
Improving rippled: Leveraging passive model inference techniques to test large
decentralized systems

Sengim Karayalçin1 , Stefanie Roos1 , Satwik Prabhu Kumble1
1TU Delft

s.karayalcin@student.tudelft.nl, {s.roos, s.prabhukumble}@tudelft.nl

Abstract
Blockchains and cryptocurrencies, like Ripple, are
becoming more widely used. Testing the large de-
centralized systems these technologies on is com-
plex, as the behavior of the system is dependent on
many external factors. We will examine the viabil-
ity of using passive model inference techniques to
test the systems based on the network traffic they
produce. Passive inference techniques have been
used extensively to model and test different types
of systems. However, it is unclear how well pas-
sive model inference techniques work for inferring
models of large decentralized systems based on the
network traffic that these systems produce. Here we
show that detecting bugs in the implementations of
decentralized protocols is possible. These results
were achieved by simulating a version of the Rip-
ple network and modeling the workings of a node
in this network. We also simulated the network
with defective nodes and by observing the different
models generated, were able to detect these bugs.
Our results suggest that using passive model in-
ference techniques on network traffic can help test
large decentralized systems.

1 Introduction
Blockchains and cryptocurrencies have become more popu-
lar over the past years. While theoretical solutions to a lot
of the problems that arise when deploying these technologies
exist, the practical implementations of these solutions are of-
ten lacking [5]. The ripple network, which is a network im-
plementing the XRP Ledger Consensus Protocol(XRP LCP)
consists of nodes that maintain a ledger to provide a fast
global payment system. There are a number of requirements
for this network to function properly. First of all the network
should not be able to fork, which is when two different sets
of nodes continue working on different ledgers. In the second
place, the network needs to be able to handle a number of
faulty nodes. A node is considered faulty when it either can-
not function properly due to technical reasons, or is acting
maliciously. The third, and final condition is that it should be
impossible for the network to stop making forward progress.
These requirements are full-filled by the XRP LCP, assuming

some conditions hold[7]. For the maintenance of a trustwor-
thy and safe environment for payments, it is critical to guar-
antee the correct workings of this protocol. Because the com-
munication between nodes is an essential part of the function-
ing of the network, analyzing this communication can provide
valuable insights and help detect possible bugs.

Analyzing these communications will be done by using
model inference techniques. Model inference is based on
observing the behavior of a system, and analyzing it’s in-
and outputs to build a finite-state-machine modeling its be-
havior. Different ways to accomplish the modeling of state-
machines have been developed [16]. Model inference has
been used to model bank cards [1], but also to model larger,
communication-based systems like bot networks [8]. These
techniques have as yet not been used to model large decen-
tralized systems.

This leads to our main research question: “Can passive
model inference techniques be used to test large decentralized
systems based on the network traffic these systems produce?”
Answering this question will show how effective the tools for
generating models are for decentralized networks, and pro-
vide a methodology for testing these systems by analyzing
their network traffic.

The research question will be answered by first selecting
a proper state-machine model for the workings of a valida-
tor node in the ripple network. Subsequently, a theoretical
description of the XRP LCP will be given in the form of the
previously selected state machine model. A version of the rip-
ple network will then be simulated with correct and bugged
implementations of the consensus algorithm. Finally, using
passive inference techniques, models will be generated for
the bugged and correct implementations, and these models
will be analyzed to see if the bugs can be detected.

Our results show that the use of passive model inferenc-
ing techniques is a viable way of creating abstract models of
systems implementing protocols like the XRP LCP. Addition-
ally, we were able to detect small bugs in simulated versions
of the network. Consequently, we conclude that using passive
model inference techniques can be used to test large decen-
tralized systems.

In section 2 some more background on the inference of
state-machines will be provided. In section 3 our methodol-
ogy will be provided. In section 4 the theoretical model will
be built. In section 5 an overview of the experimental setup

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

and the results will be provided. In section 6 the reproducibil-
ity and ethical implications of this paper will be discussed. In
section 7 the results of this experiment will be analyzed and
discussed. Finally, section 8 will be the conclusion.

2 Background
2.1 Deterministic Finite Automata
Deterministic finite automata (DFA) are finite state machines,
that either accept or reject a given input string. These types
of finite state machines are widely used for creating formal
models of computers.

A DFA is a tupleM = 〈Q,Σ, q0, F, δ〉
• Q is the finite set of possible states and q0 ∈ Q is the

initial state

• Σ is the input alphabet

• δ : Σ × Q → Q is the transition function mapping an
input symbol and a state to a new state

• F ⊂ Q is the set of accepting states.

The workings of a DFA are fairly simple. Σ∗ is an input
string of arbitrary length. This string is then processed a sym-
bol at a time by the DFA. When the string ends the DFA is in
a state q ∈ Q. If this state is contained in the set of accepting
states the string is accepted, and if the state is not the string is
rejected.

A small example of a DFA is a machine that acts on the
alphabet Σ = {0, 1}. The machine will accept any string
where the final symbol is a 1. Examples of accepted string are
0000001, 1 ∈ Σ∗. Examples of rejected strings are 1110, 0 ∈
Σ∗.

2.2 Model inference
Model inference is a technique which is used to infer the
workings of a state machine based on it’s observed behavior.
Broadly speaking, there are two approaches that accomplish
this goal. Passive inference techniques [14], and active infer-
ence techniques [12].

In this paper, passive inference techniques will be used.
Passive model inference is based on having a sample of traces
that describe the execution of a system, and then using in-
ference algorithms on them. These traces could be log files
generated by a software system, or network traces captured
during a program’s execution.

A number of different algorithms and tools exist that use
different approaches for passive model inference. Flexfringe
[17] is a tool that uses the dfasat algorithm [11]. Dfasat is
the algorithm that won the STAMINA competition [18]. An
evaluation of the use of Flexfringe to model bank cards has
been done by Wieman et. al 19. This research evaluates the
use of Flexfringe on large production systems using the logs
of the system. Wieman et. al conclude that Flexfringe can be
used to model large scale systems, but that it is not a straight-
forward task. When the input alphabets of the automata that
Flexfringe is modeling get large, the resulting graphs can be-
come hard to interpret. Additionally, Wieman et. al conclude
that the use of Flexfringe for large systems requires a good
amount of knowledge on modeling algorithms. Flexfringe

has, as far as we can find, not been used to model large,
communication-based systems using only traces of the net-
work traffic.

Other tools, like Synoptic 4 and InvariMint [2], can gen-
erate models directly from log files, only needing a set of
regular expressions that describe the log format. In the active
learning setting the tool LearnLib [15] implements a version
of the L∗ algorithm 3.

3 Methodology
To answer the research questions we first need to develop
a theoretical model that clearly describes the workings of
the XRP LCP. Creating this theoretical model establishes a
benchmark for comparing the empirical models. Addition-
ally, the abstractions of the concrete messages developed in
the theoretical model will help when creating an appropriate
empirical model. Creating this theoretical model will be done
by analyzing the protocols defined by Chase [7].

Abstractions of the messages that are sent in these proto-
cols will be created and a DFA modeling the behavior of a
validator node in the XRP LCP will be built. The abstrac-
tions of messages are an integral part of the eventual model,
and the abstractions are also a major part of generating input
strings for our learner from the network traces [8]. Automatic
methods to extract the format and semantics of a communica-
tion protocol exist [6; 9], but since the XRP LCP has a limited
set of abstract messages, these are not used.

When the theoretical model has been built, data for learn-
ing an empirical model needs to be acquired. To collect this
data, a simulated environment will be built as observing net-
work traffic of a node in the live ripple network is difficult.
Using simulation has additional benefits. It allows for a more
controlled network environment. For example: In the live
ripple network, network failures may occur occasionally, but
capturing one of these events is unlikely and could require a
large amount of data collection. In a simulated environment,
we can easily simulate different types of failures, which will
lead to a more complete model.

Once the data has been collected, it needs to be transformed
into a format that can be used as an input for Flexfringe. The
standard input format for Flexfringe is format used in the Ab-
badingo competition [13]. Transforming the data into this
format requires clear labeling of the messages that are sent.
Additionally, it may be required to model messages in a less
general way than we will in the theoretical model. This new
labeling will more closely reflect the workings of a rippled
node. This relabeling is required as the general model will
lead to a large input alphabet which can make the models
generated by Flexfringe hard to understand. A more limited
input alphabet can help improve the readability of the models.
Limiting the alphabet will also not cause us to lose any infor-
mation, as it only fails to describe sequences of messages that
would not be sent in the ripple network due to the implemen-
tation of the XRP LCP.

When the final input file for Flexfringe has been generated,
a model needs to be built from this. Flexfringe has a lot of
different configuration options that can help generate an ap-
propriate model. We will try various configuration options to

see which results in the best model. We will then compare the
differences between the theoretical- and the empirical model
and reflect on the viability of our methods in a larger network.

We will also generate models for bugged implementations
of the XRP LCP. The bugged and correct models will then
be compared. It will be examined whether the models of
the bugged implementations can help detect the bugs. We
will choose bugs which are fairly simple mistakes that could
be made when implementing the consensus protocol. These
bugs will also be chosen such that they should be detectable
using our method. More subtle bugs which do not influence
the output behaviour of a node should not be detectable and
will therefore not be tested.

4 Theoretical model
To build a theoretical model for the workings of the XRP
LCP we need to develop proper abstractions of the messages
exchanged between nodes. To do this we will first provide
a brief overview of the XRP LCP in section 4.1. Then we
will provide abstract representations of the messages and the
states. Finally, we will develop a theoretical model.

4.1 Brief overview of XRP LCP
The XRP LCP has 3 primary protocols: The deliberation
protocol, the validation component, and the preferred branch
protocol. In one round of the deliberation protocol, all nodes
propose transactions. If a transaction appears in enough pro-
posals of trusted nodes this transaction will also be proposed
by a node itself in the next round of the deliberation protocol.
When the deliberation phase finishes a node broadcasts a val-
idated ledger. In the validation protocol, a node checks how
many validation messages they have received for a ledger. If
this amount is above a certain number, the node will change
its last fully validated ledger. Finally, the preferred branch
protocol is used to decide between branches when there are
several working branches.

4.2 Message types
For the Deliberation phase, we have two types of messages:
Propositions and Validations. To build proper abstractions of
these message types, we need some abstract types for denot-
ing the internals of the XRP LCP more efficiently:

• τ is a transaction. We model transactions here as a tu-
ple τ = 〈validity, identifier〉. validity is a boolean
value denoting the validity of the transaction and iden-
tifier is a unique identifier for the transaction. We can
ignore the specifics of a transaction as it does not really
matter for our model what the exact state of the ledger
is. All we need to know is whether a transaction is valid
and whether it is different from another transaction. The
difference is established by comparing the unique iden-
tifier.

• T is a list of transactions.

• L is a ledger. We represent it as a tuple here: L =
〈identifier, s, ancestor〉 where the identifier is a
unique identifier, s is a sequence number , and ancestor
is the previous ledger.As mentioned above the specific

state of the ledger is not important for the model we will
be constructing. We, again, really only need to be able
to tell two different ledgers apart. The identifier is used
for this. We keep the sequence number and the ancestor
in as they could help in constructing the model.
• N is a node. We model a node as a tuple N =
〈UNL,L, identifier〉 where UNL is a list of the iden-
tifiers of trusted nodes, L is the identifier for the last fully
validated ledger, and the identifier is a unique identifier.

In the XRP LCP there are only two types of messages that
can be sent, a proposition message, proposing a new set of
transactions, and a validation message, asserting the intent
to validate a ledger. The proposition message is sent every
round of deliberation and the validation message is sent after
the deliberation phase is finished. For constructing our model
we use the following abstractions of these message types:

• PT,r,L,i, this is a proposition message. T is the list of
proposed transactions, r is the round number of the de-
liberation phase the sending node is in, L is the previous
ledger the sending node was working with, and i is the
unique identifier of the sending node.
• VL,i, this is a validation message. Here L is the ledger

that will be verified, and i is the identifier of the sending
node.

4.3 Construction of the Input Alphabet
Before we create our final model we need to construct an
input alphabet. To construct this input alphabet appropriate
groupings of some messages need to be created. As the pre-
ferred branch protocol used in the XRP LCP is very complex
to model in a DFA, we will abstract the validation messages
a node receives to one message representing the output of the
preferred branch protocol. As for the proposition messages,
we create a symbol that closely resembles the actual message.

Validation messages
For validation messages, the grouping is fairly simple. Only
the validation messages that were received last from another
trusted node is stored and used for anything other than fully
validating a ledger. We ignore the full validation of a ledger
for now as there is no output associated with it. This means
we can model our validation messages as a list of the last val-
idations sent by every trusted node. Additionally, the only
thing these last received validations are used for is the pre-
ferred branch phase of the protocol. Because of this, from
the list of last received validations, and knowing the current
working branch of the node, we can derive the outcome of the
preferred branch protocol. Therefore we can model our list of
validation messages as a single abstract validation message
with a Ledger:
• PrefBranch(L) this message is an abstraction of a list

of validation messages. The ledger L denotes the mes-
sage that would be the outcome of the preferred branch
protocol based on this list.

Proposition Messages
For the proposition messages, all of the necessary information
is given by an integer representing the ledger the proposal is

based on, an integer representing a unique transaction set, and
an identifier for the node that sent the message. The round of
the deliberation process is not taken into account as the only
thing that is important for the network to reach consensus
is that a number of nodes propose the same transaction set.
Therefore we model every proposition message as follows:
• PT,L,i, this is a proposition message. T is the list of

proposed transactions, L is the ledger the transaction set
is based on, and i is the unique identifier of the sending
node.

4.4 Model
The DFA model, M = 〈Q, σ, δ, q0, F 〉 that will be con-
structed in this section is based on a validator node with a
UNL of n ∈ N>0 nodes. The quorom for validation is the
percentage of receive transaction sets that need to be equal
before consensus is reached. quorum ∗ n = a is the amount
of nodes that need to send the same proposition message be-
fore consensus is reached.

An overview of the workings to the machine M is that the
machine will model the workings of a node during one phase
of deliberation. Accepting an input string means to validate
a new ledger based on the transactions that were received.
The working ledger, the ledger the node is proposing upon,
of the machine L′ = 0 as it is the first ledger that is encoun-
tered. This means that a preferred ledger message that does
not have 0 as the preferred ledger, PrefBranch(L), L 6= 0
always results in a rejected input string. The way the machine
handles proposition messages is that it stores the last received
proposition message that it received from every other node in
its UNL. Any state where a or more nodes sent the same
transaction-set is a accepting state. Any state where this is
not the case is not.

To model the set of states Q, first we define a special reject
state R ∈ Q. This is the state that results from a preferred
branch message that does not equal 0. This state is a sink state
where no possible message can result in the state changing.
All other states are defined as Q′ ⊂ Q. Every state q ∈ Q′ is
defined as q = {T1, T2, ..., Tn}, the set of the proposed trans-
action sets from every other node. There is a special transac-
tion set T = −1 for when some node has not sent a proposi-
tion message yet. The start state q0 ∈ Q is the state where no
propositions have been received yet, q0 = {−1,−1, ...,−1}.

The definition of the transition function δ is fairly straight-
forward:
• R, s 7→ R, this means that, when the state is in the reject

stateR, any input message s ∈ Σ, results in the machine
staying in state R.
• q, PrefBranch(L) 7→ R, this means that a preferred

branch message, with a preferred ledger L 6= 0, brings
the machine into the reject state R.
• q, PrefBranch(0) 7→ q, this means that a preferred

branch message, with preferred ledger L = 0, does not
change the machine’s state.
• T1, T2,, Ti, .., Tn, PT ′,0,i 7→ T1, T2,, T

′
i , .., Tn,

this means that a proposition message, received from
node i, proposing transaction set T ′, will change the i’th
entry describing the state to T ′.

Figure 1: A zoomed in version of the model for 2 nodes. This ig-
nores any transitions going to states not in the figure. Any node is
represented with a tuple a, b where a and b are the last received trans-
action sets from node 1 and 2 respectively. The PrefBranch(0)
always results in a self loop, and the PrefBranch(1) always re-
sults in the reject state R. Self loops resulting from propositions
messages were left out.

Defining the set F ⊂ Q of accepting states is also fairly
straightforward. F = {q ∈ Q|∃Ti 6= −1 ∈ q, |{Tj ∈ q :
Tj = Ti}| ≥ a}. This means that there exists one proposed
transaction set that has reached a or more propositions.

Finally it needs to be shown that the setQ is finite as other-
wise the DFA is not a finite automation. We will show that Q
is finite ⇐⇒ n is finite, and the number of rounds is finite.

Let Q be the set of states and let n, r ∈ N>0. The set
of different transactions that can be sent is T and the order
of this set #T = n ∗ r + 1 (+1 resulting from the ’empty’
transaction). As n and r are finite #T is also finite. Now
the states q ∈ Q are defined as a Cartesian product of n T ’s,
therefore the order of #Q ≤ Tn + 1 (+1 resulting from the
reject state). As #T is finite #Q is also finite.

The number of possible states is not necessarily equal to
Tn + 1 as there are states that could be unreachable. If, in
our model, the choice is made that the first transaction set re-
ceived is always 1, a lot of transitions and states can be elimi-
nated, as only states like q = {−1,−1, ...,−1, 1,−1, ...− 1}
are reachable from the start state. Additionally, if we chose

to label the node from which the first message is received as
node 1 only q = {1,−1,−1, ...−1}. Other similar reductions
should be possible , resulting in a much less large set of states
and transitions from every state, but for the sake of complete-
ness and simplicity, all states and transitions were left in our
model.

A small example is provided in Figure 1, where the amount
of nodes is set to 2, the amount of rounds to 1, and the accept-
ing quorum a is equal to 2.

5 Experimental Setup and Results
In this section, the setup for the experiment will be discussed.
First, we will discuss the setup for the simulations. Then we
will discuss the data format that will be used for Flexfringe
and how we derive the data from the simulation. Then we
will discuss the models that resulted from Flexfringe and how
these were achieved.

5.1 Simulation Setup
To simulate a small test version of the rippled network, we
implemented the algorithms used in the consensus protocols
as provided by Chase [7]. Then 4 of these nodes were set
up to communicate through an environment set up to deliver
messages after all nodes have had time to process the previ-
ous set of messages. Every node then logs the messages it
receives and these strings of messages are subsequently clas-
sified based on whether the round of the consensus algorithm
results in a new closed ledger.

The nodes were set up in a fairly simple manner. A python
class was created to represent a node. This class implemented
all the algorithms required for the XRP LCP. Whenever the
consensus process started on a new ledger the node randomly
generated a number of transactions. The transactions were
represented as integers between 0 and 20. After generating
these transactions the node broadcasts them across the net-
work by sending them to an environment class that managed
all nodes in the network. After every node sequentially exe-
cutes their update routine and broadcasts new proposition or
validation messages, the environment makes all nodes receive
the messages that were sent.

A benefit of this is that all messages arrive in a timely man-
ner. This is also slightly problematic for the generation of
the model. When all messages arrive, and no nodes are act-
ing maliciously, the consensus protocol will always result in
a new closed ledger. Additionally, with enough overlap be-
tween UNL’s all nodes will also always have the same new
closed ledger. This means that the PrefferedBranch(L)
message, with a ledger that is not the current working ledger
of the node, will never be received. To make sure these short-
comings do not result in an incomplete model some basic sce-
narios were added to the simulation. These scenarios make
sure that the node we are testing experiences every scenario.

We also implemented different bugged nodes. The first
bugged implementation we used was a version of the con-
sensus protocol where consensus is reached when 3 nodes
send the same proposition message. The second bugged im-
plementation we considered was a version where consensus
is always reached after 3 rounds no matter what messages are
sent in that round.

5.2 Data generation
To be able to learn accurate and readable models from data
generated by our simulation setup a small alphabet setup
needs to be used. When larger input alphabets are used the
models generated by FlexFringe become very hard to read.
Using the same input alphabet which was used for the theo-
retical model would result in an input alphabet of 16*4 dif-
ferent symbols for the proposition messages. To combat the
problem of having a very large input alphabet, we make some
assumptions about the timing of messages that a node can re-
ceive. These assumptions are based on the setup used in the
specification of the XRP LCP and are mainly based on the
fact that a node will receive messages from a single round
of the consensus algorithm sequentially. This means that no
messages from later, or earlier rounds are received during a
round of propositions. When we place these limitations on
our input model we can limit our input alphabet to only hav-
ing 4 symbols to represent different proposition messages.
If we use an additional message to indicate a new round of
propositions starting the strings will have a fairly straightfor-
ward form, represented here as a regular expression:

PB[0-1](P0 P[0-1] P[0-2] P[0-3] RR)+
Here the first PB[0-1] represents a PrefferedBranch mes-

sage. This is either PB0 if the prefferedbranch is equal to the
working ledger of the node, or 1 if it is not. The second part
of the string is the sequence of proposition messages. The
first proposition message is always P0. The second message
is P1 if the proposed transaction set is different from the one
received earlier or P0 if it is the same. For every message
the number after the P represents whether the proposed trans-
action set was proposed before or not. If it was the number
will be the same as for the proposition message where it was
proposed before. If the transaction set has not been proposed
then the number will be an integer number higher that every
number that was used in this round. The RR message does not
represent an actual message, but it represents a new round of
propositions starting. This resets the numbering for unique
proposals. The strings of the form P0 P[0-1] P[0-2] P[0-3]
RR are repeated at most 4 times as the protocol only uses 4
rounds.

An example accepted string would be:

PB0 P0 P1 P2 P3 RR P0 P0 P0 P0 RR
This example string represents first receiving a Preferred

branch message for the current working ledger. Then the first
round of the consensus protocol, 4 different proposals are re-
ceived. In the second round every node proposed the same
transaction set, consensus was reached and a new ledger was
closed.

An example rejected string would be:

PB0 P0 P1 P2 P3 RR P0 P1 P2 P3 RR
P0 P1 P2 P3 RR P0 P1 P2 P3 RR

In this string the first round is the same as above. Af-
ter the first round of proposals every node keeps proposing
a different set of transactions. This means consensus is never
reached, and therefore the string is rejected.

5.3 Results
After generating a number of different strings using the sim-
ulation setup described above, we tried creating models us-
ing some of Flexfringe default configurations. Some of these
were inappropriate for our data, and as such did not result in
useful models. The batch-overlap.ini configuration resulted
in a fairly clear model of a validator node. The model can be
seen in Figure 2.

An overview of the model can be given most clearly
through walking through the way the model handles some of
the common input strings. First we will look at the way the
model handles a string where consensus is reached after two
rounds:

PB0 P0 P1 P2 P3 RR P0 P0 P0 P0 RR

The first input symbol PB0 jumps the machine to the
start consensus state. From there the strings P0 P1 P2 P3
RR lead it back to the start consensus state. After that, the
sequence of symbols P0 P0 P0 P0 RR leads the machine into
the accept state. As this state is an accepting state and all of
the input has been processed the string is accepted.

The example above illustrates the workings of the machine.
There are two clear paths: the path where all proposals are
equal, and the path where there are different proposals. Un-
less 4 of the same proposals are received the RR message
will send the machine back to the start consensus state. As
the input string will end on the RR message when consensus
is reached the machine will end in the accept state when 4 of
the same proposals are received.

In figure 3 and figure 4 the models of the bugged imple-
mentations can be seen. In these models, the erroneous paths
to the consensus reached state are marked red, and the correct
paths are marked green. The first bugged implementation in
figure 3 will result in an accepted state even when one P1
message is received during a round. The path this results in is
represented in red. The second bugged implementation will
always result in an accepting state after 4 rounds. This can be
seen in the model as every path leads to the consensus reached
state. This means that the model will only result in a rejecting
state when a PB1 message is received.

As can be seen, the model generated by Flexfringe is a
fairly accurate representation of the workings of a validator
node. Most common input will be classified appropriately by
the model. No clear bugs or unexpected paths can be seen in
this model. This was to be expected as the simulated node
is programmed to work as specified by the algorithms in the
paper [7]. The models generated by bugged implementations
are different and the erroneous paths are fairly simple to spot.

6 Responsible Research
There are not many ethical considerations that are associated
with this research. The methodologies described could the-
oretically be used to aid the reverse engineering of software
systems while only having access to the network traffic these
systems produce. The reverse-engineered model could then
be used to find vulnerabilities the system may have. How-
ever, reverse engineering the system using the methods we
describe in this paper requires a large amount of knowledge

Figure 2: Model of normal node.

Figure 3: Model of the first bugged node.

Figure 4: Model of the second bugged node.

on how the system operates. If an attacker already has this in-
formation there are numerous ways attacks could be executed.
Additionally enabling engineers working on the system to use
the methods we describe in this paper to fix bugs and patch
security vulnerabilities should result in more secure systems
rather than less secure systems.

The methodology used in this paper should be fairly simple
to reproduce. As only simulated data was used, the code (and
seeds) used to generate every data-set used and the data itself
can be shared to test the results. Additionally, Flexfringe is
free to download and, as such, should not provide any barrier
for a researcher wanting to reproduce our work. In general,
none of the work done in this paper should be hard to repro-
duce.

7 Discussion
The results that we found are fairly common in literature.
Models of large, communication-based systems have been
created using active learning techniques [8]. Additionally
passive learning techniques have been used to model several
different types of systems [10] [19]. However, passive learn-
ing techniques have not been used extensively to model large,
decentralized, communication-based protocols based only on
network traffic. Our results show that passive learning tech-
niques can be used to create models of decentralized systems
effectively. Additionally, we have shown the effectiveness of
using these same techniques to find bugs or other unintended
behaviors.

The results were found by simulating nodes of the XRP
LCP, and introducing bugs into the implementations of these
nodes. By comparing the models of the correct and incorrect
implementations, we were able to detect the mistakes. Whilst
finding implementation mistakes in this way was successful,
we knew what bugs we were looking for, as they were intro-
duced artificially. If we did not know what bugs to look for,
it might have been significantly more difficult to locate, and
eliminate incorrect paths in the models.

Furthermore, some notes should be made on the simula-
tions. Whilst the simulated network traffic is fairly realistic,
as it is modeled after the traffic we expect to see from a rip-
pled node. Constructing the abstract versions of the messages
that were used as an input for Flexfringe will be more com-
plex, when messages are not specifically constructed to ac-
commodate the abstractions. Furthermore, large scale imple-
mentations of the XRP LCP use additional messages to estab-
lish connections. To create a model similar to the models we
created would require ignoring messages that do not map to
messages in our theoretical model. However, ignoring mes-
sages that might influence the behavior of the system could
impact the accuracy of the model that is generated. Finally,
the simulated environments allowed us to make the node that
we were testing experience a varied amount of behaviors. In
a live environment, failures to close a new ledger will not
happen as frequently. Therefore collecting data to generate a
complete model may take a significant amount of time, and
some scenarios may never occur under normal circumstances,
resulting in models that do not display the full behavior of a
system.

8 Conclusions and Future Work
The main question we sought to answer is: “Can passive
model inferencing techniques be used on network traffic to
find bugs or unintended behaviour in large decentralized pro-
tocols, like the XRP LCP?” To answer this question we first
created a theoretical model of a validator node in the XRP
LCP. We then used this model to build a simulation of a net-
work of nodes in the XRP LCP and used the simulated net-
work traffic between these nodes to create empirical models
using Flexfringe. After building a model of a correct imple-
mentation we introduced several different bugs into our im-
plementation, and created new models of these bugged nodes.
When we compared these different models, we were able to
observe differences in the models of the correct and incor-
rect implementations of the XRP LCP. Using these differ-
ences we were able to detect the bugs in the implementa-
tions. Therefore we conclude that passive model inference
techniques can be used to detect bugs in large decentralized
applications based on network traffic.

As we used a simulated environment, it is still an open
question how well the methods presented in this paper will
work in practice. Future research could focus on applying
the techniques presented on live network traffic from a node
in the rippled network. An additional avenue for future re-
search is to utilize active model inferencing techniques to cre-
ate models of the XRP LCP.

To conclude, our research provides methods to create mod-
els of decentralized applications using only the network traf-
fic. The models generate by these methods could be used to
detect bugs in the applications. However, it is unclear how
viable these methods will be when trying to model practical
applications, and more research is required to review practical
applications of our method.

References
[1] Fides Aarts, Joeri De Ruiter, and Erik Poll. Formal mod-

els of bank cards for free. In 2013 IEEE Sixth Interna-
tional Conference on Software Testing, Verification and
Validation Workshops, pages 461–468. IEEE, 2013.

[2] Jenny Abrahamson. Invarimint: Modeling logged be-
havior with invariant dfas. 2012.

[3] Dana Angluin. Learning regular sets from queries
and counterexamples. Information and computation,
75(2):87–106, 1987.

[4] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider,
Michael Sloan, and Michael D Ernst. Leveraging ex-
isting instrumentation to automatically infer invariant-
constrained models. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European confer-
ence on Foundations of software engineering, pages
267–277, 2011.

[5] Vitalik Buterin. Hard problems in cryptocurrency: Five
years later, 2019.

[6] Juan Caballero and Dawn Song. Automatic proto-
col reverse-engineering: Message format extraction
and field semantics inference. Computer Networks,
57(2):451–474, 2013.

[7] Brad Chase and Ethan MacBrough. Analysis of
the xrp ledger consensus protocol. arXiv preprint
arXiv:1802.07242, 2018.

[8] Chia Yuan Cho, Domagoj Babi ć, Eui Chul Richard
Shin, and Dawn Song. Inference and analysis of formal
models of botnet command and control protocols. In
Proceedings of the 17th ACM conference on Computer
and communications security, pages 426–439, 2010.

[9] Weidong Cui, Jayanthkumar Kannan, and Helen J
Wang. Discoverer: Automatic protocol reverse engi-
neering from network traces. In USENIX Security Sym-
posium, pages 1–14, 2007.

[10] Christian Hammerschmidt, Samuel Marchal, Radu
State, Gaetano Pellegrino, and Sicco Verwer. Effi-
cient learning of communication profiles from ip flow
records. In 2016 IEEE 41st Conference on Local Com-
puter Networks (LCN), pages 559–562. IEEE, 2016.

[11] Marijn JH Heule and Sicco Verwer. Software model
synthesis using satisfiability solvers. Empirical Soft-
ware Engineering, 18(4):825–856, 2013.

[12] Falk Howar and Bernhard Steffen. Active automata
learning in practice. In Machine Learning for Dynamic
Software Analysis: Potentials and Limits, pages 123–
148. Springer, 2018.

[13] Kevin J Lang, Barak A Pearlmutter, and Rodney A
Price. Results of the abbadingo one dfa learning com-
petition and a new evidence-driven state merging algo-
rithm. In International Colloquium on Grammatical In-
ference, pages 1–12. Springer, 1998.

[14] Kevin P Murphy et al. Passively learning finite au-
tomata. Santa Fe Institute, 1995.

[15] Harald Raffelt, Bernhard Steffen, and Therese Berg.
Learnlib: A library for automata learning and exper-
imentation. In Proceedings of the 10th international
workshop on Formal methods for industrial critical sys-
tems, pages 62–71, 2005.

[16] Frits Vaandrager. Model learning. Communications of
the ACM, 60(2):86–95, 2017.

[17] Sicco Verwer and Christian A Hammerschmidt.
flexfringe: a passive automaton learning package. In
2017 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 638–642. IEEE,
2017.

[18] Neil Walkinshaw, Bernard Lambeau, Christophe
Damas, Kirill Bogdanov, and Pierre Dupont. Stamina:
a competition to encourage the development and assess-
ment of software model inference techniques. Empirical
software engineering, 18(4):791–824, 2013.

[19] Rick Wieman, Maurı́cio Finavaro Aniche, Willem
Lobbezoo, Sicco Verwer, and Arie van Deursen. An ex-
perience report on applying passive learning in a large-
scale payment company. In 2017 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), pages 564–573. IEEE, 2017.

	Introduction
	Background
	Deterministic Finite Automata
	Model inference

	Methodology
	Theoretical model
	Brief overview of XRP LCP
	Message types
	Construction of the Input Alphabet
	Validation messages
	Proposition Messages

	Model

	Experimental Setup and Results
	Simulation Setup
	Data generation
	Results

	Responsible Research
	Discussion
	Conclusions and Future Work

