experiment! the load was
applied cyclically at point C of the steel beam AB and was controlled by a
feed-back mechanism with the so-called Crack Mouth Sliding Displace-
ment (CMSD) as control parameter. After peak, the envelope of the load
cycles falls down sharply (see Figure 7.2), which is particularly challeng-
ing for a numerical simulation.

S I

steel beam

\notch

7 61, 61 397 . 203 |
203 B 39 LLTEL

Figure 7.1. Finite element mesh of notched beam.

A number of researchers have endeavoured a numerical analysis of
this beamn!14:37:48.80.95124 ojther with the smeared crack approach or with
the discrete crack approach. Invariably, however, they adopted displace-
ment control to the point of load application (point C in Figure 7.1) and
all the calculated load-CMSD curves showed far too much ductility in the
post-peak regime. Moreover, the post-peak regime was repeatedly
reported to be highly unstable and converged equilibrium states could
not be obtained. Indeed, we will show that such atlempts are deemed to

fail.

B .
= linear softening. B =01
=z
2 5
= 2
b linear softening, B=0.05
o
3 &
] Nonlinear softening, f=0.05
2 ,

Experimental data
/’

T " T T 1
0.00  0.02 0.4 0.08 0.8 0.0 0.2 0.14 0.16
CMSD (mm)

Figure 7.2. Load versus CMSD computed with CMSD-control. The shaded
area denotes the range of experimental results.
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Figure 7.3. Eigen-displacement field at peak load.

In the present study, the loading process has been controlled
indirectly by a displacement parameter and the results of Figure 7.2
show that the computational results for the load-CMSD curves nicely fall
within the experimental bounds, which is in sharp contrast with previous
results which showed too much ductility after peak load. Initially, a global
norm of displacements was employed, but this analysis was not success-
ful as this constraint equation failed near peak load, probably for reasons
as stated in Section 5.2. Indeed, we observe a strong localisation if we plot
the eigen displacement mode at peak load (see Figure 7.3). However, for
the present problem, a displacement parameter which can be used to
control the loading process is naturally available, namely the CMSD itself.
In this way the numerical analysis entirely parallels the experiment. With
CMSD-control, the load-increment is in the linearised version determined
from the condition

Aafha;_=Al? (7.1)

with Aaj the increment in CMSD at step j. Using the constraint equation
(7.1), the limit point could be overcome without problem with the same
step size where the constraint formulae (5.89) and (5.90) failed.

Near peak load, an attempt to increment the load without CMSD con-
trol resulted in a divergence of the iterative procedure, but with CMSD-
control and a full Newton-Raphson procedure a converged solution was
obtained. Moreover, a negative pivot was encountered upon factorising
the tangent stiffness matrix after some iterations. An eigenvalue analysis
was performed subsequently and this resulted in one negative eigenvalue
with the eigenmode of Figure 7.3 which is identical with the incremental
displacement field at peak load. Hence, the peak load is a limit point and
not a bifurcation point. After peak, the load was decremented and a
genuine equilibrium path could be obtained.

If we assume that the beam of the test rig is infinitely stiff, we can
calculate the vertical displacement of the point of load application C from
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Figure 7.4. Load-deflection curve of point A.
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Figure 7.5. Load-deflection curve of point B.

the calculated displacements of points A and B (Figures"?.cl and 7.5). F(;%r
the analysis with non-linear softening and a shear retention fa.ct.or of 0.05,
this results in the load-deflection curve of Figure 7.6, which shows a
i snap-back behaviour. ‘

Wde‘i‘l[':e snI;p-back after peak load entirely explains why pl:'eVchlS‘ solut-'
tions which adopted displacement control with respect to Pomt C did not
result in a stable post-peak response, as such a solution mmplj{ dogs nt.)

exist, at least not in the vicinity of the limit point. In fact, the situation 1s
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Figure 7.6. Load-deflection curve of point C.
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Figure 7.7. Incremental displacements at ultimate load.

even worse when the analysis is performed under displacement control of
point C. This is because the beam of the test rig cannot be modelled as
infinitely stiff, so that after peak the elastically stored energy of this
beam is partly released, thus making the snap-behaviour even more
violent.

The load at point B versus the computed CMSD is plotted in Figure
7.2. The most ductile curve corresponds to 8°=0.1111 (so that we have
for the shear retention factor $=0.1) and a linear softening curve. We
observe that the computed ultimate load overestimates the experimental
values. Figure 7.7, which gives the incremental displacements and Fig-
ures 7.8 which show the crack pattern at ultimate load, reveal that the
crack arising from the notch has developed fully. Consequently, all
stresses which are transferred in this crack, are shear stresses, and
these stresses cannot decrease because of the constant shear retention
factor and because of the relatively high threshold angle for the forma-
tion of secondary cracks (a=60°). Indeed, beyond this point, the load
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Figure 7.8. Crack pattern at ultimate load level.

(a) All cracks. (b) Cracks which transfer no normal stress.

again falls down sharply, which appeared to be due to formation t;f c?a;:]llts
elsewhere in the beam. Because the solu;ion tl';elstb;ccmes physically
i is part of the curve has not been plotted.
meazinii:is;{attzm]opad. the beam is fully cracked and c_mly shear stre}slses
can be transferred across the cracks. As the magmt,‘ude of the i eellr
stresses is determined by the shear reduction iactorlﬁ (_or altema. ive 3;
the shear retention factor ), the ultimate load is pr?marlly a functm? o_
B. The correctness of this hypothesis was confirmed in subsequerft ca cuS
lations with $=0.05. These calculations were performed‘ WI.th a i};le;ir;vz.r
well as with @ non-linear softening curve and yielded a SLgr.uﬂcan };t o '
ultimate load. It is interesting to note that use of a non-linear so em;:ig“
curved! instead of a linear softening curve yielded glmast the samzl_l i
mate load (which strengthened the above hypothesis), butvresultee :1150
significantly lower peak load. Hence, the slﬁp‘; of the softening curv
influences the computational results™.
Stm%g;yﬁ?agly note that the excellent match of T.he computational ;‘esu;;s_
with an experiment in which we have crack sliding as well a.s crafc g}i o
ing (mixed-mode fracture) casts some doubts on the necessity ot. re : I)g
the stress-strain relation in the crack very much (see Sec mness.‘1 01-1
Replacement of the constant shear retention factor by an ex;;rt —
which makes it a function of the crack strain seems essentlal,' u a3
doubted whether the off-diagonal terms in the crack stress—si_.rmn mac -
have to be made non-zero unless relatively large crack strains are

sidered.
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7.2. Tension-pull specimen

It is a widespread belief that reinforcement stabilises the numerical pro-
cess. However, this is not generally true, as addition of reinforcement not
only gives rise to stiffness differences in the structure, thus leading a
deterioration of the condition of the stiffness matrix, but it also adds to
the possibility of the occurrence of spurious alternative equilibrium
states and of snap-back behaviour®38, We will demonstrate this by means
of perhaps the most simple reinforced structure, namely an axisym-
metric specimen with an axial reinforcing bar.

Specifically, we will consider the tension-pull specimen?®® which is
shown in Figure 7.9. The reinforcing bar is given by the line AB and a
linear bond-slip law is assumed between the concrete and the reinforce-
ment, i.e. the relation between the slip and the shear stress between con-
crete and steel has been assumed to be linear. In fact, the element which
is employed for the reinforcement is a combined steel-bond slip ele-
ment®. The concrete has been modelled as linearly elastic in compres-
sion just as in the preceding example with a Young's modulus E,=25000
N/mm? and a Poisson’s ratio ¥=0.2. Also in this case the approach is
Justified because of the relatively low compressive stresses. The tensile
strength has been assumed as f,;=2.1 N/mm? and the non-linear soften-
ing curve has been employed after crack formation with a fracture
energy Gy =0.06 N/mm. The shear reduction factor B* was taken equal to
0.1111. The reinforcing bar was assigned a Young's modulus Es=177000
N/mm? and a yield strength 0, =210 N/mm?.

——

—r
bond-slip —f— mT
elements

™~
concrele —p— 5
elements
- 250 L s0

Figure 7.9. Tension-pull specimen of Dorri?,
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Figure 7.10. Load versus displacement of the end of the bar.

The loading is applied to point A of Figure ?.g in the f.OI'I‘I.'l of a.t c;?cz:;
trated load and the ensuing load-displacement dlagram. is g:en lrnecegdmg
7.10. The present problem has much in commoq wu."ah t ffnorm 8
example as also in this case straightforward .apphcataon zzl "
incremental displacement to control Lh; '?olutlo:nspigc;ef}sw ilncremental
effectively. This can again be understood if we c 7u ‘ :

i j rior to and just beyond the limit point (Figure
ilfrljlaa;‘zm'i?;)éeliiisoiu:z It).h-e: limit point, the elastic deforma‘t.ions o.f3 ;:1:1
b.ar are relatively so great, that thei dortt:mati et.}:; ;(E‘Ize:i- T};::e:;ntre_

i . Just beyond the peak, when ; ‘
E:fl;;??;:;ﬁsed, the }i,ncremental deformations o.i the ren:nfor::_nbga:}?;
nearly vanish (they even change sign, so that we again have a :?ngremen.
and the concrete is the prime contributor to the .total norntl ::alues i
tal displacements. However, because] of. :.he —r?at::grSSZig e
steel deformations just prior to the 1rm point, e i
placement space is not influenced significantly. In this omit,wd e
of freedom belonging to the steel have therefore.beer; .
norm of incremental displacements for overcoming the S:; 7p10 01;1 o
traversing the valley in the load-displacement curve ol Iig = : e

the solution process has been controlled by the .1sp a
frt:i‘:s I;?Itl.i:e steel, as then these displaceme'nt.s increase manotoliuiﬁzllfl;m

In the preceding, the question was 'ralsed whether an e(: s
state could be reached via a non-equilibrium path. The presen P
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Figure 7.11. Incremental displacement field just prior to the limit point.
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Figure 7.12. Incremental displacement field just after the limit point.

is well suited for demonstrating that this may be possible for analyses
under displacement control. Indeed, when we attempted to analyse the
structure by prescribing the displacement of point A, we obtained a
number of non-converged states just after the limit point. This non-
equilibrium path is indicated by the dotted line in Figure 7.10. However,
after the crack had localised, we again obtained converged equilibrium
states (dashed line in Figure 7.10). This illustrates that reaching another
part of the equilibrium path is sometimes possible, provided that there
exists a new equilibrium state which is "sufficiently close" to the previous
equilibrium state.

It is interesting to note that during the drop of the load no new
cracks arise, so that the crack pattern of Figure 7.13 remains unchanged.
When the load is increased again, new 'cone-shaped’ cracks™ arise which
are a consequence of the reversal of the direction of the shear stresses
along the bar near the centre of the specimen (see Figure 7. 14).
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Figure 7.13. Crack pattern at the first limit point.
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Figure 7.14. Crack pattern at ultimate failure.

7.3. A trap-door problem

The two preceding examples nicely illustrated the possible consequences
of strain-softening on the structural response. As crack formation “_ras
the principal cause of non-linearity in these examples, the compressive
stresses remained relatively low, and the examples could not ble
employed to demonstrate possible consequences of non-associated plasti-
city.

It was argued in the preceding that non-associated flow rules may
cause non-uniqueness of the limit load and post-peak softening even if no
softening is assumed directly in the relation between the normal stress
and the normal strain, or alternatively, between the shear stress and the
shear strain. Investigating this for strip as well as for circular fociti_ng
problems, the Author found that the limit load was practically insensitive
with regard to the adopted flow rule!®?!, the elasticity parameters or the
initial stress conditions. Examples thereof are shown in Figure 7.15 which
gives results for a strip footing problem and Figure 7.16 which gives
results for a circular footing problem.

A more interesting problem from this point of view is a trap-door
problem for a cohesionless, ponderable soil (see Figure 7.?7]. For lthi_s
problem which is more confined than the footing problems, different limit
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Figure 7.15. Results for strip footing problem on cohesive-frictional soil.
The friction angle ¢ has been taken equal to 402, while two different
values for the dilatancy angle have been adopted, viz. 9 = 20° and ¥ =
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Figure 7.16. Results for circular footing problem on cohesive-frictional
soil. The friction angle ¢ has been taken equal to 20°, while two different
values for the dilatancy angle have been adopted, viz. ¥ = 0° and Y = 20°
(associated). An additional calculation for an initial stress field with
Ozz =0Oyy = -2 N/mm? also yielded the semi-analytical slip-line solution3!.
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Figure 7.17. Finite element discretization for trap-door problem.
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Figure 7.18. Load-displacement curves for trap-door problem.

loads are calculated when varying the dilatancy angle ;r the initial st.l;es;
field as previously shown by de Borst & Vermeer® and Vermee
i1adil? for a perfectly plastic material. _

Sut}f;*:; 1oa::'l haE;J been applied to the mid-node of the trapciloor t(1paslswe

to displace
the trapdoor have been force
mode) and the other nodes of
as ml.?lch using dependence relations. For the nodes at the bottom of the
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element next to the trapdoor, dependence relations have also been
employed in the sense that a linear displacement distribution has been
enforced with the leftmost node at the bottom remaining fixed and the
rightmost node attached to the trapdoor.

Figure 7.18 shows results of various calculations for a trap-door prob-
lem with an embedment ratio of h/ D=4. It is instructive to compare the
results of the simplified ideally-plastic model for an associated flow rule
and a non-associated, plastically volume-preserving flow rule f. We obtain
different values for the limit load, the difference even being more pro-
nounced for the residual load. This is because the computation with the
non-associated flow rule shows post-peak softening whereas the results
for the associated flow rule do not give softening after the limit load has
been reached. The fact that a calculation with a non-associated flow rule
may involve softening has been explained in Chapter 4, where it has also
been argued that associated flow rules cannot give softening. Neverthe-
less, turning our attention again to the results of Figure 7.15 and 7.16 for
the footing problems, we observe some post-peak softening also for the
computations with the associated flow rule. Apparently, this effect is
attributable to the numerical procedure and a small overshoot of the
failure load before levelling out towards a final value has also been
observed in other problems'®!"213 [t has been argued that this effects
is due to the convergence tolerance, i.e. the overshoot gradually disap-
pears when we tighten the convergence tolerance. Nevertheless, the fact
that the associated flow rule may involve numerical softening when fric-
tional materials are considered, casts some doubt whether the calculated
post-peak softening for the non-associated flow rule is indeed physical.
Perhaps it is more accurate to question which part of the softening for
the calculation with the non-associated flow rule is caused by the numeri-
cal approximation and which part is physical, i.e. caused by the
mathematical model. The fact that with the same convergence criterion,
the associated flow rule did not produce softening, supports the assertion
that the amount of softening of Figure 7.18 is largely physical. Yet, it
should be mentioned that comparison with previous calculations®® showed
that the computed softening of those calculations was partly numerical
because they yielded a more pronounced and higher limit load. Neverthe-'
less, the same residual load was obtained.

The i i i i i
R anont 15t P s s o I8 AUy Sy s

clusion of some cohesion leads to a theoretically consistent
i model, but
basically affect the observations. % el, but does not
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More evidence for the non-uniqueness of the limit load is given by
another calculation in which the friction hardening model of Section 4.2
with Rowe’s stress-dilatancy theory (with ¥=5° so that for ¢=30° we
obtain ¢,,,=25.57°) was utilised. The ultimate load nicely lies within the
bounds of the calculations with the non-dilatant and the associated flow
rule. Moreover, the post-peak softening is still present, but less marked
than for the calculation with the non-dilatant soil. Unfortunately, this
softening could not be plotted in Figure 7.18, because the peak load and
the post-peak softening occurred at very large displacements which
exceeded the scale of Figure 7.18.

Summarising, we can state that for confined configurations, a non-
associated flow rule will generally result in a non-unique limit load and a
non-unique residual load. Moreover, non-associated flow rules may cause
post-peak softening behaviour although this is less pronounced and less
important than the non-uniqueness of the limit load. The observed post-
peak softening and the non-uniqueness gradually disappear when the
degree of non-normality vanishes.

The calculations of the trap-door problems show a non-uniqueness of
the limit load which has not been found for less confined configurations
(Figure 7.15 and 7.16). Similar to the footing problems however, we
observe that the failure mechanism heavily depends on the adopted flow
rule. This is shown in Figure 7.19 in which the velocity fields at failure
have been plotted for all three calculations. We observe a clear localised
failure mechanism for all cases which confirms the capability of numeri-
cal methods to simulate highly localised failure modes.

A question to which the present calculations do not present a con-
clusive answer is whether the calculations with the non-associated flow
rules which are reported in this section are really limit problems or
whether they are bifurcation problems. When solving this problem with a
tangent stiffiness method, convergence was obtained until a load factor of
approximately 2.65, depending on the flow parameters. This is
significantly below the limit load of 2.92 which was calculated when the
analysis was continued with the elastic stiffness method including the
modification of equation (5.126). Indeed, after the load level of 2.65 nega-
tive eigenvalues were calculated for the tangent stiffness matrix, indicat-
ing the presence of alternative equilibrium states. Nevertheless, it can
not be concluded that such states indeed exist because the negative
eigenvalues were calculated for a tangent stiffness matrix which was
based on a non-equilibrium state.

The convergence difficulties for a tangent stiffness method when the
load exceeds a value of 2.65 are probably caused by the fact that no



(U A Y e

» v YA

xEE

1

o

PO |
" \\\\W T s
..... A o oot
..... VLI : Rty A1)
oo T ettt

Figure 7.19. Velocity field at failure for an associated flow rule (upper,
¢=9=30°), Rowe's stress-dilatancy theory (left, %=5°) and for a plastical-
ly volume-preserving flow rule (right, 9=0°).

pivoting procedure has been used when factorising the tangent stiffness
matrix. It is known from numerical analysis that such a pivoting pro-
cedure is necessary for non-symmetric matrices especially when the
degree of non-symmetry is strong. However, very few calculations have
been reported for non-symmetric systems in structural mechanics and
the computations which have been reported mostly employ a sym-
metrised stiffness matrix. Moreover, whether or not omission of a pivot-
ing procedure for a non-symmetric matrix leads to non-convergence
seems to be problem-dependent, since no difficulties were experienced in
the calculations for the biaxial test of the preceding chapter.
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7.4. Pull-out test

A problem which bears some similarity to the trap-door problem is a
pull-out test of a steel disc out of a mass of concrete. Such a test has
been proposed to test the strength of concrete, but there is much
debate??197 whether such a test measures the tensile strength or the
compressive strength. Here, we will not pursue this issue and we will con-
sider the problem primarily because, as the argument already reveals,
tensile as well as compressive stresses contribute to the non-linear
response, so that fracture as well as plasticily are of importance.
Further, we will again demonstrate that a local softening law may induce
'snap-back’ behaviour on global level depending upon the stiffness of the
steel disc.
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Figure 7.20. Finite element discretization for pull-out test.

The dimensions and the discretization of the particular problem
which we consider are shown in Figure 7.21. The dimensions are similar to
those considered by Ottosen®® and correspond to the so-called Lok-test.
Eight-noded quadrilateral axisymmetric elements have been used with a
9-point Gauss quadrature rule. The elasticity parameters of the concrete
have been taken as FE,=32400 N/mm? and v=0.2 in accordance with
Ottosen's data®?. A value of f,;=3.18 N/mm®has been assumed for the
tensile strength, while after crack formation a shear reduction factor
B'=0.1111 and a value Gf =0.055 N/mm have been used, while the width
of the crack band has been assumed to be h=3.0 mm. The steel of the
disc has been assigned a Young's modulus FEg=205000 N/mm? and a
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Figure 7.21. Load-deflection curve for Lok-test with thick steel disc. The
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Figure 7.22. Experimental and numerical results for Lok-test on a scale
TR 107,

Poisson's ratio ¥=0.3.

The resulting load-deflection curve of this calculation is given in Fig-
ure 7.21, which shows a clear post-peak softening behaviour. However,
there is a significant discrepancy between the computed limit load and
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Figure 7.23. Incremental displacements before failure for the thin steel
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Figure 7.24. Incremental displacements at failure for the thin steel disc.
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numerical results reported elsewhere®. Also, the present results are
lower than semi-analytical formulae which predict a limit load which is at
least twice as high. The analysis was therefore repeated on a scale 12:1,
which corresponds to recent experimental work!?. It appeared that espe-
cially the value for the fracture energy, and consequently also the esti-
mate for the crackband width h, have a significant influence upon the
computed limit load. Indeed, for Gf =0.165 N/mm and A=4 mm., the
curve of Figure 7.22 was obtained, which shows a reasonable agreement
between experiment and analysis. A calculation with such fracture
parameters however, resulls in a very ductile post-peak response with
hardly any softening. As such a behaviour is less interesting from the
point of view of this study, analyses with similar fracture parameters
have not been undertaken.

The present example also serves the purpose of clearifying the term
"unstable softening”. It is known that for less stiff testing devices,
difficulties arise in keeping the loading process stable even under dis-
placement control®!%®, a phenomenon which is usually referred to as
"unstable softening". Such a terminology is rather misleading and it is
really meant that such loading paths cannot be traced quasi-statically
under displacement control as an equilibrium path does not exist under
quasi-static loading conditions. Hence, the process becomes dynamic
when it attermnpted to traverse such a path under displacement control. In
fact, such a situation arises for the present problem when the steel disc
is made less thick (ratio 1:5). We then get the incremental deformation
patterns of Figures 7.23 to 7.25, which give the situation before failure, at
failure and slightly beyond failure. We observe that the energy which is
stored in the steel disc causes explosive crack propagation once the
crack has reached the surface. The observed explosive crack propagation
also explains the fact that a limit load has been obtained for the thin
steel disc which is significantly lower than the limit load for the thick
steel disc (see Figure 7.21).

It is finally instructive to compare the crack patterns at the limit
load for the thick and the thin steel disc (Figures 7.26 and 7.27). It
appears that the more flexible disc causes a quite different crack pat-
tern.
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Figure 7.27. Crack patterns at limit load for thin steel disc.
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SAMENVATTING
NIET-LINEAIRE BEREKENINGEN AAN WRIJVINGSMATERIALEN

Dit proefschrift behandelt numerieke technieken om tot een geconver-
geerde oplossing te komen voor niet-lineaire mechanicamodellen die
ontstaan uit een ruimtelijke discrelisatie van continua die opgebouwd
zijn uit materialen waarvan de sterkte significant afhangt van het span-
ningsniveau. Met name worden methodes behandeld om voor dergelijke
modellen bifurcatie en bezwijkpunten in de last-verplaatsingscurve
correct te voorspellen en het gedrag na bezwijken of na bifurcatie te
berekenen.

In Hoofdstuk 2 wordt eerst een algemene inleiding gegeven over de
spannings- en deformatietensoren die we zullen gebruiken. Na een korte
excursie in hel gebied van grote deformaties, wordt de behandeling
verder beperkt tot kleine verplaatsingsgradiénten. Evenwicht wordt
geformuleerd met behulp van de door Piola voorgestelde variant van het
principe van virtuele arbeid, en de klasse van constitutieve modellen tot
welke de behandeling beperkt zal blijven, wordt besproken. Tot slot van
dit hoofdstuk wordt een behandeling gegeven van criteria voor stabiliteit
en eenduidigheid van de oplossing van een randvoorwaardeprobleemn.

Waar in Hoofdstuk 2 de behandeling is gegeven voor continue
mechanische systemen, worden in Hoofdstuk 3 discrete mechanicamodel-
len besproken. De in het voorafgaande hoofdstuk gegeven definities van
stabiliteit en eenduidigheid worden nu uitgediept voor discrete stelsels.
Dit leidt tot een noodzakelijke voorwaarde voor stabiliteit. Dit stabili-
teitscriterium is slechts ook een voldoende voorwaarde voor stabiliteit als
de spannings-rek relatie symmetrisch is. Voor materialen waarvan de
sterkte van het spanningsniveau afhangt zoals beton en grond, is dit
echter niet het geval. Tot slot van Hoofdstuk 3 worden de consequenties
van de ruimtelijke discretisatie van het onderliggende continuum onder-
zocht.

Hoofdstuk 4 behandelt de constitutieve modellen die in dit proef-
schrift gebruikt zijn. Fen fundamentele aanname waarbinnen alle
gebruikte modellen ingebed zijn, is dat de total reksnelheid gesplitst kan
worden in een aantal bijdragen, één voor elke (uitgesmeerde) scheur, één
voor het elastische aandeel en €én voor het plastische aandeel van het
materiaal tussen de scheuren. Op deze manier wordt het mogelijk om
binnen het raamwerk van het uitgesmeerde scheurconcept, niet-
orthogonale scheuren en de combinatie van scheurvorming en plasticiteit
op een correcte manier te beschrijven. Het hoofdstuk besluit met een
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onderzoek naar de consequenties van het gebruik van ’strain-softening’
en niet-geassocieerde plasticiteit, welke beide gebruikt worden in de con-
stitutieve relaties.

Het eerste deel van Hoofdstuk 5 is gewijd aan de numerieke integra-
tie van de differentiaalvergelijking voor de spannings-rek relatie over een
eindige belastingsstap, waarbij bijzondere aandacht wordt geschonken
aan singulariteiten die in breuk- en vloeifuncties kunnen optreden. In het
tweede deel van het hoofdstuk wordt ingegaan op methodes om het na
discretisatie resulterende stelsel mniet-lineaire vergelijkingen op een
efficiénte en nauwkeurige wijze op te lossen. Hiertoe worden Quasi-
Newton methodes gecombineerd met indirecte verplaatsingscontrole.
Speciale aandacht wordt besteed aan het continueren van de oplossing na
bifurcatie- en bezwijkpunten.

Hoofdstuk 6 geeft twee typische voorbeelden van de numerieke
behandeling van bifurcatieproblemen uit de grond- en betonmechanica.
Het eerste voorbeeld betreft een ongewapend betonnen staaf die op trek
wordt belast. De numerieke breedte van de scheurvoortplantingszone
geeft dan aanleiding tot verschillend post-bifurcatiegedrag. Het tweede
voorbeeld is een simulatie van schuifvlakvorming in een biaxiaaltest op
droog zand. Deze voorbeelden onderscheiden zich met name daarin, dat
de niet-eenduidigheid en instabiliteit veroorzaakt wordt door de constitu-
tieve relatie en niet door geometrische effecten.

In het slothoofdstuk wordt een viertal voorbeelden gegeven van
berekeningen van bezwijkgedrag en het gedrag na bezwijken van grond-
en betonconstructies. Het blijkt dat de toegepaste materiaalwetten, aan-
leiding kunnen geven tot spectaculaire en onverwachte last-
verplaatsingsdiagrammen. Het niet onderkennen van de mogelijkheid van
dergelijk constructiegedrag leidt meestal tot divergentie van het itera-
tieproces, doch tenminste tot een niet-geconvergeerde oplossing.
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STELLINGEN

BEHORENDE BIJ HET PROEFSCHRIFT VAN R. DE BORST

Het is onjuist om divergentie van het iteratieproces in een niet-
lineaire numerieke berekening te identificeren met bezwijken van de
constructie.

De bij het representeren van triaxiaalproeven op beton gebruikte
methode waarbij één hoofdspanning (o5) wordt gekoppeld aan een
andere hoofdspanning, leidt tot asymmetrische bezwijkomhullenden
in het o,,05 -vlak. Desalniettemin vertoont het plastic-fracturing
model van Bazant en Kim symmetrie in dergelijke vlakken. Dit impli-
ceert dat dil model het gedrag van beton onder meerassige
drukspanningen niet goed kan beschrijven.

Z.P. Ba%ant and S.-S. Kim, Plastic-fracturing theory for con-

crete. ASCE'J. Fng. Mech., Yol. 105, 407-428 (1979).

Het gebruik van 'reduced integration’ dient in fysisch niet-lineaire
berekeningen vermeden te worden.
K. de Borst and P. Nouta, Non-orthogonal cracks in a smeared
Jfintie element model. Fngineering Computations, Vol. 2, 3546
(1985).

Het aanbrengen van een zogenaamde ‘slurry-wall’ achter een
drainagebuis in een watervoerende laag verhoogt de effectiviteit van
de drainage slechts marginaal.

Voor normaal-geconsolideerde klei wordt de conusweerstand geheel
bepaald door de ongedraineerde schuifsterkte.
R. de Borst and P.A. Vermeer, Possibilities and limitations of
finite element for limit aonalysis, Géotechnique, Vol. 34, 199-210
(1984).

De aanhechting tussen staal en rubber in rubber-staal oplegpakket-
ten hangt in hoge mate af van de detaillering nabij de uiteindes.
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De termen 'stable softening' en 'unstable softening’ zijn onzinnig
daar softening altijd aanleiding geeft tot instabiel constructiegedrag.

Het in dit proefschrift voorgestelde scheurvormingsmodel kan op
eenvoudige wijze uitgebreid worden voor tijdsafhankelijk materiaal-
gedrag. Het zo verkregen model draagt het recentelijk door Bazant
en Chern voorgestelde model voor combinatie van kruip en stram-
softening als een bijzonder geval in zich.
Z.P. Bazant and J.C. Chern, Strain softening with creep and
exponential algorithm, ASCE J. Eng. Mech., Vol. 111, 391-416
(1985).

De wisselwerking tussen numeriek en experimenteel onderzoek op
het gebied van de mechanica dient versterkt te worden.

In de opleiding tot civiel-ingenieur dient meer aandacht besteed te
worden aan onderwijs in numerieke niet-lineaire mechanica en in
informatica.
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