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Abstract

The operation of automated vehicles in shared areas requires attention with respect to the
interaction between AVs and vulnerable road users, including cyclists. Currently, the
programmed interaction behavior of AVs is based on the knowledge of the interaction between
conventional vehicles and cyclists. However, cyclists may react differently to conventional and
automated vehicles. Therefore, this research applies field test experiment to investigate the risks
resulting from the interaction between cyclist and an AV. Four possible interaction scenarios
were investigated in within-subject design with overtaking speed, overtaking distance and right-
hand side objects as attributes. Objective Riskis assessed using the Probabilistic Driving Risk Field
and Subjective Risk is assessed based on the self-reported values, cyclist behavior and trust.
Results show that in general following has less risk than overtaking. Automated following and
manual following have the same level of Objective and Subjective risks, while the automated
overtaking has higher risks than manual overtaking. However, results also show that a larger
interaction time leads to an increase in cycling speed and decrease in the distance to the curb.
Furthermore, in the following maneuver the interaction time is higher than in the overtaking
maneuver. Besides high time of interaction, closer overtaking distance and green grass on the
right-hand side affect the increase in subjective and objective risks.

Keyword: <Automated Vehicle «Vulnerable Road Users «Subjective Risk «Objective Risk
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1 Introduction

1.1 Background and motivation

The lastdecades have shown a stable growth of the amount of sold cars in the transport industry.
In addition to the environmental issues associated with emissions of petrol cars, the increased
number of cars in use causes traffic congestion and traffic accidents. The U.S. Department of
Transportation reported that in 2017 a total of 53 million motor vehicles were involved in traffic
accidents and these crashes resulted in 37 million deaths (Kahn & Gotschall, 2015). For 26% of
crashes the major influencing factor was speed and other contributing main factors are alcohol
and lack of use of safety belt. These three contributing factors are related to drivers’ behavior
(Kahn & Gotschall, 2015). Automated Vehicles (AVs) are a potential solution to increase traffic
safety. AVs are designed to replace human drivers in some (or all) of the driving tasks. The Society
of Automotive Engineers (SAE, 2016) defined six levels of automation. Depending on the level of
automation, the vehicle controls some of the driving tasks, suchas the driving speed (longitudinal
dimension) or the lane positioning (lateral dimension), or all of the driving tasks — i.e. the
automated system can perform the whole driving process without any human involvement
(GHSA, 2018).

On the road, road users are constantly in the process of interaction. The interaction process
between two human drivers would include both explicit and implicit communication channels.
Vehicle drivers can share their intentions explicitly with turning signals and backup lights. This
kind of interaction is possible as well for automated system. Drivers can also share intention
implicitly with the glance direction and positionin lane change. This kind of interaction, however,
is currently not possible to be processed by the automated vehicle. Non-motorized modes of
transport, namely cyclists and pedestrians, mostly use implicit communication channels when
interacting with other road users. Human vehicle drivers mostly use gestures and eye contact to
show non-motorized road users their intentions (Lagstrom & Lundgren, 2015). The investigation
on the interaction process between AVs and VRUs enables to conclude on the best interaction
strategy. Additional importance of the research comes from the fact that VRU user group are the
least protected. To prevent misunderstanding in communication between AVs and VRUs, AV’s
are currently programmed in a way to minimize their interactions with vulnerable road users. In
interaction with pedestrians, an AV is programmed to stop, which corresponds to the behavior
of the human driver. In interaction with the cyclist, one of the possible programmed behavior for
the AV is to follow the bicycles at rider speed (I-AT, 2019). Such a behavioral approach is not
efficient in terms of traffic operation performance. In addition, cyclists may perceive being
followed by a vehicle as dangerous.

To design a reliable communication process between AVs and vulnerable road users (VRUs), itis
necessary to investigate how pedestrians and cyclists estimate risk level caused by the AVs.
Previous studies investigated ways for safe communication between AVs and non-motorized
road users, especially pedestrians (Bockle, Brenden, Klingegard, Habibovic, & Bout, 2017,
Lagstrom & Lundgren, 2015; Merat, Madigan, & Nordhoff, 2017). There are very few studies
focusing on the interactions between cyclists and AVs. One study used a photo experiment to
study the interactions between AVs and cyclists, however the results of the research were not
statistically significant (Hagenzieker et al., 2018). Even though pedestrians and cyclists are both
non-motorized modes of transport and may have similarities in their behavior, cyclists still have
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specific behavioral features. It is important to investigate how cyclists react on different
automated vehicles actions and which AV behaviors result in the highest safety of interactions.

1.2 Scientific relevance and research gap

Transport safety is influenced by technical and human factors. Automated vehicles can solve
safety issues related to the speeding. However, it remains a challenge to maintain a direct
communication between automated vehicles and other road users. At an early stage of
development of vehicle automation, the interaction process was investigated from the
perspective of an automated vehicle. Studies on the processes of the automated vehicle
detection and reaction to other road users were of great interest. Researchers also have shown
interest in user reactions to automated vehicle on motorways. In recent years, automated
vehicles have appeared on shared roads. Currently, research is mainly conducted on the
interaction of pedestrians and AVs.

Lagstrom & Lundgren (2015) show that pedestrians feel more insecure when interacting with AV
if they can’t fully interpret AV behavior. In such situations, pedestrians tend to be willing to wait
until the vehicle stops or until they are sure which actions the AV is taking. Rodriguez Palmeiro
et al. (2017) shows that pedestrians reported generally feeling less safe and behave more
cautious when interacting with AVs. The same result was reported by Bockle et al., 2017;
Habibovic et al., 2018; Merat et al.,2017. Decreased confidence in automated vehicle technology
may affect pedestrian interaction behavior and general willingness to interact with AV. Bockle et
al., 2017; Habibovic et al., 2018; Merat et al., 2017 reported that vulnerable road users differ in
behavior when interacting with an automated vehicle from the behavior that people show when
interacting with conventional vehicles.

One of the main features of automated driving is the ability for the human driver to not be fully
involved in the driving process. However, Lagstrom & Lundgren (2015) found that most
participants in the experiment did not want to cross if the human driver inside automated vehicle
was distracted. In the Rodriguez Palmeiro et al. (2018) study, 95% of participants reported that
driver inattention affects their perceived safety level and the decision to cross. To increase
cyclist’s awareness of automated vehicle operations and to facilitate communication process
between an AV and a pedestrian, researchers offer various communication tools for automated
vehicles. These tools should allow an automated vehicle to clearly express its intentions (Bockle
et al., 2017; Lagstrom & Lundgren, 2015; Merat et al., 2017).

The interaction of AV with a pedestrian is a topic of great interest. However, the interaction
between the cyclist and AV is not well researched. Hagenzieker et al. (2018) conducted a
questionnaire study on the behavior of cyclists. During the experiments, participants were asked
to study photos of automated vehicle and conventional vehicles with different signs. The purpose
of the research was to investigateif the cyclistcould correctly interpret when automated vehicles
noticed them and whether an automated vehicle would stop for them. Researches show that the
cyclist interacted more confidently with conventional vehicles than with automated ones
(Hagenzieker et al., 2018). The lack of interest of researchers in the study of the interaction
between the cyclist and automated vehicles can be explained by the similarity in the behavior of
vulnerable road users. However, cyclist have more interaction scenarios with AVs than
pedestrians, for example sharing carriageways with AVs.
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The current approach that AVs interacting with cyclists is tofollow the cyclist with the same speed
and to perform a controlled automatic stop or overtaking in manual mode. Overtaking and
passing maneuvers on two-lane roads (one lane per travel direction) are seen as high-risk level.
While performing overcoming the driver must be sure that there is sufficient gap space in front
of the bicycle for the vehicle to return to the driving line. At the same time, it should be verified
that there is enough time gap before vehicle on the opposing lane direction appears (Cavadas,
Azevedo, Farah, & Ferreira, 2018). Such overtaking maneuvers can be dangerous for the bicycle
drivers, which have no physical protection. At the same time, requirements to follow bicycles on
the shared roads are inefficient for following traffic situation and may also have negative reaction
from the cyclist, especially due to recent nature of the automated vehicles technologies.

Cyclists may react to vehicles in a different, sometimes even inadequately way (Hagenzieker et
al., 2018). The behavior of the automated vehicles has been programmed based on the data
obtained from research on vehicle — cyclist interaction. However, cyclist may behave differently
in the interaction with the automated vehicle (Hagenzieker et al., 2018). It may be needed to
correct the programmed behavior of the automated vehicle. To propose a new behavior for the
AVs, the risk level of the interaction scenarios has to be assessed both from the point of view of
objective risk and subjective risk level. In the end run possibilities may be illuminated for the
longer automated vehicles run scenarios. However, so far almost no researches were conducted
to assess cyclist subjective risk level in the interaction with automated vehicle. The master thesis
research is aiming to fulfill this research gap. Research on the cyclist behavior is especially
relevant in the contest of the Netherlands, where amount of cyclistand cyclist trips are one of
the highestin Europe, with a modal share of 36% (Oakil, Ettema, Arentze, & Timmermans, 2016).

Additionally, a novel safetyrisk metric will be used to assess the objective risk level of interaction.
An advantage of the novel safety metric is its ability to show the level of risk of a situation that
does not directly cause an accident. In the research the novel risk metric will be used for the first
time to assess the risk caused by the interaction with dynamic objects in the field-experiment.

Due to all the above-mentioned research gaps, the present research will focus on analyzing the
reaction of the cyclist on the interactions with automated vehicle. During the study, the new
safety metric will evaluate the objective level of risk for various interaction scenarios.

1.3 Relevance for the I-AT project

The master thesis research is part of the Interregional Automated Transport (I-AT) research
project. During the project itis intended to drive with the new semi-automated shuttle bus in the
region between Vaals and Aachen. The general aim of the I-AT project is to examine the feasibility
of this system.

To answer the main research question of |-AT project, the route assessment protocol is being
developed. Currently, the first stage of the protocol has been finished. The next step of the route
assessment protocol should be related to the interaction with other road users. Besides following
the pre-defined path, the automated shuttle must also safely and efficiently react to other road
users. The Vaals-Aachen route must be re-examined to investigate on which parts of the route
automated driving is possible in terms of possible interaction scenarios. Using the example of
cyclist-AV interaction the research proposes a methodology that can be used in the next stage of
the assessment protocol. The master thesis research will provide direction which interaction
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scenarios are possible for automated operation and which actions an automated shuttle bus
should take when performing a certain interaction scenario. The master thesis research proposes
to decide actions of the automated shuttle bus based on the risk level of interaction. In the
interaction between cyclist and automated shuttle bus, cyclist is more vulnerable subject.
Following that, risk level must be perceived from his side. The Automated Shuttle Bus has to
correct actions based on the risk level of cyclist.

Besides building an assessment protocol, the results of the thesis research can be directly used
inthe driver's manual document to increase the awareness of human drivers of the impact of an
automated shuttle bus actions on the interaction risk levels.

1.4 Research objective and questions

An interaction process between an automated vehicle and a cyclist is characterized by a
subjective risk and objective risk. Subjective Riskis a risk perceived by cyclist and Objective Risk
is arisk calculated based on the data from the experiment. Different operation condition requires
different behavior from the vehicle. Vehicle behavior is presented in the interaction scenario by
the mode of the vehicle and vehicle maneuver. The main objective of this study is to research
and give recommendations on the interaction scenario resulting in the minimal Objective and
Subjective Risks. Taking in the account the scientific and practical gaps and the objective of this
study, the research question can be formulated as follows:

RQ: Which interaction scenario minimizes Subjective and Objective Risks appearing when an
automated vehicle approaches a cyclist from behind?

The main research question includes the following sub questions:

SQ 1: Which interaction scenarios are possible when an automated vehicle approaches a cyclist
from behind?

SQ 2: What is the cyclist subjective risk level for the interaction scenarios?
SQ 3: What is the objective risk level for the interaction scenarios?

SQ 4: What are possible solutions to lower subjective and objective risk levels in the interaction
scenarios?

1.5 Research approach

This section gives anoverview of steps that the methodology composed of (Figure 1), the detailed
description of the methodology analyses is provided in the Chapter 3.

The first step relates to the looking at the background of the research, defining the promising
interaction scenarios and corresponding to them interaction attributes. The first step answers
the 1st research sub question. During the first step the Literature Research and Consultation of
experts were applied. The consultation of experts stands for the discussions with the
professionals from the I-AT project. The final interaction scenarios were defined based on the
scientific and practical relevance.

The next step corresponds to the data collection method using a real-case experiment. The
interaction scenarios and attributes chosen on the previous steps give an input for designing the
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experiment scenarios. Questionnaires were used to collect data for Subjective Risk and sensors
on the vehicle and bicycle were used to collect data for Objective Risk. After the experiment was
designed and organized, including choosing the experiment location, recruiting participants and
receiving permissions from the Ethical Committee and Park management Delft, the pilot-
experiment was conducted. Pilot-experiment supports the choice of the most promising
experiment attributes and shows the point of improvements in the overall experiment
organization.

On the third step all input data was processed. The accuracy was checked using the
measurements made during the field test. Next, the data was filtered: the participants rides were
selected out of all captured data with the use of the geo-fence method and the overtaking
moments were selected with the use of the video data.

All processed data was used as an input for the data analysis. The objective Risk was calculated
using the Probabilistic Driving Risk Field (PDRF) safety algorithm. The trust level was also
recalculated from the answers on 12 questions to the 1 value. Next data analysis was conducted,
and the first results drawn.

Results were discussed and compared to the findings from the literature review. On the step 5
the key findings, answering the research sub-questions 2,3 and 4, were reported and conclusion
on the main thesis research question drawn. On the last step it was reflected how the findings of
the research contribute to the scientific gap and which practical application of the conclusions is
possible for the I-AT project.
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1.6 Research scope

e The master thesis research is part of the I-AT project. Interaction scenarios between the
vehicle and the cyclist were selected when relevance to the I-AT operation route. Thus,
master thesis research considers only following and accelerative overtaking scenarios.

e The choice of the attributes and the number of levels of each attribute were limited due
to time constraints. Thus, only 3 attributes were included with 2 levels each.

e The experiment includes only students recruited at the TU Delft university. Participants
may have a higher level of knowledge about automated vehicles than the average cyclist
and show higher trust level for AVs. Besides that, the experiment includes 25 participants,
and only 10 participants data were used for the Objective Risk calculation.

e The questionnaire did not include questions on the sensationseeking level of cyclists, due
to the large number of questions, and did not include questions on the cycling level, due
to the restriction from the TU Delft Ethical Committee.

e The master thesis research experiment is a controlled experiment. To maintain the
necessary level of safety during the experiment, the road of the experiment was blocked
from the traffic. Thus, the traffic situation has limited realism.
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2 Literature research

Automated vehicles (AV) currently present on the road still require driver intervention. Transition
of control mostly happen due to the AV safety threat from other road users. To increase
awareness of the driving situations that require human driver control, the interaction process
between AVs and other road users must be examined. One of the interaction scenarios include
the overtaking maneuvers.

2.1 Overtaking maneuvers

Overtaking maneuver consists of different stages. Shamir (2004) identified three steps in the
overtaking diverting from the lane, driving straightin the adjacent lane and returning to the lane.
In contrast, Dozza, Schindler, Bianchi-Piccinini, & Karlsson (2016) identified four overtaking
phases. The illustration of the four stages is performed in the Figure 2: Overtaking maneuver
phases (Dozza et al., 2016a)Figure 2.

Field of safe travel Comfort zone measure
Phase 1 X e passing zone
Approaching — = == — — = = -
p)— = l:. f—
\‘-.
Phase 2

Steering away

Py -~ GETE oo -F- (o ppe

Phase 4 - : i e
[ ) L i e m - - | y
Returning = & — & % J i “'. -.. ?

Figure 2: Overtaking maneuver phases (Dozza etal., 2016a)

According to Dozza et al., (2016), in the first phase the motorized vehicle reaches the bicycle from
behind. The next phase begins when the driver starts to steer away to reach the overtaking lane.
When the driver reaches the passing zone, the passing phase begins. As soon as the driver
overtook the cyclist, the return phase starts. At the return phase, the vehicle returns to the
original lane in front of the bicycle. In the master thesis research, the first stage (approach stage)
will not be applied. In scenarios, overtaking occurs after the following operations. Thus, the
automated shuttle bus will first follow the cyclist and then begin to overtaking right from the
second phase (steering away). Also, the master thesis research does not consider the return
stage. It is assumed that the experiment will capture the risk of overtaking already at the stage
of passing.
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At the phase of passing, the driver of the vehicle chooses a certain distance of passage. This
distance is one of the parameters that can have a potential impact on the level of overtaking risk,
as this distance defines the trajectory of overtaking. Research from Weddell (2012) shows that
the distance of passing depends on the speed of the overtaking vehicle, the presence of an
oncoming traffic, the size of the overtaking vehicle, the distance of the cyclist to the curb and the
width of the bicycle lane.

2.1.1 Speed.

Literature shows a correlation between the speed of an overtaking vehicle and the distance that
drivers keep to the cyclist. Research of Parkin & Schackel (2014) shows that for a vehicle with a
speed of about 45 km/h, the average passing distance is 1,6 m. A similarresult is retrieved from
the experiment of Debnath, Haworth, Schramm, Heesch, & Somoray (2018), in which the mean
passing distance for driving at 40 km/h was 1,5 m, for 60 km/h — 2 m and for 70 km/h — 2,4 m.
Dozza et al., (2016) found that the boundaries of the comfort zone are 2.03+0.28m in size at a
vehicle speed of 80 km/h. Besides the comfortable passing distance, there is also accepted
passing distance. Parkin & Meyers (2010) show that at a speed of 48 km/h, drivers accepts to
overtake a cyclist with a distance of 1.05 meters.

2.1.2 Distance of cyclist to right-hand side objects.

Another parameter influencing the vehicle passing distance is a distance that a cyclist chooses to
keep from right hand side objects. Research by Weddell (2012) shows that the further cyclists
drive from the curb the smaller was the passing distance of the overtaking motorized vehicles,
including scenarios with a bicycle lane. Walker (2007) confirms this result, finding that there is an
interrelation between the riding position of the cyclist and the distance that drivers prefer to
keep when overtake a cyclist. If the cyclist rides with a 0,25 m distance from the curb, drivers
chose to overtake with a distance of 1,47 m.

Mean overtaking proximity (m)
8

0.25m 0.50m 0.75m 1.00m 1.25m
Bicyclist's distance from road edge

---2r-- Helmet —8— No helmet

Figure 3: Mean overtaking distances as a function of bicyclist's riding position (Walker, 2007)
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Dufour, (2010) reported that the average distance that a cyclist keeps from the curb is 0,25
meters. Dozza et al., (2016) shared a similar result of 0,3 meters.

0, 750m
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L 0a3sm |_:.:5r1
e

Figure 4: Bicyclist’s distance from road curbs. (Dufour, 2010)

2.1.3 Cyclist personal characteristics.

Besides the characteristics of the overtaking maneuver, personal characteristics of the cyclist
may influence the distance that drivers keep when overtaking. However, no statistically
significantresults were found for the dependence of distance of overtaking on the age of a cyclist,
the style of cycling or the type of cyclist’s clothes (Debnath et al., 2018).

Studies have shown that only the gender of a cyclist affects the distance of overtaking. Drivers of
conventional cars prefer to keep more distance from female cyclists than from a male cyclists
(Chuang, Hsu, Lai, Doong, & Jeng, 2013; Walker, 2007). Walker (2007) shows that the difference
in the average overtaking distances of men and women was more than 14 cm, and this result was
statistically significant.

2.1.4 Vehicle characteristics

Motorized vehicles can be buses, trucks, conventional cars, mini-cars. Larger vehicles have a
longer passing time, which may affect the cyclist’s perception of the subjective risk level. As a
result, a cyclist may show less stable riding behaviors. Chuang et al. (2013) found that a longer
passing time influence on the observed increase in wheel angle and speed. Even though the
influence of a vehicle characteristics on the passing distance is expected, literature studies show
controversial results. Walker (2006) reported that bus drivers have lower passing distances than
car drivers. In contrast, Chuang et al. (2013) stated that there was no statistical significance in
the study of the behavior of bus drivers. The master thesis research assumes that the results of
the experiment with the car canstill be used in the I-AT project.
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2.2 Objective risk level

2.2.1 Surrogate safety measures

Surrogate Measures of Safety (SMoS) are used to assess potential road network conflicts
(Morando, Tian, Truong, & Vu, 2018). The SMoS evaluates conflicts appearing during transport
interaction in a safe way, therefore it does not require accident studies (Gettman & Head, 2007).
Conflict of the two road users is defined by Gettman & Head (2007) as “an observable situation
in which two or more road users approach each other in time and space for such an extent that
there is risk of collision if their movements remain unchanged.”. The SMoS uses the frequency of
the lower risk events (conflicts) to predict the high-risk events (crashes) (Mullakkal Babu, Wang,
Arem, & Happee, 2017). Some well-known Surrogate Measures of Safety represented in the
Table 1.

Table 1: Surrogate Measures of Safety (Gettman & Head, 2007).

Surrogate Measures of Safety Unitof measure @ Description
Gap Time Second The time interval between the completion of
(GT) the turning maneuver of the vehicle and the

arrival time of the intersecting vehicle, if both
vehicles continue to move at the same speed
and trajectory.

Encroachment Time Second The time interval during which the turning

(ET) maneuver of the vehicle block the road for
the through vehicle.

Deceleration Rate Meters/second? The rate at which the vehicle must decelerate

(DR) to avoida collision.

Proportion of Stopping Distance | Meter The ratio of the distance available to

(PSD) maneuver of the vehicle to the remaining
distance to the predicted collision location.

Post-Encroachment Time (PET) Second The time interval between the end of the

turning vehicle maneuverandthe time when
vehicle actually arrives at the predicted
collision location.
Time to Collision Second The predicted time for a collision of two
(TTC) vehicles, if they would continue to move at
the current speed and onthe same trajectory.

The objective risk was assessed with the Probabilistic Driving Risk Field (PDRF) safety approach.
The PDRF is more sophisticated method compared to other Surrogate Measures of Safety
(SMoS). This is because the PDRF has severity and probability components, which better reflect
different situations (Bhusari, 2018). For instance, some interactions with high severity magnitude
do not result in an accident and interactions resulting in accidents do not always have the same
magnitude and effects. The PDRF can consider simultaneously the risk of collision with static and
kinetic objects, which enhances the reality of risk modeling for interactions with different objects.
This approach also allows to combine both lateral and longitudinal dimension risks
simultaneously (Farah, Bhusari, Gent, Freddy, & Morsink, 2019).
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2.2.2  Probabilistic Driving Risk Field safety algorithm

The PDRF safety measure method was developed by Mullakkal Babu et al. (2017). PDRF can be
used to investigate vehicle driving risk appearing in mixed traffic case, when automated vehicle
shares the carriageway with other road users. The safety approach models the risk situation as a
threat that an object S experiences from object C, designed as a influence field. The field
represents a probability and severity of collision between S and C. The crashloss due to a collision
is determined by the physical vehicle mass, value of velocity and direction of velocity at the time
of an accident. Additionally, the severity of the collision is influenced by the positioning of object
C. (Mullakkal Babu et al., 2017). The potential influence of the road objects is modelled as ascalar
field —Probabilistic Driving Safety Field (PDSF). This field magnitude is defined by the probabilistic
safety field strength. The safety force, used in a field strength, can be based on the vehicle
trajectory (offline) or on the automated vehicle onboard sensor prediction algorithm (online).

An automated vehicle can interact both with static and dynamic objects. The PDRF can include
Potential field strength and Kinetic field strength. The Potential Field Strength is associated with
the threat from the static road objects, such as lane marking, surrounding trees, concrete walls
and road signs. The kinetic risk field strength is associated with moving road objects such as
bicycles, cars and pedestrians (Mullakkal Babu et al., 2017). The Potential and Kinetic Fields are
discussed in more detail in the following sections.

2.2.2.1 Potential field strength

Potential Field Strength is associated with the threat from the static road objects. The Potential
Risk can be calculated using the formula below:

_|rs,b|

R, s = 0.5kM(V,,)? -max(e” D ,0.001)

Table 2: Variables of the potential risk field formula

Variables @ Unitof measure Description

s A dynamicobject experiencinginfluence from the staticobject.
b A staticobjectinfluencingthe dynamicobjects.
k 0.1 The parameter of the rigidity of the road boundary object with

range from 0 till 1, where k=1 entail that the static object has
infinite massandis notdeformedin case of an accident.

M Kilogram The mass of the dynamicobjects.
Vsp Meter/Second The velocity of the dynamicobjectSalong 7y,
Tsb Meter The shortest distance between dynamic object s and staticobjectb
D= K Meter A steepness of descent of the potentialrisk field, where Wis the
14 width of the lane. The collision probability reaches avalue of 0.001

inthe centerof the lane.

As was discussed above, the Potential Risk calculation formula consists of a multiplication
between the severity of an accident and the probability of an accident. The crash severity is
represented by the term O.SkM(VS,b)Z. The severity is the magnitude of the crash energy that

appears in the event of an accident between objects S and B. Severity is characterized by the
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_lrs.b|
value of the rigidity parameter k. The crash probability is defined by the term e D  which
ranges between 0 and 1. The crash probability has aninverse relationship with r;,, and decreases

when the distance between interacting objects increases.

2.2.2.2 Kinetic field strength

The Kinetic Risk appears from interaction with dynamic objects. The PDRF considers the inelastic
collision process. In the process of inelastic collision, both objects move together after the first
contact. Kinetic Risk is represented by the following formula:

— 2 2].
R, = 0.5MB2|AV, 2| - p(n,s)
Table 3: Variables of the kinetic risk field formula

Variables Unitof measures Description
S A dynamicobjectthatis experiencingrisk from another
dynamicobject.
A dynamicobjectthatinfluence onthe objectS

M Kilogram A mass of the dynamicobject
My Kilogram A massratio of the interacting objects
p= M + M,
AVsp =Vs—V, | Meter/Second The counteracting velocity between objectsSand n

Kinetic Risk also consists of a combination of severity and probability of an accident. The
0.5M552|AVM2| denotes the severity of the Kinetic Risk, which is a magnitude of the crashenergy
that object S absorbs in case of the accident between objects S and N. The crash energy amount
is inversely proportional to the individual mass, therefore an object with a smaller mass will
dissipate more energy than a heavier object. The Kinetic risk obtains maximum value when
position of objects S and n overlaps.

The PDRF method assumes that risk appears because an object S maintains its motion not
knowing the motion of an object n. The second component in the kinetic risk formula is the
probability of a collision p(n,s). The probability of collision monitors the trajectory of the object
S and predicts the possible future motions of objects n. The collision appears if two objects come
at the same place at the same time. Following that, the collision probability is characterized by a
spatial overlap. The crash probability changes in a range from 0 to 1.

The collision probability likelihood is related to the probability of the object n acceleration. We
know the trajectory of s and predict the trajectory of n. The following steps calculate the collision
probability likelihood. The trajectory of n is unknown; therefore acceleration is treated as a
random variable. The variability of acceleration is represented as a normal distribution. The
parameters of the acceleration distribution are estimated with the following formulas:

Uy = %fOTA(t) - dt — the mean acceleration

of = %fOT [A(t) — u,)?dt — the standard deviation of the acceleration.

Where T- is the sampling time duration
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A(t) -is the acceleration function over time.

The acceleration variability distribution is equal to the relative likelihood of occurrence. The
collision likelihood is equal to the probability of the acceleration of object n, calculated with the
formula below:

__AX-AVyT

AY—-AV,,T
. — y
Ayp = A

72 r Slyn T 72

Finally, based on the acceleration of n (that is a random variable) the collision likelihood can be
found:

AV,

AX — AV, - T A -t
pL(s|t) = N(—5e 5 IHeox) N5z 1y 0y)

057

Where:

N- is probability density function

U —is the mean of the distribution

o- is the standard deviation of the distribution

AX =X, — X, ;AY =Y, =Y, —relative spacing in longitudinal and lateral directions

AV, =Vy o = Vy s AV, =V, o — V4, — relative velocity in longitudinal and lateral directions

The reachable state for interacting objects can be represented as quadrilateral polygon. The zone
O of potential collision zone is defined using the geometry of two interacting static objects. The
overlapping region O also has the shape of a polygon, as shown on the Figure 5. The region O is
converted to acceleration domain by the following formula:

(x¢ = x,(0) = Ve n(0)- 7

c _

Ax = 0.5- 72

A€ = ¢ —ya(0)) — Vy,n(o) T
Yo 0.5- 72

Where x¢,y° denotes the corner positions of overlapping region O.

Figure 5: Geometric representation of polygons (Mullakkal Babuetal., 2017).

After the acceleration domain of the overlapping region and the collision likelihood are found,
the collision probability can be obtained by integrating the joint acceleration distribution over
AO:

p(us10) = [[ VAl 00 NCAy iy, ) dAs- )
A0
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2.2.2.3 Total risk strength

The Total Riskcombines risks posed by multiple road objects based on the superposition property
of fields (Mullakkal Babu et al., 2017). The theory of superposition states that the solution of the
complex problem is a sum of the simpler individual problems (Reilly, Franke, & Bennett, 1984). A
total risk also comprises from the Potential Risk Strength and a Kinetic Risk Strength. The PDRF
represent Risk of interaction as a cut-inrisk situation graph. An example of the graph can be seen
on Figure 6. The graph has a shape of the wave changing with the time of experiment. The
superposition states that the shape of the joint wave is determined by algebraically adding
individual waves together (Reilly etal., 1984). In the case of the master thesis research the total
risk wave is composed by a Kinetic Risk wave and a Potential Risk wave.
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Figure 6: PDRF Total Risk

Road users are not aware of the Objective Risk Level that they experience on the roads. They
choose their actions based on the Subjective Risk Level value. In order to maintain a safe
interaction between an automated vehicle and other road users, the relationship between
automated vehicle actions and the corresponding Subjective Risk Levels should be investigated.

2.3 Subjective risk level and trust
2.3.1 Trust

The process of operation of automated vehicles is uncertain. The interaction between automated
vehicles and people always contain a certain risk, as AV and people are interdependent.
Thus, trust of the other road users is crucial to the operation of an automated vehicle.
An appropriate level of trust is a key to the high safety level and productivity of the human-
automated system interactions (Hoff & Bashir, 2015). Trust directly affects the willingness to use
an automated system and trust defines the proper use of the system (Ekman, Johansson, &
Sochor, 2018). The interaction process is impossible without reliance on the system. Mayer,
Davis, & Schoorman D. (1995) define trust as the willingness of one interacting object to be
vulnerable to actions performed by another interaction object. The willingness to trust should be
consistent with the considered system (Ekman et al., 2018). If systems are used wrongly, an
accident may occur. Failures appear if users misuse automation by over-trusting the system, or
if users disuse automation system by under-trusting it (Hoff & Bashir, 2015). People rely on
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automation only if they trust the system, otherwise users will refuse to automate a system they
do not trust (Lee & See, 2004). Following that, lack of trust leads to the disuse.

The concept of over-trust to the system can also cause troubles during interaction. Lee & See,
(2004) reported that people tend to over-trust novel automated systems. Over-trust can lead to
unsafe situations, as people’s trust exceeds the capabilities of an automated system. Besides
safety reasons, over-trust is undesirable, as it can lead to a rapid disappearing of trust. Using the
systemin an unplanned way may lead to system errors. Systematically appearing errors will lead
to loss of user’s confidence. Restoring trust is harder than gaining (Lee & See, 2004).

If end-users do not obtain confidence in an automated system, they can still decide to cooperate
with it (Mayer et al., 1995). Lack of trust will also lead to the declining systems benefits and
generally ineffective collaboration. It can be concluded that cooperation between an automated
vehicle and users is not safe and not productive without trust.

The trust level that we perceive for different objects can be obtained from an analogic or
analytical judgements. Analogic judgement is based on a well-known social judgement about an
object. Our attitude to the object is determined by a pre-defined societal opinion. If the concept
is new for us, we can form trust analytically. We build our judgement about an object by
evaluating the subjective trust characteristics observed during the interaction with an object
(Hoff & Bashir, 2015). The concept of automated vehicles is new to society. Currently, most users
choose the analytical wayto build trust. To construct an interaction process that will be perceived
as highly trustable, it is necessary to examine the attributes that affect the trust level.

2.3.2 Trust concepts.

As trust is a core concept for the successful interaction between objects, many researches
evaluated factors influencing trust formation in different interaction processes. Interaction
scenarios may differ with the interacting objects, but all cooperative relationship are
characterized by uncertainty (Hoff & Bashir, 2015). Following that, trust concepts can relate to
the interaction between road users and the interaction between person and automated system.

Mayer et al. (1995) published one of the most influencing papers on the reasons and outcomes
of the organizational trust. They stated that a person’s trust depends on human individual
propensity and trustworthiness of the interacting object. Human individual propensity stands for
the basic level of trust that individual generally experience to other people. Trust worthiness is
characterized by the attributes of ability, benevolence and integrity. Ability stands for the level
of skills and personal characteristics that an influencing person obtains. These attributes
influence authority in a certain area. The trust level will vary based on the level at which a person
is able to fulfil a task. Benevolence represents the extent to which trustor believe that the
influencing person is interested in the trustor well-being. In case of that attribute, the level of
trust is influenced by the level of matches of the two interacting humans’ interests and final goals
(Hoff & Bashir, 2015). Integrity is the extent to which the trustee follows the principles accepted
by the trustor. In the case of the integrity attribute, the level of trust does not depend on the
actual actions of the system, but on the match between actions and human values of the system.

Another concept of trust attributes was proposed by Lee & See (2004). Lee et.al (2004).
investigated the interaction between human and automated system and concluded that for this
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specific interaction trust depends on the performance, process and purpose of an automated
system. Performance attribute vary trust based on the ability of the system to fulfil human’s
tasks. Process-based trust connected to the extend at which user can understand the actions of
the automated system. Purpose-based trust fluctuated based on the level at which designed
system purpose and human system needs correspond to each other (Lee & See, 2004). Korber
(2019) merges research from Mayer (1995) on the human-human interaction and research from
Lee (2004) on the human-automated system interaction and build a novel human-automation
interaction model.

Lee (2004) states three influencing attributes: performance, process and purpose, described in
detail by Korber (2019). New attributes are reliability, understandability and intention of
developers. From the work from Mayer (1995), Korber (2019) learned that the trust level
influence subjective trust characteristics, adding therefore the individual component of
propensity to trust. Besides attributes mentioned at works of Mayer (1995) and Lee (2004),
Korber (2019) used new characteristics. Korber stated that familiarity influence on the trust to
technology. He found out that previous positive (or negative) experience with a similar (to the
examined) system influence on the current system’s reliability level. A model designed by Korber
(2019) to evaluate trust in the automated system presented on Figure 7.

Model of Trust in Automation
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Figure 7: Model of trustin automation (Korber, 2019)

In addition to the general trust in technology, the interaction of an automated vehicle with a
cyclistis characterized by several specific attributes. These attributes are directly related to the
process of interaction, including the behavior of drivers with an automated vehicle.

2.3.3  Subjective risk attributes of automated vehicle and cyclist interaction.

Automated vehicles interact with various types of other road users. One of the most challenging
types of interaction is the one with non-motorized modes. Vulnerable road users have large
flexibility in interaction scenarios with automated vehicles. If a pedestrian or cyclist feel in a high
risk level, they may decide not to interact with automated vehicle. However, distrust of other
road users to AV technologies will have a negative impact on the future of automated vehicles.

Some studies were done in order to investigate factors that influence pedestrian trust in the
automated technologies. Researchers reported that on the decision to cross the road in front of
automated vehicle the highest influencing factors are speed of the vehicle and distance to the
AV (Oxley, lhsen, Fildes, Charlton, & Day, 2005; Rodriguez Palmeiro et al., 2018; Yannis,
Papadimitriou, & Theofilatos,2013). Other factors influencing on the pedestrian decision to cross
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in front of an AV were the vehicle deceleration level, familiarity of environment for pedestrian,
weather conditions, traffic volume level (Lagstrom & Lundgren, 2015), the size of the automated
vehicle and the gender of the pedestrians and whether pedestrian crossing alone or in a group
of people (Yannis et al., 2013). The interaction of human road users involves an implicit
communication channel. The direction of sight and the overall facial expression of the driver may
give the pedestrian sufficientinformation input. Rodriguez Palmeiro et al. (2018) found that the
decision to not cross in front of AV was influenced by the driver inattentiveness. Lagstrom &
Lundgren (2015) reported that if pedestrians feel unsafe when interacting with an automated
vehicle, people tend to choose to wait until AV performs a complete breaking operation.

2.4  Conclusion

This chapter gives an overview of the literature relevant for this research. The research works
with the interaction scenarios when automated vehicle approaches cyclist from behind. One of
these scenarios is overtaking. The chapter describes four stages of the overtaking maneuver and
listed attributes relevant for the safety of interaction. Research mentioned that for the
overtaking vehicle speed of 40km/h the overtaking distance is 1,5m, while for higher speed of
60km/h-80km/h the distance becomes 2m. Another attribute is the cyclist distance to the curb,
found equal to 0,25-0,3 meters. For the overtakings vehicle characteristics are alsorelevant, such
as the size of the vehicle, as longer passing time influences the speed of cyclist. Attributes found
in the literature will be used for the scenario design.

The risk levelis assessed with the objective risk and subjective risk. The chapter gives an overview
of the surrogate measures of safety and presents the Probabilistic Driving Risk Field safety
method applied in this research to assess the objective risk. The chapter explained the benefits
and principles of this method according to the literature.

The literature on the ways of assessing the subjective risk was shown. Previous studies show the
importance of the trust concept for the safety of the interaction, as undertrust and overtrust
violate the understanding of cyclist of the automated vehicle capabilities. In this chapter was
introduced a Korber trust assess model which is used in this research to evaluate trust.

Next, attributes influencing on the subjective risk of automated vehicle and cyclist interaction
were presented. The most influencing factors are speed of the vehicle and distance to the vehicle.
Another relevant factors for the research interaction attributes are: weather conditions, the size
of the automated vehicle, gender of the participants and attentiveness of drivers.
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3 Research methodology
This chapter discusses the methodology of data collection and analysis.

3.1 Data collection method

3.1.1 Field experiment

The experiment method consists of two parts — the pilot experiment and the main experiment.
The pilot experiment is the first trial of the experimental scenarios. Results of the pilot
experiment provide improvements for the design of the main experiment. This section discusses
the overall design of experiment scenarios. The exact changes applied after the pilot experiment
can be found inthe chapter on the pilot experiment.

3.1.1.1 Participants

In total, 29 people took part in two experiments. The pilot experiment includes 4 participants
and the main experiment includes 25 participants. 15 male and 14 female participants from the
same age group (mean=25,4; std.=1,3). Participants were recruited by personal invitations on
social media.

3.1.1.2 Scenarios

As part of the I-AT project, this research selected AV-cyclist interaction scenarios from the Vaals-
Aachen route. Photos of the interactions on the route can be seen on the Figure 8. Two
interaction scenarios were identified. The first interaction scenario includes a separate bicycle
lane. This scenario was not included in the research, as in this case the automated shuttle bus
will not interact much with cyclists. The second interaction scenario includes a shared
carriageway. In this case, the ASB have to follow cyclist and, if possible, overtake. This scenario
became the basis of the master thesis scenarios.

Figure 8: Vaals-Aachen route, examples of interactions between ASB and cyclists

The interaction process is also influenced by the interaction parameters. The Vaals-Aachen route
was further studied to determine which infrastructure attributes vary for the selected
interaction. It was found out that the interaction of the ASB and the cyclist can happened with
different right hand side objects: on some streets there was only a curb, on others streets appear
parked cars. The right hand side objects were included in the experiment as an attribute. For the
safety reasons in the field-experiment, parked cars were replaced with a safe barrier.

In addition to the attribute identified by route analysis, the scenarios include attributes found in
literature studies. Literature studies have found that the vehicle overtaking speed and overtaking
distancealsoaffectthe risklevel of interaction. Both parameters were included inthe experiment
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scenarios as independent variables. Literature shows that at a speed of 40 km/h, drivers of
conventional vehicles keep a distance of 1,5 m overtaking, or in another words a distance of 2 m
from the curb. These findings were taken as the first attribute value.

An important parameter for the following maneuver is the following distance. In the literature,
it is assumed that the longitudinal clearance between the vehicle and another moving object
should be equal to the stopping distance of the vehicle. The stopping distance of the vehicle used
in the experiment is 3 meters at a speed of 12 km/h (Henderson, n.d.). A distance of 3 meters
was chosen as a value of the following distance attribute. To establish equal conditions for
following and overtaking maneuvers, the overtaking distance attribute will have a second value
of 3 meters. In total, the experiment has 4 within-subject variables (2 levels each). All experiment
attributes are shown in the Table 4. Each participant experiences all attributes but combined
randomly.

Table 4: Experiment variables

Dependent Variables

Distance from cyclist to the right-hand side objects.
Subjective risk level

Obijective risk level

Cyclist trust in AV technologies

Within-subject variables (independent) Categories
AV Overtaking Speed Cyclist speed + 5km/h
Cyclist speed + 10km/h
AV Overtaking Distance 1,5m
3,5m
Right-hand Side Condition Curb with Asphalt Path

Curb with Green Grass

Each scenario includes the following maneuver, when the vehicle follows the bicycle, and the
overtaking maneuver, when the vehicle overtakes the cyclist. The Figure 9 shows an example of
one experiment scenario. Each scenario includes all attributes; however, attributes are not
repeated between maneuvers. All participants experience all attributes. However, in order to
study the correlation between risk level and learning, attributes are selected for different
participants in a random order.

Ride 1 I—* oW

= 55 do

The Right Hand Side Objects

Figure 9: Experiment scenario example.

The experiment vehicle only operates in manual mode. However, the Introduction paper informs
the participants that the vehicle can be operated both in manual mode and in automated mode.
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Following that, the experiment can capture the behavior of participants in interaction with an
automated vehicle and in interaction with a conventional vehicle.

3.1.1.3 Experiment location

The safety of the riders must be guaranteed. Following that, the experiment was conducted on a
quiet and low-hierarchy street. The road consists of two lanes for driving cars and two lanes for
bicycles. The route of the experiment route was direct, without turns, and the complete street
was closed for traffic. Initially, there was no right-hand side blocking on the Hertjeslaan street.
For the pilot-experiment, a barricade from wooden pegs and white-red ribbon was built to block
the right-hand side of the cyclist. The picture of barricade can be seen on Figure 10. The height
of the barricade was 1,5 m, which corresponds to the eye level of the cyclist (City of Toronto,
2017).

Figure 10: Right hand-side barrier

3.1.1.4 Experiment bicycle

An equipped bicycle was used to collect objective data. The bicycle was equipped at the
Transport and Planning Laboratory by Peter van Oossanen, Edwin Scharp and Paul van Gent. The
bicycle was equipped with a lidar, a camera and GPS, accelerometer sensors. The positioning of
the sensors can be seenin the Figure 11.

Left side lidar

Right side lidar

Figure 11: Sensors placement at bicycle

Lidar is an abbreviation for the Light Detection and Ranging. Lidar obtains information from an
optical lasersignal. The transmitter emits a signal that is reflected by a target and detected by a
receiver. Lidar has a short-wave length, therefore detecting small object. Different types of Lidars
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can obtain information about the range, chemical properties and velocity of the object (Rock &
Park, 2007). In this research, the bicycleis equipped with three Lidars. Lidars capture the distance
from the bicycle to the vehicle, during following and overtaking maneuvers, and the distance
from the bicycle to the curb.

The Global Positioning System (GPS) provides information about position and velocity of the
object and the collection time. In this experiment, both the vehicle and the bicycle are equipped
with a GPS sensor.

To collect a sufficient number of measurements in an overtaking maneuver, Lidar and GPS
sensors collect 5 measurements in 1 second. When the experiment ends, the measurements
taken by the sensors should be divided into trips. As the sensors capture data constantly, and not
just during the actual rides of cyclists.

3.1.1.5 Data processing

Three types of analysis were used to separate all of the inputs into cycling rides: time of cycling,
speed of cyclist and geo-fences. The combination of three types of analysis allows to minimize
the error in determining the trip. Time of cycling method corresponding to the data captured
during the experiment. During the experiment, organizers determine the start and end time of
each trip of the participant. Additionally, video files recorded by the bicycle camera indicate the
time of recordings. Combining video files and start and end times, the exact time of each trip was
determined. Speed of cyclist method captures cycling speed with input data from the IMU part
of the Lidar sensor. When the speed of cycling is higher than zero, we can assume that cyclists
are in motion. Geo-fence method is the most accurate method of the three analyzes. Geo-fence
is a virtual representation of a real geographic area built with GPS-coordinates. In this research,
geo-fencing shows when a cyclist enters an area of interest, as shown in the Figure 12. The geo-
fence consists of 2 small square sites where participants fill out a questionnaire and one big
middle section where participants experience interaction with a vehicle. Smaller sections help
track if a participant changes location on one side of the road to the other side of the road.

Figure 12: Geo-fence.

3.1.1.6 Accuracy of measures.

Sensors used to collect the data were tested for accuracy. The first approach for accuracy
verification was to compare manually measured distances to objects, latitude and longitude
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during the experiment with sensor measures. The second approach was applied in data analysis
phase, comparing pre-designed parameters such as width of the bicycle lane, following and
overtaking distances to the Lidar measurements.

The Lidar's measurements accuracy can be judged depending on the distances measured by the

sensor. During the experiment, participants rode abicycle alonga 1,5 m wide bicycle path. Itis expected
that Lidar will show the distance to the Right Hand Side (RHS) within the borderof 1,5 m.

Assessment of the level of Subjective Riskincludes an assessmentof Trust. Trust can be evaluated
using neuroscientific methods, behavior measures and questionnaires (Koérber, 2019). Trust is
not directly observable, which means that people can still cooperate with an automated system
even without trusting it (Kérber, 2019; Mayer et al., 1995). People who trust the system and
people who do not trust the system can behave similarly. Data from sensors that collect skin
response and heart rate cannot give useful insights on trust. As the level of risk in the field
experiment is similar to daily stress (Rodriguez Palmeiro et al., 2017), only self-reported facts can
reflect the real levels of trust and risk. Therefore, this research will apply questionnaires as a
means to evaluate confidence of participants in response to automated vehicles.

3.1.2 Questionnaire.

Four questionnaires were designed for different research phases. They cover personal
characteristics of the participants, basic trust in technologies, familiarity with vehicle automation
and level of experienced risk.

Hoff & Bashir (2015) define four main personal characteristics influencing the disposition trust in
automated technologies: culture, age, gender and personality. The questionnaires include a
personal characteristic part with a question about gender. Besides personal characteristics
included in the questionnaire, the level of sensation seeking may be relevant to the research.
However, sensation seeking test was not included in the questionnaire to ensure high
concentration from the respondents.

Trust in technology was assessed using a questionnaire developed by Korber (2019).
The questionnaire uses a multiple-item scale, which measures the attitude of the respondent to
more than one attribute of an object. A multiple-item scale increases the probability of capturing
correct responses, increasing the validity of responses. The use of several elements also reduces
the probability of getting measurement error (Korber, 2019). In this research, the multiple-user
scale is applied as a Likert-scale. This is a ranking scale in which respondents indicate their
agreement with the questionnaire statements. The Likert-scale applied in this research ranges
from 1 to 5, meaning “strongly disagree” and “strongly agree” respectively. The 5-point scale
was adopted because it represents an adequate level of detail. Increasing the number of points
on the scale can lead to situations in which participants cannot perform self-analysis with
satisfactory accuracy.

The Korber (2019) questionnaire on trust to technologies has 6 parameters: reliability;
predictability; familiarity; intention of developers; propensity to trust and trust in automation.
The author designed 19 questions including inversely formulated questions. Reverse questions
reduce the bias of the answers, as it is expected that someone who is positive about the
guestionnaire topic concept should not agree with the inverse statement. Therefore, they help
to check the concentration of the respondent.
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In this research, subjective and objective risk levels are evaluated. The perceived risk level is
captured by a risk scale of 100 degrees. Initially, a scale with a step of 10 degrees was used, but
a pilot-experiment shows that it’s better to use a scale with a step of 5 degrees.

3.2 Data analysis methods
3.2.1 Probabilistic Driving Risk Field

The Probabilistic Driving Risk Field (PDDRF) method calculates the risks of interaction between
an automated shuttle bus and cyclists. The PDRF requires a lot of input data. Some of the required
data are given in the vehicle technical specification and literature studies on cyclists, for example
the parameter of rigidity of the road boundary object. Different right-hand side objects have
different parameter of the rigidity of the road boundary object. If right-hand side object does not
deform in case of accident the parameter equals to 1. Mullakkal Babu et al. (2017) uses a value
of the k equal to 0,61 for the right lane boundary. On the experiment location, there are curbs
on both sides. However, on one side of the road there is a pedestrian path covered with asphalt,
and on the other side there is grass. A coefficient of 0,61 is used for the pedestrian path and a
coefficient of 0,55 is used for the green grass side. A sensitivity analysis shows that a Static Risk
with k=0,61 has a risk value of 10% more than a Static Risk with k=0,55.

The master thesis experiment provides most of the data required to calculate the PDRF. The data
that needs to be collected can be seen in the Figure 13. The Potential Field needs the lateral
distance of the cyclist from the right hand side objects. The Kinetic Risk Field uses longitudinal
and lateral position and velocity for both the cyclistandthe vehicle. In the master thesis research,
the PDRF considers a cyclist as an object of risk taking (object s) and the vehicle as an object of
influence (object n). As in the interaction between the cyclist and the vehicle, the more
vulnerable useris the cyclist, and in case of an accident the cyclist will be more harmed.
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Figure 13: Variables collected from experiment

3.2.2 Statistical analysis

Statistical analysis proves the significance of the observed results and verifies the existence of
interactions between variables. SPSS is applied to conduct statistical tests. The statistical analysis
in this research was based on the steps defined by Garth (2008) for confirming statistical
significance. First of all, a descriptive analysis is performed with the input data, possibly using
boxplot graphs in SPSS or other graphs in Excel. A preliminary analysis shows a possible trend in
data interaction, which should be considered in detail at the next stage of analysis.
To select the correct method for analyzing the interaction between variables, the type of input
data should be determined. The analysis methods vary depending whether the data is parametric
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or non-parametric. Parametricity depends on the type of data: nominal, ordinal, interval or ratio
or can be evaluated by checking for a normal distribution.

Any existing data can be divided into the following 4 formats, presented in the Table 5 (Garth,
2008). In addition to the exact data format, the input data can be either parametric or non-
parametric. Parametric data is data that is a normally distributed. In this type of data, most of
the values are close to the mean value, and other data are gradually decreasing, symmetrically
(Garth, 2008). Non parametric data is not normally distributed data. Small samples are assumed
to be non-parametric (Jawlik, 2016).

Table 5: Data formats.

Data Format Definition Example

Nominal (Categorical) The data categorize some Gender (male/female)
attributes. It may be coded as Right hand side object
numbers. Numbersisalabel,
they do not have real meaning.

Ordinal These data have an order. But Likertscale (1=strongly
orderdoesnot have numerical | disagree, 2=disagree, 3=agree,
meaning. 4=strongly agree)

Scenarionumber

Interval Thistype of data is numerical. Risk Level

The distanced betweenvalues | Speed
are meaningful. However, zero
value does not have real
meaning.
Ration Thistype of data is numerical. Following Distance.
Both: distanced between values
and zerovalue have meaning.

Table 6: Parametric and non-parametric data (Bhusari, 2018).

Parametric Non-parametric
Assumed distribution Normal No assumption
Typical data Ratio or Interval Ordinal or Nominal
Assumed variance Homogeneous No assumption
Observation Independent Any

To check whether the input data is parametric or non-parametric, we can conduct a normality
check. The Normal Distribution has a bell-shaped, symmetrical on the left and right sides and has
tails that never touch the horizontal axis but come very close to it. Normal Distribution can be
determined using the following methods: Shapiro-Wilk test, histogram, g-q plot and box-plot.

The last possible separation of input data is separation by collection method. Data can be
repeated and independent. Repeated measures are a type of measures when data is collected
from the same group of people but under different experimental conditions. Repeated
measurements are consistentwith the within-subject design (Papadimitriou, 2018). Independent
measurement appears when experimental data are collected from different groups of people.
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Independent measures correspond to the within-subject design (Papadimitriou, 2018). When a
data type is defined for each of the groups mentioned above, a basic analysis can be selected.

The choice of the right analysis method dependent on the purpose of the analysis and the data
type. represents the type of data that each analysis method can include. Correlation tests show
the influence of variables on each other. There are no dependent variables in this type of analysis.
The Chi-Square test analyzes the interactions between categorical variables. The
independent/dependent measures test checks the effect of an independent variable on a
dependent variable. There are a number of methods in each test category. The method for
analysis is selected based on the parametricity of the data and the dependency of measures.
Table 8 shows some of the existing analysis methods.

Table 7: Type of variables used in analyzes methods (Delorme, n.d.; Field Andy, 2013; Garth, 2008; Jawlik, 2016).

Dependent variable Independentvariable
Correlation test* Linear Linear
*No dependentvariables
Independent/dependent measures test Linear Categorial
Chi-square Categorial Categorial

Table 8: Parametric and non-parametric analysis methods (Bhusari, 2018).

Parametric Non-parametric
Usual central measure Mean Median/Mode
Correlation test Pearson Spearman
Relation between categorical variables | Chi-square test
Independent measures, Independent measurest-test  Mean-Whitney test
2 groups
Independent measures, One way ANOVA Kruskal-Wallis H test
>2 groups
Dependent measures, Dependent measurest-test | Wilcoxonsignedranktest,
2 measures McNemar test
Dependent measures, Repeated measuresANOVA | Friedmantest, CochranQ

>2 measures

One categorical independent measure = One-way MANOVA
and

>2 dependent measures

3.2.3 Generalized Linear Mixed Model

Linear Mixed Model is a linear regression model that contains hierarchical design. In hierarchical
design, the data is repeatedly collected from the same individual. When that occurs, answers
from the same participant are correlated (West, 2009). The Linear Mixed model expresses the
relationship of the target variable from the independent variables and works with the parametric
target variable. The Generalized Linear Mixed Model (GLMM) works with the non-parametric
distributed dependent variable (Dickey, 2010).

Independent variables can be described by the effect groups (Winter, n.d.). LMM includes fixed
and random effect groups. The fixed effects stand for the parameters that are constant for the
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participant, as fixed parameters include all possible levels of parameter in the study design. For
example, gender is a fixed effect, since we know all levels of this parameter — female and male,
and this value will not change for participant. Random factors include parameters which may
have variations per participants. They represent randomly sampled values from the larger
population of levels (Starkweather, 2005; West, 2009). Random parameters have by-subject and
by-item variation. By-subject variation is originated from the participants basic features of
character and by-item variation accounts for the differences in the conditions of each levels of
each independent variable (Winter, n.d.). To account for variation per participant the MLM
assumes random intercepts for each participant.

Different combinations of fixed and random effects can have different influences on the model
fit. The predicted values plot and an information criterion gives information on the model fit.
Lower Akaike Corrected and Bayesian criterion values mean a better the model fit. The perfect
model fit corresponds to the values of 0, while the perfect fit in the graph has to be represented
by points following the 45 degree-line pattern (IBM SPSS 23.0.0, 2014). Besides model fit, the
statistical significance of including parameter as a random effect can be checked with the p values
of each of the included random effects. The model outcome does not directly include the p-value
for the random effect, therefore the Wald test has to be conducted to check the significance of
the parameters. The Wald test calculates the z-value by the ratio between estimated parameters
and the standard error of estimated parameters. The z-value can be recomputed to the p-value
(IBM SPSS 23.0.0, 2014). The statistical significance of a random parameter indicates that the
parameter slope varies for different participants, which means that the regression line in that
case vary from the mean assumed regression line (Seltman, n.d.; West, 2009).

The equation of the Mixed Linear Model can be written as follows (Scharfenberger, 2013):

Table 9: Variables of the regression equation of the GLMM

Variables Description

i Subject

i Plot

S Dependent Variable Value

Bo The intercept estimates mean value

a; The variability between participants

B Fixed effects slope (rate of change), representing the difference to go down (or
up) on the slope from one value of parameter to another (Winter, n.d.)

Xij Matrix of fixed effects

b; Variability within one participant
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3.3 Conclusion

The chapter discusses the methodology of data collection and analysis. Field experiment was
conducted to collect data, consisting from 2 parts: pilot-experiment, used to test the experiment
scenarios and overall organization of experiment, and main experiment. Experiments include 30
participants, with an equal number of male and female cyclists. All participants are from the same
age group (mean = 25,23; std.= 1,3)

Interaction scenarios include the following maneuver, when the vehicle follows the bicycle, and
the overtaking maneuver, when the vehicle overtakes the cyclist. Both following and overtaking
are tested in automated and in manual modes. Additionally, a combination of parameters is
applied for each interaction. The research includes 3 interaction attributes: vehicle overtaking
distance, with 1,5 m and 3,5m; vehicle overtaking speed, with plus 5km/h and plus 10km/h, and
right hand side object, with green grass and with an asphalt path. For the right hand side object
in the pilot-experiment, a white-red stripe barricade was built on the side of the green grass,
which represents a scenario with parked cars.

The experiment includes equipped bicycle and equipped car, with following sensors: GPS and
accelerometer, cameras and lidars. The data was processed with the geo-fencing technique and
later the accuracy of the input data was checked by comparing sensor detections and
measurements taken during the experiment.

For the subjective risk data collection, questionnaires were used. They cover personal
characteristics of the participants, basic trust in technologies, familiarity with vehicle automation
and level of experienced risk. The self-reported perceived risk level is captured by a risk scale of
100 degrees. The trust was assessed with a 5-point likert scale and 6 sections: reliability;
predictability; familiarity; intention of developers; propensity to trust and trust in automation.

For the objective risk analysis, the Probabilistic driving risk field was applied. The PDRF includes
multiple input parameters. For the static field, the parameter of rigidity of the road boundary
object is specified. A coefficient of 0,61 is used for the pedestrian path and a coefficient of 0,55
is used for the green grass side.

The dependency of the subjective, objective risks and trust from the attributes was assessed with
statistical methods. The statistical analysis includes initial tests, this chapter discusses how to
choose the right test for analysis. For the regression assessment the generalized linear mixed
model was selected. The chapter discusses how to apply the model and the reasons why the
GLMM was chosen.
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4 Pilot experiment

The core of the methodology of the research is a field experiment. Before the main field
experiment, a pilot-experiment was conducted. The pilot-experiment evaluates the feasibility of
the approach and illuminates weaknesses in the organization of the experiment, data collection
methods and data analysis methods. Additionally, the pilot test results help to select the most
promising test scenarios for the main experiment.

4.1 Experiment organization.

The pilot-experiment took 1 day and involved 4 participants, two male and two female cyclists.
One participant took 1 hour to complete the experiment. One cyclist participated in 4 designed
experiments. Each scenario includes 1 ride during which the participant experienced both
following maneuver and overtaking maneuver. The vehicle follows the participant in the first 15
seconds and then overtake. The overtaking distance was 1,5 meters. The following distance was
5 meters.

In all interaction scenarios, the vehicle operated in manual mode. The aim of the master thesis
research is to identify differences in the behavior of a cyclistwhen interacting with a conventional
vehicle and when interacting with an automated vehicle. The document “introduction to the
experiment” mentions that the vehicle can be operated in automated and manual modes. The
moment when the vehicle was operated in automated or manual mode was not pre-specified for
the participants. After each interaction scenario, participants mentioned how they perceived the
interaction mode in this part of the route.

4.2 Pilot experiment results

To make the selection of attributes for the final experiment, the data of the pilot-experiment
were analyzed with preliminary descriptive analysis.

4.2.1 Trust attributes of the interaction between a vehicle and a cyclist.

During the experiment, participants were asked in the questionnaire to indicate which attributes
of interaction affect the perceived risk level experienced by them. In the section with the
guestion without answer options, participants mentioned distance to the vehicle, overtaking
speed of the vehicle and noise of the vehicle. The attributes “distance to the vehicle” and
“overtaking speed of the vehicle” were also previously selected by the researcher as influencing
factors. The attribute “noise of the vehicle” was not previously mentioned in the literature. The
vehicle used in the experiment can be operated both on electricity and gasoline. The car system
automatically switches between modes when there is not enough electricity and when speed is
increased, the vehicle switches to gasoline power and the vehicle changes its noise.

42



4.2.2 Trust Level

During the experiment, each participant experienced 5rides (Figure 14). The Trust Level increases
after the first ride and then remains stable. In the last ride, trust level scatter of data shows a
higher value. An increase in scatter value indicates that the trust level of some participants
increases alsoin the last ride. The increase of the trust level can be result of the familiarization
of participants with the automated vehicle.
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Figure 14: Dependence of the Trust Level from the Ride Number.

The statistical analysis shows that the trust level of the participants does not depend on the right
hand side object and overtaking speed. Also, it was not important whether the experiment began
at a higher or lower speed or whether the right hand side was blocked or free. The only attribute
that affects trust level is gender. Male participants generally had a higher trust level than female
participants.

4.2.3 Subjective risk level

The Subjective Risk during the Following maneuver is presented in the Figure 15. The O ride
represents a cyclist riding on the route without the vehicle. The risk level increases when
participants meet the vehicle for the first time and remain unchanged in all further rides.
However, in the first ride the scatter is higher, and the population median is higher. This may
indicate that at the beginning of the experiment participants experienced a higher perceived risk
level. The Subjective Risk Level during the Following maneuver does not depend on the attributes
of the experiment. In the same way, trust to Following Maneuver has not changed depending on
the Gender and RHS objects. Some participants mentioned that they did not consider following
as a separate maneuver. Participants considered following as the first stage of the overtaking
maneuver, when the vehicle accelerated for overtaking. Furthermore, the following maneuver
had a greater following longitudinal distance than lateral distance of the overtaking maneuver.
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Based on these findings, the basic design of the main experiment was changed to ensure equal
conditions for maneuvers.

30,0
£
2
=)
©
18
T 2007
-
@
|
£
w —15,0 —115,0 15,0 150
x
@
=
S 1007 — —
2
=
=
» 5.0
0 T T T T T
0 1 2 3 4
Ride Number

Figure 15: Dependence of the Subjective Risk Level, when Following, on the Ride Number.
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Figure 16: Dependence of the Subjective Risk Level, when Overtaking, on the Gender of Participants; Overtaking Speed; RHS
Objects.

The subjectiverisk level during the overtakingmaneuver (Figure 16) is steadilyincreasing before
the last ride. The subjective risk level shows a dependence on all attributes of the experiment.
Male participants experienced a higher perceived risk level that female participants. The
overtaking Speed of +10 km/h looked more risky for the participants than the overtaking speed
of +5 km/h. The free right hand side (RHS) part, represented by an asphalt curb, was seen as
more dangerous than blocked by a red and white stripe RHS. Participants mentioned that a sense
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of blockage does not affect their risk level. However, the material of the blocking part mattered:
the curb is made of strong not-forgiving asphalt, and the red-white strip is safe and does not
harm the cyclist. The prototype of the blocked side was a parked car. Parked cars are made of
strong material and are dangerous for cyclist. The pilot-experiment shows that the red-white
strip does not simulate parked cars. In the main experiment, the RHS attribute should be adjusted
or removed.

The master thesis is aiming to answer whether the overtaking maneuver can be as safe for the
cyclist as the following maneuver. The pilot-experiment shows that the subjective risk when
overtaking was higher than the subjective risk when following. However, the pilot-experiment
shows that not all participants perceive following maneuver as an independent maneuver. A
preliminary analysis shows a negative correlation between the trust level and subjective risk
level (Figure 17).
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Figure 17: Correlation between the Subjective Risk Level and the Trust Level.

The master thesis research is also aiming to track the attitudes of participants to the automated
and conventional vehicles. A pilot-experiment shows (Figure 18) that the subjective risk level
both in the following and in overtaking maneuvers depends on the vehicle operating mode.
When the vehicle was in the automated mode, participants reported a higher perceived risklevel.
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Figure 18: Dependence of the Subjective Risk on the Operation Mode of the Vehicle.
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4.2.4 Recommended changes for the main experiment
4.2.4.1 Scenarios.

An individual analysis of the participants shows that the first participant has a stable growth in
risk levels throughout the entire experiment while other participants have a risk increase at first
followed by risk level decrease in their last ride (Figure 19). This is caused by the learning of
vehicle drivers. During the experiment with the first participant, drivers were more careful. In the
main experiment, additional time will be left for the pre-training of drivers.
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Figure 19: Dependence of the Subjective Risk Level on the Ride Number.

The combination of experiment scenarios for one participant includes designing different
combinations between attributes and assigning different attributes first. The Pilot-experiment
does not show a relationship between the use of the attribute first and the level of risk reported
by the participants. Furthermore, the Pilot-experiment does not show the effect of combinations
of attributes on the perceived risk. All combinations between speed and RHS objects shows the
same subjective risk level during an overtaking maneuver (Figure 20). The main experiment will
not pay attention to combining different right-hand side and different overtaking speeds. Also,
no scenarios will be scheduled when the experiment starts with a different RHS.
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Figure 20: Dependence of the Subjective Risk Level, when Overtaking, on the RHS objects.

The experiment developed the RHS attribute, taking as a prototype of the blocked RHS — parked
cars. The pilot-experiment shows that the red-white strip is not considered by the participants as
a real danger. The main experiment will not use any blocks in the RHS.
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4.2.4.2 Questionnaire.

The Trust questionnaire shows that respondents spend more time on the last questionnaire (13
min), less time on the first questionnaire (11 min) and the least time on the middle questioners
(8 min). All participants demonstrate a mean level of trust, or in other words no undertrust or
overtrust was found. All participants answered the reverse questions accordingly, showing
attention to the questionnaire. However, participants mentioned that questionnaire was too
long.

The questionnaire responses show that the participants did not change their attitude to the
section “intentions of the developers”(Figure 21). Following that, it was decided to exclude the
section “intentions of developers” from the questionnaires. To reduce the time needed to fill out
the questionnaire, sections “propensity to trust” and “reliability” were combined and the number
of questions was reduced.
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Figure 21: Dependence of the Trust Level on the Ride Number.

The risk scale seems redundant. Respondents did not select risk values above 40% on the risk
scale. The 100 % scale exceeded the maximum marked risk level but did not provide sufficient
accuracy for low risk levels. Many respondents chose the value of 20%, when it can be assumed
that they would like to choose 25% or 15%. For the main experiment, the scale can be modified
to have values in step of 5%. Also, all participants choose that they trust conventional vehicle
more than an automated one. It was impossible to verify how self-reported trust affects the
subjective risk level. Since the questionnaire on trust in technology shows sufficient results, the
main experiment will not include question about self-report trust in automated vehicle
technology.

4.2.4.3 Vehicle driving mode

After each completed scenario, the questionnaire asks the participant to guess which mode the
vehicle was operated during the experiment. Participants mostly choose the same operating
mode for both vehicle maneuvers in the same scenario. When participants choose the
automated mode of operation, they demonstrate a higher trust in automation (3,84). When they
choose manual mode, they show less trustin automation (3,39). In general, participants felt that
the vehicle was more often operated in manual mode.
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In the main experiment, the design of the experiment will be changed — following and overtaking
maneuvers will be carried in 2 different operation sessions. Participants will have a clear
difference between overtaking and following maneuvers. Also, the experiment organizer will
indicate for the cyclist when the vehicle is in automated mode, and when the car is in manual
mode.

4.3 Conclusion

The results of the pilot-experiment show a need to change the design of the interaction
scenarios. In the main experiment the number of rides will be increased to better capture the
participants learning and in one ride only one vehicle maneuver will be performed, either
following or overtaking. Additionally, before each ride the vehicle mode of operation, manual or
automated, will be pre-specified for participants.

Pre-chosen attributes show a correlation with the subjective risk levels. Analysis shows that the
relative distance may be the most influencing attribute, thus, for the main experiment,
overtaking distance will be tested with two levels. Also, the barrier side of the road will not be
used as it was designed to represent the parked cars and did not give a sufficient risk change. As
there was no difference in subjective risk for different combination of attributes and no special
reaction on the first met attributes, in the main experiment no special analysis will be held for
the combinations.

For the main experiment the questionnaire will be reduced, as the time of completion was too
long and pilot experiment showed that some parts were not changing and could be reduced.
Also, self-reported attributes point out a new influencing attribute: characteristics of the vehicle,
i.e. the vehicle size and noise, which will be included in the question about influencing
parameters. Additionally, the scale used for the self-reported subjective risk will be increased to
have a 5% step.
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5 Main experiment results

5.1 Experiment setup.

The main experiment took 3 days and involved 25 participants. The number of male and female
cyclists was almost equal (13 males; 12 females). As originally decided, all participants were from
the same age group (mean=25,4; std.=1,3). Each participant took 30 minutes to complete the
experiment. Each cyclist participated in 4 designed experiments and 1 familiarization route. Each
scenarioincludes 2 rides and in one ride the participant experienced only 1 maneuver: following
or overtaking. However, during 1 scenario participant experienced both: following maneuver and
overtaking maneuver. During the overtaking maneuver, the vehicle follows the participant for 20
seconds and then proceeds to overtake. The overtaking distance had two values: 1,5 meters and
3,5 meters. The following distance was 3 meters. In all interaction scenarios, the vehicle operated
in manual mode. However, for participants sometimes was pre-specified that the vehicle will be
operated in automated mode. After eachinteraction scenario, participants mentioned how they
perceive the interaction mode in this part of the route.

During the main-experiment, Lidars collect 5 measurements in 1 second and the GPS measured
5 position in 1 second, to have precise measurements of the passing stage of overtaking, which
in some cases took only 3 seconds. The accuracy of the measurements was verified and shows
that the measurement error of the Lidar is about 0-3 sm. The Figure 22 shows the measurement
accuracy of the GPS position of the bicycle and the GPS accuracy of determining the position of
the vehicle. The red dot indicates the GPS position captured by the equipment and the green dot
(or orange dot in the case of a bicycle) points the actual position of the vehicle. GPS
measurements of the bicycle position are also accurate. On other hand, the vehicle GPS does not
show accurate lateral coordinates. However, in this research we apply local coordinates in the
analysis and the position of the vehicle at the beginning of the route is fixed as a zero point. Thus,
the discrepancy between the captured and real vehicle positions do not affect the accuracy of
results.
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Figure 22: GPS accuracy (left picture: bicycle coordinates; right picture: vehicle coordinates)

During the experiment, the participant’s level of Trust, Subjective and Objective Risks, the
distance from the Bicycle to the Curb and the speed of the cyclist were measured. The Table 10
gives an overview of the number of observations collected.
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Table 10: Number of observations

Trust Subjective = Objective Distance to Speed
Level Risk Level Risk the Curb
Level
% Joules Meters Meter/Second
Overall 242 242 80 222 100
Perscenario: 60 60 20 55 25
Automated following
Automated
Number overtaking
of Manual following
observations | Manual Overtaking
Perscenariowitha 30 30 10 27 12
certain attribute of
overtaking

speed/distance
*Number of participants (25 participants did 10 rides; each participant did 4 scenarios)

Questionnaires collected trust and subjective risk levels after each ride, while the objective risk
level was calculated using the PDRF method for every 0,2 seconds of rides. A frequency of 0,2
seconds was chosen to capture the moment of overtaking, which takes less than 10 seconds. For
the analysis, the route was divided in three sections. For the following maneuver, the beginning,
middle and ending parts of the route were selected so that their ride duration was equal. For an
overtaking maneuver, the beginning part represents the time before overtaking, the middle part
corresponds to the overtaking maneuver and the ending part stands for the time when the cyclist
rode without a vehicle. The Figure 23 shows the route separation in case of overtaking maneuver.
For each part of the route the minimal, mean and maximum values of objective risk were also
calculated.
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Figure 23: The Overtaking Maneuver

The Table 11 provides an overview of the weather conditions on each day of the experiment. The
second day had the most comfortable weather conditions with moderate temperature and a
cloudy sky. Results show that trust levels on the 2" day were slightly higher and the subjective
risk lower than other days. The boxplots of the dependence of parameters on the weather
conditions are presented in the appendix.

Table 11: Overview of the weather conditions

Day 27 (1=t day) 28 (2™ day) 29 (3 day)
Weather Bright Sun, Clouds, A little rain,
+30 +20 +18
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Male participants show higher trust. The level of subjective risk is the same for both genders.
However, there is no high quartile on the boxplot of subjective risk for men, which means that
data on subjective risk for men is more consistent and does not exceed the median value. Male
participants also have a higher level of objective risk, which might be connected with higher trust
and lower subjective risk level. As male participants perceive interactions to be less risky, they
tend to be less cautious and ride closer to the car at a higher speed. The boxplots of the
dependence of parameters on the gender of participants are presented in the appendix.

Although a preliminary analysis reveals the influence of weather conditions and gender of
participants on the values of trust and risks, further analysis will not take these parameters into
account. The experiment design verifies thatin each group of scenarios there is an equal number
of participants from every day of the experiment and each gender group. During the experiment,
participants experienced 4 interaction scenarios and completed 10 rides. The analysis shows that
there is no clear dependence of the level of Trust and Risks Levels on the amount of interaction
with the vehicle. Following that, the further analysis will not take into account the ride number.

5.2 Attributes of the vehicle-cyclist interaction reported by participants.

During the experiment, participants reported attributes perceived as influencing on the
subjective risk level. For automated overtaking, manual overtaking and manual following
scenarios the most influencing attributes are distance to the vehicle, vehicle characteristics and
speed of the vehicle. For the Automated Following scenario additional importance was given to
the fact that vehicle had an automated driving mode. The Figure 24 shows the share of the
attributes reported as aninfluencing for all interaction scenarios.

Share of attributes that affect subjective risk level for all
interaction scenarios

Vehicle driving mode
(automated/manual)
15%

Distance to
the vehicle
31%

Vehicle characteristics
(size/noise)
24%

Speed of the
vehicle

. 20%
Objects on
the RHS (curb)

5% Attentiveness
of the driver
5%

Figure 24: Subjective Risk Level Attributes
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5.3 Preliminary analysis of the interaction scenarios.

5.3.1 Statistical analysis of the interaction scenarios

The experiment includes 4 interaction scenarios: automated following, automated overtaking,
manual following and manual overtaking. Each of these scenarios was analyzed in terms of trust
levels, subjective and objective risk levels, speed of cyclists and distance of cyclist to the curb.
The boxplot analysis eliminates the interactions between parameters interesting for further
analysis. For all mentioned below interactions between parameters were conducted statistical
tests presented in the appendix. The table below mentioned statistical tests that approve
statistical significance of the parameter interactions.

Table 12: Preliminary statistical analysis of the interaction scenarios

Statistical Null Hypothesis Bonferroni P-Value Conclusion
Test Correction (BC) after BC
The Wilcoxon | H,: There is no difference | a=0,01 p=0,001 There is
Test in the subjective risk level evidence that
of the overtaking maneuver the subjective
andthe subjective risk level risk varies per
of the following maneuver. maneuver.
The Wilcoxon | Hy?: There is no difference | a=0,0125 Mean objective | Thereis
Test in the objectiverisk level of risk: evidence that
the overtaking maneuver p=0,0014 the objective
andthe objectiverisk level riskvalue
of the following maneuver. Max objective varies per
risk: maneuver.
p=0,000
4,0 -
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Figure 25: Dependence of trust levels on the Interaction Scenarios

Boxplot (Figure 25) shows that the manual driving mode has a higher level of trust than the
automated driving mode. In automatic mode both the overtaking maneuver and the following
maneuver have the same level of trust, while the manual overtaking maneuver has a higher level
of trust than the manual following maneuver. The highest level of trust is found in the manual
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overtaking scenario. However, the manual following scenario and the automated following
scenarios have high values of the upper quartile, which indicates that some participants have
experienced greater trust in this scenario.
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Figure 26: Dependence of the Subjective Risk Level on the Interaction Scenarios

An analysis of the dependency of the level of Subjective Risk on Interaction Scenarios (Figure 26)
shows that all interaction scenarios have the same level of subjective risk. However, scenarios
with driving in the automated mode have higher upper quartiles than scenarios with driving in
the manual mode, which shows less coherence between the results of the risk level and indicates
that some participants experienced an even higher level of Subjective Risk. In addition to changes
in the Risk Level depending on the driving mode, the driving maneuvers also influence the Risk
Level: the overtaking maneuvers in both driving modes have higher upper quartiles and higher
whiskers than the following maneuvers. There is a statistical evidence that the subjective risk
level of the following maneuver is less than the subjective risk level of overtaking maneuver.
Overall, the scenario with the manual following maneuvers have the lowest level of Subjective
Risk.

As discussed above, to calculate the objective risk values, the initial route was divided in 3 parts.
The overtaking maneuver use the middle part in its analysis as in this part of the route the
maneuver takes place. For the following maneuver, it is necessary to choose a part of the route
for future analysis based on the values of objective risk, distance to the curb and speed of the
cyclist.

The minimum objective risk value is O for all scenarios. The following maneuver has the highest
mean and maximum values of Objective Risk in the last part of the route (Figure 27). For the
following maneuver, the minimum and mean distances to the curb reach the highest values in
the middle of the route, while the maximum distance to the curb reaches the highest value at
the end part of the route. The Mean and Minimum Speeds reach the highest values in the middle
of the route, while the maximum speeds reach the highest values at the end part of the route.
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Table 13: Following Maneuver

Min Objective Risk
Mean Objective Risk
Max Objective Risk
Min Distance
Mean Distance
Max Distance
Min Speed
Mean Speed
Max Speed

Analysis Results

Beginning
0

Middle
0

Highest Value

Highest Value

Highest Value
Highest Value

Ending
0
Highest Value
Highest Value

Highest Value

HighestValue

The middle part of the route was selected for future analysis of the following maneuver. There
are following and overtaking maneuvers on this part of the route and the middle part represents
the general behavior of cyclists. The ending part of the route may give biased results, as cyclists

are sure that the route

will end soon.
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Figure 28: Dependence of the Mean Objective Risk and Max Objective Risk on the Interaction Scenarios
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The boxplot of the objective risk versus interaction scenarios (Figure 28) shows that in the
following maneuver, the automated mode has higher mean and maximum values of the objective
risk level than the manual mode. For the overtaking maneuver, the maximum objective risk has
higher values in driving in the automated mode than in driving in the manual mode, while the
mean objective risk has higher values for overtaking in manual overtaking scenario than for
automated overtaking scenario. The following maneuver has lower mean and maximum
objective risks than the overtaking maneuver and there is a statistical evidence that the objective
risk for the following maneuver is less than the objective risk for the overtaking maneuver.
Changes in objective risk may be related to the changes in the distances to the curb and the speed
of the cyclist.
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Figure 29: Dependence of the Min, Mean, Max Distances on the Interaction Scenarios

The distances to the curb are almost the same for all interaction scenarios (Figure 29). In
overtaking scenarios, the minimum, maximum and mean distances are slightly lower than in the
following maneuver scenarios. Manual driving scenarios have a slightly higher minimum distance
than automated driving scenarios. The mean distance in the automated driving mode has higher
value than the mean distance in the manual driving mode.

The Mean Speed has higher values for the following maneuvers than for overtaking maneuvers,
while the Maximum speed has higher values for the overtaking maneuvers than for the following
maneuvers (Figure 30). Furthermore, the maximum speed has higher values for driving in
automated mode than for manual driving.
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Figure 30: Dependence of the Mean, Max Speeds on the Interaction Scenarios

5.3.2 Statistical analysis of the attributes.

Table 14: Preliminary statistical analysis of the attributes of the interaction scenarios

Statistical Null Hypothesis Bonferroni P-Value Conclusion
Test Correction (BC) | after BC
The Wilcoxon | Hy>:  There is no a=0,0125 p=0,03 There is statistical

Test difference between the evidence that the
mean values of the subjective risk for the
Subjective Risk for the overtaking with 3,5 m is
overtaking with lower than the subjective
distance of 1,5m and risk for overtaking with
overtaking with the 1,5 m.
distance of 3,5m for
driving in automated
mode.

T-Test Hy*:  There is no a=0,0125 p=0,003 ' There is statistical
difference between the evidence that the
mean values of the subjective risk for the
Subjective Risk for the overtaking with 3,5 m is
overtaking with lower than the subjective
distance of 1,5m and risk for overtaking with
overtaking with the 1,5 m.
distance of 3,5m for
driving in manualmode.

The Wilcoxon | Hy>:  There is no a=0,0125 p=0,009 @ There is statistically

Test

difference between the
mean distance to the
curb values for the
overtakings with the
distance of 1,5m and
overtakings with the
distance of 3,5m.

significant evidence that
the mean distance to the
curb for the overtaking
with 1,5 m is lower than
the mean distance to the
curb  when overtaking
with 3,5m.

Besides interaction scenarios, the experiment includes speed and distance as attributes for
overtaking. Each attribute has two levels. This sectiondiscusses the dependence of trust and risks
during scenarios of manual overtaking and automated overtaking on the speed of overtaking and
the distance of overtaking.
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Figure 31: Dependence of the Trust Level on Overtaking Speed and Overtaking Distance

Figure 31 shows that trust level in the overtaking maneuver with distance of 3,5 m has a slightly
higher level of trust than overtaking with a distance of 1,5 m. In automated overtaking scenarios,
overtaking at a lower speed has a higher level of trust. In manual driving, a higher speed during
overtaking have higher trust level.
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Figure 32: Dependence of the Subjective Risk Level on Overtaking Speed and Overtaking Distance

The Boxplot (Figure 32) shows that the subjective risk is higher for overtaking maneuvers with a
distance of 1,5 m and the statistical evidence approve that the subjective risk for the overtaking
with 3,5 mis lower than the subjectiverisk for overtaking with the 1,5 m. For driving in automated
mode, overtaking at lower speed has a higher level of subjective risk than overtaking at a higher
speed. The preference for a higher overtaking speed can be explained by comparing times of
interactions. Participants may perceive shorter interaction times as safer interactions.
Furthermore, analysis shows that overtaking with a low speed in automated mode perceived by
participants as riskier than overtaking in manual mode.
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Figure 33: Dependence of the Cyclist Distance to the Curb on Overtaking Speed and Overtaking Distance

The minimum distance has slightly higher values for overtaking maneuvers at a higher speed than
for overtaking maneuvers at a lower speed for both vehicle modes (Figure 33). In automated
scenario, overtaking with a distance of 3,5 m has a lower minimum distance value than
overtaking with a distance of 1,5 m. In manual overtaking scenario, the minimum distance to the
curb has higher values when overtaking with a distance of 1,5 meters.
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Figure 34: Dependence of the Cyclist Distance to the Curb on Overtaking Speed and Overtaking Distance

The Mean Distance to the Curb has higher values in overtaking scenarios with an overtaking
distance of 3,5 meters for both modes of vehicle operation and statistical test approve that the
mean distance to the curb for the overtaking with 1,5 m is lower than the mean distance to the
curb when overtaking with 3,5 m. For overtaking in the manual driving mode, the overtakings at
a higher speed have higher mean distance values (Figure 34).

5.3.3 Statistical analysis of the vehicle maneuvers for the same relative distances.

The preliminary analysis shows that there is dependency of trust, subjective risk and objective
risk on the relative distance between the vehicle and the cyclist. This section presents an analysis
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of the data from the interaction scenarios of overtaking maneuvers with 3,5 m and following
maneuvers with 3 m.

The Trust level has slightly higher values for the overtaking maneuver that for the following
maneuver. Also, driving in manual mode have slightly higher trust level than driving in automated
mode. Allinteraction scenarios have same level of subjectiverisk. However, the manual following
scenario have no higher quartile values. The automated following and automated overtaking
have higher whiskers, which indicates that the automated driving mode may have a higher
subjective risk level.

The max objective risk for overtaking maneuvers has much higher mean values than for following
maneuvers. The automated mode has a higher objective risk values than manual mode. However,
the boxplot of automated overtaking has big quartile and long whiskers, showing the incoherence
in max objective risk values.

The Wilcoxon text for max objective risk values shows with the p-value=0,001 that the null
hypothesis can be rejected. The null hypothesis is set as Ho®: There is no significant difference
between the mean values of the max Objective Risk for the following and overtaking maneuvers.
After the application of the Bonferroni correction (0,0125) there is still statistically significant
evidence that the Objective Risk of the following maneuver is lower than the Objective Risk of
overtaking maneuver.
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Figure 35: Dependence of the Trust, Subjective Risk and Max Objective Risk on the Interaction Scenarios
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5.3.4 Statistical analysis of the influence of the right hand side objects

Table 15: Preliminary statistical analysis of the influence of the Right Hand side objects

Statistical Null Hypothesis Bonferroni P-Value Conclusion
Test Correction (BC) after BC
The Hy’: There is no significant | a=0,025 p=0,000 The Distance to the
Wilcoxon | difference between the Curb of cyclistriding on
test mean values of the Distance the side with the curb
to the Curb forthe Grass on (asphalt) is higherthan
the side of the road and the the Distance to the
Asphalt on the side of the Curb of the «cyclist
road. cycling on the side of
the green grass.
The Hy%: There is no significant | a=0,025 p=0,000 The mean values of the
Wilcoxon | difference between the Cyclist Speed are
test mean values of the Cyclist higher in the case of
Speed for the Grass on the the grass on the RHS
side of the road and the thanin the case of the
Asphalt(Curb) on the side of Curb onthe RHS.
the road.
The H/,°: There is no difference | a=0,025 p=0,025 The relative distance
Wilcoxon | betweenthe mean values of on the side of curb is
test the Relative Distance on the lowerthanthe relative
side of the road with the distance on the side of
Green Grass and the side of grass.
the road of the Curb.
The Hy%: There is no difference | a=0,025 p=0,000 The trust level for
Wilcoxon | betweenthe mean values of driving  with  the
test the Trust Level when cycling asphalt on the RHS is
with the asphalton the RHS higher than the trust
and Trust level when cycling level for cycling with
when the green grass is on the grass on the RHS.
the RHS.

One of the attributes of the experiment is the right-hand side. This attribute has two values: the

green grass side and the asphalt side (Figure 36).

Figure 36: Right Hand Side Objects

The statistical analysis shows that the Distance to the Curb of cyclist riding on the side with the
curb (asphalt) is higher than the Distance to the Curb of the cyclistcycling on the side of the green
grass. The mean values of the Cyclist Speed are higher in the case of the grass on the RHS than in
the case of the Curb on the RHS. The relative distance on the side of curb is lower than the relative
distance on the side of grass. The trust level for driving with the asphalt on the RHS is higher than
the trust level for cycling with the grass on the RHS.
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5.4 Correlations analysis

Trust and subjective risk values are discrete, being collected once after each ride. Objective Risk,
cyclist speed, lateral distance to the curb, relative distance and relative speed are continuous
data, being collected for every 0,2 sec of each ride. The conversion of continuous to discrete data
may affect the validity of results. Two correlation analyses for non-parametric data sets
(Spearman correlation) were conducted. The correlation analysis null hypothesis was Hol: All
parameters used in the correlation analysis are independent of each other. The correlation matrix
for the discrete data set is present in the appendix. There is a statistically significant negative
association between subjective risk level and vehicle overtaking speed (p=0,005, rs= -0,268),
which indicates that an increase of overtaking distance is associated to an increase in subjective
risk levels. However, after application of Bonferroni correction (corrected a=0,003) the null
hypothesis could not be rejected. The strong negative correlation (p=0,000 rs=-0,428 a=0,001) is
between the trust Level and the subjective risk level: with anincrease in Trust Level the Risk level
decreases. Furthermore, there is strong positive correlation between trust level and objective
risk (p=0,000 rs=+0,487 a=0,001) for mean and max objective risk, and a mean negative
correlation (p=0,000 rs=-0,324 a=0,001) between the trust and max distance to the curb.

The Spearman Correlation Matrix for the continuous data ,presented on Table 16, shows that
there is a strong negative correlation between the Objective Risk and the Relative Distance
(p=0,000, rs=-0,778 a=0,005) and a strong positive correlation observed between the Relative
Distance and the Relative Speed (p=0,000, rs=0,574 a=0,005). The mean negative correlation is
between the relative speed and Objective Risk (p=0,000, rs=-0,28 a=0,005) and between the
Distance to the Curb and Objective Risk (p=0,000, rs=-0,11 a=0,005). A weak negative correlation
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appears between the Relative Distance and the Distance to the Curb (p=0,001, rs=-0,077 a=0,005)
and between the Relative Speed and the Distance to the Curb (p=0,002, rs=-0,068 a=0,005).

Table 16: Spearman Correlation Matrix for continuous data

Distance
Objective | to the Relative | Cyclist | Relative
Risk Curb Distance | Speed Speed

Spearma Objective Risk Comelation Coefficient 1,000 LT _7Te -033]  -z2ED
n'srho Sig. (2-tailed) ,00a 0,000 138 000
N 1988 1988 1958 1558 1988
Distance to the Gurb  Comelation Coefficient -110 1,000 N -035| -peEs”
Sig. (2-tailed) ,oDo J001 118 002
N 1988 1988 1988 1588 1988
Relative Distance Comelstion Coefficient -TTE Nirra 1,000 o053 574
Sig. (2-tailed) 0,000 001 018 000
N 1988 1988 1988 1958 1988
Cyclist Speed Comelation Coefficient -033 -038 o053 1,000 =013
Sig. (2-tailed) 136 118 018 574
N 1988 1988 15588 1558 1988
Relative Speed Comelation Coefficient -280° -088" 574 -013a 1,000

Sig. (2-tailed) ,ooo a0z 000 574
N 1988 1988 1958 1988 1988

== Comelation is significant at the 0.01 level {2-tailed).

=. Comelation is significant at the 0.05 level (2-tailed).

5.5 Participants learning analysis

Automated driving is new. Cyclists may have less trust on automated vehicle scenarios due to the
lack of familiarization. It must be checked if anincrease of the interaction time leads to a higher
trust. Trust, subjective risk and objective risk are non-parametric data. To see changes over time,
the Friedman test was applied. The experiment was designed in a way that for the same
participant the same interaction scenario will be repeated in a 15tand 3™ ride or in a 2" and 4t
ride, which means that inside the interaction scenarios the 15t and 2" ride was done by different
participants. The Friedman test conduct an analysis for every interaction scenario and for two
groups of participants. All results of the Friedman test are presented in the appendix. The
Friedman test shows no difference in trust, subjective risk Level and objective risk in 10 rides
time.

5.6 Generalized Linear Mixed Model

To getinsights on the relationship between non-parametric target parameters of trust, subjective
risk, objective risk and independent variables, the Generalized Linear Mixed Model (GLMM) was
applied. With respect to subjective risk and trust, one model was built for the all interaction
scenarios and another model was built for the overtaking scenarios with overtaking attributes.
With respect to objective risk, a GLMM was built. In the last model, trust and Subjective Riskwere
not included as parameters to avoid violation of continuous trust data with discrete trust and
subjective risk data.

Besides including fixed effects, the Linear Mixed Models can include random effects. Each model
was tested in four conditions: random effects, to see which random effect has significant
influence; influencing random effects; no random effect; and random intercept. The Akaike
Corrected and Bayesian criterion were compared between models and the one with the lowest
information criterion (and thus better model fit) was further analyzed. In all cases, random
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intercepts were further analyzed. All completed GLMM and comparison of the models fits for
each caseare presented in the appendix. This section presents the analysis of the chosen models.

5.6.1 The Generalized Linear Mixed Model for the subjective risk

Table 17: Input parameters for the GLMM for the subjective risk

Fixed Effects Random Effects
Subject: Participants number | Gender Random Intercept
Repeated measures: RHS
Rides number
Target: Subjective Risk Level | Interaction Scenarios

Max Objective Risk

Max Cyclist Speed

Mean Distance to the Curb

Trust
The GLMM originally considered max objective risk, max cyclist speed, mean distance to the curb
and trust as random parameters. This model shows no statistically significant intercepts for
random parameters. The model with only a random intercept shows the best model fit (Akaike
Corrected Criterion = 604,688; Bayesian=628,634) and was chosen for further analysis.

The fixed effects analysis shows the statistically significant (p=0,000) relationship between trust
level and the subjective risk level with a magnitude of -6,690. A trust improvement in 1 unit leads
to a reduction of predicted subjective risk in -6,690. In other words, two participants with the
difference in subjective risk level of 1 unit have a difference in trust level of 6,690. Furthermore,
the model shows a statistically significant (p=0,042 and p=0,039) relationship between
interaction scenarios and subjective risk. The magnitude of automated following is equal to
5,521, while magnitude of the automated overtaking is 5,930. Pairwise comparison shows the
statistically significant (p=0,033) relationship between automated overtaking and manual
following with the magnitude of 2,744. The regression equation for this model is as follows:

$=39,942 - 6,690y+ 5,521x + 5,930z

Where mean of the Subjective Risk = 39,942 for the participant with trust=0 and interaction
scenario with no vehicle. According to this model the Trust is the strongest individual predictor
in the model.

Table 18: Variables of the regression equation of the GLMM for the subjective risk

Variables = Description

S Subjective risk

Y Trust

X 1 for interaction with automated following and 0 for interaction with no vehicle
Z 1 for interaction with automated overtaking and O for interaction with no vehicle.
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95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig.
Lower Upper

Intercept 33 942 B8E77 4 B03 000 22,700 57 183
Trust -6 690 1379 -4852 000 -9.430 -3.950
Gender=female -0702 2831 0,248 805 -6.326 4923
Gender=male 00002

RHS=curb 0539 0825 0pg54 518 -2,178 1,089
RHS=grass 0,000%

MaxObjectiveRisk 0014 0,024 0581 563 -0,034 0,062
MeanDistancetothe Curb -8 384 5736  -14B2 47 -19.782 3013
MaxCyclistSpeed -0213 0912 0234 816 -2025 1,598
InteractionScenarios=automated - -
following 5621 2671 2067 042 0214 10,628
InteractionScenarios=automated -

overtaking 5930 2825 2099 038 0317 11,543
InteractionScenarios=manual 3188 2790 1142 257 5358 8729
following ' ' ' k e g
InteractionScenarios=manual - - -
overtaking 4 265 2844 1499 137 -1,387 9917
InteractionScenarios=no vehicle 00002

Probability distribution:Normal

Link function:Identity

3This coefficient is set to zero because it is redundant

Figure 38: Fixed effects
Interaction Scenarios q \ o 3% Confidence Interval
i Contrast Estimate W Std. Error t df Adj. Sig. ——————————————

Pairwise Contrasts J- 319 T — Upper
overtaking Ll -0,409 1290 -0317 B9 0,752 -2.873 2,155
automated following - manual -
following 9 2335 1208 1933 89 0,056 -0,065 4735
automated following - manual -

overtaking 1256 13719 o0an [:E] 0,365 -1.484 3.9%
automated following - no vehicle 5521 2671 2 067 83 0,042 0214 10828
automated overtaking - - - -
automated following 0,409 1290 0317 839 0,752 2,185 2973
automated overtaking - manual 2, T4
following 9 2744 1,265 2,169 89 0,033 0231 5257
automated overtaking - manual - —

overtaking 9 1665 1125 1479 89 0,143 0,571 3,901
automated overtaking - no 7

vehicle 9 5930 2826 2,099 89 0,038 0317 11543
manual following - automated -

following ] -2335 1208 -1933 B89 0,056 -4.735 0,065
manual following - automated 2 _

overtaking 2744 1265 22169 89 0,033 5,257 0231
manual following - manual 71 2 7
i ] -1.079 1342 -0p04 89 0,423 3,745 1,587
manual following - no vehicle 3,186 2790 1,142 83 0,257 -2,358 8,729
manual overtaking - automated 7

following 9 -1,256 1379 -0911 89 0,365 -3,996 1,484
manual overtaking - automated 7 -
overtaking 9 -1 665 1125 -1479 B9 0,143 -3.801 0571
manual overtaking - manual 7 - =
following 1079 1342 0,804 B89 0,423 -1.687 3745
manual overtaking - no vehicle 4 265 2844 1,439 83 0,137 -1,387 9917

no vehicle - automated following -5521 2671 -2067 B9 0,042 -10828 0214

no vehicle - automated 7
overtaking -5.930 2825 -2099 B9 0,039 <1543 -0317

no vehicle - manual following -3,186 2790 -1,142 83 0,257 8,729 2,358

no vehicle - manual overtaking -4 265 2844 -1,499 83 0,137 9917 1,387

Significant contrasts are shaded gold. The least significant difference adjusted significance level is .05

Figure 39: Pairwise comparison




5.6.2 The Generalized Linear Mixed Model for the subjective risk in overtaking scenarios

Table 19: Input parameters to the GLMM for the subjective risk in overtaking scenarios

Subject: Participants number
Repeated measures: Rides
number

Target: Subjective Risk Level

Fixed Effects Random Effects
Gender Random intercept
RHS Mean Distance to the Curb*

Interaction Scenarios
(Manual Overtaking and
Automated Overtaking)
Max Objective Risk

Max Cyclist Speed

Mean Distance to the Curb
Trust

Overtaking Speed
Overtaking Distance

The GLMM model considered max objective risk, max cyclist speed, mean distance to the curb,
trust, overtaking speed and overtaking distance as random parameters. This model shows that
the mean distance to the curb as a random parameter has statistically significant intercept.
However, the model with only a random intercept shows the best model fit (Akaike Corrected
Criterion =217,132; Bayesian=220,742) and was chosen for further analysis.

95% Confidence Interval
Model Term Coefficient ¥ Std.Error t Sig. ry— Upper
Intercept 46 481 1817 33933 000 22347 70615
Gender=female 1,024 2943 0348 730 -4.987 7036
Gender=male 0,000
RHS=curh -3.257 0675 -4827 000 -4635 -1,879
RHS=grass 0,000
L’:}::&ﬁgg;‘SCB“a'i"Fa““”"a“’“ 149 0820 1B (78 0,179 3,171
Lrs::laatlr‘tii:;Scenarqumanual 0,000%
Trust 6578 0351 7019 000 -8,621 -4.735
MaxObjectiveRisk -0,016 0p23 0709 Ag4 -0,082 0,030
MeanDistancetothe Curh -8,744 7720 1133 266 -24 510 7023
OvertakingSpeed=5 0877 0851 1030 311 2514 0,861
OvertakingSpeed=10 0,000
OvertakingDistance=1 2,206 0804 2745 010 0565 3,848
OvertakingDistance=3 0,000
MaxCyclistSpeed -0,308 1260 -0245 809 -2,881 2,265

Figure 40: Fixed Effects
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There is a statistically significant (p=0,000) relationship between right hand side object and the
Subjective Risk Level with a magnitude of -3,257. The Grass Side has higher Risk Level comparing
to the Curb Side. Moreover, there is a statistically significant (p=0,000) relationship between
Trust and Subjective Risk Level with a magnitude of -6,678. The improvement of Trust in 1 unit
leads to reduction of the predicted Subjective Risk on -6,678. If there are two participants with
the difference in Subjective Risk level of 1 unit their trust level will be different on 6,678.

There is a statistically significant (p=0,010) relationship between Overtaking Distance and
Subjective Risk Level with a magnitude of 2,206. The closer Overtaking Distance of 1,5 m has
higher risk Level than the overtaking Distance of 3,5 m. The regression equation for this model is
as follows:

$=46,481 -3,257 x - 6,678 y +2,206 z

Where 46,481 is a mean value of the Subjective Risk Level for the participant with a trust=0 riding
on the grass side of the road and experiencing overtaking scenario with the 3,5m lateral distance.
According to this model the Trust is the strongest individual predictor in the model.

Table 20: Variables of the regression equation of the GLMM for the subjective risk in overtaking scenarios

Variables Description

X lifitscurb and O ifitsgreen grass

Y Trust

z 1ifits1,5m overtakingand Oifits 3,5 m overtaking

5.6.3 The Generalized Linear Mixed Model for the trust

Table 21: Input parameters to the GLMM for the trust

Fixed Effects Random Effects
Subject: Participants number | Gender Random intercept
Repeated measures: RHS Subjective Risk Level*
Rides number
Target: Trust Interaction Scenarios

Max Objective Risk

Max Cyclist Speed

Mean Distance to the Curb
Subjective Risk

The model originally includes Max Objective Risk, Max Cyclist Speed, Mean Distance to the Curb
and Subjective Risk as random parameters. The model shows statistically significant intercept for
the Subjective Risk Level as a random parameter. However, the model fit analysis points that the
model with a random intercept shows the best model fit (Akaike Corrected Criterion =115,354;
Bayesian=139,3) and was chosen for further analysis.
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95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig.
Lower Upper
Intercept 3520 0,459 7 662 000 2607 4 433
Gender=female -0,215 0,251 -0,859 392 -0,713 0,283
Gender=male 0,000
RHS=curh 0,065 0,056 1,157 250 -0,046 0176
RHS=grass 0,000
InteractionScenarios=automated -
following 0,628 0,118 5,307 000 0,393 0,863
InteractionScenarios=automated - -
overtaking 0,478 0,139 3,436 001 0,202 0,755
InteractionScenarios=manual 0629 0123 5098 000 0384 0874
following ! ! ! ! ! !
InteractionScenarios=manual +q7
overtaking 0,536 014 3797 000 0,255 0,816
InteractionScenarios—no vehicle 00002
SubjectiveRiskLevel -0,024 0005 -4 672 000 -0,035 -0,014
MaxObjectiveRisk 0,004 0,002 2125 036 0,000 0,007
MeanDistancetotheCurb -0,792 0356 2225 029 -1,500 -0,085
MaxCyclistSpeed 0,131 0,054 2414 018 0,023 0,238
Figure 41: Fixed effects
Pairwise Contrasts

Interaction S q : . . 95% Confidence Interval

g‘afmis:gnnﬁa;l:t;ms Contrast Estimate W Std. Error t df  Adj. Sig. 7“\"9[ Upper

autamsle g et - | 5149 0079 1888 89 0062 0008 0,307
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g:{:m::‘;g ;’;’Ifu"sl';';“ - 0,149 0079 1888 89 0062 0307 0,008

?ﬂ'ﬁm;‘"‘;" L -l R 0085 1782 89 0078 0319 0017

o pina overtaking - manual g os7 0076 D760 89 0450 0208 0093

euiameietloverakinghn 0478 0139 343 89 0001 0202 0,755

MR L 0001 0072 0p0:0 89 0984 0142 0,145

following g g ¢ g o 0

anL il oeinaRalior =2 | 151 DoBs 1782 89 0078 -0017 0319

overtaking ' ’ b ’ ’ b

L'Lz’:‘:k'iﬂ:‘""""i“ﬂ -manual 0,094 0,087 1074 89 0286 0079 0267

manual following - no vehicle 0629 0123 5,098 83 0,000 0,384 0874

}:ﬁ:“;‘:'";““a"i“ﬂ B TEEN 0 032 0089 103% 89 0303 0269 0,085

g 2riaking - automated o7 0076 0760 89 0450 0093 0208

}:ﬁ:m'ﬂ;"e“a"i“g = B 0,094 Do87 1074 89 0286 0267 0079

manual overtaking - no vehicle 0536 0141 3797 89 0,000 0,255 0816

no vehicle - automated following -0 628 0118 -5.307 89 0,000 -0 863 -0393

239":;‘#"'; -] 0478 0139 343 89 0001 0755 0,202

no vehicle - manual following 0629 0123 -5,098 83 0,000 0874 -0,384

no vehicle - manual overtaking -0,536 0,14 -3.797 89 0,000 -0,816 -0,255

Figure 42: Pairwise Contrasts




In comparison with the no vehicle interaction scenario the highest level of trust has automated
following (p=0,000, magnitude=0,628) and manual following (p=0,000, magnitude=0,629).
Manual overtaking has mean value of trust (p=0,000, magnitude=0,536) and automated
overtaking have the lowest value of trust (p=0,001, magnitude=0,478). The pairwise comparison
shows no statistically significant relationship between scenarios with vehicles. There is a
statistically significant (p=0,000) relationship between Subjective Risk Level and Trust Level. With
the increase of the trust on 1 unit the Subjective Risk Level decreases on 0,024. There is a
statistically significant (p=0,036) relationship between max objective risk and trust level. With
increase of trust level on 1 unit the max objective risk increases on 0,004.

The mean distance to the curb decreases with the increase of trust level (p=0,029). Two
participants with the difference of trust in 1 unit will have difference in mean distance to the curb
of 0,792 sm. Max cyclist speed increases on 0,131 with a 1 unit increase in trust level (p=0,018).
The regression equation for this model has a following form:

$=3,520+0,628x + 0,478y + 0,629z + 0,536g — 0,024h + 0,004k — 0,792m +0,131n + 0,093

Where, 3,520 is a mean value of the Trust Level for the participant experiencing the subjective
risk level of 0, max objective risk of 0, riding with the distance to the curb 0 cm and max cyclist
speed 0 on the interaction scenario with no vehicle. In this model was fins statistically significant
(p=0,05) variability within rides of same participant equals to the 0,093. According to this model
the strongest individual predictor is a lateral mean distance to the curb.

Table 22: Variables of the regression equation of the GLMM for the trust

Variables Description

X 1 if automated following, O if no vehicle
Y 1 if automated overtaking, 0 if no vehicle
Z 1 if manual following, 0 if no vehicle

G 1 if manual overtaking, 0 if no vehicle

H Subjective Risk Level

K Max Objective Risk

M Mean Distance to the curb

N Max Cyclist Speed
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Residual Effect Estimate Std.Error z Sig. et S T
Lower Upper
Var(RideNumber=0) 0,164 0,088 1,876 061 0,058 0,467
Var(RideNumber=1) 0219 0,107 2,057 040 0,085 0,568
Var(RideNumber=2) 0,083 0,045 1842 065 0,029 0241
Var(RideNumber=3) 0,102 0,055 1,853 064 0,035 0,294
Var(RideNumber=4) 0,036 0,025 1,456 145 0,009 0,139
Var(RideNumber=5) 0,051 0,029 1,791 073 0,017 0,153
Var(RideNumber=6) 0,055 0,030 1833 067 0,019 0,159
Var(RideNumber=7) 0,123 0,063 1,965 049 0,045 0333
Var(RideNumber=8) 0012 0013 0924 355 0,001 0,101
Var(RideNumber=) 0,093 0,047 1,956 050 0,034 0,253

Covariance Structure:Diagonal

Subject Specification:ParticipantNumber )

The Icovelmance structure is changed to Scaled Identity because the random effect has only
one level.

Figure 43: Variability within rides

5.6.4 The Generalized Linear Mixed Model for the trust in overtaking scenarios

Table 23: Input parameters to the GLMM for the trust in overtaking scenarios

Fixed Effects Random Effects
Subject: Participants number | Gender Random intercept
Repeated measures: RHS
Rides number
Target: Trust Interaction Scenarios

Max Objective Risk

Max Cyclist Speed

Mean Distance to the Curb
Subjective Risk
Overtaking Speed
Overtaking Distance

The model shows the relation between Trust Level for overtaking and independent parameters.
As random parameters, model originally include: Max Objective Risk, Max Cyclist Speed, Mean
Distance to the Curb, Subjective Risk, Overtaking Speed and Overtaking Distance. None of the
random effects shows statistically significant influence. The model with the random intercept
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with the fit of Akaike Corrected Criterion =80,705; Bayesian=84,316 was chosen for further
analysis.

95% Confidence Interval
Model Term Coefficient ¥ Std.Error t Sig. m
Intercept 5,099 1,133 4,499 000 2,784 743
Gender=female -0,092 0212 -0434 BBT 0525 0341
Gender=male 00002
L’:}:;ﬂ:;‘sce"a““ﬁ““’”a‘e" 0073 0095 O07B9 448 0,121 0268
Lr::::taati‘tii:;ScenarioFmanual 0,000
RHS=curb 0,0Mm 0,102 0,402 B91 0,167 0249
RHS=grass 0,0002
SubjectiveRiskLevel -0,046 001z 3703 001 0,071 0021
MaxObjectiveRisk 0,005 0,003 1,687 02 -0,001 0010
MeanDistancetotheCurb -0,996 0701 -1420 166 -2,428 0437
MaxCyclistSpeed -0,042 0,144  -0,290 773 0,336 0252
OvertakingSpeed=5 0,102 0,102 1,000 325 0,106 0310
OvertakingSpeed=10 0,000
OvertakingDistance=1 0,118 0,102 1,159 256 -0,090 0326
OvertakingDistance=3 0,0002

Probability distribution:Narmal
Link function:ldentity

AThis coefficient is set to zero because it is redundant

Figure 44: Fixed effects

There is a statistically significant (p=0,001) negative relationship between Subjective Risk Level
and Trust Level. With the increase of the Subjective Riskon 1 unit the Trust Level decreases on
0,046. The regression equation for this model is as follows: $S=5,099 — 0,046x.

Where 5,099 is a mean value of the Trust level for the overtaking scenarios when participant
have Subjective Risk level equal to 0, and X is a Subjective Risk Level.

5.6.5 The Generalized Linear Mixed Model for the objective risk

Table 24: Input parameters to the GLMM for the objective risk

Fixed Effects Random Effects
Subject: Participants number Gender Random intercept
Repeated measures: Rides number | RHS
Target: Objective Risk Level Interaction Scenarios

Cyclist Speed

Distance to the Curb

Relative Speed

Relative Distance
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As the model describing the Objective Risk relation with independent parameters was used
model with the random intercept (Akaike Corrected = 14,433, Bayesian=15,512). Originally was
tested following random parameters: cyclist speed, distance to the curb, relative speed, relative
distance, but none of them could reach statistically significant level.

95% Confidence Interval
Model Term Coefficient ¥ Std.Error t Sig. —————————————————
Lower Upper

Intercept 10,085 1721 5861 000 5,710 13,459

Gender=female -0,498 1,375 -0,360 719 -3,1493 2,201

Gender=male o2

'F“:ﬁg‘:n":i‘il‘z‘“sce“"’i“:A“‘“ma‘ed 4,550 0516 8816 000 5,562 3,538

g‘:‘;’:ﬂ}:;sce"“'i":“““”"a‘““ 0636 0300 2419 034 0,047 1,225

'F";ﬁga‘;’:i‘il‘;"sw"“'i“=”a"“a' 4870 0526 -5,252 000 -5,903 -3,838

InteractionScenario=Manual 0a

Overtaking

RHS=Curh -1,000 0,194 -5,148 .aoo -1,381 -0,619

RHS=Grass 02

Distancetothe Curh -0,353 0,856 -0,413 680 -2,031 1,325

CyclislSpeed -0,486 0,199 -2,435 015 -0,877 -0,095

RelativeDistance -0,426 0,033  -13,026 ,aog -0,490 -0,361

RelativeSpeed 0112 0237 0472 63T -0,353 0,577

Probability distribution:Marmal

Link function:ldentity

3This coefficient is set to zero because it is redundant

Figure 45: Fixed effects
Pairwise Contrasts
: : 95% Confidence Interval

Interaction Scenario . P
EEfp o e (G e Contrast Estimate W Std. Error t df Adj. Sig. — Upper
Automated 5:2;‘:;;‘39 5,187 0438  -11855 1988 0000 65045 4329
Follawing.| Following - Manual g 370 0218 1468 1988 0142 0108 0748
Overiaind Following - Manual 4 55 0516  -8B16 198 0000 5562 3538
o tomated ‘F):ﬁ;‘:,'l‘r'"ég - 5187 0438 11855 198 0000 4329 6045
ﬁg}ﬂ,’;?}.‘;d ity - Ll W 0457 12043 1988 0000 4610 6,404
gﬂgﬁmfﬁg ERELEKIORNEUEIN () ¢ 0300 2113 1988 0034 0047 1208
Il:.ollow;an lowing - Automated 35 0218 1468 1988 0142 0748 0,108
Ovtrtaking "d - Automated 5 507 0457 12043 1988 0000 6404 4610
g‘gg#:l"if.';"“‘"i“g - Manual 4870 0526 9252 1988 0000  -5903 3838
,'!’;?;ﬁ:n%‘"’“a"i“g SeLCE It | oo 0516 8816 1988 0000 3538 5562
g’j:;:l"ig;"“a”“g -t R 0300 2113 1988 0034  -12%5 0047
Manual Overtaking - Manual 4870 0526 9252 1988 0000 3838 5903

Following

Significant contrasts are shaded gold. The least significant difference adjusted significance level is .05.

Figure 46: Pairwise Contrasts
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There is a statistically significant (p=0,000) relationship between Trust Level and the Subjective
Risk Level with a magnitude of -6,690. With the improvement trust on 1 unit the predicted
Subjective Risk will be reduced on -6,690. If there are two participants with the difference in
Subjective Risk level of 1 unit their trust level will be different on 6,690.

Also, there is a statistically significant (p=0,000) relationship between Right hand side object and
Objective Risk. The curb side have 1 Joule Objective Risk less than the Green Grass side.

Another statistically significant (p=0,015) relationship is found between Objective Risk and the
CyclistSpeed. With the increase of CyclistSpeed on 1 m/s the Objective Riskdeclines on the 0,486
Joules. It can be explained by the change in the relative distance, probably with the increase of
speed the vehicle driver tends to keep bigger distance between cyclist and car.

The relationship between Relative Distance and the Objective Riskis also statistically significant
(p=0,000). With the increase of the distance between objects on 1 m, the Objective Risk reduces
on 0,426 Joules. The same as if we compare 2 participants with the difference in related speed
of 1 m the Objective Risk will be different on 0,426 Joules.

A statistically significant (p=0,000; p=0,034; p=0,000) relationship exist between Interaction
Scenarios and Objective Risk Level. The Automated Following scenario comparing to the Manual
Overtaking Scenario have lower Objective Risk on 4,550 Joules. Also, Manual Following have
4,870 Joules less of Objective Risk comparing to the Manual Overtaking. While, the Automated
Overtaking scenario have 0,636 Joules more than Manual Overtaking. Overall, the lowest
Objective Risk in comparison with the Manual Overtaking have the Manual Following, while
Automated Following have slightly higher risklevel and the highest risk level out of all interaction
scenarios have the Automated Overtaking. The pairwise comparison shows that the Automated
Overtaking have higher Objective Risk than Automated Following on 5,187 Joules (p=0,000). The
Automated Overtaking have higher Objective Risk than Manual Following on 5,507 (p=0,000).

The regression equation for this model is as follows: S = 10,085 — 4,550x + 0,636y — 4,870z -1h —
0,486g — 0,426k

Where, 10,085 Joules of Objective Risk corresponds to the mean value of the Objective Risk for
the participant experiencing the interaction with manually overtaking vehicle on the side of the
road with green grass and cycling with a speed of 0 m/s and relative distance of 0 m. For this
model the strongest individual predictor is the interaction scenario with a manually following
vehicle.

Table 25: Variables of the regression equation of the GLMM for the objective risk

Variables Description

1 if automated following or 0 if no vehicle
1 if automated overtaking or O if no vehicle
1 if manual following and 0 if no vehicle

1 if curb side or 0 if grass side

Cyclist Speed

Relative Distance

A O T N < X
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5.7 Graphical analysis of parameter changes along the route

All dynamic graphs are shown in the appendix. This section discussed only graphs with significant
interaction effect between variables. The X axis of all graphs represents the % of the completion
of the route, recalculated from the travelling time that each participant took to complete the
route. Therefore, 100% stands for the time that participant spent to finish a route and 0% stands
for the first second of travelling.
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Figure 47: The Objective Risk along the route

The Figure 47: The Objective Risk along the route Figure 47 shows that overtaking maneuvers
have higher values of objective risk than the following maneuver. However, the duration of the
interaction time is higher in the case of the following maneuvers. Both interaction scenarios have
higher values at the beginning of the route, when participants are getting used to the bicycle and
did not yet stabilized their movement. The overtaking maneuvers have Objective Risk bursts at
the phase of approaching to overtake and coming back to the lane. The minimal value part of the
overtaking maneuver refers to the reduced probability of collision, given that objects moving
parallel to each other have a low probability of collision. Automated and Manual driving modes
have the same levels of objective risk for both vehicle maneuvers.

The Figure 48 shows the change of the Distance to the Curb according to the part of the
Overtaking maneuver. Cyclists start cycling closer to the curb when the vehicle goes parallel to
the cyclist and come back to the original distance after the vehicle returns to the lane in front of
cyclist. The Distance to the Curb have slightly lower values for the Automated driving mode than
for the Manual driving mode.

73



Automated Overtaking, Objective Risk

X0 Manual Overtaking, Objective Risk 1‘1
45 Automated Overtaking, Distance to the Curb 1
—_an Rk e Manual Overtaking, Distance to the Qurb =
2 40 - : 09 £
S 35 . i 0,8 =
_O, - ’ 5
230 : 07 ¢
w M =
e 25 H 0,6 =
w ] S
> 20 te 05 7%
o 1 ]
3 15 : 04 €
_C_f . =
o 10 03 2
5 0,2
0 0,1
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
% of the route
Figure 48: The Objective Risk and the Distance to the Curb along the route
50 ——Automated Overtaking Objective Risk 6,5
s Manual Overtaking Objective Risk .
—— Automated Overtaking Cyclist Speed ; 6
40 --v-"Manéa.:.\ Overtaking Cyclist Speed 5. .:':' . 55
8 35 sy A TR —_
E x JER
o)
=30 -
% 4,5 %
o 25 o
g 49
.; 20 .E
(8] =
Q 35
515 o)
(@]
10 3
5 \ 2,5
0 2

~N O mWwaoa N Wm
M < < < < nown

% of the Route

0 st~ O W 0 <t
wn 0 o~ ~ o0 (=2}

100 -

— m o o~ - ~
w ~ M~ 0 o a ()]

Figure 49: The Objective Risk and the Cyclist Speed along the route

The Figure 49 presents the cyclist speed and Objective risk along the route. We can observe that
the cyclist speed increases slightly when the vehicle overtakes it. At the same time, the speed
has higher values for the manual overtaking scenarios in comparison to the automated
overtaking scenarios.

The Figure 50 above shows interaction between the Objective Risk (blue line) and the Relative
Distance (grey line). The following maneuver graphs show a clear relation between decrease of
Relative Distance between the vehicle and the cyclist and the increase in Objective Risk. The
overtaking maneuver graphs also shows relation between Distance to the Curb and Objective

Risk. However, in the case of Overtaking maneuvers the Objective Risk also influenced by the
other attributes.
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Figure 50: The Objective Risk and the Relative Distance along the route
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Figure 51: Dependence of the Cyclist Speed on the Distance to the Curb

The Figure 51 of the cyclist speed and the distance to the curb along the route shows that cyclists
reach the highest speed in the middle part of the lane. When the cyclist goes closer to the curb
or closerto the vehicle lane the speed drops. For some cyclists the speed reduction for the lane
part closerto the curb is even largerthan the speed reduction for the parts closerto the vehicle
lane.

75



Trust group Trust group
—High trust: 4,8-4,9 | — High trust: 4,8-4,9
7,007 ~—Mean trust: 3,6-3,7 085 Mean trust: 3,6-3,7
Low trust: 3-3,3 Low trust: 3-3,3

/\/ — T
® — £ 0,807
£ 3
= (8]
T 6,00
8 2 /
Q bS]
‘w_' 2 SN
& 3 / N ~
= i / \ S
g £ 075 \ \
g o / \ / /
O £ / \ \
= 500 2

=
0,707
4,00 T 0,65

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
-5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Percent of the route Percent of the route

Figure 52: For different trust groups, the cyclist speed and distance to the curb along the route

Looking on the Figure 52 showing the change of the cyclist speed and the distance to the curb
with a time of the experiment, we can observe that the speed level has a slight change with time,
while the position of the cyclist on a bicycle lane (represented by the distance to the curb) varies
significantly.

To check how the trust level influences the behavior of cyclist, three groups of people were
defined: low level of trust, corresponding to trust level from 3 to 3,3; mean level of trust,
corresponding to trust level from 3,6 to 3,7; and high level of trust, corresponding to trust level
from 4,8 to 4,9. The higher trust group has higher cycling speed during the whole time of the
experiment and keeps their position on the lane more coherent. These two characteristics are be
interrelated, as to keep a high speed a certain balance have to be reached and with variation of
the position on a lane the balance can be lost. The mean trust group and low trust group have a
similar speed range. However, the low trust group have a big variation inits position on the lane.
The people with low trust level tends to vary their position more often and with bigger amplitude.

5.8 Observation studies

Participants show similarity in the behavioral pattern. In the following scenario appeara moment
when participant start looking back to check the vehicle behavior. The Figure 53 shows the

moment when participants start being worrying of vehicle behavior as then the distance from
the cyclist to the curb reduces.
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Figure 53: The Distance to the Curb along the route
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5.9 Discussion and summary

This chapter conducted analysis and obtained results on trust, subjective and objective risks and
attributes of interaction scenarios. The summary of results is presented in the Table 26. This
section discusses similarities and differences in the master thesis research findings and reviewed
literature findings, shown in the chapter 2. There was a research gap on the studies about the
behavior of cyclistin interaction with automated vehicle and in the risk perceived by cyclistin the
interaction scenarios. Some of the results obtained are unexpected, for example, related to
changes in behavior in risky interactions and to the perception of risk in interaction with
attributes. Possible reasons for these findings are discussed in this section.

Table 26: Summary of results

Subjective Risk Trust Objective Risk
Statistical Analysis Following < Overtaking Following < Overtaking
Boxplot, Wilcoxon test, T-test 3,5<15
Correlation Analysis -Trust -Subjective Risk +Trust
-Overtaking speed® +0hbjective Risk -Distance to curb
- Megative correlation - Max distance to the curb -Relative distance
+ Positive correlation -Relative speed
* After Bonferroni correction Relative distance + Relative speed
the null hypothesis can not be Relative speed — Distance to the curb
rejected Distance to the curb — Relative
distance
Generalized Linear Mixed Model | -Trust -Subjective Risk AF<MO<AOD
Curb < Grass +0bjective Risk MF<MO<AD
AF — automated following AF = no vehicle - Mean Distance to the Curb Curb<Grass
AQ — automated overtaking AQ = no vehicle + Max Cyclist Speed -Relative distance
MF — manual fellowing MF<AO + Learning with a time of -Cyclist speed
MO - manual overtaking 3,5<1,5 experiment
Graphical Anolysis Cyclist Speed highest in the Distance to Curb: lessin Interaction time less for
middle distance from curb following < overtaking Overtaking < Following
Cyclist Speed higher for people | Distance to curb:
with high trust manual < automated
Distance to Curb values vary less
for higher trust
Mean distance to curb
in1,5<in 3,5
Statistical Analysis Same Same Following < Overtaking
for Following with 3 m and
Overtaking with 3,5 m.
Stotistical Analysis Curb<Grass Grass<Curb Grass=Curb
of the RHS objects
Distance to curb: grass<curb
Cyclist speed: grass=curb
Relative distance: grass= curb

Research regarding cyclistand AV interaction are limited, since most of the literature focuses on
the interactions of pedestrians and AVs. Rodriguez Palmeiro et al. (2017), Bockle et al., (2017);
Habibovic et al., (2018); Merat et al., (2017) and Hagenzieker et al. (2018) show that pedestrians
generally feel less safe and behave more cautiously when interacting with AVs. The master thesis
research found that participants feel less safe, increase their speed and reduce the distance to
the curb during overtaking by AVs. However, for the following maneuvers there is no difference
in behavior and perception between automated and manual driving.

With respect to overtaking attributes, the literature shows that, from the side of the vehicle
drivers, anincrease in overtaking lateral distance leads to an increase in speed. Furthermore, at
a speed of 45 km/h vehicle drivers choose to overtake with 1,5 m distance and may sometimes
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overtake with a distance of 1 m (Debnath et al., 2018; Parkin & Meyers, 2010; Parkin & Schackel,
2014). The master thesis shows that for the cyclist the increase in distance and increase in speed
are always preferred. The mean speed of cyclist was equal to 14 km/h - 15,5 km/h, which means
that the vehicle was overtaking with the speed of 19 km/h - 25,5 km/h. In all cases, participants
prefer an overtaking distance of 3,5 m rather than 1,5 m.

Dozza, Schindler, Bianchi-Piccinini, & Karlsson, (2016); Dufour, (2010) mentioned that the mean
distance from the curb for cyclists is equal to 0,25 or 0,3m to the small curb or 0,6m to the big
curb. The master thesis research shows similar results as the mean distance that cyclists keep
from the curb in the scenarios with vehicles is equal to 0,76-0,81m, while in scenarios without
the vehicles the mean distance is 0,81m. This value corresponds to the middle of the standard
bicycle lane (of 1,5 m width). In the passing part of the overtaking maneuver, the distance to the
curb is reduced to 0,6-0,7 m.

Research of Chuang, Hsu, Lai, Doong, & Jeng, (2013); Walker, (2007) shows that the vehicle
drivers keep more distance while overtaking female cyclists than male cyclists. The research of
Yannis et al.,, (2013) reported that the gender of participants influence on their trust to
interaction with AVs. Both conclusions correspond to the findings of the master thesis research,
as analysis shows that female participants experience lower trust and higher subjective risk and
tend to go closer to the curb to keep larger lateral distance with the overtaking vehicle.

Chuang et al. (2013) claims that longer passing time influences the observed increase in speed of
cyclist. This study fully confirms this finding, showing that the speed of the cyclistincreases during
overtaking and that the cyclist prefers to be overtaken with a higher speed in order to reduce the
interaction time.

Research on the trust to automated vehicle technologies reports that under-trust may be cause
of the accidents with the system Hoff & Bashir, (2015). The master thesis researchdid not capture
any participant with under-trust. However, participants with reduced trust demonstrated
changed and unsafe behavior, varying frequently their position on the lane and causing loss of
balance. The danger of the opposite concept of over-trust to the system was mentioned by Lee
& See, (2004). Lee & See, (2004) also mentioned that people tend to over-trust the novel
automated vehicle system. Indeed, the master thesis research was able to capture some
participants with a high level of trust and these participants cycled with a much higher speed
than the others. However, the correlation between trust level and cycling experience is still not
fully understood.

Mayer (1995), Lee & See (2004) and Korber (2019) proposed the following questionnaire sections
to capture the change in trust levels: trust in automation, propensity to trust, intention of
developers, understandability and reliability. The research recognizes an influence of
“understandability” and “trust in automation” in the attitude of participants, which was not the
case for “intentions of developers”. “Propensity to trust” and “reliability” were corresponding
and had the same pattern of changes.

With respect to factors influencing trust level of participants, researchers reported that the most
influencing factors are speed of the vehicle and distance to the AV (Oxley et al., 2005; Rodriguez
Palmeiro et al., 2018; Yannis et al., 2013). The master thesis research obtained the same results.
However, the second most influencing factor on participants after the relative distance factor
was the vehicle characteristics, which stands for the size of the vehicle and the noise of the
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vehicle. This finding is in line with results from Yannis et al., (2013) and Weddell (2012) who
mentioned the size of the automated vehicle as an influecing factor. Rodriguez Palmeiro et al.
(2018) and Lagstrom & Lundgren (2015) found that pedestrians decisions not to cross in front of
AV was influenced by the driver inattentiveness. In the master thesis research, participants did
not pay significantattention to the driver behavior. The research from Rodriguez Palmeiro (2018)
and Lagstrom (2015) focused on interaction of pedestrians with AV, while in the thesis research
AV interacts with cyclist. Since cyclists concentrated on keeping balance and were barely able to
see the cardriver, they do not pay much importance to the eye contact with the driver. Besides
all mentioned above parameters, Lagstrom & Lundgren, (2015) found that weather conditions
can affect the interaction process, which was also observed in the master thesis research.
Participants show the biggesttrust and lowest subjective risk in day 2 with the temperature of
+20 in comparison to day 1 with +30 and day 3 with +18.

The study covers a research gap on the behavior of cyclistin interaction with automated vehicle
and the subjective risk appearing in interaction. Below discussed the unexpected findings and
possible reasons for these results.

The research shows that the objective risk increases with the reduction of the distance to the
curb. As distance to the curb is a parameter included in the probability part of the static risk field,
the negative correlation between distance to the curb and objective risk in the following
scenarios is expected. In the passing phase of the overtaking scenarios, the overtaking lateral
distance and distance to the curb are interrelated, which means that when the distance to the
curb reduces the lateral distance to the vehicle increases. This could help to reduce the Objective
risk, resulting from the superposition of kinetic and static fields. However, reduced distance to
the curb result in the increase in probability of the static risk field. On the other hand, increased
distance to the vehicle does not result in the lower kinetic risk, as probability of collisionin kinetic
field is influenced by the crossing of polygons. Also, in the passing stage vehicle’s and cyclist’s
polygons are not crossing. Thus, in the passing stage the main risk comes from the static object
and decrease in the distance to curb increases the objective risk. Following that, the changesin
cyclist behavior in risky situation, increase in speed and decrease in the distance to the curb
results into the less safe interaction.

One of the most common reason for the accidents is speeding. In order to keep the interaction
safe, all interacting objects should maintain the speed low. Participants were expected to follow
the low speed logic. However, the subjective risk analysis shows unexpected results: cyclists
prefer to be overtaken with the higher vehicle speed (in the research were assessed speeds
below 40 km/h) and cyclists increase their speed in the passing phase of the overtaking. The
negative correlation between subjective risk and overtaking vehicle speed can be explained by
the interaction time reduction with increasing of the speed of the vehicle. The positive
correlation between cyclist speed and subjective risk can be explained by the balance required
for more stable cycling. Cyclists slightly increase speed to be more dynamically stable.

Another unexpected result is related to the right-hand side objects analysis. Cycling was assumed
to be less risky near the green grass than near the asphalt pass. However, both subjective and
objective risks increase when cycling on the green grass side in comparison with cycling on the
asphalt path. Objective risk increases as cyclist starts cycling faster and closer to the curb,
influenced by the increase in Subjective risk. The higher trust of the participants for the asphalt
side can be explained by the factthat the curb is not high so participants may visually feel that
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the road is wider on the asphalt side and also perceive that they can always continue cycling on
the pedestrian path, while cycling on the green grass is more difficult.

As one of the explanatory attributes, the relative speed was examined. However, this parameter
did not provide a significant explanation for the level of risks changes. The vehicle driver was
concentrated on keeping a certain relative distance and used the speed of the vehicle to adjust
distance. As soon as the longitudinal relative distance reached the pre-defined value there is no
need for the car to accelerate, therefore the relative speed is low when the relative distance is
low. Thus, the analysis shows a negative correlation between objective risk and relative speed.
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6 Conclusion and recommendations

The operation of automated vehicles in shared areas requires attention with respect to the
interaction between AVs and vulnerable road users. There is a clear scientific gap on cyclist
perception when interacting with automated vehicles. Currently, the programmed interaction
behavior of AVs is based on the knowledge of the interaction between conventional vehicles and
cyclists. However, cyclists may react differently to conventional and automated vehicles.

This research is part of the I-AT project of the Royal Haskoning DHV. The |-AT project aims to
design a public transport line using automated shuttle buses. The Automated Shuttle Bus (ASB)
programmed behavior requires the shuttle bus to follow detected leading object in the
automated driving mode or overtake the object in manual driving mode. Following maneuvers
may have negative impact on the safety of the traffic situation and it is not clear which level of
Subjective and Objective Risks are experienced by the cyclists in this context.

This research investigates the potential interaction scenarios between automated vehicle and
cyclists to evaluate the subjective and objective risk resulting in each interaction scenario and
interaction attributes. The thesis methodology is based on a field-experiment. Cyclist perceptions
of the interaction process were assessed with respect to subjective risk and trust. Objective Risk
was assessed using the Probabilistic Driving Risk Field (PDRF) safety method.

This chapter discusses the main findings of the study, answers the research questions, discusses
the main practical contributions for the I-AT project, points out the limitations of the research
and gives recommendations for future research.

6.1 Key findings

To answer the main research question, firstly the research sub-questions are answered as
following:

5SQ 1: Which interaction scenarios are possible when an automated vehicle approaches a cyclist
from behind?

In general, the interaction scenarios between cyclists and automated vehicles can be divided into
two groups: scenarios when the vehicle is approaching cyclist from behind and crossing
interaction scenarios. Crossing interaction scenario refers to the case when the trajectories of a
cyclist and a vehicle cross each other. In this situation, cyclists have to make a decision whether
to let the vehicle pass first or cross first. Approaching from behind interaction scenarios refer to
the situation when a cyclistand a vehicle are moving in the same direction. In case the automated
vehicle is approaching the cyclist from behind, two sub-scenarios emerge, the first is following,
i.e. when the automated vehicle approaches the cyclist from behind and moves with the cyclist
speed, the second is overtaking, i.e. when the automated vehicle passes the cyclist. As this
research is part of the I-AT project, which aims to design a public transport line serviced by an
automated shuttle, in this study we focus only on the passing interaction scenarios, which are
more relevant for the I-AT. In addition, we focus only on scenarios where the vehicle and the
cyclist operate on shared areas, as these scenarios have higher risk levels. The literature review
reveals a gapin the knowledge about cyclistreaction on the maneuvers of the automated vehicle.
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To consider cyclist reactions on each operation mode, this research includes four scenarios:
automated following, automated overtaking, manual following and manual overtaking.

SQ 2: What is the cyclist subjective risk level for each of the interaction scenarios?

Perceived risk was assessed using self-reported subjective risk, trust and cyclist behavior. All
three measures are interrelated. Subjective Risk and Trust are negatively correlated. Cyclist
behavior, represented by cyclist speed and cyclist distance to the curb, changes for different
levels of Trust and Subjective Risk.

Self-reported subjective risk is higher for overtaking scenarios than for following scenarios.
There is no statistically significant difference in subjective risks for driving in automated mode or
in manual mode. However, Subjective Risk is negatively correlated with overtaking lateral
distance.

The pattern of cyclist behavior in the situation of high subjective risk was captured based on the
behavior of cyclistin the passing phase of the overtaking scenarios. The cyclist increases the
cycling speed and decreases the distance to the curb when the risk level rises. For the automated
driving the distance to the curb is reduced in comparison to the manual driving.

There is no evidence of significant change of trust in between interaction scenarios. As
participants feel extremely vulnerable in interactions with vehicle, they do not differentiate
between the levels inside the dangerous zone. This is supported by the fact that participants
mentioned the vehicle characteristics, size and noise, as the second most influencing factor,
which means that participants already feel unsafe in operation with vehicle itself. For all
interaction scenarios, participants with a higher rate of confidence have higher cycling speed and
keep distance to the curb more consistent.

One of the aims of the research was to assess the relation between the perceived risk and
objective risk. The self-reported subjective risk does not have significant correlation with the
Objective Risk. The discrete nature of the self-reported subjective risk value makes it difficult to
predict with which moment of the ride participants associate the reported risk level. Trust has a
positive correlation with the Objective Risk values, as increased speed of the cyclist with a high
trust level increases the Objective Risk. The behavioral subjective risk is highest during the
passing phase (as at this phase cyclist goes closer to the curb) while the Objective Risk has the
highest values during the steering away phase and the returning phase. Following that, it can be
concluded that there is a certain mismatch between perceived risk and objective risk.

5Q 3: What is the objective risk level for the interaction scenarios?

The objective risk level is a continuous measure, calculated for every 0,2 seconds of rides with
the Probabilistic Driving Risk Field safety algorithm. The overtaking maneuvers have higher
objective risk than following maneuvers. In following maneuvers, no significant relation was
found between the level of objective risk and the vehicle driving mode (automated/manual). In
overtaking, the highest values of Objective Risk participants experienced during the automated
driving. Overall, in overtaking maneuvers, Objective Risk has the highest risk values during the
steering away phase and the returning phase, while in the stage of passing the Objective Risk s
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low due to the low probability of the accident in the Kinetic Field. On the level of objective risk
has influence two attributes: the objective risk has negative correlation with the distance to the
curb, and negative correlation with the relative distance. The objective risk also has negative
correlation with the cyclist speed, as there is a positive correlation between the speed of cyclist
and the relative distance.

SQ 4: What are possible solutions to lower subjective and objective risks levels in the interaction
scenarios?

In the experiment two driving modes were tested, however the attributes have the same
influence for driving in manual and automated mode. The research found three main influencing
attributes on the risk levels.

Therelative distance between objects has negative correlation with the Objective and Subjective
Risks. In the scenarios where following and overtaking had same relative distance the Subjective
Risk and trust had same values for both interaction scenarios.

Another influencing attribute is a time of interaction, to maintain safe interaction the time of
interaction have to be reduced. The Subjective Risk declines when the overtaking speedincreases
and the interaction time decreases. However, there was no statically significant relationship
between vehicle overtaking speed and Subjective Risk after applying the Bonferroni correction.
The behavior of cyclistalso shows the need of reduction of the interaction time. In the end of
ride in the following scenarios, cyclistincrease their speed or participants start looking behind to
watch the following vehicle which result in loss of balance. In the overtaking scenarios, cyclists
have a higher speed and cycling closer to the curb during the passing maneuver, which can result
in the loss of balance and accident. Thus, a reduction in the time of the passing phase required
to reduce the time of dangerous behavior.

The right-hand side objects also have influence on the risk of interactions. For the interaction
scenarios with the grass beside the road the subjective and objective risks levels are higher and
trust levels are lower than on the asphalt beside the road. Analysis of parameters also approves
this influence, as on the grass side of the road the variation in the participant position on the
road is larger, the distance to the curb is smaller, and cyclist speed is higher. Originally, it was
assumed that the grass side of the road is less risky than the asphalt side of the road, and the
parameter of the rigidity of the road boundary object of the PDRF static field for the green grass
has less value than the one for the asphalt side. However, the Objective Risk for the green grass
side of the road is higher than the Objective Risk for the asphalt side.

Answers on the sub-questions allow to give arecommendation for the general research question:
Which interaction scenarios minimize Subjective and Objective Risks appearing when an
automated vehicle approaches a cyclist from behind?

There is a clear evidence that the overtaking maneuver has a higher risk level than the following
maneuver. However, the time of the interaction has high impact on the cyclist behavior and in
the overtaking scenario the interaction time is much lower. Thus, it can be concluded that for
short distances the following approaches are a safe option. Besides exact vehicle maneuver, also
mode of operations has an influence on the risk levels. For the following scenariothere is no clear
difference between modes. Following in automated mode has the same level of risk as following
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in manual mode. For the overtaking scenarios, the automated mode has clearly higher risk level
than the manual driving. The choice of the operation scenario is influenced by the available
relative distance. The higher the distance the lower the risk. For the wide street of 3 meters the
overtaking scenarios have same subjective risk as the following option. Besides overtaking with
a higher distance another recommendation could be to reduce the interaction time by overtaking
with a high speed, (in the research were assessed speeds below 40 km/h). Information about the
right-hand side objects should be considered for deciding over the vehicle operation parameter.
The streets with the green grass on their sides are perceived by cyclist as more dangerous.

6.2 Contribution for the I-AT project

This research aims to increase the safety of operation of the I-AT project Automated Shuttle Bus
by increasing awareness on the interaction processes with cyclists. It also aims to explore the
possibility of increasing vehicle operation time in the automated mode. As a result of the
research, three safety approaches are recommended to the |-AT project.

The direct outcome of this research can be used for training ASB drivers, by increasing their
awareness regarding the interaction process with cyclists. The driver's manual document and
trainings should explain the correlation between distance of overtaking and speed of overtaking
to the Subjective and Objective Risks and point out the importance of the different interaction
scenarios for different surrounding infrastructure, for example in the case of the influence of
right-hand side objects in cyclist’s behavior. The driver's manual can recommend the driver in
which interaction situations the vehicle mode has to be switched to manual and when the
Automated Shuttle Bus can safely operate in automated driving mode.

To provide an even more precise idea to the driver about the safety of interaction, adigital screen
can be built which shows in real time the value of the Objective and Subjective Risks and give
recommendation on the preferred behavior. Inthat case the Objective Riskcanbe assessedusing
the PDRF safety algorithm; the k values can be chosen based on the findings of this research; and
the Subjective Risk can be built up from the Trust and Subjective Risk equations of the
Generalized Linear Mixed Model GLMM.

Another safety approach relates to the route assessment protocol. The optimal behavior of the
vehicle in each part of the route can be assessed upfront using the GLMM regression equations.
The current approach of the I-AT project calculates the needed ASB operation conditions based
on the safety of each object in interaction separately, not taking into account the change of
behavior due to interaction between objects. The ASB safety approach is based on the required
lateral clearance for object to operate with a certain speed, and distance that the vehicle will
cover in case of system break before the human driver takes the vehicle control. Thus, the
approach that the ASB follows now is to reduce speed with the reduction of the available relative
distance (Bangarraju, Ravishankar, & Mathew, 2016; I-AT, 2019). This is a sufficient approach for
keeping the high safety level of the vehicle itself, as evidenced by the master thesis research
finding that the cyclist with a higher speed keeps a constant mean distance from the curb.
However, for the interaction scenario the current approach could be changed. This research
clearly shows that to reduce risk the time of interaction must be reduced, thereby increasing
overtaking speed even inthe shorter lateral distance scenarios increases safety of operation.
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6.3 Scientific contribution

-Assessment of the change of cyclist’s behavior and cyclist risk perception in the interaction with
automated vehicle.

There is limited practical evidence and research about cyclist perception of the interaction
scenarios with automated vehicles. The master thesis research contributes to cover this scientific
gap. The research shows the difference in perception of automated overtaking and manual
overtaking scenarios and no clear difference in perception of automated or manual driving in
manual mode. The research alsoshows changes in cyclistbehavior in interaction with automated
vehicles, which points out for AV developers the need to change the automated vehicle
programmed behavior. Additionally, this research shows that the basic trust to automation
changes over the time of experiment, showing that familiarity influences the trust to AVs and
that most of participants, even from the TU Delft University, are not fully familiar with the
concept of automated driving. It is important to mention that the methodology used for
assessment of cyclist behavior can be used to assess interaction between any other road users.

-Assessment of the correlation between Subjective Risk, Trust and Objective Risk and illumination
of other influencing attributes.

The study made a step in understanding the perception of cyclist of risk levels. The research
shows that overall the cyclist perception of the risk in interaction scenarios matches with the
calculated Objective Risk. However, looking more precisely there is a clear mismatch between
the moment of the highest Objective Risk and the moment of the highest perceived risk.
Furthermore, the reaction of cyclist on risk (increasing speed, decreasing distance to the curb)
shows a clear misunderstanding of the processes of appearing risk. Besides investigating
correlations between risks and trust, the research also looked at other influencing independent
parameters. A contribution to the existing body of research is made with the quantitative
explanations of the correlations between dependent and independent variables with the use of
GLMM equations.

-Implementation of the safety algorithm for the Objective Risk assessment

The novel concept for risk assessment named PDRF was not largely verified with existing field
experiments in the existing literature. The master thesis research is one of the few verifications
for the PDRF, especially with respect to Kinetic Risk, which is the risk originated from the
interaction with moving objects on the road. The thesis research clearly approves the possibility
for this risk matrix to reflect the interaction between moving objects. Regarding static objects,
the master thesis investigates the value of the road barrier type sensitivity factor (k) for the green
grass and asphalt pavements. Regarding the kinetic field, the research shows that the interaction
time is an important attribute of the interaction. The interaction time can be included in the
calculation of the probability of a collision, as with a longer interaction time the behavior of the
cyclist changes to less safe.
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6.4 Research limitations and recommendations for improvement.

Data collection

The experiment is a controlled field experiment, the designof the experiment could affect
the behavior of participants. To increase the credibility of the experiment, the naturalistic
experiment should be used.

The ethical committee put restrictions on the experiment conditions. Only experienced
cyclists were allowed to be invited for the experiment. In a group of experienced cyclists,
the experience level may vary. Looking at the data analysis, we can assume that trust may
be correlated with the experience level. Thus, for future research it might be beneficial to
include questions verifying the cycling level of experience.

During the experiment data was lost. Data from some rides was not available, due to an
equipment power loss. To avoid loss of power the car breaking must be done gently. Not
all participants could finish all rides, due to the bad weather conditions, therefore an
additional day of experiment can be planned in advance as a backup plan.

The vehicle GPS made a lateral distance accounting error due to the unfavorable
conditions in the troposphere. The mismatch was eliminated using the local coordinates
for calculation of PDRF.

The experiment vehicle was not an automated vehicle. Even though participants
perceived the experiment as arealistic, the vehicle behavior with the human driver differs
from the behavior of automated driving without a human inside. Also limited variations
in the behavior of human driver is possible from ride to ride. To prevent significant
changes in the behavior of a car, a second driver checked the overtaking speed and made
sure the car is overtaking on the required distance.

Data analysis

The Subjective Risk Value and Trust were collected one time per ride, which means that
these measurements are discrete. It is not fully known for which point of time in a ride
the participants reflect a certain reported value of risk and trust. For the trust parameter
this was a minor issue, because trust represents the basic trust, while for subjective risk
discrete nature of collected data was a disadvantage. To compare Subjective Risk with
independent parameters, which were collected continuously, each independent
parameter was recalculated to three discrete values: min, mean and max. The analysis
shows that this method does not fully cover the correlation between parameters. Thus,
future research can explore to implement standard deviation discrete parameter or to
collect subjective risk values as a continuous data. It also worth mentioning that the self-
reported risk level was not fully explanatory, as the size of the risk scale influenced
participants. In the pilot-experiment the scale had a step of 10% and cyclistreported risks
of 20% and 30%, which was on the 2"d and 3" place in the scale, while during the main
experiment the scale had a step of 5% and participants reported risk levels of 10% and
15% which is again on the 2" and 3" place in the scale. Future research can apply
continuous data collection instead of self-reported, for example with galvanic skin
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6.5

response device or eye-tracker devices. The master thesis research proves that the
position on the lane reflects the subjective risk level.

In the literature no evidence was found for the k value of the Static Field PDRF for the
green grass pavement, so the k value was assumed in a way that the Objective Risk was
reduced on 10%. This assumption was rejected. It did not affect the results, because the
relation between Objective Risk levels on the green grass side and asphalt side was
shown, and the riskis a relative value. However, for future research the k value has to be
corrected based on the findings of the master thesis research.

The data set for this analysis was not extensive. For some analyses the number of
observations were equal to 10 which could negatively affect the predictive power of
statistical tests. Researchers could use larger samples as they provide better
approximation to the whole population.

Further research

Scientific perspective

One of the key findings of the study is the positive relation between the risk level and
time of the interaction. However, at the high overtaking speeds, vehicle produces air
pressure that may affect cyclist’s balance and decrease safety of interaction. This research
focused on the accelerative overtaking in which the significant speed difference is not
possible. Larger speed differences are relevant for flying overtaking, when the vehicle
approaches the cyclist with a higher speed and overtake without following the object
(Dozza et al., 2016b). Further research may focus on analyzing higher overtaking speeds.

The research made a first step in understanding the cyclist subjective risk. It was proven
that a certain mismatch exists between the Subjective and Objective Risks, however the
data collection captured only discrete values of Subjective Risk. Further research can
include continuous values of the Subjective Risk.

The study points out the differences in the behavior of cyclist due to the right-hand side
objects, the research included a curb with a green-grass and a curb with an asphalt.
Further research can be held on other infrastructure types with the aims of investigating
changes in user behavior and proposing k (sensitivity due to the road boundary type)
values for the PDRF.

The research shows that the time of interaction is important for assessing kinetic risk. This
finding can be further implemented in PDRF to improve the probability part.

Participants mentioned the size and noise characteristics of the vehicle as a second most
influencing factor on the Subjective Risk. The methodology proposed in the master thesis
research can be directly applied to evaluate interaction with other types of road users,
including vehicles largerin size and with louder engines.
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Practical perspective

The research outcome can be used by governments and the CBR to increase awareness
of the cyclistand drivers about the nature of objective risk. The series of training can be
organized in schools and driving courses to explain the mechanisms that generate risk and
influencing factors. Potentially this educational program might decrease the number of
accidents.

Automated vehicle manufacturers can use the data collected from the experiment for the
automated vehicle learning. The GLMM regression equation may be an input to the
algorithm used for programming the vehicle behavior and the data collected during the
experiment may be an input for the modelling that will teach the AV when to overtake
and which interaction scenario to choose in different driving conditions. Also, the real -
road experiment data can be used for the verification of the novel driving algorithms.

The research proposes a method for assessing the risk of interaction between cyclist and
automated vehicle. The methodological steps can be further applied to assess the risk of
interaction between other road users. Especially this method will be applicable to the
interaction between pedestrians and automated vehicle.
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Abstract

The operation of automated vehicles in shared areas requires attention with respect to the
interaction between AVs and vulnerable road users, including cyclists. Currently, the
programmed interaction behavior of AVs is based on the knowledge of the interaction between
conventional vehicles and cyclists. However, cyclists may react differently to conventional and
automated vehicles. Therefore, this research applies field test experiment to investigate the risks
resulting from the interaction between cyclist and an AV. Four possible interaction scenarios
were investigated in within-subject design with overtaking speed, overtaking distance and right-
hand side objects as attributes. Objective Riskis assessed using the Probabilistic Driving Risk Field
and Subjective Risk is assessed based on the self-reported values, cyclist behavior and trust.
Results show that in general following has less risk than overtaking. Automated following and
manual following have the same level of Objective and Subjective risks, while the automated
overtaking has higher risk than manual overtaking. However, results also show that a larger
interaction time leads to an increase in cycling speed and decrease in the distance to the curb.
Furthermore, in the following maneuver the interaction time is higher than in the overtaking
maneuver. Besides high time of interaction, closer overtaking distance and green grass on the
right-hand side affect the increase in subjective and objective risks.

Keyword: <Automated Vehicle «Vulnerable Road Users «Subjective Risk «Objective Risk

Introduction

The operation of automated vehicles (AV) on shared roads means a constant interaction with
road users. The interaction with the vehicle drivers is possible for automated vehicles, as vehicle
drivers can share their intentions explicitly with turning signals and backup lights. Non-motorized
modes of transport, namely cyclists and pedestrians, mostly use implicit communication
channels such as eyes sign direction (Lagstrom & Lundgren, 2015), which is not yet possible for
recognition for automated vehicles. To prevent misunderstanding in communication between
AVs and Vulnerable Road Users (VRU), AVs are currently programmed in a way to minimize their
interactions with vulnerable road users. In interaction with cyclists, one of the possible
programmed behavior for the AV is to follow the cyclist at a rider speed (I-AT, 2019). Such a
behavioral approach is not efficientin terms of traffic operation performance. In addition, cyclists
may perceive being followed by a vehicle as dangerous.
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Previous studies investigated ways for safe communication between AVs and non-motorized
road users focuses on the interaction with pedestrians. Lagstrom & Lundgren (2015), Rodriguez
Palmeiro et al. (2017) Bockle et al., 2017; Habibovic et al., 2018; Merat et al., 2017 show that
pedestrians generally reported feeling less safe and behave more cautiously when interacting
with AVs. There are very few studies focusing on the interactions between cyclists and AVs.
Hagenzieker et al. (2018) conducted a questionnaire study on the behavior of cyclist. Participants
were asked to study photos of automated vehicle with different signs. The purpose of the
research was to investigate if the cyclist could correctly interpret when automated vehicles
noticed them and whether an automated vehicle would stop for them. Researches show that the
cyclist interacted more confidently with conventional vehicles than with automated ones
(Hagenzieker et al., 2018). Even though pedestrians and cyclists are both non-motorized modes
of transport and may have similarities in their behavior, cyclists still have special behavioral
features.

Minimizing the risk of interaction between AVs and Cyclist requires an investigation of the
changes of the Subjective and Objective risks due to the vehicle maneuvers and driving modes.
It is also necessary to investigate the changes in the behavior of cyclist according to time of
interaction and interaction with conventional or automated vehicle. Therefore, the research
question can be formulated as follows: Which interaction scenario minimizes Subjective and
Objective Risks appearing when an automated vehicle approaches a cyclist from behind?

In the research, passing interaction scenarios were considered, that refer to the situation when
a cyclist and a vehicle are moving in the same direction. In case the automated vehicle is
approaching the cyclist from behind, two sub-scenarios emerge. The first is following, i.e. when
the automated vehicle approaches the cyclist from behind and moves with the cyclist speed, and
the second is overtaking, i.e. when the automated vehicle passes the cyclist. The literature review
highlights a gap in the knowledge about cyclist reaction on the maneuvers of the automated
vehicle. In order to consider changes in the cyclist reactions on manual and automated operation
modes, this research includes four scenarios: automated following, automated overtaking,
manual following and manual overtaking.

On the risk of interaction besides the exact vehicle operation scenario also influence interaction
attributes.

For the attributes of the vulnerable road users and automated vehicle interaction, research were
mainly conducted on the pedestrian decision to cooperate with AVs. With respect to the decision
to cross the road in front of automated vehicle, the highest influencing factors are speed of the
vehicle and distance to the AV (Oxley, Ihsen, Fildes, Charlton, & Day, 2005; Rodriguez Palmeiro
et al., 2018; Yannis, Papadimitriou, & Theofilatos, 2013). Other factors influencing on the
pedestrian decision to cross in front of an AV are driver inattentiveness (Rodriguez Palmeiro et
al. (2018)), the vehicle deceleration level, familiarity of environment for pedestrian, weather
conditions, traffic volume level (Lagstrom & Lundgren, 2015), the size of the automated vehicle,
the gender of the pedestrians and whether pedestrian crossing alone or in a group of people
(Yannis et al., 2013).

The attributes corresponding to the overtaking maneuver were mainly assessed from the side of
the vehicle drivers. Research from Weddell (2012) shows that the lateral distance of passing
depends on the speed of the overtaking vehicle, the presence of an oncoming traffic, the size of
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the overtaking vehicle, the distance of the cyclist to the curb and the width of the bicycle lane.
The literature shows a correlation between the speed of an overtaking vehicle and the distance
that drivers keep to the cyclist. With a speed of 40 km/h drivers accept overtakings with passing
distance of 1-1,5 m (Parkin & Meyers (2010) of Parkin & Schackel (2014)), while for the speed of
60 km/h and higher the passing distance increase to the 2-2,5 m (Debnath, Haworth, Schramm,
Heesch, & Somoray (2018), Dozza et al., (2016)). Besides the characteristics of the overtaking
maneuver, the gender of a cyclist affects the distance of overtaking. Drivers of conventional cars
prefer to keep more distance from female cyclists than from a male cyclists (Chuang, Hsu, Lai,
Doong, & Jeng, 2013; Walker, 2007). Chuang et al. (2013) found that a longer passing time
influence on the observed increase in wheel angle and speed of cyclist.

As a result of literature review following attributes were chosen for the further analysis:
overtaking lateral distance, overtaking vehicle speed, right hand side objects.

Research methodology

The data collection method of the research is a field experiment. Using the data collected during
the experiment the Objective and Perceived risks were calculated. The objective risk was
captured with the Probabilistic Driving Risk Field safety algorithm. Perceived risk was assessed
using subjective risk, trust and cyclist behavior, where cyclist behavior is represented by the
cyclist speed and cyclist distance to the curb. Next, to verify how the target variables related to
the attributes, statistical analysis was conducted, including preliminary analysis, correlation
analysis, regression analysis, graphs analysis.

Experiment setup and data collection

The experiment consists of two parts — a pilot experiment and a main experiment. Results of the
pilot experiment provide improvements for the design of the main experiment. The main
Experiment took 3 days, included 25 participants (13 males and 12 females) from the same age
group (mean=25,4; std.=1,3), each participant did 10 rides. Four interaction scenarios were
tested: automated following, automated overtaking, manual following and manual overtaking.
Each scenario contains 3 within-subject variables (2 levels each): overtaking speed, overtaking
distance, right hand side objects.

During the experiment equipped bicycle and equipped vehicle were used. The bicycle was
equipped with 3 lidars, 2 cameras and GPS, and accelerometer sensors. The positioning of the
sensors can be seen in the figure below. The experiment vehicle was equipped with GPS,
accelerometer and camera. To collect a sufficient number of measurements in an overtaking
maneuver, Lidar and GPS sensors collect 5 measurements in 1 second. The experiment vehicle
was manually driven; however situations were pre-specified for participants when vehicle is in
automated mode and when vehicle is in manual mode.
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Front camera J/ Left side lidar

Right side lidar

Figure 54: Sensors placement at bicycle

The data collected during the experiment are summarized in the table below. Using the
questionnaire self-reported Trust and self-reported Subjective Risk were collected. Using
sensors, the position (lateral and longitudinal) and the speed of the vehicle and cyclists were
obtained. These measurements were used as an input to calculate objective risk. Additionally,
the distance to the curb were obtained for the cyclist.

Table 27: Collected data

Trust Subjective Objective Distance Speed
Level = Risk Level Risk to the
Level Curb
% Joules Meters Meter/Second
Number of Overall 242 242 80 222 100
observations Perscenario: 60 60 20 55 25
Automated following
Automated overtaking
Manual following
Manual Overtaking
Perscenariowitha 30 30 10 27 12
certain attribute of
overtaking

speed/distance
*Number of participants (25 participants did 10 rides; each participant did 4 scenarios)

Objectiverisk assessment

The objective Risk was assessed with the Probabilistic Driving Risk Field (PDRF) safety approach.
The PDRF is more sophisticated method compared to other Surrogate Measures of Safety
(SMoS). This is because the PDRF has severity and probability components, which better reflect
different situations (Bhusari, 2018) . For instance, some interactions with high severity
magnitude do not resultin an accident and interactions resulting in accidents do not always have
the same magnitude and effects. Secondly, the PDRF can consider simultaneously the risk of
collision with static and kinetic objects, which enhances the reality of risk modeling for
interactions with different objects. This approach also allows to combine both lateral and
longitudinal dimension risks simultaneously (Farah, Bhusari, Gent, Freddy, & Morsink, 2019).

The Probabilistic Driving Risk Field (PDRF) safety approach models the risk situation as a threat
that an object S experiences from object C, designed as an influence field. The PDRF include

96



Potential field strength and Kinetic field strength. The Potential Field Strength is associated with
the threat from the static road objects. The kinetic risk field strength is associated with moving
road objects (Mullakkal Babu, Wang, Arem, & Happee, 2017). The Total Risk combines risks
posed by multiple road objects based on the superposition property of fields (Mullakkal Babu et
al., 2017).

The Potential Risk can be calculated using the following formula:

_|rs,b|

R, s = 0.5kM(V,,)? -max(e” D ,0.001)

The crash severity is represented by the term O.SkM(VSIb)Z. The severity is the magnitude of
the crash energy that appears in the event of an accident between objects S and B. The crash

_lrs,bl
probability is defined by the term e o which ranges between 0 and 1.

Where: s —is a dynamic object experiencing influence from the static object.

b- is a static object influencing the dynamic object s.

k- is the parameter of the rigidity of the road boundary object with range from 0 till 1, where k=1
entail that the static object has infinite mass and is not deformed in case of an accident. For the
side of the road with the curb and an asphalt pedestrian path was used k=0,61 Mullakkal Babu
etal. (2017) and for the side of the road with the curb and the green grass side were used k=0,55.
M- is the mass of the dynamic object s.

Vs —is the velocity of the dynamic object S along 7,

75, —is the vector of the shortest distance between dynamic object s and static object b

D —is a steepness of descent of the potential risk field. For the master thesis research: D = %,

where W is the width of the object s. The collision probability reaches a value of 0.001 in the
center of the lane.

Kinetic Risk is represented by the following formula:
R, = 0.5MB*|AV,,*| - p(n,s)

Where S —is a dynamic object that is experiencing risk from another dynamic object.
n- is a dynamic object that influence on the considering object S.
M, —is a mass of the dynamic object.

B = MAi”M represents a mass ratio of the interacting objects.

S n
AV, =V, —V, denotes the counteracting velocity between dynamic objects S and n.
p(n,s) - the probability of a collision. The collision appears if two objects come at the same place
at the same time. Following that, the collision probability is characterized by a spatial overlap.

The crash probability changes in a range from 0 to 1.

The collision probability likelihood is related to the probability of the object n acceleration. We
know the trajectory of s and predict the trajectory of n. As the trajectory of n is unknown, the
acceleration is treated as a random variable. The variability of acceleration is represented as a
normal distribution and is equal to the relative likelihood of occurrence. The collision likelihood
can be found:
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AX—-AV,.-T AY—AVy'T
p,(ns|t) = N(Wlﬂx'ax)'N(Wluy'o—y)

Where:

N- is probability density function

U —is the mean of the distribution

o- is the standard deviation of the distribution

AX =X, — X, ;AY =Y, =Y, —relative spacing in longitudinal and lateral directions

AV, =Vy o = Vy 0 s AV, = Vi o — 1y , —relative velocity in longitudinal and lateral directions

The reachable state for interacting objects can be represented as quadrilateral polygon. The zone
O of potential collision zone is defined using the geometry of two interacting static objects. The
overlapping region O also has the shape of a polygon, as shown on the figure below. The region
O is converted to acceleration domain by the following formula:

B (x¢—x,(0))— Ven(0)- 7T

A€
x 0.5-72

AC = (yc B yn(o)) B Vy,n(o) T
Y 0.5- 72

Where x¢,y° denotes the corner positions of overlapping region O.

Figure 55: Geometric representation of polygons (Mullakkal Babuetal., 2017).

After the acceleration domain of the overlapping region O and the collision likelihood are found,
the collision probability can be obtained by integrating the joint acceleration distribution over

A0: p(n,s|t) = [, (N(Alpy o)) - N(4yly, 0,) - dA, - dA)
Subjective risk assessment

The interaction process demands reliance on the system. Failures appears if users misuse
automation by over-trusting the system, or if users disuse automation system by under-trusting
it (Hoff & Bashir, 2015). Lee & See, (2004) reported that people tend to over-trust novel
automated systems. Trust is not directly observable, which means that people can still cooperate
with an automated system even without trusting it (Kérber, 2019; Mayer, Davis, & Schoorman
D., 1995). People who trust the system and people who do not trust the system can behave
similarly. Data from sensors that collect skin response and heart rate cannot give useful insights
on trust. As the level of riskin the field experiment is similar to daily stress (Rodriguez Palmeiro
et al.,, 2017), only self-reported facts can reflect the real levels of trust and risk. Therefore, the
guestionnaires were applied to evaluate confidence of participants in response to automated
vehicles. The trust was assessed using the Kérber (2019) questionnaire on trust to technologies,
which include 6 parameters: reliability; predictability; familiarity; intention of developers;
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propensity to trust and trust in automation. Besides, trust also the behavior of cyclist was
examined. Cyclist behavior is represented by the cyclist speed and cyclist distance to the curb.

Statistical analysis

The statistical analysis includes the following steps: descriptive analysis, correlation analysis,
regression analysis, objective risk profile analysis. The statistical analysis shows the effects that
the interaction attributes has on the risk levels.

As research input data has a hierarchical design and a nonparametric nature, the Generalized
Linear Mixed Model (GLMM) (Dickey, 2010) was chosen for the data analysis. In hierarchical
design, the data is repeatedly collected from the same individual and thus the observations for
the same participant are correlated (West, 2009). The GLMM is a regression model that expresses
the relationship of the target variable from the independent variables and works with the non-
parametric target variable. The independent variables are described by fixed and random effect
groups. The fixed effects stand for the parameters that are constant for the participant, as fixed
parameters include all possible levels of parameter in the study design. For example, gender is a
fixed effect (Starkweather, 2005; West, 2009). Random parameters have by-subject and by-item
variation. By-subject variation is originated from the participants basic features of character and
by-item variation accounts for the differences in the conditions of each levels of each
independent variable (Winter, n.d.). To account for variation per participant the MLM assumes
random intercepts for each participant. The equation of the Mixed Linear Model can be written
as follows (Scharfenberger, 2013): S = (B, £ a;) + BX;; T b;

Table 28: Variables of the regression equation of the GLMM

Variables Description

i Subject

j Plot

S Dependent Variable Value

Bo The intercept estimates mean value

a; The variability between participants

B Fixed effects slope (rate of change), representing the difference to go down (or

up) on the slope from one value of parameter to another (Winter, n.d.)

X;i Matrix of fixed effects
bj Variability within one participant
Results

In this section we discuss the results of the experiment, analyzed using descriptive analysis,
correlation analysis, generalized linear mixed model and graphs.

Preliminary statistical analysis

Male participants show higher trust. The level of subjective risk is the same for both genders,
however data on subjective risk for men is more consistent and does not exceed the median
value. Male participants also have a higher level of objective risk, which might be connected with
higher trust and lower subjective risk level. As male participants perceive interactions to be less
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risky, they tend to be less cautious and ride closer to the car at a higher speed. Besides gender of
participants, alsothe weather conditions influenced target parameters. The day with the +20 and
cloudy sky had trust levels slightly higher and the subjective risk lower than other days.

The experiment includes 4 interaction scenarios: automated following, automated overtaking,
manual following and manual overtaking. Each of these scenarios was analyzed in terms of trust
levels, subjective and objective risk levels, speed of cyclists and distance of cyclist to the curb.
The boxplot analysis eliminates the interactions between parameters interesting for further
analysis and later were conducted statistical tests and applied post-hoc Bonferroni correction.
The following results were obtained.

The subjective risk level of the overtaking maneuver is higher than the subjective risk level of the
following maneuver (Wilcoxon test p=0,001 a=0,01. The objective risk level of the overtaking
maneuver is higher than the objective risk level of the following maneuver. (Wilcoxon test
p=0,0014 a=0,0125) For driving in an automated mode, there is statistical evidence that the
subjective risk for the overtaking with 3,5 mis lower than the subjective risk for overtaking with
the 1,5 m. (Wilcoxon test, p=0,03 a=0,0125) For driving in manual mode, there is evidence that
the subjective risk for the overtaking with 3,5 mis lower than the subjective risk for overtaking
with the 1,5 m. (T-test, p=0,003 a=0,0125)

There is statistically significant evidence that the mean distance to the curb for the overtaking
with 1,5 m is lower than the mean distance to the curb when overtaking with 3,5 m. (Wilcoxon
test p=0,009 a=0,0125) In the scenarios with the same relative distance while overtaking and
while following, the Subjective risk and Trust have the same value for both maneuvers. While the
objective risk is higher for the overtaking than for the following (Wilcoxon p=0,001 a=0,0125)

In the experiment were two right hand side objects scenarios. The Distance to the Curb of cyclist
riding on the side with the curb (asphalt) is higher than the Distance to the Curb of the cyclist
cycling on the side of the green grass. (Wilcoxon p=0,000 a=0,025). The mean values of the Cyclist
Speed are higherin the case of the grass on the RHS than in the case of the Curb on the RHS. (The
Wilcoxon test p=0,000 a=0,025). The relative distance on the side of curb is lower than the
relative distance on the side of grass. (the Wilcoxon p=0,025 a=0,025). The trust level for driving
with the asphalt on the RHS is higher than the trust level for cycling with the grass on the RHS.
(Wilcoxon test p=0,000 a=0,025)

Correlation analysis

The next step of analysis was related to the correlation analysis. Twocorrelation analysis for non-
parametric data sets (Spearman correlation) were conducted. The first data set corresponds to
the Objective Risk analysis with the continuous data set. The second data set corresponds to the
Subjective risk analysis with the discrete data set.

There is a statistically significant negative association between subjective risk level and vehicle
overtaking speed (p=0,005, rs=-0,268), which indicates that an increase of overtaking distance is
associated to an increase in subjective risk levels. However, after application of Bonferroni
correction (corrected a=0,003) the null hypothesis could not be rejected. The strong negative
correlation (p=0,000 rs=-0,428 a=0,001) is between the trust Level and the subjective risk level.
Furthermore, there is strong positive correlation between trust level and objective risk (p=0,000
rs=+0,487 a=0,001) for mean and max objective risk, and a mean negative correlation (p=0,000
rs=-0,324 a=0,001) between the trust and max distance to the curb.
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The Spearman Correlation Matrix for the Objective Risk analysis shows a strong negative
correlation between the Objective Risk and the Relative Distance (p=0,000, rs=-0,778 a=0,005)
and a strong positive correlation observed between the Relative Distance and the Relative Speed
(p=0,000, rs=0,574 a=0,005). The mean negative correlation is between the relative speed and
Objective Risk (p=0,000, rs=-0,28 a=0,005) and between the Distance to the Curb and Objective
Risk (p=0,000, rs=-0,11 a=0,005). A weak negative correlation appears between the Relative
Distance and the Distance to the Curb (p=0,001, rs=-0,077 a=0,005) and between the Relative
Speed and the Distance to the Curb (p=0,002, rs=-0,068 a=0,005).

Generalized Linear Mixed Model

To getinsights on the relationship between non-parametric target parameters of trust, subjective
risk, objective risk and independent variables, the Generalized Linear Mixed Model (GLMM) was
applied.

For the GLMM model for the Subjective Risk Level dependency on the independent variables,

only the random intercept was significant (Akaike Corrected Criterion = 604,688;
Bayesian=628,634). According to this model the trust is the strongest individual predictor in the
model. The regression equation for this model is as follows:

§=39942 — 6,609y + 5,521x + 5,930z

Where: Mean of the Subjective Risk = 39,942 for the participant with trust=0 and interaction
scenario with no vehicle.

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig.
Lower Upper

Intercept 39942 8677 4 603 000 22700 57 183
Trust -6 630 1379 4852 000 -9,430 -3950
Gender=female -0,702 2831 0248 805 6,326 4923
Gender=male 00002
RHS=curb -05839 0825 0BS54 515 -2,178 1099
RHS=grass 00002
MaxObjectiveRisk 0014 0,024 0,581 563 -0,034 0,062
MeanDistancetothe Curh -8 384 5736  -1462 147 -19,782 3013
MaxCyclistSpeed -0213 0812 0234 B16 -2,025 1598
InteractionScenarios=automated - -
following 5521 2671 2067 042 0214 10828
InteractionScenarios=automated -
overtaking 5930 2826 2,099 038 0,317 11543
InteractionScenarios=manual 3186 2790 1142 257 2 358 8779
following ' ! ' el e !
InteractionScenarios=manual 4965 2844 1 499 137 1387 9917
overtaking ! ! ! ! ! !
InteractionScenarios=no vehicle 0 0002

Probability distribution:Mormal
Link function:ldentity

3This coefficient is set to zero because it is redundant.

Figure 56: Fixed effects of the GLMM model for the Subjective Risk

For the GLMM model for the Trust Level dependency on the independent variables, the random
effect of the Subjective Risk Level was significant. However, the best model fit got the model with
101



the random intercept (Akaike Corrected Criterion =115,354; Bayesian=139,3). According to this
model the strongest individual predictor is a lateral mean distance to the curb. The regression
equation for this model has a following form: S = 3,520+ 0,628x + 0,478y + 0,629z +
0,536g — 0,024h + 0,004k — 0,792m + 0,131n £ 0,093

Where, 3,520 is a mean value of the Trust Level for the participant experiencing the subjective
risk level of 0, max objective risk of O, riding with the distance to the curb 0 cm and max cyclist
speed 0 on the interaction scenario with no vehicle. In this model was fins statistically significant
(p=0,05) variability within rides of same participant equals to the 0,093.

95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig. ——————————————————
Lower Upper

Intercept 3520 0,459 7 662 000 2607 4,433
Gender=female 0,215 0251  -0888 392 -0,713 0283
Gender=male 0 0002
RHS=curh 0,065 0,056 1,157 250 -0,046 0,176
RHS=grass 00002
InteractionScenarios—automated -
following 0628 0118 5307 000 0393 0863
InteractionScenarios=automated - -
overtaking 0,478 0,133 3,436 001 0202 0,755
InteractionScenarios=manual 0679 01723 5098 000 0384 0874
following ' ' ' ! ' '
InteractionScenarios=manual 0536 0141 3797 noo 07855 0816
overtaking § ! ! ! ! '
InteractionScenarios=no vehicle 0 000
SubjectiveRiskLevel 0,024 0005 -4E72 000 -0,035 0,014
MaxObjectiveRisk 0,004 0,002 2125 036 0,000 0,007
MeanDistancetotheCurb 0,792 0356 2225 029 -1,500 -0,085
MaxCyclistSpeed 0131 0,054 2414 018 0,023 0238

Probability distribution:Mormal
Link function:Identity

3This coefficient is set to zero because it is redundant.
Figure 57: Fixed effects of the GLMM model for the trust

The GLMM model for the Objective Risk dependency on the independent variables has random
intercept as a random parameter (Akaike Corrected = 14,433, Bayesian = 15,512). For this model
the strongest individual predictor is the interaction scenario with a manually following vehicle.
The regression equation for this model is as follows: S = 10,085 — 4,550x + 0,636y —
4,870z — 1h—0,486g — 0,426k

Where, 10,085 Joules of Objective Risk corresponds to the mean value of the Objective Risk for
the participant experiencing the interaction with manually overtaking vehicle on the side of the
road with green grass and cycling with a speed of 0 m/s and relative distance of 0 m.
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95% Confidence Interval

Model Term Coefficient ¥ Std.Error t Sig.

Lower Upper
Intercept 10,085 1,721 5,861 000 6,710 13,459
Gender=female -0,496 1,375 -0,360 KAt -3,183 2,201
Gender=male 02
InteractionScenario=Automated
Following -4,550 0,516 -8,816 000 -5,562 -3,538
InteractionScenario=Automated
Overtaking 0,636 0,300 2,119 034 0,047 1,225
L =5 e e e o= s 4870 0426 -9262 000 -5.903 -3.838
Following
InteractionScenario=Manual 0a
Overtaking
RHS=Curb 1,000 0194  -5146 000 1,381 0,619
RHS=Grass 0
Distancetothe Curh -0,353 0,856 -0,413 6a0 -2,031 1,325
CyclistSpeed -0,486 0,199 -2,435 015 -0,877 -0,085
RelativeDistance -0,428 0,033 -13,028 000 -0,440 -0,381
RelativeSpeed 0,112 0,237 0,472 63T -0,353 0,577

Probability distribution:Normal
Link function:ldentity

“This coefficient is set to zero because it is redundant.

Figure 58: Fixed effects for the GLMM model for the objective risk
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Figure 59: The Objective Risk along the route

The plot shows that overtaking maneuvers have higher values of objective risk than the following
maneuver. However, the duration of the interaction time is higher in the case of the following
maneuvers. Both interaction scenarios have higher values at the beginning of the route, when
participants are getting used to the bicycle and did not yet stabilized their movement. The
overtaking maneuvers have Objective Risk bursts at the phase of approaching to overtake and
coming back to the lane. The minimal value part of the overtaking maneuver refers to the
reduced probability of collision, given that objects moving parallel to each other have a low
probability of collision. Automated and Manual driving modes have the same levels of objective
risk for both vehicle maneuvers.
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In the overtakings, during the passing stage, cyclists start cycling closer to the curb, slightly
increasing speed, then come back to the original distance and speed after the vehicle returns to
the lane in front of the cyclist. The Distance to the Curb has slightly lower values for the
Automated driving mode than for the Manual driving mode. The speed has higher values for the
manual overtaking scenarios in comparison to the automated overtaking scenarios, which can be
explained as the trust level for the manual driving is higher than for automated driving and thus
the basic speed was always higher for manual driving that for automated driving.
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Figure 60: The Objective Risk, the Distance to the Curb and The Cyclist Speed along the route

In general, cyclists reach the highest speed in the middle part of the lane. When the cyclist goes
closer to the curb or closer to the vehicle lane the speed drops. Overall, the speed level has a
slight change with time, while the position of the cycliston a bicycle lane (represented by the
distance to the curb) varies significantly. This can be explained by the relation between speed
and balance, which hampers speed variation.

Participants from the higher trust group have higher cycling speed during the whole time of the
experiment and keep their position on the lane more coherent. These two characteristics are
interrelated, as to keep a high speed a certain balance have to be reached and with variation of
the position on a lane the balance can be lost. The mean trust group and low trust group cyclists
have a similar speed range. However, the low trust group have a big variation in its position on
the lane.

Conclusions

This section gives an overview of the conclusions reached during the research and a future
research that can be conducted based on the study outcomes.

The research aimed to investigate changes in the behavior of cyclist due to interaction with the
automated vehicles and recommend on the interaction scenarios resulting in the minimal
subjective and objective risks. There is a clear evidence that the overtaking has a higher
Subjective and Objective risk levels than the following. However, the time of the interaction has
high impact on the cyclist behavior. Towards the end of the following scenarios, the cyclist
increases the speed or cyclist starts looking behind to see the following vehicle, leading to losing
balance and approaching the curb. In the overtaking scenarios, during the passing stage the
cyclist reduces distance to the curb and increases speed, which results in a higher Objective Risk.
The interaction time is much lower for the overtakings than for followings. Thus, we can conclude
that for short distances the following is a safer option. Besides exact vehicle maneuver, also the
operation modes have an influence on the risk levels. For the following scenario there is no clear
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difference between operation modes. For the overtaking scenarios, the automated mode has
clearly higher risks levels than the manual driving.

The risk of the interaction scenariois alsoinfluenced by the available relative distance. The higher
the distance the lower the risk. For the wide street of 3 meters the overtaking scenarios have the
same subjective risk as the following option. Besides overtaking with a higher distance another
recommendation could be to overtake with a high speed (in the research speeds below 40 km/h
were assessed) to reduce the interaction time. Information about the right-hand side objects
should be considered for deciding over the vehicle operation parameter. The streets with the
green grass on their sides are perceived by cyclist as more dangerous.

Despite the promising results, this study has some limitations that could be improved in future
research. The experiment is a controlled field experiment, conducted with 25 participants from
the same age group. Researchers could use larger samples as they provide better approximation
to the whole population and could use naturalistic experiment to eliminate changes in the
behavior of participants due to the design of experiment. The experiment vehicle was not an
automated vehicle. Even though participants perceived the experiment as realistic, the vehicle
behavior with the human driver differs from the behavior of automated driving. Another
limitation comes from the discrete nature of the Subjective Risk. Values were collected one time
per ride and we do not know exactly which point of time in a ride reflects such reported value of
risk.

Besides future research related to the limitation of the research, the study outcomes also gives
input for the vehicle producers to improve the behavior of automated vehicle. The government
or the CBR can use this study to increase awareness of the cyclist and drivers about the nature
of Objective Risk.
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Appendix A: Experiment Setup

Comsent Form for the masterthesisresearch “Influence of automated vehicks actions on the jointrisk
level resulting from the interactions with cychists

Fleose tick the appropriote baxes Yes No

Taking part in the study

T have read and understood the study information dated (20.06.2019) or it has been read Lo o O
me. | have beenable 1o ask questions about the study and my questions have been answeres

to my satisfaction.

fconsent voluntarily to be a partiopant in this study and understand that ! can refuse to o 0O
answer guestions and can withdraw from the study at any time, withouthavingtogive a

reason.

| understand that during the expenment fwill be asked to cycle an the road shared with the O O
automated vehicle

| understand that Laking part in the study | give perméssion to be vide o recorded. Also, during o O
the experiment | would be asked tofillin electronic guestionnaires,

Videorecordings will be transcribed astext, and afterthe end of the master thesis research i)
video files will b= delsted.

Use of the information in the study

Lunderstand thatinformation | pravide will be used for the masterthesis repartand sciemtific O O
publications.

funderstand that personal infarmation collected about me that can identify me, such as the o 0
video recordings, will not be shared beyond the studyteam,

1 agree that my infarmaticn can be quoted in research outputs. o 0O
Future use and reuse of the information by others

1 give permission far the questionnaires and video files that | provide to be archived in the o 0O

Royal Haskoning data base in snoeymized transcript, so it can be used for future rosearch and
leaming.

Signatumes

Name of participant Sagnature Date
| have accurately read out the information sheet to the potential pamticipant and, to the bestof
iy abelity, ensured that the partidpant understands to what they are freely consenting.

M_%g_{fyfd

Researcher name Signature Date
Study cantact details for further information: Maria Oskina, ms maria.cskina@gmail.com

whatsapp, + 79160121669

Figure 61: Consent Form
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Introduction to experimant

Dzar Participant of the Experiment,

You are 3bout to participate in a field experiment as a part of 3 master thesis research. The
Master thesis is aiming 3t analyzing the interactions betwesn cydists and an automated
vehicle. Automated vehicle can operate both: in automated and manual mode.

During the experimant, you will be askad to cycle on the routs. The routs is represented below
on the picture. Orange color arrows represent cyching route. Stars repressnt the organizers of

the experiment. The experiment will start near the green star.

Figure 1 Exparitient Route

During the experimant, you will be recorded on camera. Later, recordings will be used to
conduct obssrvation studies. All video files will be deleted after the end of the master thesis
ressarch.

You will b= asked to fill in questionnaires, each questionnaire will take less than 2 minutes. You
already received the first questionnaire. Cther questionnaires will appear in different time
during the experiment. Plzase, on the route, always maks 3 stop near an organizer of the

experiment (location represented by the star imags on the map).

If during the experiment any difficulty occurs, you must immediately stop and inform the
organizers of the experiment,

Thank you for the collaboration!
Enjoy the experiment!

Figure 62: Introduction to experiment
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I-AT project questionnaire 1

1. What is your participant number?

2 What is your gender?

) Femzls

) Male

3. In the experiment, you will interact with the automeated vehicle.
Plezs= fill in the matriz for the automated vehicls system,

HErher disagres nor
Srrongly disagnes Rahar cisagras agrms Raher agnes

The ewtomated

wehicle system is

capabls of @] (@] Q @]
interpreting

situations correctly.

The swtomated

wehicle system works O O (o] o
reliahly.

| trust the automated

wehicle system. 0 ] 8] 8]

An automzted

vehicle system O O O O
failure is Likely.

The estomated

wehicle system is

capable of taking @] @] @ @]
over complicated

tEsks.

| can rely on the

automated vehicle O O 8] @]

system.
The ewtomated

wehicle system might
maks acaidentzl O O Q O
EITOrE.

| am confident about

the sutomated 0 0 0 0

vehicle system’s

capabilities.
Figure 63: Questionnaire 1

I-AT project questionnaire 2

1. What is the respondent number?

2 What was the level of risk that you experienced on this part of the routs?

5%

% 5% 205 Eh 0% 355 40% 45 %

other (pleass specify)

mouwrnd by
o SurveyMonkey
Sas how azey i b soache 2 aurvey.

Figure 64: Questionnaire 2

Strongly agree

B0 S and
higner

K&
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AT project questionnaire 3

1. What is the participart number?

2.'What is the scenario numbser?

3. How the vehicls was operated at this part of the route?

[ Automatically

[] manually (human driver controlled}

4 What was the level of risk on this part of the route?
50%and

5% 1o% B 0% 255 0% E% 40 % A5G higher

other (please specify]

E. Which parameters influence on the risk level you reportad?

() pistance to the vehicle

() gpeed of the vehicle

() Artentiveness of the driver

() Cbjests an the AHS

() vehicle characteristias (sizefnaiss)

O vehicle driving mods (automated imanual)

() other (please specify)

€. Please fill in the matrix

Hezher disagmes nor

Strongly disagnee. Aaher cisagee. agres Rarher agres. Strongly agres.

The system is
r=pable of

interprating o o o o
situations correcaly.
The system stats
was hwEys olear to
me.

The =ystem works:
reliably.

The system reacts
unpredictably.

| trust the system.
& system failure is
likely.

| was abls to
understand why
things happened.

The system is

capable of taking
over complicated o o o o

tasks
ths
il O o] O o]

The system might

make acidental ] 8] 9] O
EITOrs.

It's difficult to

identify what the ) 9] ) 9]
system will do next.

| am confident about
the system's (8] O (8] 9]

capabilitiss.

o o0 o Qo O
o o0 o a O
o o0 o Qo O
o o0 o a O

Figure 65: Questionnaire 3

Hia

O O oo o O
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Figure 66: Equipped bicycle
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Figure 67: Experiment location
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Appendix B: Pilot-Experiment Statistical Analysis

Attributes influencing the risk level (self-reported by participants)

Attributes influecing the risk level (mentioned by
participants)

Noise of the vehicle
17%

Figure 68: Attributes influencing the risk level (self-reported by participants)

Attributes influencing the risk level (pre-specified matrix)

Size of the vehicle during
following
5%

RHS objects during following
1%

Attentiveness of the driver
during following
2%

Figure 69: Attributes influencing the risk level (pre-specified by researcher)
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Figure 70: Dependence of the trust level in the gender of participants
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Figure 71: Dependence of the Subjective Risk Level, when Overtaking, on the Ride Number and Operation Mode of the Vehicle.
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Figure 72: Dependence of the Subjective Risk Level, when Following, on the Ride Number.
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Appendix C: Main Experiment Statistical Analysis

Figure 74: Boxplot analysis of gender attributes
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Distance to the Curb
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Figure 75: Boxplot analysis of the weather condition attributes
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Figure 76: Dependence of the Objective Risk on Overtaking Speed and Overtaking Distance
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Hypothesis Test Summary

Hypothesis Test Summary Null Hypothesis Test Sig. Decision
Mull Hypothesis Tast Sig. Dacizion The distributions of 1
MiddleMaxObjectiveRisk, 2 Related-
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Asymptotic significances are displayed. The significance level is 05.
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Figure 78: Friedman tests for analysis of participants learning
Spsarman Comstations
Middle,
Mickdle: Part | Mickdie: Part Memn | Mickde, Max
Subjecive Mean Mane Oijecive | Objocive Middie, | Middie, Min [Midde, Mz
Truet Rk Leroed Mickdle Part Min Distance Diztrcn | Distance Rizk Rk Mesan Spesesd]  Spesed Spesesd
Spermnartsrho | Trust Corredaiion 1,000 AR 05 203 a4 AT AsH 137 JES A7
Cofliciert
Sig. (2-tailed) 000 3 o 000 000 ol 73 50 A7
H 7 72 22 22 el 100 100 100 100 100)
Sutjecive | Correfafon A28 1,000 1B 140 1045 J057) 112 37| 05 a0y
Rizk Lewved | Coefiicient
Sig. (2-tailed) i) 013 sy A0 74 27 L /557 T
H 7 72 22 22 el 100 100 100 100 100)
Middie: Part | Correfaion i) 166 1,000 BT 7 Liic] 16| 06| 7] Lin)|
Min Coeficent
Distnce | Sig. (2-wiled) 35 013 000 000 2580 Beg 853 JBEY A5
H 22 el 22 22 el 100 100 100 100 100)
Middie: Part | Correfaion gris) 140 BT 1,000 A2 148 98| 059 124 e
Mean Coeficent
Distcs | Sig. (2-wiled) e Lix) 000 000 A4 50 81 A15 B3
N e el e e el 100 100 100 100 1008
Middie: Part | Correfaiion s J045 sa07 A2 1,000 v ) 0l 183 04 01
Mane Coeficent
Distcs | Sig. (2-wiled) i) A0 000 000 44 il A3 B35 A
N e el e e el 100 100 100 100 1008
Midde, Corredaiion AR7 J57 003 145 Beiv) 1,000 Al A4 255 A1
Mean Coeficent
Cijocive | Sig. (2-tailed) i) 74 a0 41 44 il JE1 10 A
Rizs N 100 100 100] 100] 100 100 100 100 100 1008
Midde, Max| Correfaiion A48 112 045 L1995 el A0l 1,000 A 0 20508
Ohjocive | Cosficient
Rk Sig. (2-tailed) 00 267 ] 050 i =] 000 2 304 A9
N 100 100 100] 100] 100 100 100 100 100 1008
Midde, Corraladion 37 Lixr] SO0 05 153 141 a0 1,000 054 e
Mesan Speesd Conficient
Sig. (2-tailed) A7 il 853 561 130 61 2 A7 0y
N 100 100 100] 100] 100 100 100 100 100 1008
Middie, Min | Correfafon J0G5) S5 017 J124 ] 255 JA04 058 1.000] 5R4
Spwsec] Cofiiciert
Sig. (2-tailed) A 557 A3 A5 B35 410 A0 AT 0y
N 100 100 100] 100] 100 100 100 100 100 1008
Midde, Max| Correfafon 72 J130) Liry| 048 001 J10) 050 04 SR 1,008
Speed Coeficier
Sig. | 2-taled) AT 770 i) B3 ==t A23 A19 00| 00|
M 100 100 100 100 100 100 100 100 100 100)
., Corradarion iz sigrifican o e 001 leved {2-tailed).

*. Correlafion is significan

fhoer 0105 lerwed {2l

Figure 79: Spearman Correlation Matrix for the discrete data
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Figure 80: Spearman Correlation Matrix for the discrete data

Generalized Linear Mixed Model

Figure 81: GLMM for the subjective risk

Subjective Subjective
Target Risk Level | |Target Risk Level
Probability Distribution MNormal Probability Distribution MNormal
Link Function ldentity Link Function Identity
Akaike Corrected 710744 Akaike Corrected 604 688
Information Criterion Information Criterion
Bayesian 752325 Bayesian 628 634

Information criteria are based on the -2 log likelihood (540,103)
and are used to compare models. Models with smaller
information criterion values fit better.

All random parameters

Information criteria are based on the -2 log likelihood (579 259)
and are used to compare models. Models with smaller
information criterion values fit better.

No random parameters
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Predicted Value
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Prohability Distribution

MNarmal

Link Function

Identity

Information Criterion
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and are used to compare models. Models with smaller
infarmation criterion values fit better.
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Residual Effect Estimate Std.Error z Sig. 2% Confidence Interval
Lower Upper

Var(RideNumber=0) 105 412 48 984 2182 031 42 398 262 080
Var(RideNumber=1) 108 571 50,250 2,161 031 43 528 268 953
Var(RideNumher=2) 7 166 4 758 1,606 132 1,950 26329
Var(RideNumber=3) 27 350 14 565 1919 055 10 065 77 B16
Var(RideNumber=4) 13194 7,230 1,825 065 4 507 38 623
Var(RideNumber=53) 12918 7105 1,818 063 4 396 37 961

Var(RideNumber=6) 28590 14 210 202 044 10,793 75733
Var(RideNumber=7) 12315 7344 1,745 081 4 169 39,402
Var(RideNumher=8) 8 858 5453 1623 105 2 BAT 29 B42
Var(RideNumher=) 9954 5980 1 BE& 095 3,066 32312

Covariance Structure:Diagonal

Suhject Specification: ParticipantNumber

The i::cwslu'iance structure is changed to Scaled Identity hecause the random effect has only
one level.

95% Confidence Interval
Random Effect Estimate Std.Error Fi Sig.
Lower Upper
Variance 17 287 9981 1,732 083 5576 53 BOO

Covariance Structure:Unstructured

Subject Specification: ParticipantNumber

The covariance structure is changed to Scaled ldentity because the random effect has
only one level,

Figure 82: Random intercept variation per ride and per participant

Figure 83: GLMM for the Subjective Risk Level of overtaking scenarios
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Subjective Subjective
Target Risk Level | | Target RiSJk Level
POy L i T 0 Normal Probability Distribution Normal
Link Function Identity . . )
Link Function Identity
Akaike Corrected A
Mifistnifen Tl Akaike Corrected 277 838
Bayesian Information Criterion
Bayesian 278 585

Information criteria are based on the -2 log likelihood (237 676)

and are used to compara models. Models with smaller
information criterion values fit better.

aCannot be computed due to a numerical problem.

All random effects included

Infarmation criteria are based on the -2 log likelihood (241,172)
and are used to compare models. Models with smaller
infarmation criterion values fit better.

Random parameter: mean distance to curb

Subjective Subjective
Target Risk Level | | Target Risk Level
Probability Distribution MNormal Prohability Distribution MNormal
Link Function Identity Link Function Identity
Akaike Corrected 217132 Akaike Corrected 227 182
Information Criterion Information Criterion
Bayesian 220,742 Bayesian 231,535

Information criteria are based on the -2 log likelihood (190,132)
and are used to compare models. Models with smaller
information criterion values fit hetter.

Random Intercept
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All random effects

Information criteria are based on the -2 log likelihood (204 ,325)
and are used to compare models. Maodels with smaller
information criterion values fit better.

No random effect
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30,0
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20,0

Predicted Value
o
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5,0
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® @ o om@m»
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0,0

00
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T T T
50 100 150 200 250 300 0,0
Subjective Subjective
Risk Level Risk Level

Random intercept No random effect

95% Confidence Interval

Residual Effect Estimate Std.Error z Sig.

Lower Upper
Var(RideNumber=1) 15636 233979 0g52 a4 0774 315,890
Var{RideNumber=2) 0042 37 645 0,001 999 0,000
Var{RideNumber=3) 16523 21565 0 766 A44 1,280 213328
Var(RideNumber=4) 27829 28774 0370 332 3 636 210615
Var{RideMumber=5) 4713 13,764 0342 732 o015 1442281
Var(RideNumber=6) 57932
Var(RideMumber=¥) 4 953%
Var{RideNumber=8) 0,000 10,267 0,000 1,000 0,000

Covariance Structure:Diagonal

Subject Specification:ParticipantMumber

3This parameter is redundant.

The covariance structure is changed to Scaled ldentity because the random effect has only
one level.

95% Confidence Interval
Random Effect Estimate Std.Error z Sig.
Lower Upper
Variance 19562 21838 0,896 370 2194 174 448

Covariance Structure:Unstructured

Subject Specification:ParticipantMumber

The covariance structure is changed to Scaled Identity because the random effect has
only one level.

Figure 84: GLMM with random intercept
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Predicted Value

Figure 85: GLMM for the objective risk

Target Ohjective Risk | | Target Objective Risk
Probability Distribution Marmal Probability Distribution MNarmal
Link Function ldentity Link Function Identity
Akaike Corrected 278 428 865 Akaike Corrected 14 605,200
Information Criterion Infermation Criterion
Bayesian 279 580,723 Bayesian 15 679,185

Infarmation criteria are based on the -2 log likelihood
(277 946 744) and are used to compare models. Models with
smaller information criterion values fit better.

Infarmation criteria are based on the -2 log likelihood (14 160,209)
and are used to compare models. Models with smaller
information criterion values fit better.

All random No random
Target Ohjective Risk
Probability Distribution Marmal
Link Function ldentity

Akaike Corrected 14,433,864
Information Criterion
Bayesian 15,512,969

Information criteria are based on the -2 log likelihood (13.986 397)

and are used to compare maodels.

Muodels with smaller

information criterion values fit better.

Random intercept
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Count

@1.400
@1.200
@1.000
@s00
Qn00
Quano
Q200
Co

100,000000000000000—

73,000000000000000-

Predicted Value

50,000000000000000-

25,000000000000000—]

0,000000000000000—]

T T T
0,000000000000000 | 50,000000000000000 | 100,000000000000000
25,000000000000000 75,000000000000000

Objective Risk

Randomintercept

95% Confidence Interval

Random Effect Estimate Std.Error Fi

Sig.

Lower Upper

Variance 4,443 2,320 1,915 055 1,597 12,363

Covariance Structure:Unstructured

Subject Specification:Participanthumber

The covariance structure is changed to Scaled Identity because the random effect has
only ane level.

Figure 86: Random intercept variance per participant

Figure 87: GLMM for trust

Target Trust Target Trust
Probability Distribution Nermal | | Probability Distribution Normal
Link Function ldentity Link Function dentity
Akaike Corrected 115,354 Akaike Corrected 285 404
Information Criterion Information Criterion
Bayesian 139 300 Bayesian 326 985
Information criteria are based on the -2 log likelihood Infarmation criteria are hased on the -2 Iu? likelihood
(89 ,925) and are used to compare models. Models with (214 763) and are used to compare models. Models with

smaller information criterion values fit better.

Randomintercept

smaller information criterion values fit better.

All random parameters

Target Trust
Prohability Distribution Mormal
Link Function Identity
Akaike Corrected 119911
Information Criterion
Bayesian 147 410

Information criteria are based on the -2 log likelihood
(83 057) and are used to compare models. Models with
smaller information criterion values fit better.
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Subjective Riskasarandom parameter
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Figure 88: GLMM with a random intercept
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Residual Effect Estimate Std.Error z Sig. 9% Confidence Interval
Lower Upper
Var(RideNumber=0) 0,164 0,088 1876 061 0,058 0467
Var(RideNumber=1) 0213 0107 2057 040 0,085 0,568
Var(RideNumber=2) 0,083 0,045 1,842 (0E5 0,029 024
Var(RideNumber=3) 0,102 0,055 1,853 064 0,035 0,294
Var(RideNumber=4) 0,036 0,025 1,456 145 0,009 0,133
Var(RideNumber=5) 0,051 0,029 1,791 073 0017 0,153
Var(RideNumber=6) 0,055 0,030 1833 067 0019 0,159
Var(RideNumber=7) 0123 0063 1965 049 0,045 0,333
Var(RideNumber=8) 0,012 0013 0924 355 0,001 0,101
Var(RideNumber=) 0,093 0,047 1,956 050 0,034 0,253

Covariance Structure:Diagonal
Subject Specification: ParticipantNumber
The covariance structure is changed to Scaled Identity because the random effect has only

one level.
95% Confidence Interval
Random Effect Estimate Std.Error z Sig.
Lower Upper
Variance 0,145 0,078 1,859 0E3 0,051 0416

Covariance Structure:Unstructured
Subject Specification:ParticipantMumber
The covariance structure is changed to Scaled |dentity because the random effect has

only one level.

Random Effect Estimate Std.Error z Sig. 3% Confidence Interval
Lower Upper

UN (1,1) 0,001 5938 0000 1000 0,000
UN 2,1) 0013 0410 0031 976 0816 0,791
UN (2.2) 0072 0013 5502 000 0,051 0,103
UN (3,1) 0,000 0172 0002 998 0,336 0337
UN (3.2) -0,0002
UN (3.3) 00722
UN 4.1) 0,085 2070 004 967 4,143 3972
UN (4.2) 0013 0303 0042 967 0581 0,607
UN (4,3) 0000 0215 -0002 998 0423 0422
UN 4.4) 0,196 3574 0058 956 0000 E41 805691915 729,000
UN (5,1) 0054 0987 0058 956 -1.880 1,988
UN (5,2) -0,000%
UN (5,3) -0,0002
UN (5.4) 0003 1233 0,003 998 2,420 2414
UN (5,5) 00512

Cavariance Structure:Unstructured
Subject Specification:ParticipantNumber
aThis parameter is redundant

Figure 89:The random parameter table for the GLMM with all random parameters included
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Figure 90: GLMM for trust for the overtakings

Target Trust
Probability Distribution Marmal
Link Function Identity
Akaike Corrected 80,705
Information Criterion
Bayesian 84 316

Information criteria are based on the -2 log likelihood
(53,705) and are used to compare models. Models with
smaller information criterion values fit better.
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25 30 35 40 45 50
Trust
95% Confidence Interval
Residual Effect Estimate Std.Error z Sig.
Lower Upper

Var(RideNumber=1) 0,029 0,069 0,419 B76 0,000 3,121
Var(RideNumber=2) 0,171 0,140 1,225 221 0,035 0,548
Var(RideNumber=3) 0,163 0,114 1,426 154 0,041 0544
Var(RideNumber=4) 0,176 0,214 0,524 410 0,016 1,899
Var(RideNumber=5) 00002
Var(RideNumber=6) 0,077 0,078 0,992 321 0,011 0557
Var(RideNumber=7) 0,078 0,192 0,408 683 0,001 9514

Var(RideNumber=8) 01102

Covariance Structure:Diagonal

Subject Specification:ParticipantMumber

aThis parameter is redundant.

The covariance structure is changed to Scaled Identity because the random effect has only
one level.

95% Confidence Interval
Random Effect Estimate Std.Error Z Sig.
Lower Upper
Variance 0,083 0,068 1216 224 o007 o047

Covariance Structure:Unstructured

Subject Specification:ParticipantMumber

The covariance structure is changed to Scaled Identity hecause the random effect has
only one level.
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Figure 91: Speed, relative speed along the route for automated following
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Figure 92: Speed, relative speed along the route for manual following
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Figure 93: Speed, relative speed along the route for automated overtaking
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Figure 94: Speed, Relative speed along the route for manual overtaking
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Figure 95: Speed along the route for followings
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Figure 96: Speed along the route for overtakings
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Figure 97: Relative distance along the route
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Figure 98: Objective risk, relative speed along the route for automated following
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Figure 99: Objective risk, relative speed along the route for manual following
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Figure 100: Objective risk, relative speed along the route for automated overtaking
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Figure 101: Objective risk, relative speed along the route for manual overtaking
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