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SUMMARY

The need for advanced control strategies of marine propulsion systems is constantly in-
creasing. Trying to list the reasons for which more advanced marine propulsion control
systems are demanded, the necessity of every new-built vessel to demonstrate its ability
for high performance has to be stressed out. Sea trials and particularly speed trials are
considered for shipyards as a specific situation during which a new-built vessel has to
showcase its performance by successfully attaining the contractually agreed maximum
average speed. Nevertheless, speed trials may take place under non ideal environmen-
tal conditions such as waves, which affect the dynamic response of the main engine. In
case of vessels with Controllable Pitch Propellers and Diesel engine as prime mover, the
action of the controller of the Diesel engine, which tries to counteract the impact of the
wave induced disturbances, causes fluctuations of the engine operating point in the en-
gine operating envelope in terms of engine speed and torque. When these fluctuations
reach the limits of the engine operating envelope the propeller pitch controller is acti-
vated, reducing the propeller pitch in order to effectively protect the engine from over-
loading. This pitch reduction leads to reduction of maximum average delivered power
and generated thrust and thus to reduction of the maximum average ship speed.

Trying to deal with the above mentioned negative effects of propeller pitch controller
activation, the possibility of influencing the dynamic response of the engine operating
point in the operating envelope is investigated, attempting to keep the engine’s operating
point fluctuations away from the operating envelope limits and thus, the pitch control
deactivated. This investigation, which is the main research objective of this thesis, is
addressed by means of gain scheduling the existing Diesel engine speed governor.

Using as a starting point and essential tool the linearised ship propulsion system
model, the impact of different factors on the dynamic response of the Diesel engine op-
erating point is investigated. More specifically, the impact of the direction of the ship
with respect to the waves, the impact of the system operating point and the impact of
the Sea State on the dynamic behaviour of the Diesel engine operating point are exam-
ined. The outcome of this examination leads to the conclusion that it would make sense
to improve the classical Diesel engine speed governor, which uses constant values for its
gains, by making the values of the controller parameters dynamically adaptive and de-
pendent on the ship direction with respect to the waves, on the system operating point
and on the Sea State.

In order to achieve this, the linear model is again employed as the fundamental tool
providing a mathematical framework to the engineering problem. As a first step, a static
solution is proposed by deriving contour plots. These contour plots provide combina-
tions of governor gains, Kp &Ki , which ensure that the fluctuations of Diesel engine’s op-
erating point lie as far away as possible from the limits of the engine operating envelope.
In that way, the propeller pitch controller remains deactivated and the resulting nega-
tive effects avoided. This solution proves the potential of improvement, regarding the
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x SUMMARY

dynamic response of the Diesel engine, allowing at the same time a manual scheduling
of the governor gains according to the wave induced disturbance. As a second step, a dy-
namic solution is suggested in order to reach the goal of keeping the propeller pitch con-
troller deactivated when the ship sails in waves. This solution consists of the develop-
ment of Gains Scheduling Algorithm, which is able to automatically adjust the governor
settings according to the wave induced disturbance. The developed algorithm employs
the derived linear model of the propulsion system combined with an optimisation al-
gorithm. The selected optimisation algorithm, which is called Simulated Annealing, is a
metaheuristic method well-known for effectively solving difficult optimisation problems
by determining the global optimum of their objective function.

The developed algorithm is integrated in the non-linear simulation model of the ship
propulsion system. Simulations are run in case of both regular and irregular waves. In
that way the developed algorithm is tested and evaluated with respect to its effective-
ness in terms of dynamically adjusting the engine controller settings, according to the
wave disturbance acting on the model and preventing the activation of propeller pitch
controller. Simulation results demonstrate that the proposed refinement of the Diesel
engine speed governor, with the integrated Gains Scheduling Algorithm, achieves the
ultimate goal of re-sizing and re-orientating the fluctuations of the Diesel engine oper-
ating point, avoiding any contact with the limits of the engine operating envelope, pre-
venting in any case the activation of the propeller pitch controller and thus, maintaining
the maximum average ship speed.



1
INTRODUCTION

The purpose of this chapter is to explain the reasoning behind the initiative, which led
to this research. The problem is described and the challenges that it poses are clearly de-
fined. Additionally, the limits of the work are presented along with the research objectives.
Finally, the method which will be followed in the direction of answering the research ques-
tions is clearly stated, as well as a general overview of the whole project.

1.1. THE NEED FOR IMPROVED DESIGN AND ADVANCED CON-
TROL OF MARINE PROPULSION SYSTEMS

It goes without saying, that design and optimisation of marine propulsion plants are es-
sential parts of modern ship design procedures. As a matter of fact, the behaviour of the
propulsion plant affects, crucially, the global behaviour of a vessel. Marine propulsion
plants are requested to operate efficiently and safely under a wide range of operational
profiles, dependent on the particular type of the ship. In other words, besides steady
state conditions, transient conditions have to be taken into consideration, too. Under
these operational conditions, the dynamic behaviour of every single component, which
constitutes the total propulsion plant, influences substantially the global performance
of the vessel’s propulsion plant. A wide range of operational speeds, acceleration, decel-
eration, crash stop, heavy manoeuvring and faults are a sample of transient conditions,
which a marine propulsion plant will have to cope with, maintaining the required level
of the vessel’s safety and reliability.

Furthermore, the shipping industry, like many other kinds of industry, is obliged to
decrease its environmental impact and comply with the strict regulations about the en-
gine emissions, imposed by the International Maritime Organisation, [IMO, 2014]. What
is more, at the same time that the pressure for fuel consumption reduction is constantly
increasing, the operating profile of modern ships is increasingly varying; offshore ves-
sels carrying out heavy lifts, transit operations, dynamic positioning, naval ships exe-
cuting patrol operations in open sea, as well as being engaged in coastal operations,
tug boats demanding high amount of bollard pull during towing and significantly lower

1
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power during transit. For that reason, the power and propulsion plant of a vessel has
to perform adequately on many performance aspects. The above-mentioned variety of
operational profiles leads to many difficulties regarding the optimisation of the propul-
sion plant for one operating point at the early stage of designing a vessel. In addition,
the need for both efficiency and adaptability to different operating profiles resulted in a
growing variety of power and propulsion configurations. The increasing complexity of
propulsion configuration combined with traditional control do not remarkably reduce
fuel consumption and emissions. According to the research done, advanced propulsion
architecture require fresh and smart control strategies regarding the prime mover, in the
direction of achieving significant decrease of fuel consumption and emissions, while the
system complexity is increasing.

Figure 1.1: The overloading criterion and
a typical violation of the constraints mea-
sured in real life. Grey area defines the re-
gion of operating points for which RTBO
holds[Van Spronsen and Tousain, 2001].

As far as the maintenance costs of
the prime mover are concerned and more
specifically the maintenance costs of the
Diesel engine used a the prime mover of a
vessel, they are considered to be remark-
ably high [Van Spronsen and Tousain,
2001]. Thus, researchers thoroughly in-
vestigated the medium speed Diesel en-
gines and particularly the wakefield dis-
turbances due to waves, which act on the
propeller causing continuous variations
of the engine and shaft speed. The gov-
ernor of the Diesel engine applies an in-
tense control effort, trying to counteract
these fluctuations and keep the engine
speed constant, aiming to protect the en-
gine. Therefore, the governor continu-
ously adjusts the amount of the fuel in-
jected in the engine, in order to control
the engine speed. As a consequence, the
engine, quite often, ends up operating outside the preferred region of the operating en-
velope. This preferred operating region of the Diesel engine is determined by a reduced
time between overhaul (RTBO) line, which is usually defined by the manufacturer. A re-
lation between the engine speed and the fuel rack position is described by this line. As
a result, this also defines a relation between the amount of fuel that is injected in the
cylinders of the engine and the engine speed, as well as a relation between the engine
revolutions and the torque generated by the Diesel engine, since fuel rack position and
engine torque are proportional, at least for static conditions.

The violation of the RTBO line, as it is depicted in Figure 1.1, is called overloading of
marine Diesel engines and is caused by Sea States, intense accelerations and decelera-
tions or strong manoeuvring. As long as the system operates below the RTBO line, the
engine is not overloaded and the maintenance costs will not be exceeded. Investigat-
ing the solutions for the diesel engine overloading problem from a control system point
of view, smarter control strategies, regarding the diesel engine, like an advanced con-
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troller for the fuel rack position could eliminate the violation of the engine’s envelope
limits. Reduced control effort or influencing the shape of the disturbance in the operat-
ing envelope could be beneficial towards the direction of establishing advanced control
strategies of the diesel engine. Introducing a second control variable could be profitable
for the problem of the diesel engine overloading, too.

1.2. MOTIVATION
Trying to enrich the list with the reasons for which an improved design and advanced
control of marine propulsion systems are demanded, the necessity of every new-built
vessel to demonstrate its ability for high performance, during the sea trials should also
be pointed out. There is no doubt that especially new-built vessels, as it was referred
before, as well as overhauled and maintained vessels, undergo intense sea trials before
they are delivered to their owner.

Figure 1.2: Fuel energy transformation into
thrust power throughout the propulsion
system.

In that way, shipyards prepare the
ships for operations, ensuring high prod-
uct quality, increased vessel uptime and
compliance with performance criteria.
That is the reason that sea trials are al-
ways considered important for shipyards.
One of the most important tests that are
carried out during the sea trials, in or-
der to measure the ship’s general perfor-
mance are the speed trials. During the
speed trials, the satisfactory attainment of
the contractually agreed maximum speed
is to be verified. In order to obtain the
maximum ship speed, it is necessary that

the maximum engine brake power, PB is continuously delivered to the vessel’s pro-
pellers. Subsequently, the delivered amount of power, PD has to be efficiently trans-
formed into thrust power, PT , as shown in Figure 1.2. Nevertheless, it is inevitable that
speed trials often take place under non-ideal environmental conditions caused by wind
and waves.

The fact that the vessel operates in off-design conditions, such as wind-generated
waves, is translated into two main disturbances acting on the ship propulsion system
and affecting the dynamic behaviour of the engine operating point in the operating en-
velope of the Diesel engine, [Stapersma and de Heer, 2000]. These disturbances can be
attributed to two main causes. The first disturbance is the unsteady wake velocities due
to waves, which cause fluctuations of the advance velocity VA and consequently vari-
ations of the angle of attack of the water flow with respect to the propeller blade. The
second disturbance is the added resistance due to the motions of the ship advancing in
waves, which causes fluctuations of the total ship resistance.

The attempt of the propulsion control system to counteract the above mentioned
disturbances gives the shape of an elliptic trajectory to the engine operating points in
the operating envelope of the Diesel engine, as it can be noticed in Figure 1.3. The in-
teraction between rough environmental conditions, the ship, the ship’s propulsion plant
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and propulsion control system leads to fluctuations of the delivered brake engine power,
PB , the propeller pitch, P/D and the engine speed, ne as the plots of Figure 1.4 show
respectively.

Figure 1.3: Operating cloud
touching the Diesel engine
operating envelope limits. Data
from ship sea trials measure-
ments, provided by Damen
Shipyards Group.

Figure 1.4: Engine brake power,
propeller pitch and engine
speed variations due to pitch
control activation. Data from
ship sea trials measurements,
provided by Damen Shipyards
Group.

For a Controllable Pitch Propeller (CPP) driven vessel, the propeller pitch control is
activated as soon as the elliptic trajectory of the engine operating point touches the lim-
its of the operating envelope of the Diesel engine. In that case, the propeller pitch con-
trol actuator applies a temporary pitch reduction, in order to directly compensate any
occurring overload of the engine, effectively avoiding its negative effects. This process is
depicted in Figure 1.5, in which the continuous red line depicts the engine brake power
PB and the horizontal red dashed line is the limit of the power of the engine. The yellow
line shows the normalised pitch angle of the propeller, P/D and the blue one the engine
speed, ne . Finally, the green line is the vessel’s speed vs . As it is clearly illustrated, ev-
ery time the continuous red line (engine power) touches the engine’s limits (horizontal
dashed line), a cut-off of the crest of the engine power occurs, followed by a significant
drop of the value of the engine power. This problem arises due to the fact that the pro-
peller pitch control reduces the propeller pitch (yellow line), whenever the value of the
engine power reaches the power limit line of the Diesel engine. Subsequently, the ship
speed is, considerably, decreased. The foregoing can be clearly noticed by following the
sequence of the incidents starting, for instance, at the moment 05:02:10 in Figure 1.5.
There is no doubt that the performance of the vessel will be, significantly, influenced
and an undesirable drop in the average maximum ship speed vsmax , which has to be at-
tained, will be noticed. Moreover, a general overview of the problem definition is given
in Figure 1.6, clearly documenting the order of the facts which cause the problem.
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Figure 1.5: Cut-offs of power crests and vessel speed fluctuations due to propeller pitch
control activation. Data obtained from ship sea trials measurements of Damen Ship-
yards Group.
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Interaction between acting disturbances, ship propulsion 
plant and propulsion control system 

elliptic trajectory of engine operating point generation 
in operating envelope of Diesel engine

Contact between 
elliptic trajectory of engine operating point 

and 
limits of engine operating envelope

?

YES

NO

Study Case : Vessel sailing in wave field during speed trials
 Prime mover : Diesel engine
 Propulsor : Controllable Pitch Propeller

Disturbances acting on ship propulsion system due to waves : 
 Wakefield disturbance
 Resistance disturbance

Propeller pitch control activation :
 Reduction of propeller pitch
 Prevention of Diesel engine overloading

 Reduction of delivered power
 Decline of generated thrust
 Decrease of sustained average ship speed

Figure 1.6: Project motivation flow chart.
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Given the above-mentioned negative impact of the propeller pitch control activation,
two main actions can be considered:

1. Attempt to influence the size and the orientation of the elliptic trajectory of the
engine operating points in the operating envelope of the Diesel engine, aiming at
keeping the propeller pitch control deactivated.

2. Optimise the behaviour of the propeller pitch control algorithm.

At this point, it has to be mentioned that this master thesis focuses on the inves-
tigation of the possibility to re-size and re-orientate the elliptic trajectory of the en-
gine operating points, without engaging the use of the propeller pitch control, when
the vessel sails in waves. In that way, the achieved average maximum speed of a vessel
during the procedure of ship speed trials is maintained, avoiding the activation of the
propeller pitch control, which results in reduction of the delivered power, the generated
thrust and consequently in drop of the attained ship speed, in order to protect the Diesel
engine from thermal overloading.

Furthermore,the two above-mentioned points should be examined by the point of
view of the operator of the vessel after the shipyard’s speed trials procedure. It goes with-
out saying that less frequent activation of the propeller pitch control will be beneficial
for the operator of the ship, since the propulsion system of the vessel will be capable
of maintaining the maximum average ship speed without the unfavourable effect of the
propeller pitch reduction. In addition, the operator will have the benefit of less main-
tenance costs of the Diesel engine due to the prevention of thermal overloading of the
engine, by ensuring that the operating ellipse (or cloud) lies as far as possible from the
limits of the engine envelope, [Grimmelius and Stapersma, 2001, Van Spronsen and Tou-
sain, 2001]. On the other hand, the maintenance costs of the controllable pitch propeller
and its hydraulic actuating system will be reduced, since the aim of this research project
is less activation of the propeller pitch control.

1.3. RESEARCH SCOPE
As far as the limits and the context of this research are concerned, the following points
are going to be examined:

■ Vessels using Diesel engines as prime movers and Controllable Pitch Propeller.

■ The effect of different Sea States.

■ The effect of two sailing directions of the vessel with respect to the waves:

– head waves

– following waves

■ The effect of system operating point.

On the other hand, this graduation project will not investigate the behaviour of the ship
propulsion plant:

– During manoeuvring.

– During acceleration and deceleration.
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1.4. RESEARCH OBJECTIVES
Summarising all the above-mentioned,the objectives and the related research questions
that this master thesis will examine and try to answer are:

• Is it possible to maintain the maximum average ship speed during speed trials by
means of tuning governor gains?

• With respect to the diesel engine load fluctuations in a seaway:

¦ What is the impact of the different sea states?

¦ What is the impact of head and stern waves?

¦ What is the impact of the propulsion system operating point?

• Is it possible to influence the size and the orientation of the diesel engine operating
ellipse, by trying to refine the existing propulsion control system and making the
gain scheduling of the governor dependent on the system operating point, on the
sea state and/or on the heading of the vessel regarding the waves?

1.5. APPROACH
Regarding the approach to answer the aforementioned research objectives, the steps,
which are presented below, will be followed:

• Obtain the non-linear simulation model of the propulsion system of a reference
vessel.
The attempt to answer the above-mentioned research questions will be based on
the employment of non-linear simulation model of the ship’s propulsion system.
Therefore, the simulation model of a reference vessel propulsion system will be
used. The reason for this is that the utilisation of simulated models is quite com-
mon for controller development or controller refinement purposes, due to the
benefits that they can provide in terms of testing cost and time. What is more, the
non-linear model will be validated with existing data from the reference vessel’s
sea trials, provided by Damen Shipyards Group.

• Linearisation of the non-linear reference vessel propulsion system model.
Linear models are often more simple and require less parameter and system knowl-
edge when compared to non linear models. Furthermore, the derived linear model
can be employed to predict the system behaviour in the frequency domain. Con-
sequently, it can be used for analysis of propulsion system behaviour in waves and
for controller design and tuning. Nevertheless, the linearised ship propulsion sys-
tem model should not be considered as a replacement of the non-linear model,
but rather as an easy-to-handle, additional tool.

• Investigation of Diesel engine dynamic behaviour, based on linear reference ves-
sel propulsion system model. The impact of the propulsion system operating
point, the Sea State and the direction of the vessel with respect to the waves on
the dynamic response of the Diesel engine in the engine operating envelope will
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be examined by employing the linear propulsion system model of the reference
vessel.

• Governor gains scheduling. Governor gains scheduling will be attempted, aiming
at re-sizing and re-orientating the elliptic trajectory of the engine operating point
in the engine operating envelope. A gains scheduling algorithm will be developed
based on the implementation of the linear ship propulsion system model. The
gains scheduling algorithm will be evaluated by implementing it in the non-linear
propulsion system model in case of both regular and irregular waves.

1.6. THESIS OUTLINE
The dissertation is structured into 6 chapters.

• In chapter 2 relevant literature is reviewed.

• In chapter 3, the propulsion system of the reference vessel along with its dynamic
environment are described and transformed into a simulation model. The math-
ematical formulas of each component are presented. Moreover, the non-linear
simulation model is validated with data obtained during the vessel’s sea trials.

• In chapter 4, the non-linear propulsion system model is linearised and verified in
steps. The verification is carried out by means of comparison between the Bode
plots of the non-linear and linear model. The verification will prove that the linear
model is derived correctly from the non-linear model and that can be, rightfully,
used for the controller design.

• In Chapter 5, the linearised ship propulsion system model is employed for the in-
vestigation of the impact of the system operating point, the Sea State and the direc-
tion of the ship with respect to the waves on the dynamic response of the elliptic
trajectory of the engine operating point in the Diesel engine operating envelope.

• In Chapter 6, the existing Diesel engine speed governor is attempted to be refined.
The refinement is addressed by means of developing a gains scheduling algorithm
which employs the already derived linear propulsion system model and a meta-
heuristic algorithm. The developed gains scheduling algorithm is implemented in
the non-linear ship propulsion system model and the achieved results in regular
and irregular waves are evaluated.

• In Chapter 7, the conclusions of this thesis are drawn and recommendations for
further research are provided.





2
SHIP PROPULSION SYSTEM

MODEL: AN OVERVIEW

In this chapter the main propulsion architectures applied on ships are presented. Addi-
tionally an overview of the modelling techniques of marine propulsion systems is docu-
mented, along with the most common propulsion system control strategies and their al-
ternatives. Besides this, linearisation methods of non-linear ship propulsion models are
described. Furthermore, an analysis is given regarding the disturbances that act on a ship
propulsion system model, when the vessel sails in a wind generated wave field. Finally,
some techniques for wave disturbance rejection in Diesel engines are described.

2.1. PROPULSION TOPOLOGIES
Diverse operating profiles force vessel’s power and propulsion plants to perform ade-
quately on many performance criteria, such as fuel consumption, emissions, manoeu-
vrability, maintenance costs and minimisation in noise and vibration. Due to the in-
creasing diversity in operational profiles, it is considered quite difficult to optimise the
power and propulsion plant for a specific operating point as it is commonly done dur-
ing the design procedure of a ship. As a result there is a trade-off between efficiency
and adaptability to diverse operating profiles. This fact led to an increasing variety of
power and propulsion architectures. As far as the development and implementation of
propulsion architectures is concerned, the propulsion topology categorised into:

• mechanical propulsion

• electrical propulsion

• hybrid propulsion

2.1.1. MECHANICAL PROPULSION
Mechanical propulsion systems have been employed on ships since the 19th century.
A typical layout of this propulsion system is illustrated in Figure 2.1. A propulsion ma-
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chine, which is usually a Diesel engine or a gas turbine, drives the propulsor, which is
usually a propeller. This is achieved either directly or through a gearbox. Additionally, in
such a propulsion plant some Diesel generators and an electrical AC network is required
to generate the electric power needed for the auxiliary loads like for instance heating
ventilation and air-conditioning or other auxiliary systems. Low speed Diesel engines
do not require a gearbox. On the other hand, medium- and high-speed Diesel engines
do require a gearbox. As far as the propellers are concerned, in mechanical propulsion
system both fixed pitch and controllable pitch propellers are used with the latter one of-
fer an extra degree of control. Apart from these two kind of propellers other propulsors
like water jets, surface piercing propellers, cycloidal propellers or paddle wheels can also
be applied.

Figure 2.1: Typical mechanical propulsion system layout, [Geertsma et al., 2017a]

Regarding the advantages of the mechanical propulsion systems, the main benefit is
their high efficiency when operating at design speed, which is between 80% and 100%
of maximum speed. Furthermore, mechanical propulsion systems consist of only three
power conversion stages, the main engine, the gearbox and the propeller a fact that leads
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to low conversion losses. Additionally, mechanical propulsion systems are not complex
and their simplicity leads to low purchase cost. On the other hand, some of the major
disadvantages of mechanical propulsion systems are the increased maintenance costs
when the main engine is overloaded, the low fuel efficiency and high emissions when
the engine runs in off-design operating points and the low availability since failure of
any of the components of the drive train leads to loss of propulsion.

2.1.2. ELECTRICAL PROPULSION

The architecture of electrical propulsion, which has been applied since 1990s, is demon-
strated in Figure 2.2, where its typical layout can be noticed. Diesel generator sets feed
a fixed frequency high voltage electrical bus which in turn feeds the electrical propul-
sion motor drive through a transformer. High fuel efficiency especially in cases that the
hotel load is a significant part of the total load of the vessel, low NOx emissions, re-
duced maintenance costs and high flexibility in terms of the arrangement of the engine
room on the vessel due to the absence of shaft line are some of the advantages that the
electrical propulsion offers. On the other hand, the main disadvantage of the electrical
propulsion is the fact that additional conversion stages in power converters and electric
motors are introduced to the propulsion plant causing at the same time increased losses
and increased specific fuel consumption.

Figure 2.2: Typical electrical propulsion system layout, [Geertsma et al., 2017a]
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2.1.3. HYBRID PROPULSION

Figure 2.3: Typical hybrid propulsion system layout, [Geertsma et al., 2017a]

The typical layout of a hybrid propulsion system can be observed in Figure 2.3. A hy-
brid propulsion system usually consists of a direct mechanical drive providing propul-
sion in high speeds with high efficiency and of an electric motor coupled to the same
shaft through a gearbox or directly to the shaft driving the propeller. This electric motor
usually provides propulsion for low speeds preventing the insufficient use of the main
engine in part load operation. Additionally, the electric motor can provide power as a
generator for the vessel’s electrical loads. Since a hybrid propulsion plant combines the
features of a mechanical and electrical propulsion it can benefit from advantages of both
previously discussed systems. However, a trade-off between the use of mechanical and
electrical propulsion has to be made in order to achieve highest performance and ef-
ficiency. This trade-off is usually made by the control system of the propulsion plant
which should be designed in such a way that could ensure that the propulsion plant
takes advantage of both propulsion systems. The interested reader can have a better in-
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sight of a variety of propulsion and power systems as well as their control strategies in
[Geertsma et al., 2017a].

2.2. SHIP PROPULSION SYSTEM MODELLING

2.2.1. GENERAL CONSIDERATIONS

Figure 2.4: Typical mechanical
propulsion layout of a vessel,
[Geertsma et al., 2017b].

In this section modelling approaches for ship
propulsion systems, which are suitable for propul-
sion control system design and propulsion control
system tuning, are documented. Non linear mod-
els are preferred in case of propulsion controller
design and tuning since non-linear time domain
simulations are able to mathematically describe
the ship propulsion system and adequately cap-
ture the intricacies of the propulsion plant under
consideration. On the other hand, linear models
offer the opportunity to simplify complicated non

linear simulation models of dynamic systems. The derived linear model can then be
used to predict system’s behaviour in frequency domain, avoiding time consuming time
domain simulations. Regarding the preliminary design of controllers, based on linear
models, the effect of a controller on the dynamic behaviour of ship propulsion system
model can be examined and evaluated.

2.2.2. NON-LINEAR SHIP PROPULSION SYSTEM MODEL
General non-linear ship propulsion model is presented in block diagram in [Stapersma
and de Heer, 2000] where the non-linear dynamics of the ship propulsion plant are mod-
elled including also the environment induced dynamic disturbances, for instance due to
waves, as it is illustrated in Figure 2.5 and 2.4. An attempt to describe mathematically
the physical ship propulsion plant is demonstrated in [Van Spronsen and Tousain, 2001],
where the non-linear simulation model of the ship propulsion system is derived.

Figure 2.5: General ship propulsion block diagram, [Stapersma and de Heer, 2000]
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More precisely, according [Stapersma and de Heer, 2000], the ship dynamic block di-
agram includes blocks representing the propulsion control system, the propulsion ma-
chine, the propulsor and the vessel’s hull. At this point it should be mentioned that
regarding the general ship propulsion diagram suggested by [Stapersma and de Heer,
2000], the gear box is not included for for clarity reasons. Moreover, it can be noticed
that for the propulsion machine dynamic block diagram is general leaving to the user
the option of selecting a Diesel engine, a gas turbine, an electric motor or any other de-
vice the user desires as the prime mover of the vessel’s propulsion plant.

Closer observation of the structure of the ship dynamic block diagram could lead to
the conclusion that the ship dynamic model can be divided in three main parts:

Right Hand Side
On the right hand side of the ship dynamic model, the hull of the ship is mathematically
described by the resistance curve which is non linearly dependent on ship speed:

R = a · v2
s with a = f (vs )

On this side, the ship translation dynamics are included based on the force balance be-
tween propeller thrust and ship resistance. With those two forces being out of balance,
a net force will result in an acceleration which can be integrated to calculate the ship
speed:

d(mshi p · vs )

d t
= Fpr op −Fshi p

where mshi p is the total ship mass including the added water mass.

Left Hand Side
On the left hand side of the ship dynamic model, the rotational dynamics are included
describing the balance between the propeller and shaft torque. Imbalance between
these two torques results in a net torque which causes an angular acceleration. By in-
tegrating this angular acceleration, the shaft speed can be obtained:

2π
d(Ip ·n)

d t
= Ms −Mpr op

where Ip is the total polar moment of inertia of the rotating shaft system, including en-
gine, gearbox, propeller and entrained water.

At this point it has to be stressed out that according to [Stapersma and de Heer,
2000] the type of propulsion machine is not selected in first place. However, later on in
this paper a turbocharged Diesel engine is selected as the propulsion machine and the
corresponding block diagram is shown which includes the cylinder model and the tur-
bocharger dynamics. The cylinder model consists of two distinct parts; the cylinder flow
model and the work and heat model. For the work and heat model a 6-point Seilinger is
employed in order to obtain the work by calculating the mean effective pressure and thus
the engine torque. The employment of Seilinger diagram requires the determination of
trapped conditions by using the gas exchange model. Both models, work and heat model
using the Seilinger diagram and gas exchange model are described in details, thermody-
namic cycle and mass flows during positive scavenging for a four stroke Diesel engine
[Grimmelius and Stapersma, 2000] and [Grimmelius and Stapersma, 2001].
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Furthermore, [Kidd et al., 1985] and [Smith, 1988] describe ship propulsion plants
which use gas turbines as propulsion machines. More specifically, propulsion plant
and simulation model schematics are presented with [Kidd et al., 1985] documenting
the mathematical equations describing the ship and propulsion machinery simulation
model. The non-linear hull resistance characteristics and the non-linear propeller torque
and thrust characteristics are described by linear functions which include steady state
data. Additionally, the generated torque by the gas turbine is determined by a linear em-
pirical equation, with the dynamics of the turbine torque being represented by a fixed
first-order lag.

Besides the rotational dynamics and the propulsion machine, the left hand side of
the ship dynamic model includes the propulsion control system. Depending on the vari-
able that is selected to be the controlled variable, the propulsion control system has to be
fed by the value of the corresponding output of the ship dynamic model. Furthermore,
in order to control the chosen variable, the propulsion control system has to adjust a
controlling variable. This controlling variable is either the fuel flow to the engine or the
propeller pitch in case of controllable pitch propeller. A short discussion on different
control strategies with respect to the chosen controlled and controlling variables and
possible combinations of them is presented in following Section.

Middle of the block diagram
In the middle of the ship dynamic model, the propeller of the vessel is modelled. The
physical lay-out and the block diagram of the ship’s propeller is illustrated in Figure 2.6.

Figure 2.6: Physical lay-out (left) and block diagram of ship’s propeller (right), [Stapersma
and de Heer, 2000].

The required outputs of the propeller’s block diagram are the propeller thrust T and
torque Q:

T = ρ ·n2 ·D4 ·KT (J ,θ)

Q = ρ ·n2 ·D5 ·KQ (J ,θ)

J = va

n ·D
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(a) Open water propeller diagram.

(b) Four quadrants diagram.

Figure 2.7: Propeller characteristics.

Propeller thrust and torque can be modelled based on the open water diagram for
which thrust, KT and torque, KQ coefficient are dependent on the advance ratio, J and on
propeller pitch θ, in case of controllable pitch propeller. What is more, the the propeller
can be modelled based on the four quadrant diagram for which thrust, CT and torque,
CQ coefficient are dependent on the hydrodynamic pitch angle β and on propeller pitch
θ, in case of controllable pitch propeller. It has to be stressed out that in case of both
diagrams the propeller block is considered to be a completely static element. As far as
other propulsors are concerned, the performance like a Voith Schneider propeller or a
water jet can be modelled by using KT − J and KQ − J non dimensional diagrams.

2.2.3. LINEARISED SHIP PROPULSION SYSTEM MODEL

The understanding and analysis of the behaviour of a non-linear ship propulsion plant
contributes significantly to selection of the control strategy to be applied as well as to the
design and tuning of the control system under consideration. Additionally, linear mod-
els are usually more simple and require less parameter and system knowledge compared
to non-linear models. For that reason, linearised models derived from non-linear time
domain simulation models are employed as valuable, additional tools for the analysis of
the dynamic behaviour of ship propulsion plants. However, linearisation of non-linear
system models comes at a cost; linear models can be considered valid only in the spe-
cific equilibrium point that the system model has been linearised for or in case of small
perturbations around this specific equilibrium point. In this section, some techniques
for the linearisation of ship propulsion plants are highlighted.

A complete linearisation process is documented in [Stapersma and Vrijdag, 2017]. In
this work, the linear model of the non-linear uncontrolled, core ship propulsion system,
which is illustrated in Figure 2.8 is derived.
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Figure 2.8: Core ship propulsion block diagram, [Stapersma and Vrijdag, 2017].

Additionally, the authors call attention to the fact that during the linearisation pro-
cess some non-linearities are neglected, introducing in that way considerable limita-
tions for the linearised ship propulsion system model. The non-linearities which are
neglected can be summarised in the following three categories:

• Non-linearity due to curvature in the characteristics of component models, for
instance the curvature of the propeller characteristics.

• Non-linearity due to multiplication, division and general power operations like for
instance: T = ρ ·n2 ·D4 ·KT (J ,θ), J = va

n·D and R = a · ve
s .

• Non-linearity due to hard limits of the non-linear simulation model. Mechanical
end-stop of fuel rack and minimum and maximum pitch of a hydraulic control-
lable pitch propeller can be considered as such hard limits. What is more, limits
applied in the engine governor in order to protect the engine are also neglected.

Besides the limitations which are introduced by neglecting important non-linearities
during the linearisation process, [Stapersma and Vrijdag, 2017] extensively presents the
necessary mathematical background on the normalisation and linearisation process.
Giving a summary of the procedure that is documented there, a variable that is the prod-
uct of powers of other variables:

Z = c ·Y e ·X

can be linearised and normalised. By using the shorthand notation for differential incre-
ment given by:

δZ∗ ≡ δZ

Z0
,δY ∗ ≡ δY

Y0
,δX ∗ ≡ δX

X0

the product of powers can be approximated by:

δZ∗ = δX ∗+e ·δY ∗

What is achieved in that way is that the relative change in output Z is related to the rela-
tive change in inputs X and Y with the exponent e in the original equation being changed
to a constant multiplication factor. On the other hand the multiplication of X and Y in
the original equation has been transformed into a summation of their relative changes.

Apart from the linearisation of the system following the above mentioned process,
[Stapersma and Vrijdag, 2017] derives the transfer functions of the linearised system by
making use of the Laplace transform. Moreover, the stability of the derived linear model
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is investigated by determining the location of the poles of the system in the complex
plane.

In [Vrijdag and Stapersma, 2017] which is directly related to [Stapersma and Vrijdag,
2017], the authors extend the core ship propulsion system model which is linearised.
The derived linear model is verified and applied to examine the dynamic behaviour of
the elliptic trajectory of the engine operating point in the engine operating envelope in
case of regular waves. Following the same mathematical technique for the normalisa-
tion and linearisation as [Stapersma and Vrijdag, 2017], the non-linear ship propulsion
system model which now includes the propulsion machine, the propeller pitch actuator
and the propulsion system controller is linearised. The derivation of the linear system
model takes place in steps by starting with core ship propulsion system, then adding the
diesel engine and finally linearising the controlled propulsion system which includes the
Diesel engine controller. This procedure is shown in Figure 2.9.

Figure 2.9: Block diagram showing the linearisation in three steps, [Vrijdag and Sta-
persma, 2017].

In this work the authors decides to focus on a Diesel engine regarding the propulsion
machine, which is modelled by using a map of the engine which relates the inputs which
are the engine speed ne and the fuel rack setpoint Xset with the output which is the brake
engine torque Mb . In addition to the Diesel engine and the propeller pitch actuator, the
propulsion controller which is included to the model is a classic engine speed governor
with a PID controller.

As it was previously mentioned, the linearisation of the ship propulsion system model
takes place so as to examine the dynamic behaviour of the ship propulsion system in
the frequency domain. In order to achieve that, [Stapersma and Vrijdag, 2017] derived
the transfer functions by using the Laplace transform of the mathematical equations de-
scribing the linear system. On the other hand, [Vrijdag and Stapersma, 2017] suggests the
State-Space notation in order to obtain the dynamic response of the linear system in the
frequency domain. The State-Space method is less laborious compared to the derivation
of transfer functions. On top of that it can be easily implemented and analysed by using
software tools from the field of Systems and Controls. The State-Space form that is used
is given by:

ẋ = Ax+Bu+Gw

y =C x+Du+v
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The first equation is called the state equation and the second one is called is called the
output equation. With respect to the variables, variable A is the system matrix, B is the
input matrix, G is the gain matrix for disturbances, C is the output matrix and D is the
direct coupling matrix between input and output. As far as x, u, y and v are concerned,
they are respectively the state vector, input vector, output vector and sensor noise vector
with the latter not being considered. After that the derived linear ship propulsion system
model is verified by means of step responses. This means that the step responses of the
outputs of the propulsion system model caused by step disturbances of different ampli-
tude of the system inputs are compared between the non-linear and the linear model.
The verification process gives a sense of whether the derived linear model can rightfully
be applied in order to investigate the dynamic behaviour of the system in case of real-
istic disturbances around the equilibrium point. Finally, by making use of the derived
Bode plots of the linear propulsion system model, [Vrijdag and Stapersma, 2017] exam-
ines the dynamic response of the elliptic trajectory of the engine operating point in the
engine operating envelope for different frequencies of regular waves and different com-
binations of settings of the Diesel engine governor. Similarly, the dynamic behaviour of
the engine operating point is investigated in case of irregular waves for head and follow-
ing direction of the vessel with respect to the waves.

Besides ship propulsion plants that use Diesel engine as propulsion machines [Smith,
1988] and [Kidd et al., 1985] describe the linearisation of ship propulsion system mod-
els that employ gas turbines as propulsion machines. More specifically, [Smith, 1988]
the linear model of the ship propulsion system including the gas turbine by making use
of the State-Space notation. The derived linear model is then validated by means of
comparison between the step response of outputs of the non-linear and linear model
testing their level of agreement. On the other hand [Kidd et al., 1985] linearises the ship
propulsion system which includes a gas turbine as propulsion machine by making use
of the Laplace transform in order to derive the required transfer-function matrix which
describes mathematically the linear system.

2.3. PROPULSION CONTROL STRATEGIES

In the current section an overview of different control strategies of ship propulsion plants
is given. The most common propulsion control architectures are presented together
with alternative control strategies.

2.3.1. IDEAS ON PROPULSION CONTROL

No Feedback Control
Following [Stapersma et al., 2004] and [Stapersma and Grimmelius, 2009], a ship propul-
sion plant has two controlling variables, the fuel rack and the propeller pitch. Com-
bination of these two variables in a single lever command results in the most simple
propulsion control, which is called “no control”or more precisely “no feedback control”,
as shown in Figure 2.10.
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Figure 2.10: Propulsion control without
feedback, [Stapersma and Grimmelius,
2009].

Single Output Control
A ship propulsion plant has many out-
puts which can be employed as con-
trolled variables; engine speed, torque,
thrust, ship speed. In the control strat-
egy of single output control, a single out-
put variable of the propulsion system is
selected as controlled variable. The ac-
tual measured variable is compared to the
demand value as determined by the ship
operator is fed to the controller. This con-
troller can be placed in front of one of
the two controlling variables; either the
fuel rack or the propeller pitch. The most
common propulsion control architecture
is the one that employs the engine speed
as the controlled variable and the fuel

rack as the controlling variable, with the pitch remaining constant.

Figure 2.11: Engine speed control by fuel rack on the left or by propeller pitch on the
right, [Stapersma and Grimmelius, 2009].

Given that the ship propulsion system has two controlling variables, an alternative
to the above mentioned most common control practice is the use of propeller pitch set-
ting as the controlling variable with the engine speed being the controlled variable. The
layout of such propulsion control is shown in Figure 2.11.

Control of Two Outputs
Apart from the control strategy of using only one output of the vessel propulsion system
as controlled variable with the engine speed being the most common controlled vari-
able, the use of two controlled variables is also applied in modern propulsion control
systems.
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Figure 2.12: Propulsion control with two controlling variables and two controlled vari-
ables, [Stapersma and Grimmelius, 2009].

The design and implementation of propulsion control systems with two controlled
variables requires two controlling parameters which already exist for ships with con-
trollable pitch propellers. As a result the most common layout of control systems con-
trolling two outputs of the ship’s propulsion system is the one shown in Figure 2.12,
where the engine speed is controlled by adjusting the fuel rack. In Figure 2.12 the sec-
ond variable which is controlled by the propeller pitch is the non-dimensional thrust
coefficient, KT , since it is preferred one of the two controlled variables to be a “com-
manding”variable, that means monotonically proportional but not necessarily linearly
proportional to the ultimate objective which is the ship speed. Additionally, there is the
option to change sides and make the engine speed controlled by the propeller pitch and
the non-dimensional thrust coefficient, KT , controlled by the fuel rack position.

Moreover, according to [Stapersma et al., 2004] in case of control of two outputs,
except for the non-dimensional thrust coefficient KT , there are more outputs of the ship
propulsion system which can be considered as controlled variables. Provided that the
controlling variables are two:

• fuel rack

• propeller pitch

the list with candidates as controlled variables could include:

• engine speed, ne

• ship speed, vs
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• torque, Q

• thrust, T

• non-dimensional torque coefficient, KQ

• non-dimensional thrust coefficient, KT

• advance coefficient, J

• exhaust temperature, Texh

• thermal wear parameter diesel engine

• mechanical wear parameter diesel engine

As it can be seen in Figure 2.12 both controllers act in parallel. Besides this, a layout
with the two controllers acting in series either on the side of fuel rack or on the side of
propeller pitch can also be implemented.

A better insight on the advantages and disadvantages of different combinations of
the above mentioned controlled and controlling variables is given in [Stapersma et al.,
2004] and [Stapersma and Grimmelius, 2009]. Different controlled variables can gener-
ate multiple propulsion control designs with the optimal selection being dependent on
the operating profile of the vessel and the ultimate objective of the propulsion control
which could be for instance command of ship speed, manoeuvrability or cavitation-free
operation of the vessel. At this point it should be mentioned that for the scope of this
thesis, the possibilities of refinement of the already existing propulsion control are ex-
amined. This means that since the propulsion controller of the examined reference ves-
sel is a classic engine speed governor, only the single output control architecture will be
investigated and more specifically the case that the engine speed is controlled by chang-
ing the fuel rack.

2.4. WAVE DISTURBANCE REJECTION TECHNIQUES ON DIESEL

ENGINES
In this Section a short overview of techniques used to reject the wave disturbances acting
on Diesel engines and causing overloading or other negative impacts.

[Jiang, 1994] develops a generalised gain scheduling control mechanism for Diesel
engines based on offline optimisation techniques. More specifically, the linear model of
Diesel engines are derived for specific operating points. Then the optimal values of the
settings of a PID controller are determined by making use of off-line numerical optimisa-
tion aiming at minimising the integral squared error (ISE) of the engine speed deviation
when applying a step speed change command:

j
(
Kp ,Ki .Kd

)= min
∫ ∞

0
[e(t )]2 d t

The numerical optimisation that is employed is sequential quadratic programming. The
derived gain scheduling control scheme is evaluated on a real engine under multiple
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tests. The outcome of the tests is that the performance of the engine with the designed
control scheme is better compared to the existing engine governor. What is more, the
connection between of the controller settings and the engine fuel efficiency is investi-
gated with the drawn conclusions stressing out that the developed gain scheduling con-
troller has better fuel efficiency.

[Pan et al., 2010] attempts to change the classic PID algorithm that is commonly ap-
plied in engine speed governors in order to reject disturbances acting on marine Diesel
engines. Given that the control process of a marine Diesel engine speed is highly non-
linear and time varying due to the dynamic environment it is considered extremely dif-
ficult to achieve optimal control system behaviour in terms of robustness to the non-
linear characteristic of the ship and the disturbances acting on the system.

Figure 2.13: Flow chart of genetic algorithm optimisation process, [Pan et al., 2010].

For that reason, [Pan et al., 2010] develops an Active Disturbance Rejection Controller
(ADRC) in order to improve the disadvantages of the classic PID controller. In this work
the dependence of the performance of an ADRC on its large number of parameters is
pointed out. Some of these parameters need to be adjusted on-line during the operation
of the ship. In order to deal with this challenge, a genetic algorithm is applied for the on-
line optimal selection of values of the ADRC parameters when this is required always de-
pending on the disturbance acting on the engine. After executing some simulation tests
with the developed ADRC being applied on a marine Diesel engine the results regarding
the performance of the controller are quite promising; speed response of optimal ADRC
controller is faster and smoother compared to the classic PID controller. Additionally,
the speed response seems to be quite smooth and accurate in case of load changes due
to disturbances.
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An attempt for disturbance rejection is made by [Van Spronsen and Tousain, 2001]
who suggests the investigation of control strategies based on H∞ control, aiming to pre-
vent the overloading of marine Diesel engines when vessel sails in waves. More pre-
cisely, in this work the goal is to avoid the violation of the reduced time between overhaul
(RTBO) line, which is defined by the engine manufacturer and can be noticed in Figure
2.14. [Van Spronsen and Tousain, 2001] attempts to achieve that by optimising existing
control architectures and by introducing more control variables.

Figure 2.14: Violation of RTBO line due to wave disturbance.

As a first step, [Van Spronsen and Tousain, 2001] tries to improve the existing con-
troller by reducing the control effort and thus the response and sensitivity of the fuel
rack position. The second choice is an attempt to give to the disturbance the desired
shape in the engine operating envelope. This does not mean that the control effort is
again reduced but rather shifted to a more favourable location in the engine operating
envelope like for instance a dynamic response whose orientation is parallel to the RTBO
line.

Another attempt of [Van Spronsen and Tousain, 2001] to prevent marine Diesel en-
gine’s overloading involves the introduction of another controlling variable. This con-
trolling variable is the propeller pitch whose variations are able to effectively counter-
act the impact of the Sea State on the Diesel engine in terms of causing fluctuations
to the propeller torque. Finally, [Van Spronsen and Tousain, 2001] integrates both fuel
rack control and propeller pitch control by introducing a Multiple Input Multiple Output
control concept. The tracking performance of this control concept is optimised by opti-
mising the weightings of the controller which weigh the sensitivity of the response of the
controlling variables with respect to the disturbance input always aiming for disturbance
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rejection and prevention of Diesel engine overloading. According to [Van Spronsen and
Tousain, 2001] conclusions the implementation of Single Input (fuel rack position) Single
Output (shaft speed) does not give satisfactory results in terms of waves disturbance re-
jection. On the other hand, the employment of a more complex Multiple Input Multiple
Output controller including time optimal response solutions at the same time ends up
with more promising results regarding disturbance rejection and prevention of marine
Diesel engine overloading.

Similarly to [Van Spronsen and Tousain, 2001], [Xiros, 2004] makes use of the lin-
ear model of ship propulsion system which is mathematically described by a reduced
second-order transfer function in order to design a typical PID Diesel engine speed gov-
ernor based on sensitivity H∞-norm specification. [Xiros, 2004] aims at improving the
governor’s performance in case of counteracting severe load fluctuations caused by heavy
weather.

2.5. SHIP PROPULSION SYSTEM MODEL DISTURBANCES
This section contains a presentation of the disturbance inputs that act on the ship propul-
sion system model. These two disturbance inputs, which act on ship resistance and on
wakefield, can be attributed to a variety of reasons. However, as far as this thesis is con-
cerned, they are both due to waves interacting with the vessel. Furthermore, some in-
formation, regarding the approaches used in order to calculate these two disturbances
is given in the following subsections. A detailed insight can be found in the suggested
literature.

2.5.1. WAKE FIELD DISTURBANCE DUE TO WAVES

The first of the main disturbances acting on the propulsion system, that will have to be
modelled in this thesis, is the wake field disturbance. With respect to the ship propulsion
system model, the wake field disturbance can be located at some point after the ship’s
translation integrator in the simulated propulsion model as in can be noticed in Figure
2.5. Caused by wave fields and the waves induced ship’s motions, the wake field distur-
bance leads to variations of the wake speed seen by the propeller, which in turn affects
the propeller torque and dynamic behaviour of the prime mover.

A significant amount of research has been conducted by [Aalbers and van Gent, 1984,
van Terwisga et al., August 8-13 2004, Taskar et al., 2016, Ueno et al., 2013], aiming to
model the wake fluctuations, which is necessary for the analysis of the prime mover-
propeller interaction in case of sailing in waves.

A thorough study existing in literature and gives a clear picture for the case of a ship
moving in waves, regarding the unsteady wake velocities is [Aalbers and van Gent, 1984].
In this work, an effort is addressed to define the factors contributing to the unsteady
wake field. According to the linear wave theory, the total wake field is assumed to be a
linear superposition of the contribution of the steady wake field, which is the wake field
developed when the ship sails in calm water and the unsteady seakeeping components,
in other words the contributions of waves and ship motions to the wake field. Attempt-
ing to validate the theory of linear superposition, in [Aalbers and van Gent, 1984] some
tests were performed, during which, the unsteady velocities in the wake of frigate type
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ship model were both measured and calculated. During these tests, two scenarios were
investigated:

• a model towed in head waves, being restrained at static equilibrium draught and
trim

• a model towed in head waves, being completely free in its six-degrees of freedom

The validity of the linear superposition theory is examined by comparing the average
value of the advance speed in waves with the advance speed in calm water that was
measured during both test series that were carried out. The drawn conclusion is that
the results from the calculation of the linear superposition following the theory agree in
sufficient level with the measurements done in the tests. Consequently, the linear super-
position theory is considered to be valid.

Following the same theory in [van Terwisga et al., August 8-13 2004], a simulation
tool is applied to a naval ship and its propeller, in order to demonstrate the effect of sea
state, heading and propeller control strategy on the cavitation inception speed. For the
development of the simulation tool, the total wake field is modelled, following the same
decomposition of the components contributing to the total wake field, as in [Aalbers and
van Gent, 1984]. This results in the following mathematical approach of the total wake
field:

V
e f f
tot al =V

e f f
calmw ater +V w aves

=V
n
cw +V

i nt
cw +V

i
wi +V

d
wi +V

r
wi +V

t
sm

(2.1)

According to the approach presented in [van Terwisga et al., August 8-13 2004], the total

calm water (cw) wake field, V
tot
cw consists of:

• the nominal wake field, V
n
cw , which is caused by the hull of the vessel and its ap-

pendages when the propeller is not implemented on the vessel yet

• the propeller induced wake field, V
i
cw , which is attributed to the propeller action

in an already existing wake field

• the propeller-wake interaction wake field, V
i nt
cw , which includes the effect of the

propeller suction on the incoming hull flow and on the vorticity distribution

Since, usually the total, V
tot
cw and the induced, V

i
cw , wake field are not available, the ef-

fective, V
e f f
cw wake field in calm water is used, which can be decomposed in the following

components:

V
e f f
cw =V

tot
cw −V

i
cw =V

n
cw +V

i nt
cw (2.2)

As far as the unsteady wake field is concerned, this is composed of:

• the undisturbed incoming waves orbital velocity, V
i
wi

• the wave system velocity which is partly reflected on the hull, resulting in a diffracted

wave system, V
d
wi
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• the wave system velocity which is radiated by the hull due to ship motions, V
r
wi

• the velocities introduced to the propeller plane because of the ship motions, V sm .

The corresponding wake field experienced by the propeller is V
t
sm =−V sm

Another example, regarding the effort done to describe mathematically the wake ve-
locities, is [Ueno et al., 2013]. In this work, measurements take place in order to estimate
the inflow velocity in real time, based on thrust and torque variations in unsteady con-
ditions. Furthermore, it is claimed that the results, with regard to the fluctuating wake
velocities, are dominated by the wave induced particle motion and surge motion of the
ship, whereas the effect of oscillation of the propeller position, in other words the effect
of heave and pitch motion is negligible. Thus, the following formula is derived, regarding
the estimation of the inflow velocity:

V f luctuati ng =(1−w){U −ωeξa sin(ωe t −εξ)}

+αωha exp(−kzP )cosχcos(ωe t −kxP cosχ)
(2.3)

where

ha :amplitude of incoming regular wave
k :incoming regular wave number
ω :incoming regular wave circular frequency
ωe :wave encounter circular frequency
U :average ship speed
ξa :surge motion amplitude
εξ :surge motion phase delay
(xP ,0, zP ) :propeller co-ordinates
t :time

Eq. (2.3) describes the wake flow including the surge oscillation effect and the orbital
motion of water particles in an attenuated wave at the stern. The effect of the interaction
of the wave with the hull, until it reaches the propeller, is included in coefficientα, which
also takes also, into consideration the impact of the encounter angle χ:

α=
{

0.2
(

λ
L|cosχ|

)
+0.5, for λ

L|cosχ| ≤ 2.5

1, for 2.5 ≤ λ
L|cosχ|

(2.4)

Differences for some wave encounter angles comparing test results and theoretical cal-
culations in [Ueno et al., 2013] are attributed to the poor estimation of wave amplitude
attenuation, calculated in Eq. (2.4).

Following the same approach, concerning the wake field model, in [Taskar et al.,
2016] the impact of a range of waves (head, bow-quartering, following and stern-quartering)
on the propulsion efficiency has been studied. Effects of events like propeller emergence
and propeller operation near the free surface are taken into account. The thrust and
torque losses for the former phenomenon are assumed proportional to the out of the
water area of the propeller. The effect of the latter phenomenon is calculated by using a
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thrust and propeller torque reduction factor. As for the wake velocities, the contribution
of wave induced orbital motion and surge ship motion are modelled as in [Ueno et al.,
2013]. Additionally, the ship’s pitch motion contribution was taken into consideration,
by the following term:

Vmean =
√(

1− ∆p

0.5ρU 2

)
(2.5)

This term is added to Eq. (2.3), resulting in the following equation, which contains the
wave induced orbital motion, as well as the surge and pitch ship motion contributions:

V f luctuati ng = (1−w){U −ωeξa sin(ωe t −εξ)}

+αωha exp(−kzP )cosχcos(ωe t −kxP cosχ) ·
√(

1− ∆p

0.5ρU 2

) (2.6)

In Eq. (2.6), ∆p stands for the pressure gradient below the bottom of the vessel due to
pitch motion estimated by:

∆p ∼−ρ
4
ω2

e |η5|2x2 (2.7)

where:

η5 :pitch motion amplitude
x :longitudinal distance of the propeller from the centre of gravity of the ship

Time varying wake velocities calculated based on Eq. (2.6) were compared to wake
data in waves. Sufficient matching between the two, led to the decision of using Eq. (2.6)
to obtain wake variations in different wake conditions.

WAVE INDUCED PARTICLE MOTIONS
As it was mentioned before, part of the contributions to the unsteady wake velocities for
a vessel sailing in wave field, is the undisturbed incoming waves. In other words, this is
referred to the undisturbed wave orbital velocity. In this thesis, this component of the
breakdown of the total wake field, as it was presented in [Aalbers and van Gent, 1984,
van Terwisga et al., August 8-13 2004], is the only one extensively presented. The reason
for that is that it is the only component, which will be taken into account for the gen-
eration of wake disturbance time signals.intended spaceintended spaceintended space

Figure 2.15: A propagating harmonic wave,
[Holthuijsen, 2007].

What is meant by undisturbed wave or-
bital velocity, is the orbital motion of the
water particles under a harmonic wave,
usually observed in a two-dimension
wake field. Additionally, there is a veloc-
ity, called orbital velocity, corresponding
to motion of particles in closed, circular
or elliptical orbits. This kind of motions
and velocities, due to harmonic oceanic
waves are documented in [Holthuijsen, 2007, Journée and Massie, 2000, Krogstad and
Arntsen, 2000].
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(a) Shallow Water Wave

(b) Deep Water Wave

Figure 2.16: Velocity fields in waves, [Journée and Massie, 2000].

According to the aforementioned literature, the water particle velocities can be ob-

tained from the spatial derivatives of the velocity potential φ, ∂φ∂x = ux and ∂φ
∂z = uz . This

results in:

ux = ûx sin(ωt −kx) with ûx =ωαcosh[k(d + z)]

sinh(kd)
(2.8)

uz = ûz cos(ωt −kx) with ûz =ωαsinh[k(d + z)]

sinh(kd)
(2.9)

where:

α :wave amplitude
k :wave number
d :water depth
ω :harmonic wave frequency
z :vertical co-ordinate
x :horizontal co-ordinate
t :time

In case of deep water, when kd →∞ the expressions for the amplitudes of the velocity
components ûx and ûz become:

ûx =ωαekz and ûz =ωαekz (2.10)

From these expressions, one can easily extract the conclusion that in deep water, the
wave induced velocities decrease exponentially with the distance to the surface, given
that z < 0 below the still-water surface. On the other hand, in case of very shallow water,
when kd → 0, the expressions for the amplitudes of the velocities become:

ûx = ωα

kd
and ûz =ωα

(
1+ z

d

)
(2.11)
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The conclusion drawn by Eq. (2.11) is that for very shallow water, the amplitude of the
horizontal velocity is independent of the depth of the observed water particle with re-
spect to the still-water surface. On the contrary, the amplitude of the vertical velocity is
linearly dependent on the depth of the water particle under consideration, with respect
to the still-water surface. Regarding the path of a water particle, is obtained by inte-
grating the corresponding velocity in time. Assuming a particle located at an arbitrarily
chosen point with co-ordinates x, z, the local co-ordinates will be defined as x ′ and z ′,
always centred on x, z. The integration of velocity equations, Eq. (2.8) and (2.9), will lead
to:

x ′ =−αcosh[k(d + z)]

sinh(kd)
cos(ωt −kx) (2.12)

z ′ =αsinh[k(d + z)]

sinh(kd)
sin(ωt −kx) (2.13)

The horizontal, x ′ and vertical position, z ′, are formulas of cosine and sine in time, re-
spectively. Therefore, each water particle’s trajectory can be represented as an ellipse
equation:

x ′2

A2 + z ′2

B 2 = 1 (2.14)

Consequently, the horizontal and vertical semi-main axes are respectively:

A =αcosh[k(d + z)]

sinh(kd)
(2.15)

B =αsinh[k(d + z)]

sinh(kd)
(2.16)

In case of deep water, when kd →∞, the values of the length of the two above men-
tioned axes become equal, A = B .

r =αekz (2.17)

According to Eq. (2.17), the water particles move in circles with the radius being reduced
exponentially with the distance to the surface, since z < 0 below the still-water surface,
as shown in Fig. 2.17.

In case of very shallow water, when kd → 0, the lengths of the axes are A = α
(kd) and

B = α(1+ z
d ). As a result, water particles trajectory is an ellipse which becomes flatter

as the water particle approaches the bottom. With the vertical axis being dependent
on the distance from the still-water surface, it is obvious that B → 0 as z → −d , while
the horizontal axis remains constant, as it is independent of the distance from the still-
water surface, A = α

(kd) . As far as the bottom position is concerned, z =−d , the ellipse is
degenerated to a straight, horizontal line, as it is depicted in Fig. 2.17.
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Figure 2.17: The orbital motion of water particle in deep, intermediate-depth and very
shallow water respectively, [Holthuijsen, 2007].

2.5.2. ADDED RESISTANCE IN WAVES

The second one of the two main disturbances acting on the propulsion system, is the
ship resistance disturbance. With regard to the propulsion system model, as it can be
seen in Figure 2.5, the resistance disturbance is located at the Ship Resistance block.
Resistance disturbance is caused by additions to the nominal ship resistance. These ad-
ditions can be attributed to degradation of performance in time, because of hull fouling
and to operational conditions, like displacement variations, sea state and water depth
under the keel [Woud and Stapersma, 2002]. As far as this thesis is concerned, resistance
disturbance on the propulsion system model is considered to be the result of sea state.

Figure 2.18: Extra-induced energy loss
when sailing in regular waves, [Journée and
Massie, 2000].

The resistance disturbance concerned
in this thesis, as the result of sea state, is
called added resistance in waves. In par-
ticular, when a vessel sails in a wave field,
two kinds of waves are generated:

• Waves related to the forward speed
in still water

• Waves related to the vessel’s verti-
cal relative motion response to in-
cident waves

Both kinds of generated waves dissipate
ship energy. For this reason, it is, right-
fully, considered that a vessel moving in
waves will dissipate more energy than a
vessel sailing in calm water. This extra-induced loss of energy is called added resistance
in waves.

The fact that the added resistance has a significant impact on the vessel’s propul-
sion system design and consequently on its economical exploitation, has spurred a con-
siderable amount of research, in order to examine different methods applied to obtain
the added resistance in waves of a ship, trying at the same time to validate their results
against sea keeping tests. A valuable overview of this research is well documented in
[Journée and Massie, 2000, Arribas, 2007, Alexandersson, 2009, Strom-Tejsen et al., 1973].
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Figure 2.19: Radiating waves due to oscilla-
tory motion, [Alexandersson, 2009].

One of the conclusions that can be ex-
tracted, regarding the calculations for the
added resistance, after studying this liter-
ature, is that they are based on the predic-
tion of ship motions in a realistic seaway.
It has to be pointed out, that the research
done takes into account only heave and
pitch motions for the performance of the
vessel in head seas. The reason for that is
that the estimation of the added resistance in case of waves direction other than head
seas is considered to be complicated, due to the complexity of the impact of motions
of roll, yaw and sway, which has to be taken into account. Additionally, head waves are
considered to be the most difficult condition, leading to maximum added resistance for
a ship.

As far as the analysis of the added resistance due to waves in head seas is concerned,
it can be simplified by decomposing it to three separate components:

• A component resulting from interference between incident waves and waves gen-
erated by the ship, due to heave and pitch motions. This component is called drift-
ing force.

• A component which is related to the damping force of the heave and pitch motions
of the ship in waves.

• A component associated to the wave reflection against the ship, called diffraction
effect.

These three components are related to the energy supplied from the ship to the sur-
rounding water. Apart from a very small part of the energy loss, which can be attributed
to the viscous friction, all the rest is considered to be generated by the ship propulsion
plant and transmitted to the waves generated by the ship. In other words, hydrody-
namic damping of ship motions (heave and pitch) is dominating compared to the vis-
cous damping, which is considered to have minor impact to the added resistance, which
consequently can be assumed to be a non-viscous phenomenon. An additional drawn
conclusion is that the added resistance can be divided in radiation and diffraction in-
duced resistance. More specifically, the radiation induced resistance is dominating in
the region of frequencies around the resonance frequency of heave and pitch motions,
with the peak of the added resistance occurring at the frequency that the wavelength is
about the same as the vessel’s length. This can be attributed to the pitch motion that has
also its peak at that frequency. On the other hand, it is reasonable to consider that the
diffraction induced resistance is dominating in the region of frequencies where the ship
motions are small, that means in the region of high wave frequency. This is illustrated in
Figure 2.20.

Regarding the analytical methods that can be used for the calculation of added resis-
tance, a number of general conclusions can be drawn:

• The added resistance is proportional to the square of the wave height.
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(a) Radiation and diffraction induced resistance
for a range of frequencies.

(b) Wavelengths near ship length producing
maximum pitch motion and added resistance.

Figure 2.20: Added resistance value behaviour through frequency range, [Alexandersson,
2009].

• The added resistance is independent of the calm water resistance.

• The added resistance is dependent on the motions and their phase relationship to
the wave field.

Some of the most well-known analytical methods for the calculation of added resistance
are, briefly, presented below:

Havelock formulation: One of the first attempts to deal with the problem of calculating
the resistance increase in regular waves was the work of [Havelock, 1942], which resulted
in an expression as a function of heave, zα and pitch, θα, amplitude described below:

RAW =−k

2

(
Fαzα sinεzF +Mαθα sinεθM

)
(2.18)

where:

k :wave number [-]
Fα :exciting force amplitude [N]
Mα :exciting moment amplitude [Nm]
εzF :phase angle between exciting function and response for heave [-]
εθM :phase angle between exciting function and response for pitch [-]

Despite the fact that this formulation lacks of accuracy given that it does not take
into account the diffraction of waves, viscous damping and pitch and heave coupling, it
is considered the first step and a fundamental work, providing a simple way to calculate
the added resistance in waves, since there is no need of integration along ship length or
other complicated mathematical calculations [Strom-Tejsen et al., 1973, Arribas, 2007].

Integrated Pressure Method/Boese’s Method: Similarly to Havelock formulation, this
method can be considered as a "simple technique", as a consequence of the fact that
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Boese used as foundation a hydrodynamic approach similar to the one which was fol-
lowed in the original work performed by Havelock [Strom-Tejsen et al., 1973, Arribas,
2007]. Due to the fact that three-dimensional pressure distribution on a ship hull sailing
in waves can not be accurately obtained , Boese proposes the use of linear strip theory,
aiming to calculate the pressure distribution.

Figure 2.21: Pressure integration on each
strip along ship’s length, [Alexandersson,
2009].

Additionally, a small contribution of
the vertical motions is included, due to
the pitch angle that produces a longitudi-
nal component. Boese divided the pres-
sure forces acting on a ship’s hull into two
components. At this point the difficulty
to obtain the longitudinal force directly
has to be mentioned, on the grounds that
one of the requirements of the strip the-
ory is that interaction effects between the
strips have to be neglected. For that rea-
son, Boese had to obtain a mean value for
the longitudinal force for a section

(
strip

)
at xb which is derived starting from the

pressure of the undisturbed wave with Bernoulli’s equation [Journée and Massie, 2000,
Alexandersson, 2009]:

p +ρ · g · z +ρ ∂Φ
∂t

+ ρ

2
·∇Φ ·∇Φ=C (2.19)

Boese used only the linear part in his method:

p =−ρ · g · z −ρ ∂Φ
∂t

(2.20)

The pressure is integrated over the strip, from the bottom of the strip to the wave surface,
giving the force per unit length:

f (xb , t ) =
∫ ξ

Zk

p ·∂zb (2.21)

where:

ξ :wave surface [m]
Zk :deepest point of the strip [m]

Zk = Ds −η3 +xb ·η5 (2.22)

where:

Ds :water depth [m]
η3 :heave [m]
xb :x coordinate of the strip [m]
η5 :pitch [rad]
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The mean force per unit length is calculated:

f (xb) =
∫ Te

0
f (xb , t ) ·∂T (2.23)

For this mean value of the force per unit length [Arribas, 2007] gives a more detailed
formula:

f ∗ = ρgζ2

4

(
−1+ z2

x

ζ2 + 2s cos
(−kxb cos

(
µ
)−εs

)
ζ

)
with zx = Za −xbθa (2.24)

where:

Za :heave amplitude [m]
θa :pitch amplitude [rad]
xb :x coordinate of the strip [m]
s :amplitude of the vertical relative motion [m]
εs :phase lag of the vertical relative motion

The horizontal part of the mean force per unit length as expressed in Eq. (2.23) is
calculated by:

f (xb)η1 = f (xb) ·
(
∂yw

∂xb

)
(2.25)

This fluctuating force caused by waves and heave and pitch motion is integrated over a
fixed surface, which in case of Boese’s Method is the waterline plane, in order to obtain
the first component of added resistance:

Raw1 = 2 ·
∫ L

0
f (xb) ·

(
∂yw

∂xb

)
·∂xb (2.26)

The contribution of the vertical motions is calculated by:

Raw2 = 1

Te

∫ Te

0
ρ ·∇ · η̈3(t ) ·η5(t ) ·∂t (2.27)

which can be re-written as:

Raw2 = 1

2
·ρ ·∇ ·ω2

e ·η3 ·η5 ·cos
(
εη3 −εη5

)
(2.28)

where:

ωe :encounter frequency [rad/sec]
η3 :heave amplitude [m]
η5 :pitch amplitude [rad]
εη3 :heave phase lag [-]
εη5 :pitch phase lag [-]

Consequently, the total added resistance in waves calculated by Boese’s Method is given
by adding the two aforementioned components Raw = Raw1 +Raw2.
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Potential Flow Solution/Mauro’s Method: In the analytic method that he developed ap-
plying a potential flow solution, Mauro has confirmed that pitching and heaving mo-
tions of the ship dominate the effect of surge. Hence, he reasonably neglects the effects
of variation in ship speed. As far as Mauro’s formula calculating the added resistance is
concerned, it consists of six components, with each one referring to a specific compo-
nent of ship motion or to wave reflection against ship’s hull or coupling between them.
Therefore, the added resistance in Mauro’s formulation is given by:

σAW = D11 +D22 +D33 +D12 +D13 +D23 (2.29)

where the non dimensional added resistance coefficient is defined by:

σAW = RAW

ρg
(

B 2

L

)
ζ2

A

(2.30)

Regarding the terms of Eq. (2.29), their physical interpretation is:

D11 :heaving motion [-]
D22 :pitching motion [-]
D33 :wave reflection [-]
D12 :coupling between heaving and pitching motion [-]
D13 :coupling between the heaving motion and the resistance

associated with wave reflection[-]
D23 :coupling between the pitching motion and the resistance

associated with wave reflection

The analytical formula for the coefficients Dmn , in integral form is given below:

Dmn = 1

π

V 2

g L

(
−

∫ −k∗

−∞
+

∫ ∞

− 2πl
λ

(
η+ω1

)3(
η+ 2πλ

l

)
(
η+ω1

) 1
2 −k2

0η
2

Cmn
(
η
)
dη

)
(2.31)

where:

k0 = g l /V 2

l = L/2
ω1 = ωe l /V

k∗ = 1
2

[
k0 +2ω1 +

(
k0 +4k0ω1

) 1
2
]

The functions Cmn
(
η
)

are defined below:

C11 =
(
ω1 +η

)
z2
αG2

1

C22 =
(
ω1 +η

)(
2πl /λ

)2
θ2
αG2

2
C33 =

(
2πl /λ

)
k0G2

3/
(
ω1 +η

)
C12 = −2

(
ω1 +η

)
G1G2

(
2πl /λ

)
zαθα cos

(
εz −εθ+α−β)

C13 = −2G1G2
(
2πlk0/λ

) 1
2 zα cos

(
εz +α−γ)

C23 = 2G2G3
(
2πlk0/λ

) 1
2 θα cos

(
εθ+β−γ)
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where:

G1,G2 and G3 =magnitudes of the complex functions
α,β and γ =phase angles of the complex functions

The interested reader is referred to [Strom-Tejsen et al., 1973] for more details, regarding
the six added-resistance components as defined in Mauro’s formula.

Drift Force Approach/Joosen’s Method: Based on the extension of the analysis of afore-
mentioned Maruo’s method, Joosen was able to develop another added resistance the-
ory. In his work, Joosen demonstrated that the drift force in the longitudinal direction
in head waves is dependent only upon the potential of the radiated waves. More specif-
ically, he drew the conclusion that if the ship motion amplitude is of similar order of
magnitude over the whole range of encounter frequencies, the impact of wave diffrac-
tion is negligible for the whole range of frequencies, apart from very high frequencies,
where it is proved to be dominating. Joosen’s final expression for the added resistance is
similar to Havelock’s formula, apart from the fact that it takes into account wave-motion
coupling phenomena:

σAW = E1 +E2 +E3 (2.32)

where:

E1 = C0B33z2
α

E2 = C0
(
2πL/λ

)2B55θ
2
α

E3 = −2C0
(
2πL/λ

)
B3,5zαθα cosε

C0 = 1
16

L2

B 2

(
ωe

√
L
g

)3

∇/L3

and

ε = |εz −εθ|

A better insight to Joosen’s formula is provided in [Strom-Tejsen et al., 1973].

Radiated Energy Approach/Gerritsma & Bulkerman’s Method: Based on the principle
that added resistance can be attributed to the damping waves radiated away from the
hull of the ship, Gerritsma and Beukelman achieved to calculate the added resistance
as the energy flux radiated away from the hull, which for one wave encounter period is
defined below:

E =
∫ Te

0

∫ x f

xα
b(x)V 2

z (x, t )d xd t (2.33)

where:

b(x) :damping coefficient of the body at any longitudinal position
Vz (x, t ) :vertical velocity of the ship section relative to the disturbed water surface elevation
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Given that the relative vertical velocity Vz can be expressed as Vz = Vzα cos
(
ωe t +ε),

Eq. (2.33) after integration in terms of time gives E = π
ωe

∫ x f
xα b(x)V 2

zα(x)d x. Furthermore,
Gerritsma and Beukelman have confirmed that added resistance is proportional to radi-
ated energy, E =λRAW , where λ is the wave length. This results in the formula below:

RAW = k

2ωe

∫ x f

xα
b(x)V 2

zα(x)d x (2.34)

In Eq. (2.34) b(x) is the distribution of the sectional added-mass/damping coefficient,
which is necessary for the calculation of the added resistance, is described below:

b(x) = N (x)−V
[
dm(x)/d x

]
(2.35)

where:

m(x) :zero-speed sectional added-mass coefficient
N (x) :zero-speed sectional damping coefficient

The interested reader is referred to [Strom-Tejsen et al., 1973], where quite a bit of
information is given, regarding Gerritsma and Beulkerman formula for the added resis-
tance.

Faltinsen’s Asymptotic Method: This method is only referred to the calculation of the
diffraction induced added resistance [Alexandersson, 2009], which is dominating only
in the region of high wave frequencies, as graphed in Figure 2.20a. Faltinsen’s Method
aims to calculate the force that a wave exerts on the ship hull, when it hits the hull and
bounces off. The formulation of the method is based on the idea of a wave hitting a
vertical wall. The resulting force on the wall in such a case is F = ρ·g

2 ·ζ2
α ·Lw all . This force

could be integrated over a curved surface, representing the side of a ship hull, F = ρ·g
2 ·

ζ2
α ·

∫
L1

sin
(
θ+β) ·n ·∂l , where n is the normal vector and L1 the length of corresponding

hull side. Since these formulas are referred to a wall, with no speed, being hit by a wave,
they can be valid for the case of a vessel sailing in a wave field when multiplied with a
speed factor. As a result, Faltinsen’s method equation for added resistance is given by:

RAW = ρg

2
·ζ2
α

(
1+ 2 ·ω ·U

g

)
·
∫

L1

sin
(
θ+β) ·nx ·∂l (2.36)

At this point, it should be noted that in the literature that is taken under consider-
ation, the analytical methods demonstrated for the calculation of added resistance in
waves are validated by means of comparison of the results of implementation of those
methods against experimental data. Profound and detailed description, with respect to
the results of the validation of each method is offered in [Strom-Tejsen et al., 1973, Ar-
ribas, 2007, Alexandersson, 2009].

As far as the added resistance in irregular waves is concerned, using the aforestated
analytic methods, in first place the added resistance, RAW is estimated in regular waves
for a sufficiently enough range of wave-encounter frequencies ωe to obtain an accurate
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representation of the mean response curve for added resistance as defined below:

R(ωe ) = RAW

ζ2
A

(2.37)

where:

ζA :wave amplitude

Having calculated the mean response curve R(ωe ) for regular waves, then the average
value of the added resistance R AW of the ship, sailing at a specific speed in irregular head
waves can be estimated using the mean response curve R(ωe ) and the energy spectrum
of the sea state under consideration Sζ(ωe ). The procedure of superposition has to be
followed, which, in principle is similar to the method used to predict ship motions in
wave fields and it is described in the following equation:

R AW = 2
∫ ∞

0
R(ωe )Sζ(ωe )dωe (2.38)

Figure 2.22: Wave and resulting ship mo-
tions, [Strom-Tejsen et al., 1973].

According to the above mentioned
methods, there is no doubt that a vast
amount of information and details, re-
garding the ship hull under investigation
are demanded in order to calculate sec-
tional offset distances or sectional ge-
ometric coefficients, depending on the
chosen method each time. Similarly, hy-
drodynamic characteristics, like added
mass and damping coefficients for each
one of the transverse sections of the hull
of the vessel have to be calculated. That

makes the process of calculation of added resistance in waves mainly dependent on the
ship motions and the accuracy of the outcome directly related to the accuracy of the
motion data available.

2.6. CONCLUSIONS

2.6.1. PROPULSION SYSTEM AND PROPULSION CONTROL MODEL
Regarding the propulsion system that will be examined in this work, it will be a typical
mechanical propulsion system which consists of a medium-speed Diesel engine, a gear-
box and a Controllable Pitch Propeller. With respect to the propulsion system control
that will be examined in this thesis, it will be a traditional Diesel engine speed governor,
controlling the engine speed by adjusting the fuel rack position.

As far as the non-linear model of the ship propulsion system is concerned, it will
be derived based on the work presented in [Stapersma and de Heer, 2000]. Then, the
non-linear model will be linearised following the linearisation method of [Vrijdag and
Stapersma, 2017] as it was presented in Section 2.2.3.
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2.6.2. DISTURBANCES MODELLING

As far as the modelling of the disturbances is concerned, it has to be mentioned that only
the effect of a varying wakefield will be examined in this thesis. The reasons for that are
stated and justified below:

• The more direct impact of the wakefield variations on the behaviour of the rotating
shaft system and the engine operating point, which is investigated in this thesis,
compared to the ship resistance variations [Stapersma and de Heer, 2000].

• The level of difficulty of the methods used to obtain the resistance variations in
waves, compared to those for calculation of the wakefield variations, as it was ad-
equately discussed in Section 2.5.2

As for the first above mentioned reason, following the block diagram of ship propulsion
system in Figure 2.5 and as it is argued in [Stapersma and de Heer, 2000], the wakefield
disturbance affects directly the entrance velocity at the propeller and finds its way easily
to the engine, by causing a change in propeller torque and disturbing the shaft rota-
tional balance, which is translated into a change in shaft speed. This change leads the
engine, more particularly the governor, to the adjustment of injected fuel and thus deliv-
ered torque, aiming to restore the balance at the rotating shaft. As it can be concluded,
only the shaft dynamics lies between the wakefield disturbance and the engine with the
former being able to influence directly the dynamic behaviour of the operating point of
the latter. On the other hand, it is clearly viewed that for the ship resistance disturbance
it is more difficult to find its way to the engine, since its way is, firstly, blocked by an
additional integrator, compared to the wakefield disturbance, the ship mass integrator
and secondly by the shaft’s inertia integrator. Consequently, the impact of the ship resis-
tance disturbance on the dynamic behaviour of the engine operating point is considered
to be less direct, compared to the wakefield disturbance. Additionally, shaft dynamics is
faster in comparison to ship dynamics [Stapersma and de Heer, 2000]. Hence, the im-
pact of wakefield disturbance will be more significant compared to ship resistance dis-
turbance. Besides this, it has to be mentioned that according to the theory, [Stapersma
and de Heer, 2000], the integrator of ship’s mass is considered to be a "low pass"filter be-
tween the Diesel engine’s dynamic response and the resistance disturbance. This means
that the block of the integrator, as shown in Figure 2.5, allows only low frequency distur-
bance signals to pass. On the other hand, the majority of high frequency disturbances
are effectively blocked, without affecting the system’s dynamic behaviour.

Regarding the second reason for which only the effect of a varying wakefield will be
modelled, from the methods presented in Section 2.5.2, it was clearly demonstrated, that
the process of obtaining the added resistance in waves requires the accurate determina-
tion of hydrodynamic characteristics. Furthermore, the estimation of the added resis-
tance depends upon the use of accurate motion data. Apart from the fact that the cal-
culation of complicated hydrodynamic characteristics and ship motion data lies outside
the scope of this thesis, it also renders the objective of obtaining the added resistance in
waves significantly laborious.

On the other hand, wakefield variations can be obtained according to the theory pre-
sented in Section 2.5.1. Additionally, in this thesis, some assumptions and simplifica-
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tions will be applied for the calculation of the wakefield disturbance and they are cited
below:

• Only the undisturbed incoming waves orbital velocity is modelled. The rest of the
components related to radiated and diffracted waves velocities, contributing to the
unsteady wakefield are neglected. Additionally, relative water velocity due to ship
motions, like surge, heave and pitch, as examined in Section 2.5.1 are not taken
into consideration.

• Only the axial component, ux , of the velocity through the propeller disc is consid-
ered.

• The distribution of the disturbance over the propeller disc is not taken into ac-
count. The wake disturbance is assumed equal to the disturbance at the centre of
the propeller hub.

• The speed and heading of the ship are considered constant in the unsteady wake-
field model.

Following these assumptions, the calculation and model of the wakefield variations are
simple and sufficiently accurate for the objective of this thesis.





3
SHIP SIMULATION MODEL

In this chapter, the propulsion plant of a vessel is introduced and explained. Furthermore,
the process of obtaining the non-linear model of the propulsion plant, by modelling each
one of the components of the propulsion plant with the use of mathematical equations,
describing the behaviour of each component, is also included in this chapter. Additionally,
the simulation model of the vessel’s propulsion system is validated, regarding the static
operating points. Finally, the speed governor of the simulation model is tuned by means
of evaluation of the dynamic response for specific operating mode.

3.1. GENERAL IDEAS ON THE SIMULATION MODEL APPROACH
In order to proceed with the refinement of the already existing control system of the
prime mover of a vessel, a valid simulation model of the propulsion plant has to be built.
There are quite some reasons that dictate the need for use of a simulation model, when
the ultimate goal is the design and development of a controller. Besides the advantages,
there are also some drawbacks regarding the use of a simulation model. A brief summary
of those will be given in the following paragraph.

One of the most common ways to predict the dynamic behaviour of marine propul-
sion systems is the use of simulation models. The use of simulated marine propulsion
plants ensures the elimination of risk, as well as the prevention of different kinds of lim-
itations. Multiple scenarios, which would not be easy to test in real life due to possible
material or human losses, can be simulated. Additionally, by doing simulations, the use
of scale models, which are, usually, costly may be avoided. Simulations are also faster
than real-time tests. This allows the designer to increase, significantly, the amount of
tests that can be carried out, providing valuable results regarding the investigation of the
system behaviour, before it is actually built. At this early stage of designing the propul-
sion system, a sufficient number of simulations give the opportunity to the designer to
predict the dynamic behaviour of the vessel’s propulsion plant under different opera-
tional conditions. Consequently, different system parameters can be chosen optimally
(choice of suitable pitch-speed combinator law, engine governor calibration etc.), im-
proving the performance of the designed propulsion system.

45
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However, besides the benefits, the use of simulation models has also drawbacks. The
most significant one is that the designer has to fully understand the physical processes,
as a first step, and then build the conceptual model in such way that it adequately and
accurately represents the reality. This whole process is considered complicated and time
consuming.

Figure 3.1: Process of deriving a simulation
model from reality [Schlesinger, 1979]

As the purpose of this chapter is to
extract the simulation model from a real
vessel’s propulsion plant, an outline of
the process followed can be given in Fig-
ure 3.1, where the key elements of a cred-
ible simulation model are presented, as
they were given by [Schlesinger, 1979].
The inside arrows represent the process
needed to derive one element from an-
other. The outside arrows represent the
process that has to take place in order to
evaluate the credibility of the derivation
of each element. The process followed
in this chapter for the simulation model
to be derived is based in the process fol-
lowed in [Vrijdag et al., 2009], where a sys-

tematic approach regarding the derivation, verification and validation of ship propul-
sion plant simulation model is given.

The first step, before starting deriving a simulation model of a ship propulsion plant
is to clearly state the purpose of the derivation of such a simulation model and the ob-
jectives that need to be achieved by using it. A short statement of the goals of the model,
which will be presented in this chapter, is cited below: The ship propulsion plant simu-
lation presented in this session should be able to represent accurately the physical sub-
systems of a propulsion drive train, rendering possible the investigation of the impact
of different sea states, different heading of the vessel with respect to waves and different
operating point on engine’s fluctuations. Additionally, the simulation model should pro-
vide the tools for the refinement, if it is possible, of an existing Diesel engine controller,
aiming at the reduction of the engine load fluctuations. From this non-linear simulation
model, a linear one is going to be directly derived. The parameters of this linear model
will be used for the optimisation of the propulsion control system.

Besides this first insight, with respect to the models goals, some more specifications
can be stated, giving a clear starting point for the model derivation:

• The model should include sub-models of the prime mover (Diesel engine), the
transmission system, the propeller and the ship’s hull.

• The simulation model should give accurate results, in terms of the dynamic be-
haviour of the system, when the ship sails in waves. This includes speed (ves-
sel, engine, shaft) and torque (engine, shaft) fluctuations, around static operating
points.
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• The model should be able to simulate the fluctuating ship resistance and wake-
field, due to the seaway.

• With the main idea being to keep the model as simple and easy handled as possi-
ble, a main assumption in the model is that the efficiency of different components
along the shaft line i.e. gearbox efficiency, shaft line efficiency, are constant, ne-
glecting part load losses.

• The model is not able to simulate manoeuvres, since manoeuvring is out of the
scope of this thesis. Moreover, the model is not capable of modelling big accel-
erations and decelerations, due to the lack of limitations, which are related to the
operation of the engine under intense acceleration and/or deceleration. This kind
of limitations exist in real propulsion and power plants in order to protect the en-
gine from overloading or operating with very low efficiency i.e. fuel limitation in
case of load take-up which will result in limited presence of air and incomplete
combustion in the combustion chamber, due to the turbocharger’s inertia.

3.2. REFERENCE VESSEL
The propulsion plant that will be modelled belongs to a ship design called RGS9316.
This type of vessel is shown in Figure 3.2. The outline of a Rescue Gear Ship 9316 is given

Figure 3.2: Rescue Gear Ship 9316.

in Figure 3.3. The arrangement of the propulsion plant of such a vessel is depicted in
Figure 3.4 and Figure 3.5 and some of the ship’s particulars are given in Table 3.1. The
overall length of this type of vessel is 93.2 meters with a breadth of 16 meters and has
a total displacement of approximately 3483 tons. It is a twin shaft ship, which uses as
prime movers two 4-stroke, turbocharged, high-speed Diesel engines, which allow the
vessel to sail at a maximum speed of 16 knots in calm water conditions. Two 4-bladed
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Figure 3.3: Outline of RGS 9316.

Controllable Pitch Propellers (CPP), rotating inward over the top, are used in both shafts.

Vessel Particulars
Length o.a 93.20 m
Length p.p. 84.90 m
Breadth mld 16.00 m
Depth mld 7.20 m
Design draught 3.80 m
Design deadweight 850 ton
Total displacement 3483.6 ton, @ design draft
Maximum speed 16 kn
Prime mover 2 3516C HD Diesel engines, 1920 bkW @ 1600

rpm
Propeller 2 4-bladed, CPP, rotating inward over the top,

with diameter D=2.7 m

Table 3.1: General RGS9316 data

3.3. SIMULATION SYSTEM MODELS
The conceptual model used in this work is shown schematically in block diagram form
in Figure 3.6 and it is almost identical to the general block diagram of a ship propulsion
plant, which was described in Figure 2.5 in Section 2.2.2. Taking into account that the
actual ship under consideration has the same installation for port and starboard side,
only the one side is depicted here. Furthermore, depending on the goals of the use of
the propulsion plant model, the complexity of each one of the components constituting
the model in total may vary. In this chapter, the main idea is to keep each one of the
sub models as simple as possible, maintaining the level of accuracy needed, according
to the aforementioned goals. In Figure 3.6 the blocks of the vessel’s propulsion plant are
presented, as well as the linking variables between the sub-models. As it is shown, the
propulsion system model consists of the models for the prime mover, which is a Diesel
engine, its control system, which is the governor, the gearbox, which is not depicted
separately but it is included in the Diesel engine block, the rotor dynamics loop, the
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Figure 3.4: Top view of propulsion plant of RGS9316.

Figure 3.5: Side view of engine room of RGS9316.

propeller, the ship’s hull, the ship translation dynamics and the external disturbances,
acting upon the wakefield and the total resistance of the vessel.
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Figure 3.6: RGS9316 modelled propulsion plant.
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3.3.1. PROPELLER

The propeller of the vessel is the natural link between the machinery installed inside the
ship and the fluid, surrounding the hull of the ship. The prime mover is connected with
the propeller through a shaft. In that way, the engine brake torque, Mb is delivered to the
propeller. This propeller torque, Mpr op is translated into thrust power, which propels
the whole vessel. The ability of the propeller to provide the traction of the ship, can be
used for a wide range of combinations of pitch angles θ, since it is a Controllable Pitch
Propeller, and advance ratios, J. The purpose of this propeller model is to calculate the
thrust, which is generated by the propeller and the torque encountered by the propeller,
depending on a range of different combinations of pitch angles and advance ratios. For
this reason, the propeller model is "built" based on the, relatively simple, open water
diagram. The component model chosen for the propeller is the Wageningen B-Series,
which is based on the well-known systematic propeller series. The propellers in this
series are non-ducted fixed pitch propellers. The series covers a wide range of numbers
of blades, of blade area ratios and pitch diameter ratios.
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
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Figure 3.7: Propeller block diagram.

As it is shown in Figure 3.7, the propeller model needs as inputs the shaft speed,ns ,
the advance velocity, va and the pitch diameter ratio of the propeller, P/D . The advance
ratio is defined as: J = va

nD , where the advance speed va is the incoming velocity, seen
by the propeller and is calculated with the use of the vessel’s speed, vs and the wake
fraction, w , by: va = vs (1−w). Using two polynomials provided by Oosterveld and van
Oossanen the values of the two dimensionless coefficients, KQ and KT , are calculated for
different combinations of the values of the advance ratio, J and the actual pitch diameter
ratio, P/D . The values of the rest of the unknown coefficients, Cn , Sn , tn , un , vn are given
in tables.

KQ =
47∑

n=1
Cn J Sn (P/D)tn (AE /Ao)un (Z )vn (3.1)

KT =
39∑

n=1
Cn J Sn (P/D)tn (AE /Ao)un (Z )vn (3.2)
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With the values of those two coefficients, KQ , KT , determined, the open water thrust and
torque are also calculated by:

Fpr op = KTρn2D4 (3.3)

Q = KQρn2D5 (3.4)

The propeller torque, Q is, to some extend, changed, because of the propeller-wake in-
teraction effects. Rotating in behind conditions, the propeller torque is adjusted by a
relative rotative efficiency, nr , which is defined as: Mpr op = Q

nr
.

At this point, the absence of the Controllable Pitch Propeller hydraulic actuating sys-
tem and the propeller pitch controller has to be pointed out. The hydraulic actuating
model and the propeller pitch controller, are closely related to the propeller model and
according to the block diagram presented in Figure 3.7, they will be absent in the simula-
tion model used in this thesis. The reason for this is that, as it was referred in Section 1.2,
this master thesis focuses on the investigation of the possibility to influence the geomet-
rical properties (size, orientation etc.) of the elliptic trajectory of the operating point in
the engine operating envelope, without engaging the use of the propeller pitch control.
According to this, it is clear that the propeller pitch controller and the behaviour of the
Controllable Pitch Propeller actuating system will not be studied. Furthermore, it has to
be considered that the simplicity of the model is always an objective. This fact leads to
the decision of neglecting the use of a model of the hydraulic system, which is a complex,
non-linear, time-variant system with several modelling challenges, which will increase
the complexity of the model as a total.

Consequently and according to the propulsion plant model graphed in Figure 3.6,
the input to the propeller model is the pitch diameter ratio setpoint, P/Dset , as it is de-
fined by the lever command and the combinator curve, since there is no propeller pitch
control and actuating system, intervening between the lever command and the propeller
model

As far as the main disturbances acting on the propulsion system model are con-
cerned, as it was mentioned in Section 2.5, they are attributed to the wave field. Accord-
ing to the theory presented in Section 2.5.1, the wakefield disturbance due to the waves
can be linearly superimposed to the advance speed, va , in calm water. There are various
ways to simulate these wakefield disturbances. As for this simulation model, the wake
field disturbance, regarding the simulation of regular waves, is implemented as a sinu-
soidal disturbance of certain amplitude and frequency acting on the wake factor of the
model, w , as shown in Figure 3.8. This kind of disturbance is included in the propeller
sub-model.
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Figure 3.8: Wake field disturbance block diagram.

3.3.2. CONTROLLED DIESEL ENGINE MODEL
The controlled system of the Diesel engine, which is used as a prime mover, is shown in
Figure 3.9. It consists of the governor, the actuator that actuates the fuel rack, and the
Diesel engine itself. In the system depicted in Figure 3.9 the gearbox and the rotating
shaft system are also included and presented below.
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Figure 3.9: Controlled Diesel engine block diagram.

GOVERNOR MODEL

In Figure 3.9, the governor block is clearly shown. The input values for the governor are
the desired engine speed nset ,g ov , determined by the lever command and the combi-
nator curve, and the actual engine speed ne , as it is calculated by measuring the shaft
speed and then multiplied by the reduction ratio of the gear box. The signals of the two
input variables, nset ,g ov and ne are normalised as they enter the governor’s block. More
specifically they are translated into a dimensionless number, with the use of a look up
table, which assigns every value between zero and maximum engine speed (for both de-
sired engine speed, nset ,g ov and actual engine speed, ne ) to a dimensionless number
between zero and one. In this way the engine speed error, en , in other words the differ-
ence between the values of nset ,g ov and ne , is also calculated as a dimensionless number
between zero and one, which is more intuitive and easily handled. Since the error sig-
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nal, en ,is calculated, it enters the PID controller, which is the "brain" of the feedback
loop [Franklin et al., 1994]. The PID controller receives the input signal (error:set engine
speed value minus measured engine speed value) and performs three mathematical op-
erations with the calculated error signal, en . These three mathematical operations can
be briefly described below:

• P action:
The calculated dimensionless error value, en is amplified.

• I action:
The calculated dimensionless error value, en is integrated over time from the start
of the whole operation.

• D action:
The calculated dimensionless error value, en is differentiated to time.

The three processed values that are obtained after the mathematical operations are then
combined in one single output value [Triantafyllou and Hover, 2003]:

u(t ) = Kp en(t )+Ki

∫ t

0
en(t )d t +Kd e

′
n(t ) (3.5)

At this point it has to be mentioned that, in the governor block, besides the look up ta-
bles, transforming the desired engine speed, nset ,g ov and the actual engine speed, ne into
a dimensionless number, another look up table exists, imposing torque limitations dur-
ing the Diesel engine’s operation, preventing its thermal overloading. This look up table
assigns each value of actual engine speed, ne , to the torque limits of the Diesel engine,
as they are defined by the engine’s operating envelope, given by the engine’s manufac-
turer. The value of the torque limit, for each value of the engine speed, is normalised by
dividing it with the value of the maximum brake engine torque. The value of the torque
limit, which corresponds to the actual engine speed at each moment of the engine’s op-
eration is compared to the single output value of the PID controller, whose derivation
is described in Eq: (3.5). The minimum of the two output signals, following the idea of
prevention of the engine’s overloading, will be the input to the following block diagram
of the fuel rack actuator and then directly to the Diesel engine model, as the value of the
fuel rack position, Xset , dictating the demanded, by the controller, brake engine torque
Mb which has to be offered to the system. The detailed block diagram of the governor,
including the look up tables normalising the signals, as they were mentioned before, as
well as the PID controller itself, are shown in Figure 3.10.
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Figure 3.10: Diesel engine’s governor block diagram.

FUEL RACK ACTUATOR MODEL

In the next step, following the process of transmitting the control signal in the controlled
Diesel engine model, it can be noticed that the output of the governor is the input for
the fuel rack actuator of the model. The fuel rack actuator is represented by a first order
system, 1

τ·s+1 . The value of variable τ is low, τ = 0.02. This means that the first order
system, which counts for the fuel pumps inertia and the ignition delay, has a quite fast
response, being able to follow high frequency fluctuations of the system.

DIESEL ENGINE MODEL

As it was mentioned in Section 1.3, this thesis will focus on vessels that use Diesel en-
gine as a prime mover. Regarding the diesel engine modelling, a variety of models can
be found in the literature, ranging from highly complex CFD-based models, able to de-
scribe in details the phenomena that take place in the combustion chamber, during the
operation of the engine, to relatively simple models, based on look-up tables which need
easily accessible look up-data as input.

For the purpose of this thesis, a highly simplified approach for the Diesel engine
model will be used, which needs as input the engine speed, ne and the fuel rack posi-
tion, X , which is an indication of the amount of injected fuel, and gives back, as output,
the engine brake torque, Mb . The output of such a model is considered sufficient for the
goals of this work, as determined in Section 3.1. In Figure 3.11, the simple representa-
tion of the Diesel engine model in a block diagram, with the input needed and the output
generated are shown. A simple mathematical formula relating the fuel rack position, X ,
the engine speed, ne and the brake engine torque, Mb , can be extracted by a fuel rack
map of the diesel engine in use, Figure 3.12, as it is referred in [Vrijdag and Stapersma,
2017]. According to this map, the torque generated by a Diesel engine, Mb[kN m], for
a given constant value of the fuel rack position, X [mm] is, to some extend, reduced as
the engine speed, ne [r pm] is increased. This negative slope of the constant fuel rack
line, which can be noticed on the map, is due to increased piston friction in the engine
and leakage in the fuel pump, as the engine speed increases. Additionally, it should be
mentioned that the limits of the Diesel engine operating envelope, which can be clearly
distinguished on the map of Figure 3.12, are defined by the engine manufacturer. The
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Figure 3.11: Diesel engine block diagram.

Figure 3.12: Typical fuel rack map of a diesel engine, [Vrijdag and Stapersma, 2017].

mathematical formula describing the fuel rack map is given below:

Mb = k ·ne +m ·X +Mb,o f f set (3.6)

Apart from the diesel engine fuel rack map, Eq. (3.6) can also be derived using the fac-
tory acceptance test (FAT) reports. In case of this simulation model of the diesel engine,
neither the fuel rack map, nor the factory acceptance test reports are available. For that
reason, the common practise of using typical values of the variables k and m is followed.
With respect to variable k, another assumption was made. According to this assump-
tion, the generated brake engine torque, Mb is considered to be dependent, only, on the
fuel rack position, X and not on the engine speed, ne . This assumption leads to the fact
that, unlikely the map presented in Figure 3.12, the constant fuel rack lines of the map,
considered in this thesis, are absolutely horizontal and parallel to the engine speed axis.
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This means that the value of variable k introduced in Eq. (3.6) is zero, k = 0. With these
assumptions implemented, the diesel engine is modelled as a constant torque machine,
as it is ideally considered to be.

3.3.3. GEARBOX MODEL AND ROTOR DYNAMICS
Following the general idea of keeping the simulation model as simple as possible, the
gearbox of the propulsion plant is modelled based on the idea that the gearbox reduces
the power generated by the diesel engine due to power losses that occur in the gearbox
and the shaft line, during the power transmission, as shown in the block diagram of the
gearbox in Figure 3.13.

Diesel engine
brakeM shaftM propM

 
trmgbbrakeshaft iMM 

Figure 3.13: Gearbox blockdiagram.

These losses are represented by a constant total transmission efficiency, ηtr m which
is calculated by multiplying the gearbox efficiency, ηg b and the shaft line efficiency, ηs :

ηtr m = ηg b ·ηs (3.7)

As a result, the power output of the gearbox is:

Psha f t = Pb ·ηtr m (3.8)

Using the gearbox reduction ratio ig b = ne
nsha f t

, the relation between the brake engine

torque, Mb and the shaft torque, Msha f t is derived:

Msha f t = Mb ·
ne

nsha f t
·ηtr m (3.9)

For this simulation model, the values of the gearbox efficiency, ηg b , the shaft line effi-
ciency, ηs and the gearbox reduction ratio, ig b are given in the following table: As far as
the rotor dynamics loop of the model is concerned, it is based on Newton’s second law of
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ηg b 0.97
ηs 0.98
ηtr m 0.95
ig b 7.52

Table 3.2: Efficiencies along propulsion chain and gearbox reduction ratio

movement. The shaft rotational dynamics are calculated by using the Newton’s second
law, regarding the rotational movement, yielding in a differential equation for the shaft
rotational speed:

M = I · dω

d t
=⇒ dn

d t
= 1

2π
· dω

d t
= 1

2π
· Mi n −Mout

I
(3.10)

Taking into consideration Figure 3.14 and Eq. (3.10), in the rotor dynamics loop the

shaftM propM

totI

2
1



shaftn

Figure 3.14: Rotational dynamics block diagram.

torque balance between the torque delivered by the prime mover (Diesel engine), after
the losses in the shaft line and the gear box have been accounted for, Msha f t and the
torque required by the propeller, Mpr op results in a net torque. The division of this net
torque by the product of the effective shaft inertia, Itot , and 2π, provides the angular
acceleration of the shaft. This shaft acceleration can be integrated, in order to derive the
shaft rotational speed, nsha f t , according to Eq. 3.11:

nsha f t =
1

2πItot

∫
(Msha f t −Mpr op )d t (3.11)
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The shaft speed calculated after the integrator is multiplied by the gear box reduction
ratio and then fed back to the engine block diagram, as the engine torque is, generally,
dependent on the engine speed.

Regarding the effective shaft inertia, Itot , it has to be mentioned that the whole shaft
line is considered as a system consisting of different, discrete components. For each
component, the mass moment of inertia, I is calculated, based on the torsional vibra-
tion calculation data. The mass moment of inertia of each component depends on its
rotational speed, which is different for each component, depending on its location, with
respect to the gear box. Using the gear box as the reference point, at which the rotational
speed changes along the shaft line, the mass moment of inertia of the components which
are located in the engine side (before the gear box), are corrected, due to their different
angular speed, by being multiplied by the squared gear ratio.

Icomponent ,cor = Icomponent · i 2
g b (3.12)

3.3.4. SHIP’S HULL MODEL
The subsystem representing the ship and its hull is considered valuable, since it de-
termines the interaction of the propulsion plant with the surrounding environment, in
other words the water, in which the vessel sails. This subsystem includes the ship’s trans-
lation dynamics which means that it must contain Newtonian mechanics and hydro-
dynamic properties, regarding the translation of the vessel. At this point, it has to be
mentioned that only the longitudinal direction of motion of the vessel is examined. As a
result, the translation mechanics and the hydrodynamic properties, taken into account
in the model, are only referred to the longitudinal displacement.

This longitudinal translation of the vessel’s hull through water requires a force. This
force, which is sufficient to tow the ship at a desired speed, without the use of a propul-
sor, is called resistance. This resistance is meant to be overcome by the thrust gener-
ated by the installed propulsion system on a vessel. According to theory [Woud and Sta-
persma, 2002, Journée and Massie, 2000], the total resistance is composed of three main
components:

• Frictional or viscous resistance: This component is the result of tangential forces
which act on the hull, as the effect of the boundary layer along the hull.

• Form resistance: This component of the total resistance is the outcome of the
pressure difference in front of and behind a moving vessel. The separation of the
boundary layer from the hull at the stern of a vessel, leads to remarkable drop of
pressure at the stern of the ship.

• Wave resistance: This component of resistance is because of the waves, which are
generated by the vessel’s motions. Part of the generated energy by the propulsion
system of the vessel, which is meant to be used for translation of the vessel, is
transmitted to the generated waves.

The component of air resistance, which is attributed to the part of the ship, which is
above the sea level, is usually neglected. The summation of the above mentioned com-
ponents of resistance results in the total hull resistance, Rt . The mathematical formula,
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which can describe the total hull resistance of a vessel is:

Rt = a · ve
s (3.13)

As far as the resistance curve, which is used in the ship’s hull model, is concerned, the
predicted resistance curve, before the process of sea trials, for the reference vessel of this
thesis is given in the Figure below. On the left hand side plot of Figure 3.15, two resistance
plots can be seen. The first one with the red dots is the above mentioned predicted re-
sistance curve of the reference vessel, in which an irregularity can be noticed, compared
to the expected (it is expected that ship’s resistance is roughly proportional to the square
of ship speed for relatively low speeds [Woud and Stapersma, 2002]) shape of the curve,
at the range of speeds from 4.5 m/s up to 6 m/s. This irregularity of the shape of the
predicted resistance led to the derivation of a curve, which fits the data of the predicted
resistance given. This curve, which is quadratic, is the second curve with the black tiny
squares of the left hand side plot of Figure 3.15. This second resistance curve is the one
which is implemented in the ship’s hull sub model of the simulation model, as the to-
tal resistance of the ship’s hull, dependent on the vessel’s speed. On the right hand side
of Figure 3.15, the difference in percentage between the two resistance curves at each
speed is presented.
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Figure 3.15: LHS: Resistance curve derived from sea trials data and interpolated resis-
tance curve. RHS: Divergence between the two resistance curves.

The ship’s hull model can be shown in Figure 3.16. The ship resistance curve is mod-
elled as a look up table. This curve defines the ship’s resistance without a propeller for a
range of values of static speed.
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propeller

sv

Resistance
disturbance

wake

Av

m

1

Figure 3.16: Ship’s hull block diagram.

As it is, also, depicted in Figure 3.16, for that calm water resistance values, corrections
are applied to ensure that the propeller-hull interaction effects are taken into consider-
ation. The effects of the propeller-hull interaction are expressed by the use of the thrust
deduction factor, t and the corrected calm water ship resistance, Fshi p is calculated by:

Fshi p = Rshi p

(1− t )
(3.14)

What is more, in Figure 3.16, the component of resistance disturbance is shown. Resis-
tance disturbance represents is used to simulate the resistance variations, due to the fact
that the ship moves forward in a wave field as for this thesis. Regarding the regular waves,
the effect of such resistance disturbance is modelled with a sinusoidal signal, which rep-
resents the added wave resistance as referred in Section 2.5.2. The summation of the
oscillating part of resistance, due to the motions of the vessel and the constant part, due
to calm water resistance, give the total resistance for a ship sailing in waves [Journée
and Massie, 2000]. The introduction of the resistance disturbance in the model is shown
in Figure 3.17. Additionally, in Figure 3.16, besides the ship’s resistance curve, the ship
translation dynamics can be noticed. The expression for the translational movement is
based on Newton’s law of translation, resulting in a differential equation for longitudinal
ship speed:

F = mshi p · d vs

d t
=⇒ d vs

d t
= Fi n −Fout

mshi p
(3.15)

Taking into account Eq. 3.15 and Figure 3.18, it can be noticed that in the ship transla-
tional dynamics loop, the force balance between ship resistance, Fshi p , and the thrust
generated by the propeller, Fpr op provides a net force. This net force is divided by the
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Figure 3.17: Introduction of ship resistance variation for regular wave in ship’s hull
model.

ship mass, resulting in the longitudinal acceleration of the vessel. By integrating the cal-
culated acceleration, the longitudinal velocity of the ship is obtained as shown in the Eq.
3.16:

vs = 1

mshi p

∫
(Fpr op −Fshi p )d t (3.16)

Since the ship’s resistance is non-linearly dependent on ship speed, the calculated ship
speed is provided as a feed back to the ship’s hull block diagram, after the integrator.

At this point, it should be mentioned, regarding the ship translation dynamics loop,
that the ship mass by which the balance between ship resistance and the propeller thrust
is divided, is the total mass, mt of the system. More specifically, this total mass, mt in-
cludes the actual mass of the vessel, ms as well as the hydrodynamic mass or added mass,
ma . In a physical sense, this added mass is the weight added to the system, due to the
fact that the accelerating or decelerating vessel must move some volume of surrounding
fluid with it as it moves. The added mass, due to the motion of the ship in one direction,
in longitudinal direction in this case or as it is widely known surge motion, caused by
a force applied also in the longitudinal direction, is considered to get a value between
5-8% of the actual mass of the ship, ms , according to the literature [Journée and Massie,
2000]. For the simulation model into consideration, the added mass, ma is assumed to
be 7.5% of the ship mass, ms :

mt = ms +ma =⇒ mt = ms +0.075 ·ms =⇒ mt = 1.075 ·ms (3.17)
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Figure 3.18: Translational dynamics block diagram.

3.4. TUNING OF THE CONTROLLER OF SIMULATION MODEL

In this section, the engine speed controller of the simulation model (governor), which
was previously described, is tuned. The values of the PI controller, the proportional, Kp

and integral, Ki , gains of the controller are chosen, by evaluating the dynamic behaviour
of the simulation model, during a specific, implemented operating mode. The reason for
this process is to obtain reasonable values for the engine governor settings as a starting
point in this work.

As far as the way in which the dynamic behaviour of the simulation model is going to
be evaluated is concerned, there are four available options. These four ways are related
to the four different input variables of the simulation model. The first two of them are
the engine speed, ne and the pitch diameter ratio, P/D , which in case of a real propul-
sion plant are determined by the operator through the lever command. The other two
are called disturbance inputs, referring to the hull’s resistance and the wakefield. These
two, in reality, are determined by the environment. For example, resistance disturbance
might be caused by wind, waves, shallow water, hull fouling or changes in ship draft and
trim. Wakefield disturbances can be caused by ship motions, orbital water particles mo-
tion due to waves or manoeuvres. In Figure 3.19 these four input variables are shown,
with the propulsion plant model being a black box.
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Figure 3.19: Input variables variation.

Moreover, it has to be mentioned that another common method which is followed,
in order to tune the governor of the Diesel engine, instead of influencing the aforemen-
tioned input variables of the simulation model, is to try and find the suitable settings
while sailing on board the vessel. Obviously, in this case this is not possible, with the use
of simulation model being the only option.

3.4.1. VALUES OF GOVERNOR GAINS AND SYSTEM VARIABLES EXAMINED

As it was mentioned in the previous Section, the evaluation of the dynamic behaviour
of the simulation model, in order to tune the governor can be done by influencing four
input variables. In this case, the variable that will be influenced is the engine speed. In
particular, a specific type of acceleration is going to be implemented, among an infinite
number of speed variations. This type of acceleration is a two-step increase of the engine
speed. In the first step, the speed is increased from 59% to 78% of the maximum speed
of the Diesel engine and in the second step, the engine speed is increased from 78% to
91% of the maximum speed of the Diesel engine. Furthermore, it should be pointed out
that, despite the fact that a combinator curve is used in the simulation model, during
this transient, it is decided that the pitch diameter ratio will be constant, getting the
value of the design point. In this way, the implementation of the two step acceleration
will be simpler. The two step acceleration is described in Table 3.3. In Figure 3.20 the
combinations of propeller pitch, P/D , and engine speed, ne are depicted.

Type of acceleration P/D [-] Engine Speed Step Increase (% of maximum engine speed)

Two steps 1.2 first step: 59% to 78%
second step: 78% to 91%

Table 3.3: Engine speed increase implementation
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Figure 3.20: Combinator curve for two step engine speed increase.

Given the actual values of the gains of the PI controller of the actual propulsion plant,
a range of values for the gains of the governor is implemented, aiming to set the most
suitable values, with respect to the step response of certain variables of the propulsion
plant to the controllable input of ne,set . The system variables, whose the step response
is checked are the diesel engine’s brake power, PB , the Diesel engine’s brake torque, MB ,
and the engine’s speed, ne compared to the setpoint governor, ne,set . Additionally, the
behaviour of the propeller demand curve in the Diesel engine envelope, PB -ne , is exam-
ined. Given that the values of the gains of the PI controller of the actual propulsion plant
are known, a combination of very low and very high values for the proportional, Kp and
integral gain, Ki are investigated. The range of values for the gains of the governor, which
are examined are shown in Table 3.4.

Gain Combinations 1 2 3 4
Kp 0.5 1.5 2 10
Ki 5 2 1.2 0.25

Kp /Ki 0.1 0.75 1.67 40

Table 3.4: Values of gains of governor.

3.4.2. RESULTS OF TWO-STEP ENGINE SPEED INCREASE

By implementing the combinations of PI controller gains, which are referred in Table 3.4,
the response of the aforementioned system variables to a two-step engine speed increase
is investigated. This is shown in Figures 3.21 - 3.23. For each one of the Figures, the first
plot is the general picture of the response of the corresponding system variable to the
two-step engine speed increase. As far as the second and third plot of each one of the
Figures 3.21 - 3.23 are concerned, they both give detailed view of the response of each
system variable, regarding each one of the two steps in speed increase.
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Figure 3.21: Response of actual engine speed, ne , to two-step increase of governor engine
speed setpoint, ne,set .
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Figure 3.22: Response of brake engine power, PB , to two-step increase of engine speed,
ne .
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Figure 3.23: Response of brake engine torque, MB , to two-step increase of engine speed,
ne .
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As for the Figure 3.21, it shows the ability of the engine speed to follow the governor
setpoint. Given the theoretical background on PID controllers, [Franklin et al., 1994], the
behaviour of each one of the four combinations of Kp and Ki can be interpreted. Accord-
ing to Table 3.4, combination 4 reduces the difference between the actual engine speed
and the governor setpoint faster, due to the high value of Kp . However, the small value
of Ki leads to a significant steady state error. On the other hand, combination 1, which
has a small value for Kp , reduces the difference between the actual engine speed and the
governor setpoint quite slowly, but the steady state error is eliminated quite fast, because
of the high value of the Ki . With regards to combinations 2 and 3, they both reduce the
error between the measured engine speed and the demanded by the controller engine
speed at the same time. Their difference though, lies on the steady state error. Combina-
tion 2 with higher value of Ki eliminates the steady state error faster than combination
3. These remarks apply exactly the same for both steps of engine speed, ne , increase.

Regarding the similar behaviour of brake engine power and torque, PB and MB , which
are depicted in Figure 3.22 and 3.23 respectively, both are as expected. Combinations 1
and 4 result in a increased overshoot, compared to combinations 2 and 3, due to their
significantly higher values of proportional, Kp and integral gain, Ki , respectively. Fur-
thermore, combination 1 has a decreased rising time, with respect to the rest combina-
tions, which can be explained by the very high value of Kp . On the contrary, combination
4 has the longest rising time, because of the very low value of Kp . With regard to the re-
sponse of brake engine power, PB and torque, MB , when implementing Combinations
2 and 3, their behaviour is almost similar, with Combination 3 having a slightly short-
est rising time compared to Combination 2, as a result of the slightly higher value of Kp .
These comments, regarding the response of engine power, PB and engine torque MB ,
apply the same for the two steps of engine speed increase, which are implemented.
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Figure 3.24: Response of load curve in Diesel engine operating envelope, in two-step
engine speed increase.

In Figure 3.24, the behaviour of the load curve in the Diesel engine envelope is de-
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picted, when a two-step engine speed increase is applied, using the previously men-
tioned four different Combinations of the PI controller gains. Additionally, it has to be
mentioned that in the plot of Figure 3.24, an extra line can be noticed. This solid line
in black colour defines the operating envelope of the Diesel engine, in other words the
brake engine power limits, PB , for each value of engine speed, ne . These limits are in-
cluded in the specifications of the Diesel engine, provided by the engine manufacturer.

Taking this into consideration, it is clearly shown that using Combinations 1 and 4,
the behaviour of the load curve is much more aggressive and diverging. This can be
attributed to the higher values of Kp and Ki , when compared to those of Combinations 2
and 3. The response of the load curves,using Combinations 2 and 3, is smoother, without
deviating from what is expected, with Combination 2 having the smoothest behaviour.
Taking into account the above-mentioned, Combination 2, with Kp = 1.5 and Ki = 2 is
proved to be the most suitable for the PI controller gains of the simulation model, in case
of implementing a two-step engine speed acceleration.

3.5. SIMULATION MODEL VALIDATION

According to the definition given by ASME, validation is the process of determining the
degree to which a model is an accurate representation of the real world, from the per-
spective of the intended uses of the model. Following this definition, some available
experimental data are going to be used in order to assess the degree of their agreement
with the simulation results. By that method, the level of confidence in model predic-
tions is determined. In other words, the level of acceptance of the results, in cases that
the simulation model is used to predict real life system behaviour, when experimental
data are not available. Furthermore, with a good level of understanding of the under-
lying physical and mathematical principles, the differences between the experimental
data and the simulation results can be explained and the model can be used in a better
way, given that a simulation model can never fully capture the real phenomena and the
simulation results will never fully agree with the real measurement data.

Regarding the validation process of the model derived in this chapter, the validated
system variables are the Diesel engine brake power, PB , the Diesel engine speed, ne , the
speed of the shaft driving the propeller nsha f t and the vessel speed vs . These variables
are validated against measurements taken on board during sea trials of the used refer-
ence vessel RGS9316 with respect to static operating points of the ship propulsion plant.

The first system variables presented, regarding the validation of the model, are the
brake engine power, Pb plotted with engine speed ne , within the limits of the Diesel
engine operating envelope. The left hand side plot in Figure 3.25, presents the load curve
derived from measured data, the one with the red dots and the one derived by the results
of the simulation model. As it can be seen, in the right hand side plot, the simulated
and measured results agree within 15%. The relative error between simulation and real
measurements can be attributed to the divergence between the implemented resistance
curve and the predicted one.
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Figure 3.25: LHS: Load curve generated from sea trials data and load curve derived from
simulation model. RHS: Divergence between the two load curves.
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Figure 3.26: Plot of engine speed over vessel speed using measured data.

As it is depicted in Figure 3.15, the range of ship speed for which the implemented
resistance curve has higher values than the predicted, corresponds to the range of en-
gine speeds for which the load curve of the simulation model is above the measured
load curve, according to Figure 3.26. Additionally, the deviation between the simulation
model and the measured load curve can be attributed to differences, regarding the con-
ditions under which the sea trials took place and the conditions, which are assumed in
the simulation model (waves, wind speed, draught, trim). Moreover, part of the diver-
gence could be due to the difference between the open water model, which is used in
the propeller model of the simulation and is referred to a Fixed Pitch Propeller, whereas
the measurement data are referred to the real propeller, which is a Controllable Pitch
Propeller. Differences between the settings applied in the simulation model and the ref-
erence vessel during the sea trials can also be accused. Finally, another factor causing
the deviation between the two load curves could be the power losses along the shaft line
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for off design operation, which are not captured by the simulation model (efficiency of
different components are considered constant throughout the whole range of operating
points), nevertheless exist in reality.
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Figure 3.27: LHS: Engine brake power over ship speed plot from sea trials data and sim-
ulation data. RHS: Divergence between the two plots of engine brake power over ship
speed.

In Figure 3.27, it can be seen that the measured and the simulation results, regarding
the plot of engine brake power over the vessel’s speed agree within a 13%. Similarly, the
measured and simulation results of the plot of the vessel speed over the propeller shaft
speed agree within a 9%.
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Figure 3.28: LHS: Ship speed over shaft speed plot from sea trials data and simulation
data. RHS: Divergence between the two plots of ship speed over shaft speed.

3.6. CONCLUSIONS
According to what was presented in this chapter, regarding the simulation model of the
propulsion plant of the reference vessel, RGS9316, it is clear that the derived non linear
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model can adequately capture the real, complex, physical phenomena, which drive the
system’s behaviour, as regards to engine speed, ne and engine torque, Mb variations.

As far as the tuning of the model is concerned, the combination of the values of the
gains for the engine speed governor were chosen under the perspective of an expected,
without abnormalities and significant deviations, response of the system. This response
agrees with an expected behaviour, in case of an implemented two steps increase of the
engine speed.

With respect to the validation of the static operating points, the agreement of simu-
lation results with measurement data are considered to be within acceptable limits. In
the graphs of the load curve in the engine envelope, brake engine power over ship speed
and ship speed over propeller shaft speed, simulation and sea trials data follow the same
trend line. As for the relative errors, which can be remarked, especially regarding the pro-
peller demand curve in the engine envelope and the graph of ship speed over propeller
shaft speed, it can be mainly attributed to three reasons. Firstly, the divergence between
the implemented in the model resistance curve and the predictive resistance curve, as
it is presented in Figure 3.15. Secondly, the fact that in the propeller simulation model,
the open water model used is given by polynomials, which are referred to a Fixed Pitch
Propeller (FPP), whereas in reality, the measurements data are referred to a Controllable
Pitch Propeller (CPP) with a different open water diagram. Additionally, a difference be-
tween the settings applied in the simulation model and the reference vessel during the
sea trials, as well as the accuracy of the measurements, taken on board the vessel, can
be the reason for the error between measurements and simulation data. Another rea-
son for the deviation between measurements and simulation data could be a difference
in the losses for the off design operation, along the shaft line. As it was mentioned in
Section 3.1, in the specifications regarding the model goals, the efficiency of different
components along the shaft line are considered constant, whereas in reality this is not
realistic.

To conclude, despite the small relative error between simulation and measurements
data, the outcome of the validation process of the simulation model presented in this
chapter ensures that the model can rightfully be used for the investigation of the dy-
namic behaviour of the propulsion system.
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LINEARISATION OF SHIP

SIMULATION MODEL

At this chapter, a linear propulsion system model is derived from the non linear model,
presented in Chapter 3, in three steps. The derived linear model is verified by means of
comparison with the original non linear model in terms of their corresponding dynamic
response in the frequency domain. The verification process ensures that the derived linear
model can, justifiably, be used as a more simple, handy tool than the non linear model for
the propulsion system analysis, controller design and tuning.

4.1. INTRODUCTION AND GENERAL CONSIDERATIONS
A non linear ship propulsion plant model is considered to be a valuable tool, regarding
the conceptual propulsion system design and the selection of the most favourable con-
trol strategy taking also into account the operational profile of the vessel. In addition,
ship propulsion control design and tuning, which require time domain simulations, are
achieved using the non linear simulation model of the propulsion plant into considera-
tion.The reason for that is the capability of the non linear simulation models to include
the non linear characteristics of each one of the components of the actual propulsion
plant and capture the real, complex, physical phenomena, affecting the system’s be-
haviour. Finally, as it was mentioned in Section 3.5, since the non linear model is val-
idated, a high level of confidence, regarding the simulations’ results, can be ensured.

On the other hand, the derivation and use of linear ship propulsion plant models
seems to be a common practise in marine engineering [Kidd et al., 1985, Van Spronsen
and Tousain, 2001, Stapersma and Vrijdag, 2017, Vrijdag and Stapersma, 2017]. Linear
ship propulsion models are considered to be an additional tool, when it comes to the
analysis of the behaviour of a propulsion system. What is more, linear models offer the
possibility for a more clear understanding of the effect of different parameters on the
propulsion plant’s behaviour and performance, particularly in off design conditions.

Despite the fact that the linear models are usually derived on the grounds that they
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are more simple than their original non-linear models, requiring less parameters and
knowledge of the modelled system, it should be mentioned that a linearised model is
only valid in the neighbourhood of equilibrium [Franklin et al., 1994], which means that
the linear model is only valid for small perturbations around the steady operation point
that is chosen each time. The size of this neighbourhood should always be taken into
consideration and, under this perspective, the results, when using a linear model, should
be interpreted accordingly. Taking the aforementioned into account, a linear model
should always be considered as an auxiliary tool, regarding the systems analysis, and
not the replacement of the more complex, non linear model.

In the following Sections, the non linear model of Chapter 3 will be linearised in order
to investigate the system behaviour in the frequency domain. The derivation of the linear
model will give a clear insight of the influence of the main parameters and variables on
the dynamic performance of the propulsion plant. The linearisation will take place in
three steps. Each one of the parts of the propulsion plant that are going to be linearised
are shown in Figure 4.1. The linearisation of the core propulsion system, excluding the
prime mover and the propulsion control system, is considered to be the starting point.
The core propulsion system includes the non linear dynamics of ship propulsion plant
and is depicted in Figure 4.2. Then, two extensions are added to the linearised model.
Firstly, a static Diesel engine model is included to the system. Secondly, the system is
extended by the addition of an engine speed governor. Finally, each one of the three
linearised parts are verified by comparing the Bode plots of the linear model to the Bode
plots of the non linear model respectively.
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System
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bMXEngine 
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Figure 4.1: Block diagram showing the parts being linearised: a) the core propulsion
system, b) the uncontrolled system with actuators, c) the controlled system.
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Figure 4.2: Core ship propulsion block diagram.

4.2. LINEARISATION PROCESS
At this point, it should be mentioned that, as a result of the linearisation process, the non
linear characteristics of the simulation model presented in Chapter 3 will be neglected.
The fact of neglecting the non linearities, which will be mentioned below, impose some
limitations. The effect of these limitations will be investigated later on in this chapter,
by means of comparison of system behaviour between a non linear and linear model,
which is derived by the former.

As for the non linearities being disregarded during the linearisation, it is common
practise to divide them into categories, [Stapersma and Vrijdag, 2017, Vrijdag and Sta-
persma, 2017]:

• Non linear characteristics of component models included in the simulation model.
The propeller model, included in the core propulsion model has this kind of non
linear behaviour, due to the curvature of the lines, which are used in the open
water diagram model, in order to calculate the thrust, KT and the torque, KQ coef-
ficients.

• Non linearities, as a consequence of multiplications in the underlying mathemat-
ical models. Mathematical relations used for the calculation of propeller thrust,
T = ρ ·n2 ·D4 ·KT and propeller torque, Q = ρ ·n2 ·D5 ·KQ are two examples of this
kind of multiplicative actions. Additionally, non linear characteristics occur due to
power operations. An example for this is the resistance curve, R = a · ve

s .

• Non linearities due to limits in the simulation model. The most common example
is the saturation of actuators, like the fuel rack actuator, using a mechanical end-
stop preventing the engine overspeed and thermal overloading or the limits of a
hydraulic system driving the pitch of the propeller blades in case of a controllable
pitch propeller.

As it was mentioned before, these neglected non linearities influence the outcome of
the comparison of the dynamic response between the non linear and linear model. Con-
sequently, they should be taken into account, during the evaluation of the correct or not
derivation of the linear model from the original non linear simulation model. Further-
more, it could be beneficial to take these disregarded non linearities into consideration
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when using the results of the response of the linear model, when realistic disturbances
are applied within the limited neighbourhood of the linearisation point.

NORMALISATION AND LINEARISATION
The process of normalising and linearising mathematical formulas including multiplica-
tive and power operations is demonstrated in details in [Stapersma and Vrijdag, 2017,
Vrijdag and Stapersma, 2017]. This process is then applied to the shaft and ship speed
loop as they are shown in the ship propulsion block diagram in Figure 3.6.

The differential equation for the dynamics of the shaft speed loop, as given in Section
3.3.3, is given below, with the assumption of constant shaft inertia, since the change of
mass, due to the water entrained by the propeller, is neglected:

2π · Ip · dn

d t
= Ms −Mpr op (4.1)

The variation of both shaft and propeller torque around an equilibrium point is:

Ms = Ms,0 +δMs (4.2)

Mpr op = Mpr op,0 +δMpr op (4.3)

In case of steady nominal condition, where there is equilibrium between shaft and pro-
peller torque:

Ms,0 = Mpr op,0 (4.4)

The substitution of Eq. 4.2 and Eq. 4.3 in Eq. 4.1 and dividing by the value of torque at
nominal point results in:

2π · Ip

Ms,0
· n0

n0
· dn

d t
= δMs

Ms,0
− δMpr op

Mpr op,0
(4.5)

Given, that the integration constant of the shaft loop and the normalised shaft speed
time derivative are defined as:

τn ≡ 2π · Ip ·n0

Ms,0
(4.6)

1

n0
· dn

d t
≡ dn∗

d t
(4.7)

Then, substitution in Eq. 4.5 leads to:

τn · dn∗

d t
= δM∗

s −δM∗
pr op (4.8)

At this point, it has to be pointed out that the division by the nominal torque in Eq. 4.5
is only valid for a chosen nominal point, which is also an equilibrium point for the system
that is examined. It goes without saying, that this an important remark, as it dictates that
for every different equilibrium point in the system that is under consideration, a different
linear model can be derived, regarding the parameters and variables on which the linear
model is dependent.
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Normalisation of the formula which relates the brake engine torque to the shaft torque
(Eq. 3.9), assuming constant total transmission efficiency, results in:

δM∗
s = δM∗

b (4.9)

Accepting the relative rotative coefficient as a constant variable, propeller torque and
open water torque are equal:

δM∗
pr op = δQ∗ (4.10)

According to the linearisation and normalisation method presented in [Stapersma and
Vrijdag, 2017], δQ∗ in equation 4.10 is calculated using the open water torque,
Q = ρ ·n2 ·D5 ·KQ , which gives:

δQ∗ = 2 ·δn∗+δK ∗
Q (4.11)

With respect to torque coefficient, KQ = g (J ,P/D), which is a function of advance coeffi-
cient, J and pitch over diameter ratio, P/D , the linearised formula is:

δKQ

δKQ,0
= b · δJ

J0
+q · δ(P/D)

(P/D)0
(4.12)

where the normalised propeller derivatives b and q are calculated by:

b ≡ J0

KQ,0
· δKQ

δJ

∣∣∣∣
P/D

(4.13)

q ≡ (P/D)0

KQ,0
· δKQ

δ(P/D)

∣∣∣∣
J

(4.14)

Consequently, the normalised and linearised Eq. 4.12 becomes:

δK ∗
Q = b ·δJ∗+q ·δ(P/D)∗ (4.15)

Regarding the rest of the parameters used in the propeller model, linearised advance
ratio, J , advance velocity, va and wake factor, w are given below:

J = va

n ·D
=⇒ δJ∗ = δv∗

a −δn∗ (4.16)

va = (1−w) · vs =⇒ δva

va,0
= δvs

vs,0
− δw

1−w0
=⇒ δv∗

a = δv∗
s −δw∗ (4.17)

Special notation should be done at this point, regarding the change of wake fraction,
which is taken into consideration compared to relative rotative efficiency and total trans-
mission losses, which were neglected.

δw∗ = δw

1−w0
(4.18)

The differential equation for the dynamics of the ship speed loop as given in Section 3.3.4
is given below, with the assumption of constant ship mass, since the change of mass due
to the water entrained by the hull is neglected:

mshi p · d vs

d t
= Fpr op −Fshi p (4.19)
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Small perturbations around both propeller thrust and ship resistance around an equi-
librium point, give:

Fpr op = Fpr op,0 +δFpr op (4.20)

Fshi p = Fshi p,0 +δFshi p (4.21)

In case of steady nominal condition, where there is equilibrium between ship resistance
and propeller thrust:

Fpr op,0 = Fshi p,0 (4.22)

Substituting Eq. 4.20-4.22 to Eq. 4.19:

mshi p · d vs

d t
= δFpr op −δFshi p (4.23)

Following the same procedure, as for the shaft speed loop, Eq. 4.19 gives:

τv ·
d v∗

s

d t
= δF∗

pr op −δF∗
shi p (4.24)

The left hand side of Eq. 4.24 is defined, respectively, by:

τv ≡ mshi p · vs,0

Fshi p,0
(4.25)

1

vs,0
· d vs

d t
≡ d v∗

s

d t
(4.26)

In the right hand side of Eq. 4.24, the ship force Fshi p is equal to resistance R and can be
replaced as presented below:

δFshi p

Fshi p,0
= R

R0
=⇒ δF∗

shi p = δR∗ (4.27)

Given that the resistance can be represented as a polynomial curve:

R =α · ve
s =⇒ δR

R0
= δα

α0
+e · δvs

vs,0
=⇒ δR∗ = δα∗+e ·δv∗

s (4.28)

The power factor e of the resistance curve, which is presented as a multiplication factor,
after the normalisation and linearisation process, is called normalised steepness of the
resistance curve and is defined by:

e ≡ vs,0

R0
· δR

δvs

∣∣∣∣
α

(4.29)

The propeller thrust in Eq. 4.24 is derived by the formula relating the propeller thrust to
the open water thrust, including the deduction factor:

Fpr op = kp · (1− t ) ·T =⇒ δFpr op

Fpr op,0
= δT

T0
− δt

1− t0

t=const=⇒ δF∗
pr op = δT ∗ (4.30)
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Regarding the normalised and linearised open water thrust, it is defined using the open
water thrust formula:

T = ρ ·n2 ·D4 ·KT =⇒ δT

T0
= 2 · δn

n0
+ δKT

KT,0
=⇒ δT ∗ = 2 ·δn∗+δK ∗

T (4.31)

Thrust coefficient, KT = f (J ,P/D), which is a function of advance coefficient, J and pitch
over diameter ratio, P/D , is linearised and normalised following the same procedure as
in Eq. 4.12 and Eq. 4.15 for torque coefficient:

δKT

KT,0
=α · δJ

J0
+p · δ(P/D)

(P/D)0
=⇒ δK ∗

T =α ·δJ∗+p ·δ(P/D)∗ (4.32)

The normalised propeller derivatives a and p, presented in Eq. 4.32 are calculated by:

α≡ J0

KT,0
· δKT

δJ

∣∣∣∣
(P/D)

(4.33)

p ≡ (P/D)0

KT,0
· δKT

δ(P/D)

∣∣∣∣
J

(4.34)

By substituting Eq. 4.9, 4.10, 4.11, 4.15, 4.16, 4.17 into Eq. 4.8 the linearised mathematical
description of the dynamics of the shaft speed loop is given:

τn
dn∗

d t
= δM∗

b − (2−b)δn∗−bδv∗
s +bδw∗−qδ(P/D)∗ (4.35)

In Eq. 4.35 a clear insight is given, regarding the relation between shaft acceleration
dn∗
d t , the two state variables, as δn∗ and δv∗

s are called, and the three variables that are
considered as inputs for the linearised system, δM∗

b , δw∗ and δ(P/D)∗.
Accordingly, the same linearised mathematical description can be derived for the

dynamics of the ship speed loop, by substituting Eq. 4.16, 4.17, 4.27, 4.28, 4.30, 4.31, 4.32
into Eq.4.24:

τv
d v∗

s

d t
= (2−a)δn∗− (e −α)δv∗

s −δα∗−αδw∗+pδ(P/D)∗ (4.36)

Similarly to Eq. 4.35, Eq. 4.36 reveals the relation between ship acceleration
d v∗

s
d t the two

state variables δn∗, δv∗
s and the inputs of the linearised system presented in this formula

δα∗, δw∗ and δ(P/D)∗
The derived Eq. 4.35 and Eq. 4.36 are depicted as block diagram in Figure 4.3. In this

Figure, the linearised core propulsion system, excluding the prime mover (Diesel en-
gine in the system under consideration) and the propulsion control system (governor),
is presented as two first order systems in series, the first one in red colour and the second
one in green colour. The inputs of the block diagram of the linearised propulsion plant
are clearly shown. In blue colour are δM∗

b and δ(P/D)∗, which can be influenced by
the operator and in black colour are δα∗ (resistance perturbation) and δw∗ (wakefield
perturbation), which are defined as disturbances for the system and are environmental
dependent. They can, also, be influenced by the operator by changing course, which
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is not examined in this thesis or by sailing at another speed, in other words changing
operating point.
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Figure 4.3: Block diagram of linearised core ship propulsion plant.

In order to investigate and elaborate in the system behaviour in the frequency do-
main, the method used in this thesis is the State-Space notation similarly to the approach
followed in [Vrijdag and Stapersma, 2017]. Compared to transfer functions derived using
the Laplace transformation as it is done in [Stapersma and Vrijdag, 2017], the State-Space
method offers an easier and simpler process to obtain the Bode plots, which will be the
tool to examine the response of the system, into consideration, in the frequency domain.

In general, for the State-Space notation, the system equation used, is the one below,
[Vrijdag and Stapersma, 2017]:

ẋ = Ax+Bu+Gw
y =C x+Du+v

(4.37)

In Eq. 4.37, the first equation is called the state equation, while the second one is called
the output equation. Regarding the coefficients in capital letters presented in Eq. 4.37,
A is called system matrix, B is known as the input matrix, G is called the gain matrix for
the system disturbances, C is the output matrix and D is called the feedforward matrix,
which couples the input and the output. As for the variables in Eq. 4.37, x is called state
vector, u is the input vector, w is the disturbance vector and y is the output vector. The
variable v is called sensor noise vector.

At this point it should be mentioned that, for each one of the following steps regard-
ing the linearisation of the propulsion system in this thesis, vectors u and w are merged
into one input vector u, since both of them are considered as inputs to the linear sys-
tem. Consequently, the input matrix, B and the gain matrix for the disturbances, G, are
merged into one input matrix, B. What is more, the above mentioned sensor noise vector,
v is not used in this thesis.
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4.3. CORE PROPULSION SYSTEM

LINEAR MODEL

As it was mentioned in Section 4.1, the linearisation of the non linear model, presented
in Chapter 3, will be done in three parts. In this Section, the first part will be shown,
including only the linearisation of the core propulsion system, as depicted in Figure 4.4,
and the verification of the derived linear model, in terms of comparison of the behaviour
of the linear model in the frequency domain to the behaviour of the non linear.



sv

n

Core 
Propulsion 

System

w

 DP



sM

Figure 4.4: Block diagram of linearised core propulsion system.

The linearisation process presented in Section 4.2 is referred to the linearisation of
the core propulsion system, as the formulas linearised there represent only the shaft dy-
namics, the ship dynamics, including the ship’s hull resistance, as well as the propeller
model and the wakefield, interacting with the propeller blades. The resulting formulas,
Eq. 4.35 and Eq. 4.36 can mathematically describe the core propulsion system. Con-
sidering the shaft speed, δn∗ and ship speed, δv∗

s , as the outputs of the system, the
matrices and vectors needed for the State-Space method, as they were presented in the
Section before, are given below:
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A =
[− (2−b)

τn
− b
τn

(2−α)
τv

− (e−α)
τv

]

B =
[

1
τn

− q
τn

0 b
τn

0 p
τv

− 1
τv

− α
τv

]

C =
[

1 0
0 1

]

D =
[

0 0 0 0
0 0 0 0

]

x = y =
[
δn∗
δv∗

s

]

u =


δM∗

b
δ(P/D)∗
δα∗
δw∗



(4.38)

As it was explained in 4.2, the values of the parameters, which are included in the
State-Space model, are dependent on the open water propeller diagram, which is used
and on the operating point, which is examined each time. The reason for this is that the
linearised model is valid only at an equilibrium point and for small perturbations around
it. Consequently, different operating-equilibrium point defines different values for the
parameters used in the above mentioned system. Consequently, different values for the
parameters define different State-Space model.

In this thesis, two different operating points will be used for the three parts of the
linearisation process of the non linear simulation model presented in Chapter 3. Tak-
ing into account the combination curve, which was presented in Section... and imple-
mented for the validation of the simulation model, the two operating points for which
the linear models will be derived, are operating points 6 and 8. These two different op-
erating points were chosen aiming to investigate the influence of the operating point on
the behaviour of the linear model in the frequency domain.

The values of the necessary variables at the operating points under consideration of
the non linear simulation model and the parameters needed to define the State-Space
model for the aforementioned operating points, which will be examined, are presented
in the two following Tables 4.1.
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System Values for Values for Units of
Parameters operating point 6 operating point 8 Parameters

n0 2.7677 3.2257 [s−1]
Mb,0 4.4228E+04 7.0014E+04 [Nm]
Ip,tot 3.9526E+03 3.9526E+03 [kg m2]

J0 0.8012 0.7992 [-]
(P/D)0 1.1456 1.1989 [-]

vs,0 6.8821 8.0003 [m/s]
Fshi p,0 1.6948E+05 2.6169E+05 [N]

mt 3.7449E+06 3.7449E+06 [kg]
KT,0 0.2031 0.2308 [-]
KQ,0 0.0393 0.0457 [-]

a -1.9208 -1.6760 [-]
b -1.5884 -1.4064 [-]
p 2.8408 2.5956 [-]
q 3.3881 3.2164 [-]
e 2.9348 2.8827 [-]
τn 1.5541 1.1442 [s]
τv 152.0725 114.4896 [s]

Table 4.1: Variables and parameters of linearised core propulsion system, using the
State-Space notation at operating point 6 and operating point 8.

VERIFICATION OF BODE PLOTS

The next step, following the derivation of the State-Space model, is the verification of the
linear model. This verification will prove whether or not, the linear model was properly
derived by the original non linear model, allowing or not, its valid use for perturbations
around the examined operating points, within the limits imposed by the linearisation
theory. The method followed to verify the linear model in this thesis, is by examining the
level of agreement between the Bode plots of the linear and the non linear model.

At this point, it has to be referred that the Bode plots, which are used extensively
in electrical engineering and control theory, are graphs of the frequency response of a
system. In this case, they relate the response of the output and input variables of the
system, by plotting the ratio of the corresponding responses (magnitude) against a hori-
zontal axis proportional to the logarithm of a selected frequency range.

The State-Space model derived for the core propulsion system is implemented in
MATLAB, giving to all the necessary variables and parameters the values shown in Table
4.1. Thus, the Bode plots of the linear model are obtained.

As far as the Bode plots of the non linear model are concerned, they are obtained
with the use of non linear model simulations, following the method of normalisation
and linearisation of the variables involved, which was provided in Section 4.2.
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Figure 4.5: Bode plots of shaft speed for wake variation, δn∗
δw∗ , of linear (solid line) and

non linear (red dots) model of core propulsion system.
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Figure 4.6: Bode plots of ship speed for wake variation,
δv∗

s
δw∗ , of linear (solid line) and non

linear (red dots) model of core propulsion system.

The four Bode plots presented in Figure 4.5 and Figure 4.6 are referring to the two op-
erating points, as they were defined in the previous section, with the left plot of each Fig-
ure referring to operating point 6 and the right plot referring to operating point 8. These
four Bode plots compare the response of the two system states δn∗ and δv∗

s , which are
considered to be the outputs of the linear system, to a perturbation of the input variable
δw∗. The comparison is made between the Bode plots of the linear (solid line) and non
linear model (red dots), with Figure 4.5 demonstrating the response of state variable δn∗
for the two aforementioned operating points, whereas Figure 4.6 shows the response of
state variable δv∗

s .
As far as the comparison done in Figure 4.5 and 4.6 is concerned, it can be noticed

that the response of shaft speed and ship speed to wake variation, δn∗
δw∗ and

δv∗
s

δw∗ of the
linear system fully agrees to the correspondent one of the non linear system for the whole
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range of examined frequencies. This remark applies for both the examined operating
points.

4.4. UNCONTROLLED SYSTEM WITH ACTUATORS

LINEAR MODEL
In this Section, the second step of linearisation of the propulsion plant is presented, re-
garding the uncontrolled system including the actuators, as it is depicted in Figure 4.7.
What is more, the verification of the derived linear model will take place, comparing the
behaviour of the linear model in the frequency domain to the behaviour of the non lin-
ear.

 
set

DP

Diesel
engine

Core 
Propulsion 

System

actuator



bMX


setX

Uncontrolled system 
with actuator

n



sv

n

w

Figure 4.7: Block diagram of linearised uncontrolled propulsion system with actuators.

Following the process of linearisation presented in Section 4.2, two components are
added, as shown in Figure 4.7. These two components are the Diesel engine, which, ac-
cording to the non linear simulation model, drives the propeller shaft and its fuel rack
actuator. As it was referred in Section 3.3.2, the Diesel engine of the non linear simulation
model, is simply modelled, using the fuel rack map of the Diesel engine under consid-
eration. Such a fuel rack map relates the engine torque, which is the desired output of
the model, with the fuel rack position, X , and the engine speed, ne . Linearisation and
normalisation of Eq. (equation of diesel model presented in chapter 3), which describes
mathematically the model described before, leads to the following linear formula:

δMb

Mb,0
= g · δn

n0
+ v · δX

X0
(4.39)
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The normalised derivatives, g and v , which are introduced in Eq. 4.39 are defined below:

g ≡ n0

Mb,0
· δMb

δn

∣∣∣∣
X

(4.40)

v ≡ X0

Mb,0
· δMb

δX

∣∣∣∣
n

(4.41)

These normalised derivatives can be calculated using the Diesel engine’s fuel rack map,
as it was referred in Section 3.3.2 and shown in Figure 3.12. Thus Eq. 4.39 can be written
as below:

δM∗
b = g ·δn∗+ v ·δX ∗ (4.42)

Since the fuel map of the used diesel engine is not available as well as the factory ac-
ceptance acceptance test, from which the fuel map can be derived according to Section
3.3.2, typical values for the normalised derivatives, g and v of Eq. 4.39 and Eq. 4.42 will
be used. A range of typical values for normalised derivative g is between -1 and -0.5,
[Vrijdag and Stapersma, 2017]. This range of values causes a slightly negative slope of
the constant fuel rack lines, as depicted in Figure 3.12. As far as the normalised deriva-
tive v is concerned, a range of typical values usually, lies between 0.75 and 1.25. Taking
into account the lack of available fuel map or data coming from the Factory Acceptance
Test(FAT) of the Diesel engine under consideration, the most simplified assumption is
going to be used, regarding the relation between the torque output of the engine, Mb

and the engine speed, ne and fuel rack position, X , as inputs. This means that, the Diesel
engine is considered to be a constant torque machine. In other words, the normalised
derivative g gets the value g = 0. What is more, the value of the second normalised
derivative v gets the value v = 1.

As for the fuel rack actuation mechanism, which is also added in this step of the
linearisation process, its dynamics are very fast compared to the ship and shaft speed
loop dynamics. This is due to the very low mass of the mechanism when this is compared
to the available displacement forces of the fuel injection pump. As a result, the dynamics
of the fuel rack actuation mechanism is neglected:

δX ∗ = δX ∗
set (4.43)

The addition and substitution of the linearised mathematical formulas, representing the
sub models, which were added in this second step of the linearisation process, will be
added and substituted in the mathematical formulas describing the shaft and ship speed
loop, which were presented in Eq. 4.35 and 4.36. Furthermore, for completeness reasons,
a differential equation is added describing the propeller pitch control system and its ac-
tuating mechanism. In this thesis, the propeller pitch control system is absent in the non
linear simulation model, so it is its actuating mechanism. For this reason, the values of
all the variables presented in this differential equation are set to zero.

τn
dn∗
d t = vδX ∗

set − (2−b − g )δn∗−bδv∗
s +bδw∗−qδ(P/D)∗

τv
d v∗

s
d t = (2−α)δn∗− (e −α)δv∗

s −δα∗−αδw∗+pδ(P/D)∗

τ(P/D)
d(P/D)∗

d t = δ(P/D)∗set −δ(P/D)∗

(4.44)
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Following the State-Space notation, the matrices and vectors representing the linearised
model of the uncontrolled system with actuators are given below:

A =


− (2−b−g )

τn
− b
τn

− q
τn

(2−α)
τv

− (e−α)
τv

p
τv

0 0 − 1
τ(P/D)



B =


v
τn

0 0 b
τn

0 0 − 1
τv

− α
τv

0 1
τ(P/D)

0 0



C =
1 0 0

0 1 0
0 0 1



D =
0 0 0 0

0 0 0 0
0 0 0 0



x = y =
 δn∗

δv∗
s

δ(P/D)∗



u =


δX ∗

set
δ(P/D)∗set

δα∗
δw∗



(4.45)

VERIFICATION OF BODE PLOTS

After the derivation of the linear model and the matrices of the State-Space notation for
the uncontrolled system with actuators, the Bode plots are going to be derived, by im-
plementing the model in MATLAB. The values needed for the variables and parameters,
which consist the matrices in the State-Space notation of the linear system, are given in
Table 4.2 for operating point 6 and operating point 8.
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System Values for Values for Units of
Parameters operating point 6 operating point 8 Parameters

n0 2.7677 3.2257 [s−1]
Mb,0 4.4228E+04 7.0014E+04 [Nm]
Ip,tot 3.9526E+03 3.9526E+03 [kg m2]

J0 0.8012 0.7992 [-]
(P/D)0 1.1456 1.1989 [-]

vs,0 6.8821 8.0003 [m/s]
Fshi p,0 1.6948E+05 2.6169E+05 [N]

mt 3.7449E+06 3.7449E+06 [kg]
KT,0 0.2031 0.2308 [-]
KQ,0 0.0393 0.0457 [-]

a -1.9208 -1.6760 [-]
b -1.5884 -1.4064 [-]
p 2.8408 2.5956 [-]
q 3.3881 3.2164 [-]
e 2.9348 2.8827 [-]
g 0 0 [-]
v 1 1 [-]
τn 1.5541 1.1442 [s]
τv 152.0725 114.4896 [s]

Table 4.2: Variables and parameters of linearised uncontrolled system with actuators,
using the State-Space notation at operating point 6 and operating point 8.

By obtaining the Bode plots, the linear model of the system depicted in Figure 4.7
is verified, in the same way, as it was done for the linearised model of core propulsion
model in Section 4.3. The Bode plots of shaft speed, δn∗ and ship speed, δv∗

s , for wake
variation, δw∗, for the two different operating points, operating point 6 and operating
point 8 and for the two different models, linear and non linear are derived and compared
in the plots of Figures 4.8 and 4.9 below.
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Figure 4.8: Bode plots of shaft speed for wake variation, δn∗
δw∗ , of linear (solid line) and

non linear (red dots) model of uncontrolled system with actuators.
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Figure 4.9: Bode plots of ship speed for wake variation,
δv∗

s
δw∗ , of linear (solid line) and non

linear (red dots) model of uncontrolled system with actuators.

Regarding the outcome of this comparison of the response of shaft and ship speed to

the wake variation, δn∗
δw∗ and

δv∗
s

δw∗ , between the linear and the non linear system, it can be
noticed that they completely agree, for both the operating points, which were chosen to
be examined.

4.5. CONTROLLED SYSTEM

LINEAR MODEL
In this Section, the third step of the linearisation process of the propulsion plant is pre-
sented, with regard to the controlled system, as it is depicted in Figure 4.10. Additionally,
the derived linear model is verified by means of comparison of the Bode plots of the
linear and the non linear model.
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Figure 4.10: Block diagram of linearised controlled propulsion system.

The controlled system, which is linearised in this Section, is the actual propulsion
system, including the engine speed controller. This additional component can be seen
in the block diagram of Figure 4.10, where it is referred as engine speed governor. This
engine speed governor is considered to be a linear PI controller.

Regarding the engine speed controller of the original non linear simulation model,
from which the linear one is derived, there are some limitations that are implemented
in the controller, which are meant to protect the Diesel engine by preventing phenom-
ena like the overloading of the engine. These limitations, which are including in type 3
non linearities, as they were presented in Section 4.2, can not be captured by the derived
linear model. The reason for this, is that these kinds of limiting functions are activated
in off design conditions and more specifically, during accelerations and decelerations or
during operation near the engine’s envelope limits. However, in this thesis the lineari-
sation of the non linear model is referred only to very small perturbations around two
operating points, from which none of the two is on the engine’s limits. Consequently, as
both of the operating points presented before, have sufficient margin from the engine’s
envelope and the fluctuations, which are implemented around them, remain small, as
it is also dictated by the linearisation theory, it is reasonable to consider that additional
non linear features in the governor, such as engine’s torque limitations, remain inactive.
As a result, the governor, as a total, has a linear behaviour.

The addition of the speed controller in this third part of linearisation, will cause some
differences to the linear model, compared to the one derived in Section 4.4. Firstly, the
PI controller needs as input the error in rotational speed, which is defined as:

δe∗n = δn∗
set −δn∗ (4.46)

The integral of this error, which is calculated in the PI controller, will be one extra ele-
ment of the state vector x:

δE∗
n =

∫ t

0
δe∗nd t =⇒ dE∗

n

d t
= δe∗n (4.47)
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Taking into consideration the above mentioned, the output of the PI controller for the
linear model is:

δX ∗
set = Kpδe∗n +KiδE∗

n (4.48)

Substitution of Eq. 4.46 and Eq. 4.48 in Eq. 4.44, results in the new mathematical de-
scription of the linear model:

τn
dn∗
d t = (−2+b + g − vKp )δn∗−bδv∗

s + vKiδE∗
n −qδ(P/D)∗+ vKpδn∗

set +bδw∗

τv
d v∗

s
d t = (2−α)δn∗− (e −α)δv∗

s +pδ(P/D)∗−δα∗−αδw∗

τ(P/D)
d(P/D)∗

d t = δ(P/D)∗set −δ(P/D)∗
(4.49)

The variable engine brake δM∗
b is linearly related to the system states δn∗, δE∗

n and to
the input δn∗

set :

δM∗
b = (g − vKp )δn∗+ vKiδE∗

n + vKpδn∗
set (4.50)

As a result, by considering the variable engine brake torque δM∗
b as an output of the

linear model, the State-Space notation of the linearised controlled system becomes:
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A =


−2+b+g−vKp

τn
− b
τn

− q
τn

vKi
τn

(2−α)
τv

− (e−α)
τv

p
τv

0

0 0 − 1
τ(P/D)

0

−1 0 0 0



B =


0

vKp

τn
0 b

τn

0 0 − 1
τv

− α
τv

1
τ(P/D)

0 0 0

0 1 0 0



C =


1 0 0 0
0 1 0 0
0 0 1 0

g − vKp 0 0 vKi



D =
0 0 0 0

0 0 0 0
0 vKp 0 0



x =


δn∗
δv∗

s
δ(P/D)∗
δE∗

n



y =


δn∗
δv∗

s
δ(P/D)∗
δM∗

b



u =


δ(P/D)∗set
δn∗

set
δα∗
δw∗



(4.51)

VERIFICATION OF BODE PLOTS

By implementing in MATLAB the State-Space notation of the linearised controlled sys-
tem, the Bode plots of the linear model for a specific range of frequencies are derived,
demonstrating the response of the output variables of the linear system to small dis-
turbances of the input variables of the system. Following the same method as in the
previous Sections, the linearised controlled system is verified, in terms of comparison of
the Bode plots of the linear and non linear model. This comparison is shown in Figures
4.11, 4.12 and 4.13
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Figure 4.11: Bode plots of brake engine torque for wake variation,
δM∗

b
δw∗ , of linear (solid

line) and non linear (red dots) model of controlled system.

As far as Figure 4.11 is concerned, it shows that for part of the frequency range, the
Bode plot of brake engine torque, δM∗

b to the wake variation δw∗ of the linear model
does not agree completely with the corresponding Bode plot of the non linear model.
More specifically, between the values of frequency ω = 10−3r ad/s and ω = 10−1r ad/s,
the Bode plots of the linear and non linear system completely agree, whereas in the range
of frequencies between ω= 2 ·10−1r ad/s and ω= 10r ad/s, a divergence can be noticed
between the two Bode plots, with the response of brake engine torque, δM∗

b to the wake
variation, δw∗ of the non linear model being higher than the corresponding of the linear
model. In the last part of the examined range of frequencies, between ω = 2 · 10r ad/s
and ω= 102r ad/s, the bode plots of the linear and non linear model completely agree.

10-3 10-2 10-1 100 101 102

frequency [rad/s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

g
a
in

 [
-]

linear

non-linear

(a) operating point 6

10-3 10-2 10-1 100 101 102

frequency [rad/s]

0

0.05

0.1

0.15

0.2

0.25

0.3

g
a
in

 [
-]

linear

non-linear

(b) operating point 8

Figure 4.12: Bode plots of shaft speed for wake variation, δn∗
δw∗ , of linear (solid line) and

non linear (red dots) model of controlled system.

Similarly to Figure 4.11, in Figure 4.12 it can be noticed that the Bode plots of linear
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and non linear systems do not fully agree for the whole range of the frequencies, which
is under consideration. More specifically, the Bode plots of linear and non linear system
agree in the range of frequencies between ω = 10−3r ad/s and ω = 5 · 10−2r ad/s, with
the deviation between the Bode plots of the two models lying between ω = 10−1r ad/s
and ω = 2r ad/s. In that range of frequencies, it is remarked, that the response of the
shaft speed δn∗ to the wake variation δw∗ of the non linear system is lower than the
correspondent of the linear system. What is more, in the last part of the examined range
of frequencies, that means between ω= 3r ad/s and ω= 102r ad/s, a perfect agreement
between the two Bode plots can be noted.

10-3 10-2 10-1 100 101 102

frequency [rad/s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

g
a
in

 [
-]

linear

non-linear

(a) operating point 6

10-3 10-2 10-1 100 101 102

frequency [rad/s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

g
a
in

 [
-]

linear

non-linear

(b) operating point 8

Figure 4.13: Bode plots of ship speed for wake variation,
δv∗

s
δw∗ , of linear (solid line) and

non linear (red dots) model of controlled system.

Figure 4.13 shows that the response of ship speed, δv∗
s to wake variation δw∗ of

the linear model agrees absolutely with the corresponding one of the non linear model,
throughout the whole range of frequencies under consideration.

Additionally, a remark referring to Figures 4.11, 4.12, 4.13 is that, regardless the ab-
solute or not agreement between the Bode plots of the linear and the non linear system,
the Bode plots of both linear and non linear system follow exactly the same trend line
throughout the whole range of frequencies. This means that both the Bode plots of lin-
ear and non linear system have their peaks and dips for exactly the same values of fre-
quency. For example, in Figure 4.12, for operating point 8, it can be noticed that for both
linear and non linear system, the response of shaft speed δn∗ to wake variation δw∗ has
a peak at exactly the same value of frequency, ω = 1.5r ad/s, even if this peak is lower
for the non linear system compared to that for the linear system. For lower and higher
values of frequency, the response of shaft speed, δn∗ to wake variation δw∗ is gradually
reduced, until it reaches the upper and lower bound of the examined range of frequen-
cies, for both linear and non linear system, having the same slope. The same remark

applies for the rest of the Bode plots,
δM∗

b
δw∗ and

δv∗
s

δw∗ , as well as for both operating points
under consideration.
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4.6. CONCLUSIONS
Taking into account the aforementioned, the conclusion regarding the rightful use or not
of the linear model for fluctuations around an operating-equilibrium point, for which
the non linear simulation model has been linearised, can be finally drawn.

In regard to the first two parts of linearisation process, as they were presented in
Section 4.3 and 4.4, the verification process showed that there is absolute agreement of

the Bode plots of shaft and ship speed to wake variation, δn∗
δw∗ and

δv∗
s

δw∗ , for both the linear
and the non linear model and for both the examined operating points.

Regarding the last part of the linearisation process, the linearisation of the controlled
system, which is the realistic one, as it contains all the components of an actual propul-
sion system, including the engine speed controller compared to the previous two, the
verification process showed that the introduction of the controller resulted in some de-
viations between the Bode plots of the linear and non linear model, with regard to the

response of brake engine torque and shaft speed to wake variation,
δM∗

b
δw∗ and δn∗

δw∗ . How-
ever, this deviation is considered to be within the acceptable limits for the purpose of
this thesis. Despite this offset, which can be noticed only in part of the examined range
of frequencies, the Bode plots of these two variables for both the linear and non linear
system behave in the same way, following the same trend line throughout the whole ex-

amined range of frequencies. As for the Bode plot of ship speed,
δv∗

s
δw∗ , there is no impact

on its behaviour after the introduction of the controller to the propulsion plant in the
last part of the linearisation process. This means that the response of ship speed, δv∗

s , to
wake variation, δw∗ of the linear system agrees completely to the correspondent one of
the non linear system.

According to the above mentioned, the conclusion, which is drawn, is that the linear
model of the controlled system, of the actual propulsion system, can be correctly used
as a simpler and additional tool, compared to the non linear model, in order to examine
the behaviour of the propulsion plant in case of relatively small but realistic disturbances
around a certain operating point. Such case can be a ship sailing in waves. Additionally,
the linear model can be used as a simple tool, for the design and tuning of the engine
speed controller of the propulsion plant, since it can capture the realistic, dynamic be-
haviour of the propulsion plant at a sufficient level of accuracy.





5
LOAD VARIATIONS: SHIP

DIRECTION, SYSTEM OPERATING

POINT AND SEA STATE

The effect of different factors causing load (torque) fluctuations on the Diesel engine’s op-
erating point, when a vessel sails in waves, are investigated, using the linear model of the
ship’s propulsion system derived in Chapter 4. More specifically, the impact of the Sea State
and the heading of the vessel with respect to the waves, are examined. Furthermore, the ef-
fect of parameters related to the system’s operating point are going to be inspected. Finally,
the outcome of the examination of the above mentioned causes of engine’s operating point
load fluctuations are going to be analysed.

5.1. INTRODUCTION
Having proved, in Chapter 4, the rightfulness of the use of the linear model of a ship’s
propulsion system in case of fluctuations around an operating/equilibrium point of the
system, the derived linear model for the reference vessel RGS9316, is employed in order
to investigate the impact of three different factors on the dynamic response of the oper-
ating point of a Diesel engine, which is used as the prime mover in the propulsion plant
of a ship, when the ship sails in waves. One of the major outcomes outlined in Chapter
4, regarding the linear ship propulsion system model derived, is that linear models are
much more simple and engage less parameters, when they are used as tools for the ex-
amination of the dynamic behaviour of vessel’s propulsion system, compared to more
complex non-linear models. Taking into account these significant advantages, the de-
rived linear model is used to inspect the effect of the heading, the system’s operating
point and the Sea State on the dynamic response of the Diesel engine’s operating point,
in terms of torque and speed fluctuations, within the limits of the engine’s operating
envelope. More precisely, regarding the Sea State, the impact of different wave ampli-
tudes on the dynamic behaviour of the propulsion system will be examined, in terms
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of brake engine torque and engine speed variations. As for the ship direction with re-
spect to the waves, the influence of following and head waves on the ship’s propulsion
system, regarding engine torque and speed variations is investigated. Similarly, Diesel
engine’s torque and engine’s speed variations dependency on different operating points
of the vessel’s propulsion system is inspected, in case of a vessel sailing in wave field.
The demonstration of the impact of the above mentioned factors on the engine’s torque
and speed variations are analysed. In that way, a clear, concrete and useful insight is
attempted to be given, with respect to the influence of a wide range of external distur-
bances on the dynamic behaviour of the propulsion system of a ship sailing in waves.

5.2. GENERAL CONSIDERATIONS
At this point, it would be useful to give some details, regarding the inspection of the
impact of the previously mentioned factors on ship’s propulsion system model dynamic
behaviour.

As far as the concept of sailing in waves, which is the focus of this work, is concerned,
waves cause both resistance and wakefield perturbations for the vessel’s propulsion sys-
tem model. These disturbances are clearly depicted in Figure 3.6, where the block dia-
gram of the whole propulsion system model is shown, as well as in Figure 3.8 and Figure
3.17, where wakefield and resistance variation models are illustrated, respectively.

Despite the fact that sailing in wave field causes both wakefield and ship resistance
variations, which are considered to be the disturbance inputs of the propulsion sys-
tem model, in this thesis, only the wakefield input and its influence on the dynamic
behaviour of the system operating point will be investigated. The reasons for that are
extensively presented in Section 2.6.2 and briefly summarised below:

• The impact of wakefield variations on the behaviour of the rotating shaft system
and the engine’s operating point is more direct in comparison to the impact of ship
resistance variations.

• high level of difficulty in order to model the ship resistance variations. Follow-
ing the most commonly used methods, the determination of added resistance in
waves requires accurate data regarding vessel’s motions in waves, like pitch, heave
and relative phase difference between these motions. This kind of calculations lies
out of the scope of this work.

With respect to the examination of the dynamic response of the engine operating
point in case of external disturbances, it is, mainly, accomplished by studying the ellip-
tic trajectory of the engine operating point, being either within the limits of the engine
envelope or being demonstrated alone, outside the engine envelope limits. Additionally,
the derivation of the elliptic trajectory will be based on the Bode plots of engine torque
and engine speed variation over wakefield variation. The Bode plots will be obtained by
using the linear controlled system model derived in Section 4.5. If the Bode plots are ob-

tained, then the values of the gains,
∣∣∣ δn∗
δw∗

∣∣∣ and
∣∣∣δM∗

b
δw∗

∣∣∣ and phase angles ∠ δn∗
δw∗ and ∠

δM∗
b

δw∗
can be read and used in the correspondent formulas for the required plots of the ellip-
tic trajectory of the engine’s operating point. The mathematical formulas relating the
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values obtained from the Bode plots of the linearised propulsion system model and the
geometric properties of the ellipse of the operating point are presented below:

5.2.1. ELLIPSE GEOMETRIC PROPERTIES
The geometric properties of the engine operating point, in case of regular waves are de-

fined by the values of the Bode plots δn∗
δw∗ and

δM∗
b

δw∗ of the linear propulsion system model.
The external sinusoidal wakefield variation which acts on the system model results in
the harmonic oscillating signal of engine speed and brake engine torque variation at a
certain frequency ω:

δn∗ = δw∗
∣∣∣∣ δn∗

δw∗

∣∣∣∣cos
(
ωt +φn,w

)
δM∗

b = δw∗
∣∣∣∣δM∗

b

δw∗

∣∣∣∣cos
(
ωt +φMb ,w

) (5.1)

It has to be mentioned that the phase of these two signals with respect to the wake-
disturbance signal, the second term of the cosine argument, φn,w and φMb ,w in the for-
mulas of Eq. (5.1) is not important. What is important and affects the plot of the elliptic
operating point is the relation of the phase of the two harmonic oscillating signals of en-
gine speed δn∗ and brake engine torque δM∗

b . Thus the phase angle φn,w is subtracted
from both signals and Eq. (5.1) becomes:

δn∗ = ∣∣δn∗∣∣cos
(
ωt

)
δM∗

b = ∣∣δM∗
b

∣∣cos
(
ωt +φMb ,n

) (5.2)

where φMb ,n =φMb ,w −φn,w .
Using the trigonometric identity cos

(
ωt +φ) = cos

(
ωt

)
cos

(
φ

)− sin
(
ωt

)
sin

(
φ

)
, and

noting φMb ,n as φ from now on, the second formula of Eq.(5.2) can be re-written:

δM∗
b

|δM∗
b |

= cos
(
ωt

)
cos

(
φ

)− sin
(
ωt

)
sin

(
φ

)
(5.3)

Combining the first part of Eq. (5.2) with the trigonometric identity sin2
(
φ

)+cos2
(
φ

)= 1,
it is extracted that:

cos
(
ωt

)= δn∗

|δn∗|

sin
(
ωt

)=
√

1−
(
δn∗

|δn∗|
)2

(5.4)

Substitution of Eq. (5.4) in Eq. (5.3) leads to:

δM∗
b

|δM∗
b |

= δn∗

|δn∗| cos
(
φ

)−
√

1−
(
δn∗

|δn∗|
)2

sin
(
φ

)
(5.5)

Re-arranging and squaring both sides of the equality results in:(
δM∗

b

|δM∗
b |

− δn∗

|δn∗| cos
(
φ

))2

=
(
−

√
1−

(
δn∗

|δn∗|
)2

sin
(
φ

))2

(5.6)
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Combination of cos2
(
φ

)+ sin2
(
φ

)
and Eq. (5.6) gives:(

1

|δn∗|
)2

δn∗2 − 2cos
(
φ

)
|δn∗||δM∗

b |
·δn∗δM∗

b +
(

1

|δM∗
b |

)2

δM∗2
b − sin2 (

φ
)= 0 (5.7)

It can be noticed that Eq. (5.7) can be matched to the general form of the quadratic
equation in the Cartesian coordinate system:

Ax2 +B x y +C y2 +Dx +E y +F = 0 (5.8)

where:

A =
(

1

|δn∗|
)2

B =− 2cos
(
φ

)
|δn∗||δM∗

b |

C =
(

1

|δM∗
b |

)2

D = 0

E = 0

F =−sin2 (
φ

)

(5.9)

Figure 5.1: Definition of an ellipse as a locus
of points.

Geometrically, an ellipse can be de-
fined as a set of points (locus of points)
in the Euclidean plane such that for any
point P of the set, the sum of the dis-
tances |PF1|, |PF2| to two fixed points F1,
F2, the foci, is constant and usually de-
noted by 2α, α > 0. Aiming to avoid the
special case of a line segment, it is as-
sumed that 2α > |F1|F2. Consequently,
the definition of the set of points of an el-
lipse is given by the following mathemat-
ical expression and it is graphed in Figure
5.1:

E = {
P ∈ℜ2||PF2|+ |PF1| = 2α

}
(5.10)

According to analytic geometry, the ellipse is defined as a quadratic: the set of points(
X ,Y

)
of the Cartesian plane that satisfy Eq. (5.8), provided that B 2 − 4AC < 0. In this

case, since for Eq. (5.7) the expression B 2 − 4AC is always negative, then Eq. (5.7) de-
scribes an ellipse. As for Eq. (5.8), the described ellipse is defined in the x − y coordinate
system. It has to be noted that in order to reveal the properties of the ellipse, it is ben-
eficial to rotate the Cartesian coordinate system x − y over an angle α, in that way that
the resulting coordinating system after the rotation, x ′−y ′, is aligned with the major and



5.2. GENERAL CONSIDERATIONS

5

101

the minor axes of the ellipse as shown in Figure 5.2. The mathematical expression that
relates the original and the rotated coordinate system is given by:

x ′ = x cos
(
α

)+ y sin
(
α

)
y ′ =−x sin

(
α

)+ y cos
(
α

) (5.11)

and

x = x ′ cos
(
α

)− y ′ sin
(
α

)
y = x ′ sin

(
α

)+ y ′ cos
(
α

) (5.12)

The substitution of Eq. (5.12) into the general form of the quadratic equation of Eq. (5.8)
will result in the ellipse equation written in the x ′− y ′ rotated coordinated system:

A′x ′2 +B ′x ′y ′+C ′y ′2 +D ′x ′+E ′y ′+F ′ = 0 (5.13)

where the coefficients are given by:

A′ = A cos2 (
α

)+B cos
(
α

)
sin

(
α

)+C sin2 (
α

)
B ′ = B cos

(
2α

)+ (
C − A

)
sin

(
2α

)
C ′ =C cos2 (

α
)−B cos

(
α

)
sin

(
α

)+ A sin2 (
α

)
D ′ = D cos

(
α

)+E sin
(
α

)= 0

E ′ = E cos
(
α

)−D sin
(
α

)= 0

F ′ = F

(5.14)

Figure 5.2: Ellipse on a rotated coordinate
system, [Vrijdag and Stapersma, 2017].

Setting term B ′ equal to zero:

B ′ = B cos
(
2α

)+ (
C − A

)
sin

(
2α

)= 0
(5.15)

the angle of rotation of the coordinate
system, α can be determined:

α= 1

2
cot−1

(
A−C

B

)
(5.16)

The outcome of Eq. (5.16) is, also, the an-
gle of rotation of the ellipse. Additionally,
simplification of Eq. (5.13) gives the form
of the equation presented below:

A′x ′2 +C ′y ′2 +F ′ = 0 (5.17)

Re-arranging Eq. (5.17) leads to the fol-
lowing, widely known, form of the ellipse
equation:

−A′

F ′ x ′2 + −C ′

F ′ y ′2 = 1 (5.18)
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From this form of the ellipse equation the shape parameters, the semi-major and semi-
minor axes can be obtained. Since depending on the orientation of the ellipse, varying
from vertical or horizontal, the position of the semi-major and semi-minor axes can be
switched, the two axes of the ellipse defined in Eq. (5.18) are called first and second axis
respectively. Consequently, the size of the first axis is defined by:

a =
√

−F ′

A′ (5.19)

and the size of the second axis is given by:

b =
√

−F ′

C ′ (5.20)

5.3. SHIP DIRECTION
In this section, the first of the three aforementioned factors influencing the engine’s
torque variation, δMb will be investigated. This factor is the ship direction, which means
the sailing direction of the ship, with respect to the incoming waves. Particularly, two
specific ship headings relative to the wave direction are examined in this thesis:

• following waves

• head waves

Figure 5.3: Frequency of encounter,
[Journée and Massie, 2000].

The ship’s heading with respect to the
incoming waves is defined by the angle µ
which is graphed in Figure 5.3. In case of
this thesis and according to Figure 5.3 the
angle µ gets two values:

• µ= 0°, for following waves

• µ= 180°, for head waves

As far as the range of frequencies of the
waves that are examined, it has to be
noted that, when a ship is sailing, it
will generally "meet "the incoming waves
with a different apparent frequency, the
frequency of encounter ωe , which is dif-
ferent from the wave frequency. The relation between the wave frequency, and the fre-
quency of encounter, in deep water is given by:

ωe =ω− ω2

g
V ·cos

(
µ
)

=ω ·
(
1− V

c
·cos

(
µ
))

, by using: c = g

ω

(5.21)
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where:

ω :wave frequency in a fixed reference [r ad/s]
ωe :frequency of encounter in a moving reference [r ad/s]
V :forward ship speed [m/s]
c :wave speed [m/s]
g :gravitational acceleration [m/s2]
µ :ship heading relative to wave direction [rad]

Figure 5.4: Relation between ωe and ω,
[Journée and Massie, 2000].

More specifically, for the examina-
tion of the impact of the direction of the
ship with respect to the waves the lin-
ear model of the ship propulsion system
will be used, as it was derived in Sec-
tion 4.5. By implementing the matrices
of the State-Space notation in MATLAB,
the Bode plots are derived. Then, as it
was presented in Section 5.2.1, the val-

ues of gains
∣∣∣δM∗

b
δw∗

∣∣∣ and
∣∣∣ δn∗
δw∗

∣∣∣ and phase

angles ∠ δn∗
δw∗ and ∠

δM∗
b

δw∗ are used for the
derivation of the elliptic trajectory of the
engine’s operating point. Moreover, as it
was mentioned in Section 3.2, the lineari-
sation of the propulsion system model, in

this thesis, is applied for operating point 6 and 8. However, since in this Section, only the
impact of the heading of the vessel with respect to the waves is examined, the derivation
of the linear model and the corresponding Bode plots will be done only for one oper-
ating point. The selected operating point for this Section is operating point 8. Besides
this, it is worth noting that, for this Section, the gain values, Proportional and Integral, of
the ship propulsion system’s governor are constant. These values are the ones defined in
Section 3.4, Kp = 1.5 and Ki = 2.

As far as the wave frequencies that will be investigated are concerned, eight(8) of
them are chosen in such way that they are considered representative of the entire range
of frequencies. For each one of the selected wave frequencies, ω, the encounter fre-
quency, ωe , is calculated for both concepts under consideration, following and head
waves. According to Eq. (5.21), the encounter frequency for each one of the two cases
gets a different value, since the angle µ gets two values, 0° and 180° for following and
head waves, respectively. This is depicted in Figure 5.4. Besides the selected wave fre-
quencies that are chosen to be examined, a ship speed has to be chosen, as it is required
in Eq. (5.21) for the calculation of the frequencies of encounter, ωe . The ship speed,
V is determined by the operating point that is selected to be examined. As it was pre-
viously mentioned, the selected operating point for this Section is operating point 8.
Accordingly, all the related values to operating point 8 can be found in Table 4.2. The
corresponding ship speed is Vs = 8.0003m/s.
The chosen wave frequencies as well as the rest of the variables and parameters of the
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linearised ship propulsion system model and the corresponding, derived Bode plots and
engine operating point trajectories are presented in the following tables and Figures for
the following and head waves, respectively.

ω= 0.01 rad/s
Regarding the first chosen wave frequency ω = 0.01 [rad/s], it can be noticed on Table
5.1 that the frequency of encounterωe for following and head waves respectively has the

same value. This means that the values of gains
∣∣∣ δn∗
δw∗

∣∣∣ and
∣∣∣δM∗

b
δw∗

∣∣∣ and phase angles ∠ δn∗
δw∗

and ∠
δM∗

b
δw∗ , similarly, have the same values for following and stern waves for this wave

frequency. As a result, the engine’s operating point trajectories are exactly the same for
both cases under consideration, stern and head waves, as it is graphed in Figures 5.6a

and 5.6b. According to the Bode plots of δn∗
δw∗ and

δM∗
b

δw∗ , for this very low frequency the
dynamic response of the engine’s torque over the wake variation is high, whereas the
response of the engine’s speed over the wake variation is negligible. These responses ex-
plain the shape of the engine’s operating ellipse, which has collapsed to a line, with only
engine’s torque variations, δM∗

b . Additionally, the orientation of the line is vertical, for
the specific values of gains and phase angles.

ω= 0.05 rad/s
As for the second wave frequency that is used, ω = 0.05 rad/s, observing Table 5.2, it
can be noticed that it is almost the same case as the one with ω = 0.01 [rad/s]. The
frequency of encounter,ωe , has approximately the same value for both cases under con-

sideration, following and head waves. Consequently, the values of gains
∣∣∣ δn∗
δw∗

∣∣∣ and
∣∣∣δM∗

b
δw∗

∣∣∣
and phase angles ∠ δn∗

δw∗ and ∠
δM∗

b
δw∗ , similarly, are the same for following and head waves

for this wave frequency. This contributes to the fact that the engine’s operating point has
the same dynamic behaviour for following and head waves, as illustrated in Figure 5.7a
and Figure 5.7b. More specifically, the formed operating ellipse has the same shape and
orientation. This means that the case of following and head waves result in the same
fluctuations in engine’s torque and engine’s speed, when a ship sails in waves with wave
frequency ofω= 0.05 [rad/s]. Compared to the previous case of wave frequency,ω= 0.01

[rad/s], the values of gains in Bode plots of δn∗
δw∗ and

δM∗
b

δw∗ for this one ω= 0.05 [rad/s] are
a little bit higher. This leads to the fact that the engine’s operating trajectory is not a line
anymore, but an ellipse which has the major axis, the one related to the engine’s torque
variation δM∗

b , much longer than the minor axis, which is the one related to the engine’s
speed variation, δn∗.

ω= 0.1 rad/s
Observing the values of the parameters for the third examined wave frequency, ω = 0.1
rad/s in Table 5.3, it can be noted that the frequency of encounter ωe has approximately
the same value for following and head waves. It follows that, similarly, the values of gains∣∣∣ δn∗
δw∗

∣∣∣ and
∣∣∣δM∗

b
δw∗

∣∣∣ and phase angles ∠ δn∗
δw∗ and ∠

δM∗
b

δw∗ are the same for following and head

waves occurring for ω= 0.1 rad/s. As a consequence of this, the engine’s operating point
elliptic trajectories are identical in case of following and head waves. This is clearly
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graphed in Figure 5.8a and Figure 5.8b, where it can be seen that following and head
waves result in the same engine’s torque and the engine’s speed fluctuations for waves
with frequency equal to ω = 0.1 rad/s. Compared to the previously examined wave fre-

quency of ω = 0.05 rad/s, the values of gains in Bode plots of δn∗
δw∗ and

δM∗
b

δw∗ are slightly
higher leading to slightly longer major axis and almost double minor axis.

ω= 0.5 rad/s
For the case of wave frequency ω = 0.5 rad/s, the frequency of encounter for the cases
under consideration, following and head waves does not have the same value anymore.
The values are different and this can be confirmed by the data provided in Table 5.4. Con-

sequently, the values of gains
∣∣∣ δn∗
δw∗

∣∣∣ and
∣∣∣δM∗

b
δw∗

∣∣∣ and phase angles ∠ δn∗
δw∗ and ∠

δM∗
b

δw∗ will be

different for following and head waves, leading to different engine’s operating ellipses.
This is demonstrated in Figure 5.9a and in Figure 5.9b, where it can be noticed that for
the case of stern waves the dynamic response of the engine results in an approximately
vertical operating ellipse, with higher engine’s torque fluctuations compared to the case
of head waves for which the dynamic response of the engine results in an operating el-
lipse with higher value for the angle of rotation compared to the stern waves. This means
that for the case of head waves the engine’s speed fluctuations are higher compared to
the those in case of stern waves. What is more, observing Figures 5.9c and 5.9d and Table
5.4, the differences between the major and minor axis of the elliptic trajectories can be

explained, since the value of
∣∣∣δM∗

b
δw∗

∣∣∣ is higher for the case of stern waves than the case of

head waves. On the contrary, the value of
∣∣∣ δn∗
δw∗

∣∣∣ is higher for the case of head waves than

the case of stern waves.

ω= 1 rad/s
For the case of wave frequency ω= 1 rad/s, the values of the frequency of encounter for
following and head waves are quite different. This is stated in Table 5.5. Therefore, the
engine’s point elliptic trajectories are quite different for following and head waves. On
the one hand, the elliptic trajectory for stern waves is nearly vertical with a very small
angle of rotation. This means that for the case of stern waves high engine’s torque fluc-
tuations and negligible engine’s speed fluctuations can be remarked. On the other hand,
the elliptic trajectory for head waves has significantly larger angle of rotation compared
to the one for stern waves. This means that for the case of head waves the engine’s speed
fluctuations are higher compared to the case of stern waves, whereas the engine’s torque
fluctuations are less for the case of head waves compared to the case of stern waves. This
is clearly graphed in Figure 5.10a and Figure 5.10b. Additionally, the differences regard-
ing the dimensions of the major and minor axis of the elliptic trajectories for stern and
head waves can be explained by the values of the gains of the Bode plots, according to

Figure 5.10c and Figure 5.10d. More specifically, the value of
∣∣∣δM∗

b
δw∗

∣∣∣ is much higher for

the case of stern waves compared to the case of head waves. On the contrary, the value

of
∣∣∣ δn∗
δw∗

∣∣∣ is much higher for the case of head waves than it is in case of stern waves.

ω= 2 rad/s
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With respect to the case of wave frequency ω = 2 rad/s, the values of the frequency of
encounter for the two cases under consideration, following and head waves, are quite
different. This is confirmed by the values demonstrated in Table 5.6. Observing these
values, the shape of the elliptic trajectories for the engine’s operating point for the two
cases, following and head waves, can be justified. For the case of wave frequency under
consideration, both elliptic trajectories for stern and head waves have an inclination,
with the value of the angle rotation being higher for the case of head waves. Moreover,
what is special for this case of wave frequency, is that regarding the case of stern waves,
both the engine’s torque and speed fluctuations are higher compared to those in case
of head waves, which is shown in Figure 5.11a and Figure 5.11b. This can be seen by
observing the values of gains of the Bode plots in Figure 5.11c and Figure 5.11d. More

specifically, the values of
∣∣∣δM∗

b
δw∗

∣∣∣ and
∣∣∣ δn∗
δw∗

∣∣∣ are higher for the case of following waves. This

contributes to the fact that the operating ellipse for the stern waves has longer major and
minor axis, resulting in higher torque and speed fluctuations as it was previously men-
tioned.

ω= 5 rad/s
For the case of wave frequency ω = 5 rad/s, there is a significant difference regarding
the values of frequency of encounter for the two cases under consideration, following
and head waves. This is demonstrated in Table 5.7. The values shown there explain the
elliptic trajectories, illustrated in Figure 5.12a and in Figure 5.12b. The resulting oper-
ating ellipses for both examined cases, following and head waves, are almost identical.
They have the same angle of rotation with the only difference between the two being the
length of the major axis of the elliptic trajectories, the one related to the engine’s torque
variations, δM∗

b , which is longer for the case of stern waves. That means that the engine’s
torque fluctuations are higher in case of stern waves compared to the engine’s torque
fluctuations in case of head waves. As far as the minor axis is concerned, it is nearly the
same for both cases of following and head waves. Additionally, the above mentioned

can be confirmed by the values of the gains,
∣∣∣δM∗

b
δw∗

∣∣∣ and
∣∣∣ δn∗
δw∗

∣∣∣, which are depicted on the

Bode plots in Figure 5.12c and in Figure 5.12d, respectively. At this point it is worth not-
ing the really small dimensions of both elliptic trajectories in following and head waves.
This is better highlighted in Figure 5.12a, where the size of both operating ellipses can be
compared to the Diesel engine’s operating envelope. Observing Figure 5.12a, combined
with the Bode plots of Figure 5.12c and Figure 5.12d it follows that for such high values
of wave frequencies and frequencies of encounter, the dynamic response of the engine,
meaning torque and speed fluctuation, is almost negligible with the elliptic trajectory
of the engine’s operating point collapsing to a point. This can be justified by examining
Figure 5.5, where the ship’s propulsion block diagram is graphed.
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Figure 5.5: Ship propulsion block diagram.

According to literature [Stapersma and de Heer, 2000] and as it was mentioned in
Section 2.6.2, the block of the shaft’s inertia and its associated integrator acts as "low
pass"filter between the wake disturbance and its effect on the Diesel engine dynamic
response. In other words, this "low pass"filter only passes low frequency amplitudes, ef-
fectively blocking higher frequencies of disturbance.

ω= 10 rad/s
As for the wave frequency ω = 10 rad/s, the frequencies of encounter occurring for fol-
lowing and head waves are quite different. This is demonstrated in Table 5.8. According
to Figure 5.13a and Figure 5.13b, it can be noticed that the dynamic behaviour of the
engine’s operating point is almost the same. The angle of rotation is the same for both
elliptic trajectories, as well as the dimensions of the major and minor axis of the two op-
erating ellipses. This means that the resulting fluctuations in terms of engine’s torque
and engine’s speed are the same. Furthermore, the above mentioned can be confirmed
by the values of gains in Bode plots in Figure 5.13c and in Figure 5.13d. Similarly to the
case of wave frequency ω = 5 rad/s, in Figure 5.13a, it is highlighted that the size of the
elliptic trajectory for both following and head waves is small, with the operating ellipse
collapsing to an operating point in both cases. The same justification, as in case of wave
frequencyω= 5 rad/s, can be also applied here, using the ship propulsion block diagram
in Figure 5.5.
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Wave Frequencyω= 0.01 [rad/s]

Parameters Following Wave Head Wave

µ= 0° µ= 180°

ωe [rad/s] 0.0099 0.0101

δw∗ [-] 0.15 0.15∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.0046 0.0046

∠ δn∗
δw∗ [deg] 276.4616 276.4616∣∣∣δM∗

b
δw∗

∣∣∣ [-] 0.9293 0.9293

∠
δM∗

b
δw∗ [deg] 6.8913 6.8913

a [-] 6.969e-4 6.969e-4

b [-] 0.1394 0.1394

α [deg] 0.0021 0.0021

Table 5.1: Variables and parameters of following and head waves for ω = 0.01 rad/s at
operating point 8.
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Figure 5.6: Operating ellipse and Bode plots in stern and head waves forω= 0.01 rad/s.
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Wave Frequencyω= 0.05 [rad/s]

Parameters Following Wave Head Wave

µ= 0° µ= 180°

ωe [rad/s] 0.048 0.052

δw∗ [-] 0.15 0.15∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.0329 0.0329

∠ δn∗
δw∗ [deg] 274.7413 274.7413∣∣∣δM∗

b
δw∗

∣∣∣ [-] 1.2546 1.2546

∠
δM∗

b
δw∗ [deg] 6.9929 6.9929

a [-] 0.0049 0.0049

b [-] 0.1882 0.1882

α [deg] 0.059 0.059

Table 5.2: Variables and parameters of following and head waves for ω = 0.05 rad/s at
operating point 8.
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Wave Frequencyω= 0.1 [rad/s]

Parameters Following Wave Head Wave

µ= 0° µ= 180°

ωe [rad/s] 0.0918 0.1082

δw∗ [-] 0.15 0.15∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.0653 0.0765

∠ δn∗
δw∗ [deg] 264.4147 261.1933∣∣∣δM∗

b
δw∗

∣∣∣ [-] 1.3452 1.3512

∠
δM∗

b
δw∗ [deg] -1.4076 -3.9324

a [-] 0.0098 0.0114

b [-] 0.2018 0.2027

α [deg] 0.2032 0.2767

Table 5.3: Variables and parameters of following and head waves for ω = 0.1 rad/s at
operating point 8.
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Figure 5.8: Operating ellipse and Bode plots in stern and head waves forω= 0.1 rad/s.
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Wave Frequencyω= 0.5 [rad/s]

Parameters Following Wave Head Wave

µ= 0° µ= 180°

ωe [rad/s] 0.2961 0.7039

δw∗ [-] 0.15 0.15∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.1726 0.2682

∠ δn∗
δw∗ [deg] 235.7925 201.7935∣∣∣δM∗

b
δw∗

∣∣∣ [-] 1.2267 0.8385

∠
δM∗

b
δw∗ [deg] -22.0224 -39.5373

a [-] 0.0253 0.0349

b [-] 0.1841 0.1274

α [deg] 1.7340 9.4365

Table 5.4: Variables and parameters of following and head waves for ω = 0.5 rad/s at
operating point 8.
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Figure 5.9: Operating ellipse and Bode plots in stern and head waves forω= 0.5 rad/s.
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Wave Frequencyω= 1 [rad/s]

Parameters Following Wave Head Wave

µ= 0° µ= 180°

ωe [rad/s] 0.1845 1.8155

δw∗ [-] 0.15 0.15∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.1189 0.2803

∠ δn∗
δw∗ [deg] 249.9023 168.3358∣∣∣δM∗

b
δw∗

∣∣∣ [-] 1.3260 0.5186

∠
δM∗

b
δw∗ [deg] -12.3699 -47.5031

a [-] 0.0177 0.0224

b [-] 0.1989 0.0855

α [deg] 0.6961 25.5325

Table 5.5: Variables and parameters of following and head waves for ω= 1 rad/s at oper-
ating point 8.
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Figure 5.10: Operating ellipse and Bode plots in stern and head waves forω= 1 rad/s.
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Wave Frequencyω= 2 [rad/s]

Parameters Following Wave Head Wave

µ= 0° µ= 180°

ωe [rad/s] 1.2621 5.2621

δw∗ [-] 0.15 0.15∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.2866 0.1835

∠ δn∗
δw∗ [deg] 179.3763 129.9655∣∣∣δM∗

b
δw∗

∣∣∣ [-] 0.6032 0.2834

∠
δM∗

b
δw∗ [deg] -45.1744 -63.7638

a [-] 0.0284 0.0055

b [-] 0.0961 0.0503

α [deg] 20.5849 32.6149

Table 5.6: Variables and parameters of following and head waves for ω= 2 rad/s at oper-
ating point 8.
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Figure 5.11: Operating ellipse and Bode plots in stern and head waves forω= 2 rad/s.
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Wave Frequencyω= 5 [rad/s]

Parameters Following Wave Head Wave

µ= 0° µ= 180°

ωe [rad/s] 15.3881 25.3881

δw∗ [-] 0.15 0.15∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.0741 0.0473

∠ δn∗
δw∗ [deg] 105.0299 99.5391∣∣∣δM∗

b
δw∗

∣∣∣ [-] 0.1115 0.0711

∠
δM∗

b
δw∗ [deg] -79.6945 -83.4339

a [-] 7.6289e-04 3.0667e-04

b [-] 0.0201 0.0128

α [deg] 33.5653 33.6407

Table 5.7: Variables and parameters of following and head waves for ω= 5 rad/s at oper-
ating point 8.
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Figure 5.12: Operating ellipse and Bode plots in stern and head waves forω= 5 rad/s.
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Wave Frequencyω= 10 [rad/s]

Parameters Following Wave Head Wave

µ= 0° µ= 180°

ωe [rad/s] 71.5526 91.5526

δw∗ [-] 0.15 0.15∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.0162 0.0139

∠ δn∗
δw∗ [deg] 93.2457 92.7807∣∣∣δM∗

b
δw∗

∣∣∣ [-] 0.0243 0.0208

∠
δM∗

b
δw∗ [deg] -87.7608 -88.0815

a [-] 3.5461e-05 2.6026e-05

b [-] 0.0044 0.0037

α [deg] 33.6844 33.6859

Table 5.8: Variables and parameters of following and head waves for ω = 10 rad/s at
operating point 8.
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Figure 5.13: Operating ellipse and Bode plots in stern and head waves forω= 10 rad/s.
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5.4. OPERATING POINT
In this section, the second of the three previously mentioned factors affecting the dy-
namic response of the engine’s operating point in terms of torque and speed fluctua-
tions in the engine operating envelope, will be investigated. This factor is the system
operating point, meaning that the impact of different system operating points on the
engine’s dynamic behaviour, when the vessels sails in a wave field, is examined. As it was
described in Section 4.3, the linear model of non-linear ship propulsion model is only
derived for two operating points, since according to theory, linear models are only valid
for specific equilibrium points and small perturbations around them. In this work these
equilibrium points are the two static operating points that are chosen to be investigated.
The description of these two operating points is given in Section 4.3 and their position
within the engine operating envelope can be noticed in Figure 5.14.
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Figure 5.14: Examined Operating point 6 and Operating point 8 on the engine’s operating
line.

Regarding the impact of the system operating point on the engine’s operating point
dynamic behaviour, with all the rest of the factors being constant, the influence of the
two chosen system operating points, 6 and 8, is examined. Besides the derived Bode plot
diagrams that are required in order to plot the elliptic trajectory of the engine’s operating
point, the system’s operating point influences the wake disturbance modelling, which
is dependent on the ship speed that is defined by the selected operating point. More
specifically, as it is described in Section A.3, the variation of the wake fraction due to the
orbital motion of water particles in waves depends on the ship speed vs for a given wave
disturbance with known wave amplitude ζa and wave frequency ω. The wake fraction
variation is calculated in Eq. (A.9) which is given below:

w = 1− va

vs
+ ζaωekz

vs
sin

(
ωe t −kx

)
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Consequently, the normalised change of wake fraction, δw∗, is also dependent on the
ship speed and thus on the system operating point, as it is shown in Eq. (A.10), (A.11)
and (A.12). For that reason and given that all the rest factors have to stay unchanged
(Sea State & ship direction with respect to waves), one Sea State is selected between
those presented in Figure A.1. For the chosen Sea State >8, as presented in Figure A.1,
four(4) different wave frequencies are examined. Each one of them gives a different wave
amplitude. With the wave amplitude ζa and wave frequency ω known, the normalised
change of wake fraction can be calculated for the two examined operating points follow-
ing the process presented in Section A.3. The wave amplitude spectrum of Sea State >8
is demonstrated below:
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Figure 5.15: Wave amplitude spectrum, ζan for Sea State >8 as presented in Figure A.1.

Furthermore, for the examined wave frequencies of the Sea State >8 the frequency
of encounter, ωe , is defined according to Eq. (5.21) for the two system operating points
under consideration. The input to Eq. (5.21) that changes with respect to the system
operating point is the speed, V , at which the vessel sails. The value of ship speed for both
operating points under consideration can be found in Table 4.2. As far as the direction
of the ship in respect to the incoming waves is concerned, it is constant. It has to be
mentioned that, for this Section the following waves, µ= 0°, is the chosen ship direction.
Finally, it has to be mentioned that regarding the values of the gains of the governor, Kp

and Ki , that are used for the derivation of the linear model are constant and the same as
the ones used in the previous Section 5.3.

As for the plotted results of the dynamic response of the engine’s operating point with
respect to different operating points, what has to be mentioned is that the system operat-
ing point influences only the size of the elliptic trajectory of the engine’s operating point.
On the other hand, the system operating point has no effect on the angle of rotation
of the operating ellipse. More specifically, what can be remarked regarding the elliptic
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trajectories of operating point 6 and 8 throughout the whole range of examined wave fre-
quencies, ω, is that the angle of rotation is nearly the same for both. The only case that
it can be considered that there is a slight difference with respect to the angle of rotation
of the two operating ellipses between operating point 6 and 8 is wave frequency ω = 2
rad/s. Moreover, it can be noticed that the operating ellipse for operating point 6 has
larger engine’s torque fluctuations, δM∗

b and engine’s speed fluctuations, δn∗ compared
to the corresponding operating point 8 throughout the whole range of frequencies.

The reason that the elliptic trajectory of the engine’s operating point for operating
point 6 is larger in terms of both axes compared to the corresponding elliptic trajectory
for operating point 8 can only be attributed to the difference in the value of the nor-

malised change of wake fraction, δw∗ and not to the derived Bode plots of δn∗
δw∗ and

δM∗
b

δw∗
for the two operating points.

Observing Figures 5.16 - 5.23, it can be noticed that the derived Bode plots are almost
identical for operating points 6 and 8. Furthermore, it should be pointed out that the val-
ues of frequencies of encounter, ωe , for the two operating points are quite close to each
other for all the examined wave frequencies,ω, since the only difference is because of the
different vessel speed, V6 = 6.8821 m/s and V8 = 8.0003 m/s. Consequently, that results

in values quite close to each other for the gains
∣∣∣ δn∗
δw∗

∣∣∣ and
∣∣∣δM∗

b
δw∗

∣∣∣ and phase angles ∠ δn∗
δw∗

and ∠
δM∗

b
δw∗ . According to Section 5.2.1, these values multiplied by the normalised change

of wake fraction, δw∗, determine the dimensions of the elliptic trajectories. Given that

the values of gains
∣∣∣ δn∗
δw∗

∣∣∣ and
∣∣∣δM∗

b
δw∗

∣∣∣ are quite close to each other for both operating point

6 and 8, the differences that can be noticed in size of the operating ellipses for operating
points 6 and 8 can only be attributed to the difference in the values of the normalised
change of wake fraction. This also explained according to the theory presented in Sec-
tion A.3, where it is documented that the value of the normalised change of wake frac-
tion, δw∗, depends on the ship speed vs and as a consequence on the system’s operating
point. The difference of the value of the normalised change of wake fraction for operat-
ing point 6 and 8 can be detected in Tables 5.9 - 5.16, where the values of all the relevant
parameters are listed.
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Wave Frequencyω= 0.3 rad/s

Wave Amplitude ζa = 0.89 m

Parameters Operating Point 6 Operating Point 8

ωe [rad/s] 0.2369 0.2266

δw∗ [-] 0.0455 0.0392∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.1767 0.1358

∠ δn∗
δw∗ [deg] 238.3307 245.5247∣∣∣δM∗

b
δw∗

∣∣∣ [-] 1.4247 1.3018

∠
δM∗

b
δw∗ [deg] -20.9505 -15.4730

a [-] 0.0079 0.0053

b [-] 0.0649 0.0510

α [deg] 1.3410 0.9452

Table 5.9: Variables and parameters at operating point 6 and 8 for ω = 0.3 rad/s in fol-
lowing waves.
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Figure 5.16: Operating ellipse and Bode plots for operating point 6 and operating point
8, in following waves, forω= 0.3 rad/s.
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Wave Frequencyω= 0.4 rad/s

Wave Amplitude ζa = 0.71 m

Parameters Operating Point 6 Operating Point 8

ωe [rad/s] 0.2878 0.2695

δw∗ [-] 0.0492 0.0423∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.1976 0.1726

∠ δn∗
δw∗ [deg] 233.1254 235.7925∣∣∣δM∗

b
δw∗

∣∣∣ [-] 1.3743 1.2267

∠
δM∗

b
δw∗ [deg] -24.4188 -22.0224

a [-] 0.0095 0.0071

b [-] 0.0677 0.0519

α [deg] 1.8121 1.7340

Table 5.10: Variables and parameters at operating point 6 and 8 for ω = 0.4 rad/s in fol-
lowing waves.
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Figure 5.17: Operating ellipse and Bode plots for operating point 6 and operating point
8, in following waves, forω= 0.4 rad/s.
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Wave Frequencyω= 0.5 rad/s

Wave Amplitude ζa = 0.47 m

Parameters Operating Point 6 Operating Point 8

ωe [rad/s] 0.3246 0.2961

δw∗ [-] 0.0416 0.0358∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.2187 0.1726

∠ δn∗
δw∗ [deg] 227.5966 235.7925∣∣∣δM∗

b
δw∗

∣∣∣ [-] 1.3141 1.2267

∠
δM∗

b
δw∗ [deg] -27.9499 -22.0224

a [-] 0.0088 0.0060

b [-] 0.0547 0.0439

α [deg] 2.4414 1.7340

Table 5.11: Variables and parameters at operating point 6 and 8 for ω = 0.5 rad/s in fol-
lowing waves.
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Figure 5.18: Operating ellipse and Bode plots for operating point 6 and operating point
8, in following waves, forω= 0.5 rad/s.
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Wave Frequencyω= 0.6 rad/s

Wave Amplitude ζa = 0.31 m

Parameters Operating Point 6 Operating Point 8

ωe [rad/s] 0.3474 0.3064

δw∗ [-] 0.0337 0.0290∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.2187 0.1726

∠ δn∗
δw∗ [deg] 227.5966 235.7925∣∣∣δM∗

b
δw∗

∣∣∣ [-] 1.3141 1.2267

∠
δM∗

b
δw∗ [deg] -27.9499 -22.0224

a [-] 0.0071 0.0049

b [-] 0.0444 0.0356

α [deg] 2.4414 1.7340

Table 5.12: Variables and parameters at operating point 6 and operating point 8 for ω=
0.6 rad/s in following waves.
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Figure 5.19: Operating ellipse and Bode plots for operating point 6 and operating point
8, in following waves, forω= 0.6 rad/s.
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Wave Frequencyω= 0.7 rad/s

Wave Amplitude ζa = 0.22 m

Parameters Operating Point 6 Operating Point 8

ωe [rad/s] 0.3562 0.3004

δw∗ [-] 0.0288 0.0248∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.2187 0.1726

∠ δn∗
δw∗ [deg] 227.5966 235.7925∣∣∣δM∗

b
δw∗

∣∣∣ [-] 1.3141 1.2267

∠
δM∗

b
δw∗ [deg] -27.9499 -22.0224

a [-] 0.0061 0.0042

b [-] 0.0379 0.0304

α [deg] 2.4414 1.7340

Table 5.13: Variables and parameters at operating point 6 and operating point 8 for ω=
0.7 rad/s in following waves.
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Figure 5.20: Operating ellipse and Bode plots for operating point 6 and operating point
8, in following waves, forω= 0.7 rad/s.
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Wave Frequencyω= 0.8 rad/s

Wave Amplitude ζa = 0.16 m

Parameters Operating Point 6 Operating Point 8

ωe [rad/s] 0.3510 0.2781

δw∗ [-] 0.0248 0.0213∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.2187 0.1726

∠ δn∗
δw∗ [deg] 227.5966 235.7925∣∣∣δM∗

b
δw∗

∣∣∣ [-] 1.3141 1.2267

∠
δM∗

b
δw∗ [deg] -27.9499 -22.0224

a [-] 0.0052 0.0036

b [-] 0.0326 0.0261

α [deg] 2.4414 1.7340

Table 5.14: Variables and parameters at operating point 6 and operating point 8 for ω=
0.8 rad/s in following waves.
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Figure 5.21: Operating ellipse and Bode plots for operating point 6 and operating point
8, in following waves, forω= 0.8 rad/s.
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Wave Frequencyω= 1 rad/s

Wave Amplitude ζa = 0.092 m

Parameters Operating Point 6 Operating Point 8

ωe [rad/s] 0.2985 0.1845

δw∗ [-] 0.0193 0.0166∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.1976 0.1189

∠ δn∗
δw∗ [deg] 233.1254 249.9023∣∣∣δM∗

b
δw∗

∣∣∣ [-] 1.3743 1.3260

∠
δM∗

b
δw∗ [deg] -24.4188 -12.3699

a [-] 0.0037 0.0020

b [-] 0.0266 0.0220

α [deg] 1.8121 0.6961

Table 5.15: Variables and parameters at operating point 6 and operating point 8 forω= 1
rad/s in following waves.
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Figure 5.22: Operating ellipse and Bode plots for operating point 6 and operating point
8, in following waves, forω= 1 rad/s.
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Wave Frequencyω= 2 rad/s

Wave Amplitude ζa = 0.016 m

Parameters Operating Point 6 Operating Point 8

ωe [rad/s] 0.8062 1.2621

δw∗ [-] 0.0134 0.0115∣∣∣ δn∗
δw∗

∣∣∣ [-] 0.3073 0.2866

∠ δn∗
δw∗ [deg] 190.9698 179.3763∣∣∣δM∗

b
δw∗

∣∣∣ [-] 0.8450 0.6032

∠
δM∗

b
δw∗ [deg] -45.9759 -45.1744

a [-] 0.0034 0.0022

b [-] 0.0115 0.0074

α [deg] 12.2826 20.5849

Table 5.16: Variables and parameters at operating point 6 and operating point 8 forω= 2
rad/s in following waves.
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Figure 5.23: Operating ellipse and Bode plots for operating point 6 and operating point
8, in following waves, forω= 2 rad/s.
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5.5. SEA STATE
In this section the impact of different Sea States, on the torque variations, δM∗

b , of the
engine’s operating point is examined. In order to investigate the impact of different Sea
States on the engine’s dynamic response, these Sea States have to be translated into wake
disturbance, caused by the waves that are generated in each specific Sea State that is se-
lected to be examined.intended spaceintended spaceintended space

Figure 5.24: Wave energy spectrum,
[Journée and Massie, 2000].

According to literature, [Holthuijsen, 2007,
Journée and Massie, 2000], each Sea
State can be described by a wave fre-
quency spectrum, as shown in Figure
5.24. The mathematical formulations
of these normalised uni-directional wave
energy spectra are based on two parame-
ters:

• the significant wave height, H1/3

• the average wave periods T , de-
fined by T1, T2 or Tp

As a result, the general mathematical expression of wave energy spectra is:

Sζ(ω) = H 2
1/3 · f (ω,T )

from which it follows that the spectral values are proportional to the significant wave
height squared, H 2

1/3 and to a function of ω and T . These mathematical expressions can
be readily found in literature, as well as the required data, significant wave height H1/3

and modal wave period Tp , for these mathematical expressions, in order to calculate
the wave frequency spectrum for each Sea State. In this thesis the used data, which are
shown in Figure 5.25, are found in [Journée and Massie, 2000], describing the open ocean
annual Sea State occurrences for the North Atlantic.

Applying the above mentioned spectral mathematical formulations, one can derive
the wave amplitude spectrum for each one of the Sea States that are presented in Figure
5.25, respectively. At this point it has to be stressed out that the investigation of the im-
pact of the Sea State on the dynamic behaviour of the Diesel engine operating point in
the engine’s operating envelope is done only in terms of the maximum wave amplitude
that each one of the considered Sea States cab cause. For that reason only the peak wave
amplitude ζαn of each Sea State is chosen with its corresponding wave frequency, ωn ,
in order to calculate the wake variation, caused by the orbital motion of water particles,
as it is extensively explained in Section 2.5.1. This wake variation is a sinusoidal signal,
which is linearised and normalised according to Eq. (4.18). At that point, the linearised
and normalised change of wake fraction, δw∗, is used for the derivation of the engine’s
operating point elliptic trajectory, according to the procedure presented in Section 5.2.1.
In this Section, the derived wave amplitude spectra for the Sea States which are given
in Figure 5.25 are presented together with their peak wave amplitudes ζαn , their corre-
sponding wave frequencies ωn and the derived normalised changes of wake fraction.
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The procedure followed in order to derive all the above mentioned and the mathemati-
cal equations involved in this procedure are clearly stated in Appendix A. In the follow-
ing Figure 5.26 the wave amplitude spectra of the Sea States shown in Figure 5.25, are
depicted:

Figure 5.25: North Atlantic Annual Sea State Occurrences, [Journée and Massie, 2000].
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For each one of the Wave Amplitude Spectra graphed in Figure 5.26, the peak wave
amplitude and its corresponding wave frequency are provided in Table 5.17.

For the wave frequencies, ωn , shown in Figure 5.17, the corresponding frequencies
of encounter, ωe , are determined for the case of following waves, at operating point 8 ac-
cording to Eq. (5.21) with the ship speed being Vs = 8.0003 m/s andµ= 0°. Consequently,
by using the Bode plots derived for the linear system at this specific operating point, the
elliptic trajectories of the engine’s operating point, under the impact of the aforemen-
tioned Sea States, are derived. This derivation, combined with the system’s response,
described by the Bode plots due to the wake disturbance δw∗, offers the possibility to
examine the Sea States impact on the engine’s operating point dynamic response. What
is more, it should be mentioned that for the derivation of the Bode plots of the linear
ship model the governor’s gains that are used are the same with those referred in Section
5.3, which means Kp = 1.5 and Ki = 2.

In Figure 5.27a and Figure 5.27b it is indicated that the elliptic trajectories, as a result
of the dynamic response of the engine’s operating point, due to the influence of differ-
ent Sea States, are mainly influenced in terms of torque variation, δM∗

b and much less in
terms of engine speed variation δn∗. This can be easily explained by observing the Bode

plots of
δM∗

b
δw∗ and δn∗

δw∗ as they are presented in Figure 5.27c and Figure 5.27d, respectively,
as well as the definition of the ellipse geometric properties, which are demonstrated in
Section 5.2.1. The major axis of the operating ellipse, as it is defined in Eq. (5.20), is
dependent, on the one hand, on the relation of the phase angles of the two Bode plots,

∠
δM∗

b
δw∗ and ∠ δn∗

δw∗ and on the other hand, on the amplitude of the torque variation, δM∗
b .

Regarding the phase angles, their relation for the eight different Sea States is the same
since, as it can be noticed from the Bode plots their values are almost the same for both

Bode plots
δM∗

b
δw∗ and δn∗

δw∗ . Despite the fact that the values of the gains
∣∣∣δM∗

b
δw∗

∣∣∣ are almost

the same, similarly to those of phase angles, it has to be mentioned that in order to cal-

culate the amplitude of the torque variation, δM∗
b , the gain

∣∣∣δM∗
b

δw∗
∣∣∣ has to be multiplied

by the normalised change of wake fraction, δw∗. As it can be noticed in Table 5.18, the
amplitude of the wake variation δw∗ increases as the Sea State increases, resulting in
higher values of the amplitude of the torque variation, δM∗

b , each time and consequently
in higher torque fluctuations regarding the dynamic response of the engine’s operating
point. As far as the engine speed fluctuation is concerned, it seems that the impact of
different Sea States seems to be less, compared to torque fluctuations, due to quite low

values of gains
∣∣∣ δn∗
δw∗

∣∣∣, as it can be noticed in Figure 5.27d.
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Wave Amplitude Spectra ζαn

Peak Wave Wave frequency,

Amplitude, ζαn [m] ωn [rad/s]

0.011 0.8357

0.0322 0.8357

0.0746 0.7163

0.1354 0.6472

0.2356 0.5089

0.3887 0.4210

0.6660 0.3833

0.8977 0.3142

Table 5.17: Values of maximum wave amplitudes for each one Sea State included in Fig-
ure 5.26 with the corresponding wave frequencies.

Sea State ωe δw∗
∣∣∣ δn∗
δw∗

∣∣∣ ∠ δn∗
δw∗

∣∣∣δM∗
b

δw∗
∣∣∣ ∠

δM∗
b

δw∗ a b α

[rad/s] [-] [-] [deg] [-] [deg] [-] [-] [deg]

2 0.2662 0.0015 0.1538 240.8183 1.2688 -18.7028 2.3430e-04 0.0020 1.2815

3 0.2662 0.0045 0.1538 240.8183 1.2688 -18.7028 6.8727e-04 0.0058 1.2815

4 0.2979 0.0086 0.1726 235.7925 1.2267 -22.0224 0.0015 0.0106 1.734

5 0.3056 0.0139 0.1726 235.7925 1.2267 -22.0224 0.0023 0.0170 1.734

6 0.2977 0.0183 0.1726 235.7925 1.2267 -22.0224 0.0031 0.0224 1.7340

7 0.2764 0.0245 0.1726 235.7925 1.2267 -22.0224 0.0041 0.0300 1.7340

8 0.2635 0.0379 0.1538 240.8183 1.2688 -18.7028 0.0057 0.0481 1.2815

>8 0.2337 0.0414 0.1538 240.8183 1.2688 -18.7028 0.0063 0.0526 1.2815

Table 5.18: Variables and parameters for following waves, at operating point 8 for 8 dif-
ferent Sea States.
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Figure 5.27: Operating ellipses and Bode plots in stern waves at operating point 8 for Sea
States as presented in Figure 5.25.

5.6. CONCLUSIONS

Taking into account all the above mentioned in the previous Sections regarding the ship
direction with respect to the waves, the system operating point and the Sea State, their
impact on the engine’s operating point dynamic response is highly divergent.

As far as the impact of the two ship directions with respect to the incoming waves
is concerned, the dynamic response of the engine’s operating point is different between
the two examined directions, following and head waves for the majority of wave frequen-
cies, ω, examined. The main difference caused by the ship direction with respect to the
waves is that the operating ellipse resulting in case of head direction is more anticlock-
wise rotated compared to the operating ellipse resulting in case of following waves. This
means that head direction leads to less fluctuations in the torque axis and more fluctua-
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tions in the speed axis compared to the corresponding fluctuations resulting from stern
direction. Additionally, for a specific wave frequency under study the head direction re-
sults in a higher value of the encounter frequency compared to the encounter frequency
resulting for the following direction. That means that for relatively higher wave frequen-
cies, the operating ellipses resulting for head direction have smaller area (smaller size for
both axis) compared to the operating ellipses resulting for following direction. This is ex-
plained by the low pass filter role that the shaft inertia has in the ship propulsion system,
reducing the impact of high frequencies on the Diesel engine dynamic response.

As for the impact of the two different operating points, the derived Bode plots for
the two operating points 6 and 8 are almost the same with values of the corresponding
gains being also quite close to each other for the two examined operating points. Nev-
ertheless, the operating ellipses resulting for operating point 6 are larger in terms of the
size of both axes major and minor compared to the corresponding operating ellipses
resulting for operating point 8. This means that operating point 6 leads to more fluctu-
ations in both brake engine torque and engine speed direction compared to operating
point 8. The difference of the size of the operating ellipses between operating point 6
and 8 can only be attributed to the higher value of normalised change of wake fraction,
δw∗, in case of operating point 6 compared to operating point 8, since according to the-
ory reported in Section A.3, the value of normalised change of wake fraction depends
on the operating point and more specifically on the ship speed, which is dependent on
the operating point. On the other hand, the operating point has no impact on the angle
of rotation of the elliptic trajectories of the two different operating points for the whole
range of frequencies examined.

As for the impact of different Sea States, the engine’s operating point dynamic re-
sponse is different, regarding the size of the operating ellipse for each different Sea State.
mainly regarding the engine’s torque fluctuations, δM∗

b . The elliptic trajectories of the
engine’s operating point, occurring due to different Sea States have different major and
minor axes. More specifically, the major and minor axes of each elliptic trajectory in-
creases as the Sea State is increased as a consequence of the increase of the wake distur-
bance amplitude, δw∗. This means that for higher Sea States the fluctuations become
larger both in engine speed and brake engine torque direction.

Finally, according to the conclusion of the diverse impact of ship direction, system
operating point and Sea States on the engine’s dynamic behaviour it can be rightfully
considered that there might be beneficial to schedule the governor gains according to
each case under consideration each time. In other words, it might be useful to set the
gains of the engine controller dependent on the three factors which were examined in
this chapter, the ship direction with respect to the waves, the system operating point
and the Sea States.
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GOVERNOR GAIN SCHEDULING:

REFINEMENT OF DIESEL ENGINE’S

DYNAMIC BEHAVIOUR

The possibility of any benefits lying in refining the existing governor’s settings will be inves-
tigated in this Chapter. Taking into account the outcome of the previous chapter, the po-
tential profit of making the gains of the engine’s controller dependent on the system oper-
ating point, the Sea State and the direction of the ship with respect to the waves will be as-
sessed. The governor gain scheduling, directly related to the wave induced disturbance and
the operating point, will be attempted by developing a gains scheduling algorithm. The
developed algorithm makes use of the linear model of the ship propulsion plant combined
with an optimisation algorithm which employs a metaheuristic technique well-known for
each effectiveness in dealing with hard optimisation.

6.1. INTRODUCTION & GENERAL CONSIDERATIONS

In this Chapter the refinement of the Diesel engine’s controller, used in the vessel under
consideration, is attempted. According to the problem definition and the research ques-
tions, as they were defined in Section 1.2 and Section 1.4 respectively, the ultimate goal
of this work is to examine the possibilities of influencing the size and the orientation of
the elliptic trajectory of the engine operating point, aiming to prevent the activation of
the propeller pitch control, when the ship sails in waves. The avoidance of activation
of the propeller pitch control maintains the average delivered power and as a result the
maximum average ship speed, which is particularly valuable in case of speed trials, as
it is extensively explained in Chapter 1. The refinement of the existing propulsion con-
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troller settings consists in regulating the values of gains of the PID controller of the Diesel
engine’s governor, whose structure and function was clearly described in Section 3.3.2,
according to the disturbance acting on the propulsion system.

As far as the avoidance of activation of propeller pitch control is concerned, it will be
attempted by re-sizing and re-orientating the elliptic trajectory of the engine operating
point by means of governor gains scheduling. The followed approach is given below:

1. Derivation of contour plots which will confirm the potential improvement of the
dynamic behaviour of the operating ellipse in the engine envelope, in terms of
preventing the propeller pitch control activation.

2. Development of gain scheduling algorithm aiming at the prevention of the pro-
peller pitch control activation.

The structure of this Chapter, following the above mentioned approach in order to achieve
the refinement of the Diesel engine’s dynamic response in the engine envelope is pre-
sented below:

• Formulation of the engineering problem into a mathematical problem. This step
involves quantifying the problem, by expressing the main goal of the thesis in
mathematical terms. This requires the selection of suitable mathematical func-
tion, which has to be optimised;minimised or maximised. This mathematical func-
tion is called objective function.

• Derivation of contour plots in MATLAB. They demonstrate the potential improve-
ment regarding the selected objective function.

– Verification of the results of derived contour plots by applying them in the
non-linear ship propulsion model, which was derived in Chapter 3.

• Initialise the gains scheduling algorithm. Given that the engineering problem has
been put in a mathematical framework, the properties of the established opti-
misation problem are studied. Then, a proper metaheuristic method is selected
to provide solution to the problem within acceptable time limits. Initialisation
addresses the selection of the values of control parameters for the chosen meta-
heuristic method.

• Evaluation of gains scheduling algorithm in:

– Regular waves.

– Irregular waves.
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6.2. PROBLEM FORMULATION

This thesis addresses the issue of the decrease of the average maximum ship speed,
which has to be attained especially in case of speed trials, due to the activation of pro-
peller pitch control, when the vessel sails in waves. As it was stated in Section 1.4, this
work deals with this problem by investigating the possibilities to re-size and re-orientate
the elliptic trajectory of the engine operating point, in such way that the operating el-
lipse does not touch the limits of the engine operating envelope and thus, the propeller
pitch control remains deactivated. The re-sizing and re-orientating of the operating el-
lipse is attempted by means of tuning the Diesel engine governor gains.

Regarding the approach of tuning the governor gains, aiming to re-size and re-orientate
the elliptic trajectory of the engine operating point, this follows from the linear model
and its Bode plots derived in Chapter 4. The State-Space system given by Eq. (4.51) de-
pends on the values of the gains of the PID controller, Kp and Ki , as it is described in
Section 4.5. As a consequence of the dependence of the State-Space model on Kp and
Ki , the Bode plots, which are derived based on the State-Space system, will similarly be
dependent on gain settings Kp and Ki . In other words, different combination of values
of the PID gains lead to different Bode plots. Furthermore, according to the formulas
derived in Section 5.2.1, the Bode plots govern the geometric properties of the elliptic
trajectory of the engine operating point in the engine envelope due to a sinusoidal wake
disturbance. Consequently, the geometric properties are affected by the governor set-
tings, Kp and Ki .
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Figure 6.1: Operating point 6 and Operating point 8 under examination on the engine’s
operating line.
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In Chapter 4, the linear ship propulsion system model was derived and verified. In
Chapter 5, it was demonstrated that based on the linear ship propulsion model and on
the Bode plots, the elliptic trajectory of the engine operating point, due to a sinusoidal
wakefield disturbance, can be determined. More specifically, as it was shown in Section
5.2.1, starting from the Bode plots the geometric properties of the operating ellipse like
the orientation, Eq. 5.16, and the size of its semi minor axis, Eq. 5.19 and semi major
axis, Eq. 5.20, can be determined. Provided that these fundamental geometric proper-
ties as well as the canonical form of the ellipse formula, Eq. (5.18), are known, further
geometric properties, which are related to the limits of the engine operating envelope,
can be defined.

Taking into account all the above mentioned, there are several geometric properties
that could be defined as the objective function of an algorithm, aiming to re-size and
re-orientate the operating ellipse avoiding its contact with the engine envelope. The fol-
lowing three which are presented below are the ones which were examined within this
thesis. However, only the third one proved to be able to meet the requirements and thus,
it is used as the objective function of the metaheuristic algorithm in the gains schedul-
ing algorithm. At this point it should be mentioned that the attempt to re-size and re-
orientate the elliptic trajectory refers to two engine operating points, which are clearly
illustrated in Figure 6.1. Apparently the limits for each one of the two points under ex-
amination are different in terms of their position with respect to the engine operating
envelope limits. Consequently, this fact leads to diversity in the way that the geometric
properties have to be defined and used, in order to achieve the goal which is the preven-
tion of any contact between the operating ellipse and the engine envelope lines.

6.2.1. ANGLE OF ROTATION

Figure 6.2: Operating ellipse angle of rota-
tion.

As far as the angle of rotation criterion
is concerned, the formula calculating the
angle of rotation of the semi-major axis
the elliptic trajectory is given by Eq.(5.16)
and is depicted in Figure 6.2. Given the
formula calculating the angle of rotation
of the semi-major axis, one could seek the
combination of controller settings which
results in an angle of rotation whose value
would be the same as the slope of the en-
gine envelope line, which is closest to the
ellipse and as a result the ellipse has the
highest possibility to touch. In that way it
is attempted to make the major axis of the
ellipse parallel to the straight line under
study. Therefore, the contact of the op-
erating ellipse with the line of the engine
envelope can be avoided, as depicted in



6.2. PROBLEM FORMULATION

6

137

Figure 6.3 . An objective function based on this criterion could be formulated as below:

Z = minimize
{
Difference = slope of line - angle of rotation of ellipse semi-major axis

}
(6.1)

Obviously, as it was mentioned before, depending on the operating point under study
each time, the line of the engine envelope that needs to be avoided changes. This means
that the slope of the line that has to be compared to the angle of rotation of the ellipse
semi-major axis, similarly, changes. Despite the fact that according to Figure 6.3 the
approach of minimising the difference between the slope of the line of the engine en-
velope and the angle of rotation of the ellipse semi-major axis could lead to the desired
result, the possibility of getting results like those shown in Figure 6.4, points out the in-
adequacy of this criterion to prevent any contact between the operating ellipse and the
engine envelope limits. In this case, regardless the minimisation of the difference be-
tween the slope of the line of the engine envelope and the angle of rotation of the ellipse
semi-major axis, the operating ellipse with the dashed line still touches the limits of the
engine operating envelope. This is because of the fact that the size of both the major
and minor axis of the ellipse increases. Thus, the use of this geometric property as the
objective function is rejected.
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Figure 6.3: Angle of rotation criterion in engine envelope with the ellipse not touching
the limits.
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Figure 6.4: Angle of rotation criterion in engine envelope, with the ellipse touching the
limits.

6.2.2. AREA OF ELLIPSE

As far as the area of an ellipse criterion is concerned, the formula calculating this geo-
metric property is given below:

A =πab (6.2)

where:

a :size of the first semi axis [m]
b :size of the second semi axis [m]

The size of the first and second semi axes are given in Eq. (5.19) and Eq. (5.20) respec-
tively. Given the formula calculating the area of the elliptic trajectory of the operating
point, one could seek the combination of governor gains which results in the minimum
possible area of the elliptic trajectory of the engine operating point. In that way it is
attempted to prevent any contact between the operating ellipse and the limits of the en-
gine operating envelope as illustrated in Figure 6.5. An objective function based on this
criterion could be the one formulated below:

Z = minimize{A =πab} (6.3)

Despite the fact that according to Figure 6.5 the approach of minimising the area of the
elliptic trajectory of the engine operating point could be beneficial in terms of avoid-
ing any contact between the ellipse and the limits of the engine operating envelope, a
possible occasion like the one illustrated in Figure 6.6 highlights the existing possibil-
ity for this criterion to fail preventing any contact between the operating ellipse and the
limits of the engine envelope. As it is shown in Figure 6.6, the area of the operating el-
lipse with the dashed line is smaller than the area of the operating ellipse with solid line.
Nevertheless, the combination of settings of the controller results in an operating ellipse
with smaller area but with long enough major axis with the ellipse still touching the lines
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of the engine envelope. Consequently, the criterion of the area of the operating ellipse
is considered insufficient to prevent any contact between the operating ellipse and the
lines of the engine envelope.
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Figure 6.5: Area of ellipse criterion in engine envelope, with the ellipse not touching the
limits.
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Figure 6.6: Area of ellipse criterion in engine envelope, with the ellipse touching the lim-
its.

6.2.3. SHORTEST DISTANCE BETWEEN AN ELLIPSE AND A STRAIGHT LINE

As far as the shortest distance between an ellipse and a straight line criterion is con-
cerned, the procedure in order to calculate this geometric property, when the mathe-
matical formulas of the ellipse and the straight line are known, is extensively presented
in Appendix B. Since the shortest distance between an ellipse and a straight line is deter-
mined, one could seek the combination of gains of the Diesel engine’s governor which
maximises the shortest distance between the elliptic trajectory of the engine operating
point and the line of the engine envelope under consideration and thus prevents the
contact between the ellipse and the engine envelope. The line with which the contact
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needs to be avoided, depends on the examined operating point each time and it is the
one which is closer to the operating ellipse under study. This is clearly depicted in Figure
6.7. An objective function based on this criterion could be formulated as below:

Z = mazimize
{
Shortest Distance between operating ellipse and engine envelope line

}
(6.4)

M
b
 [

kN
m

]

ne [rpm]

(a) Operating point 6
M

b
 [

kN
m

]

ne [rpm]

(b) Operating point 8

Figure 6.7: Shortest distance between ellipse and line criterion in engine envelope.

Compared to the two above mentioned criteria, the ellipse angle of rotation and the
area of ellipse, the shortest distance between an ellipse and a straight line ensures that
the elliptic trajectory does not touch the limits of the engine envelope in any case. This is
provided by the geometric property itself, since at its definition it is assumed that there
is a minimum distance between the elliptic trajectory of the engine operating point and
the line of the engine envelope which is closer to the ellipse. By attempting the maximi-
sation of the shortest distance between the operating ellipse and the line, the optimum
combination of Kp and Ki is attempted to be found, assuring the fact that the ellipse lies
as far away as possible from the line of the engine envelope.

For this reason, the geometric property of the shortest distance between an ellipse and a
straight line is selected as the suitable criterion in order to prevent any contact between the
operating ellipse and the engine operating envelope limits and consequently the activation
of the propeller pitch control.

At this point, it should be stressed out that most likely the implementation of mul-
tiobjective optimisation will lead to an even better results with respect to the ultimate
goal which is the prevention of any contact between the elliptic trajectory of the engine’s
operating point and the engine envelope line. More specifically, the implementation of
two geometric criteria could ensure that there will be no contact between the operating
ellipse and the engine envelope lines, leading at the same time to an improved dynamic
behaviour of the operating ellipse in the engine envelope in terms of less excursions in
the direction of engine speed and engine torque. This could happen by employing for
instance the criterion of shortest distance between an ellipse and a straight line and the
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criterion of area of an ellipse. However, this would come at the cost of a more compli-
cated optimisation problem. This case is not investigated in this thesis as it lies out of its
scope.

OPERATING POINT 6

As it was previously mentioned, the geometric property of the shortest distance between
an ellipse and a straight line is the criterion which is applied in order to determine the
combination of governor gains for which the elliptic trajectory of the engine operating
point does not touch the limits of the engine envelope. The mathematical formulas cal-
culating the shortest distance between an ellipse and a straight line are extensively de-
scribed in Appendix B. In this section only the determination of the straight line, as the
limit which has to be avoided, is presented.

In the direction of applying the criterion, it should to be taken into account that there
are two examined operating points, operating point 6 and 8, as shown on the engine
operating line in Figure 6.1. In terms of that, the line which needs to be avoided has to
be separately and specifically defined for each operating point.

(a) Two points passing through the line that
needs to be avoided.
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(b) Highlighted straight line to be avoided.

Figure 6.8: Determination of the line to avoid in engine envelope for operating point 6.

As far as Operating point 6 is concerned, the limits of the engine envelope that has
to be avoided is the part of the engine envelope that is closer to the elliptic trajectory
of the engine operating point and consequently has the highest possibilities to touch
the operating ellipse. By plotting the elliptic trajectory of the engine operating point 6
caused by a sinusoidal wake disturbance, as shown in Figure 6.8, the part of the engine
envelope curve that has to be avoided can be determined. The straight line that has to
be avoided is illustrated in Figure 6.8b. Given two points of the engine envelope curve,
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as depicted in Figure 6.8a, the equation of the of straight line is given by the following
equation:

P1
(
x1, y1

)
P2

(
x2, y2

)} =⇒ y − y1

y2 − y1
= x −x1

x2 −x1
(6.5)

In that way, the parameters of the general equation of a straight line, as given in literature,
Ax +B y +C = 0, can be determined. Once they are defined, the procedure described in
Appendix B can be followed to calculate the shortest distance between the operating
ellipse and the line of the engine envelope.

OPERATING POINT 8

As far as Operating point 8 is concerned, the limits of the engine envelope that has to be
avoided is the part of the engine envelope curve that is closer to the elliptic trajectory of
the engine operating point and therefore has the highest possibilities to touch the oper-
ating ellipse. By plotting the elliptic trajectory of the engine operating point 8 caused by
a sinusoidal wake disturbance, as depicted in Figure 6.9, the part of the engine envelope
curve that has to be avoided can be determined. By locating the necessary points on this
part of the curve, the straight line that will be used in the shortest distance between an
ellipse and a line criterion can be defined using methods that fit linear polynomial curve
to given points in Matlab.

(a) Points passing through the line that needs to
be avoided.
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(b) Highlighted straight line to be avoided

Figure 6.9: Determination of the line to be avoided in engine envelope for operating
point 8.

Following that the method the parameters of the general equation of a straight line
as given in literature, Ax +B y +C = 0, can be determined. Once these parameters are
determined, the process described in Appendix B can be followed in order to calculate
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the shortest distance between the elliptic trajectory of the engine operating point and
the straight line approximating the curve of the engine envelope.

6.2.4. INFEASIBLE SOLUTIONS

At this point it should be mentioned that there is a special group of results regarding
of the solutions of the gains scheduling algorithm, the maximum shortest distance be-
tween the operating ellipse and the straight line of the engine operating envelope for
both Operating point 6 and 8 which are considered infeasible and should be rejected.
In some cases the gains scheduling algorithm, attempting to determine the maximum
shortest distance between the elliptic trajectory of the engine operating point and the
engine envelope, comes up with solutions in which the resulting operating ellipse inter-
sects the engine envelope due to the fact that the algorithm is not able to realise that the
operating ellipse is already in contact with the engine envelope (intersection points). In
that case the algorithm assumes that the tangents on the ellipse, which are parallel to the
engine envelope, still have a distance from it which can be determined. A typical case
like this is illustrated in Figure 6.10.
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(a) Example for operating point 6.
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(b) Example for operating point 8.

Figure 6.10: Examples of rejected solutions in case of intersection between operating
ellipse and engine envelope line.

This phenomenon is attributed to the properties of the linear model. As it was men-
tioned in Section 4.2, during the linearisation process of the original non-linear ship
propulsion model some of the non-linearities are neglected. These non-linearities are
presented in Section 4.2. The third non-linearity presented in Section 4.2 refers to hard
limits that exist in the non-linear model but they are neglected in the linear model. Such
kind of limitation is the engine envelope, operating as protective feature in the engine
governor(detailed description of engine’s governor structure in Section 3.3.2). The limi-
tation of the engine envelope is neglected in the linear model, leading the gains schedul-
ing algorithm to solutions in which the resulting operating ellipse intersects the engine
envelope lines. More specifically, when the combination of controller settings, which is
the solution of the algorithm, is applied back to the non-linear model, the occurred el-
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liptic trajectory of the engine operating point touches the line of the engine envelope,
instead of lying in distance from the engine’s limit as it should be (gains scheduling al-
gorithm objective). This kind of solutions can not be accepted and consequently have
to be filtered and rejected by the algorithm itself. The methodology integrated in the
gains scheduling algorithm in order to force it reject such kind of solutions is described
in details in Section B.3 in the Appendix B.

6.3. CONTOUR PLOTS

According to the followed approach, which aims to achieve the refinement of the Diesel
engine dynamic response, as it is presented in Section 6.1, as a first step contour plots
derived in Matlab will be used in order to confirm the potential improvement of the dy-
namic behaviour of the engine operating point.

Contour plots of the shortest distance between the operating ellipse and the engine
envelope limits, using as independent variables the PID controller gains Kp and Ki , are
derived in Matlab. These contour plots demonstrate the opportunities for further en-
hancement of the shortest distance between the operating ellipse and the limits of the
engine envelope by employing different combinations of controller settings from those
currently used.

The input acting on the linear model causing the elliptic trajectory of the engine op-
erating point is sinusoidal wakefield disturbance (regular wave). A range of different
wave frequencies for the wake disturbance is applied. Based on the results of [Vrijdag
and Stapersma, 2017] for several combinations of PID gains, it is confirmed that low wave
frequencies, (ω ' 0.1rad/s), lead to more vertically oriented operating ellipses, whereas
higher wave frequencies, (ω' 5rad/s), result in anticlockwise rotated operating ellipses.
Following these findings and taking into account the shape of the engine envelope and
the location of the engine operating points under study in the engine envelope, Figure
6.1, it can be concluded that low wave frequencies are more critical for Operating point
8. On the other hand, higher wave frequencies are more critical for Operating point 6.
Therefore, a range of five different wave frequencies of the sinusoidal wake disturbance is
examined, with the amplitude of the disturbance being constant. In that way, the level of
improvement that can be achieved, compared to the currently used controller settings,
will be illustrated.

OPERATING POINT 6

As mentioned before, the contour plots for the shortest distance between the operating
ellipse and the limits of the engine operating envelope are derived in MATLAB. In this
Section Operating point 6 is under study. Five wave frequencies of the wakefield dis-
turbance acting on the linearised ship propulsion system are investigated, with the am-
plitude of the wakefield disturbance being constant. The derived contour plot for each
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wave frequency is presented. The value of the shortest distance for the current values of
the governor settings together with the new gains leading to higher values of the shortest
distance between the operating ellipse and the limits of the engine envelope are given in
tables, as Table 6.1, where:

Kpc :currently used proportional gain
Kic :currently used integral gain
s.d .c :shortest distance between the operating ellipse and

the engine envelope limits for currently used gains
Kpn :new proportional gain
Kin :new integral gain
s.d .n :shortest distance between the operating ellipse and

the engine envelope limits for new gains
δs.d . :percentage change of s.d. given by δs.d . = [(s.d .n − s.d .c )/s.d .c ] ·100

Additionally, the values of the currently used governor gains as well as the values of
gains leading to the maximum shortest distance according to the derived contour plots,
are applied to the non-linear ship propulsion system model which is presented in Chap-
ter 3. The elliptic trajectories of the engine operating point in the engine envelope result-
ing from the two different combinations of governor settings, applied in the non-linear
model, are presented below. In that way, it is confirmed that the conclusions drawn from
the contour plots derived by employing the linear model can be applied in the non-linear
model, giving the expected results. This step is significant in terms of verifying the con-
clusions drawn by the use of the linear model since, as it was previously mentioned, the
linear model is considered as an additional tool to the non-linear model which is the
only one capable of capturing the real phenomena taking place in a propulsion plant in
operation.
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Figure 6.11: Contour plot and operating ellipses for current and new governor gains for
ω= 0.1 rad/s at operating point 6.

ω = 0.1 [rad/s], δw∗ = 0.4, operating point 6

Kpc Kic s.d .c Kpn Kin s.d .n δs.d . [%]
2 1.2 0.143 0.5 1.2 0.1437 0.5

Table 6.1: Current, new governor settings and corresponding shortest distances for ω =
0.1 rad/s at operating point 6.
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(a) Shortest distance contour plot (b) Elliptic trajectories of engine operating point

Figure 6.12: Contour plot and operating ellipses for current and new governor gains for
ω= 0.5 rad/s at operating point 6.

ω = 0.5 [rad/s], δw∗ = 0.4, operating point 6

Kpc Kic s.d .c Kpn Kin s.d .n δs.d . [%]
2 1.2 0.1005 1 6.1 0.1369 36.2

Table 6.2: Current, new governor settings and corresponding shortest distances for ω =
0.5 rad/s at operating point 6.
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Figure 6.13: Contour plot and operating ellipses for current and new governor gains for
ω= 1 rad/s at operating point 6.

ω = 1 [rad/s], δw∗ = 0.4, operating point 6

Kpc Kic s.d .c Kpn Kin s.d .n δs.d . [%]
2 1.2 0.1238 6.1 8.8 0.1396 12.76

Table 6.3: Current, new governor settings and corresponding shortest distances forω= 1
rad/s at operating point 6.
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Figure 6.14: Contour plot and operating ellipses for current and new governor gains for
ω= 2 rad/s at operating point 6.

ω = 2 [rad/s], δw∗ = 0.4, operating point 6

Kpc Kic s.d .c Kpn Kin s.d .n δs.d . [%]
2 1.2 0.14 6.4 9.8 0.1409 0.64

Table 6.4: Current, new governor settings and corresponding shortest distances forω= 2
rad/s at operating point 6.
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Figure 6.15: Contour plot and operating ellipses for current and new governor gains for
ω= 5 rad/s at operating point 6.

ω = 5 [rad/s], δw∗ = 0.4, operating point 6

Kpc Kic s.d .c Kpn Kin s.d .n δs.d . [%]
2 1.2 0.1493 1 0.5 0.152 1.8

Table 6.5: Current, new governor settings and corresponding shortest distances forω= 5
rad/s at operating point 6.

Closer inspection of the above presented in Figures 6.11 - 6.15 and Tables 6.1 - 6.5
confirms that:

• multiple combinations of controller settings can lead to larger shortest distance
between the operating ellipse and the engine envelope compared to the currently
used governor settings.

• for the wave frequency of ω= 0.1 rad/s, the margin for improvement is negligible
since the operating ellipse for the currently used governor gains is already vertical
and the line of the engine envelope lies on the left hand side of the ellipse.

• for the wave frequency of ω = 0.5 rad/s, there is a significant margin of improve-
ment, since the operating ellipse of the currently used gains is anticlockwise ro-
tated (towards the engine envelope line) with larger size, compared to the oper-
ating ellipse of the new gains which is more vertically oriented with remarkably
less excursions in speed direction and slightly more in torque direction. This is
aligned with the findings of [Vrijdag and Stapersma, 2017], which suggest that for
wave frequency of ω ' 0.5 rad/s and high value of Kp and Ki ' 0 the generated
operating ellipse tends to get a more vertical orientation being almost collapsed to
an operating line.

• for the following two wave frequencies, there is some margin of improvement which
is less compared to the previously examined wave frequency. This margin of im-
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provement is gradually reduced as the wave frequency of the disturbance increases.
Despite the fact that the operating ellipse generated by the currently used gains re-
mains to be anticlockwise rotated, the size is reduced due to the “low pass”filter ac-
tion of the shaft inertia and its associated integrator between the wake disturbance
and its effect on the Diesel engine. Consequently, high frequency disturbances do
not affect the engine that much, resulting in small fluctuations of engine speed
and brake engine torque.

OPERATING POINT 8

Similarly to operating point 6, contour plots of the shortest distance as well as the result-
ing elliptic trajectories of the engine operating point of currently used and new governor
gains are presented for operating point 8.
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Figure 6.16: Contour plot and operating ellipses for current and new governor gains for
ω= 0.1 rad/s at operating point 8.

ω = 0.1 [rad/s], δw∗ = 0.2, operating point 8

Kpc Kic s.d .c Kpn Kin s.d .n δs.d . [%]
2 1.2 0.02001 1 0.1 0.1093 446.23

Table 6.6: Current, new governor settings and corresponding shortest distances for ω =
0.1 rad/s at operating point 8.
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(a) Shortest distance contour plot (b) Elliptic trajectories of engine operating point

Figure 6.17: Contour plot and operating ellipses for current and new governor gains for
ω= 0.5 rad/s at operating point 8.

ω = 0.5 [rad/s], δw∗ = 0.2, operating point 8

Kpc Kic s.d .c Kpn Kin s.d .n δs.d . [%]
2 1.2 0.08046 1.1 0.1 0.1215 51

Table 6.7: Current, new governor settings and corresponding shortest distances for ω =
0.5 rad/s at operating point 8.
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(a) Shortest distance contour plot (b) Elliptic trajectories of engine operating point

Figure 6.18: Contour plot and operating ellipses for current and new governor gains for
ω= 1 rad/s at operating point 8.

ω = 1 [rad/s], δw∗ = 0.2, operating point 8

Kpc Kic s.d .c Kpn Kin s.d .n δs.d . [%]
2 1.2 0.09872 1 0.2 0.1241 25.71

Table 6.8: Current, new governor settings and corresponding shortest distances forω= 1
rad/s at operating point 8.
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(a) Shortest distance contour plot (b) Elliptic trajectories of engine operating point

Figure 6.19: Contour plot and operating ellipses for current and new governor gains for
ω= 2 rad/s at operating point 8.

ω = 2 [rad/s], δw∗ = 0.2, operating point 8

Kpc Kic s.d .c Kpn Kin s.d .n δs.d . [%]
2 1.2 (0.1, 0.12) 1 0.2 0.1299 (29.9, 8.25)

Table 6.9: Current, new governor settings and corresponding shortest distances forω= 2
rad/s at operating point 8.
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(a) Shortest distance contour plot (b) Elliptic trajectories of engine operating point

Figure 6.20: Contour plot and operating ellipses for current and new governor gains for
ω= 5 rad/s at operating point 8.

ω = 5 [rad/s], δw∗ = 0.2, operating point 8

Kpc Kic s.d .c Kpn Kin s.d .n δs.d . [%]
2 1.2 0.1277 1 0.4 0.1461 14.4

Table 6.10: Current, new governor settings and corresponding shortest distances for ω=
5 rad/s at operating point 8.
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Closer observation of Figures 6.16 - 6.20 and Tables 6.6 - 6.10 leads to the following
findings:

• multiple combinations of controller settings can lead to better results in terms of
the shortest distance between the operating ellipse and the engine envelope line
compared to the currently used controller settings.

• taking into account the position of the examined operating point in the engine en-
velope, larger distance between the operating ellipse and the engine envelope line
results in anticlockwise rotated operating ellipses. Apparently this means that the
new operating ellipse has less engine torque fluctuations and more engine speed
fluctuations compared to the operating ellipse of the currently used gains.

• for the majority of the wave frequencies examined here, it seems that the a value of
the proportional gain around Kp ' 1 and the integral gain around Ki ' 0.2 seems to
be suitable in order to increase the shortest distance between the operating ellipse
and the engine limits. This is reasonable and in line with the findings in [Vrijdag
and Stapersma, 2017] where it is illustrated that for a wide range of frequencies,
gain values of Kp ' 1 and Ki ' 0 result in an anticlockwise rotated operating ellipse
with a small-size first axis (Eq. (5.19)), which tends to collapse into a line. This has
to be always considered in combination with the position of the examined oper-
ating point in the engine envelope. This position defines the desired orientation
and size for the operating ellipse.

• the margin of improvement is remarkably high for the first examined wave fre-
quency ω = 0.1 rad/s but it is gradually decreased for the rest of the investigated
frequencies. This is in line with the findings in [Vrijdag and Stapersma, 2017],
where it is documented that in higher frequencies, ω > 0.1 rad/s, the operating
ellipse is anticlockwise rotated for a wide range of Kp and Ki used. Taking into
account that at operating point 8, the objective is to rotate the ellipse anticlock-
wise as well as to reduce its size, it is expected that the opportunity to increase the
shortest distance between the operating ellipse and the engine envelope limits, by
using other values of Kp and Ki , is significantly reduced as the frequency of the
disturbance increases.

Taking into consideration both the derived contour plots as well as the implemen-
tation of their results in the non-linear ship propulsion system and the resulting elliptic
trajectories of the engine operating point it is confirmed that there is the opportunity
to increase the shortest distance between the operating ellipse and the engine envelope
limits for a wide range of wave frequencies of the wakefield disturbance. The margin of
improvement varies for each specific case in terms of the examined operating point and
the wave frequency. Consequently, one could rightfully seek a different combination of
governor settings to the one currently used, in order to prevent any contact between the
elliptic trajectory of the engine operating point and the engine envelope limits in every
different case regarding the operating point, the wave frequency and the amplitude of
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the wakefield disturbance. An attempt to dynamically schedule the gains of the gover-
nor according to the disturbance each time is presented in the following sections.

6.4. GOVERNOR GAINS SCHEDULING ALGORITHM

Taking into account the conclusion outlined in the previous section, in this Section the
establishment of a process, which will give the governor of the non-linear ship propul-
sion system model the ability to schedule its gains according to the operating point and
the wakefield disturbance acting on the model each time, is attempted.

The issue of increasing the shortest distance between the elliptic trajectory of the
engine operating point and the engine envelope limits, aiming to prevent any contact
between them is addressed by the development of a simple gains scheduling algorithm.
This gains scheduling algorithm is capable of finding the combination of governor gains
Kp and Ki (optimum combination or near to optimum combination) which increases
(maximises or nearly maximises) the shortest distance between the operating ellipse and
the engine envelope line, ensuring that there will not be any contact between these two.
The gain scheduling depends on the operating point as well as the parameters of the
wakefield disturbance acting on the model. This means that the values of the controller
settings are not constant and predefined, the selection of which is for instance based on
contour plots, like those presented in the previous Section. The gains vary according to
the operating point and the disturbance input (wakefield disturbance) and they are each
time rescheduled, seeking the combination of Kp and Ki which results in an operating
ellipse with the maximum shortest distance from the engine envelope line. The search
of the optimum or close-to-optimum combination of governor gains to achieve this, is
attempted by employing a metaheuristic method for hard optimisation problems.

Due to an impressive research on the topic of difficult optimisation problems, a sig-
nificant number of developed techniques, capable of finding the optimum or quite-
close-to-optimum solutions to this kind of problems, can be found in literature [Dréo
et al., 2006, Hillier, 2012]. The four most widely known metaheuristics are:

• the simulated annealing method

• the tabu search

• the genetic and evolutionary algorithms

• the ant colony algorithms

The one applied in the gains scheduling algorithm developed in this work is the simu-
lated annealing. A detailed presentation of the simulated annealing method is given in
Appendix C.

The starting point of this gains scheduling algorithm is the linearised ship propul-
sion system model as it was presented in Section 4.5 in its State-Space form. The linear
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model as described in Eq. (4.51) together with the corresponding Bode plots of δn∗/δw∗
and δM∗

b /δw∗ are derived. Based on these necessary tools and taking into consideration
the sinusoidal wakefield disturbance under study in each case (different amplitude and
wave frequency of the disturbance), the elliptic trajectory of the engine operating point
in the engine envelope is determined (Section 5.2.1). Using the equation of the operating
ellipse and the equation of the engine envelope line, the shortest distance between these
two is calculated following the process described in Section B.2. Applying the simulated
annealing method, the above described procedure is executed iteratively for numerous
combinations of governor gains,Kp and Ki of which the set of values is predefined, aim-
ing to find the one which leads to the maximum shortest distance between the elliptic
trajectory of the engine operating point and the corresponding engine envelope line. In
that way it is guaranteed that the operating ellipse lies in a distance from the engine
envelope limits preventing any contact between these and consequently avoiding the
activation of the propeller pitch controller. It goes without saying that solutions like
these presented in Section 6.2.4 are rejected in the algorithm following the procedure
presented in Section B.3. The objective of the gains scheduling algorithm, as a mathe-
matical optimisation problem, P , can be formulated as below:

P =


maximize

Kp ,Ki
s.d .

(
Kp ,Ki

)= min

(
d1 =

∣∣Ax1 +B y1 +C
∣∣

p
A2 +B 2

,d2 =
∣∣Ax2 +B y2 +C

∣∣
p

A2 +B 2

)

subject to: xi .p. =
[
xi .p.1

(
Kp ,Ki

)
, xi .p.2

(
Kp ,Ki

)] ∉R,
Kp ,Ki ∈ [0.1 : 0.1 : 10] .

(6.6)
where:

Kp ,Ki :proportional and integral gain of engine governor
s.d . :shortest distance between operating ellipse and

engine envelope line for
(
Kp ,Ki

)
d1,d2 :the distances of two points, P

(
x1, y1

)
& P

(
x2, y2

)
,

lying on the ellipse, from the given engine envelope line.
The tangents at these two points are parallel to the given line.
The minimum of these two values is the distance to be maximised.

xi .p.1

(
Kp ,Ki

)
, xi .p.2

(
Kp ,Ki

)
:intersection points between
generated operating ellipse and engine envelope line

Regarding the variables that are presented in the mathematical formulation of the
optimisation problem solved by the gains scheduling algorithm, details with respect to
the calculation of the two distances d1,d2, as well as the shortest distance between the
generated operating ellipse and the engine envelope line, s.d ., are given in Section B.2.
Moreover, the calculation of the two possible intersection points between the generated
operating ellipse and the engine envelope line, xi .p.1

(
Kp ,Ki

)
, xi .p.2

(
Kp ,Ki

)
, as well as

the determination of the feasibility of the generated solution for each combination of
governor gains, in terms of intersecting the engine envelope line or not, are extensively
documented in Section B.3.
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The flow chart and the structure of the general simulated annealing algorithm are
presented in Section C.2. Additionally, the way that the involved control parameter, tem-
perature T, is calculated is demonstrated in Section C.2. In this Section, the flow chart
of the simulated annealing algorithm, adjusted to the specific problem, is presented be-
low in Figure 6.21. At this point, it should be mentioned that parameter N included in
the flowchart below indicates the number of degrees of freedom of the problem under
study. In this case, the governor gains are considered to be the degrees of freedom of the
examined problem. Since the governor gains are two, Kp & Ki , this means that N=2.

Initially, randomly selected, value for shortest 
distance (s.d.) between operating ellipse – straight 

line

Initial, predefined, Temperature T

 elementary selection of Kp and Ki
 determination of feasibility of generated solution

s.d. variation Δs.d. determined

Metropolis ACCEPTATION RULE

 if Δs.d.  ≥  0 : modification accepted

 If Δs.d.  <  0 : modification accepted

                                       with probability exp ( Δs.d./T )

 12·N different combinations of (Kp, Ki) accepted

OR
 100· N different combinations of (Kp, Ki) attempted

?

3 successive Temperature stages 
without any

 new combination of (Kp, Ki) accepted

?

STOP

YES

NO

YES

ANNEALING
PROGRAM

slow

decrease of  T:

Tk+1 = 0.9 · Tk

NO

Figure 6.21: Flow chart of simulated annealing algorithm, adjusted to shortest distance
between operating ellipse - line problem.

The developed gains scheduling algorithm is integrated in the governor block of the
ship propulsion system simulation model as it is described in the scheme of Figure 6.22.
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This Figure indicates that one of the essential input, required for the gains scheduling
algorithm, is the parameters of the wakefield disturbance, acting on the propulsion sys-
tem model, caused by the waves. These parameters have to be defined and provided in
advance by the user as input data in case of the simulation model. On the other hand,
in case of a real-time software tool, capable of dynamically determining the optimum
(or close to optimum) combination of gains, Kp & Ki , of the PID controller, the param-
eters of the wakefield disturbance should be defined after deterministically predicting
the future encountering wave. This can be done by using for instance forward looking
wave sensors, [Naaijen, 2017]. Thereafter, the calculated wakefield disturbance param-
eters, amplitude δw∗ and wave frequency ω, have to be provided as input to the gain
scheduling algorithm of the Diesel engine’s algorithm.

6.4.1. REGULAR WAVES

In this Section, the effectiveness of the algorithm in refining the dynamic behaviour of
the elliptic trajectory of the engine operating point in the engine envelope is evaluated
in case of regular waves.

Given that the gains scheduling algorithm is integrated in the non -linear model of
the ship propulsion system, as depicted in Figure 6.22, it attempts to prevent any contact
between the elliptic trajectory of the engine operating point and the engine envelope line
by maximising its distance from the engine envelope limits. For the sinusoidal wakefield
disturbances acting on the non-linear simulation model, three different wave frequen-
cies are examined at both operating points 6 & 8 with the amplitude of the disturbance
being δw∗ = 0.6 and δw∗ = 0.25 for the two operating points respectively.

In the following Figures, the elliptic trajectory of the engine operating point in the en-
gine envelope is shown together with the time trace of wake disturbance, engine torque
and engine speed signals. The compared results are generated for the currently used and
the new combination of governor gains with the latter being determined by the gains
scheduling algorithm. Additionally, the Bode plots of the shortest distance between the
operating ellipse and the engine envelope line are generated based on the linear ship
propulsion system model derived for the currently used and the combination of gover-
nor gains determined by the algorithm. Moreover, the reader should notice the different
time scale between the different wave frequencies examined in the Figures below.
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Figure 6.23: Results of gains scheduling algorithm for ω= 0.1 rad/s at operating point 6
& 8.
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Figure 6.24: Results of gains scheduling algorithm for ω= 1 rad/s at operating point 6 &
8.
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Figure 6.25: Results of gains scheduling algorithm for ω= 5 rad/s at operating point 6 &
8.
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As it can be noticed, the results achieved by the gains scheduling algorithm are aligned
with what is suggested by the derived contour plots in the previous section:

Operating point 6: The gains scheduling algorithm achieved to determine the suitable
combination of gains for the three sinusoidal wakefield disturbances examined. For all
three cases the dynamic behaviour of the engine operating point for the new combina-
tion of gains was improved, compared to the behaviour resulting from the currently used
gains. This improvement is defined as the increase of the shortest distance between the
operating ellipse and the engine envelope line, with the operating ellipse avoiding any
contact with the engine envelope limits. The improvement potential is quite high for the
medium wave frequency and significantly lower for high and low wave frequencies. This
is in line with what was presented in previous Section.

Operating point 8: The gains scheduling algorithm achieved to determine the suitable
combination of gains for the three sinusoidal wakefield disturbances examined. For all
three cases the dynamic behaviour of the engine operating point for the new combi-
nation of gains was improved, compared to the behaviour resulting from the currently
used gains. This means that the shortest distance between the operating ellipse and the
engine envelope line is increased for the three examined wave frequencies, with the op-
erating ellipse avoiding any contact with the engine envelope limits. The opportunity of
improvement seems to be reduced as the wave frequency of the disturbance increases.
This is in line with the outcome of the previous section, Section 6.3, where the contour
plots were derived.

6.4.2. IRREGULAR WAVES

In case of irregular waves the examined cases involve two Sea States, Sea State 5 and Sea
State 7 as they are defined in Figure A.1, two sailing directions of the vessel with respect
to the waves, head and following waves and two operating points, operating point 6 and
8. Using the parameters of the selected Sea State, the vessel direction and the operating
point under study and following the assumptions and simplifications as they are pre-
sented in Section A.3, the time trace of the wakefield disturbance signal is generated.
The procedure followed to generate the wakefield disturbance signal is presented in de-
tails in Section A.4.

At this point it should be mentioned how the gains scheduling algorithm is designed
to operate in case of wakefield disturbance acting on the propulsion system model caused
by irregular waves. As it is illustrated in Figure 6.22, the gains scheduling algorithm re-
quires the wave frequency ω of the wakefield disturbance as input data. Then, based on
the wave frequency ω, the frequency of encounter ωe is calculated, following Eq. (5.21),
and the gains scheduling algorithm determines the optimum or close to optimum com-
bination of governor gains for this specific frequency of encounter ωe . The wave fre-
quencyω for which the frequency of encounterωe is calculated, is selected based on the
wave amplitude spectrum, ζαn , which is derived by the wave energy spectrum Sζ (ω), of
the Sea State under study. More specifically, the selected wave frequencyω is the one cor-
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responding to the maximum wave amplitude ζαn , as it is indicated in Figure 6.26. For this
wave frequencyω, the frequency of encounterωe , is calculated and the gains scheduling
algorithm determines the optimum governor gains for this frequency of encounter, ωe .
The derivation process of the wave energy spectrum Sζ (ω) and wave amplitude spec-
trum ζαn is presented in Section A.2.
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Figure 6.26: Maximum value of wave amplitude spectrum in wave frequency domain.

In the Figures below, the results of the simulation employing the gains scheduling
algorithm are compared to the results of the simulation by using the currently used
governor gains Kp and Ki . The time trace of the wake disturbance signal is presented
together with the elliptic trajectory of the engine operating point in the Diesel engine
envelope, the brake engine torque and the engine speed time signal. Additionally, the
reader should notice the different time scale between the head and following waves in
the Figures below.
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Figure 6.27: Results of gains scheduling algorithm in head and following waves for Sea
State 5 at operating point 6.
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Figure 6.28: Results of gains scheduling algorithm in head and following waves for Sea
State 5 at operating point 8.
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Figure 6.29: Results of gains scheduling algorithm in head and following waves for Sea
State 7 at operating point 6.
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Figure 6.30: Results of gains scheduling algorithm in head and following waves for Sea
State 7 at operating point 8.
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As it can be noticed in the results reported in Figures 6.27 - 6.30 the gains schedul-
ing algorithm achieves to improve the dynamic behaviour of the Diesel engine operating
cloud in all cases; both Sea States 5 & 7, both vessel directions with respect to the waves,
head and following waves as well as the two examined operating points 6 & 8. The ac-
complished improvement deals with the possibility of the operating cloud touching the
engine envelope limits. In that sense, the gains scheduling algorithm gives as solution
a combination of governor gains, Kp and Ki , which generates an operating cloud with
increased shortest distance from the engine operating envelope limits compared to the
shortest distance of the operating cloud generated by the currently used governor gains.
By generating an engine operating cloud which lies in the maximum or close to the max-
imum distance from the engine operating envelope line, it is ensured that the propeller
pitch controller will remain deactivated.

6.5. CONCLUSIONS

According to the results reported in this Chapter, it is confirmed that by employing the
suitable geometric criterion as the objective function in the mathematically formulated
problem, it is possible to achieve the refinement of the dynamic response of the Diesel
engine operating point in the engine envelope. This refinement is accomplished by
means of making the controller gains dependent on the system operating point and the
wave induced disturbance, which is directly related to the Sea State and the direction of
the ship with respect to the waves.

Following the structure of this Chapter, as a first step the contour plots defining the
shortest distance between the operating ellipse and the engine operating envelope limits
were derived with independent variables the governor gains Kp & Ki . These contour
plots suggest that an improved dynamic behaviour of the operating ellipse in the engine
envelope can be obtained by means of governor gains scheduling. The shortest distance
between the operating ellipse and the engine envelope line can be increased, compared
to the corresponding shortest distance resulting from the currently used governor gains,
by making the gains scheduling dependent on the operating point and the wave induced
disturbance acting on the ship propulsion model.

The second step involves the development of the gains scheduling algorithm. The
developed algorithm makes use of the linear model of the ship propulsion system to
mathematically formulate the engineering problem. This mentioned engineering issue
is defined as the effort to keep the fluctuations of the Diesel engine operating point as
far away as possible from the limits of the engine operating envelope and thus, retain
the propeller pitch control deactivated during a vessel’s operation in waves. The gains
scheduling algorithm combines the linear model with an employed metaheuristic algo-
rithm to achieve the optimum of the objective function, which is the maximisation of
the shortest distance between the elliptic trajectory of the engine operating point and
the engine operating envelope limits. The algorithm is evaluated in case of regular and
irregular waves. In both cases it is proved capable of improving the dynamic behaviour
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of the elliptic trajectory of the engine operating point in the engine envelope by auto-
matically determining the combination of governor gains which generates an operating
ellipse with increased shortest distance from the engine envelope limits compared to
the operating ellipse generated by the currently used gains. In that way it is confirmed
that the gains scheduling algorithm is able to dynamically maximise or nearly maximise
the shortest distance between the generated operating ellipse and the engine envelope
limits in every studied case preventing any contact between those two.

Therefore, it can be argued that for the cases, regular and irregular waves studied
in this Chapter, the developed gains scheduling algorithm achieves the main objective
of this work, which is to keep the propeller pitch control deactivated and in that way
retain the average delivered power and the average maximum ship speed when the vessel
sails in waves. Additionally, it should be mentioned that despite the fact of sustaining
the average delivered power and the average maximum ship speed, the achievement
of keeping the operating ellipse as far away as possible from the limits of the engine
operating envelope is beneficial regarding the issue of thermal overloading of the engine
[Grimmelius and Stapersma, 2001].
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CONCLUSIONS &

RECOMMENDATIONS

This work focuses on influencing the size and the orientation of the elliptic trajectory of
the engine operating point in the engine operating envelope, aiming to prevent the acti-
vation of the propeller pitch controller, when the vessel sails in waves. This is attempted
by refining the existing propulsion control system by means of governor gains scheduling.
The Diesel engine controller settings are determined by a developed gains scheduling al-
gorithm, which relies on the linearised ship propulsion system model combined with a
metaheuristic method for hard optimisation problems. The potential and limitations of
this work are presented in this Chapter, as well as the author’s general recommendations
for future, further research on the topic.

7.1. CONCLUSIONS

Taking into account the research objectives as they are presented in Section 1.4, the fol-
lowing conclusions can be drawn:

1. Before investigating the possibilities to influence the size and the orientation of
the elliptic trajectory of the engine operating point by making the governor’s gain
scheduling dependent on the system operating point, on the Sea State and the di-
rection of the vessel with respect to the waves, the impact of those three factors on
the dynamic response and load fluctuations of the Diesel engine in a seaway were
investigated.

With respect to the Diesel engine load fluctuations in a seaway:

169



7

170 7. CONCLUSIONS & RECOMMENDATIONS

• What is the impact of the different Sea States?

As far as the the impact of the different Sea States is concerned, seven dif-
ferent Sea States were investigated in terms of the effect of their maximum
wave amplitude on the amplitude of the wakefield disturbance acting on the
ship propulsion system model. For that reason the energy spectra of these
seven Sea States were used in order to derive the corresponding wave ampli-
tude spectra. The maximum wave amplitude of each one of the wave ampli-
tude spectra was selected together with the corresponding wave frequency
and were used for the calculation of the wakefield disturbance amplitude.
The reported results demonstrate that the increasing Sea State results in the
increase of the wakefield disturbance amplitude. As a consequence of the in-
creasing wakefield disturbance amplitude, the excursions in both speed and
torque direction become larger. In other words, as the Sea State increases,
the size of the elliptic trajectory of the engine operating point regarding both
axis increases as well. Finally, it has to be mentioned that the different Sea
States have an insignificant effect on the angle of rotation of the operating
ellipse, with the operating ellipses derived for the different Sea States having
almost the same orientation.

• What is the impact of head and stern waves?

Regarding the impact of the vessel direction with respect to waves, two di-
rections were investigated; head and following waves. It seems that for the
head direction the resulting operating ellipse is more anticlockwise rotated
compared to the one resulting from the following waves. This means that
head direction leads to less excursions in the torque direction and more ex-
cursions in the speed direction compared to the corresponding fluctuations
resulting from stern direction. Additionally, for a specific wave frequency
under study the head direction results in a higher value of the encounter
frequency compared to the encounter frequency resulting for the following
direction. That means that for relatively higher wave frequencies, the oper-
ating ellipses resulting for head direction have smaller area (smaller size for
both axis) compared to the operating ellipses resulting for following direc-
tion. This is explained by the low pass filter role that the shaft inertia has in
the ship propulsion system, reducing the impact of high frequencies on the
Diesel engine dynamic response.

• What is the impact of the propulsion system operating point?

With regard to the impact of the system operating point, two operating points
were investigated. The outcome of this investigation suggests that the sys-
tem operating point has insignificant influence on the angle of rotation of
the elliptic trajectory of the engine operating point in the engine operating
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envelope. Nevertheless, the system operating point affects the size of the
operating ellipse. More specifically, the size of both axes of the operating
ellipse decreases as the system operating point increases. This means that
for lower operating point the fluctuations in both directions of brake engine
torque and engine speed are larger. Given that the gain values from the Bode
plots are quite close to each other for both operating points examined, the
difference in the size of the operating ellipses can only be attributed to the
higher value of the normalised change of wake fraction for lower system op-
erating point. Following the theory presented in Section A.3, the value of the
normalised change of wake fraction depends on the ship speed and conse-
quently to the system operating point.

The variation of the impact of the three previously mentioned factors on the Diesel
engine load fluctuations, resulting in different dynamic behaviour of the engine
operating ellipse in the engine envelope, suggested that it would make sense to
make the gain scheduling of the governor dependent on the system operating
point, on the Sea State and the direction of the vessel with respect to the waves.
The factor of the system operating point is also included and the reason for this is
that despite the fact that this factor makes almost no difference on the engine’s dy-
namic behaviour for the two examined operating points, the position of these two
operating points with respect to the engine envelope limits requires different re-
sizing and re-orientation, aiming at avoiding any contact between the elliptic tra-
jectory of the engine operating point and the engine envelope limits. This means
that different gain scheduling is required, which should depend on the operating
point.

2. Is it possible to influence the size and the orientation of the Diesel engine operat-
ing ellipse, by trying to refine the existing propulsion control system and making the
gain scheduling of the governor dependent on the system operating point, on the Sea
State and/or on the heading of the vessel regarding the waves?

This constitutes the main goal of this thesis. As it is documented in Chapter 6,
this was achieved in two steps:

• Firstly, the generation of contour plots in MATLAB with independent vari-
ables the governor gains, Kp & Ki , clearly proved the opportunity of enhance-
ment of the dynamic response of the elliptic trajectory of the Diesel engine
operating point in the engine envelope. More specifically, the operating el-
lipse was re-sized and re-orientated with the objective being the increase of
the shortest distance between the elliptic trajectory of the engine operating
point and the limits of the engine envelope, with the latter being mathemat-
ically formulated as straight lines. The contour plots were derived for two
operating points due to sinusoidal wakefield disturbances of which the am-
plitude was constant. On the other hand, regarding the wave frequencies of
those disturbances acting on the linear model, a number frequencies was ex-
amined covering a wide range of the possible disturbance frequencies. The
results, regarding the shortest distance between the operating ellipse and the
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engine envelope limits, using the combinations of governor gains, Kp & Ki ,
from the derived contour plots were compared to those generated by the al-
ready used combination of gains at the particular propulsion plant which is
modelled. The results of this comparison is visualised and quantified in Sec-
tion 6.3.

• Secondly, the development of a gains scheduling algorithm based on the State-
Space notation of the linear ship propulsion system model. By using this
particular notation, the mathematical equation of the elliptic trajectory of
the engine operating point caused by sinusoidal wakefield disturbances can
be determined, together with the mathematical formulation of the lines of
the engine envelope. By employing a metaheuristic algorithm and using as
objective function the maximisation of the shortest distance between the
operating ellipse and the engine envelope lines, the re-sizing and the re-
orientation of the operating ellipse is achieved based on the acting wake-
field disturbance on the ship propulsion system each time. The potential of
the gains scheduling algorithm is examined in case of regular and irregular
waves. Regarding the regular waves, two operating points were examined for
a low, medium and high wave frequency of the wakefield disturbance acting
on the system each time with the amplitude of the disturbance being con-
stant. The combination of governor gains, Kp & Ki , as generated solution of
the gains scheduling algorithm was applied on the simulation model of the
ship propulsion plant and the resulting operating ellipses are compared to
those resulting from the already used governor gains in Section 6.4.1. The
outcome of the comparison is that the algorithm is capable of re-sizing and
re-orientating the operating ellipse by increasing the shortest distance be-
tween the operating ellipse and the engine envelope limits for each one of the
examined wakefield disturbances, with the room of improvement depending
on the combination of the examined operating point and the wave frequency
of the wakefield disturbance. Finally, the potential of the gains scheduling al-
gorithm was investigated in case of irregular waves. More specifically, two
Sea States were examined for two operating points and for two directions
of the ship with respect to the waves, following and head waves. The solu-
tions generated by the gains scheduling algorithm were compared to those
of the already used governor gains and the results are visualised in Section
6.4.2. The outcome of this comparison is that the gains scheduling algorithm
is capable of increasing the shortest distance between the operating ellipse
and the engine envelope line for the examined operating points, Sea States
and headings of the vessel with respect to the waves. Therefore, it is proved
that the Diesel engine operating ellipse can be re-sized and re-orientated by
means of refining the already existing propulsion control system and mak-
ing the gain scheduling of the governor dependent on the system operating
point, on the Sea State and on the heading of the vessel regarding the waves.

3. Is it possible to maintain the maximum average ship speed during speed trials by
means of tuning governor gains?
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As it was previously mentioned, the Diesel engine operating ellipse is re-sized
and re-orientated by refining the already existing propulsion control system. This
refinement is achieved by using a gains scheduling algorithm which employs a
metaheuristic algorithm. The objective function of this metaheuristic algorithm is
the maximisation of the shortest distance between the operating ellipse and the
engine envelope limits. In that way it is ensured that the re-sizing and the re-
orientation of the operating ellipse prevents any contact between the operating
ellipse and the engine envelope lines. Consequently, the propeller pitch control
remains deactivated during vessel’s operation, such as the speed trials. As a result,
the average delivered power is retained as well as the maximum average speed.

7.2. RECOMMENDATIONS FOR FUTURE WORK

The main focus of this work was to investigate the possibilities of re-sizing and re-orientating
the elliptic trajectory of the engine operating point in the engine envelope, when the ves-
sel sails in waves, by means of gain scheduling the existing speed governor. The ultimate
goal of influencing the dynamic behaviour of the engine operating point in off-design
conditions, is to avoid any contact between the operating ellipse and the engine enve-
lope. Consequently, the activation of the propeller pitch control is prevented, allowing
the vessel operating in wave field to retain the maximum average speed, by retaining the
average delivered engine power. Despite the fact that the preliminary results seem to
be quite promising, several recommendations can be given which might be used as the
starting point for further research in the future:

SIMULATION MODEL

1. It goes without saying that the linear model of the ship propulsion system is con-
sidered to be the essential tool, regarding the research objectives of this thesis.
The derived linear model provides the opportunity to investigate the dynamic be-
haviour of the propulsion plant when sailing in waves at different encounter fre-
quencies. Taking this to the next level, in this work the derived linear model of
the propulsion system is used to schedule the speed governor gains. However, in
order to confirm that the linearised model can, rightfully, be employed for the con-
troller settings tuning, it is verified by means of comparing the Bode plots derived
from the linear and the non-linear model, respectively. Despite the fact that the
results of the verification are quite satisfying, there are still some deviations be-
tween the Bode plots derived from the two models, as shown in Section 4.5. Given
that the developed gains scheduling algorithm is based on the Bode plots derived
from the linear model, this could lead to wrong decisions regarding the selected
combination of governor gains. For instance, a combination of gains that gener-
ates an operating ellipse which does not touch the envelope limits according to
the calculations based on the Bode plots of linear model, could result in an oper-
ating ellipse that touches the engine envelope line when applied in the non-linear
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model. Consequently, in order to improve the reliability of the linearised model,
establishing it as a trustworthy tool for the governor gains scheduling, it would be
valuable to eliminate these deviations between the Bode plots derived from the
two models, leading to an identical dynamic response of both models in the fre-
quency domain. In that way, it could be confirmed that any conclusions drawn
using the linear model, with regard to the engine’s controller tuning for example,
can be applied on the non-linear ship propulsion model ensuring the alignment
between the results of linear and non-linear model. As it is illustrated in Chapter 4,
these deviations between the Bode plots of the two propulsion system models can
be noticed only after the addition of the governor’s block diagram, which appar-
ently affects significantly the behaviour of the whole system. Taking into account
the structure of the governor’s block diagram as it is presented in Figure 3.10, it in-
cludes two blocks which are responsible for the linearisation of the engine speed
signals (actual value coming from the integration of the shaft speed loop and ref-
erence value coming from the vessel operator), one block determining the engine’s
torque limitations, as a function of the engine speed, and the PID controller block.
Given that the engine’s torque limitations are provided by the engine manufacturer
and that the PID controller block is, correctly, built according to theory, special at-
tention should be given in the two blocks linearising the values of actual and ref-
erence speed in order to deal with the issue of deviations between the Bode plots
of non-linear and linear model. Taking the previously mentioned into account, it
is considered that the deviations could, possibly, be attributed to the scaling used
for the linearisation process in these two blocks.

2. If the prediction of the true dynamic behaviour of then a complete ship propulsion
system model is needed, which should involve the two main disturbances acting
acting on the system. In that sense, the resistance disturbance has to be added to
the existing propulsion system. A adequate resistance disturbance model should
be developed, establishing the propulsion system model as totally valid. Such an
advanced model of the added ship resistance due to wave field requires the calcu-
lation of ship motions due to waves. A relevant discussion on the subject can be
found in Section 2.5.2, along with useful references.

3. Regarding the wakefield disturbance, an extended, enriched model of this specific
disturbance would serve the purpose of obtaining a more accurate and realistic
simulation model of the ship propulsion system. Thus, the engine’s controller
could be more properly tuned, leading to an even more valid simulation model
for the study of the dynamic response of the ship propulsion plant. The wakefield
disturbance model could be extended by taking into account components of the
unsteady wake velocities which are neglected in this work, such as velocity compo-
nents due to wave reflection on the hull, components of radiated wave velocity due
to ship motions as well as velocity components due to relative motion of the ves-
sel, like surge, heave and pitch. Moreover, additional extensions would involve the
effects of propeller submergence, due to heave and pitch motions, as well as oc-
casional propeller emergence on wake and engine load fluctuations. An extensive
presentation of methods to implement the required extensions of the wakefield



7.2. RECOMMENDATIONS FOR FUTURE WORK

7

175

disturbance model along with useful references are given in Section 2.5.1.

4. As far as the prime mover is concerned, this thesis focuses only on Diesel engines.
It would be considered useful to extend the existing model by including other
prime movers, such as gas turbines or electric motors, with the latter becoming
quite common lately due to the increasing development of hybrid propulsion sys-
tems. In that case, the opportunity of enhancement of the dynamic response of
the above mentioned prime movers, using the gains scheduling algorithm could
be examined. Moreover, regarding the existing prime mover, a simplified Diesel
engine model was applied, relating the fuel rack position, the engine speed as in-
puts and the engine speed as output. Taking into account the lack of fuel rack map
and factory acceptance test report, typical values were used for the formula relat-
ing the previously mentioned variables. Therefore, the use of a fuel rack map or
a factory acceptance test for the derivation of the fuel rack map would lead to a
more realistic Diesel engine model. Additionally, an engine model of higher level
of detail could be applied, for instance an advance Seilinger model, including also
the dynamics of a turbocharger. In this case the impact of the gains scheduling
algorithm on additional variables could be studied like the Diesel engine fuel con-
sumption, engine emissions or even the thermal loading of the engine.

5. What is more, another extension which could be made is to investigate the gains
scheduling algorithm effectiveness during acceleration/deceleration and manoeu-
vring. This would require a more sophisticated wakefield disturbance as well as the
addition an advanced resistance disturbance model, capable of capturing the real
phenomena occurring during these operational modes.

GAINS SCHEDULING ALGORITHM

6. With respect to the developed gains scheduling algorithm, further improvements
could be achieved leading to higher quality results by implementing extensions
of the metaheuristic method. Such a suggested extension, which could possibly
result in more effective gains scheduling algorithm, is the implementation of a
hybrid metaheuristic method combined with multiobjective optimisation, [Dréo
et al., 2006]. Hybridisation quite often involves the co-operation of two meta-
heuristics or the combination of an efficient metaheuristic and a simple local search
algorithm. The second metaheuristic or the local search algorithm employed could
have different objective, compared to the main metaheuristic, introducing in this
way the principles of multiobjective optimisation. As far as the gains scheduling
algorithm is concerned, it could be hybridised by implementing another meta-
heuristic technique, tabu search, genetic and evolutionary algorithms, ant colony
algorithms or a simple local search algorithm, which would consider an objec-
tive contradictory or not completely aligned with the objective of the main meta-
heuristic, the Simulated Annealing. This objective could be for instance the ge-
ometric criterion of the area of the operating ellipse as presented in Section 6.2.2
whose results are not always to the same direction as the results of the shortest dis-
tance between the operating ellipse and envelope line criterion in terms of avoid-
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ing the activation of propeller pitch control. However, simultaneous consideration
of both, could refine the results regarding the ultimate goal, which is the preven-
tion of any contact between the operating ellipse and the engine envelope line.
In such case, Simulated Annealing could ensure the maximisation of shortest dis-
tance between the operating ellipse and the envelope line and the employment of
a local search algorithm, which would simply take the form of the passage of the
relay between the metaheuristic and the local technique, could optimise the solu-
tions found by Simulated Annealing, in terms of minimising excursions in speed
and torque direction and at the same time increasing even more the distance be-
tween the operating ellipse and the engine envelope line.

7. Moreover, refinements on the design of an efficient metaheuristic method can lead
to further reduction of the computational time of the developed gains scheduling
algorithm.

• Such a refinement could be the suitable choice of the neighbourhood of the
metaheuristic algorithm. The neighbourhood in a metaheuristic method is
defined as the set of neighbours or in other words the set of accessible con-
figurations of the problem. A smart choice of the neighbourhood could lead
to reduction of the computational time of gains scheduling algorithm. For
instance, in case of the gains scheduling algorithm, if it is known in advance,
by using the contour plots, that the desired solutions are only possible for a
subset of neighbours for example for high values of both governor gains Kp &
Ki , then the neighbourhood can be chosen in that way that only this specific
range of values of Kp & Ki will be allowed as accessible configurations.

• Another refinement, which could result in decrease of the computational
time, has to do with the control parameters used in metaheuristic methods.
These parameters in case of Simulated Annealing are the control parameter
of Temperature, T, as well as the parameters involved in the stopping crite-
ria of the method. The optimal adjustment of these parameters, based either
on theory or on experience of the user, will lead to less computational time
for the gains scheduling algorithm, [Dréo et al., 2006]. However, it is possible
that the reduction in computational time will come at the cost of lower qual-
ity solutions, which means that the solutions might not be that close to the
global optimal.

• Additionally, the choice of the programming language which is used for the
development of the gains scheduling algorithm can make a difference in terms
of computational time.

FULL SCALE VALIDATION

8. Finally, there is no doubt that in order to prove the validity of the developed gains
scheduling algorithm and the results reported in this thesis, a quite interesting and
significant step would be the model-scale and full-scale validation. Obtaining data
from model-scale and full-scale tests could impose new directions regarding the
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research for the improvement of the existing work and contribute to the develop-
ment of an actual governor optimisation software. A requirement for that would
be the addition of an advanced model for both wakefield and resistance distur-
bance in the ship propulsion model, as well as further refinement of the existing
algorithm, decreasing even more the required computational time by following
the previously mentioned suggestions. In that way a real-time gains scheduling
software could be implemented on the existing Diesel engine speed governor, im-
proving its behaviour. This would require the prediction of the future incoming
wave by using forward looking wave sensors. The use of such kind of device tend
to become quite common in the near future, following recent studies which have
identified the possibility of deterministic prediction of waves by using the already
existing nautical radars as remote wave sensors, [Naaijen, 2017]. In any case, the
previously mentioned recommendations suggest that theoretical enhancement of
the existing work should be attempted in parallel to further practical development.





A
WAKE DISTURBANCE MODELLING

In the following, a demonstration of the method followed to derive the disturbance of the
wake velocity due to waves, using data from wave spectra is given.

A.1. INTRODUCTION

As extensively discussed, earlier in Section 2.6.2, the disturbance of the wake velocity by
waves has the most direct dynamic impact on the propulsion plant at sea, always com-
pared to the effect of the other disturbance that acts on a ship’s propulsion plant, the
ship resistance disturbance. Again, the reasons for that are sufficiently explained in Sec-
tion 2.6.2. However, in this Section a step further will be taken, by showing how to derive
the wake variations, caused by a wave field, acting on the propeller and consequently,
on the propulsion plant. This is achieved by using data provided by wave spectra.

A.2. STANDARD WAVE SPECTRA

A lot of effort has been done by researchers trying to describe a wave frequency spectrum
in standard forms. Some of the mathematical formulations that researchers have come
up with, can be found in the literature. One of these mathematical formulations, which
can be readily found in literature [Holthuijsen, 2007, Journée and Massie, 2000, Branlard,
2010], is the JONSWAP spectrum, which is the result of an extensive wave measurement
program, known as the Joint North Sea Wave Project (JONSWAP), that took place in the
North Sea. Analysis of the data provided by this wave measurement program led to the
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definition of a mean JONSWAP wave spectrum:
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(A.1)

where:

fp = 1
Tp

(peak frequency)

γ = 3.3 (peak-shape parameter)

and σ:

σ=
{

0.07, for f < fp = 1
Tp

0.09, for f > fp = 1
Tp

(A.2)

Besides JONSWAP, another mathematical formulation of these normalised wave energy
spectra, commonly found in the literature, is Bretschneider Wave Spectra. However, this
one is not applied in this thesis. The required input for this mathematical formulation,
as described in Eq. (A.1) are the wave peak period, Tp and the significant wave height,
Hs . The values for these variables can be obtained by measurements. In this thesis,
the statistical data that will be used in order to generate the wave spectra are found in
[Journée and Massie, 2000] and presented in Figure A.1.

Figure A.1: North Atlantic Annual Sea State Occurrences, [Journée and Massie, 2000].



A.2. STANDARD WAVE SPECTRA

A

181

Since the ultimate goal is to model the wake disturbance that is caused as a con-
sequence of the wave field, the water particle velocity, at a specified distance from the
water surface, has to be calculated. Therefore, the wave amplitude, ζan , corresponding
to each wave frequency, ωn , for the whole range of the wave energy spectrum has to be
determined. Given that the wave energy spectrum, Sζ

(
ωn

)
, can be derived by Eq. (A.1),

then the wave amplitude, ζan , can be calculated by:

Sζ
(
ωn

) ·dω= 1

2
ζ2

an
=⇒

ζan =
√

2Sζ
(
ωn

) ·dω

(A.3)

where dω is the constant difference between two successive frequencies, as it is illus-
trated in Figure A.2.

Figure A.2: Wave energy spectrum over a
range of wave frequencies, ω, [Journée and
Massie, 2000].

At this point, it should be mentioned
that when the wave spectra are given as
a function of frequency in Hertz, like it
is done in this thesis,

(
f = 1/T

)
, instead

of ω, in
[
r ad/s

]
, they have to be trans-

formed. The spectral value for the waves
based on ω, Sζ

(
ω

)
, is not equal to the

spectral value, Sζ
(

f
)
, based on f . Nev-

ertheless, in case of calculating the wave
amplitude, ζan , the needed value is that
of the product of the spectral value, Sζ

(
f
)
,

times the corresponding frequency inter-
val, d f . The value of this product is the
same for the spectral values, based either
on frequency f or on wave frequency ω:

Sζ
(
ω

) ·dω= Sζ
(

f
) ·d f (A.4)

This follows from the requirement that an equal amount of energy must be contained in
the corresponding frequency intervals dω or d f . This means that as long as the value of
Sζ

(
f
) ·d f is calculated, it is the same like having the value of Sζ

(
ω

) ·dω. Then according
to Eq. (A.3) the wave amplitude spectrum can be determined and plotted over a range of
wave frequencies. In Figure A.3, the wave amplitude spectrum has been calculated for
all the Sea States, for which there are available the required data from Figure A.1
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Figure A.3: Derived Wave Amplitude Spectra, ζαn for the Sea States presented in Figure
A.1.

A.3. WAKE DISTURBANCE DUE TO WAVE ORBITAL MOTION

In Section 2.5.1, the reasons causing disturbances to the inflow velocities to propeller in
waves were extensively presented. According to literature, one of the main reasons these
disturbances is the orbital motion of the water particles in waves. Before presenting
the proper equations, which describe the orbital motions of water particles in waves
and how they attribute to the wake variations, it is worth noting, as in Section 2.6.2,
the assumptions that are applied in order to model the unsteady wake velocities due to
waves:

1. Only the undisturbed incoming waves are modelled, without taking into account
the rest of the contributing factors. Such contributing factors are the radiated and
diffracted waves as well as the relative water velocity due to ship motions. More
details regarding the contribution of these factors are given in Section 2.5.1.

2. Only the axial component of the velocity, ux , through the propeller disc is mod-
elled.

3. The radial distribution of the disturbance over the propeller disc is not taken into
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account. The wake disturbance over the whole radius is assumed equal to the dis-
turbance at the centre of the propeller hub.

4. The speed and heading of the ship are considered constant in the unsteady wake-
field model.

Figure A.4: Water particles orbital motion
due to waves for three different depths,
[Journée and Massie, 2000].

Taking into consideration the above
mentioned simplifications and assump-
tions with the respect to the wake dis-
turbance modelling, the method of cal-
culating the water particle motions due
to undisturbed waves will be discussed.
More specifically, following the 2nd of
the aforementioned key assumptions and
considering only the case of deep water,
only the axial component of the water

particle velocities is given by the following equation, [Holthuijsen, 2007, Journée and
Massie, 2000, Krogstad and Arntsen, 2000]:

ux = ζaωekz sin
(
ωe t −kx

)
(A.5)

where:

ζa :amplitude of the corresponding wave
ωe :frequency of encounter for the corresponding wave
k :wave number given by k =ω2/g
z :distance from the water surface

Regarding the frequency of encounter, it is given by the following equation:

ωe =ω− ω2

g
V ·cos

(
µ
)

=ω ·
(
1− V

c
·cos

(
µ
))

, by using: c = g

ω

(A.6)

where:

ω :wave frequency in a fixed reference [rad/s]
ωe :frequency of encounter in a moving reference [rad/s]
V :forward ship speed [m/s]
c :wave speed [m/s]
g :gravitational acceleration [m/s2]
µ :ship heading relative to wave direction [rad]

As far as the determination of the distance from the water surface at which the wake
disturbance and the water particle velocities are going to be calculated is concerned, the
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3rd of the above mentioned assumptions has to be taken into account. Since the wake
disturbance distribution is ignored and its value is only calculated at the centre of the
propeller hub, then it follows that the distance from the water surface z is the distance of
the centre of the propeller hub from the water surface. Regarding the reference model,
RGS9316, which is under consideration in this thesis, data from the vessel’s particulars
as well as data extracted from the drawing of propulsion plant arrangement will be used.
Provided that the design draught of the RGS9316 is given in Table 3.1, then the distance
of the vessel’s propeller hub centre from the baseline is required in order to calculate the
distance of the centre of the propeller hub from the water surface. This dimension can
be obtained by observing the drawing of the propeller shaft arrangement, as illustrated
in Figure A.5.

(a) Propeller shaft arrangement

(b) Distance of propeller hub centre from the vessel’s baseline.

Figure A.5: Distance of propeller hub centre from the vessel’s baseline, based on pro-
peller shaft arrangement.

Consequently and according to Figure A.5, the distance, z, of the centre of the pro-
peller hub from the water surface is given below:

z = T −distance of the centre of propeller hub from vessel’s baseline (A.7)

where T is the design draught and is given as the vessel’s particulars. Since the value
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of z is calculated for a specific propeller, then the axial component, ux , of the water
particle velocity due to a specified wave with known amplitude, ζa and frequency, ω,
can be determined. From that point on, taking into account the above mentioned key
assumptions for the wake disturbance, the unsteady wake velocities (advance velocities),
due to waves can be determined as shown below:

va = (
1−w

) · vs +ux =⇒
va = (

1−w
) · vs +ζaωekz sin

(
ωe t −kx

) (A.8)

According to Eq. (A.8), it follows that the variation of the wake fraction, w , due to waves
can be calculated by:

w = 1− va

vs
+ ζaωekz

vs
sin

(
ωe t −kx

)
(A.9)

Normalised Change of Wake Fraction In case that the normalised change of the wake
fraction, δw∗, has to be derived, as required input to the State-Space model of the lin-
earised propulsion system, then from Eq. (A.9) only the amplitude (maximum value) of
the wake disturbance signal is needed:

wmax = 1− va

vs
+ ζaωekz

vs
(A.10)

The normalisation process of the change of the wake fraction is done as it was presented
in Eq. (4.18). In Eq. (4.18), w0 is called the nominal value of the wake fraction, in other
words the value of the wake fraction when there is no disturbance (calm water) and is
defined by:

w0 = 1− va

vs
(A.11)

Consequently, according to Eq. (4.18), the normalised change of wake fraction is given
by:

δw∗ = δw

1−w0
=⇒

δw∗ = wmax −w0

1−w0
=⇒

δw∗ =

(
1− va
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+ ζaωekz
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)
−

(
1− va
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)
1−

(
1− va
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) =⇒

δw∗ =
ζaωekz

vs
va
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=⇒

δw∗ = ζaωekz

va

(A.12)
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A.4. WAKE DISTURBANCE IN IRREGULAR WAVES

Based on the wave spectra used for the generation of waves in time domain, wake dis-
turbance signal in time domain can, similarly, be generated. Starting by selecting the Sea
State under consideration, as they are presented in Figure A.1, the wave peak period, Tp

and the significant wave height, Hs , are defined. Consequently, from Eq. (A.1) and Eq.
(A.2) the wave energy spectrum, Sζ

(
ωn

)
, for the Sea State under consideration, is calcu-

lated. Then, from the JONSWAP spectrum the wave amplitude spectrum can be derived
based on Eq. (A.3). Wave amplitude spectra for several Sea States are demonstrated in
Figure A.3. Using the calculated wave amplitude spectrum and Eq. (A.9), the wake dis-
turbance in irregular waves can be determined. As it is referred in Eq. (A.11), the first
part of Eq. (A.9) is the nominal value of wake fraction, w0. The rest of Eq. (A.9) is the part
that is defined as wake disturbance due to waves. In case of irregular waves the wake
disturbance due to wavefield is given by:

wdi stur bance =
1

vs

N∑
n=1

ζanωnekn z sin
(
ωen t +εn

)
(A.13)

where:

N :number of intervals, ∆ω,that the axis of wave frequencies, ω,
of the wave energy spectrum, Sζ

(
ωn

)
, is divided [-]

ζan :vector of calculated wave amplitudes, ζa [m], corresponding to each wave frequency
, ωn , as presented in the wave amplitude spectrum

ωn :vector of wave frequencies of the wave energy spectrum [rad/s]
kn :vector of wave numbers, corresponding to each wave frequency, ωn , of

the wave energy spectrum, given by kn =ω2
n/g

g :gravitational acceleration [m/s2]
z :distance from the water surface [m]
ωen :vector of frequencies of encounter corresponding to each one

of the wave frequencies of the wave energy spectrum [rad/s]
εn :vector of phase angles selected from a set of uniformly distributed random numbers

in the range of 0 ≤ εn < 2π [rad]

The wake disturbance due to irregular waves, wdi stur bance , as it is calculated in Eq.
(A.13), is then added to the nominal value of wake fraction, w0. The summation of these
two values for each time step of a time domain simulation define the total wake dis-
turbance of a ship propulsion system. In Figure A.6, a simulated time series of wake
disturbance in irregular waves is illustrated.
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Figure A.6: Simulated time series for wake disturbance for the Sea State 7, as Sea States
are given in Figure A.1.

REQUIRED INPUTS FOR SIMULATED ANNEALING METAHEURISTIC ALGO-
RITHM

The metaheuristic algorithm, called Simulated Annealing, that is applied in this thesis
in order to refine the gain scheduling of the governor according to the wake disturbance
under consideration is also implemented in the case of irregular waves. The required
inputs for the metaheuristic algorithm are referred below:

• Operating point of the system

• Normalised Change of Wake Fraction, δw∗, of the disturbance under considera-
tion

• Frequency of encounter, ωe , of the of the disturbance under consideration

In case of irregular waves the operating point of the system is known and defined. In
regard to the normalised change of wake fraction, δw∗, the maximum value of the sim-
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ulated time series of wake disturbance for the Sea State under consideration is needed
to be determined. This means that for a simulated time series of wake disturbance for
a Sea State, as the one shown in Figure A.6, the maximum value, wdi stur bancemax , has to
be defined. Given the maximum value of a time series wake disturbance, following Eq.
(A.12) the normalised change of wake fraction in case of irregular waves is calculated as
follows:

δw∗ = δw

1−w0
=⇒

δw∗ = wmax −w0

1−w0
=⇒

δw∗ =
(
wdi stur bancemax +w0

)−w0

1−w0
=⇒

δw∗ = wdi stur bancemax

1−w0

(A.14)

Regarding the frequency of encounter used as input for the algorithm, in case of of
irregular waves a Sea State has to be selected beforehand. For the Sea State under con-
sideration, as it was described before, the wave amplitude spectrum has to be derived as
it is shown in Figure A.3. Based on this, the wave frequency, ω, for which the spectrum
has the maximum value of wave amplitude, ζamax , has to be determined. Given this wave
frequency, the corresponding frequency of encounter, ωe , following Eq. (A.6) has to be
calculated, dependent on the ship speed, V and the direction of the vessel with respect to
the waves, µ. This calculated frequency of encounter is used as the necessary frequency
input for the metaheuristic algorithm, which is integrated in the ship propulsion system
model.
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ELLIPSE & A STRAIGHT LINE

In the following, a demonstration of the mathematical method followed to calculate the
shortest distance between an ellipse and a line is given.

B.1. INTRODUCTION

The mathematical approach aiming to calculate the shortest distance between an ellipse
and a line is presented in this Appendix. A requirement in order to proceed with the
mathematical calculations is that the mathematical equations of both the ellipse and
the line under consideration are known.

B.2. CALCULATION PROCESS

As far as the calculation of the shortest distance of an ellipse from a line is concerned,
this is defined as the problem of the of the calculation of the extremum distance, either
maximum or minimum, of a point of an ellipse from the line. The points on the ellipse,
where the extrema are located, are points at which the tangent to the ellipse is parallel
to the line. This means that the slope of the tangent to the ellipse at these points has
to be equal to the slope of the line. In order to proceed with the calculation process the
mathematical formulas of an ellipse and a line, used as examples in this section, will be
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given.

Ax +B y +C = 0 Line equation

x2

m
+ y2

n
= 1 Ellipse equation

(B.1)
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s

X-Axis
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Straight Line

Ellipse

Tangent 1

Tangent 2

Figure B.1: Calculation of minimum and maximum distance of a line from an ellipse.

The first step in this procedure will be to determine the points of the ellipse at which
the tangent to the ellipse is parallel to the given line. This requires the differentiation of
the known ellipse equation, as given in Eq. (B.1), with respect to x:

2
x

m
+2

y

n

d y

d x
= 0 =⇒

d y

d x
= −nx

my

(B.2)
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Rearranging Eq. (B.1) results in the following:

x2

m
+ y2

n
= 1 =⇒

y2

n
= 1− x2

m
=⇒

y2 = n −n
x2

m
=⇒

y =±
√

n −n
x2

m

(B.3)

Combination of Eq. (B.2) and Eq. (B.3) leads to:

d y

d x
= −nx

m
√

n −n x2

m

(B.4)

Using Eq. (B.4), the slope of the tangent at any point on the ellipse can be determined,
requiring only the x co-ordinate.

Following the original hypothesis, that the points on the ellipse, where the extrema
are located, are points at which the tangent to the ellipse is parallel to the given line, the
slope of the line is calculated by differentiating the line’s equation, as it is given in Eq.
(B.1), with respect to x:

Ax +B y +C = 0 =⇒
B y =−Ax −C =⇒

y =− A

B
x − C

B
=⇒

d y

d x
=− A

B

(B.5)

According to the original hypothesis, Eq. (B.5), which represents the line’s slope, must be
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equal to the right hand side of Eq. (B.4):
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(B.6)

In Eq. (B.6) the x co-ordinates of the points on the ellipse, where the extrema are located,
are determined. Substituting Eq. (B.6) in Eq. (B.3), the y co-ordinates of these points are
determined:
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(B.7)
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The outcome of Eq. (B.6) and Eq. (B.7), is the co-ordinates of the points on the ellipse
where the extrema are located are determined. By combining these co-ordinates in any
way, two points, P1 and P2, can be defined:
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(B.8)

Having defined the extrema lying on the ellipse, P1 and P2, the distance of each one of
these two points from the given line in Eq. (B.1) has to be calculated. Due to the fact
that it is not known in advance which of the two determined points has the minimum or
maximum distance from the given line, the distance from the line has to be calculated for
both points. The minimum of this calculation is the desired shortest distance between
the given ellipse and the line.

The distance of a point P
(
xp , yp

)
from a given line, as the one given in Eq. (B.1),

which is defined as the length of the line segment which joins the point to the line and is
perpendicular to the line is given by the following equation:

dp =
∣∣Axp +B yp +C

∣∣
p

A2 +B 2
(B.9)

The determination of the shortest distance of an ellipse from a line requires the calcula-
tion of the distance of both points lying on the ellipse from the given line. The tangents
at these two points of the ellipse are parallel to the given line. The minimum of these two
values is the desired distance.
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(B.10)
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B.3. SPECIAL CASE: ELLIPSE - LINE INTERSECTION

As far as the calculation of the shortest distance between an ellipse and a line is con-
cerned, this can be, also, calculated in other cases, besides the one previously presented.
On the one hand, as it was demonstrated in the previous section, the shortest distance
between an ellipse and a line can be calculated when the first is far away from the second
and there are no intersection points. On the other hand, the shortest distance between
an ellipse and a line exists as a mathematical expression and it is possible to be deter-
mined in case that the ellipse intersects the line or vice versa.

As it is clearly shown in Figure B.2 and Figure B.3, an algorithm seeking for the short-
est distance between an ellipse and a line following the procedure presented in Section
B.2, has to determine the two tangent lines on the ellipse, which are parallel to the given
straight line (same slope as the straight line). Despite the fact that the ellipse intersects
the line or vice versa, an algorithm which only seeks to determine the two parallel tan-
gent lines and then calculate their distance from the straight line can not realise the fact
of intersection. As result, the algorithm will go on with the calculation process of the dis-
tance between the points of contact of the tangents on the ellipse and the straight line,
as it is described in Eq. (B.1) - Eq. (B.10).
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Figure B.2: First case of ellipse - straight line intersection and distances of tangents par-
allel to straight line.
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Taking into account the objective of the metaheuristic algorithm (simulated anneal-
ing) employed in Chapter 6, it is undoubtful that the solutions given for cases in which
the ellipse intersects the given straight line have to be excluded. As it is stated in Chap-
ter 6, the metaheuristic algorithm is applied, seeking the maximum value of the shortest
distance between the elliptic trajectory of the engine operating point and the engine’s
envelope limits (modelled as straight line). The ultimate goal of this objective is to elimi-
nate the possibilities of the engine’s operating ellipse crossing (or touching) the limits of
the Diesel engine’s operating envelope. The reasons for that are explained extensively in
Chapter 6.
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Figure B.3: Second case of ellipse - straight line intersection and distances of tangents
parallel to straight line.

At this point the reasons for which such cases like the one depicted in Figure B.2 and
Figure B.3 might show up should be mentioned. As it is referred in Section 4.2, during
the linearisation process of the ship propulsion model some of the non linearities of the
original non linear model are neglected. In Section 4.2 there are three types of non lin-
earities described there that are disregarded. A case as the one depicted in Figure B.2
and Figure B.3 can be attributed to the third type of the neglected non linearities. More
specifically, according to Section 4.2 there are some limitations in the original non lin-
ear simulation model, which are neglected in the derived linear model. Such kind of
limitation is the engine’s operating envelope, which is neglected allowing the engine op-
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erating beyond the boundaries that exit in the real model. As a result, cases like the one
depicted in Figure B.4 and Figure B.5 can show up, in which the elliptic trajectory of the
engine operating point crosses the limits of the engine’s operating envelope, intersecting
its boundary line.

According to Section 5.2.1, the shape of the elliptic trajectory of the engine operating
point is formed based on the Bode plots of the linearised ship propulsion model. Con-
sequently, as it was demonstrated in Section 4.5 and Eq. (4.51) for different combination
of values for proportional gain, Kp and integral gain, Ki , used in State-Space form of the
linear model, different Bode plots will be derived for a certain engine operating point
under consideration. This means that for a specific sinusoidal wake disturbance (given
wake amplitude, |δw∗|, and wave frequency of wake disturbance, ω) different elliptic
trajectories will be derived, based on a range of combinations of the engine’s governor
gains (Kp and Ki ) values.
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Figure B.4: First case of elliptic trajectories of engine operating point due to different
combinations of governor gains Kp and Ki .

A typical example of elliptic trajectories of the engine operating point with different
dimensions and orientation, with respect to a given straight line, due to different com-
bination of values for Kp and Ki is illustrated in Figure B.4 and Figure B.5. In this Figure
only the shortest distance of each ellipse with respect to the line is shown. Additionally,
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the example shown in Figure B.4 and Figure B.5 is a typical case which needs to be ex-
cluded as a possible solution taken into account by the metaheuristic algorithm. In other
words, the designer of the metaheuristic algorithm has to set as a constraint for the algo-
rithm that for the selected solution of Kp and Ki values combination, the derived elliptic
trajectory should not intersect (or touch) the given straight line. This means that this
kind of solutions should be defined as infeasible solutions.
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Figure B.5: Second case of elliptic trajectories of engine operating point due to different
combinations of governor gains Kp and Ki .

More specifically, what is going to happen in a case like the one shown in Figure B.4
and Figure B.5 is that for both ellipses, resulting from two different combinations of Kp

and Ki values, the simulated annealing algorithm will determine the tangents on the el-
lipses which are parallel to the straight line and their corresponding distances from the
straight line, based on the above mentioned Eq. (B.9). Then, for each one of the elliptic
trajectories of the engine operating point, the tangent with the minimum distance from
the straight line will be determined, by applying Eq. (B.10). Given that for both ellipses
the tangent with the shortest distance with respect to the straight line is defined, the sim-
ulated annealing algorithm, which is employed, will compare the two shortest distances
of the tangents of the two ellipses seeking for the largest one, since it is a maximisation al-
gorithm, trying to find the maximum shortest distance between all the possibly derived
operating ellipses and the given straight line. This means that between the two ellip-
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tic trajectories of the engine operating point, Ellipse 1 and Ellipse 2, resulting from two
different combinations of values for Kp and Ki , the simulated annealing algorithm will
choose Ellipse 1, as a result of the fact that the shortest distance of the tangent parallel
to the straight line for this Ellipse 1 has the maximum value between the two.

In order prevent the selection of a solution like this as the optimum by the algorithm,
this solution has to be set as infeasible, as it was previously mentioned. To achieve this,
one additional function is integrated in the employed algorithm. Every elliptic trajectory
of the engine operating point resulting from a specific combination of governor gains
Kp and Ki is examined whether it intersects or not the line of the engine envelope under
study, before being accepted as a valid solution by the algorithm. This investigation in-
volves the examination of the solutions of the system of equations including the formula
of the straight line as well as the formula of the ellipse, as they are given in Eq. (B.1).
Rearranging the Line equation given in Eq. (B.1) results in:
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B
x − C

B
(B.11)

Substituting Eq. (B.11) into the ellipse equation leads to:
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The roots of a quadratic equation are given by:
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From Eq. (B.13) follows that the roots of Eq. (B.12):
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(B.14)
where i.p. stands for intersection point. Taking into consideration Eq. (B.14), the algo-
rithm has to determine the feasibility of its generated solution by examining which of
the following conditions is satisfied and then act accordingly:
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• if Eq. (B.14) has roots which are real numbers, xi .p. ∈R:

The ellipse intersects the line, thus the combination of PID controller gains Kp and
Ki , generating as solution the elliptic trajectory of the engine operating point un-
der consideration, should be rejected by the algorithm. The rejection is achieved
by giving, for this combination of Kp and Ki , a really small value, nearly zero, as
the shortest distance between the generated operating ellipse and the engine en-
velope line. In that way it is ensured that none of these kind of solutions will ever
be selected as the optimum by the optimisation algorithm.

• if Eq. (B.14) has roots which are not real numbers, xi .p. ∉R:

The ellipse does not intersect the line, thus the combination of PID controller
gains Kp and Ki , generating as solution the elliptic trajectory of the engine operat-
ing point under consideration, should be accepted by the algorithm and compared
to the rest accepted combinations, in order to determine whether its shortest dis-
tance is the maximum or not.





C
METAHEURISTICS FOR HARD

OPTIMISATION: SIMULATED

ANNEALING

In the following, a demonstration of Simulated Annealing, a metaheuristic method fol-
lowed by researchers who come across new and hard optimisation problems, is given. For
the interested reader, the detailed theory, with respect to metaheuristics for hard optimi-
sation, part of which is the Simulated Annealing algorithm, is extensively documented in
[Dréo et al., 2006, Hillier, 2012].

C.1. INTRODUCTION

It goes without saying that engineers, in different technical sectors, have to deal with
problems of growing complexity in fields like operations research, design of mechanical
systems, image processing, design of electrical circuits, management of industrial pro-
duction, logistics or improvement of systems performance. This kind of problems are
defined as optimisation problems. These problems are mathematically formulated with
the use of a function which is called objective function or cost function. The ultimate goal
attempting to solve such kind of problems is either the minimisation or the maximisa-
tion of the objective function. Furthermore, the mathematical formulation of optimi-
sation problems may include additional information, which are known as constraints.
These constraints have to be satisfied by all the parameters of the adopted solutions. In
any other case the solutions are not feasible.

As mentioned before, the complexity of optimisation problems is continuously grow-
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ing, This results in a special kind of problems known as difficult optimisation prob-
lems. In regard to difficult optimisation problems, a group of methods has been de-
veloped, which attempt to solve these problems, as well as possible. These methods are
called metaheuristics. This section emphasises on specifically one type of metaheuristics
known as Simulated Annealing.

“DIFFICULT”OPTIMISATION PROBLEMS

According to theory, the optimisation problems are distinguished in two groups:

• “discrete”problems

• problems with continuous variables

An abundant research has contributed to the solution of these two types of problems.
In respect to problems with continuous variables, traditional methods used for global
optimisation are applied. These methods are usually worthless, especially in cases in
which the objective function does not seem to follow a particular structural property,
like for example convexity. On the other hand, in case of discrete optimisation a signifi-
cant number of heuristics which give solutions quite close to the optimum is developed.
However, these heuristics are formulated for a specific, given problem. The schematic
representation of the objective function of a “difficult”optimisation problem is shown in
Figure C.1, where the ultimate goal is to minimise the objective function (optimum =
minimum). There is no doubt that when the space of the possible configurations of the
problem has such a complicated structure, the determination of the global minimum,
c∗, can become an extremely difficult procedure.

Figure C.1: Shape of the objective function of a difficult optimisation problem, [Dréo
et al., 2006].
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As far as the “classical”iterative algorithms are concerned, the drawback of their em-
ployment compared to the metaheuristics is the high possibility of the algorithm being
trapped in a local optimum, staying away from finding the global optimum. The work-
ing principles of such a traditional iterative algorithm are presented in a few steps below,
based on the objective function of the minimisation problem given in Figure C.1:

■ Initial configuration, c0 is chosen as starting point point. It can be selected ran-
domly or can be determined by the designer of the algorithm.

■ An elementary modification is applied. The values of the objective function are
compared, before and after the applied modification.

■ If the change resulted in reduction of the value of the objective function, the mod-
ification is accepted. The new configuration c1, which is a “neighbour”of the pre-
ceding one, as depicted in Figure C.1, is established as the starting point for the
next modification. In the contrary case, the problem returns to the previous con-
figuration, before another modification is attempted.

■ The process is made iterative until any modification results in worse value of the
objective function.

In Figure C.1, it can be noticed that a classical algorithm of iterative improvement,
generally, is not capable of finding the global optimum in an optimisation problem, but
only one local optimum, like for example cn in the objective function in Figure C.1. A
traditional algorithm can become more effective by applying it several times, with the
initial configurations being arbitrarily selected. However, this choice comes at a price,
as the computational time is increased significantly. Additionally there is no guarantee
that this process will find the optimal solution.

According to the above mentioned, the major disadvantage of a “classical ”iterative
algorithm, is the weakness of escaping from a local optimum, where it might be trapped.
This fact will prevent the algorithm from finding the global optimal solution. In order to
overcome this limitation another idea was applied in this kind of optimisation problems.
This idea is included in metaheuristics, giving them a significant advantage compared
to traditional iterative algorithms. This idea consists of the acceptance of the config-
uration which leads to a temporary degradation of the situation of the problem under
consideration. In other words, metaheuristics allow temporarily solutions for the prob-
lem, which result in worst value of the objective function (either increase of the value if
it is a minimisation problem or decrease of the value if it is a maximisation problem).
Moreover, a mechanism for controlling the degradations, specifically designed for each
metaheuristic, will prevent the deviation of the solutions from the optimum one. On the
other hand, it offers the algorithm the possibility to escape from the trap of a local opti-
mum and explore other “valleys”which might prove to be more beneficial. An example
of temporary acceptance of a degradation, is the case of passing from configuration cn

to c ′n , as it is shown in Figure C.1, where the optimisation problem under consideration
is a minimisation problem. Moreover, in Figure C.2 the different solutions provided by
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Figure C.2: A traditional method getting trapped in a local minimum of energy in a typi-
cal length of connections minimisation problem, [Dréo et al., 2006].

a metaheuristic algorithm (simulated annealing) and a classical iterative method imple-
mented in a random optimisation problem are illustrated.

C.2. SIMULATED ANNEALING ALGORITHM

One of the metaheuristic methods which was proposed by researchers, in order to solve
“difficult”optimisation problems with complicated structure, as the one shown in Fig-
ure C.1, is the simulated annealing technique. Since the method has been published
by researchers, simulated annealing was proved to have the following advantages and
disadvantages:

• effective in achieving high quality solutions (i.e. absolute optimum or good relative
optimum for the objective function)

• applicable and easily implemented in various optimisation problems, given that
the value of the objective function can be rapidly determined after each applied
modification

• easily adjustable, regarding the implementation of additional constraints in the
algorithm

• includes several control parameters (initial temperature, rate of temperature re-
duction, length of temperature stages, stopping criteria of the algorithm) whose
values need to be determined

• greedy with respect to the computational time required to solve certain types of
problems
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Figure C.3: Comparison of annealing and quenching techniques, [Dréo et al., 2006].

REAL ANNEALING

Annealing is a strategy which is employed by physicists aiming to approach an optimum
state of a material by controlling the temperature. To make the description more clear,
the example of the growth of a monocrystal is used. The annealing technique is this
example starts by heating a material in advance providing high energy to it. The next
step in this process is to cool down the material gradually, by keeping though at each
stage a temperature of sufficient duration. This procedure of controlled decrease of the
temperature results in a crystallised solid state. This solid state is also considered stable
state, corresponding to an absolute minimum of energy. The exactly opposite technique
is known as quenching. The quenching technique consists in lowering the temperature
of the material very fast. Consequently, this may result in an amorphous structure, a
metastable state that corresponds to a local minimum of energy. Comparing the two
above mentioned opposite methods, in the annealing technique the gradual cooling of a
material causes a disorder-order transformation, whereas the quenching method leads
to solidification of a disordered state. This comparison is clearly depicted in Figure C.3.

SIMULATED ANNEALING

The previously mentioned annealing technique inspired some of the researchers work-
ing on optimisation algorithms. The idea of using the annealing method to lead a phys-
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ical system to low energy state resulted in the development of the Simulated Annealing
technique in order to deal with optimisation problems. The analogy between a physi-
cal system and an optimisation problem is shown in Table C.1 and the result of apply-
ing simulated annealing in an optimisation problem is demonstrated in Figure C.4. The
development of the simulated technique starts by introducing the major control param-
eter, regarding the optimisation which acts similarly to temperature, when compared
to the real annealing. This means that the “temperature”of the system to be optimised
should condition the number of accessible states and lead towards the optimal state, if
it is lowered gradually in a slow and well controlled way. On the contrary, if the temper-
ature is lowered fiercely it should lead towards a local minimum (function identical to
quenching technique).

Optimisation problem Physical system

objective function free energy

parameters of the problem “coordinates”of the particles

find a “good”configuration find the low

(even optimal configuration) energy states

Table C.1: Analogy between an optimisation problem and a physical system, [Dréo et al.,
2006].

Attempting to simulate the evolution of a physical system towards its thermody-
namic balance at a given temperature, the Metropolis algorithm can be employed. Given
the initial configuration the system is subjected to an elementary modification. In case
this modification causes a decrease in the objective function (or “energy”) of the system
(minimisation problem), it is accepted. In case that an increase∆E is caused in the value

of the objective function, it is also accepted but with a probability of e
−∆E

T .

Figure C.4: Disorder-order transformation
by applying simulated annealing in a prob-
lem of optimum placement of electronic
components, [Dréo et al., 2006].

What actually happens when employ-
ing the algorithm is that a real number
is generated randomly ranging between
0 and 1. This means that the configu-
ration causing a ∆E degradation in the
objective function is accepted only if the
random number generated is lower than

or equal to e
−∆E

T . By repeatedly apply-
ing the Metropolis rule of acceptance, a
sequence of configurations is generated,
constituting a Markov chain (details re-
garding Markov chain in Appendix A in
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[Dréo et al., 2006]), in that way that each configuration depends on only the immedi-

ately previous one. According to the above acceptance rule, at high temperature, e
−∆E

T

is close to 1. As a result, the majority of the modifications are accepted. This allows the
algorithm to do a random walk in the configuration space. On the other hand, when the

temperature is low e
−∆E

T is close to 0. Thus, the majority of the modifications leading to

a worse value of the objective function is rejected. For temperatures that e
−∆E

T gets val-
ues between 0 and 1, the algorithm may accept degradations of the objective function,
which means that the algorithm gives the system the opportunity to escape from a local
minimum.

Provided that the thermodynamic balance is reached at a given temperature, the
temperature is “slightly”reduced. Then a new Markov chain is applied in this new tem-
perature stage. If the user of the algorithm chooses to reduce the temperature rapidly,
the progress towards a new thermodynamic balance is decelerated. Such a process of
successive, controlled temperature decrease, employed in an optimisation problem, is
shown in Figure C.5.

Figure C.5: Evolution of the system at various, successive temperature levels, starting
with an arbitrary initial configuration and L indicating the overall length of connections,
[Dréo et al., 2006].
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According to the theory a correlation between the reduction of the temperature and
the minimum duration of the temperature stage is assigned. Finally, by progressing to-
wards very low temperatures (towards zero), the algorithm converges towards the ab-
solute minimum of energy. Relating it to the real annealing process, the procedure is
terminated when the system is “solidified”. In other words, either the temperature has
reached the zero value (or quite close to this value) or no more modifications of the con-
figuration of the system leading to increase of energy are accepted at the temperature
stage under consideration. The structure of simulated annealing algorithm is illustrated
in the flow chart in Figure C.6.

CONFIGURATION SPACE

At this point, the significance of the configuration space, which considerably affects the
effectiveness of the specific metaheuristic method, should be stressed out. The configu-
ration space is characterised by a “topology”, which is based on the relation between two
configurations. The “distance”between two configurations is defined as the minimum
number of elementary changes required to pass from one configuration to the other.
Additionally, each configuration is related to a specific amount of energy in such a way
that a configuration space is represented by an “energy landscape”. The complexity of
this “landscape ”defines the level of difficulty of the optimisation problem under study.
Moreover, it has to be mentioned that the shape of this landscape is not determined by
the nature of the problem under consideration, but it is, mainly, dependent on the for-
mulated objective function and the selection of the elementary modifications, when the
algorithm moves from one configuration to the next one.

ANNEALING SCHEME

Having presented the impact of the form of the configuration space on the effective-
ness of the simulated annealing algorithm, there is one more aspect of the algorithm
which influences the convergence speed and the determination of the global optimum
of the optimisation problem under study. This aspect is called “program annealing”and
is related to the definition of the values of the control parameters of the algorithm. The
control parameters, whose values need to be predefined, for the algorithm to be applied
are listed below:

¦ the initial temperature

¦ the length of the homogeneous Markov chains, meaning the criterion of changing
temperature stage

¦ the law of temperature reduction

¦ the stopping criterion of the algorithm
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INITIAL CONFIGURATION

INITIAL TEMPERATURE T

elementary MODIFICATION
energy variation ΔE  

Metropolis ACCEPTATION RULE

 if ΔE  ≤  0 : modification accepted

 If ΔE  >  0 : modification accepted

                                       with probability exp ( - ΔE/T )

thermodynamic
equilibrium

?

frozen system
?

STOP

YES

NO

YES

ANNEALING
PROGRAM

slow

decrease of  T

NO

Figure C.6: Simulated Annealing algorithm flow chart.
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The definition of the values of the above mentioned control variables of the simulated
annealing algorithm, which is considered to be one of the main drawbacks of the spe-
cific metaheuristic method, is not based on research results. Their values are usually, ad-
justed based on empirical results of application of the method. [Dréo et al., 2006] neatly
demonstrates some simple, practical rules with respect to the functional structure and
the determination of proper values for the above mentioned control variables, used in
simulated annealing method:

− Definition of the objective function. Constraints of the problem optimisation are
established here. Other limitations regarding the nature of the problem are taken
into account in the modifications applied during the operation of the algorithm

− Choice of disturbance mechanisms for a “current”configuration. The calculation
of the corresponding energy change of the objective function, ∆E has to be direct
and quick, aiming to keep the computational time within reasonable limits.

− Initial temperature T0. It is required before the employment of the metaheuristic
method. It can be calculated by applying the following algorithm:

◦ Initiate 100 disturbances of the problem under study at random. Calculate
the average value, 〈∆E〉, of the corresponding ∆E variations

◦ Make the selection for the rate of acceptance τ0 of the “degrading modifi-
cations”, according to the assumed “quality”of the initial configuration, for
example:

· “poor”quality: τ0 = 50% (starting at high temperature)

· “good”quality: τ0 = 20% (starting at low temperature)

◦ Calculate T0 based on the following formula: e
−〈∆E〉

T0 = τ0

− Acceptance rule of Metropolis. It is applied according to the following way: if ∆E >
0, a number r in [0, 1] is randomly generated and the modification under study is

accepted if r < e
−∆E

T , where T represents the current temperature

− Change in temperature stage. A reduction of the current temperature can take
place once one of the 2 following conditions is satisfied during the temperature
stages:

◦ 12 ·N perturbations accepted

◦ 100 ·N perturbations attempted

N representing the number of degrees of freedom (or parameters) of the problem

− Temperature reduction. It can be applied by implementing the following geomet-
rical law: Tk+1 = 0.9 ·Tk

− Program termination. The algorithm can be terminated after 3 successive temper-
ature stages without any perturbation accepted.
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− Essential verifications during the first executions of the algorithm:

◦ the generation of the real random numbers (in [0, 1]) must be well uniform

◦ the “quality”of the result should not vary significantly when the algorithm is
executed several times:

· with different “seeds”for the generation of the random numbers

· with different initial configurations

− An alternative for the algorithm in order to achieve less computation time. Provided
that simulated annealing is greedy and less effective at low temperature, the use
of a “hybrid”metaheuristic algorithm might be beneficial. More specifically, the
implemented simulated annealing algorithm can be terminated early, with an al-
gorithm of local type developed for the particular problem applied from that point
on, aiming at the refinement of the final solution.
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