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Abstract 
 

The operation of automated vehicles in shared areas requires attention with respect to the 

interaction between AVs and vulnerable road users, including cyclists. Currently, the 

programmed interaction behavior of AVs is based on the knowledge of the interaction between 

conventional vehicles and cyclists. However, cyclists may react differently to conventional and 

automated vehicles. Therefore, this research applies field test experiment to investigate the risks 

resulting from the interaction between cyclist and an AV. Four possible interaction scenarios 

were investigated in within-subject design with overtaking speed, overtaking distance and right-

hand side objects as attributes. Objective Risk is assessed using the Probabilistic Driving Risk Field 

and Subjective Risk is assessed based on the self-reported values, cyclist behavior and trust. 

Results show that in general following has less risk than overtaking. Automated following and 

manual following have the same level of Objective and Subjective risks, while the automated 

overtaking has higher risks than manual overtaking. However, results also show that a larger 

interaction time leads to an increase in cycling speed and decrease in the distance to the curb.  

Furthermore, in the following maneuver the interaction time is higher than in the overtaking 

maneuver. Besides high time of interaction, closer overtaking distance and green grass on the 
right-hand side affect the increase in subjective and objective risks. 

Keyword: •Automated Vehicle •Vulnerable Road Users •Subjective Risk •Objective Risk 
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1 Introduction 

1.1 Background and motivation  

 
The last decades have shown a stable growth of the amount of sold cars in the transport industry. 
In addition to the environmental issues associated with emissions of petrol cars, the increased 
number of cars in use causes traffic congestion and traffic accidents. The U.S. Department of 
Transportation reported that in 2017 a total of 53 million motor vehicles were involved in traffic 
accidents and these crashes resulted in 37 million deaths (Kahn & Gotschall, 2015). For 26% of 
crashes the major influencing factor was speed and other contributing main factors are alcohol 
and lack of use of safety belt. These three contributing factors are related to drivers’ behavior 

(Kahn & Gotschall, 2015). Automated Vehicles (AVs) are a potential solution to increase traffic 
safety. AVs are designed to replace human drivers in some (or all) of the driving tasks. The Society 

of Automotive Engineers (SAE, 2016) defined six levels of automation. Depending on the level of 
automation, the vehicle controls some of the driving tasks, such as the driving speed (longitudinal 

dimension) or the lane positioning (lateral dimension), or all of the driving tasks – i.e. the 
automated system can perform the whole driving process without any human involvement 
(GHSA, 2018).  

On the road, road users are constantly in the process of interaction. The interaction process 
between two human drivers would include both explicit and implicit communication channels. 
Vehicle drivers can share their intentions explicitly with turning signals and backup lights. This 
kind of interaction is possible as well for automated system. Drivers can also share intention 
implicitly with the glance direction and position in lane change. This kind of interaction, however, 

is currently not possible to be processed by the automated vehicle. Non-motorized modes of 
transport, namely cyclists and pedestrians, mostly use implicit communication channels when 

interacting with other road users. Human vehicle drivers mostly use gestures and eye contact to 
show non-motorized road users their intentions (Lagstrom & Lundgren, 2015).  The investigation 

on the interaction process between AVs and VRUs enables to conclude on the best interaction 
strategy. Additional importance of the research comes from the fact that VRU user group are the 

least protected. To prevent misunderstanding in communication between AVs and VRUs, AV’s 
are currently programmed in a way to minimize their interactions with vulnerable road users. In 

interaction with pedestrians, an AV is programmed to stop, which corresponds to the behavior 
of the human driver. In interaction with the cyclist, one of the possible programmed behavior for 

the AV is to follow the bicycles at rider speed (I-AT, 2019). Such a behavioral approach is not 
efficient in terms of traffic operation performance. In addition, cyclists may perceive being 
followed by a vehicle as dangerous.  

To design a reliable communication process between AVs and vulnerable road users (VRUs), it is 

necessary to investigate how pedestrians and cyclists estimate risk level caused by the AVs. 
Previous studies investigated ways for safe communication between AVs and non-motorized 
road users, especially pedestrians (Böckle, Brenden, Klingegård, Habibovic, & Bout, 2017; 
Lagstrom & Lundgren, 2015; Merat, Madigan, & Nordhoff, 2017). There are very few studies 

focusing on the interactions between cyclists  and AVs. One study used a photo experiment to 
study the interactions between AVs and cyclists, however the results of the research were not 
statistically significant (Hagenzieker et al., 2018). Even though pedestrians and cyclists are both 
non-motorized modes of transport and may have similarities in their behavior, cyclists still have  
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specific behavioral features. It is important to investigate how cyclists react on different 
automated vehicles actions and which AV behaviors result in the highest safety of interactions. 

1.2 Scientific relevance and research gap 

 
Transport safety is influenced by technical and human factors. Automated vehicles can solve 

safety issues related to the speeding. However, it remains a challenge to maintain a direct 

communication between automated vehicles and other road users. At an early stage of 

development of vehicle automation, the interaction process was investigated from the 

perspective of an automated vehicle. Studies on the processes of the automated vehicle 

detection and reaction to other road users were of great interest. Researchers also have shown 
interest in user reactions to automated vehicle on motorways. In recent years, automated 

vehicles have appeared on shared roads. Currently, research is mainly conducted on the 

interaction of pedestrians and AVs.  

Lagstrom & Lundgren (2015) show that pedestrians feel more insecure when interacting with AV 

if they can’t fully interpret AV behavior. In such situations, pedestrians tend to be willing to wait 

until the vehicle stops or until they are sure which actions the AV is taking. Rodriguez Palmeiro 

et al. (2017) shows that pedestrians reported generally feeling less safe and behave more 

cautious when interacting with AVs. The same result was reported by Böckle et al., 2017; 

Habibovic et al., 2018; Merat et al., 2017. Decreased confidence in automated vehicle technology 

may affect pedestrian interaction behavior and general willingness to interact with AV. Böckle et 
al., 2017; Habibovic et al., 2018; Merat et al., 2017 reported that vulnerable road users differ in 

behavior when interacting with an automated vehicle from the behavior that people show when 

interacting with conventional vehicles.  

One of the main features of automated driving is the ability for the human driver to not be fully 

involved in the driving process. However, Lagstrom & Lundgren (2015) found that most 

participants in the experiment did not want to cross if the human driver inside automated vehicle 

was distracted. In the Rodríguez Palmeiro et al. (2018) study, 95% of participants reported that 

driver inattention affects their perceived safety level and the decision to cross. To increase 

cyclist’s awareness of automated vehicle operations and to facilitate communication process 

between an AV and a pedestrian, researchers offer various communication tools for automated 

vehicles.  These tools should allow an automated vehicle to clearly express its intentions  (Böckle 

et al., 2017; Lagstrom & Lundgren, 2015; Merat et al., 2017).  

The interaction of AV with a pedestrian is a topic of great interest. However, the interaction 

between the cyclist and AV is not well researched. Hagenzieker et al. (2018) conducted a 
questionnaire study on the behavior of cyclists. During the experiments, participants were asked 

to study photos of automated vehicle and conventional vehicles with different signs. The purpose 

of the research was to investigate if the cyclist could correctly interpret when automated vehicles 

noticed them and whether an automated vehicle would stop for them. Researches show that the 

cyclist interacted more confidently with conventional vehicles than with automated ones  

(Hagenzieker et al., 2018). The lack of interest of researchers in the study of the interaction 

between the cyclist and automated vehicles can be explained by the similarity in the behavior of 

vulnerable road users. However, cyclist have more interaction scenarios with AVs than 

pedestrians, for example sharing carriageways with AVs. 
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The current approach that AVs interacting with cyclists is to follow the cyclist with the same speed 

and to perform a controlled automatic stop or overtaking in manual mode. Overtaking and 

passing maneuvers on two-lane roads (one lane per travel direction) are seen as high-risk level. 

While performing overcoming the driver must be sure that there is sufficient gap space in front 

of the bicycle for the vehicle to return to the driving line. At the same time, it should be verified 

that there is enough time gap before vehicle on the opposing lane direction appears (Cavadas, 

Azevedo, Farah, & Ferreira, 2018). Such overtaking maneuvers can be dangerous for the bicycle 
drivers, which have no physical protection. At the same time, requirements to follow bicycles on 

the shared roads are inefficient for following traffic situation and may also have negative reaction 

from the cyclist, especially due to recent nature of the automated vehicles technologies.  

Cyclists may react to vehicles in a different, sometimes even inadequately way (Hagenzieker et 

al., 2018). The behavior of the automated vehicles has been programmed based on the data 

obtained from research on vehicle – cyclist interaction. However, cyclist may behave differently 

in the interaction with the automated vehicle (Hagenzieker et al., 2018). It may be needed to 

correct the programmed behavior of the automated vehicle. To propose a new behavior for the 

AVs, the risk level of the interaction scenarios has to be assessed both from the point of view of 

objective risk and subjective risk level. In the end run possibilities may be illuminated for the 

longer automated vehicles run scenarios. However, so far almost no researches were conducted 

to assess cyclist subjective risk level in the interaction with automated vehicle. The master thesis 

research is aiming to fulfill this research gap. Research on the cyclist behavior is especially 

relevant in the contest of the Netherlands, where amount of cyclist and cyclist trips are one of 

the highest in Europe, with a modal share of 36%  (Oakil, Ettema, Arentze, & Timmermans, 2016). 

Additionally, a novel safety risk metric will be used to assess the objective risk level of interaction. 

An advantage of the novel safety metric is its ability to show the level of risk of a situation that 

does not directly cause an accident. In the research the novel risk metric will be used for the first 

time to assess the risk caused by the interaction with dynamic objects in the field-experiment.   

Due to all the above-mentioned research gaps, the present research will focus on analyzing the 

reaction of the cyclist on the interactions with automated vehicle. During the study, the new 

safety metric will evaluate the objective level of risk for various  interaction scenarios.  

1.3 Relevance for the I-AT project 

 

The master thesis research is part of the Interregional Automated Transport (I-AT) research 
project. During the project it is intended to drive with the new semi-automated shuttle bus in the 

region between Vaals and Aachen. The general aim of the I-AT project is to examine the feasibility 

of this system.  

To answer the main research question of I-AT project, the route assessment protocol is being 

developed. Currently, the first stage of the protocol has been finished. The next step of the route 

assessment protocol should be related to the interaction with other road users. Besides following 

the pre-defined path, the automated shuttle must also safely and efficiently react to other road 

users. The Vaals-Aachen route must be re-examined to investigate on which parts of the route 

automated driving is possible in terms of possible interaction scenarios. Using the example of 

cyclist-AV interaction the research proposes a methodology that can be used in the next stage of 

the assessment protocol. The master thesis research will provide direction which interaction 
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scenarios are possible for automated operation and which actions an automated shuttle bus 

should take when performing a certain interaction scenario. The master thesis research proposes  

to decide actions of the automated shuttle bus based on the risk level of interaction. In the 

interaction between cyclist and automated shuttle bus, cyclist is more vulnerable subject. 

Following that, risk level must be perceived from his side. The Automated Shuttle Bus has to 

correct actions based on the risk level of cyclist.   

Besides building an assessment protocol, the results of the thesis research can be directly used 

in the driver’s manual document to increase the awareness of human drivers of the impact of an 

automated shuttle bus actions on the interaction risk levels. 

1.4 Research objective and questions  
 

An interaction process between an automated vehicle and a cyclist is characterized by a 

subjective risk and objective risk. Subjective Risk is a risk perceived by cyclist and Objective Risk 

is a risk calculated based on the data from the experiment. Different operation condition requires  

different behavior from the vehicle. Vehicle behavior is presented in the interaction scenario by 

the mode of the vehicle and vehicle maneuver. The main objective of this study is to research 

and give recommendations on the interaction scenario resulting in the minimal Objective and 

Subjective Risks. Taking in the account the scientific and practical gaps and the objective of this 

study, the research question can be formulated as follows: 

RQ: Which interaction scenario minimizes Subjective and Objective Risks appearing when an 

automated vehicle approaches a cyclist from behind? 

The main research question includes the following sub questions: 

SQ 1: Which interaction scenarios are possible when an automated vehicle approaches a cyclist 

from behind?     

SQ 2: What is the cyclist subjective risk level for the interaction scenarios? 

SQ 3: What is the objective risk level for the interaction scenarios? 

SQ 4: What are possible solutions to lower subjective and objective risk levels in the interaction 

scenarios? 

1.5 Research approach  
 

This section gives an overview of steps that the methodology composed of (Figure 1), the detailed 

description of the methodology analyses is provided in the Chapter 3.  

The first step relates to the looking at the background of the research, defining the promising 

interaction scenarios and corresponding to them interaction attributes. The first step answers 

the 1st research sub question. During the first step the Literature Research and Consultation of 

experts were applied. The consultation of experts stands for the discussions with the 

professionals from the I-AT project. The final interaction scenarios were defined based on the 

scientific and practical relevance.   

The next step corresponds to the data collection method using a real-case experiment. The 

interaction scenarios and attributes chosen on the previous steps give an input for designing the 
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experiment scenarios. Questionnaires were used to collect data for Subjective Risk and sensors 

on the vehicle and bicycle were used to collect data for Objective Risk. After the experiment was 

designed and organized, including choosing the experiment location, recruiting participants and 

receiving permissions from the Ethical Committee and Park management Delft, the pilot-

experiment was conducted. Pilot-experiment supports the choice of the most promising 

experiment attributes and shows the point of improvements in the overall experiment 

organization.  

On the third step all input data was processed. The accuracy was checked using the 

measurements made during the field test. Next, the data was filtered: the participants rides were 

selected out of all captured data with the use of the geo-fence method and the overtaking 

moments were selected with the use of the video data.  

All processed data was used as an input for the data analysis. The objective Risk was calculated 

using the Probabilistic Driving Risk Field (PDRF) safety algorithm. The trust level was also 

recalculated from the answers on 12 questions to the 1 value.  Next data analysis was conducted, 

and the first results drawn.  

Results were discussed and compared to the findings from the literature review. On the step 5 

the key findings, answering the research sub-questions 2,3 and 4, were reported and conclusion 

on the main thesis research question drawn. On the last step it was reflected how the findings of 

the research contribute to the scientific gap and which practical application of the conclusions is 

possible for the I-AT project.  
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Figure 1: Research approach 
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1.6 Research scope 
 

• The master thesis research is part of the I-AT project. Interaction scenarios between the 

vehicle and the cyclist were selected when relevance to the I-AT operation route. Thus, 

master thesis research considers only following and accelerative overtaking scenarios.  

• The choice of the attributes and the number of levels of each attribute were limited due 

to time constraints. Thus, only 3 attributes were included with 2 levels each.      

• The experiment includes only students recruited at the TU Delft university. Participants 

may have a higher level of knowledge about automated vehicles than the average cyclist 

and show higher trust level for AVs. Besides that, the experiment includes 25 participants, 

and only 10 participants data were used for the Objective Risk calculation. 

• The questionnaire did not include questions on the sensation seeking level of cyclists, due 

to the large number of questions, and did not include questions on the cycling level, due 

to the restriction from the TU Delft Ethical Committee.  

• The master thesis research experiment is a controlled experiment. To maintain the 

necessary level of safety during the experiment, the road of the experiment was blocked 

from the traffic. Thus, the traffic situation has limited realism.  
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2 Literature research 

 
Automated vehicles (AV) currently present on the road still require driver intervention. Transition 

of control mostly happen due to the AV safety threat from other road users. To increase 

awareness of the driving situations that require human driver control, the interaction process 

between AVs and other road users must be examined. One of the interaction scenarios include 

the overtaking maneuvers.  

2.1 Overtaking maneuvers  

 
Overtaking maneuver consists of different stages. Shamir (2004) identified three steps in the 

overtaking diverting from the lane, driving straight in the adjacent lane and returning to the lane. 

In contrast, Dozza, Schindler, Bianchi-Piccinini, & Karlsson (2016) identified four overtaking 

phases. The illustration of the four stages is performed in the Figure 2: Overtaking maneuver 

phases (Dozza et al., 2016a)Figure 2.  

 

Figure 2: Overtaking maneuver phases (Dozza et al., 2016a) 

According to Dozza et al., (2016), in the first phase the motorized vehicle reaches the bicycle from 

behind. The next phase begins when the driver starts to steer away to reach the overtaking lane. 

When the driver reaches the passing zone, the passing phase begins. As soon as the driver 

overtook the cyclist, the return phase starts. At the return phase, the vehicle returns to the  

original lane in front of the bicycle. In the master thesis research, the first stage (approach stage) 

will not be applied. In scenarios, overtaking occurs after the following operations. Thus, the 

automated shuttle bus will first follow the cyclist and then begin to overtaking right from the 

second phase (steering away). Also, the master thesis research does not consider the return 

stage. It is assumed that the experiment will capture the risk of overtaking already at the stage 

of passing.  
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At the phase of passing, the driver of the vehicle chooses a certain distance of passage. This 

distance is one of the parameters that can have a potential impact on the level of overtaking risk, 

as this distance defines the trajectory of overtaking. Research from Weddell (2012) shows that 

the distance of passing depends on the speed of the overtaking vehicle, the presence of an 

oncoming traffic, the size of the overtaking vehicle, the distance of the cyclist to the curb and the 

width of the bicycle lane.  

2.1.1 Speed. 

 

Literature shows a correlation between the speed of an overtaking vehicle and the distance that 

drivers keep to the cyclist.  Research of Parkin & Schackel (2014) shows that for a vehicle with a 

speed of about 45 km/h, the average passing distance is 1,6 m. A similar result is retrieved from 

the experiment of Debnath, Haworth, Schramm, Heesch, & Somoray (2018), in which the mean 

passing distance for driving at 40 km/h was 1,5 m, for 60 km/h – 2 m and for 70 km/h – 2,4 m. 

Dozza et al., (2016) found that the boundaries of the comfort zone are 2.03±0.28m in size at a 

vehicle speed of 80 km/h. Besides the comfortable passing distance, there is also accepted 

passing distance. Parkin & Meyers (2010) show that at a speed of 48 km/h, drivers accepts to 

overtake a cyclist with a distance of 1.05 meters.   

2.1.2 Distance of cyclist to right-hand side objects. 

 

Another parameter influencing the vehicle passing distance is a distance that a cyclist chooses to 

keep from right hand side objects. Research by Weddell (2012) shows that the further cyclists 
drive from the curb the smaller was the passing distance of the overtaking motorized vehicles, 

including scenarios with a bicycle lane. Walker (2007) confirms this result, finding that there is an 

interrelation between the riding position of the cyclist and the distance that drivers prefer to 

keep when overtake a cyclist. If the cyclist rides with a 0,25 m distance from the curb, drivers  

chose to overtake with a distance of 1,47 m.  

 

Figure 3: Mean overtaking distances as a function of bicyclist's riding position  (Walker, 2007) 
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Dufour, (2010) reported that the average distance that a cyclist keeps from the curb is 0,25 

meters. Dozza et al., (2016) shared a similar result of 0,3 meters. 

 

Figure 4: Bicyclist’s distance from road curbs. (Dufour, 2010) 

 

2.1.3 Cyclist personal characteristics.  

 

Besides the characteristics of the overtaking maneuver, personal characteristics of the cyclist 

may influence the distance that drivers keep when overtaking. However, no statistically 

significant results were found for the dependence of distance of overtaking on the age of a cyclist, 

the style of cycling or the type of cyclist’s clothes (Debnath et al., 2018). 

Studies have shown that only the gender of a cyclist affects the distance of overtaking. Drivers of 

conventional cars prefer to keep more distance from female cyclists than from a male cyclists 
(Chuang, Hsu, Lai, Doong, & Jeng, 2013; Walker, 2007). Walker (2007) shows that the difference 

in the average overtaking distances of men and women was more than 14 cm, and this result was 

statistically significant.  

2.1.4 Vehicle characteristics 

 
Motorized vehicles can be buses, trucks, conventional cars, mini-cars. Larger vehicles have a 

longer passing time, which may affect the cyclist’s perception of the subjective risk level. As a 

result, a cyclist may show less stable riding behaviors. Chuang et al. (2013) found that a longer 
passing time influence on the observed increase in wheel angle and speed. Even though the 

influence of a vehicle characteristics on the passing distance is expected, literature studies show 
controversial results. Walker (2006) reported that bus drivers have lower passing distances than 

car drivers. In contrast, Chuang et al. (2013) stated that there was no statistical significance in 
the study of the behavior of bus drivers. The master thesis research assumes that the results of 

the experiment with the car can still be used in the I-AT project.    
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2.2 Objective risk level 

2.2.1 Surrogate safety measures  

 

Surrogate Measures of Safety (SMoS) are used to assess potential road network conflicts 

(Morando, Tian, Truong, & Vu, 2018). The SMoS evaluates conflicts appearing during transport 

interaction in a safe way, therefore it does not require accident studies (Gettman & Head, 2007). 

Conflict of the two road users is defined by Gettman & Head (2007) as “an observable situation 

in which two or more road users approach each other in time and space for such an extent that 

there is risk of collision if their movements remain unchanged.”. The SMoS uses the frequency of 

the lower risk events (conflicts) to predict the high-risk events (crashes) (Mullakkal Babu, Wang, 

Arem, & Happee, 2017). Some well-known Surrogate Measures of Safety represented in the 

Table 1.  

Table 1: Surrogate Measures of Safety (Gettman & Head, 2007). 

Surrogate Measures of Safety Unit of measure Description 

Gap Time  

(GT) 

Second The time interval between the completion of 

the turning maneuver of the vehicle and the 

arrival time of the intersecting vehicle, if both 

vehicles continue to move at the same speed 

and trajectory. 

Encroachment Time  

(ET) 

Second The time interval during which the turning 

maneuver of the vehicle block the road for 

the through vehicle. 

Deceleration Rate 

(DR) 

Meters/second2 The rate at which the vehicle must decelerate 

to avoid a collision. 

Proportion of Stopping Distance 

(PSD) 

Meter The ratio of the distance available to 

maneuver of the vehicle to the remaining 

distance to the predicted collision location. 

Post-Encroachment Time (PET) Second The time interval between the end of the 

turning vehicle maneuver and the time when 

vehicle actually arrives at the predicted 

collision location. 

Time to Collision 

 (TTC) 

Second The predicted time for a collision of two 

vehicles, if they would continue to move at 

the current speed and on the same trajectory. 

 

The objective risk was assessed with the Probabilistic Driving Risk Field (PDRF) safety approach. 
The PDRF is more sophisticated method compared to other Surrogate Measures of Safety 

(SMoS). This is because the PDRF has severity and probability components, which better reflect 

different  situations (Bhusari, 2018). For instance, some interactions with high severity magnitude 

do not result in an accident and interactions resulting in accidents do not always have the same 

magnitude and effects. The PDRF can consider simultaneously the risk of collision with static and 

kinetic objects, which enhances the reality of risk modeling for interactions with different objects. 

This approach also allows to combine both lateral and longitudinal dimension risks 

simultaneously (Farah, Bhusari, Gent, Freddy, & Morsink, 2019).  
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2.2.2 Probabilistic Driving Risk Field safety algorithm 
 

The PDRF safety measure method was developed by Mullakkal Babu et al. (2017). PDRF can be 

used to investigate vehicle driving risk appearing in mixed traffic case, when automated vehicle 

shares the carriageway with other road users. The safety approach models the risk situation as a 

threat that an object S experiences from object C, designed as a influence field. The field 

represents a probability and severity of collision between S and C . The crash loss due to a collision 

is determined by the physical vehicle mass, value of velocity and direction of velocity at the time 

of an accident. Additionally, the severity of the collision is influenced by the positioning of object 

C. (Mullakkal Babu et al., 2017). The potential influence of the road objects is modelled as a scalar 

field – Probabilistic Driving Safety Field (PDSF). This field magnitude is defined by the probabilistic 

safety field strength. The safety force, used in a field strength, can be based on the vehicle 

trajectory (offline) or on the automated vehicle onboard sensor prediction algorithm (online).  

An automated vehicle can interact both with static and dynamic objects. The PDRF can include 
Potential field strength and Kinetic field strength. The Potential Field Strength is associated with 

the threat from the static road objects, such as lane marking, surrounding trees, concrete walls  

and road signs. The kinetic risk field strength is associated with moving road objects such as 

bicycles, cars and pedestrians (Mullakkal Babu et al., 2017).  The Potential and Kinetic Fields are 

discussed in more detail in the following sections. 

2.2.2.1 Potential field strength 

 

Potential Field Strength is associated with the threat from the static road objects. The Potential 

Risk can be calculated using the formula below:  

𝑅𝑏,𝑠 = 0.5𝑘𝑀(𝑉𝑠,𝑏)2 ∙ 𝑚𝑎𝑥(𝑒
−|𝑟𝑠,𝑏 |

𝐷 , 0.001) 
 

Table 2: Variables of the potential risk field formula 

Variables Unit of measure Description 

s  A dynamic object experiencing influence from the static object. 

b  A static object influencing the dynamic object s. 

k 0…1 The parameter of the rigidity of the road boundary object with 

range from 0 till 1, where k=1 entail that the static object has 

infinite mass and is not deformed in case of an accident. 

M Kilogram The mass of the dynamic object s. 

𝑉𝑠,𝑏  Meter/Second The velocity of the dynamic object S along 𝑟𝑠,𝑏 

𝑟𝑠,𝑏 Meter The shortest distance between dynamic object s and static object b 

D =
𝑊

14
 

Meter A steepness of descent of the potential risk field, where W is the 

width of the lane. The collision probability reaches a value of 0.001 

in the center of the lane. 

 

As was discussed above, the Potential Risk calculation formula consists of a multiplication 

between the severity of an accident and the probability of an accident. The crash severity is 

represented by the term 0.5𝑘𝑀(𝑉𝑠,𝑏)2. The severity is the magnitude of the crash energy that 

appears in the event of an accident between objects S and B. Severity is characterized by the 
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value of the rigidity parameter k. The crash probability is defined by the term 𝑒
−|𝑟𝑠,𝑏|

𝐷  which 
ranges between 0 and 1. The crash probability has an inverse relationship with 𝑟𝑠,𝑏   and decreases 

when the distance between interacting objects increases.  

2.2.2.2 Kinetic field strength 

 

The Kinetic Risk appears from interaction with dynamic objects. The PDRF considers the inelastic 

collision process. In the process of inelastic collision, both objects move together after the first 

contact. Kinetic Risk is represented by the following formula:   

𝑅𝑛,𝑠 = 0.5𝑀𝑠𝛽2|∆𝑉𝑠,𝑛
2| ∙ 𝑝(𝑛, 𝑠) 

Table 3: Variables of the kinetic risk field formula 

Variables Unit of measures Description 

S  A dynamic object that is experiencing risk from another 

dynamic object. 

n  A dynamic object that influence on the object S 

𝑀𝑠 Kilogram A mass of the dynamic object 

𝛽 =
𝑀𝑛

𝑀𝑠 + 𝑀𝑛
 

Kilogram A mass ratio of the interacting objects 

∆𝑉𝑠,𝑛 = 𝑉𝑠 − 𝑉𝑛 Meter/Second The counteracting velocity between objects S and n 

 

Kinetic Risk also consists of a combination of severity and probability of an accident. The 

0.5𝑀𝑠𝛽2|∆𝑉𝑠,𝑛
2| denotes the severity of the Kinetic Risk, which is a magnitude of the crash energy 

that object S absorbs in case of the accident between objects  S and N.  The crash energy amount 

is inversely proportional to the individual mass, therefore an object with a smaller mass will 

dissipate more energy than a heavier object.  The Kinetic risk obtains maximum value when 

position of objects S and n overlaps.  

The PDRF method assumes that risk appears because an object S maintains its motion not 

knowing the motion of an object n. The second component in the kinetic risk formula is the 

probability of a collision p(n,s). The probability of collision monitors the trajectory of the object 

S and predicts the possible future motions of objects n. The collision appears if two objects come 

at the same place at the same time. Following that, the collision probability is characterized by a 

spatial overlap. The crash probability changes in a range from 0 to 1.  

The collision probability likelihood is related to the probability of the object n acceleration. We 

know the trajectory of s and predict the trajectory of n. The following steps calculate the collision 

probability likelihood. The trajectory of n is unknown; therefore acceleration is treated as a 

random variable. The variability of acceleration is represented as a normal distribution. The 

parameters of the acceleration distribution are estimated with the following formulas: 

𝜇𝐴 =
1

𝑇
∫ 𝐴(𝑡) ∙ 𝑑𝑡

𝑇

0
 – the mean acceleration 

𝜎𝐴
2 =

1

𝑇
∫ [𝐴(𝑡) − 𝜇𝐴]2𝑑𝑡

𝑇

0
 – the standard deviation of the acceleration.  

Where T- is the sampling time duration  
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A(t) -is the acceleration function over time.  

The acceleration variability distribution is equal to the relative likelihood of occurrence. The 

collision likelihood is equal to the probability of the acceleration of object n, calculated with the 

formula below: 

𝐴𝑥,𝑛 =
∆𝑋−∆𝑉𝑥 ∙𝜏

𝜏2
  ; 𝐴𝑦,𝑛 =

∆𝑌−∆𝑉𝑦 ∙𝜏

𝜏2
  

Finally, based on the acceleration of n (that is a random variable) the collision likelihood can be 

found: 

𝑝𝐿(𝑛, 𝑠|𝜏)  =  𝑁(
∆𝑋 − ∆𝑉𝑥 ∙ 𝜏

0.5 ∙ 𝜏2 |𝜇𝑥 ,𝜎𝑥 ) ∙ 𝑁(
∆𝑌 − ∆𝑉𝑦 ∙ 𝜏

0.5 ∙ 𝜏2 |𝜇𝑦 ,𝜎𝑦) 

Where: 

N- is probability density function 

𝜇 – is the mean of the distribution 

𝜎- is the standard deviation of the distribution 

∆𝑋 = 𝑋𝑠 − 𝑋𝑛 ; ∆𝑌 = 𝑌𝑠 − 𝑌𝑛 – relative spacing in longitudinal and lateral directions  

∆𝑉𝑥 = 𝑉𝑋 ,𝑠 − 𝑉𝑋,𝑛 ; ∆𝑉𝑦 = 𝑉𝑌,𝑠 − 𝑉𝑌,𝑛 – relative velocity in longitudinal and lateral directions  

The reachable state for interacting objects can be represented as quadrilateral polygon. The zone 

O of potential collision zone is defined using the geometry of two interacting static objects. The 

overlapping region O also has the shape of a polygon, as shown on the Figure 5. The region O is 

converted to acceleration domain by the following formula: 

𝐴𝑥
𝑐 =

(𝑥𝑐 − 𝑥𝑛(0)) − 𝑉𝑥,𝑛(0) ∙ 𝜏

0.5 ∙ 𝜏2  

𝐴𝑦
𝑐 =

(𝑦𝑐 − 𝑦𝑛(0)) − 𝑉𝑦,𝑛(0) ∙ 𝜏

0.5 ∙ 𝜏2  

Where 𝑥 𝑐 ,𝑦𝑐  denotes the corner positions of overlapping region O.  

 

Figure 5: Geometric representation of polygons (Mul lakkal Babu et al., 2017). 

After the acceleration domain of the overlapping region and the collision likelihood are found, 

the collision probability can be obtained by integrating the joint acceleration distribution over 

A0:   

𝑝(𝑛, 𝑠|𝜏) = ∬(𝑁(𝐴𝑥|𝜇𝑥,

𝐴0

𝜎𝑥) ∙  𝑁(𝐴𝑦|𝜇𝑦,, 𝜎𝑦) ∙ 𝑑𝐴𝑥 ∙ 𝑑𝐴𝑦) 
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2.2.2.3 Total risk strength 

 

The Total Risk combines risks posed by multiple road objects based on the superposition property 

of fields (Mullakkal Babu et al., 2017). The theory of superposition states that the solution of the 

complex problem is a sum of the simpler individual problems (Reilly, Franke, & Bennett, 1984). A 
total risk also comprises from the Potential Risk Strength and a Kinetic Risk Strength. The PDRF 

represent Risk of interaction as a cut-in risk situation graph. An example of the graph can be seen 

on Figure 6. The graph has a shape of the wave changing with the time of experiment. The 

superposition states that the shape of the joint wave is determined by algebraically adding 

individual waves together (Reilly et al., 1984). In the case of the master thesis research the total 

risk wave is composed by a Kinetic Risk wave and a Potential Risk wave. 

 

Figure 6: PDRF Total Risk 

Road users are not aware of the Objective Risk Level that they experience on the roads. They 

choose their actions based on the Subjective Risk Level value. In order to maintain a safe 

interaction between an automated vehicle and other road users, the relationship between 

automated vehicle actions and the corresponding Subjective Risk Levels  should be investigated. 

 

2.3 Subjective risk level and trust 

2.3.1 Trust 

 

The process of operation of automated vehicles is uncertain. The interaction between automated 

vehicles and people always contain a certain risk, as AV and people are interdependent.  
Thus, trust of the other road users is crucial to the operation of an automated vehicle.  

An appropriate level of trust is a key to the high safety level and productivity of the human-

automated system interactions (Hoff & Bashir, 2015). Trust directly affects the willingness to use 

an automated system and trust defines the proper use of the system (Ekman, Johansson, & 

Sochor, 2018). The interaction process is impossible without reliance on the system. Mayer, 

Davis, & Schoorman D. (1995) define trust as the willingness of one interacting object to be 
vulnerable to actions performed by another interaction object. The willingness to trust should be 

consistent with the considered system (Ekman et al., 2018). If systems are used wrongly, an 

accident may occur. Failures appear if users misuse automation by over-trusting the system, or 

if users disuse automation system by under-trusting it (Hoff & Bashir, 2015). People rely on 
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automation only if they trust the system, otherwise users will refuse to automate a system they 

do not trust (Lee & See, 2004). Following that, lack of trust leads to the disuse.  

The concept of over-trust to the system can also cause troubles during interaction. Lee & See, 

(2004) reported that people tend to over-trust novel automated systems. Over-trust can lead to 

unsafe situations, as people’s trust exceeds the capabilities of an automated system. Besides 
safety reasons, over-trust is undesirable, as it can lead to a rapid disappearing of trust. Using the 

system in an unplanned way may lead to system errors. Systematically appearing errors will lead 

to loss of user’s confidence. Restoring trust is harder than gaining (Lee & See, 2004). 

If end-users do not obtain confidence in an automated system, they can still decide to cooperate 

with it (Mayer et al., 1995). Lack of trust will also lead to the declining systems benefits and 

generally ineffective collaboration. It can be concluded that cooperation between an automated 

vehicle and users is not safe and not productive without trust.  

The trust level that we perceive for different objects can be obtained from an analogic or 
analytical judgements. Analogic judgement is based on a well-known social judgement about an 

object. Our attitude to the object is determined by a pre-defined societal opinion. If the concept 

is new for us, we can form trust analytically. We build our judgement about an object by 

evaluating the subjective trust characteristics observed during the interaction with an object 

(Hoff & Bashir, 2015). The concept of automated vehicles is new to society. Currently, most users 

choose the analytical way to build trust. To construct an interaction process that will be perceived 

as highly trustable, it is necessary to examine the attributes that affect the trust level.   

 

2.3.2 Trust concepts.  

 
As trust is a core concept for the successful interaction between objects, many researches 

evaluated factors influencing trust formation in different interaction processes. Interaction 

scenarios may differ with the interacting objects, but all cooperative relationship are 

characterized by uncertainty (Hoff & Bashir, 2015). Following that, trust concepts can relate to  

the interaction between road users and the interaction between person and automated system.  

Mayer et al. (1995) published one of the most influencing papers on the reasons and outcomes  

of the organizational trust. They stated that a person’s trust depends on human individual 

propensity and trustworthiness of the interacting object. Human individual propensity stands for 

the basic level of trust that individual generally experience to other people. Trust worthiness is 

characterized by the attributes of ability, benevolence and integrity. Ability stands for the level 

of skills and personal characteristics that an influencing person obtains. These attributes 

influence authority in a certain area. The trust level will vary based on the level at which a person 

is able to fulfil a task. Benevolence represents the extent to which trustor believe that the 

influencing person is interested in the trustor well-being. In case of that attribute, the level of 

trust is influenced by the level of matches of the two interacting humans’ interests and final goals 

(Hoff & Bashir, 2015). Integrity is the extent to which the trustee follows the principles accepted 

by the trustor. In the case of the integrity attribute, the level of trust does  not depend on the 

actual actions of the system, but on the match between actions and human values of the system.  

Another concept of trust attributes was proposed by Lee & See (2004). Lee et.al (2004). 

investigated the interaction between human and automated system and concluded that for this 
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specific interaction trust depends on the performance, process and purpose of an automated 

system. Performance attribute vary trust based on the ability of the system to fulfil human’s  

tasks.  Process-based trust connected to the extend at which user can understand the actions of 

the automated system. Purpose-based trust fluctuated based on the level at which designed 

system purpose and human system needs correspond to each other (Lee & See, 2004). Körber 

(2019)  merges research from Mayer (1995) on the human-human interaction and research from 

Lee (2004) on the human-automated system interaction and build a novel human-automation 
interaction model.  

Lee (2004) states three influencing attributes: performance, process and purpose, described in 

detail by Korber (2019). New attributes are reliability, understandability and intention of 

developers. From the work from Mayer (1995), Korber (2019) learned that the trust level 

influence subjective trust characteristics, adding therefore the individual component of 

propensity to trust. Besides attributes mentioned at works of Mayer (1995) and Lee (2004), 

Korber (2019) used new characteristics. Korber stated that familiarity influence on the trust to 

technology. He found out that previous positive (or negative) experience with a similar (to the 

examined) system influence on the current system’s reliability level. A model designed by Korber 

(2019) to evaluate trust in the automated system presented on Figure 7.  

 

Figure 7: Model of trust in automation (Korber, 2019) 

In addition to the general trust in technology, the interaction of an automated vehicle with a 

cyclist is characterized by several specific attributes. These attributes are directly related to the 

process of interaction, including the behavior of drivers with an automated vehicle.  

 

2.3.3 Subjective risk attributes of automated vehicle and cyclist interaction. 

 

Automated vehicles interact with various types of other road users. One of the most challenging 

types of interaction is the one with non-motorized modes. Vulnerable road users have large 

flexibility in interaction scenarios with automated vehicles. If a pedestrian or cyclist feel  in a high 

risk level, they may decide not to interact with automated vehicle. However, distrust of othe r 

road users to AV technologies will have a negative impact on the future of automated vehicles.  

Some studies were done in order to investigate factors that influence pedestrian trust in the 

automated technologies. Researchers reported that on the decision to cross the road in front of 

automated vehicle the highest influencing factors are speed of the vehicle and distance to the 

AV (Oxley, Ihsen, Fildes, Charlton, & Day, 2005; Rodríguez Palmeiro et al., 2018; Yannis, 

Papadimitriou, & Theofilatos, 2013). Other factors influencing on the pedestrian decision to cross 
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in front of an AV were the vehicle deceleration level, familiarity of environment for pedestrian, 

weather conditions, traffic volume level  (Lagstrom & Lundgren, 2015), the size of the automated 

vehicle and the gender of the pedestrians and whether pedestrian crossing alone or in a group 

of people (Yannis et al., 2013). The interaction of human road users involves an implicit 

communication channel. The direction of sight and the overall facial expression of the driver may 

give the pedestrian sufficient information input. Rodríguez Palmeiro et al. (2018) found that the 

decision to not cross in front of AV was influenced by the driver inattentiveness. Lagstrom & 
Lundgren (2015) reported that if pedestrians feel unsafe when interacting with an automated 

vehicle, people tend to choose to wait until AV performs a complete breaking operation. 

2.4 Conclusion 

 

This chapter gives an overview of the literature relevant for this research. The research works  

with the interaction scenarios when automated vehicle approaches cyclist from behind. One of 

these scenarios is overtaking. The chapter describes four stages of the overtaking maneuver and 
listed attributes relevant for the safety of interaction. Research mentioned that for the 

overtaking vehicle speed of 40km/h the overtaking distance is 1,5m, while for higher speed of 

60km/h-80km/h the distance becomes 2m. Another attribute is the cyclist distance to the curb, 

found equal to 0,25-0,3 meters. For the overtakings vehicle characteristics are also relevant, such 

as the size of the vehicle, as longer passing time influences the speed of cyclist. Attributes found 

in the literature will be used for the scenario design.  

The risk level is assessed with the objective risk and subjective risk. The chapter gives an overview 

of the surrogate measures of safety and presents the Probabilistic Driving Risk Field safety 

method applied in this research to assess the objective risk. The chapter explained the benefits 

and principles of this method according to the literature.   

The literature on the ways of assessing the subjective risk was shown. Previous studies show the 

importance of the trust concept for the safety of the interaction, as undertrust and overtrust 

violate the understanding of cyclist of the automated vehicle capabilities. In this chapter was 

introduced a Korber trust assess model which is used in this research to evaluate trust. 

Next, attributes influencing on the subjective risk of automated vehicle and cyclist interaction 

were presented. The most influencing factors are speed of the vehicle and distance to the vehicle. 

Another relevant factors for the research interaction attributes are: weather conditions, the size 

of the automated vehicle, gender of the participants  and attentiveness of drivers. 
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3 Research methodology 
This chapter discusses the methodology of data collection and analysis.  

3.1 Data collection method 

3.1.1 Field experiment 

 

The experiment method consists of two parts – the pilot experiment and the main experiment. 

The pilot experiment is the first trial of the experimental scenarios. Results of the pilot 

experiment provide improvements for the design of the main experiment. This section discusses 

the overall design of experiment scenarios. The exact changes applied after the pilot experiment 

can be found in the chapter on the pilot experiment.  

3.1.1.1 Participants 
 

In total, 29 people took part in two experiments. The pilot experiment includes 4 participants 

and the main experiment includes 25 participants. 15 male and 14 female participants from the 

same age group (mean=25,4; std.=1,3). Participants were recruited by personal invitations on 

social media.  

3.1.1.2 Scenarios 

 

As part of the I-AT project, this research selected AV-cyclist interaction scenarios from the Vaals-

Aachen route. Photos of the interactions on the route can be seen on the Figure 8. Two 

interaction scenarios were identified. The first interaction scenario includes a separate bicycle 
lane. This scenario was not included in the research, as in this case the automated shuttle bus 

will not interact much with cyclists. The second interaction scenario includes a shared 

carriageway. In this case, the ASB have to follow cyclist and, if possible, overtake. This scenario 

became the basis of the master thesis scenarios.  

                    

Figure 8: Vaals-Aachen route, examples of interactions between ASB and cyclists 

The interaction process is also influenced by the interaction parameters. The Vaals -Aachen route 

was further studied to determine which infrastructure attributes vary for the selected 

interaction. It was found out that the interaction of the ASB and the cyclist can happened with 

different right hand side objects: on some streets there was only a curb, on others streets appear 

parked cars.  The right hand side objects were included in the experiment as an attribute. For the 

safety reasons in the field-experiment, parked cars were replaced with a safe barrier.  

In addition to the attribute identified by route analysis, the scenarios include attributes found in 

literature studies. Literature studies have found that the vehicle overtaking speed and overtaking 

distance also affect the risk level of interaction. Both parameters were included in the experiment 
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scenarios as independent variables. Literature shows that at a speed of 40 km/h, drivers of 

conventional vehicles keep a distance of 1,5 m overtaking, or in another words a distance of 2 m 

from the curb. These findings were taken as the first attribute value.  

An important parameter for the following maneuver is the following distance. In the literature, 

it is assumed that the longitudinal clearance between the vehicle and another moving object 
should be equal to the stopping distance of the vehicle. The stopping distance of the vehicle used 

in the experiment is 3 meters at a speed of 12 km/h (Henderson, n.d.). A distance of 3 meters  

was chosen as a value of the following distance attribute. To establish equal conditions for 

following and overtaking maneuvers, the overtaking distance attribute will have a second value 

of 3 meters. In total, the experiment has 4 within-subject variables (2 levels each). All experiment 

attributes are shown in the Table 4. Each participant experiences all attributes but combined 

randomly.   

Table 4: Experiment variables 

Dependent Variables  

Distance from cyclist to the right-hand side objects.  

Subjective risk level  

Objective risk level  

Cyclist trust in AV technologies  

  

Within-subject variables (independent) Categories 

AV Overtaking Speed Cyclist speed + 5km/h 

Cyclist speed + 10km/h 

AV Overtaking Distance 1,5 m 

3,5 m 

Right-hand Side Condition Curb with Asphalt Path 

Curb with Green Grass 

 

Each scenario includes the following maneuver, when the vehicle follows the bicycle, and the 

overtaking maneuver, when the vehicle overtakes the cyclist.  The Figure 9 shows an example of 

one experiment scenario. Each scenario includes all attributes; however, attributes are not 

repeated between maneuvers. All participants experience all attributes. However, in order to 

study the correlation between risk level and learning, attributes are selected for different 

participants in a random order.  

 

Figure 9: Experiment scenario example. 

The experiment vehicle only operates in manual mode. However, the Introduction paper informs  

the participants that the vehicle can be operated both in manual mode and in automated mode.  
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Following that, the experiment can capture the behavior of participants in interaction with an 

automated vehicle and in interaction with a conventional vehicle.  

3.1.1.3 Experiment location 

 

The safety of the riders must be guaranteed. Following that, the experiment was conducted on a 
quiet and low-hierarchy street. The road consists of two lanes for driving cars and two lanes for 

bicycles. The route of the experiment route was direct, without turns , and the complete street 

was closed for traffic. Initially, there was no right-hand side blocking on the Hertjeslaan street. 

For the pilot-experiment, a barricade from wooden pegs and white-red ribbon was built to block 

the right-hand side of the cyclist. The picture of barricade can be seen on Figure 10. The height 

of the barricade was 1,5 m, which corresponds to the eye level of the cyclist (City of Toronto, 

2017). 

 

Figure 10: Right hand-side barrier 

3.1.1.4 Experiment bicycle 

 

An equipped bicycle was used to collect objective data. The bicycle was equipped at the 
Transport and Planning Laboratory by Peter van Oossanen, Edwin Scharp and Paul van Gent. The 

bicycle was equipped with a lidar, a camera and GPS, accelerometer sensors. The positioning of 

the sensors can be seen in the Figure 11. 

 

Figure 11: Sensors placement at bicycle 

Lidar is an abbreviation for the Light Detection and Ranging. Lidar obtains information from an 

optical laser signal. The transmitter emits a signal that is reflected by a target and detected by a 

receiver. Lidar has a short-wave length, therefore detecting small object. Different types of Lidars 

 

Figure 1: Right-hand side blocked barricade. 
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can obtain information about the range, chemical properties and velocity of the object (Rock & 

Park, 2007). In this research, the bicycle is equipped with three Lidars. Lidars capture the distance 

from the bicycle to the vehicle, during following and overtaking maneuvers, and the distance 

from the bicycle to the curb.   

The Global Positioning System (GPS) provides information about position and velocity of the 
object and the collection time. In this experiment, both the vehicle and the bicycle are equipped 

with a GPS sensor.  

To collect a sufficient number of measurements in an overtaking maneuver, Lidar and GPS 

sensors collect 5 measurements in 1 second. When the experiment ends, the measurements  

taken by the sensors should be divided into trips. As the sensors capture data constantly, and not 

just during the actual rides of cyclists.   

3.1.1.5 Data processing  

 
Three types of analysis were used to separate all of the inputs into cycling rides: time of cycling, 

speed of cyclist and geo-fences. The combination of three types of analysis allows to minimize 

the error in determining the trip. Time of cycling method corresponding to the data captured 

during the experiment. During the experiment, organizers determine the start and end time of 

each trip of the participant. Additionally, video files recorded by the bicycle camera indicate the 

time of recordings. Combining video files and start and end times, the exact time of each trip was 

determined. Speed of cyclist method captures cycling speed with input data from the IMU part 

of the Lidar sensor. When the speed of cycling is higher than zero, we can assume that cyclists 

are in motion. Geo-fence method is the most accurate method of the three analyzes. Geo-fence 

is a virtual representation of a real geographic area built with GPS-coordinates. In this research, 

geo-fencing shows when a cyclist enters an area of interest, as shown in the Figure 12. The geo-

fence consists of 2 small square sites where participants fill out a questionnaire and one big 

middle section where participants experience interaction with a vehicle. Smaller sections help 

track if a participant changes location on one side of the road to the other side of the road. 

 

Figure 12: Geo-fence. 

3.1.1.6 Accuracy of measures.  

 
Sensors used to collect the data were tested for accuracy. The first approach for accuracy 

verification was to compare manually measured distances to objects, latitude and longitude 
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during the experiment with sensor measures. The second approach was applied in data analysis 

phase, comparing pre-designed parameters such as width of the bicycle lane, following and 

overtaking distances to the Lidar measurements. 

The Lidar’s measurements accuracy can be judged depending on the distances measured by the 

sensor. During the experiment, participants rode a bicycle along a 1,5 m wide bicycle path. It is expected 
that Lidar will show the distance to the Right Hand Side (RHS) within the border of 1,5 m.   

Assessment of the level of Subjective Risk includes an assessment of Trust. Trust can be evaluated 

using neuroscientific methods, behavior measures and questionnaires (Körber, 2019). Trust is 

not directly observable, which means that people can still  cooperate with an automated system 

even without trusting it (Körber, 2019; Mayer et al., 1995). People who trust the system and 

people who do not trust the system can behave similarly. Data from sensors that collect skin 

response and heart rate cannot give useful insights on trust. As the level of risk in the field 

experiment is similar to daily stress (Rodriguez Palmeiro et al., 2017), only self-reported facts can 

reflect the real levels of trust and risk. Therefore, this research will apply questionnaires as a 

means to evaluate confidence of participants in response to automated vehicles. 

3.1.2 Questionnaire. 

 

Four questionnaires were designed for different research phases. They cover personal 

characteristics of the participants, basic trust in technologies, familiarity with vehicle automation 

and level of experienced risk. 

Hoff & Bashir (2015) define four main personal characteristics influencing the disposition trust in 

automated technologies: culture, age, gender and personality. The questionnaires include a 

personal characteristic part with a question about gender. Besides personal characteristics 

included in the questionnaire, the level of sensation seeking may be relevant to the research. 

However, sensation seeking test was not included in the questionnaire to ensure high 

concentration from the respondents.  

Trust in technology was assessed using a questionnaire developed by Körber (2019).  

The questionnaire uses a multiple-item scale, which measures the attitude of the respondent to 

more than one attribute of an object. A multiple-item scale increases the probability of capturing 

correct responses, increasing the validity of responses. The use of several elements also reduces 

the probability of getting measurement error (Körber, 2019). In this research, the multiple-user 

scale is applied as a Likert-scale. This is a ranking scale in which respondents indicate their 

agreement with the questionnaire statements. The Likert-scale applied in this research ranges 

from 1 to 5, meaning “strongly disagree” and “strongly agree” respectively.  The 5-point scale 

was adopted because it represents an adequate level of detail. Increasing the number of points  

on the scale can lead to situations in which participants cannot perform self-analysis with 

satisfactory accuracy.  

The Körber (2019) questionnaire on trust to technologies has 6 parameters: reliability; 

predictability; familiarity; intention of developers; propensity to trust and trust in automation. 

The author designed 19 questions including inversely formulated questions. Reverse questions 

reduce the bias of the answers, as it is expected that someone who is positive about the 

questionnaire topic concept should not agree with the inverse statement. Therefore, they help 

to check the concentration of the respondent. 
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In this research, subjective and objective risk levels are evaluated. The perceived risk level is 

captured by a risk scale of 100 degrees. Initially, a scale with a step of 10 degrees was used, but 

a pilot-experiment shows that it’s better to use a scale with a step of 5 degrees.  

3.2 Data analysis methods 

3.2.1 Probabilistic Driving Risk Field   

 

The Probabilistic Driving Risk Field (PDDRF) method calculates the risks of interaction between 

an automated shuttle bus and cyclists. The PDRF requires a lot of input data. Some of the required 

data are given in the vehicle technical specification and literature studies on cyclists, for example 

the parameter of rigidity of the road boundary object. Different right-hand side objects have 

different parameter of the rigidity of the road boundary object. If right-hand side object does not 

deform in case of accident the parameter equals to 1. Mullakkal Babu et al. (2017) uses a value 

of the k equal to 0,61 for the right lane boundary. On the experiment location, there are curbs  

on both sides. However, on one side of the road there is a pedestrian path covered with asphalt, 

and on the other side there is grass. A coefficient of 0,61 is used for the pedestrian path and a 

coefficient of 0,55 is used for the green grass side. A sensitivity analysis shows that a Static Risk 

with k=0,61 has a risk value of 10% more than a Static Risk with k=0,55. 

The master thesis experiment provides most of the data required to calculate the PDRF. The data 

that needs to be collected can be seen in the Figure 13. The Potential Field needs the lateral 

distance of the cyclist from the right hand side objects. The Kinetic Risk Field uses longitudinal 

and lateral position and velocity for both the cyclist and the vehicle. In the master thesis research, 

the PDRF considers a cyclist as an object of risk taking (object s) and the vehicle as an object of 
influence (object n). As in the interaction between the cyclist and the vehicle, the more 

vulnerable user is the cyclist, and in case of an accident the cyclist will be more harmed. 

 

Figure 13: Variables collected from experiment 

3.2.2 Statistical analysis 

 

Statistical analysis proves the significance of the observed results and verifies the existence of 

interactions between variables. SPSS is applied to conduct statistical tests. The statistical analysis 

in this research was based on the steps defined by Garth (2008) for confirming statistical 

significance. First of all, a descriptive analysis is performed with the input data, possibly using 

boxplot graphs in SPSS or other graphs in Excel. A preliminary analysis shows a possible trend in 

data interaction, which should be considered in detail at the next stage of analysis. 

To select the correct method for analyzing the interaction between variables, the type of input 

data should be determined. The analysis methods vary depending whether the data is parametric 
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or non-parametric. Parametricity depends on the type of data: nominal, ordinal, interval or ratio  

or can be evaluated by checking for a normal distribution.  

Any existing data can be divided into the following 4 formats, presented in the Table 5 (Garth, 

2008). In addition to the exact data format, the input data can be either parametric or non-

parametric.  Parametric data is data that is a normally distributed. In this type of data, most of 
the values are close to the mean value, and other data are gradually decreasing, symmetrically 

(Garth, 2008). Non parametric data is not normally distributed data. Small samples are assumed 

to be non-parametric (Jawlik, 2016).  

Table 5: Data formats. 

Data Format Definition Example 

Nominal (Categorical) The data categorize some 

attributes. It may be coded as 

numbers. Numbers is a label, 

they do not have real meaning.  

Gender (male/female) 

Right hand side object 

Ordinal These data have an order. But 

order does not have numerical 

meaning.  

Likert scale (1=strongly 

disagree, 2=disagree, 3=agree, 

4=strongly agree) 

Scenario number 

Interval This type of data is numerical. 

The distanced between values 

are meaningful. However, zero 

value does not have real 

meaning.  

Risk Level  

Speed 

 

Ration  This type of data is numerical.  

Both: distanced between values 

and zero value have meaning.  

Following Distance.  

  

Table 6: Parametric and non-parametric data (Bhusari, 2018). 

 Parametric Non-parametric 

Assumed distribution Normal No assumption 

Typical data Ratio or Interval Ordinal or Nominal 

Assumed variance Homogeneous No assumption 

Observation Independent Any 

 

To check whether the input data is parametric or non-parametric, we can conduct a normality 

check. The Normal Distribution has a bell-shaped, symmetrical on the left and right sides and has 

tails that never touch the horizontal axis but come very close to it. Normal Distribution can be 

determined using the following methods: Shapiro-Wilk test, histogram, q-q plot and box-plot.  

The last possible separation of input data is separation by collection method. Data can be 

repeated and independent. Repeated measures are a type of measures when data is collected 

from the same group of people but under different experimental conditions. Repeated 

measurements are consistent with the within-subject design (Papadimitriou, 2018). Independent 

measurement appears when experimental data are collected from different groups of people. 
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Independent measures correspond to the within-subject design (Papadimitriou, 2018).  When a 

data type is defined for each of the groups mentioned above, a basic analysis can be selected.    

The choice of the right analysis method dependent on the purpose of the analysis and the data 

type.  represents the type of data that each analysis method can include.  Correlation tests show 

the influence of variables on each other. There are no dependent variables in this type of analysis. 
The Chi-Square test analyzes the interactions between categorical variables. The 

independent/dependent measures test checks the effect of an independent variable on a 

dependent variable.  There are a number of methods in each test category. The method for 

analysis is selected based on the parametricity of the data and the dependency of measures.  

Table 8 shows some of the existing analysis methods.   

Table 7: Type of variables used in analyzes methods (Delorme, n.d.; Field Andy, 2013; Garth, 2008; Jawlik, 2016).  

 Dependent variable Independent variable 

Correlation test* 

*No dependent variables 

Linear Linear 

Independent/dependent measures test Linear Categorial 

Chi-square Categorial Categorial 

 

Table 8: Parametric and non-parametric analysis methods (Bhusari, 2018). 

 Parametric Non-parametric 

Usual central measure  Mean Median/Mode 
Correlation test Pearson Spearman 

Relation between categorical variables Chi-square test  
Independent measures,  
2 groups 

Independent measures t-test Mean-Whitney test 

Independent measures, 
 >2 groups 

One way ANOVA Kruskal-Wallis H test 

Dependent measures, 
 2 measures 

Dependent measures t-test Wilcoxon signed rank test, 
McNemar test 

Dependent measures, 
 >2 measures 

Repeated measures ANOVA Friedman test, Cochran Q 

One categorical independent measure 
and  
>2 dependent measures 

One-way MANOVA  

 

3.2.3 Generalized Linear Mixed Model 

 

Linear Mixed Model is a linear regression model that contains hierarchical design. In hierarchical 

design, the data is repeatedly collected from the same individual. When that occurs, answers 

from the same participant are correlated (West, 2009). The Linear Mixed model expresses the 
relationship of the target variable from the independent variables and works with the parametric 

target variable. The Generalized Linear Mixed Model (GLMM) works with the non-parametric 

distributed dependent variable (Dickey, 2010).  

Independent variables can be described by the effect groups (Winter, n.d.). LMM includes fixed 

and random effect groups. The fixed effects stand for the parameters that are constant for the 
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participant, as fixed parameters include all possible levels of parameter in the study design. For 

example, gender is a fixed effect, since we know all levels of this parameter – female and male, 

and this value will not change for participant. Random factors include parameters which may 

have variations per participants. They represent randomly sampled values from the larger 

population of levels (Starkweather, 2005; West, 2009).  Random parameters have by-subject and 

by-item variation. By-subject variation is originated from the participants basic features of 

character and by-item variation accounts for the differences in the conditions of each levels of 
each independent variable (Winter, n.d.). To account for variation per participant the MLM 

assumes random intercepts for each participant.  

Different combinations of fixed and random effects can have different influences on the model 

fit. The predicted values plot and an information criterion gives information on the model fit. 

Lower Akaike Corrected and Bayesian criterion values mean a better the model fit. The perfect 

model fit corresponds to the values of 0, while the perfect fit in the graph has to be represented 

by points following the 45 degree-line pattern (IBM SPSS 23.0.0, 2014). Besides model fit, the 

statistical significance of including parameter as a random effect can be checked with the p values 

of each of the included random effects. The model outcome does not directly include the p-value 

for the random effect, therefore the Wald test has to be conducted to check the significance of 

the parameters. The Wald test calculates the z-value by the ratio between estimated parameters 

and the standard error of estimated parameters. The z-value can be recomputed to the p-value 

(IBM SPSS 23.0.0, 2014). The statistical significance of a random parameter indicates that the 

parameter slope varies for different participants, which means that the regression line in that 

case vary from the mean assumed regression line (Seltman, n.d.; West, 2009). 

The equation of the Mixed Linear Model can be written as  follows (Scharfenberger, 2013):     

𝑆 = (𝛽0 ± 𝑎𝑖) + 𝛽𝑋𝑖𝑗 ± 𝑏𝑗       

Table 9: Variables of the regression equation of the GLMM 

Variables Description 

i Subject 

j Plot 

S Dependent Variable Value 

𝛽0 The intercept estimates mean value 

𝑎𝑖  The variability between participants 

𝛽 Fixed effects slope (rate of change), representing the difference to go down (or 

up) on the slope from one value of parameter to another (Winter, n.d.) 

𝑋𝑖𝑗 Matrix of fixed effects 

𝑏𝑗 Variability within one participant 
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3.3 Conclusion 

 

The chapter discusses the methodology of data collection and analysis. Field experiment was 

conducted to collect data, consisting from 2 parts: pilot-experiment, used to test the experiment 

scenarios and overall organization of experiment, and main experiment. Experiments include 30 

participants, with an equal number of male and female cyclists. All participants are from the same 

age group (𝑚𝑒𝑎𝑛 = 25,23;  𝑠𝑡𝑑. = 1,3)  

Interaction scenarios include the following maneuver, when the vehicle follows the bicycle, and 
the overtaking maneuver, when the vehicle overtakes the cyclist. Both following and overtaking 

are tested in automated and in manual modes. Additionally, a combination of parameters is 

applied for each interaction. The research includes 3 interaction attributes: vehicle overtaking 

distance, with 1,5 m and 3,5m; vehicle overtaking speed, with plus 5km/h and plus 10km/h, and 

right hand side object, with green grass and with an asphalt path. For the right hand side object 

in the pilot-experiment, a white-red stripe barricade was built on the side of the green grass, 
which represents a scenario with parked cars.  

The experiment includes equipped bicycle and equipped car, with following sensors: GPS and 

accelerometer, cameras and lidars. The data was processed with the geo-fencing technique and 

later the accuracy of the input data was checked by comparing sensor detections and 

measurements taken during the experiment.  

For the subjective risk data collection, questionnaires were used. They cover personal 

characteristics of the participants, basic trust in technologies, familiarity with vehicle automation 

and level of experienced risk. The self-reported perceived risk level is captured by a risk scale of 
100 degrees. The trust was assessed with a 5-point likert scale and 6 sections: reliability; 

predictability; familiarity; intention of developers; propensity to trust and trust in automation.  

For the objective risk analysis, the Probabilistic driving risk field was applied. The PDRF includes 

multiple input parameters. For the static field, the parameter of rigidity of the road boundary 

object is specified. A coefficient of 0,61 is used for the pedestrian path and a coefficient of 0,55 

is used for the green grass side.  

The dependency of the subjective, objective risks and trust from the attributes was assessed with 

statistical methods. The statistical analysis includes initial tests, this chapter discusses how to 
choose the right test for analysis. For the regress ion assessment the generalized linear mixed 

model was selected. The chapter discusses how to apply the model and the reasons why the 

GLMM was chosen. 
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4 Pilot experiment  

 
The core of the methodology of the research is a field experiment. Before the main field 
experiment, a pilot-experiment was conducted. The pilot-experiment evaluates the feasibility of 

the approach and illuminates weaknesses in the organization of the experiment, data collection 

methods and data analysis methods. Additionally, the pilot test results help to select the most 

promising test scenarios for the main experiment.  

4.1 Experiment organization. 

 

The pilot-experiment took 1 day and involved 4 participants, two male and two female cyclists. 

One participant took 1 hour to complete the experiment. One cyclist participated in 4 designed 

experiments. Each scenario includes 1 ride during which the participant experienced both 

following maneuver and overtaking maneuver. The vehicle follows the participant in the first 15 

seconds and then overtake. The overtaking distance was 1,5 meters. The following distance was 

5 meters.  

In all interaction scenarios, the vehicle operated in manual mode. The aim of the master thesis 

research is to identify differences in the behavior of a cyclist when interacting with a conventional 

vehicle and when interacting with an automated vehicle. The document “introduction to the 

experiment” mentions that the vehicle can be operated in automated and manual modes.  The 

moment when the vehicle was operated in automated or manual mode was not pre-specified for 
the participants. After each interaction scenario, participants mentioned how they perceived the 

interaction mode in this part of the route.  

4.2 Pilot experiment results 

 

To make the selection of attributes for the final experiment, the data of the pilot-experiment 

were analyzed with preliminary descriptive analysis.  

4.2.1 Trust attributes of the interaction between a vehicle and a cyclist.  

 

During the experiment, participants were asked in the questionnaire to indicate which attributes  

of interaction affect the perceived risk level experienced by them. In the section with the 

question without answer options, participants mentioned distance to the vehicle, overtaking 

speed of the vehicle and noise of the vehicle. The attributes “distance to the vehicle” and 

“overtaking speed of the vehicle” were also previously selected by the researcher as influencing 

factors. The attribute “noise of the vehicle” was not previously mentioned in the literature. The 

vehicle used in the experiment can be operated both on electricity and gasoline. The car system 

automatically switches between modes when there is not enough electricity and when speed is 

increased, the vehicle switches to gasoline power and the vehicle changes its noise.  

 

 



43 
 

4.2.2 Trust Level 

 

During the experiment, each participant experienced 5 rides (Figure 14). The Trust Level increases 

after the first ride and then remains stable. In the last ride, trust level scatter of data shows a 

higher value. An increase in scatter value indicates that the trust level of some participants 

increases also in the last ride. The increase of the trust level can be result of the familiarization 

of participants with the automated vehicle.  

 

Figure 14: Dependence of the Trust Level from the Ride Number. 

The statistical analysis shows that the trust level of the participants does not depend on the right 

hand side object and overtaking speed. Also, it was not important whether the experiment began 

at a higher or lower speed or whether the right hand side was blocked or free. The only attribute 

that affects trust level is gender. Male participants generally had a higher trust level than female 

participants.  

4.2.3 Subjective risk level 

 

The Subjective Risk during the Following maneuver is presented in the Figure 15. The 0 ride 
represents a cyclist riding on the route without the vehicle. The risk level increases when 

participants meet the vehicle for the first time and remain unchanged in all further rides. 

However, in the first ride the scatter is higher, and the population median is higher. This may 

indicate that at the beginning of the experiment participants experienced a higher perceived risk 

level. The Subjective Risk Level during the Following maneuver does not depend on the attributes  

of the experiment. In the same way, trust to Following Maneuver has not changed depending on 

the Gender and RHS objects. Some participants mentioned that they did not consider following 

as a separate maneuver. Participants considered following as the first stage of the overtaking 

maneuver, when the vehicle accelerated for overtaking. Furthermore, the following maneuver 

had a greater following longitudinal distance than lateral distance of the overtaking maneuver.  
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Based on these findings, the basic design of the main experiment was changed to ensure equal 

conditions for maneuvers. 

 
Figure 15: Dependence of the Subjective Risk Level, when Following, on the Ride Number. 

 

 
Figure 16: Dependence of the Subjective Risk Level, when Overtaking, on the Gender of Participants; Overtaking Speed; RHS 

Objects. 

The subjective risk level during the overtaking maneuver (Figure 16) is steadily increasing before 

the last ride. The subjective risk level shows a dependence on all attributes of the experiment. 

Male participants experienced a higher perceived risk level that female participants. The 

overtaking Speed of +10 km/h looked more risky for the participants than the overtaking speed 

of +5 km/h.  The free right hand side (RHS) part, represented by an asphalt curb, was seen as 

more dangerous than blocked by a red and white stripe RHS. Participants mentioned that a sense 
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of blockage does not affect their risk level. However, the material of the blocking part mattered: 

the curb is made of strong not-forgiving asphalt, and the red-white strip is safe and does not 

harm the cyclist. The prototype of the blocked side was a parked car. Parked cars are made of 

strong material and are dangerous for cyclist. The pilot-experiment shows that the red-white 

strip does not simulate parked cars. In the main experiment, the RHS attribute should be adjusted 

or removed.  

The master thesis is aiming to answer whether the overtaking maneuver can be as safe for the 

cyclist as the following maneuver. The pilot-experiment shows that the subjective risk when 

overtaking was higher than the subjective risk when following. However, the pilot-experiment 

shows that not all participants perceive following maneuver as an independent maneuver. A 

preliminary analysis shows a negative correlation between the trust level and subjective risk 

level (Figure 17).  

 

Figure 17: Correlation between the Subjective Risk Level and the Trust Level. 

The master thesis research is also aiming to track the attitudes of participants to the automated 
and conventional vehicles. A pilot-experiment shows (Figure 18) that the subjective risk level 

both in the following and in overtaking maneuvers depends on the vehicle operating mode. 

When the vehicle was in the automated mode, participants reported a higher perceived risk level.  

 
Figure 18: Dependence of the Subjective Risk on the Operation Mode of the Vehicle. 
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4.2.4 Recommended changes for the main experiment  

4.2.4.1 Scenarios.  

 

An individual analysis of the participants shows that the first participant has a stable growth in 

risk levels throughout the entire experiment while other participants have a risk increase at first 
followed by risk level decrease in their last ride (Figure 19). This is caused by the learning of 

vehicle drivers. During the experiment with the first participant, drivers were more careful. In the 

main experiment, additional time will be left for the pre-training of drivers.  

      

Figure 19: Dependence of the Subjective Risk Level on the Ride Number. 

The combination of experiment scenarios for one participant includes designing different 

combinations between attributes and assigning different attributes first. The Pilot-experiment 

does not show a relationship between the use of the attribute first and the level of risk reported 

by the participants. Furthermore, the Pilot-experiment does not show the effect of combinations  

of attributes on the perceived risk. All combinations between speed and RHS objects shows the 

same subjective risk level during an overtaking maneuver (Figure 20). The main experiment will 
not pay attention to combining different right-hand side and different overtaking speeds. Also, 

no scenarios will be scheduled when the experiment starts with a different RHS. 

 
Figure 20: Dependence of the Subjective Risk Level, when Overtaking, on the RHS objects. 

The experiment developed the RHS attribute, taking as a prototype of the blocked RHS – parked 

cars. The pilot-experiment shows that the red-white strip is not considered by the participants as 
a real danger. The main experiment will not use any blocks in the RHS.  
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4.2.4.2 Questionnaire. 

 

The Trust questionnaire shows that respondents spend more time on the last questionnaire (13 

min), less time on the first questionnaire (11 min) and the least time on the middle questioners  

(8 min). All participants demonstrate a mean level of trust, or in other words no undertrust or 

overtrust was found. All participants answered the reverse questions accordingly, showing 

attention to the questionnaire. However, participants mentioned that questionnaire was too 
long.  

The questionnaire responses show that the participants did not change their attitude to the  

section “intentions of the developers”(Figure 21). Following that, it was decided to exclude the 

section “intentions of developers” from the questionnaires. To reduce the time  needed to fill out 

the questionnaire, sections “propensity to trust” and “reliability” were combined and the number 

of questions was reduced.   

 

Figure 21: Dependence of the Trust Level on the Ride Number. 

The risk scale seems redundant. Respondents did not select risk values above 40% on the risk 

scale. The 100 % scale exceeded the maximum marked risk level but did not provide sufficient 
accuracy for low risk levels. Many respondents chose the value of 20%, when it can be assumed 

that they would like to choose 25% or 15%. For the main experiment, the scale can be modified 

to have values in step of 5%.  Also, all participants choose that they trust conventional vehicle 

more than an automated one. It was impossible to verify how self-reported trust affects the 

subjective risk level. Since the questionnaire on trust in technology shows sufficient results, the 

main experiment will not include question about self-report trust in automated vehicle 
technology.  

4.2.4.3 Vehicle driving mode  

 

After each completed scenario, the questionnaire asks the participant to guess which mode the 

vehicle was operated during the experiment. Participants mostly choose the same operating 

mode for both vehicle maneuvers in the same scenario. When participants choose the 

automated mode of operation, they demonstrate a higher trust in automation (3,84). When they 

choose manual mode, they show less trust in automation (3,39). In general, participants felt that 

the vehicle was more often operated in manual mode.   
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In the main experiment, the design of the experiment will be changed – following and overtaking 

maneuvers will be carried in 2 different operation sessions. Participants will have a clear 

difference between overtaking and following maneuvers. Also, the experiment organizer will 

indicate for the cyclist when the vehicle is in automated mode, and when the car is in manual 

mode.    

4.3 Conclusion 

 

The results of the pilot-experiment show a need to change the design of the interaction 
scenarios. In the main experiment the number of rides will be increased to better capture the 

participants learning and in one ride only one vehicle maneuver will be performed, either 

following or overtaking. Additionally, before each ride the vehicle mode of operation, manual or 

automated, will be pre-specified for participants.  

Pre-chosen attributes show a correlation with the subjective risk levels. Analysis shows that the 

relative distance may be the most influencing attribute, thus, for the main experiment, 

overtaking distance will be tested with two levels. Also, the barrier side of the road will not be 

used as it was designed to represent the parked cars and did not give a sufficient risk change. As 

there was no difference in subjective risk for different combination of attributes and no special 

reaction on the first met attributes, in the main experiment no special analysis will be held for 

the combinations.   

For the main experiment the questionnaire will be reduced, as the time of completion was too 

long and pilot experiment showed that some parts were not changing and could be reduced. 

Also, self-reported attributes point out a new influencing attribute: characteristics of the vehicle, 

i.e. the vehicle size and noise, which will be included in the question about influencing 

parameters. Additionally, the scale used for the self-reported subjective risk will be increased to 

have a 5% step.   
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5 Main experiment results 

5.1 Experiment setup.  

 
The main experiment took 3 days and involved 25 participants. The number of male and female 

cyclists was almost equal (13 males; 12 females). As originally decided, all participants were from 

the same age group (mean=25,4; std.=1,3). Each participant took 30 minutes to complete the 

experiment. Each cyclist participated in 4 designed experiments and 1 familiarization route. Each 

scenario includes 2 rides and in one ride the participant experienced only 1 maneuver: following 
or overtaking. However, during 1 scenario participant experienced both: following maneuver and 

overtaking maneuver. During the overtaking maneuver, the vehicle follows the participant for 20 

seconds and then proceeds to overtake. The overtaking distance had two values: 1,5 meters and 

3,5 meters. The following distance was 3 meters. In all interaction scenarios, the vehicle operated 

in manual mode. However, for participants sometimes was pre-specified that the vehicle will be 

operated in automated mode. After each interaction scenario, participants mentioned how they 
perceive the interaction mode in this part of the route.  

During the main-experiment, Lidars collect 5 measurements in 1 second and the GPS measured 

5 position in 1 second, to have precise measurements of the passing stage of overtaking, which 

in some cases took only 3 seconds. The accuracy of the measurements was verified and shows 

that the measurement error of the Lidar is about 0-3 sm. The Figure 22 shows the measurement 

accuracy of the GPS position of the bicycle and the GPS accuracy of determining the position of 

the vehicle. The red dot indicates the GPS position captured by the equipment and the green dot 

(or orange dot in the case of a bicycle) points the actual position of the vehicle. GPS 

measurements of the bicycle position are also accurate. On other hand, the vehicle GPS does not 

show accurate lateral coordinates. However, in this research we apply local coordinates in the 
analysis and the position of the vehicle at the beginning of the route is fixed as a zero point. Thus, 

the discrepancy between the captured and real vehicle positions do not affect the accuracy of 

results.  

       

Figure 22: GPS accuracy (left picture: bicycle coordinates; right picture: vehicle coordinates) 

During the experiment, the participant’s level of Trust, Subjective and Objective Risks, the 

distance from the Bicycle to the Curb and the speed of the cyclist were measured. The Table 10 

gives an overview of the number of observations collected.   
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Table 10: Number of observations 

 Trust 
Level 

Subjective 
Risk Level  

Objective 
Risk 
Level 

Distance to 
the Curb 

Speed 

 % Joules Meters Meter/Second 

Number  
of 

observations 

Overall 242 242 80 222 100 
Per scenario: 

Automated following 
Automated 
overtaking 

Manual following 
Manual Overtaking 

60 60 20 55 25 

Per scenario with a 
certain attribute of 

overtaking 
speed/distance 

30 30 10 27 12 

*Number of participants (25 participants did 10 rides; each participant did 4 scenarios)  

 

Questionnaires collected trust and subjective risk levels after each ride, while the objective risk 

level was calculated using the PDRF method for every 0,2 seconds of rides. A frequency of 0,2 

seconds was chosen to capture the moment of overtaking, which takes less than 10 seconds. For 

the analysis, the route was divided in three sections. For the following maneuver, the beginning, 

middle and ending parts of the route were selected so that their ride duration was equal. For an 
overtaking maneuver, the beginning part represents the time before overtaking, the middle part 

corresponds to the overtaking maneuver and the ending part stands for the time when the cyclist 

rode without a vehicle. The Figure 23 shows the route separation in case of overtaking maneuver. 

For each part of the route the minimal, mean and maximum values of objective risk were also 

calculated.  

 

Figure 23: The Overtaking Maneuver 

The Table 11 provides an overview of the weather conditions on each day of the experiment. The 

second day had the most comfortable weather conditions with moderate temperature and a 

cloudy sky. Results show that trust levels on the 2nd day were slightly higher and the subjective 

risk lower than other days. The boxplots of the dependence of parameters on the weather 

conditions are presented in the appendix.  

Table 11: Overview of the weather conditions 

Day 27 (1st day) 28 (2nd day) 29 (3rd day) 

Weather Bright Sun, 

+30 

Clouds,  

+20 

A little rain,  

+18 
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Male participants show higher trust. The level of subjective risk is the same for both genders. 

However, there is no high quartile on the boxplot of subjective risk for men, which means that 

data on subjective risk for men is more consistent and does not exceed the median value.  Male 

participants also have a higher level of objective risk, which might be connected with higher trust 

and lower subjective risk level. As male participants perceive interactions to be less risky, they 

tend to be less cautious and ride closer to the car at a higher speed. The boxplots of the 

dependence of parameters on the gender of participants are presented in the appendix. 

Although a preliminary analysis reveals the influence of weather conditions and gender of 

participants on the values of trust and risks, further analysis will not take these parameters into 

account. The experiment design verifies that in each group of scenarios there is an equal number 

of participants from every day of the experiment and each gender group. During the experiment, 

participants experienced 4 interaction scenarios and completed 10 rides. The analysis shows that 

there is no clear dependence of the level of Trust and Risks Levels on the amount of interaction 

with the vehicle. Following that, the further analysis will not take into account the ride number.  

5.2 Attributes of the vehicle-cyclist interaction reported by participants.   

 

During the experiment, participants reported attributes perceived as influencing on the 

subjective risk level. For automated overtaking, manual overtaking and manual following 

scenarios the most influencing attributes are distance to the vehicle, vehicle characteristics and 

speed of the vehicle. For the Automated Following scenario additional importance was given to 

the fact that vehicle had an automated driving mode. The Figure 24 shows the share of the 

attributes reported as an influencing for all interaction scenarios.  

 

Figure 24: Subjective Risk Level Attributes 
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5.3 Preliminary analysis of the interaction scenarios.  

5.3.1 Statistical analysis of the interaction scenarios 

 

The experiment includes 4 interaction scenarios: automated following, automated overtaking, 

manual following and manual overtaking. Each of these scenarios was analyzed in terms of trust 

levels, subjective and objective risk levels, speed of cyclists and distance of cyclist to the curb. 

The boxplot analysis eliminates the interactions between parameters interesting for further 

analysis. For all mentioned below interactions between parameters were conducted statistical 

tests presented in the appendix. The table below mentioned statistical tests that approve 

statistical significance of the parameter interactions. 

Table 12: Preliminary statistical analysis of the interaction scenarios 

Statistical 
Test 

Null Hypothesis Bonferroni 
Correction (BC) 

P-Value  
after BC 

Conclusion 

The Wilcoxon 
Test 

H0
1: There is no difference 

in the subjective risk level 
of the overtaking maneuver 
and the subjective risk level 
of the following maneuver.  

a=0,01 p=0,001 There is 
evidence that 
the subjective 
risk varies per 
maneuver.  
 

The Wilcoxon 
Test 

H0
2: There is no difference 

in the objective risk level of 
the overtaking maneuver 
and the objective risk level 
of the following maneuver. 

a=0,0125 Mean objective 
risk:  
p=0,0014 
 
Max objective 
risk:  
p=0,000 

There is 
evidence that 
the objective 
risk value 
varies per 
maneuver. 

 

 

Figure 25: Dependence of trust levels on the Interaction Scenarios 

Boxplot (Figure 25) shows that the manual driving mode has a higher level of trust than the 

automated driving mode. In automatic mode both the overtaking maneuver and the following 

maneuver have the same level of trust, while the manual overtaking maneuver has a higher level 

of trust than the manual following maneuver. The highest level of trust is found in the manual 
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overtaking scenario. However, the manual following scenario and the automated following 

scenarios have high values of the upper quartile, which indicates that some participants have 

experienced greater trust in this scenario.  

 

Figure 26: Dependence of the Subjective Risk Level on the Interaction Scenarios 

An analysis of the dependency of the level of Subjective Risk on Interaction Scenarios (Figure 26) 

shows that all interaction scenarios have the same level of subjective risk. However, scenarios 

with driving in the automated mode have higher upper quartiles than scenarios with driving in 

the manual mode, which shows less coherence between the results of the risk level and indicates 

that some participants experienced an even higher level of Subjective Risk. In addition to changes 

in the Risk Level depending on the driving mode, the driving maneuvers also influence the Risk 

Level: the overtaking maneuvers in both driving modes have higher upper quartiles and higher 

whiskers than the following maneuvers. There is a statistical evidence that the subjective risk 

level of the following maneuver is less than the subjective risk level of overtaking maneuver. 

Overall, the scenario with the manual following maneuvers have the lowest level of Subjective 

Risk.  

As discussed above, to calculate the objective risk values, the initial route was divided in 3 parts. 
The overtaking maneuver use the middle part in its analys is as in this part of the route the 

maneuver takes place. For the following maneuver, it is necessary to choose a part of the route 

for future analysis based on the values of objective risk, distance to the curb and speed of the 

cyclist.   

The minimum objective risk value is 0 for all scenarios. The following maneuver has the highest 

mean and maximum values of Objective Risk in the last part of the route (Figure 27). For the 

following maneuver, the minimum and mean distances to the curb reach the highest values in 

the middle of the route, while the maximum distance to the curb reaches the highest value at 

the end part of the route. The Mean and Minimum Speeds reach the highest values in the middle 

of the route, while the maximum speeds reach the highest values at the end part of the route.  
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Figure 27: Dependence of the Mean Objective Risk and Max Objective Risk on the Interaction Scenarios 

Table 13: Following Maneuver Analysis Results 

 Beginning Middle Ending 

Min Objective Risk 0 0 0 

Mean Objective Risk   Highest Value 

Max Objective Risk   Highest Value 

Min Distance  Highest Value  

Mean Distance  Highest Value  

Max Distance   Highest Value 

Min Speed  Highest Value  

Mean Speed  Highest Value  

Max Speed   Highest Value 

 

The middle part of the route was selected for future analysis of the following maneuver. There 

are following and overtaking maneuvers on this part of the route and the middle part represents  

the general behavior of cyclists. The ending part of the route may give biased results, as cyclists 

are sure that the route will end soon.  

 

Figure 28: Dependence of the Mean Objective Risk and Max Objective Risk on the Interaction Scenarios 
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The boxplot of the objective risk versus interaction scenarios  (Figure 28) shows that in the 

following maneuver, the automated mode has higher mean and maximum values of the objective 

risk level than the manual mode. For the overtaking maneuver, the maximum objective risk has 

higher values in driving in the automated mode than in driving in the manual mode, while the 

mean objective risk has higher values for overtaking in manual overtaking scenario than for 

automated overtaking scenario. The following maneuver has lower mean and maximum 

objective risks than the overtaking maneuver and there is a statistical evidence that the objective 
risk for the following maneuver is less than the objective risk for the overtaking maneuver. 

Changes in objective risk may be related to the changes in the distances to the curb and the speed 

of the cyclist.   

 

 

Figure 29: Dependence of the Min, Mean, Max Distances on the Interaction Scenarios 

The distances to the curb are almost the same for all interaction scenarios (Figure 29). In 

overtaking scenarios, the minimum, maximum and mean distances are slightly lower than in the 
following maneuver scenarios.  Manual driving scenarios have a slightly higher minimum distance 

than automated driving scenarios. The mean distance in the automated driving mode has higher 
value than the mean distance in the manual driving mode.  

 
The Mean Speed has higher values for the following maneuvers than for overtaking maneuvers, 

while the Maximum speed has higher values for the overtaking maneuvers than for the following 
maneuvers (Figure 30). Furthermore, the maximum speed has higher values for driving in 

automated mode than for manual driving.  
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Figure 30: Dependence of the Mean, Max Speeds on the Interaction Scenarios 

5.3.2 Statistical analysis of the attributes.  
Table 14: Preliminary statistical analysis of the attributes of the interaction scenarios  

Statistical 
Test 

Null Hypothesis Bonferroni 
Correction (BC) 

P-Value 
after BC 

Conclusion 

The Wilcoxon 
Test 

H0
3: There is no 

difference between the 
mean values of the 
Subjective Risk for the 
overtaking with 
distance of 1,5m and 
overtaking with 
distance of 3,5m for 
driving in automated 
mode. 

a=0,0125 p=0,03  There is statistical 
evidence that the 
subjective risk for the 
overtaking with 3,5 m is 
lower than the subjective 
risk for overtaking with 
the 1,5 m.  
 

T-Test H0
4: There is no 

difference between the 
mean values of the 
Subjective Risk for the 
overtaking with 
distance of 1,5m and 
overtaking with 
distance of 3,5m for 
driving in manual mode. 

a=0,0125 p=0,003 There is statistical 
evidence that the 
subjective risk for the 
overtaking with 3,5 m is 
lower than the subjective 
risk for overtaking with 
the 1,5 m.  
 

The Wilcoxon 
Test 

H0
5: There is no 

difference between the 
mean distance to the 
curb values for the 
overtakings with the 
distance of 1,5m and 
overtakings with the 
distance of 3,5m. 

a=0,0125 p=0,009 There is statistically 
significant evidence that 
the mean distance to the 
curb for the overtaking 
with 1,5 m is lower than 
the mean distance to the 
curb when overtaking 
with 3,5m.       

 

Besides interaction scenarios, the experiment includes speed and distance as attributes for 

overtaking. Each attribute has two levels. This section discusses the dependence of trust and risks 
during scenarios of manual overtaking and automated overtaking on the speed of overtaking and 

the distance of overtaking. 
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Figure 31: Dependence of the Trust Level on Overtaking Speed and Overtaking Distance 

Figure 31 shows that trust level in the overtaking maneuver with distance of 3,5 m has a slightly 

higher level of trust than overtaking with a distance of 1,5 m. In automated overtaking scenarios, 

overtaking at a lower speed has a higher level of trust. In manual driving, a higher speed during 
overtaking have higher trust level.  

 

Figure 32: Dependence of the Subjective Risk Level on Overtaking Speed and Overtaking Distance 

The Boxplot (Figure 32) shows that the subjective risk is higher for overtaking maneuvers with a 

distance of 1,5 m and the statistical evidence approve that the subjective risk for the overtaking 

with 3,5 m is lower than the subjective risk for overtaking with the 1,5 m. For driving in automated 

mode, overtaking at lower speed has a higher level of subjective risk than overtaking at a higher 

speed. The preference for a higher overtaking speed can be explained by comparing times of 

interactions. Participants may perceive shorter interaction times as safer interactions. 

Furthermore, analysis shows that overtaking with a low speed in automated mode perceived by 

participants as riskier than overtaking in manual mode.  
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Figure 33: Dependence of the Cyclist Distance to the Curb on Overtaking Speed and Overtaking Distance 

The minimum distance has slightly higher values for overtaking maneuvers at a higher speed than 

for overtaking maneuvers at a lower speed for both vehicle modes (Figure 33). In automated 
scenario, overtaking with a distance of 3,5 m has a lower minimum distance value than 

overtaking with a distance of 1,5 m. In manual overtaking scenario, the minimum distance to the 
curb has higher values when overtaking with a distance of 1,5 meters.  

 

 
Figure 34: Dependence of the Cyclist Distance to the Curb on Overtaking Speed and Overtaking Distance 

The Mean Distance to the Curb has higher values in overtaking scenarios with an overtaking 

distance of 3,5 meters for both modes of vehicle operation and statistical test approve that the 
mean distance to the curb for the overtaking with 1,5 m is lower than the mean distance to the 

curb when overtaking with 3,5 m. For overtaking in the manual driving mode, the overtakings at 
a higher speed have higher mean distance values (Figure 34).   

 

5.3.3 Statistical analysis of the vehicle maneuvers for the same relative distances.  

 

The preliminary analysis shows that there is dependency of trust, subjective risk and objective 
risk on the relative distance between the vehicle and the cyclist. This section presents an analysis 



59 
 

of the data from the interaction scenarios of overtaking maneuvers with 3,5 m and following 

maneuvers with 3 m.  
 

The Trust level has slightly higher values for the overtaking maneuver that for the following 

maneuver. Also, driving in manual mode have slightly higher trust level than driving in automated 

mode. All interaction scenarios have same level of subjective risk. However, the manual following 

scenario have no higher quartile values. The automated following and automated overtaking 

have higher whiskers, which indicates that the automated driving mode may have a higher 

subjective risk level.  

The max objective risk for overtaking maneuvers has much higher mean values than for following 

maneuvers. The automated mode has a higher objective risk values than manual mode. However, 

the boxplot of automated overtaking has big quartile and long whiskers, showing the incoherence 
in max objective risk values.  

The Wilcoxon text for max objective risk values shows with the p-value=0,001 that the null 

hypothesis can be rejected. The null hypothesis is set as  H0
6: There is no significant difference 

between the mean values of the max Objective Risk for the following and overtaking maneuvers. 

After the application of the Bonferroni correction (0,0125) there is still statistically significant 

evidence that the Objective Risk of the following maneuver is lower than the Objective Risk of 

overtaking maneuver.  

 

 
Figure 35: Dependence of the Trust, Subjective Risk and Max Objective Risk on the Interaction Scenarios  

 



60 
 

5.3.4 Statistical analysis of the influence of the right hand side objects  
Table 15: Preliminary statistical analysis of the influence of the Right Hand side objects  

Statistical 
Test 

Null Hypothesis Bonferroni 
Correction (BC) 

P-Value 
after BC 

 

Conclusion 

The 
Wilcoxon 

test 

H0
7: There is no significant 

difference between the 
mean values of the Distance 
to the Curb for the Grass on 
the side of the road and the 
Asphalt on the side of the 
road. 

a=0,025 p=0,000 The Distance to the 
Curb of cyclist riding on 
the side with the curb 
(asphalt) is higher than 
the Distance to the 
Curb of the cyclist 
cycling on the side of 
the green grass. 

The 
Wilcoxon 

test 

H0
8: There is no significant 

difference between the 
mean values of the Cyclist 
Speed for the Grass on the 
side of the road and the 
Asphalt (Curb) on the side of 
the road.  

a=0,025 p=0,000 The mean values of the 
Cyclist Speed are 
higher in the case of 
the grass on the RHS 
than in the case of the 
Curb on the RHS. 

The 
Wilcoxon 

test 

H0
9: There is no difference 

between the mean values of 
the Relative Distance on the 
side of the road with the 
Green Grass and the side of 
the road of the Curb. 

a=0,025 p=0,025 The relative distance 
on the side of curb is 
lower than the relative 
distance on the side of 
grass.  

The 
Wilcoxon 

test 

H0
10: There is no difference 

between the mean values of 
the Trust Level when cycling 
with the asphalt on the RHS 
and Trust level when cycling 
when the green grass is on 
the RHS. 

a=0,025 p=0,000 The trust level for 
driving with the 
asphalt on the RHS is 
higher than the trust 
level for cycling with 
the grass on the RHS. 

One of the attributes of the experiment is the right-hand side. This attribute has two values: the 

green grass side and the asphalt side (Figure 36).  

                   

Figure 36: Right Hand Side Objects 

The statistical analysis shows that the Distance to the Curb of cyclist riding on the side with the 

curb (asphalt) is higher than the Distance to the Curb of the cyclist cycling on the side of the green 

grass. The mean values of the Cyclist Speed are higher in the case of the grass on the RHS than in 

the case of the Curb on the RHS. The relative distance on the side of curb is lower than the relative 

distance on the side of grass. The trust level for driving with the asphalt on the RHS is higher than 

the trust level for cycling with the grass on the RHS.  
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Figure 37: Dependence of the Distance to the Curb, Cyclist Speed, Relative Distance and Trust on the RHS object. Dependence of 
the Relative Distance on the RHS object 

 

5.4 Correlations analysis 

 

Trust and subjective risk values are discrete, being collected once after each ride. Objective Risk, 

cyclist speed, lateral distance to the curb, relative distance and relative speed are continuous  

data, being collected for every 0,2 sec of each ride. The conversion of continuous  to discrete data 

may affect the validity of results. Two correlation analyses for non-parametric data sets 

(Spearman correlation) were conducted. The correlation analysis null hypothesis was Ho
1: All 

parameters used in the correlation analysis are independent of each other. The correlation matrix 

for the discrete data set is present in the appendix. There is a statistically significant negative 

association between subjective risk level and vehicle overtaking speed (p=0,005, rs= -0,268), 
which indicates that an increase of overtaking distance is associated to an increase in subjective 

risk levels. However, after application of Bonferroni correction (corrected a=0,003) the null 

hypothesis could not be rejected. The strong negative correlation (p=0,000 rs=-0,428 a=0,001) is 

between the trust Level and the subjective risk level: with an increase in Trust Level the Risk level 

decreases. Furthermore, there is strong positive correlation between trust level and objective 

risk (p=0,000 rs=+0,487 a=0,001) for mean and max objective risk, and a mean negative 

correlation (p=0,000 rs=-0,324 a=0,001) between the trust and max distance to the curb.  

The Spearman Correlation Matrix for the continuous data ,presented on Table 16, shows that 

there is a strong negative correlation between the Objective Risk and the Relative Distance 

(p=0,000, rs=-0,778 a=0,005) and a strong positive correlation observed between the Relative 

Distance and the Relative Speed (p=0,000, rs=0,574 a=0,005). The mean negative correlation is 

between the relative speed and Objective Risk (p=0,000, rs=-0,28 a=0,005) and between the 

Distance to the Curb and Objective Risk (p=0,000, rs=-0,11 a=0,005). A weak negative correlation 
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appears between the Relative Distance and the Distance to the Curb (p=0,001, rs=-0,077 a=0,005) 

and between the Relative Speed and the Distance to the Curb (p=0,002, rs=-0,068 a=0,005).  

Table 16: Spearman Correlation Matrix for continuous data 

 

5.5 Participants learning analysis 

 

Automated driving is new. Cyclists may have less trust on automated vehicle scenarios due to the 

lack of familiarization. It must be checked if an increase of the interaction time leads to a higher 

trust. Trust, subjective risk and objective risk are non-parametric data. To see changes over time, 

the Friedman test was applied. The experiment was designed in a way that for the same 

participant the same interaction scenario will be repeated in a 1st and 3rd ride or in a 2nd and 4th 

ride, which means that inside the interaction scenarios the 1st and 2nd ride was done by different 

participants. The Friedman test conduct an analysis for every interaction scenario and for two 

groups of participants. All results of the Friedman test are presented in the appendix. The 
Friedman test shows no difference in trust, subjective risk Level and objective risk in 10 rides 

time. 

5.6 Generalized Linear Mixed Model 

 

To get insights on the relationship between non-parametric target parameters of trust, subjective 

risk, objective risk and independent variables, the Generalized Linear Mixed Model (GLMM) was 

applied. With respect to subjective risk and trust, one model was built for the all interaction 
scenarios and another model was built for the overtaking scenarios with overtaking attributes. 

With respect to objective risk, a GLMM was built. In the last model, trust and Subjective Risk were 

not included as parameters to avoid violation of continuous trust data with discrete trust and 

subjective risk data.  

Besides including fixed effects, the Linear Mixed Models can include random effects. Each model 

was tested in four conditions: random effects, to see which random effect has significant 

influence; influencing random effects; no random effect; and random intercept. The Akaike 

Corrected and Bayesian criterion were compared between models and the one with the lowes t 

information criterion (and thus better model fit) was further analyzed. In all cases, random 
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intercepts were further analyzed. All completed GLMM and comparison of the models fits for 

each case are presented in the appendix. This section presents the analysis of the chosen models.  

5.6.1 The Generalized Linear Mixed Model for the subjective risk  

 
Table 17: Input parameters for the GLMM for the subjective risk 

 Fixed Effects Random Effects 

Subject: Participants number Gender Random Intercept 

Repeated measures: 

Rides number 

RHS  

Target: Subjective Risk Level Interaction Scenarios  

 Max Objective Risk  

 Max Cyclist Speed  

 Mean Distance to the Curb  

 Trust  

The GLMM originally considered max objective risk, max cyclist speed, mean distance to the curb 

and trust as random parameters. This model shows no statistically significant intercepts for 

random parameters. The model with only a random intercept shows the best model fit (Akaike 

Corrected Criterion = 604,688; Bayesian=628,634) and was chosen for further analysis.  

The fixed effects analysis shows the statistically significant (p=0,000) relationship between trust 

level and the subjective risk level with a magnitude of -6,690. A trust improvement in 1 unit leads 

to a reduction of predicted subjective risk in -6,690. In other words, two participants with the 

difference in subjective risk level of 1 unit have a difference in trust level of 6,690. Furthermore, 
the model shows a statistically significant (p=0,042 and p=0,039) relationship between 

interaction scenarios and subjective risk. The magnitude of automated following is equal to 

5,521, while magnitude of the automated overtaking is 5,930. Pairwise comparison shows the 

statistically significant (p=0,033) relationship between automated overtaking and manual 

following with the magnitude of 2,744. The regression equation for this model is as follows:  

S=39,942 - 6,690y+ 5,521x + 5,930z 

Where mean of the Subjective Risk = 39,942 for the participant with trust=0 and interaction 

scenario with no vehicle. According to this model the Trust is the strongest individual predictor 
in the model. 

Table 18: Variables of the regression equation of the GLMM for the subjective risk 

Variables Description 

S Subjective risk 

Y Trust 

X 1 for interaction with automated following and 0 for interaction with no vehicle 

Z 1 for interaction with automated overtaking and 0 for interaction with no vehicle. 
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Figure 38: Fixed effects 

 

Figure 39: Pairwise comparison 
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5.6.2 The Generalized Linear Mixed Model for the subjective risk in overtaking scenarios  

 
Table 19: Input parameters to the GLMM for the subjective risk in overtaking scenarios 

 Fixed Effects Random Effects 

Subject: Participants number Gender Random intercept 

Repeated measures: Rides 

number 

RHS Mean Distance to the Curb* 

 

Target: Subjective Risk Level Interaction Scenarios  

(Manual Overtaking and 

Automated Overtaking) 

 

 Max Objective Risk  

 Max Cyclist Speed  

 Mean Distance to the Curb  

 Trust  

 Overtaking Speed  

 Overtaking Distance  

 

The GLMM model considered max objective risk, max cyclist speed, mean distance to the curb, 

trust, overtaking speed and overtaking distance as random parameters. This model shows that 

the mean distance to the curb as a random parameter has statistically significant intercept. 

However, the model with only a random intercept shows the best model fit (Akaike Corrected 

Criterion =217,132; Bayesian=220,742) and was chosen for further analysis.  

 

Figure 40: Fixed Effects 
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There is a statistically significant (p=0,000) relationship between right hand side object and the 

Subjective Risk Level with a magnitude of -3,257. The Grass Side has higher Risk Level comparing 

to the Curb Side. Moreover, there is a statistically significant (p=0,000) relationship between 

Trust and Subjective Risk Level with a magnitude of -6,678. The improvement of Trust in 1 unit 

leads to reduction of the predicted Subjective Risk on -6,678. If there are two participants with 

the difference in Subjective Risk level of 1 unit their trust level will be different on 6,678. 

There is a statistically significant (p=0,010) relationship between Overtaking Distance and 

Subjective Risk Level with a magnitude of 2,206. The closer Overtaking Distance of 1,5 m has 

higher risk Level than the overtaking Distance of 3,5 m. The regression equation for this model is 

as follows:  

S=46,481 -3,257 x – 6,678 y +2,206 z  

Where 46,481 is a mean value of the Subjective Risk Level for the participant with a trust=0 riding 

on the grass side of the road and experiencing overtaking scenario with the 3,5m lateral distance. 
According to this model the Trust is the strongest individual predictor in the model. 

Table 20: Variables of the regression equation of the GLMM for the subjective risk in overtaking scenarios  

Variables Description 

X 1 if its curb and 0 if its green grass 

Y Trust 

Z 1 if its 1,5m overtaking and 0 if its 3,5 m overtaking 

 

5.6.3 The Generalized Linear Mixed Model for the trust  

 

Table 21: Input parameters to the GLMM for the trust 

 Fixed Effects Random Effects 

Subject: Participants number Gender Random intercept 

Repeated measures: 

Rides number 

RHS Subjective Risk Level* 

Target: Trust Interaction Scenarios  

 Max Objective Risk  

 Max Cyclist Speed  

 Mean Distance to the Curb  

 Subjective Risk   

 

The model originally includes Max Objective Risk, Max Cyclist Speed, Mean Distance to the Curb 

and Subjective Risk as random parameters. The model shows statistically significant intercept for 

the Subjective Risk Level as a random parameter. However, the model fit analysis points that the 

model with a random intercept shows the best model fit (Akaike Corrected Criterion =115,354; 

Bayesian=139,3) and was chosen for further analysis.  
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Figure 41: Fixed effects 

 

Figure 42: Pairwise Contrasts 
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In comparison with the no vehicle interaction scenario the highest level of trust has automated 

following (p=0,000, magnitude=0,628) and manual following (p=0,000, magnitude=0,629). 

Manual overtaking has mean value of trust (p=0,000, magnitude=0,536) and automated 

overtaking have the lowest value of trust (p=0,001, magnitude=0,478). The pairwise comparison 

shows no statistically significant relationship between scenarios with vehicles. There is a 

statistically significant (p=0,000) relationship between Subjective Risk Level and Trust Level. With 

the increase of the trust on 1 unit the Subjective Risk Level decreases on 0,024. There is a 
statistically significant (p=0,036) relationship between max objective risk and trust level. With 

increase of trust level on 1 unit the max objective risk increases on 0,004.  

The mean distance to the curb decreases with the increase of trust level (p=0,029). Two 

participants with the difference of trust in 1 unit will have difference in mean distance to the curb 

of 0,792 sm. Max cyclist speed increases on 0,131 with a 1 unit increase in trust level (p=0,018).  

The regression equation for this model has a following form:  

S = 3,520 + 0,628x + 0,478y + 0,629z + 0,536g – 0,024h + 0,004k – 0,792m + 0,131n ± 0,093 

Where, 3,520 is a mean value of the Trust Level for the participant experiencing the subjective 

risk level of 0, max objective risk of 0, riding with the distance to the curb 0 cm and max cyclist 

speed 0 on the interaction scenario with no vehicle. In this model was fins statistically significant 

(p=0,05) variability within rides of same participant equals to the 0,093. According to this model 

the strongest individual predictor is a lateral mean distance to the curb.  

Table 22: Variables of the regression equation of the GLMM for the trust 

Variables Description 

X 1 if automated following, 0 if no vehicle 

Y 1 if automated overtaking, 0 if no vehicle 

Z 1 if manual following, 0 if no vehicle 

G 1 if manual overtaking, 0 if no vehicle 

H Subjective Risk Level 

K Max Objective Risk 

M Mean Distance to the curb 

N Max Cyclist Speed 
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Figure 43: Variability within rides 

5.6.4 The Generalized Linear Mixed Model for the trust in overtaking scenarios  

 

Table 23: Input parameters to the GLMM for the trust in overtaking scenarios 

 Fixed Effects Random Effects 

Subject: Participants number Gender Random intercept 

Repeated measures: 
Rides number 

RHS  

Target: Trust Interaction Scenarios  

 Max Objective Risk  

 Max Cyclist Speed  

 Mean Distance to the Curb  

 Subjective Risk   

 Overtaking Speed  

 Overtaking Distance  

 

The model shows the relation between Trust Level for overtaking and independent parameters. 

As random parameters, model originally include: Max Objective Risk, Max Cyclist Speed, Mean 

Distance to the Curb, Subjective Risk, Overtaking Speed and Overtaking Distance. None of the 

random effects shows statistically significant influence. The model with the random intercept 
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with the fit of Akaike Corrected Criterion =80,705; Bayesian=84,316 was chosen for further 

analysis.  

 

Figure 44: Fixed effects 

There is a statistically significant (p=0,001) negative relationship between Subjective Risk Level 

and Trust Level. With the increase of the Subjective Risk on 1 unit the Trust Level decreases on 

0,046. The regression equation for this model is as follows: S=5,099 – 0,046x.  

Where 5,099 is a mean value of the Trust level for the overtaking scenarios when participant 

have Subjective Risk level equal to 0, and X is a Subjective Risk Level.  

5.6.5 The Generalized Linear Mixed Model for the objective risk  

 
Table 24: Input parameters to the GLMM for the objective risk 

 Fixed Effects Random Effects 

Subject: Participants number Gender Random intercept 

Repeated measures: Rides number RHS  

Target: Objective Risk Level Interaction Scenarios   

 Cyclist Speed  

 Distance to the Curb  

 Relative Speed  

 Relative Distance  
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As the model describing the Objective Risk relation with independent parameters was used 

model with the random intercept (Akaike Corrected = 14,433, Bayesian = 15,512). Originally was 

tested following random parameters: cyclist speed, distance to the curb, relative speed, relative 

distance, but none of them could reach statistically significant level.  

 

Figure 45: Fixed effects 

 

Figure 46: Pairwise Contrasts 
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There is a statistically significant (p=0,000) relationship between Trust Level and the Subjective 

Risk Level with a magnitude of -6,690. With the improvement trust on 1 unit the predicted 

Subjective Risk will be reduced on -6,690. If there are two participants with the difference in 

Subjective Risk level of 1 unit their trust level will be different on 6,690. 

Also, there is a statistically significant (p=0,000) relationship between Right hand side object and 
Objective Risk. The curb side have 1 Joule Objective Risk less than the Green Grass s ide.  

Another statistically significant (p=0,015) relationship is found between Objective Risk and the 

Cyclist Speed. With the increase of Cyclist Speed on 1 m/s the Objective Risk declines on the 0,486 

Joules. It can be explained by the change in the relative distance, probably with the increase of 

speed the vehicle driver tends to keep bigger distance between cyclist and car. 

The relationship between Relative Distance and the Objective Risk is also statistically significant 

(p=0,000). With the increase of the distance between objects on 1 m, the Objective Risk reduces 

on 0,426 Joules. The same as if we compare 2 participants with the difference in related speed 
of 1 m the Objective Risk will be different on 0,426 Joules.  

A statistically significant (p=0,000; p=0,034; p=0,000) relationship exist between Interaction 

Scenarios and Objective Risk Level. The Automated Following scenario comparing to the Manual 

Overtaking Scenario have lower Objective Risk on 4,550 Joules. Also, Manual Following have 

4,870 Joules less of Objective Risk comparing to the Manual Overtaking. While, the Automated 

Overtaking scenario have 0,636 Joules more than Manual Overtaking. Overall, the lowest 

Objective Risk in comparison with the Manual Overtaking have the Manual Following, while 

Automated Following have slightly higher risk level and the highest risk level out of all interaction 

scenarios have the Automated Overtaking. The pairwise comparison shows that the Automated 

Overtaking have higher Objective Risk than Automated Following on 5,187 Joules (p=0,000). The 
Automated Overtaking have higher Objective Risk than Manual Following on 5,507 (p=0,000). 

The regression equation for this model is as follows: S = 10,085 – 4,550x + 0,636y – 4,870z -1h – 

0,486g – 0,426k 

Where, 10,085 Joules of Objective Risk corresponds to the mean value of the Objective Risk for 

the participant experiencing the interaction with manually overtaking vehicle on the side of the 

road with green grass and cycling with a speed of 0 m/s and relative distance of 0 m. For this 

model the strongest individual predictor is the interaction scenario with a manually following 

vehicle.  

Table 25: Variables of the regression equation of the GLMM for the objective risk 

Variables Description 

X 1 if automated following or 0 if no vehicle 

Y 1 if automated overtaking or 0 if no vehicle 

Z 1 if manual following and 0 if no vehicle 

H 1 if curb side or 0 if grass side 

G Cyclist Speed 

K Relative Distance 
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5.7 Graphical analysis of parameter changes along the route 

 
All dynamic graphs are shown in the appendix. This section discussed only graphs with significant 

interaction effect between variables. The X axis of all graphs represents the % of the completion 

of the route, recalculated from the travelling time that each participant took to complete the 

route. Therefore, 100% stands for the time that participant spent to finish a route and 0% stands 

for the first second of travelling.  

 

Figure 47: The Objective Risk along the route 

The Figure 47: The Objective Risk along the route Figure 47 shows that overtaking maneuvers  
have higher values of objective risk than the following maneuver. However, the duration of the 

interaction time is higher in the case of the following maneuvers. Both interaction scenarios have 

higher values at the beginning of the route, when participants are getting used to the bicycle and 

did not yet stabilized their movement. The overtaking maneuvers have Objective Risk bursts at 

the phase of approaching to overtake and coming back to the lane. The minimal value part of the 

overtaking maneuver refers to the reduced probability of collision, given that objects moving 

parallel to each other have a low probability of collision. Automated and Manual driving modes  

have the same levels of objective risk for both vehicle maneuvers.  

The Figure 48 shows the change of the Distance to the Curb according to the part of the 

Overtaking maneuver. Cyclists start cycling closer to the curb when the vehicle goes parallel to 
the cyclist and come back to the original distance after the vehicle returns to the lane in front of 

cyclist. The Distance to the Curb have slightly lower values for the Automated driving mode than 

for the Manual driving mode.  
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Figure 48: The Objective Risk and the Distance to the Curb along the route 

 

Figure 49: The Objective Risk and the Cyclist Speed along the route 

The Figure 49 presents the cyclist speed and Objective risk along the route. We can observe that 

the cyclist speed increases slightly when the vehicle overtakes it. At the same time, the speed 

has higher values for the manual overtaking scenarios in comparison to the automated 

overtaking scenarios.  

The Figure 50 above shows interaction between the Objective Risk (blue line) and the Relative 

Distance (grey line). The following maneuver graphs show a clear relation between decrease of 

Relative Distance between the vehicle and the cyclist and the increase in Objective Risk. The 

overtaking maneuver graphs also shows relation between Distance to the Curb and Objective 

Risk. However, in the case of Overtaking maneuvers the Objective Risk also influenced by the 

other attributes.  
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Figure 50: The Objective Risk and the Relative Distance along the route 

 

Figure 51: Dependence of the Cyclist Speed on the Distance to the Curb 

The Figure 51 of the cyclist speed and the distance to the curb along the route shows that cyclists 

reach the highest speed in the middle part of the lane. When the cyclist goes closer to the curb 

or closer to the vehicle lane the speed drops. For some cyclists the speed reduction for the lane 

part closer to the curb is even larger than the speed reduction for the parts closer to the vehicle 

lane.  
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Figure 52: For different trust groups, the cyclist speed and distance to the curb along the route 

Looking on the Figure 52 showing the change of the cyclist speed and the distance to the curb 
with a time of the experiment, we can observe that the speed level has a slight change with time, 

while the position of the cyclist on a bicycle lane (represented by the distance to the curb) varies 

significantly.  

To check how the trust level influences the behavior of cyclist, three groups of people were 

defined: low level of trust, corresponding to trust level from 3 to 3,3; mean level of trust, 

corresponding to trust level from 3,6 to 3,7; and high level of trust, corresponding to trust level 

from 4,8 to 4,9. The higher trust group has higher cycling speed during the whole time of the 

experiment and keeps their position on the lane more coherent. These two characteristics are be 

interrelated, as to keep a high speed a certain balance have to be reached and with variation of 

the position on a lane the balance can be lost. The mean trust group and low trust group have a 
similar speed range. However, the low trust group have a big variation in its position on the lane. 

The people with low trust level tends to vary their position more often and with bigger amplitude.  

5.8 Observation studies 

 

Participants show similarity in the behavioral pattern. In the following scenario appear a moment 

when participant start looking back to check the vehicle behavior. The Figure 53 shows the 

moment when participants start being worrying of vehicle behavior as then the distance from 
the cyclist to the curb reduces.   

 

Figure 53: The Distance to the Curb along the route 
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5.9 Discussion and summary 

 

This chapter conducted analysis and obtained results on trust, subjective and objective risks and 

attributes of interaction scenarios. The summary of results is presented in the Table 26. This 

section discusses similarities and differences in the master thesis research findings and reviewed 

literature findings, shown in the chapter 2. There was a research gap on the studies about the 

behavior of cyclist in interaction with automated vehicle and in the risk perceived by cyclist in the 

interaction scenarios. Some of the results  obtained are unexpected, for example, related to 

changes in behavior in risky interactions and to the perception of risk in interaction with 

attributes. Possible reasons for these findings are discussed in this section.  

Table 26: Summary of results 

 

Research regarding cyclist and AV interaction are limited, since most of the literature focuses on 

the interactions of pedestrians and AVs. Rodriguez Palmeiro et al. (2017), Böckle et al., (2017); 

Habibovic et al., (2018); Merat et al., (2017) and Hagenzieker et al. (2018) show that pedestrians 

generally feel less safe and behave more cautiously when interacting with AVs. The master thesis 

research found that participants feel less safe, increase their speed and reduce the distance to 

the curb during overtaking by AVs. However, for the following maneuvers there is no difference 

in behavior and perception between automated and manual driving. 

With respect to overtaking attributes, the literature shows that, from the side of the vehicle 

drivers, an increase in overtaking lateral distance leads to an increase in speed. Furthermore, at 

a speed of 45 km/h vehicle drivers choose to overtake with 1,5 m distance and may sometimes  
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overtake with a distance of 1 m (Debnath et al., 2018; Parkin & Meyers, 2010; Parkin & Schackel, 

2014). The master thesis shows that for the cyclist the increase in distance and increase in speed 

are always preferred. The mean speed of cyclist was equal to 14 km/h - 15,5 km/h, which means 

that the vehicle was overtaking with the speed of 19 km/h - 25,5 km/h. In all cases, participants 

prefer an overtaking distance of 3,5 m rather than 1,5 m.  

Dozza, Schindler, Bianchi-Piccinini, & Karlsson, (2016); Dufour, (2010) mentioned that the mean 

distance from the curb for cyclists is equal to 0,25 or 0,3m to the small curb or 0,6m to the big 

curb. The master thesis research shows similar results as the mean distance that cyclists keep 

from the curb in the scenarios with vehicles is equal to 0,76-0,81m, while in scenarios without 

the vehicles the mean distance is 0,81m. This value corresponds to the middle of the standard 

bicycle lane (of 1,5 m width). In the passing part of the overtaking maneuver, the distance to the 

curb is reduced to 0,6-0,7 m.  

Research of Chuang, Hsu, Lai, Doong, & Jeng, (2013); Walker, (2007) shows that the vehicle 

drivers keep more distance while overtaking female cyclists than male cyclists. The research of 

Yannis et al., (2013) reported that the gender of participants influence on their trust to 
interaction with AVs.  Both conclusions correspond to the findings of the master thesis research, 

as analysis shows that female participants experience lower trust and higher subjective risk and 

tend to go closer to the curb to keep larger lateral distance with the overtaking vehicle.  

Chuang et al. (2013) claims that longer passing time influences the observed increase in speed of 

cyclist. This study fully confirms this finding, showing that the speed of the cyclist increases during 

overtaking and that the cyclist prefers to be overtaken with a higher speed in order to reduce the 

interaction time.  

Research on the trust to automated vehicle technologies reports that under-trust may be cause 
of the accidents with the system Hoff & Bashir, (2015). The master thesis research did not capture 

any participant with under-trust. However, participants with reduced trust demonstrated 

changed and unsafe behavior, varying frequently their position on the lane and causing loss of 

balance. The danger of the opposite concept of over-trust to the system was mentioned by Lee 

& See, (2004). Lee & See, (2004) also mentioned that people tend to over-trust the novel 

automated vehicle system. Indeed, the master thesis research was able to capture some 
participants with a high level of trust and these participants cycled with a much higher speed 

than the others. However, the correlation between trust level and cycling experience is still not 

fully understood. 

Mayer (1995), Lee & See (2004) and Korber (2019) proposed the following questionnaire sections 

to capture the change in trust levels: trust in automation, propensity to trust, intention of 

developers, understandability and reliability. The research recognizes an influence of 

“understandability” and “trust in automation” in the attitude of participants, which was not the 

case for “intentions of developers”. “Propensity to trust” and “reliability” were corresponding 

and had the same pattern of changes.  

With respect to factors influencing trust level of participants, researchers reported that the most 

influencing factors are speed of the vehicle and distance to the AV (Oxley et al., 2005; Rodríguez 

Palmeiro et al., 2018; Yannis et al., 2013). The master thesis research obtained the same results. 

However, the second most influencing factor on participants after the relative distance factor 

was the vehicle characteristics, which stands for the size of the vehicle and the noise of the 
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vehicle. This finding is in line with results from Yannis et al., (2013) and Weddell (2012) who 

mentioned the size of the automated vehicle as an influecing factor. Rodríguez Palmeiro et al. 

(2018) and  Lagstrom & Lundgren (2015) found that pedestrians decisions not to cross in front of 

AV was influenced by the driver inattentiveness. In the master thesis research, participants did 

not pay significant attention to the driver behavior. The research from Rodríguez Palmeiro (2018) 

and Lagstrom (2015) focused on interaction of pedestrians with AV, while in the thesis research 

AV interacts with cyclist. Since cyclists concentrated on keeping balance and were barely able to 
see the car driver, they do not pay much importance to the eye contact with the driver. Besides 

all mentioned above parameters, Lagstrom & Lundgren, (2015) found that weather conditions  

can affect the interaction process, which was also observed in the master thesis research. 

Participants show the biggest trust and lowest subjective risk in day 2 with the temperature of 

+20 in comparison to day 1 with +30 and day 3 with +18. 

The study covers a research gap on the behavior of cyclist in interaction with automated vehicle 

and the subjective risk appearing in interaction. Below discussed the unexpected findings and 

possible reasons for these results.   

The research shows that the objective risk increases with the reduction of the distance to the 

curb. As distance to the curb is a parameter included in the probability part of the static risk field, 

the negative correlation between distance to the curb and objective risk in the following 

scenarios is expected. In the passing phase of the overtaking scenarios, the overtaking lateral 

distance and distance to the curb are interrelated, which means that when the distance to the 

curb reduces the lateral distance to the vehicle increases . This could help to reduce the Objective 
risk, resulting from the superposition of kinetic and static fields. However, reduced distance to 

the curb result in the increase in probability of the static risk field. On the other hand, increased 

distance to the vehicle does not result in the lower kinetic risk, as probability of collision in kinetic 

field is influenced by the crossing of polygons. Also, in the passing stage vehicle’s and cyclist’s 

polygons are not crossing. Thus, in the passing stage the main risk comes from the static object 

and decrease in the distance to curb increases the objective risk. Following that, the changes in 

cyclist behavior in risky situation, increase in speed and decrease in the distance to the curb 

results into the less safe interaction.  

One of the most common reason for the accidents is speeding. In order to keep the interaction 

safe, all interacting objects should maintain the speed low. Participants were expected to follow 
the low speed logic. However, the subjective risk analysis shows unexpected results: cyclists 

prefer to be overtaken with the higher vehicle speed (in the research were assessed speeds 

below 40 km/h) and cyclists increase their speed in the passing phase of the overtaking. The 

negative correlation between subjective risk and overtaking vehicle speed can be explained by 

the interaction time reduction with increasing of the speed of the vehicle. The positive 

correlation between cyclist speed and subjective risk can be explained by the balance required 

for more stable cycling. Cyclists slightly increase speed to be more dynamically stable.  

Another unexpected result is related to the right-hand side objects analysis. Cycling was assumed 

to be less risky near the green grass than near the asphalt pass. However, both subjective and 

objective risks increase when cycling on the green grass side in comparison with cycling on the 

asphalt path. Objective risk increases as cyclist starts cycling faster and closer to the curb, 

influenced by the increase in Subjective risk. The higher trust of the participants for the asphalt 

side can be explained by the fact that the curb is not high so participants may visually feel that 
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the road is wider on the asphalt side and also perceive that they can always continue cycling on 

the pedestrian path, while cycling on the green grass is more difficult. 

As one of the explanatory attributes, the relative speed was examined. However, this parameter 

did not provide a significant explanation for the level of risks changes. The vehicle driver was 

concentrated on keeping a certain relative distance and used the speed of the vehicle to adjust 
distance. As soon as the longitudinal relative distance reached the pre-defined value there is no 

need for the car to accelerate, therefore the relative speed is low when the relative distance is 

low. Thus, the analysis shows a negative correlation between objective risk and relative speed. 
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6 Conclusion and recommendations 

 
The operation of automated vehicles in shared areas requires attention with respect to the 

interaction between AVs and vulnerable road users. There is a clear scientific gap on cyclist 

perception when interacting with automated vehicles. Currently, the programmed interaction 

behavior of AVs is based on the knowledge of the interaction between conventional vehicles and 
cyclists. However, cyclists may react differently to conventional and automated vehicles.  

This research is part of the I-AT project of the Royal Haskoning DHV. The I-AT project aims to 

design a public transport line using automated shuttle buses. The Automated Shuttle Bus (ASB) 

programmed behavior requires the shuttle bus to follow detected leading object in the 

automated driving mode or overtake the object in manual driving mode. Following maneuvers  

may have negative impact on the safety of the traffic situation and it is not clear which level of 

Subjective and Objective Risks are experienced by the cyclists in this context.    

This research investigates the potential interaction scenarios between automated vehicle and 

cyclists to evaluate the subjective and objective risk resulting in each interaction scenario and 

interaction attributes. The thesis methodology is based on a field-experiment. Cyclist perceptions  

of the interaction process were assessed with respect to subjective risk and trust. Objective Risk 

was assessed using the Probabilistic Driving Risk Field (PDRF) safety method.  

This chapter discusses the main findings of the study, answers the research questions, discusses 

the main practical contributions for the I-AT project, points out the limitations of the research 

and gives recommendations for future research.  

6.1 Key findings  

 

To answer the main research question, firstly the research sub-questions are answered as 

following:  

SQ 1: Which interaction scenarios are possible when an automated vehicle approaches a cyclist 

from behind? 

In general, the interaction scenarios between cyclists and automated vehicles can be divided into 

two groups: scenarios when the vehicle is approaching cyclist from behind and crossing 

interaction scenarios. Crossing interaction scenario refers to the case when the trajectories of a 

cyclist and a vehicle cross each other. In this situation, cyclists have to make a decision whether 

to let the vehicle pass first or cross first. Approaching from behind interaction scenarios refer to 

the situation when a cyclist and a vehicle are moving in the same direction. In case the automated 

vehicle is approaching the cyclist from behind, two sub-scenarios emerge, the first is following, 

i.e. when the automated vehicle approaches the cyclist from behind and moves with the cyclist 

speed, the second is overtaking, i.e. when the automated vehicle passes the cyclist. As this 

research is part of the I-AT project, which aims to design a public transport line serviced by an 

automated shuttle, in this study we focus only on the passing interaction scenarios, which are 

more relevant for the I-AT. In addition, we focus only on scenarios where the vehicle and the 

cyclist operate on shared areas, as these scenarios have higher risk levels. The literature review 

reveals a gap in the knowledge about cyclist reaction on the maneuvers of the automated vehicle. 
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To consider cyclist reactions on each operation mode, this research includes four scenarios: 

automated following, automated overtaking, manual following and manual overtaking.  

 

SQ 2: What is the cyclist subjective risk level for each of the interaction scenarios? 

Perceived risk was assessed using self-reported subjective risk, trust and cyclist behavior. All 

three measures are interrelated. Subjective Risk and Trust are negatively correlated. Cyclist 

behavior, represented by cyclist speed and cyclist distance to the curb, changes for different 
levels of Trust and Subjective Risk. 

Self-reported subjective risk is higher for overtaking scenarios than for following scenarios. 

There is no statistically significant difference in subjective risks for driving in automated mode or 

in manual mode. However, Subjective Risk is negatively correlated with overtaking lateral 

distance.  

The pattern of cyclist behavior in the situation of high subjective risk was captured based on the 

behavior of cyclist in the passing phase of the overtaking scenarios. The cyclist increases the 

cycling speed and decreases the distance to the curb when the risk level rises. For the automated 

driving the distance to the curb is reduced in comparison to the manual driving.  

There is no evidence of significant change of trust in between interaction scenarios. As 

participants feel extremely vulnerable in interactions with vehicle, they do not differentiate 

between the levels inside the dangerous zone. This is supported by the fact that participants 
mentioned the vehicle characteristics, size and noise, as the second most influencing factor, 

which means that participants already feel unsafe in operation with vehicle itself. For all 

interaction scenarios, participants with a higher rate of confidence have higher cycling speed and 

keep distance to the curb more consistent.  

One of the aims of the research was to assess the relation between the perceived risk and 

objective risk. The self-reported subjective risk does not have significant correlation with the 

Objective Risk. The discrete nature of the self-reported subjective risk value makes it difficult to 

predict with which moment of the ride participants associate the reported risk level. Trust has a 

positive correlation with the Objective Risk values, as increased speed of the cyc list with a high 

trust level increases the Objective Risk. The behavioral subjective risk is highest during the 
passing phase (as at this phase cyclist goes closer to the curb) while the Objective Risk has the 

highest values during the steering away phase and the returning phase. Following that, it can be 

concluded that there is a certain mismatch between perceived risk and objective risk.   

 

SQ 3: What is the objective risk level for the interaction scenarios? 

The objective risk level is a continuous measure, calculated for every 0,2 seconds of rides with 
the Probabilistic Driving Risk Field safety algorithm. The overtaking maneuvers have higher 

objective risk than following maneuvers. In following maneuvers, no significant relation was 

found between the level of objective risk and the vehicle driving mode (automated/manual).  In 

overtaking, the highest values of Objective Risk participants experienced during the automated 

driving. Overall, in overtaking maneuvers, Objective Risk has the highest risk values during the 

steering away phase and the returning phase, while in the stage of passing the Objective Risk is 
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low due to the low probability of the accident in the Kinetic Field. On the level of objective risk 

has influence two attributes: the objective risk has negative correlation with the distance to the 

curb, and negative correlation with the relative distance. The objective risk also has negative 

correlation with the cyclist speed, as there is a positive correlation between the speed of cyclist 

and the relative distance.  

 

SQ 4: What are possible solutions to lower subjective and objective risks levels in the interaction 

scenarios? 

In the experiment two driving modes were tested, however the attributes have the same 

influence for driving in manual and automated mode. The research found three main influencing 

attributes on the risk levels.  

The relative distance between objects has negative correlation with the Objective and Subjective 

Risks. In the scenarios where following and overtaking had same relative distance the Subjective 

Risk and trust had same values for both interaction scenarios.  

Another influencing attribute is a time of interaction, to maintain safe interaction the time of 

interaction have to be reduced. The Subjective Risk declines when the overtaking speed increases 

and the interaction time decreases. However, there was no statically significant relationship 

between vehicle overtaking speed and Subjective Risk after applying the Bonferroni correction.   

The behavior of cyclist also shows the need of reduction of the interaction time. In the end of 

ride in the following scenarios, cyclist increase their speed or participants start looking behind to 

watch the following vehicle which result in loss of balance. In the overtaking scenarios, cyclists 
have a higher speed and cycling closer to the curb during the passing maneuver, which can result 

in the loss of balance and accident. Thus, a reduction in the time of the passing phase required 

to reduce the time of dangerous behavior.  

The right-hand side objects also have influence on the risk of interactions. For the interaction 

scenarios with the grass beside the road the subjective and objective risks levels are higher and 

trust levels are lower than on the asphalt beside the road. Analysis of parameters also approves  

this influence, as on the grass side of the road the variation in the participant position on the 

road is larger, the distance to the curb is smaller, and cyclist speed is higher. Originally, it was 

assumed that the grass side of the road is less risky than the asphalt side of the road, and the 

parameter of the rigidity of the road boundary object of the PDRF static field for the green grass 
has less value than the one for the asphalt side. However, the Objective Risk for the green grass 

side of the road is higher than the Objective Risk for the asphalt side. 

Answers on the sub-questions allow to give a recommendation for the general research question: 

Which interaction scenarios minimize Subjective and Objective Risks appearing when an 

automated vehicle approaches a cyclist from behind? 

There is a clear evidence that the overtaking maneuver has a higher risk level than the following 

maneuver. However, the time of the interaction has high impact on the cyclist behavior and in 

the overtaking scenario the interaction time is much lower. Thus, it can be concluded that for 

short distances the following approaches are a safe option. Besides exact vehicle maneuver, also 

mode of operations has an influence on the risk levels. For the following scenario there is no clear 

difference between modes. Following in automated mode has the same level of risk as following 
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in manual mode. For the overtaking scenarios, the automated mode has clearly higher risk level 

than the manual driving. The choice of the operation scenario is influenced by the available 

relative distance. The higher the distance the lower the risk. For the wide street of 3 meters the 

overtaking scenarios have same subjective risk as the following option. Besides overtaking with 

a higher distance another recommendation could be to reduce the interaction time by overtaking 

with a high speed, (in the research were assessed speeds below 40 km/h). Information about the 

right-hand side objects should be considered for deciding over the vehicle operation parameter. 
The streets with the green grass on their sides are perceived by cyclist as more dangerous.  

6.2 Contribution for the I-AT project 

 
This research aims to increase the safety of operation of the I-AT project Automated Shuttle Bus 

by increasing awareness on the interaction processes with cyclists. It also aims to explore the 

possibility of increasing vehicle operation time in the automated mode. As a result of the 

research, three safety approaches are recommended to the I-AT project.  

The direct outcome of this research can be used for training ASB drivers, by increasing their 

awareness regarding the interaction process with cyclists. The driver’s manual document and 

trainings should explain the correlation between distance of overtaking and speed of overtaking 

to the Subjective and Objective Risks and point out the importance of the different interaction 

scenarios for different surrounding infrastructure, for example in the case of the influence of 

right-hand side objects in cyclist’s behavior. The driver’s manual can recommend the driver in 

which interaction situations the vehicle mode has to be switched to manual and when the 

Automated Shuttle Bus can safely operate in automated driving mode.  

To provide an even more precise idea to the driver about the safety of interaction, a digital screen 

can be built which shows in real time the value of the Objective and Subjective Risks and give 

recommendation on the preferred behavior. In that case the Objective Risk can be assessed using 

the PDRF safety algorithm; the k values can be chosen based on the findings of this research; and 

the Subjective Risk can be built up from the Trust and Subjective Risk equations of the  

Generalized Linear Mixed Model GLMM. 

Another safety approach relates to the route assessment protocol. The optimal behavior of the 

vehicle in each part of the route can be assessed upfront using the GLMM regression equations. 

The current approach of the I-AT project calculates the needed ASB operation conditions based 

on the safety of each object in interaction separately, not taking into account the change of 
behavior due to interaction between objects. The ASB safety approach is based on the required 

lateral clearance for object to operate with a certain speed, and distance that the vehicle will 

cover in case of system break before the human driver takes the vehicle control. Thus, the 

approach that the ASB follows now is to reduce speed with the reduction of the available relative 

distance (Bangarraju, Ravishankar, & Mathew, 2016; I-AT, 2019). This is a sufficient approach for 

keeping the high safety level of the vehicle itself, as evidenced by the master thesis research 
finding that the cyclist with a higher speed keeps a constant mean distance from the curb. 

However, for the interaction scenario the current approach could be changed. This research 

clearly shows that to reduce risk the time of interaction must be reduced, thereby increasing 

overtaking speed even in the shorter lateral distance scenarios increases safety of operation. 
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6.3 Scientific contribution  

 

-Assessment of the change of cyclist’s behavior and cyclist risk perception in the interaction with 

automated vehicle.  

There is limited practical evidence and research about cyclist perception of the interaction 

scenarios with automated vehicles. The master thesis research contributes to cover this scientific 

gap. The research shows the difference in perception of automated overtaking and manual 

overtaking scenarios and no clear difference in perception of automated or manual driving in 
manual mode. The research also shows changes in cyclist behavior in interaction with automated 

vehicles, which points out for AV developers the need to change the automated vehicle 

programmed behavior. Additionally, this research shows that the basic trust to automation 

changes over the time of experiment, showing that familiarity influences the trust to AVs and 

that most of participants, even from the TU Delft University, are not fully familiar with the 

concept of automated driving. It is important to mention that the methodology used for 
assessment of cyclist behavior can be used to assess interaction between any other road users.       

-Assessment of the correlation between Subjective Risk, Trust and Objective Risk and illumination 

of other influencing attributes.  

The study made a step in understanding the perception of cyclist of risk levels. The research 

shows that overall the cyclist perception of the risk in interaction scenarios matches with the 

calculated Objective Risk. However, looking more precisely there is a clear mismatch between 

the moment of the highest Objective Risk and the moment of the highest perceived risk. 

Furthermore, the reaction of cyclist on risk (increasing speed, decreasing distance to the curb) 
shows a clear misunderstanding of the processes of appearing risk. Besides investigating 

correlations between risks and trust, the research also looked at other influencing independent 

parameters. A contribution to the existing body of research is made with the quantitative 

explanations of the correlations between dependent and independent variables with the use of 

GLMM equations.   

-Implementation of the safety algorithm for the Objective Risk assessment 

The novel concept for risk assessment named PDRF was not largely verified with existing field 

experiments in the existing literature. The master thesis research is one of the few verifications 
for the PDRF, especially with respect to Kinetic Risk, which is the risk originated from the 

interaction with moving objects on the road. The thesis research clearly approves the possibility 

for this risk matrix to reflect the interaction between moving objects. Regarding static objects,  

the master thesis investigates the value of the road barrier type sensitivity factor (k) for the green 

grass and asphalt pavements. Regarding the kinetic field, the research shows that the interaction 

time is an important attribute of the interaction.  The interaction time can be included in the 

calculation of the probability of a collision, as with a longer interaction time the behavior of the 

cyclist changes to less safe.  

 

 



86 
 

6.4 Research limitations and recommendations for improvement.   
 

Data collection 

• The experiment is a controlled field experiment, the design of the experiment could affect 

the behavior of participants. To increase the credibility of the experiment, the naturalistic 

experiment should be used.   

• The ethical committee put restrictions on the experiment conditions. Only experienced 

cyclists were allowed to be invited for the experiment. In a group of experienced cyclists, 

the experience level may vary. Looking at the data analysis, we can assume that trust may 

be correlated with the experience level. Thus, for future research it might be beneficial to 

include questions verifying the cycling level of experience.  

• During the experiment data was lost. Data from some rides was not available, due to an 

equipment power loss. To avoid loss of power the car breaking must be done gently. Not 

all participants could finish all rides, due to the bad weather conditions, therefore an 

additional day of experiment can be planned in advance as a backup plan.  

• The vehicle GPS made a lateral distance accounting error due to the unfavorable 

conditions in the troposphere. The mismatch was eliminated using the local coordinates  

for calculation of PDRF.  

• The experiment vehicle was not an automated vehicle. Even though participants 

perceived the experiment as a realistic, the vehicle behavior with the human driver differs 

from the behavior of automated driving without a human inside. Also limited variations 

in the behavior of human driver is possible from ride to ride. To prevent significant 

changes in the behavior of a car, a second driver checked the overtaking speed and made 

sure the car is overtaking on the required distance.  

Data analysis 

• The Subjective Risk Value and Trust were collected one time per ride, which means that 

these measurements are discrete. It is not fully known for which point of time in a ride 

the participants reflect a certain reported value of risk and trust. For the trust parameter 

this was a minor issue, because trust represents the basic trust, while for subjective risk 

discrete nature of collected data was a disadvantage. To compare Subjective Risk with 

independent parameters, which were collected continuously, each independent 

parameter was recalculated to three discrete values: min, mean and max. The analysis 

shows that this method does not fully cover the correlation between parameters. Thus, 

future research can explore to implement standard deviation discrete parameter or to 

collect subjective risk values as a continuous data. It also worth mentioning that the self-

reported risk level was not fully explanatory, as the size of the risk scale influenced 

participants. In the pilot-experiment the scale had a step of 10% and cyclist reported risks 

of 20% and 30%, which was on the 2nd and 3rd place in the scale, while during the main 

experiment the scale had a step of 5% and participants reported risk levels of 10% and 

15% which is again on the 2nd and 3rd place in the scale. Future research can apply 

continuous data collection instead of self-reported, for example with galvanic skin 
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response device or eye-tracker devices. The master thesis research proves that the 

position on the lane reflects the subjective risk level.  

• In the literature no evidence was found for the k value of the Static Field PDRF for the 

green grass pavement, so the k value was assumed in a way that the Objective Risk was 

reduced on 10%. This assumption was rejected. It did not affect the results, because the 

relation between Objective Risk levels on the green grass side and asphalt side was 

shown, and the risk is a relative value. However, for future research the k value has to be 

corrected based on the findings of the master thesis research.     

• The data set for this analysis was not extensive. For some analyses the number of 

observations were equal to 10 which could negatively affect the predictive power of 

statistical tests. Researchers could use larger samples as they provide better 

approximation to the whole population.  

6.5 Further research 

 
Scientific perspective  

• One of the key findings of the study is the positive relation between the risk level and 

time of the interaction. However, at the high overtaking speeds, vehicle produces air 

pressure that may affect cyclist’s balance and decrease safety of interaction. This research 

focused on the accelerative overtaking in which the significant speed difference is not 

possible. Larger speed differences are relevant for flying overtaking, when the vehicle 

approaches the cyclist with a higher speed and overtake without following the object 

(Dozza et al., 2016b). Further research may focus on analyzing higher overtaking speeds.  

• The research made a first step in understanding the cyclist subjective risk. It was proven 

that a certain mismatch exists between the Subjective and Objective Risks, however the 

data collection captured only discrete values of Subjective Risk. Further research can 

include continuous values of the Subjective Risk.  

• The study points out the differences in the behavior of cyclist due to the right-hand side 

objects, the research included a curb with a green-grass and a curb with an asphalt. 

Further research can be held on other infrastructure types with the aims of investigating 

changes in user behavior and proposing k (sensitivity due to the road boundary type) 

values for the PDRF.  

• The research shows that the time of interaction is important for assessing kinetic risk. This 

finding can be further implemented in PDRF to improve the probability part.  

• Participants mentioned the size and noise characteristics of the vehicle as a second most 

influencing factor on the Subjective Risk. The methodology proposed in the master thesis 

research can be directly applied to evaluate interaction with other types of road users, 

including vehicles larger in size and with louder engines.    
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Practical perspective  

• The research outcome can be used by governments and the CBR to increase awareness 

of the cyclist and drivers about the nature of objective risk. The series of training can be 

organized in schools and driving courses to explain the mechanisms that generate risk and 

influencing factors. Potentially this educational program might decrease the number of 

accidents.   

• Automated vehicle manufacturers can use the data collected from the experiment for the 

automated vehicle learning. The GLMM regression equation may be an input to the 

algorithm used for programming the vehicle behavior and the data collected during the 

experiment may be an input for the modelling that will teach the AV when to overtake 

and which interaction scenario to choose in different driving conditions. Also, the real -

road experiment data can be used for the verification of the novel driving algorithms.  

• The research proposes a method for assessing the risk of interaction between cyclist and 

automated vehicle. The methodological steps can be further applied to assess the risk of 

interaction between other road users. Especially this method will be applicable to the 

interaction between pedestrians and automated vehicle.  
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Abstract 

The operation of automated vehicles in shared areas requires attention with respect to the 

interaction between AVs and vulnerable road users, including cyclists. Currently, the 

programmed interaction behavior of AVs is based on the knowledge of the interaction between 

conventional vehicles and cyclists. However, cyclists may react differently to conventional and 

automated vehicles. Therefore, this research applies field test experiment to investigate the risks 
resulting from the interaction between cyclist and an AV. Four possible interaction scenarios 

were investigated in within-subject design with overtaking speed, overtaking distance and right-

hand side objects as attributes. Objective Risk is assessed using the Probabilistic Driving Risk Field 

and Subjective Risk is assessed based on the self-reported values, cyclist behavior and trust. 

Results show that in general following has less risk than overtaking. Automated following and 

manual following have the same level of Objective and Subjective risks, while the automated 

overtaking has higher risk than manual overtaking. However, results also show that a larger 

interaction time leads to an increase in cycling speed and decrease in the distance to the curb.  

Furthermore, in the following maneuver the interaction time is higher than in the overtaking 

maneuver. Besides high time of interaction, closer overtaking distance and green grass on the 

right-hand side affect the increase in subjective and objective risks.  

Keyword: •Automated Vehicle •Vulnerable Road Users •Subjective Risk •Objective Risk 

Introduction 

The operation of automated vehicles (AV) on shared roads means a constant interaction with 

road users. The interaction with the vehicle drivers is possible for automated vehicles, as vehicle 

drivers can share their intentions explicitly with turning signals and backup lights. Non-motorized 

modes of transport, namely cyclists and pedestrians, mostly use implicit communication 

channels such as eyes sign direction (Lagstrom & Lundgren, 2015), which is not yet possible for 

recognition for automated vehicles. To prevent misunderstanding in communication between 

AVs and Vulnerable Road Users (VRU), AVs are currently programmed in a way to minimize their 

interactions with vulnerable road users. In interaction with cyclists, one of the possible 

programmed behavior for the AV is to follow the cyclist at a rider speed (I-AT, 2019). Such a 

behavioral approach is not efficient in terms of traffic operation performance. In addition, cyclists 

may perceive being followed by a vehicle as dangerous.  
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Previous studies investigated ways for safe communication between AVs and non-motorized 

road users focuses on the interaction with pedestrians. Lagstrom & Lundgren (2015), Rodriguez 

Palmeiro et al. (2017)  Böckle et al., 2017; Habibovic et al., 2018; Merat et al., 2017 show that 

pedestrians generally reported feeling less safe and behave more cautious ly when interacting 

with AVs. There are very few studies focusing on the interactions between cyclists  and AVs. 

Hagenzieker et al. (2018) conducted a questionnaire study on the behavior of cyclist. Participants 

were asked to study photos of automated vehicle with different signs. The purpose of the 
research was to investigate if the cyclist could correctly interpret when automated vehicles 

noticed them and whether an automated vehicle would stop for them. Researches show that the 

cyclist interacted more confidently with conventional vehicles than with automated ones 

(Hagenzieker et al., 2018). Even though pedestrians and cyclists are both non-motorized modes  

of transport and may have similarities in their behavior, cyclists still have special behavioral 

features.  

Minimizing the risk of interaction between AVs and Cyclist requires an investigation of the 

changes of the Subjective and Objective risks due to the vehicle maneuvers and driving modes. 

It is also necessary to investigate the changes in the behavior of cyclist according to time of 

interaction and interaction with conventional or automated vehicle. Therefore, the research 

question can be formulated as follows: Which interaction scenario minimizes Subjective and 

Objective Risks appearing when an automated vehicle approaches a cyclist from behind? 

In the research, passing interaction scenarios were considered, that refer to the situation when 

a cyclist and a vehicle are moving in the same direction. In case the automated vehicle is 
approaching the cyclist from behind, two sub-scenarios emerge. The first is following, i.e. when 

the automated vehicle approaches the cyclist from behind and moves with the cyclist speed, and 

the second is overtaking, i.e. when the automated vehicle passes the cyclist. The literature review 

highlights a gap in the knowledge about cyclist reaction on the maneuvers of the automated 

vehicle. In order to consider changes in the cyclist reactions on manual and automated operation 

modes, this research includes four scenarios: automated following, automated overtaking, 

manual following and manual overtaking.  

On the risk of interaction besides the exact vehicle operation scenario also influence interaction 

attributes.  

For the attributes of the vulnerable road users and automated vehicle interaction, research were 

mainly conducted on the pedestrian decision to cooperate with AVs. With respect to the decision 

to cross the road in front of automated vehicle, the highest influencing factors are speed of the 

vehicle and distance to the AV (Oxley, Ihsen, Fildes, Charlton, & Day, 2005; Rodríguez Palmeiro 

et al., 2018; Yannis, Papadimitriou, & Theofilatos, 2013). Other factors influencing on the 

pedestrian decision to cross in front of an AV are driver inattentiveness (Rodríguez Palmeiro et 

al. (2018)), the vehicle deceleration level, familiarity of environment for pedestrian, weather 

conditions, traffic volume level  (Lagstrom & Lundgren, 2015), the size of the automated vehicle, 

the gender of the pedestrians and whether pedestrian crossing alone or in a group of people 

(Yannis et al., 2013).  

The attributes corresponding to the overtaking maneuver were mainly assessed from the side of 

the vehicle drivers. Research from Weddell (2012) shows that the lateral distance of passing 

depends on the speed of the overtaking vehicle, the presence of an oncoming traffic, the size of 



95 
 

the overtaking vehicle, the distance of the cyclist to the curb and the width of the bicycle lane. 

The literature shows a correlation between the speed of an overtaking vehicle and the distance 

that drivers keep to the cyclist.  With a speed of 40 km/h drivers accept overtakings with passing 

distance of 1-1,5 m (Parkin & Meyers (2010) of Parkin & Schackel (2014)), while for the speed of 

60 km/h and higher the passing distance increase to the 2-2,5 m (Debnath, Haworth, Schramm, 

Heesch, & Somoray (2018), Dozza et al., (2016)). Besides the characteristics of the overtaking 

maneuver, the gender of a cyclist affects the distance of overtaking. Drivers of conventional cars 
prefer to keep more distance from female cyclists than from a male cyclists (Chuang, Hsu, Lai, 

Doong, & Jeng, 2013; Walker, 2007). Chuang et al. (2013) found that a longer passing time 

influence on the observed increase in wheel angle and speed of cyclist. 

As a result of literature review following attributes were chosen for the further analysis: 
overtaking lateral distance, overtaking vehicle speed, right hand side objects.  

Research methodology 

The data collection method of the research is a field experiment. Using the data collected during 

the experiment the Objective and Perceived risks were calculated. The objective risk was 

captured with the Probabilistic Driving Risk Field safety algorithm. Perceived risk was assessed 

using subjective risk, trust and cyclist behavior, where cyclist behavior is represented by the 
cyclist speed and cyclist distance to the curb. Next, to verify how the target variables related to 

the attributes, statistical analysis was conducted, including preliminary analysis, correlation 

analysis, regression analysis, graphs analysis.  

Experiment setup and data collection 

The experiment consists of two parts – a pilot experiment and a main experiment. Results of the 
pilot experiment provide improvements for the design of the main experiment. The main 

Experiment took 3 days, included 25 participants (13 males and 12 females) from the same age 
group (mean=25,4; std.=1,3), each participant did 10 rides. Four interaction scenarios were 
tested: automated following, automated overtaking, manual following and manual overtaking. 
Each scenario contains 3 within-subject variables (2 levels each): overtaking speed, overtaking 
distance, right hand side objects.  

During the experiment equipped bicycle and equipped vehicle were used. The bicycle was 
equipped with 3 lidars, 2 cameras and GPS, and accelerometer sensors. The positioning of the 

sensors can be seen in the figure below. The experiment vehicle was equipped with GPS, 

accelerometer and camera. To collect a sufficient number of measurements in an overtaking 
maneuver, Lidar and GPS sensors collect 5 measurements in 1 second. The experiment vehicle 

was manually driven; however situations were pre-specified for participants when vehicle is in 
automated mode and when vehicle is in manual mode.  
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Figure 54: Sensors placement at bicycle 

The data collected during the experiment are summarized in the table below. Using the 

questionnaire self-reported Trust and self-reported Subjective Risk were collected. Using 

sensors, the position (lateral and longitudinal) and the speed of the vehicle and cyclists were 

obtained. These measurements were used as an input to calculate objective risk. Additionally, 

the distance to the curb were obtained for the cyclist.  

Table 27: Collected data 

 Trust 
Level 

Subjective 
Risk Level  

Objective 
Risk 
Level 

Distance 
to the 
Curb 

Speed 

 % Joules Meters Meter/Second 

Number of 
observations 

Overall 242 242 80 222 100 
Per scenario: 

Automated following 
Automated overtaking 

Manual following 
Manual Overtaking 

60 60 20 55 25 

Per scenario with a 
certain attribute of 

overtaking 
speed/distance 

30 30 10 27 12 

*Number of participants (25 participants did 10 rides; each participant did 4 scenarios)  

 

Objective risk assessment 

The objective Risk was assessed with the Probabilistic Driving Risk Field (PDRF) safety approach. 

The PDRF is more sophisticated method compared to other Surrogate Measures of Safety 

(SMoS). This is because the PDRF has severity and probability components, which better reflect 

different  situations (Bhusari, 2018) . For instance, some interactions with high severity 

magnitude do not result in an accident and interactions resulting in accidents do not always have 

the same magnitude and effects. Secondly, the PDRF can consider simultaneously the risk of 

collision with static and kinetic objects, which enhances the reality of risk modeling for 

interactions with different objects. This approach also allows to combine both lateral and 

longitudinal dimension risks simultaneously (Farah, Bhusari, Gent, Freddy, & Morsink, 2019).  

The Probabilistic Driving Risk Field (PDRF) safety approach models the risk situation as a threat 

that an object S experiences from object C, designed as an influence field. The PDRF include 
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Potential field strength and Kinetic field strength. The Potential Field Strength is associated with 

the threat from the static road objects. The kinetic risk field strength is associated with moving 

road objects (Mullakkal Babu, Wang, Arem, & Happee, 2017).  The Total Risk combines risks 

posed by multiple road objects based on the superposition property of fields (Mullakkal Babu et 

al., 2017). 

The Potential Risk can be calculated using the following formula:  

𝑅𝑏,𝑠 = 0.5𝑘𝑀(𝑉𝑠,𝑏)2 ∙ 𝑚𝑎𝑥(𝑒
−|𝑟𝑠,𝑏 |

𝐷 , 0.001) 

 

The crash severity is represented by the term 0.5𝑘𝑀(𝑉𝑠,𝑏)2. The severity is the magnitude of 

the crash energy that appears in the event of an accident between objects S and B. The crash 

probability is defined by the term 𝑒
−|𝑟𝑠,𝑏|

𝐷  which ranges between 0 and 1. 

Where: s – is a dynamic object experiencing influence from the static object.  

b- is a static object influencing the dynamic object s. 

k- is the parameter of the rigidity of the road boundary object with range from 0 till 1, where k=1 
entail that the static object has infinite mass and is not deformed in case of an accident. For the 

side of the road with the curb and an asphalt pedestrian path was used k=0,61 Mullakkal Babu 

et al. (2017) and for the side of the road with the curb and the green grass side were used k=0,55.  

M- is the mass of the dynamic object s. 

𝑉𝑠,𝑏  – is the velocity of the dynamic object S along 𝑟𝑠,𝑏  

𝑟𝑠,𝑏  – is the vector of the shortest distance between dynamic object s and static object b 

D – is a steepness of descent of the potential risk field. For the master thesis research: 𝐷 =
𝑊

14
, 

where W is the width of the object s. The collision probability reaches a value of 0.001 in the 

center of the lane.  
 

Kinetic Risk is represented by the following formula:   

𝑅𝑛,𝑠 = 0.5𝑀𝑠𝛽2|∆𝑉𝑠,𝑛
2| ∙ 𝑝(𝑛, 𝑠) 

Where S – is a dynamic object that is experiencing risk from another dynamic object. 

n- is a dynamic object that influence on the considering object S.  

𝑀𝑠 – is a mass of the dynamic object.  

𝛽 =
𝑀𝑛

𝑀𝑠+𝑀𝑛
 represents a mass ratio of the interacting objects.  

∆𝑉𝑠,𝑛 = 𝑉𝑠 − 𝑉𝑛 denotes the counteracting velocity between dynamic objects S and n.  

p(n,s) - the probability of a collision. The collision appears if two objects come at the same place 

at the same time. Following that, the collision probability is characterized by a spatial overlap. 

The crash probability changes in a range from 0 to 1.  

 

The collision probability likelihood is related to the probability of the object n acceleration. We 

know the trajectory of s and predict the trajectory of n.  As the trajectory of n is unknown, the 

acceleration is treated as a random variable. The variability of acceleration is represented as a 

normal distribution and is equal to the relative likelihood of occurrence. The collision likelihood 

can be found: 
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𝑝𝐿(𝑛, 𝑠|𝜏)  =  𝑁(
∆𝑋 − ∆𝑉𝑥 ∙ 𝜏

0.5 ∙ 𝜏 2
|𝜇𝑥 , 𝜎𝑥 ) ∙ 𝑁(

∆𝑌 − ∆𝑉𝑦 ∙ 𝜏

0.5 ∙ 𝜏 2
|𝜇𝑦 , 𝜎𝑦) 

Where: 

N- is probability density function 

𝜇 – is the mean of the distribution 

𝜎- is the standard deviation of the distribution 

∆𝑋 = 𝑋𝑠 − 𝑋𝑛 ; ∆𝑌 = 𝑌𝑠 − 𝑌𝑛 – relative spacing in longitudinal and lateral directions  

∆𝑉𝑥 = 𝑉𝑋 ,𝑠 − 𝑉𝑋,𝑛 ; ∆𝑉𝑦 = 𝑉𝑌,𝑠 − 𝑉𝑌,𝑛 – relative velocity in longitudinal and lateral directions  

The reachable state for interacting objects can be represented as quadrilateral polygon. The zone 

O of potential collision zone is defined using the geometry of two interacting static objects. The 

overlapping region O also has the shape of a polygon, as shown on the figure below. The region 

O is converted to acceleration domain by the following formula: 

𝐴𝑥
𝑐 =

(𝑥 𝑐 − 𝑥𝑛(0)) − 𝑉𝑥,𝑛(0) ∙ 𝜏

0.5 ∙ 𝜏 2
 

𝐴𝑦
𝑐 =

(𝑦𝑐 − 𝑦𝑛(0)) − 𝑉𝑦,𝑛(0) ∙ 𝜏

0.5 ∙ 𝜏 2
 

Where 𝑥 𝑐 ,𝑦𝑐  denotes the corner positions of overlapping region O.  

 

Figure 55: Geometric representation of polygons (Mul lakkal Babu et al., 2017). 

After the acceleration domain of the overlapping region O and the collision likelihood are found, 
the collision probability can be obtained by integrating the joint acceleration distribution over 

A0:  𝑝(𝑛, 𝑠|𝜏) = ∬ (𝑁(𝐴𝑥 |𝜇𝑥,𝐴0
𝜎𝑥 ) ∙  𝑁(𝐴𝑦|𝜇𝑦,, 𝜎𝑦) ∙ 𝑑𝐴𝑥 ∙ 𝑑𝐴𝑦) 

Subjective risk assessment 

The interaction process demands reliance on the system. Failures appears if users misuse 
automation by over-trusting the system, or if users disuse automation system by under-trusting 

it (Hoff & Bashir, 2015). Lee & See, (2004) reported that people tend to over-trust novel 

automated systems. Trust is not directly observable, which means that people can still cooperate 

with an automated system even without trusting it (Körber, 2019; Mayer, Davis, & Schoorman 

D., 1995). People who trust the system and people who do not trust the system can behave 

similarly. Data from sensors that collect skin response and heart rate cannot give useful insights 
on trust. As the level of risk in the field experiment is similar to daily stress (Rodriguez Palmeiro 

et al., 2017), only self-reported facts can reflect the real levels of trust and risk. Therefore, the 

questionnaires were applied to evaluate confidence of participants in response to automated 

vehicles. The trust was assessed using the Körber (2019) questionnaire on trust to technologies, 

which include 6 parameters: reliability; predictability; familiarity; intention of developers; 
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propensity to trust and trust in automation. Besides, trust also the behavior of cyclist was 

examined. Cyclist behavior is represented by the cyclist speed and cyclist distance to the curb. 

Statistical analysis 

The statistical analysis includes the following steps: descriptive analysis, correlation analysis, 

regression analysis, objective risk profile analysis. The statistical analysis shows the effects that 

the interaction attributes has on the risk levels.  

As research input data has a hierarchical design and a nonparametric nature, the Generalized 

Linear Mixed Model (GLMM) (Dickey, 2010) was chosen for the data analysis. In hierarchical 

design, the data is repeatedly collected from the same individual and thus the observations for 

the same participant are correlated (West, 2009). The GLMM is a regression model that expresses 

the relationship of the target variable from the independent variables and works with the non-

parametric target variable. The independent variables are described by fixed and random effect 

groups. The fixed effects stand for the parameters that are constant for the participant, as fixed 

parameters include all possible levels of parameter in the study design. For example, gender is a 

fixed effect (Starkweather, 2005; West, 2009). Random parameters have by-subject and by-item 

variation. By-subject variation is originated from the participants basic features of character and 
by-item variation accounts for the differences in the conditions of each levels of each 

independent variable (Winter, n.d.). To account for variation per participant the MLM assumes 

random intercepts for each participant.  The equation of the Mixed Linear Model can be written 

as follows (Scharfenberger, 2013):  𝑆 = (𝛽0 ± 𝑎𝑖) + 𝛽𝑋𝑖𝑗 ± 𝑏𝑗       

Table 28: Variables of the regression equation of the GLMM 

Variables Description 

i Subject 

j Plot 

S Dependent Variable Value 

𝛽0 The intercept estimates mean value 

𝑎𝑖  The variability between participants 

𝛽 Fixed effects slope (rate of change), representing the difference to go down (or 

up) on the slope from one value of parameter to another (Winter, n.d.) 

𝑋𝑖𝑗 Matrix of fixed effects 

𝑏𝑗 Variability within one participant 

 

Results 

In this section we discuss the results of the experiment, analyzed using descriptive analysis, 
correlation analysis, generalized linear mixed model and graphs.  

Preliminary statistical analysis 

Male participants show higher trust. The level of subjective risk is the same for both genders, 

however data on subjective risk for men is more consistent and does not exceed the median 
value. Male participants also have a higher level of objective risk, which might be connected with 

higher trust and lower subjective risk level. As male participants perceive interactions to be less 
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risky, they tend to be less cautious and ride closer to the car at a higher speed. Besides gender of 

participants, also the weather conditions influenced target parameters. The day with the +20 and 

cloudy sky had trust levels slightly higher and the subjective risk lower than other days.  

The experiment includes 4 interaction scenarios: automated following, automated overtaking, 

manual following and manual overtaking. Each of these scenarios  was analyzed in terms of trust 
levels, subjective and objective risk levels, speed of cyclists and distance of cyclist to the curb. 

The boxplot analysis eliminates the interactions between parameters interesting for further 

analysis and later were conducted statistical tests and applied post-hoc Bonferroni correction. 

The following results were obtained.   

The subjective risk level of the overtaking maneuver is higher than the subjective risk level of the 

following maneuver (Wilcoxon test p=0,001 a=0,01. The objective risk level of the overtaking 

maneuver is higher than the objective risk level of the following maneuver. (Wilcoxon test 

p=0,0014 a=0,0125) For driving in an automated mode, there is statistical evidence that the 

subjective risk for the overtaking with 3,5 m is lower than the subjective risk for overtaking with 

the 1,5 m. (Wilcoxon test, p=0,03 a=0,0125) For driving in manual mode, there is evidence that 
the subjective risk for the overtaking with 3,5 m is lower than the subjective risk for overtaking 

with the 1,5 m. (T-test, p=0,003 a=0,0125)  

There is statistically significant evidence that the mean distance to the curb for the overtaking 

with 1,5 m is lower than the mean distance to the curb when overtaking with 3,5 m. (Wilcoxon 

test p=0,009 a=0,0125) In the scenarios with the same relative distance while overtaking and 

while following, the Subjective risk and Trust have the same value for both maneuvers. While the 

objective risk is higher for the overtaking than for the following (Wilcoxon p=0,001 a=0,0125) 

In the experiment were two right hand side objects scenarios. The Distance to the Curb of cyclist 
riding on the side with the curb (asphalt) is higher than the Distance to the Curb of the cyclist 
cycling on the side of the green grass. (Wilcoxon p=0,000 a=0,025). The mean values of the Cyclist 
Speed are higher in the case of the grass on the RHS than in the case of the Curb on the RHS. (The 
Wilcoxon test p=0,000 a=0,025). The relative distance on the side of curb is lower than the 
relative distance on the side of grass. (the Wilcoxon p=0,025 a=0,025). The trust level for driving 
with the asphalt on the RHS is higher than the trust level for cycling with the grass on the RHS.  
(Wilcoxon test p=0,000 a=0,025) 

Correlation analysis 

The next step of analysis was related to the correlation analysis. Two correlation analysis for non-

parametric data sets (Spearman correlation) were conducted. The first data set corresponds to 
the Objective Risk analysis with the continuous data set. The second data set corresponds to the 
Subjective risk analysis with the discrete data set.  

There is a statistically significant negative association between subjective risk level and vehicle 

overtaking speed (p=0,005, rs= -0,268), which indicates that an increase of overtaking distance is 

associated to an increase in subjective risk levels. However, after application of Bonferroni 

correction (corrected a=0,003) the null hypothesis could not be rejected. The strong negative 

correlation (p=0,000 rs=-0,428 a=0,001) is between the trust Level and the subjective risk level. 

Furthermore, there is strong positive correlation between trust level and objective risk (p=0,000 

rs=+0,487 a=0,001) for mean and max objective risk, and a mean negative correlation (p=0,000 

rs=-0,324 a=0,001) between the trust and max distance to the curb.  
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The Spearman Correlation Matrix for the Objective Risk analysis shows a strong negative 

correlation between the Objective Risk and the Relative Distance (p=0,000, rs=-0,778 a=0,005) 

and a strong positive correlation observed between the Relative Distance and the Relative Speed 

(p=0,000, rs=0,574 a=0,005). The mean negative correlation is between the relative speed and 

Objective Risk (p=0,000, rs=-0,28 a=0,005) and between the Distance to the Curb and Objective 

Risk (p=0,000, rs=-0,11 a=0,005). A weak negative correlation appears between the Relative 

Distance and the Distance to the Curb (p=0,001, rs=-0,077 a=0,005) and between the Relative 
Speed and the Distance to the Curb (p=0,002, rs=-0,068 a=0,005).  

Generalized Linear Mixed Model 

To get insights on the relationship between non-parametric target parameters of trust, subjective 
risk, objective risk and independent variables, the Generalized Linear Mixed Model (GLMM) was 
applied.  

For the GLMM model for the Subjective Risk Level dependency on the independent variables, 

only the random intercept was significant (Akaike Corrected Criterion = 604,688; 

Bayesian=628,634). According to this model the trust is the strongest individual predictor in the 

model. The regression equation for this model is as follows: 
 𝑆 = 39,942 −  6,609𝑦 + 5,521𝑥 + 5,930𝑧  

Where: Mean of the Subjective Risk = 39,942 for the participant with trust=0 and interaction 

scenario with no vehicle.  

 
Figure 56: Fixed effects of the GLMM model for the Subjective Risk 

For the GLMM model for the Trust Level dependency on the independent variables , the random 

effect of the Subjective Risk Level was significant. However, the best model fit got the model with 
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the random intercept (Akaike Corrected Criterion =115,354; Bayesian=139,3). According to this 

model the strongest individual predictor is a lateral mean distance to the curb. The regression 

equation for this model has a following form: 𝑆 =  3,520 + 0,628𝑥 + 0,478𝑦 + 0,629𝑧 +

0,536𝑔 − 0,024ℎ + 0,004𝑘 − 0,792𝑚 + 0,131𝑛 ± 0,093 

Where, 3,520 is a mean value of the Trust Level for the participant experiencing the subjective 

risk level of 0, max objective risk of 0, riding with the distance to the curb 0 cm and max cyclist 

speed 0 on the interaction scenario with no vehicle. In this model was fins statistically significant 

(p=0,05) variability within rides of same participant equals to the 0,093.  

 

 

Figure 57: Fixed effects of the GLMM model for the trust 

The GLMM model for the Objective Risk dependency on the independent variables  has random 

intercept as a random parameter (Akaike Corrected = 14,433, Bayesian = 15,512). For this model 

the strongest individual predictor is the interaction scenario with a manually following vehicle. 

The regression equation for this model is as follows: 𝑆 = 10,085 − 4,550𝑥 + 0,636𝑦 −
4,870𝑧 − 1ℎ − 0,486𝑔 − 0,426𝑘 

Where, 10,085 Joules of Objective Risk corresponds to the mean value of the Objective Risk for 

the participant experiencing the interaction with manually overtaking vehicle on the side of the 

road with green grass and cycling with a speed of 0 m/s and relative distance of 0 m.  
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Figure 58: Fixed effects for the GLMM model for the objective risk 

Graphical analysis of parameter changes along the route 

 
The plot shows that overtaking maneuvers have higher values of objective risk than the following 

maneuver. However, the duration of the interaction time is higher in the case of the following 

maneuvers. Both interaction scenarios have higher values at the beginning of the route, when 

participants are getting used to the bicycle and did not yet stabilized their movement. The 

overtaking maneuvers have Objective Risk bursts at the phase of approaching to overtake and 

coming back to the lane. The minimal value part of the overtaking maneuver refers to the 

reduced probability of collision, given that objects moving parallel to each other have a low 

probability of collision. Automated and Manual driving modes have the same levels of objective 

risk for both vehicle maneuvers.  

 

Figure 59: The Objective Risk along the route 
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In the overtakings, during the passing stage, cyclists start cycling closer to the curb, slightly 

increasing speed, then come back to the original distance and speed after the vehicle returns to 

the lane in front of the cyclist. The Distance to the Curb has slightly lower values for the 

Automated driving mode than for the Manual driving mode. The speed has higher values for the 

manual overtaking scenarios in comparison to the automated overtaking scenarios , which can be 

explained as the trust level for the manual driving is higher than for automated driving and thus  

the basic speed was always higher for manual driving that for automated driving. 

    

Figure 60: The Objective Risk, the Distance to the Curb and The Cyclist Speed along the route  

In general, cyclists reach the highest speed in the middle part of the lane. When the cyclist goes 

closer to the curb or closer to the vehicle lane the speed drops. Overall, the speed level has a 

slight change with time, while the position of the cyclist on a bicycle lane (represented by the 

distance to the curb) varies significantly. This can be explained by the relation between speed 
and balance, which hampers speed variation. 

Participants from the higher trust group have higher cycling speed during the whole time of the 

experiment and keep their position on the lane more coherent. These two characteristics are 

interrelated, as to keep a high speed a certain balance have to be reached and with variation of 

the position on a lane the balance can be lost. The mean trust group and low trust group cyclists 

have a similar speed range. However, the low trust group have a big variation in its position on 

the lane. 

Conclusions 

This section gives an overview of the conclusions reached during the research and a future 

research that can be conducted based on the study outcomes.  

The research aimed to investigate changes in the behavior of cyclist due to interaction with the 

automated vehicles and recommend on the interaction scenarios resulting in the minimal 

subjective and objective risks. There is a clear evidence that the overtaking has a higher 

Subjective and Objective risk levels than the following. However, the time of the interaction has 

high impact on the cyclist behavior. Towards the end of the following scenarios, the cyclist 

increases the speed or cyclist starts looking behind to see the following vehicle, leading to losing 
balance and approaching the curb. In the overtaking scenarios, during the passing stage the 

cyclist reduces distance to the curb and increases speed, which results in a higher Objective Risk. 

The interaction time is much lower for the overtakings than for followings. Thus, we can conclude 

that for short distances the following is a safer option. Besides exact vehicle maneuver, also the 

operation modes have an influence on the risk levels. For the following scenario there is no clear 
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difference between operation modes. For the overtaking scenarios, the automated mode has 

clearly higher risks levels than the manual driving.  

The risk of the interaction scenario is also influenced by the available relative distance. The higher 

the distance the lower the risk. For the wide street of 3 meters the overtaking scenarios have the 

same subjective risk as the following option. Besides overtaking with a higher distance another 
recommendation could be to overtake with a high speed (in the research speeds below 40 km/h 

were assessed) to reduce the interaction time. Information about the right-hand side objects 

should be considered for deciding over the vehicle operation parameter. The streets with the 

green grass on their sides are perceived by cyclist as more dangerous.  

Despite the promising results, this study has some limitations that could be improved in future 

research. The experiment is a controlled field experiment, conducted with 25 participants from 

the same age group. Researchers could use larger samples as they provide better approximation 

to the whole population and could use naturalistic experiment to eliminate changes in the 

behavior of participants due to the design of experiment.  The experiment vehicle was not an 

automated vehicle. Even though participants perceived the experiment as realistic, the vehicle 
behavior with the human driver differs from the behavior of automated driving. Another 

limitation comes from the discrete nature of the Subjective Risk. Values were collected one time 

per ride and we do not know exactly which point of time in a ride reflects such reported value of 

risk.  

Besides future research related to the limitation of the research, the study outcomes also gives 

input for the vehicle producers to improve the behavior of automated vehicle. The government 

or the CBR can use this study to increase awareness of the cyclist and drivers about the nature 

of Objective Risk. 
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Appendix A: Experiment Setup 
 

 
Figure 61: Consent Form 
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Figure 62: Introduction to experiment 
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Figure 63: Questionnaire 1 

 
Figure 64: Questionnaire 2 
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Figure 65: Questionnaire 3 
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Figure 66: Equipped bicycle 

 

Figure 67: Experiment location 
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Appendix B: Pilot-Experiment Statistical Analysis 
 

Attributes influencing the risk level (self-reported by participants) 

 

Figure 68: Attributes influencing the risk level (self-reported by participants) 

 

Figure 69: Attributes influencing the risk level (pre-specified by researcher) 
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Figure 70: Dependence of the trust level in the gender of participants  

 

 
Figure 71: Dependence of the Subjective Risk Level, when Overtaking, on the Ride Number and Operation Mode of the Vehicle.  

 
Figure 72: Dependence of the Subjective Risk Level, when Following, on the Ride Number. 
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Figure 73: Dependence of the Subjective Risk Level, when Overtaking, on the Ride Number. 

 

Appendix C: Main Experiment Statistical Analysis 
 

Figure 74: Boxplot analysis of gender attributes 
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Figure 75: Boxplot analysis of the weather condition attributes 

 
Figure 76: Dependence of the Objective Risk on Overtaking Speed and Overtaking Distance 

 
Figure 77: Dependence of the Cyclist Speed on Overtaking Speed and Overtaking Distance 
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Figure 78: Friedman tests for analysis of participants learning 

 
Figure 79: Spearman Correlation Matrix for the discrete data 
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Figure 80: Spearman Correlation Matrix for the discrete data 

 

Generalized Linear Mixed Model 
 

Figure 81: GLMM for the subjective risk 

 

All random parameters                                           No random parameters   
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Random Intercept 

 

All random parameters                                           No random parameters  

 

Random intercept 
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Figure 82: Random intercept variation per ride and per participant 

 
Figure 83: GLMM for the Subjective Risk Level of overtaking scenarios 
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             All random effects included                   Random parameter: mean distance to curb 

 
Random Intercept                                                    No random effect 

 

 
All random effects                                        Random – mean distance to curb 
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Random intercept                                          No random effect 
 

 

 
Figure 84: GLMM with random intercept 
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Figure 85: GLMM for the objective risk 

 
All random                                                                            No random 

 

 
Random intercept 

 
All random variables                                       No random variables 
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Random intercept 

 

 
Figure 86: Random intercept variance per participant 

 

Figure 87: GLMM for trust 

 
Random intercept                                                   All random parameters  
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Subjective Risk as a random parameter 

 
Random intercept                                                              All random parameters  

 
Subjective risk as a random effect 

 
Figure 88: GLMM with a random intercept 



126 
 

 

 
 

 
Figure 89:The random parameter table for the GLMM with all random parameters included 
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Figure 90: GLMM for trust for the overtakings 
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Figure 91: Speed, relative speed along the route for automated following 

 

Figure 92: Speed, relative speed along the route for manual following 

 

Figure 93: Speed, relative speed along the route for automated overtaking 
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Figure 94: Speed, Relative speed along the route for manual overtaking 

 

Figure 95: Speed along the route for followings 

 

Figure 96: Speed along the route for overtakings 
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Figure 97: Relative distance along the route 

 

Figure 98: Objective risk, relative speed along the route for automated following 

 

Figure 99: Objective risk, relative speed along the route for manual following 
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Figure 100: Objective risk, relative speed along the route for automated overtaking 

 

Figure 101: Objective risk, relative speed along the route for manual overtaking 


