
 
 

Delft University of Technology

Sand‐Mud Tidal Flat Morphodynamics Influenced by Alongshore Tidal Currents

Wang, Yunwei; Wang, Yaping; Yu, Qian;  Du, Zhiyun; Wang, Zhengbing ; Gao, Shu

DOI
10.1029/2018JC014550
Publication date
2019
Document Version
Accepted author manuscript
Published in
Journal Of Geophysical Research-Oceans

Citation (APA)
Wang, Y., Wang, Y., Yu, Q., Du, Z., Wang, Z., & Gao, S. (2019). Sand‐Mud Tidal Flat Morphodynamics
Influenced by Alongshore Tidal Currents. Journal Of Geophysical Research-Oceans, 124(6), 3818-3836.
https://doi.org/10.1029/2018JC014550

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1029/2018JC014550
https://doi.org/10.1029/2018JC014550


Confidential manuscript submitted to JGR – Oceans 

1 

 

Sand-Mud Tidal Flat Morphodynamics 1 

Influenced by Alongshore Tidal Currents  2 

Yunwei Wang
1
, Ya Ping Wang

2
, Qian Yu

3*
, Zhiyun Du

3
, Zheng Bing Wang

4, 5
, Shu Gao

2 
3 

1
 Jiangsu Key Laboratory of Coast Ocean Resources Development and Environment Security, 4 

Hohai University, Nanjing, China. 5 

2
 State Key Laboratory for Estuarine and Coastal Studies, East China Normal University, 6 

Shanghai, China. 7 

3
 MOE Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, China. 8 

4
 Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the 9 

Netherlands. 10 

5
 Deltares, Delft, the Netherlands. 11 

Corresponding author: Q. Yu (qianyu.nju@gmail.com) 12 

 13 

 14 

Key Points: 15 
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 Strong alongshore currents transport sand landward from sub-tidal flat, resulting in sandy 18 

lower flat 19 

 The upper flat is muddy and convex-up, dominated by cross-shore tidal currents 20 
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Abstract 22 

Tidal flats, where significant land-ocean interactions take place, are often abstracted as a cross-23 

shore bed profile with sediment zonation from the lower sand flat to the upper mud flat. 24 

However, in addition to cross-shore tidal currents, the impact of the alongshore components on 25 

cross-shore sediment transport, morphological evolution, and sediment grain-size change 26 

remains unclear. Here we investigated the sand-mud tidal flat morphodynamics in the absence of 27 

waves by combining approaches of field observations, numerical modeling, and analytical 28 

interpretations, based on the example of the tidal flat at the central Jiangsu coast, China. The 29 

results show that the morphodynamic processes are complicated by the interactions of cross-30 

shore and alongshore tidal currents, cross-shore flat morphology, and sediment zonation. With 31 

identical tidal ranges and increased background alongshore tidal level phase lag, the alongshore 32 

currents gradually become dominant at the lower flat, while the upper flat is always dominated 33 

by the cross-shore currents. Therefore, in case of different alongshore tidal currents, tidally-34 

dominated bed profiles at the upper flats are quite similar, being convex-up and consist of mud. 35 

In contrast, the strong alongshore currents can erode the mud at the lower flat, and promote the 36 

landward sand transport from the sub-tidal area to the lower flat, forming a sand flat. The tidally 37 

maximum bed shear stress is almost spatially uniform at the muddy area but pronouncedly 38 

elevated when the bed sediment coarsens at the lower flat. The contributions of the alongshore 39 

tidal currents and sand-mud sorting processes should be adequately addressed in similar coastal 40 

environments. 41 

Plain language summary 42 

Taken the example of the tidal flat at the central Jiangsu coast, China, we investigated the sand-43 

mud tidal flat morphodynamics by field observations, numerical modeling, and analytical 44 

interpretations. We found that the cross- and alongshore tidal currents, cross-shore bed profiles, 45 

and sediment zonation interact as a complicated system, in which alongshore tidal currents play 46 

an important role in cross-shore morphodynamics. Strong alongshore currents transport sand 47 

landward from sub-tidal flat, forming a sandy lower flat, and the tidally maximum bed shear 48 

stress becomes much larger than at the muddy upper flat. So we can improve our understanding 49 

of the sediment dynamics and morphological evolution of tidal flats under the influence of 50 

alongshore tidal currents. 51 



Confidential manuscript submitted to JGR – Oceans 

3 

 

1 Introduction 52 

Tidal flats, the transition between subaerial and submarine environments, are areas of 53 

significant land-ocean interactions (Flemming, 2003). They play an important role in material 54 

circulation, coastal protection and ecological conservation (Reise, 2001; Temmerman et al., 55 

2013). With the accelerated influences of sea-level rise and human activities (e.g. land 56 

reclamation, harbor construction), the studies of tidal flat morphodynamics are crucial to making 57 

comprehensive coastal management strategies (French, 1997; Mangor et al., 2017). Based on 58 

previous observational and modeling works on the tidal flat sediment dynamics (Bartholdy & 59 

Kvale, 2006; Dyer, 2000; Fan, 2012; Flemming & Bartholomä, 1995; Nittrouer et al., 2013), this 60 

study focuses on the alongshore tidal currents impacts on the tidal flat morphodynamics with 61 

emphasis on the sand-mud sorting processes. 62 

Cross-shore tidal currents being the main shaping factor, tidal flats are often abstracted as 63 

a one-dimensional cross-shore model in researches on their morphological and sedimentary 64 

characters (Hu et al., 2015; Kirby, 2000; Mariotti & Fagherazzi, 2010; Roberts et al., 2000; 65 

Pritchard & Hogg, 2003; Pritchard et al., 2002). The analytical solutions for equilibrium cross-66 

shore tidal flat profiles were given by Friedrichs and Aubrey (1996), using the concept of 67 

spatially uniform maximum bed shear stress. The landward residual mud transport and the 68 

consequent cross-shore muddy profile progradation are attributed to spatial and local 69 

asymmetries (Friedrichs, 2011; Hsu et al., 2013; Maan et al., 2015).  70 

However, in a number of field settings, the importance of alongshore tidal currents and 71 

related sediment transport processes (Figure 1) were also highlighted (Anderson, 1973; Collins et 72 

al., 1981; Gao, 2009a; Le Hir et al., 2000; Quaresma et al., 2007; Wang et al., 2006; Yang et al., 73 

2003; Yu et al., 2017; Zhang, 1992). Thus, a quantitative framework is required on the impact of 74 

the alongshore tidal currents on tidal flat hydrodynamics, sediment transport, sediment grain size 75 

and bed level profiles, as well as their feedbacks to the alongshore currents. 76 

Tidal flats have a general zonation in sedimentation that the surface sediment gradually 77 

changes from sand at the lower flat to mud at the upper flat (Figure 1) (Amos, 1995; Gao, 2009a). 78 

This general pattern was confirmed at various tidal flats (Alexander et al., 1991; Chang et al., 79 

2006; Evans, 1965; Frey et al., 1989; Wang & Ke, 1997). The different dynamic processes of 80 

cohesive mud and non-cohesive sand can modify the classical cross-shore mud transport 81 
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mechanism. The interaction of sand-mud transport, cross-shore equilibrium bed profile, and 82 

sediment zonation is a key issue of the tidal flat morphodynamics. Especially, the existence of 83 

alongshore tidal currents will complicate the interaction, and the related cross-shore sediment 84 

transport mechanisms require further investigation. 85 

The objective of this study is to investigate the sand-mud transport processes and the 86 

related morphological responses influenced by alongshore tidal currents, using field observations, 87 

numerical modeling, and primary analytical interpretations. The central Jiangsu coast, China, 88 

which is characterized by strong alongshore tidal currents and sand-mud tidal flat zonation, is a 89 

frequently investigated area of tidal flat sediment dynamics (Gao et al., 2009a, b; Ren et al., 1985; 90 

Wang & Ke, 1997; Yu et al., 2017; Zhang, 1992), and is chosen as the study area.  On this basis, 91 

idealized numerical models were utilized to capture the first order characteristics obtained from 92 

observations. Further, the numerical models and analytical solutions help to understand the sand-93 

mud flat dynamics. 94 

 95 

2 Study Area 96 

The study area is located at the central Jiangsu coast, China, which is situated between 97 

the Changjiang River estuary and abandoned Yellow River mouth (Figure 2a). Tides in this area 98 

are semi-diurnal and meso- to macro-tidal, with a mean tidal range of ca. 4 m (Wang Y.P. et al., 99 

2012). Because of the southward propagation of the tidal wave, the offshore area is dominated by 100 

alongshore southward flood currents and northward ebb currents. Due to the landward flood and 101 

seaward ebb processes, the cross-shore components are also significant (Yu et al., 2017). The 102 

cross- and alongshore tidal waves are nearly standing, with the alongshore tidal wave relatively 103 

more progressive than the cross-shore tidal wave. The study area is sheltered by a large and 104 

shallow, radial-shaped tidal ridge (or linear sandbank) system (Figure 2a) (Liu et al., 1989; Ren, 105 

1986; Wang Y. et al., 2012), so wave actions are weak. The offshore buoy 20 km north to the 106 

study area (Figure 2a) at the depth of 14 m shows that the annual mean significant wave height is 107 

0.48 m. According to Hayes (1979), this area is tide-dominated. 108 

Nowadays, with fine sediments being supplied from the erosion of the abandoned Yellow 109 

River Delta 100 km north to the study area, the coastline here has continued prograding seaward 110 

(Gao, 2009b; Wang Y.P. et al., 2012). The nearshore suspended sediment concentration (SSC) is 111 
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sufficiently high, and the tidally averaged SSC exceeds 1 kg/m
3
 (Ren, 1986; Wang X.H. et al., 112 

2011; Yu et al., 2014, 2017). The Dafeng harbor was constructed for freight traffic, in the north 113 

of the study area (Figure 2a). The construction of the sea wall started in early 2007 and finished 114 

in April 2008 (Figure 2b). Due to land reclamation, the intertidal area was all bare and subjected 115 

to a considerable reduction in cross-shore width (Wang Y.P. et al., 2012). 116 

 117 

3 Methods 118 

Firstly, field observations were undertaken across the intertidal flat, including 119 

measurements of sediment dynamics, sampling of water and surface sediment, and repetitive 120 

leveling. Secondly, on these basis schematized models were set up to further study the 121 

coevolution of hydrodynamics, sediment grain size, and morphology. 122 

3.1 Field observation 123 

Three sets of instruments were deployed across the intertidal flat (along the profile P1) to 124 

measure high-resolution sediment dynamics during May 5 – 12, 2008, just about one year after 125 

the beginning of the seawall construction (Figure 2b). Among them, a YSI/SonTek ADV ocean 126 

with D&A OBS–5+ was deployed on the upper intertidal flat (at station A08) 0.18 m above sea 127 

bed (asb). An observation system was placed at station M08 on the middle intertidal flat, which 128 

has six pairs of electromagnetic current meters and Seapoint turbidity sensors installed 0.38 – 129 

1.12 m asb at Station M08. Further a TRDI WHS 1200 kHz ADCP was installed on a floating 130 

body at station S1 and S3, both near the mean low water level (MLWL). When water depth is 131 

smaller than 1.0 – 1.5 m, the proportion of blanking is too large, therefore effective depth-132 

averaged velocities cannot be obtained using ADCP. During the measurements, water samples 133 

were collected at various depths to calibrate the OBS–5+ and Seapoint turbidities. High accuracy 134 

measurement of seabed level was undertaken along the profile P1 from the seawall front to the 135 

lower intertidal flat on May 13, 2008, and December 25, 2008, using a Magellan Z-MAX GPS. 136 

Details of the measurements, including SSC calibration statistics, can be found in Wang Y. P. et 137 

al. (2012). 138 
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3.2 Numerical Modeling 139 

3.2.1 Model Description 140 

The two-dimensional, depth-averaged (2DH) version of Delft3D was utilized, including 141 

the Delft3D-FLOW module, the Delft3D bed module for sand-mud mixtures, and the standard  142 

Exner equation for bathymetric evolution via sediment mass conservation (Deltares, 2014; 143 

Lesser, 2004; van Kessel et al., 2012). Two fractions of sediment were considered in the model, 144 

one being cohesive and the other being non-cohesive. Sediment transport of the cohesive and 145 

non-cohesive fractions was computed independently, which was analogous to other modeling 146 

works (Caldwell & Edmonds, 2014; Edmonds & Slingerland, 2010; Geleynse et al., 2011; Rossi 147 

et al., 2016; Tejedor et al., 2016). Erosion and deposition of cohesive sediment were calculated 148 

using the Partheniades-Krone formulations (Partheniades, 1965). The depth-averaged model for 149 

suspended sediment transport based on the asymptotic solution of the convection-diffusion 150 

equation was applied to calculate the erosion and deposition fluxes induced by non-cohesive 151 

sediment transport (Galappatti & Vreugdenhil, 1985; Wang, 1992). Due to the different 152 

dynamics of mixed-size sediments, bed composition is adjusted with the sorting processes 153 

beginning in the active layer. The changes are then progressively transferred to the underlying 154 

layers. Every new bed surface grain-size composition influences the subsequent sorting process, 155 

which eventually results in the change of the total sediment transport rate and bed-level. In this 156 

sense, a multi-layer strata concept was applied in the presence of multi-size sediment fractions. 157 

The “online” approach suggested by Roelvink (2006) was adopted, which speeds up bed 158 

adjustments by multiplying the bed level change in each time step by a morphological scale 159 

factor (MF). 160 

3.2.2 Model Settings 161 

The numerical model is schematized with a rectangular grid and a simple bathymetry 162 

based on the topography of the study area. The model domain is 35 km cross-shore and 20 km 163 

alongshore, consisting of 200 × 40 grid cells. In the cross-shore direction, within 15 km from the 164 

land boundary, the cell size is 125 m × 500 m, and the initial bed level decreases from 1 m to -165 

9.5 m linearly, resulting in a 0.7 ‰ bed slope. The initial bed level starts from 1 m, which is 166 

consistent with the seawall foot’s elevation (land boundary) when it was constructed. In the rest 167 

of 20 km, the grid size is enlarged to 250 m × 500 m with uniform initial depth of 9.5m (Figure 168 
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3). In accordance with the observation, a cross-shore profile (CS) was defined with observation 169 

points O1, O2, and O3 to represent the anchored stations at the upper, middle, and lower 170 

intertidal flat, respectively. The focused area for monitoring the evolution of tidal flat 171 

morphology was also marked in Figure 3.  172 

Boundary conditions of water level and sediment concentration are set according to the 173 

field circumstance. The tidal flat is sheltered by the subaerial sand ridges in the east. Because of 174 

the presence of a tidal channel parallel to the coastline, the flow in this region is mainly 175 

alongshore, and water level boundaries are applied only at the north and south edge of the model 176 

domain. According to the observed data (Wang Y.P. et al., 2012) and the validated regional tide 177 

model (Xing et al., 2012), the harmonic constituent M2 is selected with an amplitude of 2 m, and 178 

the phase lag is defined to 12 degrees from the north to the south boundary. Observations show 179 

the existence of the coastal turbidity maximum at the study area. Suspended sediment (mainly 180 

mud) concentration reaches more than 1 kg/m
3
 at the tidal flat, and decreases quickly to less than 181 

0.5 kg/m
3
 at 20 km offshore (Ren, 1986; Wang X.H. et al., 2011; Xing et al., 2010; Yu et al., 182 

2014; 2017). Thus, on both boundaries, mud concentration decreases linearly from 1.25 kg/m
3
 at 183 

the landward edge to 0.25 kg/m
3
 at the seaward end, and sand concentration was derived from 184 

equilibrium profiles, which represent the local balance of current shear stress, water depth, and 185 

bed sediment grain size.  186 

Both the drying and flooding threshold (Dryflc) and the threshold depth for computing 187 

sediment transport (SedThr) are 0.1 m. A uniform Manning coefficient of 0.016 s/m
1/3

 is applied 188 

throughout the whole domain. The grain size of the sand fraction is 64 μm, and the dry bed 189 

density is 1600 kg/m
3
. The mud parameters are also uniformly defined with settling velocity of 190 

0.6 mm/s, critical shear stress for erosion and sedimentation of 0.15 Pa, erosion parameter of 191 

2×10
-4

 kg/m
2
/s, and dry bed density of 1000 kg/m

3
. These parameters were selected to represent 192 

the local conditions to a great extent.  193 

The initial bed stratigraphy is composed of 5 Lagrangian layers and 45 Eulerian layers, 194 

each 0.2 m thick, and the transport layer is defined to be 0.1 m thick. Bed composition is initially 195 

fully sand. Mud is only supplied from the open boundaries. The morphological scale factor MF 196 

was set to 20 to speed up bed adjustments. The simulation period in the model lasts 111 days, 197 

i.e., covers 6 years. 198 
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On the basis of the 1
st
 year bathymetry and sediment conditions in the morphodynamic 199 

model, a short-term hydrodynamic simulation was carried out. The hydrodynamic and sediment 200 

transport processes can thus be investigated, together with the observed data.  201 

 202 

4 Results 203 

4.1 Observational Results 204 

Observed cross-shore bed level and sediment grain-size profiles are shown in Figure 4a 205 

and 4c, respectively. The bed level along P1 showed convex-up cross-shore profiles, with an 206 

average slope of ~1.0 ‰. The bed elevation experienced significant accretion from May to 207 

December 2008 (Figure 4a). The accretion thickness ranged from 0.18 m to 0.63 m, with an 208 

average of 0.23 m along the profile.The seabed sediment coarsens seaward, with increasing sand 209 

content up to around 90 % near MLWL. Accompanied by sediment accretion, sand content of 210 

surface sediment mostly decreased along the profile during this period, to an extent of 20 – 40 %, 211 

especially at the middle intertidal flat (Figure 4c).  212 

Hydrodynamic observation results are illustrated in Figure 5. Water depth reached up to 213 

about 0.8 m, 2.0 m and 4.0 m at the upper (A08), middle (M08) and lower (S1/S3) intertidal flat, 214 

respectively. The differences in cross-shore current velocities along the intertidal flat profile 215 

were not significant, and the cross-shore velocity components (Vc) ranged from -0.35 to 0.23 m/s. 216 

However, the alongshore tidal current speeds (Vl) were so different that it was maximally 0.98 217 

m/s at the lower intertidal flat, at most 0.52 m/s at the middle intertidal flat, while nearly zero at 218 

the upper intertidal flat. At the lower intertidal flat (S1/S3), Vc varied almost symmetrically 219 

during a tidal cycle. Vl was obviously larger during flood periods, although the flood and ebb 220 

durations (based on the direction of Vl) were more or less the same, implying residual currents in 221 

the flood direction. 222 

The maximum SSC can be more than 1.5 kg/m
3
 at different parts of the intertidal flat 223 

(Figure 5). Due to uncertainties of calibration from ADCP backscatter intensity for high SSC, 224 

SSC at the lower intertidal flat (S1/S3) was not plotted. In most cases, SSC is larger at the middle 225 

flat than at the upper flat. 226 

 227 
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4.2 Model results 228 

The modeled tidal flat morphology can be characterized by cross-shore profile 229 

adjustment and progradation. The alongshore differences in bed elevation of the intertidal flat are 230 

small throughout the modeling period (Figure 6). However, the cross-shore profile experienced 231 

significant accretion from the upper intertidal flat and kept prograding seaward. This character 232 

can be seen more clearly in the evolution of cross-section CS (Figures 6 and 7a). In the vertical 233 

direction, the whole intertidal flat profile accreted, where the upper part was mostly muddy with 234 

accumulation rates up to ca. 0.7 m/yr, and the lower part was mainly sandy with accumulation 235 

rates of more than one order smaller. Sequentially, convex-up tidal flat profiles formed and 236 

prograded seaward. The seaward progradation rate for the elevation of 1 m was ca. 875 m/yr in 237 

the first year, and gradually decreased to ca. 500 m/yr in the second and third year, 375 m/yr in 238 

the fourth and fifth year, and 250 m/yr in the sixth year. The continual progradation patterns 239 

based on symmetric tidal boundaries and waveless scenarios are consistent with other modeling 240 

works (Hu et al., 2015; Le Hir et al., 2007; Maan et al., 2015; Pritchard et al., 2002; Roberts et 241 

al., 2000).  242 

The profile at the 4
th

 year is regarded as equilibrium in the model. Friedrichs (2011) 243 

defined an equilibrium tidal flat profile loosely as one with a shape that remains more or less 244 

constant over some characteristic period of natural forcing. In the third year the flat began to 245 

accrete up to the mean high water level (MHWL), and afterward, the top elevation kept 246 

prograding seaward. In the 4
th

 year, the shape of the tidal flat profile approached a steady state, 247 

when the convex-up profile was fully developed, and thereafter, the maximum bed slope on the 248 

flat is at the MWL. 249 

Accompanied by the seaward progradation of the tidal flat, the cross-shore profile of sand 250 

content of surface sediment also moved progressively, indicating that surface sediment grain size 251 

is controlled by the flat elevation (Figure 7b). The upper flat is dominantly mud, while the lower 252 

flat is mostly sand. A mud layer of up to 2.2 m thick was thus preserved in the strata at the 253 

middle intertidal flat due to such progressive patterns of bed level and surface sediment grain 254 

size evolution (Figures 6 and 7a). 255 

Figure 8 shows the modeled hydrodynamics during a tidal cycle at the observation points 256 

O1, O2, and O3, which represent the upper, middle and lower intertidal flat, respectively. The 257 
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maximal water depth at O1, O2, and O3 was 0.8 m, 2.0 m, and 4.0 m, corresponding to an 258 

inundation duration of  2.5, 5.5, and 10 hours. At the upper intertidal flat, the cross-shore current 259 

speed reached up to 0.24 m/s during flood and 0.23 m/s during ebb, while the alongshore tidal 260 

current velocities were nearly zero. Current velocities at the middle intertidal flat were 261 

comparable in both directions, but the cross-shore components were slightly larger: the 262 

maximum flood speed was 0.30 m/s cross-shore and 0.24 m/s alongshore, and the maximum ebb 263 

speed was 0.21 m/s cross-shore and 0.18 m/s alongshore. However, at the lower inter-tidal flat 264 

the alongshore tidal current velocities turned to be stronger, especially during the flood period. 265 

The maximum flood velocity component reached up to 0.48 m/s alongshore and 0.39 m/s cross-266 

shore. The maximum ebb velocity component alongshore was 0.34 m/s, and 0.38 m/s cross-shore. 267 

Thus, the flood residual currents alongshore were also revealed at the lower flat. 268 

The suspended particles were mainly mud, and the concentration of mud was mostly 269 

many orders of magnitude larger than that of sand. The largest mud concentration at O1, O2, and 270 

O3 was 1.3, 1.5, and 1.7 kg/m
3
, respectively. At the upper and middle intertidal flat, the 271 

maximum SSC occurred when the cross-shore current velocities were the largest during the flood 272 

period (i.e. once inundated), while at the lower intertidal flat, the maximum SSC appeared when 273 

the water level is highest or lowest. It is worth noting that resuspension of sand only occurred at 274 

O3 during flood with maximum SSC of 1.4 kg/m
3
, which caused the suspended sand transported 275 

landward and accumulated at the lower intertidal flat. In addition, according to the observed data, 276 

it is assumed that when water depth is smaller than 1.5 m, blanking is too large to get effective 277 

depth-averaged velocities in ADCP measurements. So, the light-yellow zones denote the 278 

estimated ADCP blanking at S1/S3 (Figures 2b and 5). 279 

 280 

4.3 Comparisons between model results and observations 281 

Although the schematized models cannot be compared directly with the observations, the 282 

models captured some key patterns and characteristics analogous to the measurements, 283 

concerning spatial variations of bed elevation and composition, hydrodynamics and sediment 284 

transport processes at the three observation points which represent different parts of the intertidal 285 

flat. 286 
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The modeled bed profiles were close to the observed in configurations. Bed level 287 

measurement along profile P1 (Figure 2b) was firstly undertaken in May 2008 (one year after the 288 

construction of the sea wall), and then in December 2008. To be compared with the observed 289 

data, the modeled bed elevation profile of the cross-section CS at the 1
st
 and the 1.6

th
 year was 290 

chosen. The selected width of the intertidal flat was also the same as the observations, i.e., 291 

approximately 3500 m from the land boundary to near MLWL. The modeled bed profile was 292 

also convex-up and kept accreting during the 0.6 years. The accretion thickness ranged from 0.05 293 

m to 0.48 m, with an average of 0.25 m along the profile. These variations were all comparable 294 

with the observations. However, the average bed slope in the model is 0.8 ‰ in the first year and 295 

0.9 ‰ in the 1.6
th

 year, which is slightly smaller than the observed profile, indicating the 296 

modeled profile is less convex-up at the meantime (Figures 4a and 4b). 297 

The modeled grain size of seabed sediment also coarsens in the seaward direction, with 298 

increasing sand content to 77 % maximally. These patterns were all consistent with the observed 299 

profiles, and in the observation of May 2008, the maximum sand content is around 73 %. Sand 300 

content of surface sediment in the model generally decreased along the profile during this period, 301 

as much as 30 % over the middle intertidal flat. In the observations, sand content decreased most 302 

at the middle intertidal flat to an extent of about 30 % as well (Figures 4c and 4d). 303 

Meanwhile, the spatial and temporal variation patterns of modeled current velocities were 304 

also similar to the observations.The three observation points (O1, O2, and O3) were selected 305 

such that maximal water depth and inundation period were all similar to the measurements at the 306 

anchored stations. Vc changes a little at different parts of the intertidal flat, but Vl varies a lot at 307 

the three locations both in the model and observations. However, Vc is slightly larger and Vl is 308 

obviously smaller in the model (Figures 5 and 8).  309 

The slightly larger Vc is attributed to the smaller modeled bed slope. It is derived from the 310 

continuity equation that Vc is controlled by the bed slope (Friedrichs & Aubrey, 1996). The 311 

modeled bed slope cross-shore is slightly smaller than observations (Figures 4a and 4b), resulting 312 

in larger Vc. Besides, ADCP blanking is too large to get effective depth-averaged velocities at 313 

small water depths. The estimated ADCP blanking at the lower intertidal flat (Figure 8) is likely 314 

to cover the maximum Vc. In other words, the model can obtain the peak values of Vc which are 315 

probably not measured by ADCP due to large blanking when water depth is small.  316 
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The smaller Vc can be interpreted by the differences in tidal range and bed friction. 317 

Assuming the alongshore water surface slope is uniform, the pressure difference in the 318 

alongshore direction is balanced by the bed friction in the first order simplification: 319 

𝜌𝑔ℎ𝑠𝑙 = ρC𝐷(V𝑐
2 + V𝑙

2)1/2𝑉𝑙                                                                                          (1) 320 

in which ρ is water density, g is the gravitational acceleration, h is water depth, and sl is the 321 

alongshore water surface slope. The relation of drag coefficient (CD) and manning coefficient (n) 322 

is expressed as: 323 

𝐶𝐷 = g𝑛2/ℎ1/3                                                                                                                  (2) 324 

Combining equations (1) and (2) yields: 325 

𝑉𝑙 =  𝑆𝑙ℎ4/3𝑛−2(V𝑐
2 + V𝑙

2)−1/2                                                                                         (3) 326 

On the uppermost flat, where Vc >> Vl (e.g., see Figure 5, 8), equation (3) reduces to: 327 

𝑉𝑙 =  𝑆𝑙ℎ4/3𝑛−2𝑉𝑐                                                                                                              (4) 328 

while on the lowermost flat, if Vl >> Vc (e.g., see Figure 5, 8), equation(3) reduces to: 329 

𝑉𝑙 =  𝑠𝑙
1/2

ℎ2/3𝑛−1                                                                                                             (5) 330 

Therefore Vl increases with both local water depth and the alongshore water slope, while 331 

inversely proportional to the manning coefficient. The alongshore water surface slope in the 332 

model is smaller than observations due to a smaller tidal range or alongshore phase lag gradient. 333 

Furthermore, High SSC causes significant stratification of the water column, and thus induces 334 

drag reduction, so the drag coefficient or manning coefficient tends to be smaller than that in the 335 

model. These are all probably why the modeled Vl is smaller than observed. 336 

Both observations and models suggest that tidally induced residual currents flow in the 337 

flood direction in shallow areas, which is consistent with previous studies (Charlton et al., 1975; 338 

Friedrichs et al., 1992; Kim et al., 2017; Li & O’Donnell, 1997, 2005; Robinson, 1960; 339 

Zimmerman, 1974). A nearly standing but slightly progressive tidal wave causes water depth to 340 

be greater during flood than ebb (Friedrichs et al., 1992). The h dependence in equation (3) then 341 

causes Vl to be stronger on flood in shallow areas where the relative difference in h between 342 

flood and ebb is most important. This is seen both in the above references and in the present 343 

observations and model results. Ebb is enhanced in deep channels in closed-ended tidal 344 
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embayments because continuity constraints require equal cross-sectionally integrated along-345 

system transport on ebb and flood. However, there is no such continuity constraint in the open 346 

coast geometry here, so enhanced ebb flow in deeper water is not as relevant. Rather, the 347 

strength of the flood-directed alongshore residual increases as one moves down from the upper 348 

flat into deeper water because the power dependence of Vl on h is initially greater than 1. This 349 

means the effect of deeper water on flood driving the residual is increasingly important with 350 

increased water depth. In still deeper water, where Vl >> Vc and the power dependence of Vl on h 351 

decreases below 1, greater depth causes the strength of the alongshore residual flow to decrease 352 

once more. 353 

The model showed respectable consistencies compared to the measured SSCs. In most 354 

cases, SSC decreased landward from the lower flat to the upper flat. The maximum SSC can be 355 

around or even more than 1.5 kg/m
3
 along the intertidal flat. In addition, the maximum SSC was 356 

also associated with the dominant current velocity component. These all agree well with the 357 

observed data (Figures 5 and 8). The slight deviations from the observations, which is mainly 358 

reflected in the temporal variation patterns, is probably because waves were not involved in the 359 

model, they inducing large SSCs in shallow water. It is noted that the observed SSC at the 360 

middle flat (M08) station in Figure 5 often shows two peaks during each tidal cycle, 361 

corresponding to resuspension by maximum velocity both on flood and on ebb. However, the 362 

ebb SSC peak didn’t arise in the model (O2 station in Figure 8), which is consistent with the 363 

observed tidal cycles during 0:00 to 6:00 and 12:00 to 18:00, May 10, 2008 (Figure 5). This is 364 

probably because these modeled and the observed tidal cycles are associated with a somewhat 365 

larger asymmetry in alongshore flood versus ebb velocity, producing a greater asymmetry in 366 

suspended resuspension during flood versus ebb. 367 

 368 

5 Discussion 369 

5.1 Impact of alongshore tidal currents 370 

To investigate the influence of alongshore tidal currents, two more cases were set up in 371 

addition to the reference case, in which the phase lag from the north to the south boundary is 12
°
. 372 

All the other settings keeping the same, but the phase lag changed to 8
°
 and 16

°
, respectively.  373 
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The alongshore water level gradient sl can be derived as: 374 

              𝑠𝑙 =
𝑑

𝑑𝑦
[𝑎cos (𝜔𝑡 − 𝜑)] = 𝑎

𝜕𝜑

𝜕𝑦
sin (𝜔𝑡 − 𝜑)                                                                       (6) 375 

where a and 𝜔 are tidal level amplitude and angular frequency of M2 tidal current constituent, 376 

respectively, and φ is the phase in radian. Vl is proportional to the square root of the alongshore 377 

water surface slope (equation (5)), and the amplitude of the alongshore water surface slope is 378 

proportional to the tidal amplitude and alongshore phase gradient (equation (6)). Therefore, Vl 379 

can be enhanced by increasing the phase lag alongshore. 380 

Besides, short-term hydrodynamic simulations were also carried out. Based on the 4
th

 381 

year bathymetry and hydrodynamic conditions of each case (with a phase lag of 8
°
, 12

°
, and 16

°
), 382 

when morphology is regarded as approaching equilibrium, hydrodynamic simulations were set 383 

up with the same phase lag in the morphodynamic model. So the hydrodynamics, sediment and 384 

morphological characteristics at quasi-equilibrium were investigated among the cases with 385 

different alongshore phase lags. 386 

The 4
th

 year bed elevation of the intertidal flat in the other two cases show the same 387 

characters as the reference case in the alongshore direction (Figure 6). Thus, sensitivity analysis 388 

only focused differences of the cross-shore profile CS (Figures 9a and 9b). The upper flat is mud 389 

dominated and had almost the same cross-shore profiles in all cases. At the middle and lower flat, 390 

the differences between the cases were significant. Here we use sand content of ~25 % as the 391 

transition between sand dominated and mud dominated (see the dashed lines in grey in Figure 9). 392 

If the sand content of surface sediment is larger than 25 %, the flat is categorized to mixed and 393 

sand dominated (hereinafter called ‘sand flat’ in short); while the flat with sand content lower 394 

than 25% is regarded as ‘mud flat’. 395 

Sand flat expands landward when the phase lag increases. In case 1 (red curve) with a 396 

phase lag of 8
°
, the whole intertidal flat was mainly composed of mud, and the bed profile is 397 

almost a uniform slope of ~0.8 ‰. However, in case 2 (black curve, with phase lag of 12
°
), the 398 

lower flat is sandy and the mean bed slope is ~0.7 ‰, and in case 3 (blue curve, with phase lag 399 

of 16
°
), the sand flat even expands from the lower flat to the middle flat with a smaller mean 400 

slope of ~0.5 ‰. The bed slope of the transition zone between the mud and sand flat is much 401 

steeper: ~1.6 ‰ in case 2 and ~1.7 ‰ in case 3 (Figures 9a and 9b).  402 
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Short-term hydrodynamics based on the 4
th

 year morphology (equilibrium tidal flat 403 

profiles) in the three cases were also compared. According to equations (5) and (6), the 404 

alongshore tidal currents are positively related to water depth and alongshore phase lag, and the 405 

former has a larger impact. Therefore, on the mud flat where the bed profiles and water depths 406 

are very close, Vl is mainly controlled by alongshore phase lag, and is largest in the 16
°
 case, 407 

smallest in the 8
°
 case. However, bed shear stress and morphodynamics on the upper mud flat in 408 

all three cases are controlled more by Vc, because Vc is much larger than Vl there. On the sand 409 

flat where the bed profiles vary a lot, Vl is mainly controlled by water depth. Accordingly, the 12
°
 410 

case has the largest Vl then (Figure 9c). Vc is controlled by the cross-shore bed slope, and thus 411 

have little difference on the mud flat. But on the sand flat, the 16
°
 case has the largest Vc induced 412 

by the mildest bed slope (Figure 9d). On the sand flat, Vl and Vc are both important to bottom 413 

shear stress and morphodynamics because of similar magnitudes, and in some areas, Vl is even 414 

larger than Vc. 415 

The dynamic equilibrium theory of tidal flat is used to interpret the model results. It 416 

assumes that morphological equilibrium is associated with spatially uniform tidally maximum 417 

bed shear stress (τmax) (Friedrichs, 2011). If the flat profile is static, τmax is equal to the critical 418 

bed shear stress (Friedrichs & Aubrey, 1996). This theory has been supported by many 419 

observational and modeling studies (Bearman et al., 2010; Chen et al., 2010; Hu et al., 2015; Hsu 420 

et al., 2013; Kirby, 2000; Pritchard & Hogg, 2003; Pritchard et al., 2002; van der Wegen & Jaffe, 421 

2014). 422 

In this study, the modeled upper flat has steady shapes and the flat profiles kept 423 

prograding seaward. Such uniform distributions of τmax also exist on the mud flat and the values 424 

are almost the same in the three cases with different alongshore phase lags. This agrees with the 425 

above researches. However, the mean value of the uniformly distributed τmax on the mud flat is ca. 426 

0.3 Pa, which is twice of the critical shear stress of mud (0.15 pa) in the model (Figure 9e). This 427 

is probably because the high SSC results in large deposition rates, and the uniform τmax has to be 428 

enhanced so as to balance the deposition (Friedrichs, 2011; Hu et al., 2015). 429 

Meanwhile, on the sand flat in the 12
°
 and 16

°
 cases, τmax are greatly enhanced up to ~1.0 430 

Pa and spatially varying. The dashed arrows indicate the turning points of τmax in these two cases, 431 

which are both corresponding to the transitions between mud and sand flat (Figure 9a, e). 432 
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Possible interpretations are proposed. Firstly, only a single sediment fraction was taken into 433 

account in the dynamic equilibrium theory, while two factions (a mud fraction and a sand 434 

fraction) were involved in our models. The spatial variations of sediment grain size lead to 435 

different dynamic properties, relating to different τmax. Secondly, at the 4
th

 year in the models, the 436 

shape of mud flat profiles was steady but the sand flat profiles were still changing. Therefore the 437 

uniform τmax on the sand flats does not exist.  438 

Furthermore, responses of hydrodynamics, sediment transport and morphology to the 439 

variation of Vl were also studied. Starting from the 1st year bathymetry and sediment conditions 440 

of the reference case (see the cross-shore profiles of intertidal flat in Figure 4b, d), short-term 441 

hydrodynamic simulations were undertaken with the alongshore phase lag of 8°, 12° and 16°, 442 

respectively. Equations (5) and (6) show that the alongshore tidal current is enhanced with 443 

increasing phase lag (Figure 10a). Due to the identical cross-shore bed slope, the cross-shore 444 

tidally maximum flood current speeds exhibit little difference with changing alongshore phase 445 

lag (Figure 10b). In response to such hydrodynamic conditions, the tidally averaged SSC of mud 446 

and sand were also increased by the enhancement of alongshore tidal currents (Figures 10c and 447 

10d). Sand concentration is 0 at the upper and middle flat and quickly increases from lower flat 448 

to sub-flat area. The maximum tidally-averaged SSC of sand in the 16
°
 case is up to 0.002 kg/m

3
, 449 

which is 8 times that of the 12
°
 case, and 1400 times of the 8

°
 case.  450 

During flood, the strong alongshore tidal currents (the 16
°
 case) at the lower flat cause 451 

resuspension of mud, and the cross-shore tidal currents bring it onshore where it then settled due 452 

to weakening current speed. Mud thus accreted on the upper intertidal flat, while mud eroded and 453 

left relict sand at the lower part, shaping a steeper cross-shore bed profile (Figure 10e). Likewise, 454 

sand can also be resuspended by increased alongshore tidal currents mainly from the subtidal-flat 455 

(Figure 10d) and accumulated on the lower intertidal flat (Figure 10f). The area where sands 456 

accumulated corresponds to where mud was eroded (Figures 10e and 10f). These morphological 457 

and sedimentological responses explain the cross-shore profiles of bed elevation and sand 458 

content at the quasi-equilibrium states (Figures 9a and 9b). 459 

In the 8
° 
case with relatively weak alongshore tidal currents, mud accumulated across the 460 

whole intertidal flat, and at the lower flat, the deposition rate increased seaward (Figure 10e), 461 

resulting in a milder cross-shore bed slope and an increase of mud content at lower flat. There 462 
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was no suspended sand across the whole flat and the sand deposition rates were all zero, so the 463 

intertidal flat tend to be fully muddy (Figure 10f). These trends were also confirmed in Figures 464 

9a and 9b. 465 

 466 

5.2 Mechanisms of landward sand transport 467 

A two-dimensional (both cross-shore and alongshore tidal currents included) analytical 468 

solution was obtained to express the tidal residual sand transport. The mechanisms of the 469 

landward sand transport can thus be further analyzed. 470 

In the nearshore shallow area of the present model (Figure 3), due to the homogeneous 471 

bathymetry alongshore, the cross-shore (X direction) residual tidal current is zero. But the 472 

alongshore (Y direction) residual tidal current exists. Current velocities in X and Y directions 473 

can be expressed as follows. Assuming that the amplitude of M2 tidal constituent dominates the 474 

current velocity, 𝜀Ui and 𝜀V𝑖 are in the order of 10
-1

. 475 

Velocity in X direction: 476 

𝑈(𝑡) = 𝑈2cos(𝜔𝑡 − 𝜙U2)  + 𝑈4cos (2𝜔𝑡 − 𝜙U4) 

          =  𝑈2[cos(𝜔𝑡 − 𝜙U2) + 𝜀U4cos (2𝜔𝑡 − 𝜙U4)]                                                    (7) 477 

Velocity in Y direction: 478 

𝑉(𝑡) = 𝑉0 + 𝑉2 cos(𝜔𝑡 − 𝜙V2) + 𝑉4 cos(2𝜔𝑡 − 𝜙V4) 

          = 𝑉2[𝜀V0 + cos(𝜔𝑡 − 𝜙V2) + 𝜀V4 cos(2𝜔𝑡 − 𝜙V4)]                                            (8) 479 

 in which: 480 

𝑉0 = residual current in Y direction; 481 

 𝜔 = angular frequency of M2 tidal current constituent; 482 

𝑈i = amplitude of the other tidal current constituent in X direction, e.g. U2 is related to 483 

M2 constituent, and U4 corresponds to M4; 484 

𝑉i = amplitude of the other tidal current constituent in Y direction; 485 

𝜙Ui = phase of tidal constituent Mi in X direction; 486 

𝜙Vi = phase of tidal constituent Mi in Y direction; 487 
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𝜀Ui =  
𝑈𝑖

𝑈2
     (𝑖 = 4);  488 

 𝜀V𝑖 =
𝑉𝑖

𝑉2
       (𝑖 = 0 𝑜𝑟 4)Because the settling velocities of sand are relatively large, 3.3 489 

mm/s for 64 um sand, the phase lag of sand concentration to velocity is relatively small (Yu et al., 490 

2011, 2012), suggesting the approximately local balance of suspended sand and tidal current 491 

shear stress. According to Friedrichs and Aubrey (1988), Gräwe et al. (2014) and Olaberrieta et 492 

al. (2018), instantaneous sand transport rate is proportional to cubic of current velocity. Thus, the 493 

residual transport rate of non-cohesive sediment (sand) during an M2 period in the X direction is: 494 

𝑞𝑥̅̅ ̅ =  
1

𝑇
∫ 𝑞𝑥(𝑡)𝑑𝑡

𝑇

0

 

𝑞𝑥(𝑡) =  𝑘(𝑈(𝑡)2 + 𝑉(𝑡)2)𝑈(𝑡)                                                                                    (9) 495 

where T is the M2 tidal period, k is a constant. 496 

By omitting the small quantities of third order (O(ϵ
3
)), it is derived: 497 

𝑞𝑥̅̅ ̅

𝑘𝑈2
3 = 𝐴 + 𝐵 + 𝐶 

𝐴 = 𝜀v0 𝛼2cos(𝜙U2 − 𝜙V2) 

B =
1

4
𝜀U4[3 cos(2𝜙U2 − 𝜙U4) + 𝛼2 cos(2𝜙v2 − 𝜙U4)] 

𝐶 =
1

2
𝜀𝑉4𝛼2 cos(𝜙𝑈2 + 𝜙𝑉2 − 𝜙𝑉4) 

𝛼 = 𝑉2/𝑈2                                                                                                                     (10) 498 

 In the present study area where slightly progressive M2 tidal waves prograde southward 499 

(in the alongshore direction), the phases of M2 constituent in X and Y directions are close 500 

nearshore, which is supported by the observed and modeled hydrodynamics (Figure 5, 8), and 501 

also the harmonic analysis results of tidal velocities measured at a sub-tidal station near the study 502 

area (cf. Supporting information). Thus it is assumed that 𝜙U2 = 𝜙V2 = 𝜙2 , and the above 503 

equations can be further simplified as: 504 

𝐴 =
3

2
𝜀v0𝛼2 

𝐵 =
1

4
𝜀U4(3 + 𝛼2) cos(2𝜙2 − 𝜙U4) 
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𝐶 =
1

2
𝜀𝑉4𝛼2 cos(2𝜙2 − 𝜙𝑉4)                                                                                         (11) 505 

Therefore, the residual sand transport in X (cross-shore) direction (𝑞𝑥̅̅ ̅) is scaled by 3
th

 506 

power of U2. A, B, and C are non-dimensional terms, and their analytical expressions reveal the 507 

mechanisms of the cross-shore residual sand transport. 508 

Term A is residual current related, the direction of which is controlled by Y residual 509 

current, and magnitude is proportional to the magnitude of the Y residual current and the ratio of 510 

the M2 tidal current amplitude in Y direction to X direction (α). It is then suggested that negative 511 

Y (southward (flood) direction in the present model) residual currents generate negative X 512 

(westward (flood) direction in the present model) residual sand transport, and the strong Y M2 513 

tidal amplitude enlarges α, so as to enhance the magnitude of A. Both observations and modeling 514 

indicated that when the alongshore phase lag is large (e.g. the 16
°
 case), the alongshore residual 515 

currents are southward ((flood) “−”) and the α value is quite large at the lower and sub-tidal flat, 516 

the landward sand transport is thus induced. In case of the Jiangsu Coast, the observations at a 517 

sub-tidal station near the study area (cf. Supporting information) also show the strong alongshore 518 

residual currents in the flood direction and a large α value. 519 

Term B and C are related to tidal asymmetry in X (cross-shore) and Y (alongshore) 520 

direction, respectively. The M4 currents are not only in X direction but also Y direction and 521 

contribute to the cross-shore residual sand transport. The phase lag of (2𝜙2 − 𝜙U4) and (2𝜙2 −522 

𝜙V4) determine their directions, and the relative amplitude of M4 currents (𝜀U4 and 𝜀𝑉4) and α 523 

control the magnitudes. In the shallow areas, the larger ratio of tidal amplitude to water depth 524 

promotes flood-dominant tidal asymmetries (Friedrichs et al., 1992) . Because both the positive 525 

X and Y are ebb directions, flood-dominant tidal asymmetries correspond to the 90° to 270° 526 

phase lag of (2𝜙2 − 𝜙U4 ) and (2𝜙2 − 𝜙V4 ). Thus, terms B and C are negative, indicating 527 

westward/landward residual sand transport. 528 

It is worth noting that the relative importance of the Y (alongshore) tidal currents 529 

(represented by α) is crucial to the sum of A, B, and C. If α is sufficiently smaller than 1, term A 530 

and C will reduce to a small value and term 𝐵 =
3

4
𝜀U4 cos(2𝜙2 − 𝜙U4), suggesting that the X 531 

(cross-shore) residual sand transport is then only caused by the cross-shore tidal asymmetry. 532 

However, if α is sufficiently larger than 1, like the observations at the lower flat station (Figure 5) 533 
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the above part of X (cross-shore) tidal asymmetry (i.e. 
3

4
𝜀U4 cos(2𝜙2 − 𝜙U4)) will only account 534 

for a small fraction of term B, and all three terms (A, B, and C) will be controlled by α
2
.  535 

According to equations (5) and (6), under the same bathymetry in the present model, the 536 

alongshore tidal currents increase proportionally to the square root of the alongshore phase lag 537 

(Figure 10a). But the consequent X (cross-shore) residual sand transport will increase much more 538 

quickly (equation (11)). This partly explains the mechanisms of the landward sand transport and 539 

the sandy lower flat formation, which are induced by the strong alongshore tidal currents. 540 

In contrast, if  slightly progressive M2 tidal waves prograde northward, the M2 phase in X 541 

direction deviates ~180° from Y direction (𝜙U2 +π = 𝜙V2).  542 

𝐴 = −
3

2
𝜀v0𝛼2 

𝐵 =
1

4
𝜀U4(3 + 𝛼2) cos(2𝜙U2 − 𝜙U4) 

𝐶 = −
1

2
𝜀𝑉4𝛼2 cos(2𝜙V2 − 𝜙𝑉4)                                                                                    (12) 543 

Similarly, the northward (positive) residual current velocity results in the negative 544 

(westward/landward) A. Terms B and C are also controlled by the tidal asymmetry. The positive 545 

X and Y are associated with the ebb and the flood direction, respectively. Flood-dominant tidal 546 

asymmetries correspond to the 90° to 270° phase lag of (2𝜙U2 − 𝜙U4) and the -90° to 90° phase 547 

lag of (2𝜙V2 − 𝜙V4 ), suggesting westward/landward residual sand transport as well due to 548 

negative terms of B and C. Numerical models also show that tidal flat morphology and sediment 549 

zonation are not influenced by a reversed direction of tidal wave propagation. 550 

The above cases are associated with an only slightly progressive M2 constituent in the 551 

alongshore direction. However, due to a large scale and low frictions in the alongshore direction 552 

and a small scale in the cross-shore direction, it is worth considering a case where the alongshore 553 

tidal wave is purely progressive and the cross-shore tidal wave is purely standing. In this case, 554 

𝜙U2 = 𝜙V2 −
𝜋

2
, and then equation (10) can be simplified as: 555 

𝐴 = 0 

𝐵 =
1

4
𝜀U4(3 − 𝛼2) cos(2𝜙U2 − 𝜙U4) 
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𝐶 =
1

2
𝜀𝑉4𝛼2 sin(2𝜙V2 − 𝜙𝑉4)                                                                                        (13) 556 

The above solution suggests that if the alongshore and cross-shore tidal velocities are 90 557 

degrees out of phase, the alongshore residual currents are irrelevant to the cross-shore residual 558 

sand transport (A = 0). Without the presence of the alongshore tidal velocities (α = 0), term B is 559 

controlled by the peak velocity asymmetry in the cross-shore direction (cos(2𝜙U2 − 𝜙U4)). 560 

However, the amplified alongshore M2 tidal velocity amplitude can reduce the term B, and the 561 

large α can even change the direction of term B. The direction of term C is controlled by 562 

sin(2𝜙V2 − 𝜙𝑉4), which represents the slack water duration asymmetry rather than the peak 563 

velocity assymentry in the alongshore direction. The most flood-dominated alongshore tidal 564 

currents with 2𝜙V2 − 𝜙𝑉4 of 0° , which means term C equals to zero, can not result in cross-565 

shore residual sand transport. This is pronouncedly different from the above cases. 566 

 567 

5.3 Future works 568 

This study is based on the case of Jiangsu coast, China, and the role of alongshore tidal 569 

currents on sand/mud transport and tidal flat morphodynamics was investigated. However, for a 570 

comprehensive understanding, more field examples and sensitivity analysis are required with 571 

different settings, such as tidal range, alongshore tidal properties (standing to progressive), initial 572 

bed profile, boundary sand and mud concentrations, etc. The analytical solution helps to 573 

understand the cross-shore transport of sand, however, similar two-dimensional solutions of the 574 

cross-shore transport of mud are more complicated due to the temporal and spatial settling lags 575 

and their effects on horizontal advection. It could be developed based on one-dimensional 576 

solutions (Yu et al., 2012).  577 

Observational (Andersen et al., 2006; Christiansen, 2006; Deloffre et al., 2005, 2007; Fan 578 

et al., 2006; Marion et al., 2009; Shi et al., 2017; Wang et al., 2009; Yang et al., 2003, 2008) and 579 

modeling (Fagherazzi, et al, 2007; Hu et al., 2015; Maan et al., 2015; Roberts et al., 2000) works 580 

both revealed that waves have important impacts on the morphology and sediment grain size of 581 

tidal flats. So future research should couple the effects of cross-shore and alongshore tidal 582 

currents, as well as waves. 583 
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Here we only considered one mud fraction and one sand fraction in the models. In fact, 584 

both sand and mud can be divided into more fractions of different properties. Models using more 585 

sediment fractions would provide more details regarding the processes of sediment transport and 586 

morphological evolution, especially at the transitions between the mud flat and sand flat (Chou et 587 

al., 2018; Guillou et al., 2009; van der Wegen & Jaffe, 2014; Wang et al., 2014, 2016). 588 

Sediment transport of sand and mud was calculated separately. However, interactions 589 

exist between sand and mud. If it is taken into account in the erosion formulae, a distinction is 590 

made when the mud content remains below a critical value, the regime is non-cohesive, and 591 

otherwise, it switches to cohesive (van Ledden et al., 2004; van Rijn, 2007). Models with sand-592 

mud interactions were suggested, and the performance of this method needs further evaluation 593 

(Braat et al., 2017; Carniello et al., 2012; Dufois et al., 2014; Le Hir et al., 2011; Paarlberg et al., 594 

2005; Ulses et al., 2008; van Ledden et al., 2006).  595 

During the observation periods, the whole intertidal flat was bare. Thus the role of 596 

biological processes and salt marshes were not considered in the models. But marshes may 597 

colonize the upper flat and expand over time. It is then necessary to observe and simulate the 598 

biomorphodynamic processes of intertidal flats, which were discussed by a number of studies 599 

(D’Alpaos et al., 2007; Fagherazzi et al., 2012; Kirwan & Murray, 2007; Marani et al., 2010; 600 

Mariotti & Fagherazzi, 2010; Mudd et al., 2010; Schwarz et al., 2014; Tambroni & Seminara, 601 

2012). 602 

 603 

6 Conclusions 604 

In addition to cross-shore tidal currents, the alongshore components also play an 605 

important role in sediment transport, morphological evolution, and sediment grain-size change in 606 

the cross-shore direction of the tidal flat. With an increase in the background alongshore tidal 607 

water level phase lag, the alongshore currents are gradually dominant on the lower flat. In 608 

contrast, the upper flat is always dominated by cross-shore currents, which are controlled by the 609 

cross-shore bed profile. Thus, in case of different alongshore tidal currents, bed profiles at the 610 

upper flats are quite similar, being convex-up and consist of mud. However, strong alongshore 611 

currents can erode the mud at the lower flat, and promote the landward sand transport from the 612 

subtidal area to the lower flat, forming a sand flat. The tidally maximum bed shear stress is 613 
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almost spatially uniform across the muddy area of the cross-shore profile, but bed stresses are 614 

pronouncedly elevated when the bed sediment coarsens at the lower flat. 615 
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Figure captions 928 

Figure 1. Sketch of sand-mud tidal flat influenced by cross-shore and alongshore tidal currents 929 

(MHWL, MWL, and MLWL denotes mean high water level, mean water level and mean low 930 

water level, respectively, modified from Friedrichs (2011)). 931 

Figure 2. (a) Maps of the study area and the location of the intertidal flats at Dafeng, Jiangsu, 932 

China; (b) Sites of field measurements in 2008: A08, M08, and S1/S3 are anchor stations for 933 

hydrodynamic measurements, and P1 is the bed level profile (modified from Wang Y.P. et al. 934 

(2012)). 935 

Figure 3. Grid and initial bathymetry (O1, O2, and O3: observation points, CS: cross-section, 936 

red rectangle: focused area. Bed elevation: 0 m refers to the mean sea level). 937 

Figure 4. Observed and modeled bed elevation and sand content of surface sediment along the 938 

profile P1 in Figure 2b (The observed elevation is with reference to the national datum1985, in 939 

which 0 m is the long-term mean sea level of the Yellow Sea). 940 

Figure 5. Observational hydrodynamics: time series of water depth, depth-averaged velocity, 941 

and SSC measured at the upper (A08, blue line), middle (M08, green line), and lower (S1/S3, red 942 

line) intertidal flat. Locations of the stations are marked in Figure 2b. Vc and Vl are the current 943 

velocity components across (offshore (ebb) “+” and onshore (flood) “−”) and along (northward 944 

(ebb) “+” and southward (flood) “−”) the intertidal flat, respectively.  945 

Figure 6. (a, b, c, d) Modeled bathymetry in the focused area in Figure 3; (e, f, g, h) Bed 946 

elevation and stratigraphy of the cross-section CS. 947 

Figure 7. Temporal variations of (a) bed elevation and (b) sand content of surface sediment 948 

along the cross-shore profile CS.  949 

Figure 8. Modeled hydrodynamics: time series of water depth, depth-averaged velocity, and SSC 950 

at O1 (blue line), O2 (green line), and O3 (red line) during a tidal cycle form the 1
st
 year in the 951 

flat’s evolution of the reference case. Vc and Vl are the current velocity components across 952 

(offshore (ebb) “+” and onshore (flood) “−”) and along (northward (ebb) “+” and southward 953 

(flood) “−”) the intertidal flat, respectively. Areas in light yellow are estimated ADCP blanking 954 

at S1/S3 (Figure 2b and 5), corresponding to water depth smaller than 1.5 m. 955 
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Figure 9. Comparison of (a) bed elevation, (b) sand content of surface sediment; tidally 956 

maximum flood current speed (c) alongshore and (d) cross-shore; and (e) tidally maximum bed 957 

shear stress magnitude along the cross-shore profile CS at the 4th year in the three cases. The 958 

dashed arrows indicate the turning points of τmax in the 12° and 16° cases, which are also 959 

corresponding to the transitions between mud and sand flat. 960 

Figure 10. Modeled hydrodynamics (based on the 1st year bathymetry and hydrodynamic 961 

conditions of the reference case) along the cross-shore profile CS: tidally maximum flood current 962 

speed (a) alongshore and (b) cross-shore; tidally averaged SSC of (c) mud and (d) sand; and 963 

variations of available mass of (e) mud and (f) sand in a tidal cycle. 964 
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