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Abstract

Atherosclerotic plaque rupture is the underlying cause of 50% of deaths in western society.
Although screening methodologies exist, plaques are highly complex, and the parameters
used to measure plaque vulnerability are often insufficient for correct medical screening. Since
plaque rupture occurs when the vascular forces exceed the plaque strength, the mechanical
analysis of plaque stability could offer a new window into predicting rupture. By interpreting
the mechanical behaviour of plaques, so-called mechanical markers could be derived, which
could highlight vulnerable plaques before thrombosis. Unfortunately, the extensively modelled
local stresses and energy functions are immeasurable in vivo. Therefore we turned to strains,
a measure of material deformation that can be obtained clinically. This study investigates the
predictive value of strain distributions in the early detection of fibrous caps rupture.

Simplistic plaque cap mimics were engineered to model atherosclerotic plaque rupture.
Made from a fibrinous matrix and a soft lipidic inclusion (SI), the constructs were tailored to
havemechanical properties similar to in vivo plaque caps. Tissue engineered caps offer a wide
range of advantages over endarterectomy samples, including unlimited sample availability,
robust geometry, high reproducibility and precise control over biological constituents. These
constructs were uniaxially strained and subjected to 2D digital image correlation (DIC) to obtain
their strain fields. Two-dimensional DIC is an algorithm that derives the material deformation
by tracking surface features of its target sample. Therefore, it can very accurately calculate
local strains for a material. This report analyses the patterns and maxima of the strain maps
of five samples to evaluate unique features distinct at the rupture location that could serve as
potential markers of plaque vulnerability. Besides inspecting the individual strain maps, their
collective contribution through two strain-based failure criteria was analysed. These failure
criteria approximate the strain energy in the samples.

The mechanical failure of the constructs was not instantaneous. All samples underwent
failure in phases, starting with a small crack in the SI and concluding with the rupture of the
fibrous tissue. Likewise, the strain and failure criteria patterns were consistent within all sam-
ples. Even though their strain values differ, the accumulations of low and high strains lie
at nearly identical positions. These patterns emerged early in the tensile experiment, as the
frames at a physiological (10%) and final (ultimate state before rupture) global strain measured
a strong resemblance. In a more localised analysis, the fields were radially divided into‘slices’
of data to produce distinct segment-based patterns. The rupture location consistently lies at a
unique feature in the pattern, such as a peak or a valley. As was observed before, aside from
the difference in their magnitude, the strain patterns showed no change between the frames.
Finally, the local maxima of the strain and failure criteria maps were inspected. Their distances
to the rupture site were comparable for all maps, indicating they performed similarly at esti-
mating the rupture location. Moreover, the distances measured for the final frame showed no
significant difference to those measured for the physiological frame.

Themechanical response of the five samples is similar. Aside from undergoingmechanical
rupture in stages, the analysis of the tissue construct shows that a relationship exists between
the local strains and rupture location. First, the rupture location always sits at the edge of a
high valued region in the SI. Second, the tissue segmentation produces a highly reproducible
pattern with a distinct colocalisation between segment patterns and the rupture location. Third,
the maxima of the strain and failure criteria maps lie close to the rupture site, although they
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do not overlap. Accordingly, there is a clear relationship between the rupture location and the
local strain patterns.
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1
Introduction

Atherosclerotic patients suffer from a progressive buildup of lipidic substances in the internal
layer of the blood vessels, the tunica intima, leading up to luminal occlusion. Smoking, hyper-
tension, hypercholesterolemia and obesity are several aggravators of the disease, increasing
its likelihood [1, 2, 3]. The systematic disease typically takes 50 years to express symptoms
but can cause an almost instantaneous death [4]. Furthermore, at critical locations, such as
the brain or heart, it may cause stroke or ischemic heart disease, which cost around 15 million
lives annually [5]. Therefore, it is of clinical importance to better understand this disease and
prevent its progression.

Figure 1.1: Top 10 causes of death in the world. Data extracted from from WHO website [5]

1



2 1. Introduction

1.1. Pathophysiology of Atherosclerosis
Healthy arteries have three regularly shaped layers, with distinct functionality (see figure 1.2a)
[6, 3]. The tunica adventitia is the outermost vessel layer, whose identifying components are
collagen fibres. They provide structural support and protection to the blood vessels. Adjacent
lies the tunica media, the middle layer, which is rich in neatly ordered sheets of smooth muscle
cells and elastin. Its muscular capacity powers vasodilation (increased lumen diameter) and
vasoconstriction (decreased lumen diameter). Finally, the tunica intima lies at the innermost
surface and is composed of endothelial cells that line the lumen. This innermost layer is in
direct contact with the luminal blood. Atherosclerosis changes the arterial physiology, causing
intimal thickening and the obstruction of regular blood flow.

(a) Visualisation of main vessel wall layers in healthy artery Vs.
Atherosclerotic artery. Taken from Encyclopaedia Britannica [7],

edited
(b) Progression of atherosclerosis. Taken from

Funk, et al. (2012) [8], edited.

Figure 1.2: (a) shows the main vascular layers, the adventitia (A), the media (M) and the intima (I).
Atherosclerosis changes their morphology and structure, where the build-up of fatty substances and
immune cells in the intima causes it to penetrate into the luminal space. (b) shows a cross-sectional
perspective of plaque development in the phases: endothelial injury, intimal thickening, inflammation,
fatty streak formation, formation of a fibrous cap, growth to mature atheroma and thrombosis [2, 9].

Ignoring the healing mechanisms, the development of atherosclerotic plaques follows a
general pattern. This is summarised in figure 1.2b. Endothelial dysfunction is the precursor of
the disease, triggered by biomechanical abnormalities, genetic or immunological causes, or
low wall shear stress [6]. The consequent buildup of macro-molecules in the subendothelial
space causes intimal thickening and inflammatory response. While fatty streaks develop from
LDL-saturated macrophages, outward remodelling of the intima preserves the lumen size.
Once the plaque grows into an atheroma, this is no longer possible, where the intima pro-
gressively enters the lumen. Proliferating smooth muscle cells migrate towards the luminal
surface of the plaque to form a fibrous cap. Fibrous caps play an important role in resisting
dynamic vascular forces [10, 11]. They are rich in load-bearing collagen fibres, heteroge-
neously scattered with microcalcifications, macrocalcifications and cells. Fibrous caps form
the barrier between luminal blood and the necrotic core. If the cap stresses exceed the ul-
timate cap strength, the thrombotic material within the growing plaque mass is released into
the bloodstream, leading to thrombosis.
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1.2. Project motivation
Plaque fragments and pro-thrombotic material are released into the bloodstream during a
thrombotic event. Consequent blood coagulation can compromise local and distal blood cir-
culation by inducing complete luminal occlusion at the lesion site or form emboli that travel
downstream to block smaller vessels [1, 3, 9]. Cells lying beyond the cloth experience is-
chemia and may die if the blood supply is not restored. Nearly half of all thrombotic events
are associated with rupture of the fibrous cap [12, 13]. Although its mechanism is not com-
pletely understood, rupture appears to favour high curvature areas where high circumferential
stresses accumulate, like the cap shoulder (the junction between cap and intima). Around 63%
of all rupture events occur at cap shoulders, while the remaining events occur at the mid-cap
or cap centre [14, 10]. Rupture is initiated when the fibrous cap strength is insufficient against
the cap stresses, leading to the formation of a micro-crack [1]. These stresses typically lie
between 300 - 545 kPa [14, 15]. The crack propagates through the cap, leading to plaque
separation and the release of its pro-thrombotic content.

Timely identification of mechanically weak caps may prevent the cascade of vascular
events after rupture. Aside from saving patients’ lives, it also lessens the financial and clinical
burden on the medical field [16].

The term ‘vulnerable’ is allocated to plaques that are prone to rupture and likely to cause
acute vascular events. Thin cap fibroatheromas (TCFA) are typically associated with vulnera-
bility. They are eccentric plaques with large necrotic cores, and a high degree of inflammation
and calcification [17, 18]. Their cap thickness criteria lie around 65 𝜇m and 200 𝜇m for coro-
nary and carotid plaques, respectively [19, 17]. Vulnerable plaques differ from ‘stable’ ones,
which can withstand higher stresses and do not require medical intervention. Stable plaques
typically have thick caps overlying small lipid pools, making them more resistant to rupture.
Current diagnostic approaches employ non-invasive imaging modalities to detect features as-
sociated with vulnerability. Hence, it is possible to estimate lipid core sizes, cap thicknesses,
inflammation, and the degree of calcification [20, 21, 22]. Unfortunately, it is becoming in-
creasingly evident that these biomarkers are poor and often inaccurate predictors of cap vul-
nerability [23, 24, 25, 26, 27, 28, 29]. Current biomarkers for vulnerability cannot account for
all cap biomechanical behaviour, as TCFA’s have been identified in both stable and unstable
coronary syndromes. TCFAs were found to account for only two-thirds of acute coronary syn-
dromes in large patient groups [29, 30]. Moreover, the limitations of clinical screening hinder
the identification of plaque morphology and constituents in vivo.

The need for newmarkers for plaque vulnerability [31] could be satisfied by taking a biome-
chanical approach to this problem. Instead of looking for more biological markers, the stability
of the plaque can be mechanically estimated. Any unique characteristics identified by such
an approach could become mechanical markers.

Several research groups have investigated the relationship between stress and energy
field distributions in atherosclerotic caps and the occurrence of a rupture event [32, 33, 34].
Vengrenyuk et al. (2006) presented their computational work on the effect of microcalcifica-
tions (particles smaller than 50 𝜇m formed by basic calcium crystals aggregates) on the cir-
cumferential stress distribution and location of peak circumferential stresses [35]. The authors
found that the rigid nature of these inclusions causes increases in local cap stress. Papers by
Maldonado et al. (2012) [32], and Cardoso et al. (2014) [34] agree with these findings and
suggest that high stresses may be indicative of rupture sites. Luo et al. (2016) have extended
this work, including the consideration of stored energy [36]. The authors found the location of
rupture to associate with the highest numerically derived energy through computational mod-
elling. The predictive power of their models appears even greater than a purely stress-based
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consideration. Another means of rupture location prediction follows the application of failure
criteria to numerical models. Examples include the strain energy criterion [37], continuum
damage mechanics [38] and the von mises stress criterion. A critical fracture criterion defines
the threshold between intact and fracture-prone tissue sections. Once reached, the tissue
should experience mechanical failure. Unfortunately, all the above studies are predominantly
based on numerical data and employ computational approaches like finite element analysis to
simulate their results. Although the models provide much insight into the arterial mechanics,
they lack experimental validation. The use of theoretical material properties indicates that the
models remain estimates of in vivo environments. Local stresses and material properties are
currently immeasurable entities, inhibiting the replication of these models in a clinical setting.
Therefore, local stress and energy distributions cannot be employed as biomarkers of plaque
rupture yet.

In contrast, local material strain is measurable. In vivo strain acquisition is a development
that may hold much potential in the field of cardiovascular mechanics. Described in the pa-
pers of Schaar et al. (2002) [23] and de Korte et al. (2003) [39], intravascular elastography
allows for the acquisition of wall displacement through ultrasound imaging. These can detect
intravascular movement at a scale of several hundred micrometres. Non-invasive approaches
to identify vascular movement also exist [40, 41], allowing imaging from outside the skin. Lo-
cal tissue strains are measured by applying digital image correlation (DIC) on video images
acquired from moving tissue. DIC is a mathematical algorithm that employs image recogni-
tion software to derive the relative local movements of distinct tissue surface features. DIC
then translates the local displacement fields into local strain fields. Strains can be linked with
the microstructure and stiffness of the plaque, where high positive strains indicate expansion,
while negative or low strains may indicate compression or resistance to movement.

The investigation of local strain patterns may be a realizable approach for predicting the
biomechanical stability of plaques. Being a measurable entity and applicable for clinical set-
tings, it could serve as a potential tool for classifying patient-specific plaque behaviour. Fur-
thermore, because the approach would be free frommodels with assumedmaterial properties,
it is relatively computationally inexpensive and less likely to be biased by unpredictable vari-
ables.

An experimental study to obtain strain patterns would require a simplistic model that can
mimic in vivo tissue behaviour. The material properties of the model must closely resem-
ble those of human plaque caps and allow for mechanical testing. Ex vivo endarterectomy
samples are a less favourable model for such an undertaking for several reasons. The most
predominant disadvantage of ex vivo samples is their uncontrollable nature. Maintaining mor-
phological, biological and genetic uniformity across ex vivo tissues is nearly impossible. Both
intra-sample micro-composition variation and inter-sample diversity play a significant role in
restricting the repeatability of experiments. They may also compromise the reliability of test
results because the mechanical effects of these variables are uncertain.

Secondly, endarterectomy specimen have finite sizes, which limit the sample size of testable
ex vivo caps. Because experiments are unrepeatable and samples show inter-and intra- bio-
logical diversity, large-scale studies will suffer from the restricted availability of ex vivo caps.
A third disadvantage is their susceptibility to damage. The intricate procedures of artery ex-
traction and arterial layer separation can not guarantee the integrity of plaque caps. Sam-
ples obtained after careful patient selection can therefore easily be compromised. Finally, the
time-consuming classification of their undetermined biological structures poses a fourth disad-
vantage to using ex vivo samples. This step is necessary to unravel the biological complexity
found in human samples. Aside from increasing the likelihood of damage, the equipment and
computer power needed to unravel the underlying components can significantly extend the
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duration of experimentation.
A good candidate for acquiring strain field data is the biomimetic cap tissue, engineered

by Wissing et al. (2021) [42]. These are thin fibrous tissues whose tunable nature allows for
controlled cap construction with tailored tissue contents and mechanical properties. Examples
of such properties are collagen content and orientation. The fibrillar collagenous matrix is the
main component and load-bearing element of the engineered construct. Therefore, it serves
as the base and structural support of the engineered tissue structures. Variation to its content
(e.g. collagen type, fibre distribution, digestive matrix metalloproteinase activity) directly af-
fects cap strength, stiffness, and general mechanical properties. According to Wissing et al.
(2021), these constructs show alikeness to in vivo plaques, as themechanical responses of the
biomimetic cap lie within the ranges found in in vivo human carotid fibrous caps (0.5 - 5 MPa)
[42, 43]. Repeated protocols have produced caps with consistent properties, showing their ap-
plicability for large scale studies. The constructs also show plasticity to heterogeneity. Wissing
et al. (2021) soundly incorporated a soft inclusion into its collagenous matrix that mimics the
lipidic core found in plaques. This indicates that the constructs are customizable and could
potentially be attributed with different constituents found in in vivo plaque caps. This enables
systematic investigation of biomechanical cap behaviour without the uncontrolled complexity
accompanying uncontrolled plaque heterogeneity. The tissue engineered plaque caps are,
therefore, highly suitable for simulating the material behaviour of in vivo atherosclerotic caps.

1.3. Thesis aims and outline
This project hypothesizes that strain field fingerprinting may be a potential methodology for
assessing plaque vulnerability and identifying rupture locations. To investigate this, this project
encompasses the following aims.

1. Identify the strain values and modes at the rupture location, right before rupture occurs
and at a global strain of 10%.

2. Find the relationship between rupture location and local strain minima and maxima, right
before rupture and at a global strain of 10%.

Before betaking on this journey, this project also identified a basic image pre-processing
approach to improve correlation parameters during DIC. The details of this process are de-
scribed in chapter 2 and appendix B.

The study analyses five tissue constructs undergoing tensile tests and translates their
movement into a local strain map using DIC. Consequently, with a multitude of analysis tech-
niques, the author attempts to answer the above aims.





2
Methods

This chapter discusses the methodology of the study, assembling a work pipeline for future
research. This is summarised in figure 2.1.

Figure 2.1: Summary of the steps described in this chapter.

The first step in the trajectory of the project comprised the creation and mechanical testing
of tissue engineered constructs, following the protocol described by Wissing et al. (2021) and
the master thesis of Sheila Serra (2020) [44, 42]. Section 2.1 provides a brief outline of tissue
creation and mechanical testing.

The next step encompassed the improvement of image quality for further processing. From
a group of different image processing approaches, an optimal and simplistic filter was selected
to improve the output of digital image correlation (DIC). This was only applied to images that
captured tissue movement from the start of the experiment until rupture. The details of this
step are described in section 2.3.

Finally, the DIC output was analyzed to investigate the different relationships between
rupture and the local strain fields.

7
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2.1. Tissue engineered constructs
Previous experiments by Serra [44] and Tamar et al., [42] have created tissue engineered sam-
ples, whose data was made accessible for this report. An overview of all samples is provided
in appendix A. This section summarises the steps taken to create these tissue constructs, the
mechanical test they were subjected to, and this study’s selection criteria.

2.1.1. Tissue construction

Figure 2.2: From left to right, the protocol used to create the tissue engineered caps. Day 0 Static
culturing of HVSCs in fibrin gel. Day 7 Insertion and static culturing of SI. Day 14 Dynamic culturing.

Day 21 Mechanical tests and tissue analysis

The creation of the tissue construct followed a 21-day protocol, starting with the seeding of
myofibroblasts (human vena saphena cells, HVSCs) suspension in a fibrin-based gel between
two Velcro strips. Over the course of 7 days, the HVSCs produced an extracellular matrix,
creating a fibrin-cell matrix. Next, a 2 mm diameter core was punctured at the centre of the
matrix and filled with a fibrin suspension. This is termed soft inclusion (SI) and functionally
mimics the lipid core found in atherosclerotic plaques. The SI was cultured for another week,
allowing it to integrate with the fibrin-cell matrix. Once day 14 arrived, the tissues were grouped
in two different dynamic (cyclic) loading protocols. The first group experienced intermittent
strain, where the tissue was alternatively strained (4% strain for 1 hour) and allowed to rest
(0% strain for 3 hours). This straining protocol stimulates collagen synthesis and remodelling,
which leads to fibre anisotropy [45, 42]. The second group experienced continuous 4% strain
for the entire seven day period. These constructs were expected to have improvedmechanical
properties because of the balance between collagen and cross-link production [46, 42]. Both
protocols were performed in a Flexcell system (Flexcell Int, McKeesport, Pa) by attaching
the velcro stips to its flexible membrane with medical adhesive silicone (Silastic, MDX4-4210,
Dow Corning, Midland, MI). The tension was induced by vacuum suction along the vertical (y)
direction—dynamic loading results in the alignment of collagen fibres with the loading directing.
Once 21 days had passed, SI integration and cell infiltration were assumed to be sufficient.
Hence, it was possible to conduct mechanical tests on the biomimetic cap. This whole process
is summarised in figure 2.2.

2.1.2. Mechanical testing
After two weeks of static culturing and one week of dynamic loading, the samples were sub-
jected to uniaxial tensile tests in PBS at 37∘C. Before mounting the samples to the commercial
set up of CellScale Biomaterial Testing, Waterloo, Canada, black graphite speckles were ap-
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plied to the tissue surface with a cotton swab. These serve as visual markings for DIC analysis,
conducted later in the experiment. Mechanical testing was performed along the vertical direc-
tion by applying forces on both clamps, as is depicted in figure 2.3. In this setup, the vertical
axis corresponds to the circumferential direction in vivo [44, 42, 47, 48]. After clasping the
velcros between the clamps of the setup, the samples were preconditioned with ten cycles
of 10% strain. Finally, the samples were uniaxially strained until rupture with a strain rate
of 100% min−1. This movement was captured by a 15 Hz camera, whose lens was located
directly above the tissue.

Figure 2.3: Orientation axis of tissues and its relation to the in vivo intima. The circumferential (y)
direction lies along the length of the vessel, and is suggested to carry most vascular loads.

2.1.3. Selection criteria
Not all samples reported in appendix A were suitable for this report. A set of criteria were
necessary to define suitable features for this study. The sample must:

• Have a SI at the centre of the tissue to ensure uniformity between tissues. This reflects
on the consistency in mechanical responses amongst samples.

• Have a SI diameter of 2mm to ensure that the size of the inclusion is constant throughout
the samples.

• Rupture at the mid-cap of the tissue so the rupture event occurs within the region of
interest for DIC. This criterion helps to exclude tissues that rupture at the clamp interface.

• Undergo dynamic loading during the final culture week (i.e. intermittent and continuous
loading protocols). Control tissues, which were not loaded during culturing, are excluded
as a result of this.

• Be fixed to the commercial clamp system to ensure the same setup was employed
during mechanical experiments. This excludes samples that used a re-designed clamp
system.

This project has identified five samples to fulfil the above requirements. The relevant
constructs are highlighted in appendix A. The included samples are products from continuous
(n=3) and intermittent (n=2) loading protocols. The global mechanical properties between
these two groups were similar [42]. Inspection of all tissues showed that two of the five samples
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were already damaged before the start of the experiment. Fortunately, the small cuts in the SI
centre did not negatively affect their mechanical behaviour or DIC performance. However, one
of those samples also experienced slippage, which is tissue movement at the uniaxial ledger
due to insufficient friction. Tissue slippage resulted in the distortion of its strain map. These
consequences are discussed in chapter 4.

2.2. Image pre-processing
The pre-processing of images adhered to the scheme presented in figure 2.4. The first step
in this flow chart entails the selection of images that capture the uniaxially strained tissue until
rupture. The relevant images were then subjected to the next step: image cropping. Here,
the boundary of the cropped region was manually selected for each sample to ensure that the
entire tissue was visible throughout each image stack. Next, a Gaussian blur (radius of 2.5)
was applied to the cropped images. This low pass filter attenuates high-frequency signals,
thereby reducing noise. After going through both steps, the images were fully processed for
DIC. The last step in figure 2.4 shows the manual selection of the region of interest (ROI).
The ROI is a binary image used by DIC to identify the tissue region for which strain fields are
calculated. The ROI does not include tissue near the clamps to evade mechanical artefacts
from their interaction. Appendix C proves a detailed overview of the mentioned steps.

Figure 2.4: Pre-processsing of images is defined by the following steps. After manual selection and
isolation of the relevant images, they were cropped and processed by a blur. Based on the

morphology of the tissue, a region of interest (ROI) is selected, that excludes tissue near the clamps
(up and down)
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2.3. Obtaining strain fields
Uniaxial tensile tests can disclose global tissue behaviour. This is depicted in figure 2.5, which
relates the global strains to global stresses of all samples. The inclining lines rise at different
rates and belong to different samples. The abrupt decline in global stresses indicates rupture.
On a global scale, each sample behaves differently, where the onset of rupture corresponds
to different ultimate stresses (e.g. sample 13 ruptures with a stress that is 30% greater than
sample 36). The diversity in global material responses makes global predictions difficult.

Figure 2.5: The global stress-strain relation between all preconditioned samples.

2.3.1. Theory of Digital Image Correlation
After pre-processing, the images from the mechanical test were fed into Ncorr, the mathemati-
cal DIC software used in this project. Its functionality, algorithm and parameters are described
in detail by appendix D. Ncorr iteratively runs through every sequential image, referred to as
the current frame, and performs a comparative analysis between the reference (the first im-
age in the stack) and current frames. The relative displacements per subset are found by
mapping each ’deformed’ subset back to its undeformed state, guided by the speckle pattern.
These are then collected into 2D displacement maps, which describe deformation as rigid
body translations in the vertical (V) and horizontal (U) directions.

The Green-Lagrangian and the Eulerian-Almansi strains are two different descriptions of
deformation, and use the U and V displacement maps to derive local strain fields. A sim-
ple schematic to highlight their difference is presented in figure 2.6. In 2D DIC, the Green-
Lagrangian strain preserves the tissue dimensions of the reference frame because it consid-
ers cumulative deformation. Contrarily, the Eulerian-Almansi strain is based on instantaneous
lengths, causing its ROI to grow after every iteration.

(a) Green-Lagrangian approach

(b) Eulerian approach

Figure 2.6: Two approaches of calculating strain (𝜀 = 𝛿 L/𝐿0)
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This report has selected the Green-Lagrangian approach to calculate the strain maps be-
cause the ROI dimensions are unchanged throughout its calculation. The calculation of the
local strains follows the following operations.
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These three strain entities describe three different phenomena. The 𝜀𝑥𝑦 strain maps can
capture local irregular deformation and allow the observation of rotational deformation. This
is not visible in 𝜀𝑥𝑥 and 𝜀𝑦𝑦 strain maps, whose components are immediately related to rigid
body translations in the x and y directions. This report extracts the 𝜀𝑥𝑥, 𝜀𝑥𝑦 and 𝜀𝑦𝑦 strain
maps to conduct local strain analysis

2.4. Local strain analysis
This section summarises the analytical approaches and methodologies used to answer this
projects main aims, introduced in chapter 1. This encompasses the consideration of the ulti-
mate and physiological strain states during the tensile test. The ultimate state corresponds to
the final image or frame where the tissue remains visually undamaged, while the physiological
state corresponds to the frame that experiences a global strain of 10% [42, 49, 50]. Figure
2.7 summarises the points in the experiment to which these frames correspond. The inter-
pretation of a physiological situation is important for clinical applications, as early detection of
mechanical markers may be useful in vulnerable plaque detection.

The differences between these frames were assessed through qualitative visual interpre-
tation and a quantitative metric based on the Structural Similarity Index (SSIM). This Matlab
based function inspects the quality of the resemblance between images, scaled between 0
and 1. Its mathematical background is briefly described in appendix J.

Figure 2.7: The global tissue response obtained during the uniaxial tensile test. The marked frames
correspond to the analysed final and physiological frames.
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2.4.1. Obtaining tissue coordinates of special features
Before starting the analysis, a visual distinction was made between the fibrous tissue of the
cap and the SI to facilitate the interpretation of material heterogeneity. This was achieved with
ImageJ (Fiji), a software that offers direct identification of pixel coordinates. The boundary
coordinates of the SI were manually approximated with the ImageJ oval tool and then used to
visually mark the outline of the SI in the strain plots. Next, the location of SI and fibrous tissue
rupture were identified with the rectangular tool in ImageJ. SI rupture is the location where
the separation of the SI initiated. Similarly, fibrous tissue rupture indicates the location where
the separation of fibrous tissue is initiated. The coordinates of these rupture boxes were also
marked in the strain plots. Appendix C describes these steps in more detail.

2.4.2. Strain patterns and rupture location
The steps taken to investigate the relationship between the local strain patterns and the rupture
location are summarised in figure 2.8.

Figure 2.8: Physiological and ultimate time frames were analysed in a cartesian and polar coordinate
system. This analysis includes the inspection of strains and their failure criteria.

First, strains adhering to the cartesian coordinate system (𝜀𝑥𝑥,𝜀𝑥𝑦,𝜀𝑦𝑦) were inspected
through qualitative and quantitative means. This included finding strain magnitudes and seek-
ing recurring patterns or unique visual features.

Next, the local strains were transformed to follow the polar coordinate system, defined in
appendix G. Polar strains (𝜀𝜃𝜃 , 𝜀𝜃𝑟 , 𝜀𝑟𝑟) follow a circular orientation, where the origin lies at
the centre of the SI. As was done for the cartesian coordinate system, all polar strain maps
were analyzed qualitatively and quantitatively. Their results are described in appendix I.

Finally, the rupture likelihood was estimated by calculating two strain-based failure criteria
for each coordinate system. These establish a united perspective of different strains and ex-
press their combined effect. Moreover, energy measures have shown a high accuracy in their
approximation of rupture sites, showing a good colocalisation between the energy maxima
and the location of rupture [15, 36, 37].

The first criteria is the maximal nominal strain, defined by:

𝐹𝑚𝑎𝑥 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 𝑚𝑎𝑥 ( 𝜀11
𝜀𝑚𝑎𝑥+11

, 𝜀12𝜀𝑚𝑎𝑥12
, 𝜀22
𝜀𝑚𝑎𝑥+22

) (2.4)

which carries the largest normalised local strains to its output. The second failure criterion is
the quadratic strain criterion:

𝐹𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 = 𝑚𝑎𝑥 (
𝜀11
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) + ( 𝜀12𝜀𝑚𝑎𝑥12
) + ( 𝜀22𝜀𝑚𝑎𝑥22

) (2.5)

which is a summation of all normalized strains.
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2.4.3. Local strain maxima and rupture location
As is summarised in figure 2.9, the relationship between local maxima and tissue rupture was
investigated for four scenarios.

(a) Cartesian strains and their failure criteria (b) Polar strains and their failure criteria

Figure 2.9: The steps taken to identify the relationship between local maxima and rupture in the final
and physiological frames. The red dotted boundary indicate the region from where data is included for

the evaluation of maxima.

Two regions were defined for the cartesian and polar coordinate systems; the tissue within
the entire ROI and a zoomed perspective of the SI. While the inspection of the ROI allows
for the evaluation of strains in the entire tissue, it does not explicitly focus on the location of
rupture. Moreover, it may be tainted with artefacts that can bias the results. Their results
are discussed in appendix F. The zoomed perspective isolates the SI and surrounding tissue
better and focuses the analysis on the area of interest. Since the tissue is symmetric, it can be
decomposed into two different plaque constituents. Only the tissue half where rupture ensues
was selected to inspect the mechanics for a single cap.

Several measures were taken to improve the reliability of this analysis. The red boundary
indicates the site from which ten local maxima were selected for qualitative and quantitative
analysis. Their dimensions were chosen to minimize the effect of artefacts and outliers, as is
further discussed in appendix E. Analyzing multiple maxima reduces the risk of bias from noise
and outliers. The selection of the number of maxima was based on a trade-off between visual
obstruction, reliability and selectivity. While a singular point may show extreme strains due
to sensitivity to artefacts and outliers, excessively large group sizes compromise the visibility
of the strain map and the distinction between different strain modes. When considering ten
points, minimal clustering of points and blending of different strain modes was observed.

A Matlab script was employed to find the magnitudes of the maxima and derive their eu-
clidean distance to the center of the SI rupture boxes. While the magnitude of the points was
found by a simple find function, the derivation of distances followed a trigonometric formula in
combination with a metric ratio.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑑𝑚𝑚/𝑒𝑙𝑒𝑚𝑒𝑛𝑡√(𝑥𝑆𝐼 𝑟𝑢𝑝𝑡𝑢𝑟𝑒 𝑏𝑜𝑥 − 𝑥𝑝𝑜𝑖𝑛𝑡)
2
(𝑦𝑆𝐼 𝑟𝑢𝑝𝑡𝑢𝑟𝑒 𝑏𝑜𝑥 − 𝑦𝑝𝑜𝑖𝑛𝑡)

2
(2.6)

2.4.4. Partitioned local strains
The down-sampling of data minimizes the effect of outliers and focuses data on the relevant
features. Therefore, the strain maps were segmented into radial slices, following the pizza-
slice approach described in appendix H. As is presented in figure 2.10, the slices, defined by
lines intersecting at the centre of the SI, increment in powers of two. Hence, the segmentation
of the SI and its surrounding tissue ring is symmetric. Another feature of this segmentation
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approach is the tunability of the segmentation orientation. Different angular offsets may be
applied to alter the data per slice. To remain detectable for clinical intravascular ultrasound
(IVUS), with a reasonable resolution, the circumferential length of each segment was required
to be bigger than 0.5 mm [40, 51, 41].

Figure 2.10: Segmentation of the central tissue area allows up to 16 partitions during segmentation.
As is described by appendix H, the segmentation orientation is adaptable.





3
Results

This chapter addresses the results essential for shaping the goal of this report. Its framework
follows the work timeline, from data acquisition to data interpretation. The first section quali-
tatively assesses the different patterns generated from the mechanical tests and relates them
to the underlying biological constituents. The second section introduces the progression of
mechanical failure and extends its occurrence onto the strain maps. Finally, the third section
divulges the details of the local analysis of the strain maps, where the rupture location is re-
lated to the main aims of this report.
As can be inferred from the multitude of analytical approaches discussed in chapter 2, there
is an abundance of data generated from the mechanical tests. However, to establish clar-
ity within this chapter, only cartesian data from the final frame of a single sample undergoes
deep qualitative and quantitative analysis. Information about other data sets and coordinate
systems can be found in appendices I and E.

3.1. Pattern analysis
In the visual acquisition of tissue deformation, the relative movements of speckle patterns
are translated into vector fields. These capture the relative distances travelled and strains
experienced by each subset within the ROI. This section qualitatively interprets the patterns
expressed by each field.

3.1.1. Displacement fields
The first step in DIC is measuring the relative deformation per subset. This is expressed by
U and V displacement fields, which embody subset-based rigid body transformations in hori-
zontal and vertical directions. They are inherently dependent on the material properties of the
tissue. For instance, homogeneous tissues would show uniformity in their deformation, such
that the U and V displacement fields are a sequence of regular-shape displacement modes
whose magnitudes are symmetric about the central axis. However, the tissue engineered con-
structs show heterogeneity in their constituents, reflected in their derived displacement maps.
These maps are shown in figure 3.1.

The magnitude of the V displacement field in figure 3.1a ranges between -0.8 to 0.8 from
top to bottom. This indicates that the tissue moves with equal magnitude in opposing di-
rections. Positive displacements infer movement along the positive y-direction (down), while
negative displacements imply the opposite. The map is symmetric about the x-axis, where
displacements are high in the shoulder regions and zero in the mid-cap. Notably, the middle
region, where the tissue shows minimal displacement, is narrow in the centre of the figure,
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(a) V displacement (b) U displacement

Figure 3.1: Displacement fields of the tissue engineered sample

establishing an hourglass shape. This location coincides with the position of the SI, thereby
suggesting it has a mechanical role in the tissue response. For instance, lower mechanical
rigidity of the SI could warrant the observed infiltration of large vertical displacements in the
mid-cap.

The magnitude of the U displacement field ranges between -0.25 to 0.2 and represents
tissue movement along the x-direction. However, its pattern diverges significantly from the
expected response, which should be perpendicular to the V displacement field pattern. Instead
of showing symmetry about the y-axis, its pattern appears rotated, following a diagonal to the
global axis system. Consequently, large negative U displacements lie in the top left shoulder,
while large positive U displacements lie at the bottom right shoulder of the tissue. This signifies
that the top and bottom of the tissue move outward in opposite horizontal directions. Moreover,
the arrangement of the displacement modes does not follow an orderly or systematic pattern.
The distortion identifies wiggling shapes, indicating non-uniform tissue deformation.

The produced patterns are not unique for the presented sample. Most tissue inspected by
this report share traits with the presented displacement fields in figure 3.1.

3.1.2. Strain fields
The strain patterns produced by DIC are presented in figure 3.2, where different strain regions
can be identified based on colour. As was predicted from the displacement fields, local 𝜀𝑥𝑥, 𝜀𝑥𝑦
and 𝜀𝑦𝑦 strains develop inhomogeneously and progress towards accumulations of high and
low strain. For this report, values corresponding to green-yellow are the allocated threshold
for high strains, and those to navy are the threshold for low strains. These descriptions solely
serve to facilitate the indiscriminate recognition of strain patterns.

The pattern of the 𝜀𝑥𝑥 strain field is nearly biaxially symmetric. Figure 3.2a shows that
regions with high (above 0.1) and low (below -0.05) 𝜀𝑥𝑥 strain align themselves with the y-
direction, in an alternating fashion. The three ‘stripes’ of high positive 𝜀𝑥𝑥 strain lie along the
edges and centre of the ROI. Here, the underlying tissue experiences extension along the
x-direction. The greatest extension is measured at the left edge of the ROI, where the local
strain magnitude is over 1.5 times larger than anywhere else in the tissue. The high strain
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(a) 𝜀𝑥𝑥 (b) Absolute 𝜀𝑥𝑦 (c) 𝜀𝑦𝑦

Figure 3.2: DIC produces 𝜀𝑥𝑥, 𝜀𝑥𝑦 and 𝜀𝑦𝑦 strains maps of the ROI in the experimental image. The
color maps indicate regions of high (dark red) and low (dark blue) local strain. The shear strain is a
symmetric entity [52], and is therefore presented in its absolute form. Note that experimental images
underwent processing before being fed into Ncorr. The selected strain fields correspond to the final
frame before tissue rupture, where the tissue engineered construct experiences a global strain of 0.23

in the y-direction.

regions are separated by two ‘stripes’ of low 𝜀𝑥𝑥 strain, which manifest at the periphery of the
SI. Their slightly negative nature indicates that the local tissue experiences compression along
the x-direction.

The 𝜀𝑥𝑦 strain is presented in figure 3.2b and expresses the absolute Lagrangian shear
strains measured for the sample. A single region of high strain (greater than 0.12) passes
through the centre of the tissue at a diagonal. High shear strains indicate that the under-
lying tissue experiences an incredible amount of geometrical deformation. Remarkabl, the
remainder of the field mainly consists of low strains, where those with the lowest magnitude
manoeuvre through the tissue as thin wavering lines. Note that shear strains can be expressed
as an absolute entity because of their symmetry. As a result, there are no negative 𝜀𝑥𝑦 strains
in the figure.

The 𝜀𝑦𝑦 strain field captures strains with respect to the y-axis. In the distribution of figure
3.2c, high 𝜀𝑦𝑦 strains (more than 0.4) lie concentrated at the centre of the tissue. In the shape
of an oval, tilted about its axis, the 𝜀𝑦𝑦 strain increases towards a single global maximum,
which is over three times higher than those detected in the 𝜀𝑥𝑥 and 𝜀𝑥𝑦 strain fields. This
orientation and location match that of the high 𝜀𝑥𝑦 strain region. There are no other notable
patterns found outside the centre of the tissue, demonstrating that most vertical extension
occurs here.

The described patterns are not unique for the presented samples. Despite the discrepancy
in their magnitudes, other samples find similar distributions (see Appendix E).

3.1.3. Failure criteria
The two strain-based failure criteria identified in chapter 2 produce the maps presented in
figure 3.3. The values expressed by thesemaps correlate with the plausibility of tissue fracture.

The maximal nominal strain criterium map contains three regions with high failure magni-
tudes (greater than 0.6) located at the edges and centre of the ROI. This pattern diverges from
that of the 𝜀𝑥𝑥 map, as the central high strain region passes diagonally through the SI. This



20 3. Results

(a) Fracture criteria: maximal nominal
strain

(b) Fracture criteria: quadratic strain

Figure 3.3: Strain-based failure criteria.

shape carries a resemblance to the 𝜀𝑥𝑦 and 𝜀𝑦𝑦 distributions. Therefore, it is evident that the
pattern of the nominal strain criterium expresses the high strain regions of each strain map.
Consequently, there are two regions with the highest nominal strain within the map: centre
and left edges. According to the failure criterion, both sites poses the most risk to rupture.

The quadratic strain relation combines all normalised strains to produce figure 3.3b. There-
fore, the map’s scale is three times greater than that of the nominal strain criterium. A single
high-valued region (greater than 1.5) lies at the centre of the map. Its morphology is similar to
the high strain regions in the 𝜀𝑥𝑦 and 𝜀𝑦𝑦 maps. The quadratic strain is low in the rest of the
tissue, and therefore unlikely to rupture. Note that this analysis ignores the high-valued region
at the boundary of the ROI, as it lies outside the border defined by appendix J.

The patterns of the failure criteria show slight variation between other samples. While
their exact magnitudes may differ, the shape and location of the identifiable high strain regions
show great alikeness to the fields described above.
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3.2. Rupture mechanics
Rupture is the most common form of mechanical failure in atherosclerotic plaque caps [12,
13]. Understanding its basic progression is therefore essential in answering the objective of
this report. The uniaxial tensile tests could successfully replicate rupture through persistent
straining. This section discusses the observed tissue behaviour during rupture and associates
its occurrence to strain field patterns.

3.2.1. Rupture phases
Figure 3.4 presents the observed response of the tissue engineered constructs during the
mechanical failure. It shows that rupture is not instantaneous but rather a process of sequential
events.

(a) Intact tissue (b) Phase 1: Initiation (c) Phase 2:
Propagation

(d) Phase 3:
Intermission

(e) Phase 4: Fibrous
tissue failure

Figure 3.4: Four phases of rupture identified in the tissue engineered samples.

The general trend in which rupture occurred is summarised in figure 3.4. Each phase was
assigned a descriptive title to distinguish between the phases. The first phase, initiation,
occurs within the SI and can be recognised by the formation of a first ‘crack’ that separates
local tissue (see figure 3.4b). Next, persisting stress pushes the crack to the periphery of the
SI. For all five samples, the propagation direction was nearly horizontal (see figure 3.4c). It
halts briefly once the crack reaches the interface between the SI and the fibrous tissue. During
this intermission, the SI is completely separated, while the fibrous tissue remains intact (see
figure 3.4d). The final phase in rupture occurs when the applied force exceeds the fibrous
tissue strength. As is presented in figure 3.4e, the tissue splits diagonally. Fibrous tissue
rupture happens almost instantaneously, going from a state of partial to complete rupture
nearly within a single frame. Because of the low camera capture rate, it is unknown if more
rupture phases exist. Fibrous tissue rupture is, therefore, regarded as an immediate event.

In this report, rupture it is an umbrella term, which entails each of the above phases.
Henceforth, any reference to this term will address the entire process (initiation, propagation,
intermission and fibrous tissue rupture), unless explicitly stated otherwise.

3.2.2. Rupture location
While the exact location of rupture varies per sample, it always occurs in the mid-cap region.
Figure 3.5 summarises the dynamic rupture process for all samples. The white ellipse at the
middle of the tissue represents the outline of the SI, facilitating the visual interpretation of tissue
heterogeneity. The black boxes inside the ellipse identify the locations of rupture initiation (the
first phase of rupture). As this box signifies the initial position of SI separation, it is entitled the
SI rupture box. The black boxes coincide with the vertical centre of the SI, lying at the SI and
fibrous tissue interface for all samples. The two white boxes at the left and right sides of the SI
draw attention to the location of fibrous tissue rupture. Additionally, they indicate the pathway



22 3. Results

and orientation of the fracture line through the SI. These thereby acquire the title fibrous tissue
rupture boxes.

Figure 3.5: Rupture locations throughout all samples. The white ellipse represents the SI outline, the
black box surrounds sites of rupture initiation, and the white boxes distinguish the areas of fibrous

tissue rupture.

3.2.3. Rupture in strain fields
Themarked 𝜀𝑥𝑥, 𝜀𝑥𝑦 and 𝜀𝑦𝑦 strain maps are presented in figure 3.6. They connect the sample-
specific rupture event to its strain patterns.

(a) 𝜀𝑥𝑥 strain field (b) Absolute 𝜀𝑥𝑦 strain field (c) 𝜀𝑦𝑦 strain field

Figure 3.6: Marked strain field maps before SI rupture. Rupture of the SI and fibrous tissue initiate at
the black and white rectangles respectively. The shape and boundary of the SI is indicated by the

white oval at the center of the images.

In the 𝜀𝑥𝑥 map, the SI rupture box lies between the high strain region and the edge of
SI in the mid-cap. Consequently, the box overlays a transition between high (0.11) and low
(-0.07) strains, which corresponds to nearly half of the total strain range measured for the
entire tissue (-0.1 to 0.25). The fibrous tissue rupture boxes overlay areas adjacent to the
SI, with comparable high and low strain values. Because the dimensions of these boxes are
consistently larger than the SI rupture boxes, the shift in strains is more gradual,
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The location of the SI rupture box also corresponds to a region that experiences a large
transition in 𝜀𝑥𝑦 strains. In figure 3.6b, the box encapsulates shear strains between between
0.01 and 0.1. Comparing this to the full spectrum of the strain map (0 to 0.15), the enormity
of this gradient becomes evident (60%). On the other hand, the fibrous tissue rupture boxes
associate with inhomogeneously distributed low shear strains (close to 0). These appear to
lie away from the high shear region intersecting the SI.

In the 𝜀𝑦𝑦 strain distribution, the SI rupture box again overlays a sharp transition between
high and low strain modes. The strain within the black box ranges between 0.24 and 0.44,
which is a significant portion of the entire strain spectrum (0.05 to 0.54). By inspecting all sam-
ples, a subtle trend emerges between the shape of the high strain area and the location of the
SI rupture box. In all instances, its position overlays the edge of the high strain regions and
correlates with its high curvature end. Contrastingly, the fibrous tissue rupture boxes overlay
nearly homogeneously distributed low strains. These boxes do not appear to co-localise with
distinct or unique strain field patterns, as was observed for the 𝜀𝑥𝑦 map.

Although the exact underlying strain values vary (see appendix E), the inter-sample differ-
ences are minimal. Therefore, all observations mentioned above are consistent for all sam-
ples.
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3.3. Local analysis
Rupture initiation is consistently observed within the boundary of the SI (see subsection 3.2.2).
To isolate this area of interest, the ROI is adjusted to accommodate only the SI and its sur-
rounding tissue. This modification additionally reduces bias from artefacts along the tissue
border (see appendix J). Figure 3.7 summarises the framework of the local analysis. Carte-
sian strains and their failure criteria will be qualitatively and quantitatively analysed in-depth
to address both research objectives of this report. First, the relationship between rupture ini-
tiation and the field patterns is investigated by segmenting the modified ROI into radial data
‘slices’. Second, ten local maxima for all fields are computed and related to the rupture loca-
tion. Finally, a modest comparative study between the final and physiological frames achieves
relevance to a clinical setting.

Figure 3.7: The local analysis of the cartesian strains and their failure criteria focuses on the SI and
its surrounding tissue.

3.3.1. Rupture vs. segment patterns
The cartesian strain maps and failure criteria were segmented through the pizza-slice ap-
proach. In summary, the data within the modified ROI was cut into individual ‘slices’ accord-
ing to a predetermined angle to produce sets of segmented data points. The data within each
slice is presented as a boxplot to identify unique patterns indicative of rupture. For simplic-
ity, the figures only exhibit data based on a 16-fold segmentation and an angular offset of
15∘. Based on the work described in appendix H, these parameters isolate the rupture loca-
tion with the best resolution. The segments that capture the SI rupture box are highlighted
with a green circle around their segment number. Henceforth, these segments will be entitled
the rupture segments. For all boxplots, the y-axis represents the magnitude of the strain or
fracture criteria, while the x-axis enumerates the segment number. The bottom and top of
the boxes correspond to the 25th- and 75th percentiles of the data sets, collectively defining
the interquartile range. The red line through the middle of each box is the population-based
median. Off-centred lines indicate the skewness in the population. Finally, the whiskers that
extend above and below the boxes show the maximum and minimum data values that are not
outliers.
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Cartesian strains

The boxplots based on cartesian strains are presented in figure 3.8.

(a) 𝜀𝑥𝑥 in 16 segments. (b) 𝜀𝑥𝑦 in 16 segments. (c) 𝜀𝑦𝑦 in 16 segments.

Figure 3.8: Boxplots of cartesian strains

The 𝜀𝑥𝑥 boxplots follow a sinusoidal pattern, which originates from the alternating stripes
of negative and positive strains. The peaks emerge at segments 4 and 12, their heights con-
trasting only a little. The rupture segments lie in a valley of the pattern where the strains are
negative. In figure 3.8a, their medians correspond to a magnitude of approximately -0.02,
which is indicative of nearly negligible compression.

The segmentation of the 𝜀𝑥𝑦 strains produces figure 3.8b. The pattern shows that alter-
nating small and big peaks emerge at segments 2, 6, 10 and 14. These correspond to the
‘x’ shaped high strain that passes through the SI. The rupture segments capture a relatively
large shift in medial strain magnitude. In the figure, the median drops from 0.08 to 0.02, which
is one of the greatest differences between sequential segments.

The segments of the 𝜀𝑦𝑦 distribution also follows a sinusoidal pattern, as is presented
in figure 3.8c. Two peaks of different heights emerge in segments 7 and 15. The rupture
segments correspond to the second highest peak in the map, where the median strains are
between 0.28 and 0.21.

Comparison of the responses within the entire sample group reveals that most of the sam-
ples agree with the above observation. Unfortunately, no distinctive features exist to motivate
in which valley or peak rupture occurs for the 𝜀𝑥𝑥 and 𝜀𝑦𝑦 distributions. The relative peak
height, skewness, interquartile range, and whisker length of the rupture segments are never
constant across samples. Notable, samples with slippage and damage divert from the obser-
vations. Their local mechanical response appears distorted from the intact tissues with nearly
monotonous distributions and irregular shear strain patterns in the rupture segments.

Failure criteria

The transformation of the cartesian strains into the failure criteria produce the following box-
plots.

The nominal strains generate an oscillating pattern, much like a sinusoid. It peaks nascent
at segments 6 and 15, mismatching in height. This nearly symmetric pattern likely originates
from the diagonal high-value region through the centre of the tissue. In figure 3.9a the rupture
segments contain medium nominal strains between 0.35 to 0.6. Although this transition is very
steep, the boxplots overlap greatly, making it less noticeable. However, the strains within the
rupture segments span the full amplitude of the pattern.

The quadratic strain criteria also produce oscillating patterns, climaxing at the same seg-
ments as the nominal strain boxplot. Similarly, the rupture segments in the figure 3.9b lie
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(a) Nominal strain failure criterion (b) Quadratic strain failure criterion

Figure 3.9: Boxplots of cartesian failure criteria

between a peak and valley, with medial values between 0.3 and 0.6. Notably, these mag-
nitudes do not differ much from those measured for the nominal strains, although they are
proportionally much smaller than the nominal strains.

Unfortunately, these observations cannot be extended to all other samples. While most
showed similar results, the damaged tissues produced a flat boxplot pattern. Especially the
nominal strain boxplots do not show a consistent relationship between the position of the
ruptured segments and the pattern for damaged tissues. They can lie at a peak instead of the
transition region, depending on the sample.

3.3.2. Rupture vs. local maxima
This subsection inspects the relationship between rupture and local maxima within the ad-
justed ROI (see figure 3.5). To ensure statistical significance, this analysis inspects the col-
lective behaviour of the strain maps and failure criteria fields throughout all samples.

Cartesian strains

Figure 3.10 summarises the detected strain magnitudes and their respective distances from
the rupture initiation site.

(a) Magnitude of cartesian strain maxima (b) Distance between cartesian strain maxima in strain
and the location of rupture initiation

Figure 3.10: Local analysis of cartesian strain maxima

The 𝜀𝑥𝑥 maxima reach an average magnitude of 0.14 ± 0.02, which lie less than 1 mm
from the rupture location. For the magnitude chart, these maxima show the smallest standard
deviation, which suggests a good agreement between the strains measured of all samples.
However, they show the greatest difference in distance to the centre of the SI rupture box.
With a standard deviation of 0.2 mm, the maxima are therefore least consistent in their ap-
proximation to the rupture site.
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The average magnitude and distances of the 𝜀𝑥𝑦 maxima show a nearly insignificant dif-
ference from the 𝜀𝑥𝑥 maxima. With strains and lengths of 0.15 ± 0.04 and 0.7 ± 0.1 mm,
respectively, both maps deliver nearly identical information. While the standard deviation for
strain magnitude and the accuracy of the location are both doubled, they do not manifest in
novel observations.

Finally, the 𝜀𝑦𝑦 maxima are represented by the final bar in both graphs of figure 3.10. As
was recognised during pattern analysis, the average strains of the 𝜀𝑦𝑦 maxima are threefold the
magnitude in other directions. With strains of 0.6 ± 0.2, these maxima also vary significantly
across samples, with a standard nearly ten times greater than those presented for the 𝜀𝑥𝑥
strain maxima. Despite this discrepancy, their performance in estimating the rupture location
is highly comparable to the other strain directions. The distance reported by figure 3.10b
identifies a distance of 0.7 ± 0.1 mm, which is nearly unchanged from the other maxima.

Failure criteria
The magnitudes of the failure criteria maxima and their corresponding distances to the rupture
site are summarised in figure 3.11.

(a) Magnitude of failure criteria maxima (b) Distance between failure criteria maxima and
the location of SI rupture initiation

Figure 3.11: Local analysis of cartesian failure criteria. Note that the magnitudes of both criteria are
scaled differently (0 to 1 for the nominal strain, and 0 to 3 for quadratic strain).

The nominal strain criterion has an average magnitude of 0.99 ± 0.02, showing that the
maxima correspond to this criterion’s largest values. Once again, the slight standard deviation
implies good agreement across all samples. Furthermore, the distance to these maxima (0.7
± 0.2 mm) is comparable to the distances measured for individual strain maps.

While the nominal strains appear significantly smaller than those of the quadratic strain
criterion (2.21 ± 0.29), they are scaled between 0 and 1. Therefore, the relative average
magnitude of the quadratic strain maxima is smaller. Nevertheless, their precision is compa-
rable. They perform equally at estimating the rupture site with a distance of 0.7 mm of identical
accuracy.

3.3.3. Physiological frame
Strain distributions at 10% global strain are similar to those found at the final frame. Visual
inspection of the fields of both frames shows that the patterns emerge early within the mechan-
ical experiment. The figures presenting the physiological frames can be found in appendix E.
The 𝜀1𝑥𝑥0% field is near-symmetric, with three high strains emerging at the exact locations as
their final counterparts. Similarly, the 𝜀1𝑥𝑦0% and 𝜀1𝑦𝑦0% fields find elongated high strain re-
gions at the centre of the tissue and follow the same morphology as in the final frames. The
only notable differences are the increased effects of noise or clamping artefacts found around
the borders. These become increasingly dominant under low global strains. The similarity
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was also quantitatively measured with the ‘Structural Similarity index’, introduced in chapter 2.
Table 3.1 summarises the data generated from the comparison of all fields between the two
frames.

Table 3.1: The structural similarity between the final and physiological frame. Note that the SSIM is
scaled between 0 and 1.

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑦𝑦 Maximum nominal strain Quadratic strain
0.53 0.77 0.77 0.85 0.76

With all SSIM values above 0.5, it can be assumed that the morphology and organisation
of the patterns show minimal variation between the frames.

The consistency is also reflected in the segment patterns following the partition of the
SI and its surrounding tissue (see appendix H). For all samples, the boxplots patterns remain
nearly unchanged. Hence, the previously mentioned observations concerning the relationship
between strain and failure criteria patterns are detectable at physiological global strains.

(a) Magnitude of cartesian strain maxima (b) Magnitude of failure criteria maxima

Figure 3.12: Comparison between final and physiological frames.

The magnitudes of the local strains in the physiological frame are significantly lower than
at the final frame. As is presented in figure 3.12a, the difference is approximately equivalent
to 60%-70% of the final local strains. Consequently, the highest local strain is approximately
0.15.

Notably, no significant change exists in the magnitudes of the failure criteria maps. Be-
ing products of the normalised strain maps, the nominal and quadratic strain fields appear
insensitive to changes in global strains.

Figure 3.13 summarises the distances for all fields. The first discernable observation from
this graph is the consistency in the location of all maxima. The collective estimative power
of the average distances of the physiological frame lies between 0.6 to 0.7 mm, while the
distances in the final frame are 0.7 mm. None of these distances changes significantly be-
tween the frames. However, the exact average distances show dissimilarity, the inter-sample
variances obscure direct evidence for a single best metric to estimate the rupture site.
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Figure 3.13: Distance between maxima of strain and failure criteria maps and the location of SI
rupture initiation. Comparison between final and physiological frames.





4
Discussion

This report assembles a pipeline for fingerprinting the strainmaps of mechanically tested tissue
engineered plaques. By calculating the strain fields of the pre-processed raw images with
digital image correlation (DIC), the onset of its rupture was correlated to local strains through
different techniques. These included inspecting local strain patterns and local strain maxima
in the final frame before rupture and the physiological (10% global strain) frame.

4.1. Image pre-processing
The performance of DIC was considerably enhanced by pre-processing the raw images ob-
tained from the uniaxial tensile tests. After evaluating the effects of different approaches, the
combination of appropriate cropping and a Gaussian filter with a 2.5 radius was deemed the
most effective yet simplistic optimising technique. Unfortunately, this pre-processing filter was
optimised to suit the circumstantial situation specific to the included samples. If these circum-
stances change, the optimisation processed must be repeated to find the ideal filter for the
images.

The pre-processing of images was an essential step in this report. The speckle pattern is
the most crucial element for calculating the strain fields. As is explained in appendix D, they
are used to measure the deformation of the object. Therefore, the reliability of the strain maps
is directly influenced by the robustness of the pattern. An ideal pattern must have a unique
distribution, 50% coverage, and equally sized speckles. In truth, however, the speckle pattern
of tissue constructs was uniquely but unevenly distributed, with speckles of various sizes,
which often clumped together to form large clusters. This inadequate pattern could therefore
generate incorrect or unreliable strain maps. Moreover, the images were marred with other
visual artefacts (i.e. shadows and reflections). These must be corrected to prevent bias in the
strain maps.

31
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4.2. Pattern analysis
Chapter 3 disclosed the patterns of the displacement, strain and failure criteria maps of the
tissue engineered samples created by Wissing et al. (2021) [42]. These patterns were indi-
vidually analysed and compared to the field patterns of other tissue engineered samples. This
section sequentially reviews the maps, reasons the emergence of the patterns and evaluates
their clinical significance. Note that reference to a true response corresponds to the results
obtained by DIC.

The displacement maps express the relative vertical and horizontal translations of each
subset. Accordingly, the V displacement maps were vertically symmetric in the top and bottom
tissue halves, with thicker regions of high vertical displacement directly above and below the
SI. This pattern indicates that the centre of the tissue underwent more vertical deformation
than the edges. On the other hand, the patterns of the U displacement maps were symmetric
about a diagonal, and its modes followed zigzagging shapes. This indicates that the diagonally
opposite corners of the tissue moved in different directions along the horizontal axis (i.e. the
left top corner experienced negative U displacement, while the right bottom corner experienced
positive U displacement).

The expected response of the tissue construct has been modelled by Serra (2020) [44],
who used a finite element analysis model to mimic the mechanical experiment. In her work,
she established the simplistic geometry presented in figure 4.1, which features a rectangular
shape interrupted by a semi-circular gap at the right edge. The two-dimensional model was
assigned hyperelastic, non-linear, homogeneous, isotropic and incompressible material prop-
erties, which match properties often used by numerical publications that address the biome-
chanics of plaques in computational models [43, 53, 15, 54]. This simulation, therefore, ig-
nores the mechanical contribution of the collagenous fibres and the stiffness of the SI.

(a) modelled V displacement (b) modelled U displacement

Figure 4.1: The predicted behavior of a finite element geometry that resembles the tissue engineered
constructs. Note that the SI is modelled as a hole with zero stiffness. Images obtained from the

master thesis of Serra (2020) [44].

Substantial similarity exists between the patterns of the true (figure 3.1a) and modelled
(figure 4.1a) V-displacement maps. The discrepancies in the material properties of both tis-
sues are not evident in their comparison. The absence of abstract patterns or inconsistencies
between the V-displacement fields could suggest that the geometry of the fibrous tissue has
a stronger effect on the vertical deformation than its biological composition.

Contrastingly, the modelled U displacement fields are dissimilar from the true tissue con-
struct response. Aside from their distinct symmetry axis orientations, the predicted patterns
do not follow a zigzagging path. These differences could be attributed to clamping artefacts or
discrepancies in material properties, although the latter is unlikely for several reasons. First,
the tissue engineered caps were carefully constructed to maintain a rigid biaxial symmetry,
both in geometry and biological structure. Governed by fixed dimensions, the tissues con-
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structs conform to a rectangular shape of 10 mm by 15 mm, whose exact centres were filled
with a 2mm wide lipidic core. The distribution of the collagen fibres, the leading regulator of
the mechanical strength, was also stringently controlled. Collagen staining, microscopy and
histological assays by Wissing et al. (2021) [42] reported regularity and symmetry in the col-
lagen fibre architecture, affirming the load-bearing symmetry between quadrants of the tissue
construct (see figure 2.3). Secondly, the constructs were relatively homogeneous in struc-
ture, aside from their collageneous and lipidic constituents. Infiltrates often found in clinical
plaques, such as calcifications and other cellular debris, were absent from the constructs and
can thus not cause aberrations in the U displacement field.

Alternatively, clamping artefacts (e.g. slippage at the clamping site or misalignment be-
tween the tissue and the clamp) are a more probable cause of the observed differences be-
tween the U displacement patterns. They are products of poor interaction between the tissue
construct and clamp surface. The diverse set of different U displacement patterns observed
in appendix E show the poor reproducibility of the displacement patterns, thereby indicating
its sensitivity to experimental circumstances. Hence, it is likely that the distortion of the dis-
placement field is a consequence of the mechanical grip malfunction.

The high percentage of clamp-site failures in the entire sample group of Wissing et al.
(2021) supports the viability of mechanical interference from the clamps. As is disclosed in
appendix A, approximately 86% of all samples underwent mechanical failure at the clamp site
during the mechanical tests [44, 42]. However, this is not uncommon for uniaxial tensile tests
[15] Studies have found different percentages of failure at the clamp interface, which vary de-
pending on the material and its shape. In Holzapfer et al. (2004), approximately 23% samples
failed outside the region of interest, while in Sang et al. (2018) identified a failure amount of
86% or 6% for rectangular and dog-bone shaped tissues, respectively [15, 55].

The second set of patterns described by section 3.1 were those of the 𝜀𝑥𝑥, 𝜀𝑥𝑦 and 𝜀𝑦𝑦
strain maps, which relay the Green-Lagrangian local normal and local shear strains in the
tissue (equations 2.1, 2.2 and 2.3). The fields were a mix of high and low strains, which
indicate extension and compression along their respective axes (see figure 3.2).

In the 𝜀𝑥𝑥 fields, three regions of high strains congregated to long vertical shapes at the tis-
sue edges and centre, creating a near biaxial symmetric pattern. This pattern was unchanged
throughout all samples. Contrastingly, the high strain regions in the 𝜀𝑥𝑦 and 𝜀𝑦𝑦 fields formed
elongated or elliptical shapes, intersecting the SI diagonally. Their orientation changed per
sample (see appendix E). Albeit the slight differences seen between the strain fields of each
sample, the systematic recurrence of the patterns indicates a robust reproducibility in the main
loading direction.

The true strain fields diverge from the modelled response by Serra (2020) [44] (see figure
4.2). For instance, the 𝜀𝐹𝐸𝐴𝑥𝑥 fields expect the tissue edges to compress instead of undergoing
extension. Similarly, the predicted ‘x’-shaped intersection of high 𝜀𝐹𝐸𝐴𝑥𝑦 strains was not ob-
served in the true 𝜀𝑥𝑦 fields. Only the 𝜀𝐹𝐸𝐴𝑦𝑦 strains find a good agreement with the expected
pattern, where the high strains accumulate at the in the SI. Nevertheless, the true 𝜀𝑦𝑦 magni-
tudes below and above the SI never reach below zero, suggesting the compression does not
occur in the actual tissue.

The difference between the true and modelled strain maps suggest that the geometry
no longer dominates the mechanical tissue response. Other factors, such as clamping and
collagen fibre distribution, could be the root of the different mechanical behaviour. The direct
relationship between displacements and strains dictates that previously mentioned aberrations
in the U and V displacements maps carried into the strain maps. Based on the images in
appendix E, these artefacts were especially noticeable along the tissue edges, which were
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(a) 𝜀𝐹𝐸𝐴𝑥𝑥 (b) 𝜀𝐹𝐸𝐴𝑥𝑦 (c) 𝜀𝐹𝐸𝐴𝑦𝑦

Figure 4.2: The predicted behavior of a finite element geometry that resembles the tissue engineered
constructs. Images obtain from the master thesis of Serra [44].

scattered high and low strains regions.
Collagen fibres highly influence tissue strength and stiffness [42, 56], thereby playing a

potential role in dispersing strains through the structure. Wissing et al. (2021) showed that
the infiltration of collagen fibres in the SI did not match the densities found in the fibrous tissue
and that fibres at its interface followed a range of different orientations. The master thesis of
Swaab (2021) [57] investigated the local fibre organisation in the fibrous tissue of the same
constructs analysed in this project. He identified improved alignment of the fibres with the
y-axis towards the luminal edges of the tissue, which corroborates with increased stiffness
along the same axis. Moreover, he performed extensive FEM simulations to simulate the
mechanical response of a geometry that mimicked the fibre organisation in the fibrous tissue.
Concurring with the results of DIC, the stiffer luminal tissue edges measured lower strains.
Accordingly, it can be deduced that the SI has a lower resistance to deformation and should
indeed experience higher strains.

If the observations hold in a clinical setting, the lipidic core (represented by the SI) will
have the lowest stiffness and strength. Therefore, it should experience the highest strains in
the plaque. This expectation is in line with clinical observations by De Korte et al. (2002), who
consistently found fatty plaques to associate with higher strains than fibrous plaques [39].

Finally, the strains were combined into two different pure-strain failure criteria (equations
2.4 and 2.5) to grade the chance of failure. Their selection was motivated by the absence of
local stress data and the local material parameters of the tissue construct.

The values in the two resulting maps correspond to the rupture likelihood. Once a failure
criterion reaches the critical threshold of 1, the corresponding tissue is expected to rupture.
Notably, the produced maps in figure 3.3 identified multiple regions that surpassed this crite-
rion. The quadratic strain and the nominal strain maps had three such regions. These were
located at the luminal edges of the construct and in its centre. This indicates that rupture could
start at the centre or edges of the tissue. However, the magnitude of the high-valued region
at the centre of the quadratic map far exceeds the magnitude of the other regions. Hence, it
allocates a greater rupture likelihood to the centre of the tissue.

4.3. Rupture analysis
All samples included in this project underwent mechanical failure in the mid-cap region. As
is indicated by the cross-sectional schematic in figure 2.3, the mid-cap is characterised by a
wide SI encapsulated by a narrow fibrous cap. This description corroborates with attributes
associated with vulnerable plaques (i.e. large necrotic cores and thin fibrous caps) [18, 27].

Mechanical testing showed that rupture in the mid-cap occurred in four phases: initiation,
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propagation, intermission and fibrous tissue rupture. This process was regularly observed in
all included samples, indicating that the experiments are highly reproducible. First, a small
crack forms near the interface with the fibrous tissue and propagates to both ends of the SI.
Then, after a brief intermission, the fibrous tissue separates instantaneously. This process is
summarised in figure 3.4.

Distinct rupture phases are suggestive of discrete underlying strengths ormechanical prop-
erties. For instance, the fibrous tissue of the construct is hypothesised to have greater strength
or stiffness as it remains intact longer than the SI. As previously discussed, collagen fibres are
the likely root of these contrasting properties. The fibrous tissue is abundant in anisotropic
load-bearing collagen fibres, whereas the SI showed a lack thereof.

The onset of rupture in the engineered constructs showed a likeness to the rupture me-
chanics in atherosclerotic plaques. Firstly, the global strains corresponding to the point of
rupture initiation (see figure 2.5) matched the 15% to 60% strain range reported in literature
[58]. These values correspond to the mechanical failure range for circumferentially tensed
aortic intima plaques. Secondly, rupture occurs at the narrowest region of the fibrous tissue
of the engineered construct, an event commonly observed in ex vivo atherosclerotic plaques
[10, 14]. It concurs with the notion that cap thinning is associated with plaque vulnerability and
increased likelihood of rupture [59, 23]. Finally, the maintained integrity of the fibrous tissue
during the first rupture phase is not a novelty. A study by Daemen et al. (2016) on intraplaque
haemorrhage identified rupture to initiate between two tissue planes without disrupting the
continuity of the fibrous cap.

The sequential phases show that the rupture path has a consistent trajectory. Rupture of
the tissue engineered plaques always initiates within the SI, representing the necrotic core,
and propagates towards the luminal surface of the fibrous cap. This directionality differs from
theories that propose rupture due to cap destabilisation. These are mainly collagenase-driven
theses, built on the degenerative function of macrophage products. Macrophages in the cap
produce matrix metalloproteinases (MMPs) which digest collagen fibres. Upon critical loading,
local disturbances in the collagen fibre network (e.g. due to the activity of MMPs) cause the
separation of the matrix in a chain reaction for rupture [60]. Hence, the fracture line propagates
inward.

As the tissue engineered caps do not contain macrophages, their collagen fibres remain
unaffected by MMPs. Therefore, a possible interpretation of their mechanical failure is that
plaque types devoid of macrophage infiltration could undergo rupture according to the pre-
sented internal failure mechanism.

Further inspection of the rupture direction shows that the fracture line follows different
propagation paths in different tissue sections. The SI separates in a gentle diagonal line, off-
set only slightly from the horizontal. This path increases its angular offset upon entering the
fibrous tissue, as is presented in figure 3.4. The crooked rupture path could indicate that in-
homogeneously distributed collagen fibres (inconsistent anisotropy and density) disperse the
tensile force unevenly through the tissue, leading to the accumulation of different local stiff-
nesses and stress modes. Unfortunately, clinical observations of the rupture mechanics do
not yet exist because in vivo imaging is challenging. Therefore we cannot refute or support
the observations in true plaques.

Finally, the rupture locations were related to the strain and failure criteria patterns by esti-
mating SI and fibrous tissue rupture initiation sites. Consequently, it was possible to identify
the features commonly associated with rupture. This is summarised in table 4.1.

As was previously suggested, the SI has a lower load-bearing capacity, which would imply
that it should undergo the greatest deformation. The first observation from each strain map
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Table 4.1: Relation between strain patterns and rupture

SI rupture initiation Fibrous tissue rupture
Cartesian strains In the all maps, the

strains undergo a
transition of high to low
strains (relavite for each
map).

In 𝜀𝑥𝑥 maps, the strains
undergo a transition of
high to low strains. In the
𝜀𝑥𝑦 and 𝜀𝑦𝑦 maps, the
strain is low.

Cartesian failure criteria In both maps, the
fracture criteria under go
transition from high to
low values.

Occur where the fracture
criteria is low.

was the accumulation of high strains in the middle of the cap. According to the marked strain
maps (figure 3.6), these regions lie within the boundary of SI, affirming the predicted behaviour.

Several numerical studies have suggested a link between high strains and plaque rupture
[61, 39, 62, 54]. Although the thesis remains unconfirmed, they proposed that rupture occurs
in the vicinity of a high strain region. Table 4.1 offers simple proof that for a minimalistic
tissue-engineered plaque cap mimic, such a relationship indeed exists. The location of rupture
initiation in the SI always lies at the edge of a high strain region.

Based on the topology of the strain maps, the relationship between rupture and high strain
regions appears to follow the steepest-descent approach. This signifies that the rupture pah
follows the sharpest gradient in strains. Accordingly, the orientation of the 𝜀𝑥𝑦 and 𝜀𝑦𝑦 high
strain regions described before counters the diagonal path of the fracture line. For instance,
when the fracture line is tilted to the right, the 𝜀𝑥𝑦 and 𝜀𝑦𝑦 high strain regions are tilted to the
left, and vice versa.

4.4. Local strain analysis
The local analysis of the strain maps was restricted to the SI and its surrounding tissue. As
was mentioned in chapters 2 and 3, this allows for a better inspection of the strain patterns
close to the onset of rupture.

4.4.1. Segmented patterns and rupture
In the first approach of local analysis, the zoomed region was divided into individual data sets,
following the pizza-slice segmentation approach described in appendix H. A single revolution
about the SI revealed a repetitive pattern between the segments, indicating that the opposite
sides of the SI showed similar mechanical behaviour. This stems from the high strain regions
that intersect the SI and are consequently captured by opposite segments.

The association between the segment patterns and rupture was achieved by identifying
which segments geometrically overlapped with the location of rupture initiation. The main
results of this investigation are summarised in table 4.2. These results hold for most samples,
which is another admonition to the experiment’s reproducibility. Importantly, the mechanical
tests elicit similar responses regardless of the different loading protocols that samples were
subjected to during culturing.

The descriptions of the results are reasonably generic. For instance, while rupture asso-
ciates the 𝜀𝑦𝑦 strain peak, there is no criterium for its height, width, or other unique features
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Table 4.2: Relationship between boxplot patterns and rupture

Location of rupture
𝜀𝑥𝑥 At a valley (low medial strains)
𝜀𝑥𝑦 Transition between high and low medial strains
𝜀𝑦𝑦 At a peak (high medial strains)
𝐹𝑁𝑜𝑚𝑖𝑛𝑎𝑙 Transition between high and low medial strains
𝐹𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 Transition between high and low medial strains

that help distinguish the rupture segments from its symmetric counterpart (e.g. the side on
which rupture occurs). Moreover, the exact local strain values differ per sample. For instance,
the medial segment strain at the rupture location can be around 0.21 for one sample and 0.34
for another. This indicates that strain magnitude is not the only determining factor for rupture.
Several studies have repeatedly suggested that disturbances in the local biological composi-
tion may stimulate rupture [15, 35, 43]. Therefore, these results from segmentation motivate
the integration for structural analysis of the tissues.

The repetition of the boxplot patterns stems from the mechanical symmetry of the geom-
etry. Therefore, each iteration of the pattern belongs to half the geometry, which resembles
a single plaque. When considering the patterns in half of the geometry only, the valleys and
peaks of the segmented 𝜀𝑥𝑥 and 𝜀𝑦𝑦 strain maps are unique. In such a situation, the rupture
location colocalises with the maximal 𝜀𝑦𝑦 and minimal 𝜀𝑥𝑥 boxplot strains. The peaks and
valleys in the boxplot patterns can therefore serve as markers for the rupture location. The
uncertainty of this estimate corresponds to the width of the segments, which lies within a 45∘
range from the centre of the SI.

4.4.2. Local maxima and rupture
In the second approach of local analysis, the geometrical symmetry of the construct was bro-
ken by eliminating the unruptured half of the samples. Then, the tissue half of interest was
analysed by inspecting the local maxima of the strain and failure criteria fields.

As was already evident from the displacement fields, the V fields measured the largest
displacements, suggesting that the vertical axis should experience the greatest deformation
and strain. This expectation held true, as the 𝜀𝑦𝑦 strain fields measured the highest strains.
The maximal strains reach around 0.5, which is easily detectable in vivo. Several studies
reported strains as small as 0.01 to be measurable with intravascular ultrasound (IVUS) [39,
23]. Even the 𝜀𝑥𝑥 and 𝜀𝑥𝑦 maxima, at half this magnitude, are therefore also measurable.

Combining the individual strain fields through the different failure criteria realised two maps
with different ranges, whose maxima are summarised in figure 3.11a. The nominal strain
criterion (𝐹𝑛𝑜𝑚𝑖𝑛𝑎𝑙), which is scaled between 0 to 1, reaches the ultimate magnitude for their
range in all samples. However, the quadratic strain criterion (𝐹𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐) consistently fails to
satisfy its ultimate 0 to 3 range. The significance of this observation is that the maxima of the
individual strain maps (𝜀𝑥𝑥, 𝜀𝑥𝑦 and 𝜀𝑦𝑦) do not overlap (see equation2.5). Instead, their high
strain regions accumulate at different positions within the SI such that the quadratic addition
of their normalised strains fails to reach 3. This suggests that the mechanical properties of
the tissue construct are different in each direction, where any local disturbances to the tissue
structure may have different effects on the strain components.

High strains are typically associated with the infiltration of biological material (macrophages),
lower collagen content, and thinner plaque caps [23]. Therefore, IVUS studies from Schaar
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et al. (2003) and others have proposed using high strain peaks as indicators for vulnerabil-
ity [23, 62, 61]. This report attempted to validate this hypothesis by calculating the average
length between the local maxima of the strain and failure criteria fields and the sites of rupture
initiation. The average distances measured for every map lay around 0.7 mm, showing that all
perform similarly at approximating the location of rupture initiation. However, since the radius
of the SI itself is only 1 mm, the precision of this approximation is relatively poor. Therefore,
employing high strains of failure as markers of rupture leaves room for uncertainty.

The standard deviation measured for the magnitudes and distances across the sample
group is substantial. This was unexpected as the culturing conditions of the constructs and
the execution of mechanical tests were strictly controlled. The histological analyses by Wiss-
ing et al. (2021) found negligible variances in the arrangement of collagenous tissue [42].
Circumstantial data (e.g. dynamic culturing protocols, tissue integrity and clamping artefacts)
could elucidate the observed differences between the samples. Due to the minimal availabil-
ity of samples fulfilling the criteria mentioned in section 2.1, constructs belonging to different
mechanical protocols were mixed in this report. The continuous and intermittent straining pro-
tocols (see section 2.1) follow different dynamic loading cycles, leading to the development of
materials with different inherent strengths.

Moreover, two of the five samples hadminor damages in their structure. These pre-existing
cracks in SI could distort strain patterns, leading to the accumulation of atypically high strains.
The greatest source of distortion, however, follows from clamping malfunctions. Insufficient
friction at the uniaxial clamps can result in contractile tissue movement, known as slippage,
allowing the measured strains to drop significantly. These causes (different dynamic protocols,
clamping malfunction, and damage to tissue integrity) can lie at the root of the high standard
deviation detected.

4.4.3. Physiological frame
Current diagnostics lack biomarkers that accurately measure plaque vulnerability within clin-
ical settings. This report aims to bridge this gap by analysing intraplaque strain fields that
are attainable through imaging techniques like IVUS [23, 39, 62]. A physiological state was
selected to represent tensile forces measured in vivo and establish clinical relevance. The
physiological state corresponds to the frame at which the global strain is 10%. This value
was based on reported circumferential strains measured for atherosclerotic caps [42, 49, 50].
Moreover, it corresponds to the threshold beyond which endothelial cells are assumed to be
more sensitive towards shear stresses [59].

The physiological frames were compared with the final frame by inspecting the visual sim-
ilarity of all field patterns, the segment patterns, and the local maxima. All three approaches
identified an uncanny resemblance between the two frames. This suggests that most conclu-
sions from the final frame can be extended to a physiological setting. Therefore, this report
encourages further experimentation with tissue-engineered constructs following their clinical
potential.

The first endeavour proved the consistency between the frames through elementary visual
observations and quantitative evaluation, where the calculated structural similarity (SSIM) in-
dex (scaled between 0 and 1) always reached above 0.5. The second approach identified
nearly identical segment patterns in the boxplots of both frames, whose relationship with the
rupture location was unchanged. Albeit the halved magnitude, the segmentation of the circular
selection proved to be another admonition to the previously found similarity.

Finally, the magnitudes and distances of the maxima in both frames were compared. As
was expected, the magnitudes of the maxima were highly different. The local strain values
reflected the 2.3 fold reduction in global tension experienced by the tissue. Nevertheless, the
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corresponding local strain magnitudes remained above the measurable threshold of IVUS [39,
23]. The maxima locations showed a minimal difference between the frames, which concurs
with the previously mentioned consistency in field patterns. The average distances ranged
between 0.6 and 0.7 mm for both frames. Similarly, the standard deviations measured for the
final frame remained nearly unchanged, indicating that inter-sample variance is already evi-
dent early in the mechanical test. Therefore, the unique biomechanical behaviours of different
samples could be detectable at the physiological frame.

4.5. Limitations
The study encountered several setbacks, which limited the results of the study. This section
discusses the most significant limitations of this report.

Firstly, a low camera capture rate deterred the investigation of rupture mechanics. At 15
Hz, it was impossible to identify the exact rupture initiation point. This uncertainty directly
affected the strains and patterns associated with rupture. This entails the identified strain
magnitudes and the distances between the approximated rupture site and the strain feature
of interest. Moreover, the low capture rate prevented the acquisition of the exact dynamics of
fibrous tissue rupture. While current evaluations consider fibrous tissue rupture instantaneous,
this could not be validated. Therefore, improving the capture rate improves the reliability of
future results and may also discover new failure mechanics.

Clamping artefacts have also been proven to influence the results. The suboptimal fixation
of the tissues to the uniaxial ledger was reflected in the results. Aside from distorting the U
displacement fields, they caused artefacts at the tissue edges and often instigated rupture at
the clamp site (see appendix A). This effect highly compromised the availability of samples
for this report, leading to the inclusion of samples from different dynamic loading protocols
that carried minor damages. The most unfortunate effect of suboptimal clamping was slip-
page, which distorted all fields. Although some strain patterns could still be retrieved, their
magnitudes differed from the rest of the group.

Another limitation to the study is its two-dimensional perspective. As a three dimensional
object, the tissue construct also shows changes in its thickness. However, by utilising 2D DIC
and treating the data fields as 2D planes with no changes in thickness, the third dimension
is entirely ignored. Although the thickness is much smaller than the tissue height and width,
following the laws of volume conservation, the tissue must also adjust its size in the z-axis to
accommodate for the tensile forces. Moreover, the local thickness of the tissue construct may
also affect the location of rupture. For example, thinner tissue areas can endure lower tensile
forces than locations with thicker tissue of identical composition. Because of its smaller cross-
sectional area, lower collagen content, and lower stiffness will experience higher stresses,
making it more susceptible to rupture.

Continuing on the notion of stresses, the final limitation discussed in this section concerns
the lack of information about local stresses. By ignoring this entity, the mechanical response of
the constructs is not fully represented. While strains quantify deformation, stresses measure
an object’s internal forces. Therefore stress and strain maps can vary greatly. For instance,
while the SI measures high local strain, the edges of the tissue should experience high local
stress due to the local anisotropic collagen fibre arrangement. Thus the tissue edges will
endure a significant proportion of the global tensile stress to compensate for the weaker centre
of the tissue.





5
Concluding remarks

5.1. Conclusions
The analysis of strain maps may offer a new window into diagnosing atherosclerotic plaques.
The main findings identified by this study in achieving this objective are summarised below.

• Rupture analysis:
The mechanical failure of the tissue constructs did not occur instantaneously but fol-
lowed a series of phases instead. In all samples, rupture initiates near the edge of the
SI and propagates to its lateral boundaries. After a brief intermission of no more than
0.2 seconds, the fibrous tissue ruptures.

• Relationship between rupture and strain map patterns:
The position of rupture initiation always colocalises with the edge of a high strain or
failure criteria region. Consequently, rupture overlies a gradient between high and low
strains.

• Relationship between rupture and patterns from segmented data:
The radial division of strains in the zoomed SI region produces highly reproducible box-
plot patterns. The segments that geometrically encompass the rupture locations re-
peatedly lie within identical pattern positions. For the 𝜀𝑥𝑥, 𝜀𝑥𝑦 and 𝜀𝑦𝑦 strains, these
correspond to a valley, a transition between low and high medial strains, and a peak
in the pattern, respectively. Similarly, the nominal and quadratic strain failure criteria
overlie a transition between low and high medial strains.

• Relationship between rupture and local maxima:
The maxima of the strain- and failure criteria maps showed minimal standard deviation
across the sample group, indicating that all samples had similar strain magnitudes. Ad-
ditionally, the euclidean distance between the maxima and the rupture location varied
minimally between the strain maps and failure criteria. Accordingly, each strain map
performed similarly in estimating the location of rupture initiation. Therefore, the rupture
locations were identified to lie near local strain maxima and failure criteria maxima.

• Comparing the patterns in final and physiological frames:
Despite the significantly lower magnitude of local strains in the physiological frames
(10%global strain), the patterns of the strain- and failure criteriamapswere highly similar
to those identified in the final frame before rupture. Moreover, the boxplot patterns of
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the zoomed SI perspective showed no changes in the patterns nor the relationship with
rupture.

• Comparing the maxima in final and physiological frames:
The maxima of the individual physiological strain maps are more than two-fold lower
than at the final frame. Only the magnitudes of the failure criteria maxima remain nearly
unchanged. Additionally, the average Euclidean distances vary negligibly between the
frames. Therefore, it is concluded that all maxima at the physiological frame lie at nearly
identical locations in the final frames. Therefore, the relationship between the maxima
and rupture location is identical for both frames.

5.2. Future prospective
In light of continued research on analogous topics, this section presents recommendations for
future experiments and studies.

• Improve the mechanical experiments:
This project recommends a higher camera capture rate, improved lighting and speckle
patterns, and a better clamping methodology to overcome the shortcomings of the ex-
tracted data. The current capture rate of 15 Hz proved inadequate at discerning rupture
phases clearly. Increasing its acquisitive power should eliminate this limitation by a sig-
nificant degree. Moreover, the surface features of the tissue did not show a 50% cov-
erage of equally sized speckles in a unique architecture. Interference by poor lighting
and an aberrant speckle distribution can significantly distort the derived strain maps and
compromise their reliability. Finally, as was shown during pattern analysis in chapters 3
and 4, clamping effects were apparent in the produced patterns. Rotation, slippage and
mechanical failure at the clamps should be minimised in future experiments. As has
been recommended by the master thesis of Serra [44], employing a re-designed clamp
may effectively improve the DIC output.

• Inspecting the topology of transition in the strain- and failure criteria maps:
The experiments showed a repeated association between the rupture location and a
gradient in local strains. Quantifying these transitions may provide better insights into
the relationship between material behaviour and strain maps.

• Inspecting tissue response at lower global strains:
The selected 10% global strain benchmark corresponds to the maximal circumferential
strains measured in arteries [42, 49, 63]. The comparative analysis performed in this
report between the physiological and final frames can be extended to inspect frames
subjected to even lower strains.

• Integrate the mechanical observations with the underlying biological composition:
A hybrid perspective that evaluates the mechanical response of the tissue construct (i.e.
strains, failure criteria and rupture behaviour) and the biological composition (i.e. the
arrangement of the collagen architecture, continuity or fibre dispersion, and eventual
other constituents) at the same time to improve the understanding of the mechanical
events. By incorporating both mechanical and biological facets, a prospective study
can link the previously stated observation with the local integrity of the tissue construct.
This could elucidate the exact motivation for, for example, the exact location of rupture
or the directionality in which it progresses.
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• Inspecting strain rates:
The current approach evaluates single frames as discrete data sets. Hence, a prospec-
tive study can look at the continuity of the local strains by inspecting the local strain rates.
The local evolution of strains and their developmental patterns may provide better in-
sight into the behaviour of local tissue. As was demonstrated by Iino et al. (2018), the in
vivo local strain rates are different for healthy and diseased tissues. Accordingly, they
reflect important local stiffnesses in a clinical setting [64]. Inspecting the role of strain
rates in the constructs may improve the current understanding of rupture mechanisms
and improve its predictability.

• Include a three-dimensional perspective:
As was indicated in section 4.5, this study encaptures two-dimensional data only. Future
work could build on this limitation by including information about this third dimension of
the tissue. Such options are, for example, acquiring the tissue thickness at specific
locations during the experimental test or performing 3D DIC to include the effects of
surface deformations. The tissue construct accommodates global stresses in all three
dimensions to conserve its volume. The current approach fails to notice decreases
in tissue thickness, which may restrict the interpretation of the mechanical responses.
Therefore, further analysis of the strain maps could inspect the thicknesses of different
tissue regions.

• Inspect local stress distribution:
When obtaining the local tissue thicknesses, it becomes possible to calculate the local
stresses. The stresses can be collected and assembled into a coarse stress field. Future
studies could enhance their mechanical analysis by evaluating strain maps and stress
fields.

• Perform the same study with more complex tissue constructs:
Finally, the last suggestion is to increase the complexity of the tissue constructs. The
current structure constitutes a remarkable basis for testing the mechanical responses
of minimalistic plaque. However, in vivo plaques are highly complex, and the exact
dynamics and mechanical roles of their constituents are still unconfirmed. The tissue
engineered constructs offer a unique opportunity to introduce different plaque species
(e.g. calcifications and cells) in a controlled manner and evaluate their mechanical con-
sequences. Moreover, the results from this report can serve as a control against their
effects can be determined.
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A
Sample database

The following table summarises the names, dynamic loading protocols and attributes of all
samples created prior to this project. Based on the sample criteria mentioned in chapter 2,
only five samples qualify for processing in this report. The corresponding samples are numbers
13, 14, 15, 34 and 36.

Table A.1: Database of all samples

Sample
number

Experiment code Loading protocol Fracture at
center

SI

1 STAT.P1.LC.W1 Static no yes
2 STAT.P1.LC.W2 Static no yes
3 STAT.P2.LC.W1 Static no yes
4 STAT.P2.LC.W2 Static no no
5 IS.P5.W2 Intermittent no no
6 IS.P5.W3 Intermittent no no
7 IS.P6.LC.W2 Intermittent no yes
8 IS.P8.LC.W1 Intermittent no yes
9 IS.P8.LC.W2 Intermittent no yes
10 CS.P7.W2 Continuous no no
11 CS.P7.W3 Continuous no no
12 CS.P7.W4 Continuous no no
13 CS.P2.LC.W2 Continuous yes yes
14 CS.P2.LC.W4 Continuous yes yes
15 CS.P2.LC.W5 Continuous yes yes
16 STAT.P3.W1 Intermittent no no
17 STAT.P3.W2 Intermittent no no
18 STAT.P4.W1 Intermittent no no
19 STAT.P1.W1 Intermittent no no
20 STAT.P1.W2 Intermittent no no
21 CS.P2.W1 Continuous no no
22 CS.P2.W2 Continuous no no
23 CS.P2.W3 Continuous no no
24 CS.P3.LC.W1 Continuous no yes
25 CS.P3.LC.W2 Continuous no yes
26 CS.P3.LC.W3 Continuous no yes
27 CS.P5.LC.W6 Continuous no yes
28 STAT.P5.W2 Static no no
29 STAT.P9.LC.W2 Static no yes
30 IS.P2.W1 Intermittent no no
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31 IS.P4.W1 Intermittent no no
32 IS.P4.W2 Intermittent no no
33 IS.P1.LC.W5 Intermittent no yes
34 IS.P1.LC.W6 Intermittent yes yes
35 IS.P3.LC.W5 Intermittent no yes
36 IS.P3.LC.W6 Intermittent yes yes



B
Image pre-processing in ImageJ

This report requires a simplistic pre-processing technique that results in low-noise images, with
good contrast between the background and speckle-pattern [65, 66]. This effect is summarized
by figure B.1. The following criteria best define the basic and essential requirements of a
technique:

1. Distinguish noise from essential speckles. If the filter removes essential speckles,
no surface features remain to indicate local displacements. Moderation and selectivity
are essential features of the filter to preserve DIC quality and reliability.

2. Minimize the effect of outliers that originate from reflections and shadows. Outliers
are pixels whose values lie outside the expected range. For example, reflections result
in brightly lit areas with exceedingly high pixes values. Removing outliers is equivalent
to removing unwanted surface features that may hinder the image recognition algorithm
of DIC.

3. Improve the contrast between background and speckles. Sharp colour contrasts
between objects facilitate DIC image recognition.

4. Should not consume a high processing time and computational power.

Figure B.1: The effect of improving the speckle patterns digitally. The image on the left has poor
contrast and high noise. Too much noise reduction will produce the second image, where no speckles
are anymore visible. This results in the loss of essential data used during tracking. The third image
has much better contrast but is tainted by noise which might interfere with speckle identification.
Optimization of both noise and contrast results in the right-most image, allowing the reliable DIC.
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A set of different filters have been tested in this project to identify a simplistic image pre-
processing:

• Cropping only

• Improving contrast

• Greyscale contrast

• Enhance local contrast function

• Gaussian filtering (blur)

• Background subtraction

• Intensity thresholding

To avoid arbitrary and partial definitions of an ’optimal’ processing approach, the compar-
ison of these filters was based on two quantitative DIC metrics: the correlation coefficients
of the subsets and the number of Gaussian iterations (described in appendix D). The smaller
their values are, the better the performance of the given filter is. By comparing the final two
images of the mechanical experiment, the most significant deformation from the state of the
reference frame is captured. Coincidentally, these images also show the least agreement with
the reference frame, so that they will reveal slight improvements to the image quality. For the
purpose of reliability, several measures were taken to maintain maximal consistency within
this comparison. This includes employing the same sample, seed placement and system pa-
rameters.
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(a) Cropping (b) Improve contrast (c) Grayscale contrast

(d) Enhance local contrast function
(ELCF) (e) Gaussian filtering (blur) (f) Background subtraction

(g) Intensity thresholding
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B.1. Summary of the different filters
The techniques employed for image processing are described below. Note that for DIC, all
images must terminate with a numerical value to indicate the sequence of the stack. This is
achieved by looping through the entire file that contains the images and adding the iterative
value to its end.

image_name = ’MyExample_’;
inputFolder = ’getDirectory(”choose input folder”);
outputFolder = ’getDirectory(”choose output folder”);
list = getFiles(inputFolder);
setBatchMode(true);
for (i=0; i<list.length; i++){
...
saveAs(”tiff”, outputFolder+image_name+i);}

B.1.1. Cropping
All images were cropped with the below code. Images that did not receive any further pro-
cessing than described in this subsection were identified as the threshold for performance
imporvement.

roix = ...;
roiy = ...;
roiwidth = ...;
roiheight = ...;
makeRectange(roix,roiy, roiwidth,roiheight);
run(”crop”);

B.1.2. Improving contrast
setMinAndMax(55, 197);
run(”Apply LUT”);

B.1.3. Greyscale contrast
run(”8-bit”);
run(”Brightness/Contrast...”);
setMinAndMax(”36.80”, ”163.45);

B.1.4. Enhance local contrast function
run(”Enhance Local Contrast (CLAHE)”, ”blocksize=127 histogram=256 maximum=3 mask=*None* fast_(less_accurate)”);

B.1.5. Gaussian filtering (blur)
run(”Gaussian Blur...”, ”sigma=4”);

B.1.6. Background subtraction
This is also commonly known as ‘top hat filtering’. It works as follows:

1. Convert to grey-scaled image

2. Take the dilated version
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3. Take the eroded version.

4. Subtract the original image from the eroded version.

The code I used to perform this is as following:

run(”Duplicate...”, ”title=Original”);
run(”8-bit”);
makeRectangle(318, 174, 1947, 1464);
run(”Crop”);
run(”Duplicate...”, ”title=C”);
run(”Gray Morphology”, ”radius=10 type=circle operator=dilate”);
run(”Gray Morphology”, ”radius=10 type=circle operator=erode”);
imageCalculator(”Subtract create 32-bit”, ”Original”,”C”);
rename(”R=10”)

saveAs(”Jpeg”, ”C:/Users/ranma/Documents/University/MEP/MEP docs/Expt_Images/General_Representative_file_24Feb/Adjusted images/High_pass_filtering/VariousRadius/R=10.jpg”);

B.1.7. Intensity thresholding
This should get rid of very bright images. This might work best through grey-scale images.

run(”8-bit”);
setAutoThreshold(”Default”);
setThreshold(108, 153);
run(”Convert to Mask”);

B.2. Evaluation of filters
The only filter that improved both metrics was the Gaussian blur. As a low pass filter, it at-
tenuates high-frequency signals. Depending on the radius size, it can reduce the amount
of noise in the image. However, this comes at the cost of loss of details and computational
power. The larger the radius, the more pixels processed (e.g. for a radius of 9, 81 pixels
are processed). Selecting the right radius was a trade-off between the two metrics, data loss
and computational power during processing. Based on the extracted data, the author deemed
a Gaussian radius of 2.5 suitable for the current speckle pattern and imaging technique. Its
average correlation coefficient lay at 0.0179 and showed almost minimal variance. This is a
five-fold improvement to the baseline. The mean number of Gaussian-Newton iterations lies
around 11, which indicates that the computational efficiency of DIC has increased by two-fold.

The application of the filter has been automized by means of a macro written for ImageJ.
This code collectively crops, applies the filter and renames the images as required. Contact
R.M. Hengst or H.Crielaard for this information.
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Figure B.3: Metric comparison of all image filters. The legend (on the right) relates each filter to a
colour. The sixth filter has eight different versions, where the radius is changed to 0.5, 1, 1.5, 2, 2.5,
3, 3.5 and 4 pixels. The left graph indicates the least square correlation coefficient, while the right
graph presents the number of iterations of each filter. To improve image quality, the value of the
metric must lie below the baseline, which corresponds to the neutral effect of ‘cropping’. The error

bars correspond to the data variance.



C
Selecting tissue features

To facilitate the investigation regarding the relationship between local 𝜀𝑥𝑥, 𝜀𝑥𝑦 and 𝜀𝑦𝑦 strain
modes, and SI and fibrous tissue rupture events, the established rupture site coordinates
highlight the location of tissue failure in the local strain maps. Thus, they can be used to identify
and analyse unique strain modes and patterns. Furthermore, attributing the strain maps with
the SI boundaries may aid in the segmented interpretation of the two tissue materials and the
consequence of heterogeneity on mechanical failure.

To complete the dictionary we need 7 ingredients.

• Image canvas size: X and Y dimensions

• Left Tissue rupture box: X coordinate, Y coordinate, Width, Height

• Right Tissue rupture box: X coordinate, Y coordinate, Width, Height

• SI rupture box: X coordinate, Y coordinate, Width, Height

• Frame that corresponds to the final rupture image

• Frame that corresponds to the physiological rupture image.

• SI bounding rectangle: X coordinate, Y coordinate, Width, Height

These coordinates must be corrected for movement from the original (reference) image.
If the analyst fails to do so, the selected region does not match the actual rupture location.

This appendix provides the protocol for the whole process of completing the dictionary
function by using sample 13 as an example.

The easiest method of selecting the right batch of images is by referring to the uniaxial log
excel file. This entails the type of loading set, with their relevant time, force, displacement and
length.

After finding the correct time when the protocols begin and end, all the corresponding
images are imported into a separate file. Let us call it Sample_13Original.

The global strains per time can be calculated for each image byt following formula:

[ℎ]𝜀 = 𝛿𝑙𝑒𝑛𝑔𝑡ℎ
𝑙𝑒𝑛𝑔𝑡ℎ0

(C.1)

The physiological frame is selected by identifying at which frame the global strain is 10%.
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Figure C.1: Identify time of starting frame

Figure C.2: Identify time of physiological frame

Before applying the image filter, a cropping dimension must be selected. Because the
tissue and clamp dimensions varied in this study, this had to be selected manually. Automation
becomes possible for samples with identical tissue dimensions and image coordinates. The
primary qualification for this selection process is the visibility of the entire tissue. Therefore
we import a stack of images in ImageJ and open the macro recorder. Draw a box around the
entire tissue for the first frame and transport it through the stack until the final frame. Here,
the boundaries are extended to include any tissue excluded from the current selection.

(a) Selection in first image (b) Adjust selection in rupture image

Enter these coordinates into the macro and run it on the file Sample_13Original. This will
produce a new file with all gaussian images.

Once these are established, the rupture sites and SI boundaries must be identified with
respect to the first frame. This can be achieved in two steps. First, the coordinates of the
rupture sites are obtained from the end of the stack. Second, the relative deformation between
images and the movement of tissue coordinates must be corrected. The easiest way to do
this is visually correcting selections by referring to deformations in the speckle pattern. Outline
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the point of rupture in the stack and then use the speckle patterns as a guide to correct this
back onto the original image. Once this is complete, the SI boundary is also outlined from the
reference image.

Figure C.4: Select the coordinates and correct their positions by following the speckle patterns.

Finally, remove the images that capture tissue rupture from the image stack and enter
all the identified details (dimensions, coordinates, name, etc.) in the Matlab dictionary. After
completion of this step, the images are ready to be pre-processed, as is described by appendix
B





D
Ncorr Algorithm

Ncorr [65] is an open-source subset-based DIC program that calculates local 2D strain fields
for deforming materials. It employs image registration to process optically visible surface fea-
tures and uses tracking to monitor their deformation. The relative local deformations are ob-
tained by geometrically relating the material points on the reference (undeformed) image to
those in the current (deformed) image. The resulting output are grids that contain local dis-
placement and strain information.

D.1. Working principle
The algorithm of Ncorr is based on the Reliability-Guided DIC (RG-DIC) technique established
by Pan et al. (2009) [67]. This technique resolves the errors that propagate from bad points
by selecting a seed point, which is used to determine the middle of the reference subset.
The reference image is partitioned into groups of neighbouring pixels, called subsets, which
collectively form a grid. An example of this is presented in figure D.1. In truth, subsets are a
group of circular points at integer pixel locations, whose internal deformation are assumed to
be homogeneous. A grid of subsets in the reference frame serves as a template from which
the correlation between images is derived.

Figure D.1: The Region Of Interest (ROI) is divided into subsets. The relative movements of these
subsets are used to obtain the local strains

Following the example, an initial point (𝑥𝑟𝑒𝑓𝑖 , 𝑦𝑟𝑒𝑓𝑗) in the reference frame is deformed to
a new coordinate in the current frame (𝑥𝑐𝑢𝑟𝑖 , 𝑦𝑐𝑢𝑟𝑗). The center of the reference subset is de-
noted by the coordinates 𝑥𝑟𝑒𝑓𝑐 , 𝑦𝑟𝑒𝑓𝑐 , while the annotation rc indicates the transformation of the
reference to current subset. The indices (i,j) have a dual purpose, establishing a correspon-
dence between the current and reference subsets points and indicating the relative location
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of all points with respect to the centre of the subset. The following equation describes the
deformation of the coordinates:

𝑥𝑐𝑢𝑟𝑖 = 𝑥𝑟𝑒𝑓𝑖 + 𝑢𝑟𝑐 +
𝜕𝑢
𝜕𝑥𝑟𝑐

Δ𝑥𝑟𝑒𝑓 +
𝜕𝑢
𝜕𝑦𝑟𝑐

Δ𝑦𝑟𝑒𝑓

𝑦𝑐𝑢𝑟𝑗 = 𝑦𝑟𝑒𝑓𝑗 + 𝑢𝑟𝑐 +
𝜕𝑣
𝜕𝑥𝑟𝑐

Δ𝑥𝑟𝑒𝑓 +
𝜕𝑣
𝜕𝑦𝑟𝑐

Δ𝑦𝑟𝑒𝑓
(D.1)

Here, the distance between the initial reference subset points and the coordinates of the initial
reference subset center is indicated by 𝛿𝑥𝑟𝑒𝑓 and 𝛿𝑦𝑟𝑒𝑓.

Δ𝑥𝑟𝑒𝑓 = 𝑥𝑟𝑒𝑓𝑖 − 𝑥𝑟𝑒𝑓𝑐
Δ𝑦𝑟𝑒𝑓 = 𝑦𝑟𝑒𝑓𝑖 − 𝑦𝑟𝑒𝑓𝑐

(D.2)

A new position is estimated by finding an initial guess at integer locations and determining
the agreement with a cost function. The seed point is the first point selected by the user and
is the only one to use a normalised cross-correlation function (NCC) to obtain an initial guess.
This metric indicates a good match between the subset points when the 𝐶𝑁𝐶𝐶 is close to 1.
The term S represents the set that contains all subset points.

𝐶𝑁𝐶𝐶 =
∑(𝑖,𝑗)∈𝑆 (𝑓 (�̃�𝑟𝑒𝑓𝑖 , �̃�𝑟𝑒𝑓𝑗) − 𝑓𝑚) (𝑔 (�̃�𝑐𝑢𝑟𝑖 , �̃�𝑐𝑢𝑟𝑗) − 𝑔𝑚)

√∑(𝑖,𝑗)∈𝑆 [𝑓 (�̃�𝑟𝑒𝑓𝑖 , �̃�𝑟𝑒𝑓𝑗) − 𝑓𝑚]
2
∑(𝑖,𝑗)∈𝑆 [𝑔 (�̃�𝑐𝑢𝑟𝑖 , �̃�𝑐𝑢𝑟𝑗) − 𝑔𝑚]

2 (D.3)

The grayscale values at the reference and deformed subset points are indicated by f and
g. The corresponding averages are denoted by 𝑓𝑚 and 𝑔𝑚, while 𝑛(𝑆) is number of points in
S.

𝑓𝑚 =
∑(𝑖,𝑗)∈𝑆 𝑓(�̃�𝑟𝑒𝑓𝑖), �̃�𝑟𝑒𝑓𝑗

𝑛(𝑆)

𝑔𝑚 =
∑(𝑖,𝑗)∈𝑆 𝑔(�̃�𝑐𝑢𝑟𝑖), �̃�𝑐𝑢𝑟𝑗

𝑛(𝑆)

(D.4)

The displacement matrix, 𝑃𝑔, corresponds to this first guess follows the structure in equa-
tion D.4, and undergoes iterative optimisation of 𝑃𝑟 to refine its solution.

Δ𝑃𝑔 = 𝑢(𝑔), 𝑣(𝑔), 0, 0, 0, 0

Δ𝑃𝑟 = 𝑢, 𝑣,
𝜕𝑢
𝜕𝑥 ,

𝜕𝑢
𝜕𝑦 ,

𝜕𝑣
𝜕𝑥 ,

𝜕𝑣
𝜕𝑦

𝑇 (D.5)

A non linear optimiser, which is defined by either the Inverse Compositional Gauss-Newton
(IC-GN) method, seeks the roots of the Least Square correlation coefficient (𝐶𝐿𝑆). It uses its
neighbors to minimize 𝐶𝐿𝑆 and allows for the calculation of subset rotations and strains. This
function indicates a good agreement subsets when close to 0.

𝐶𝐿𝑆 =
∑(𝑖,𝑗)∈𝑆 (𝑓 (�̃�𝑟𝑒𝑓𝑖 , �̃�𝑟𝑒𝑓𝑗) − 𝑓𝑚)

√∑(𝑖,𝑗)∈𝑆 [𝑓 (�̃�𝑟𝑒𝑓𝑖 , �̃�𝑟𝑒𝑓𝑗) − 𝑓𝑚]
2
−

∑(𝑖,𝑗)∈𝑆 𝑔 (�̃�𝑐𝑢𝑟𝑖 , �̃�𝑐𝑢𝑟𝑗) − 𝑔𝑚

√∑(𝑖,𝑗)∈𝑆 [𝑔 (�̃�𝑐𝑢𝑟𝑖 , �̃�𝑐𝑢𝑟𝑗) − 𝑔𝑚]
2 (D.6)
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D.2. Program execution
The execution of Ncorr is described in detail on the website , but its key steps are summarised
below. Ensure that the ‘OpenMP multithreading’ is checked during the installation and the
maximal number of cores available to the system for computation. Because the calculation of
the strain fields is very complex, the analysis of a single sample can take from several hours
to days, depending on the device’s computational power.

D.2.1. Uploading relevant files on Ncorr
The program is initiated through the function ‘handles_ncorr = ncorr’, following which a pop-up
appears requiring the setup of a path.

Figure D.2: Setting up a path for the Ncorr GUI

The Ncorr interface appears as is presented in figure D.3, with on the left-hand side a
working tree indicating the program state. If a step has not been fulfilled, it is followed by NOT
SET. To complete the steps, the user must follow the workflow from top to bottom and change
the status of each state to SET.

Figure D.3: Overview of startup Ncorr GUI

First, the images (.jpg, .tif, .png, .bmp) must fed into the program. The file name must
terminate in the number corresponding to its position in the image stack. The reference image
corresponds to the single first image in the stack. It can be uploaded through File > Load >
Reference image. The current image(s) refers to the remaining images in the stack, which
may be uploaded through the memory-friendly Load lazy method. As is shown in the figure,
this is achieved by File> Load Current Image(s) > Load Lazy (slower but less memory).

As mentioned in this report’s main body, a binary image is required to isolate the region
of interest in the tissue. As this project uses a forward analysis, a single ROI is required for
this step. By following Region of Interest > Set Reference ROI The ROI be either drawn in
real-time or uploaded from a preexisting file.

Once all the images are uploaded, three of the seven steps will be completed.

http://www.ncorr.com/
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Figure D.4: To select the current images, use the Load Lazy approach to call images to the program.
This important for large image stacks.

Figure D.5: First three steps are completed, and their data is visible in the GUI

D.2.2. Parameters
The first set of parameters required are relevant for DIC itself (Analysis > Set DIC Parameters).
The ROI will be diced into a grid of circular subsets whose size should be small enough to
provide good spatial resolution without introducing noise into the system. Furthermore, a
spacing parameter is decided to reduce computational costs. This is influenced by the image
resolution, as it defines the number of points used in a subset. All required parameters are
presented in figure D.6.

Next, the step ‘DIC Analysis’ is addressed by selecting analysis> Perform DIC analysis
and selecting the seeds. The amount is equivalent to the number of cores entered during the
previous multithreading option. The points are selected as symmetric as possible, adhering
to the rules identified in the Ncorr Instruction Manual.

A preview window appears after confirming the seed points, communicating the identified
correlation between the different images. Aside from the visual presentation of the selected
points, several variables summarise the quality of seed placement. The Number of Gaussian
iterations and the Correlation Coefficient are familiar entities, as they were described in the
selection of an image processing technique. Respectively, they describe the computational
power and quality of agreement to identify relatable subsets.
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Figure D.6: The optimal parameters for DIC on the tissue constructs are a subset radius of 35 and a
spacing of 3

Figure D.7: Selecting seed points. They should be equally spaced, to divide the region up into equal
portions. Most importantly, they must not move out of ROI.

Figure D.8: Seed preview. Here the user can validate the performance of the program. The seed
must not move outside the ROI and must converge, as is indicated by the iterations (max of 50) and

correlation coefficient.
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D.2.3. Obtaining data fields
Once DIC analysis has come to completion, it is possible to format the displacement points
based on the subset 𝐶𝐿𝑆 value. This step is initiated by selecting Analysis > Format Displace-
ments After entering the scale (0.0093 mm/pixel) and selecting a cutoff for the correlation
coefficient (0.7), the displacements were calculated.

Figure D.9: The displacements are formatted by scaling the image to 0.0093 mm/pixel with a cutoff of
0.7 for the correlation coefficient.

Finally, the strain maps were calculated for the formatted displacements. By selecting
Analysis > Calculate Strains, a window similar to figure D.10 appears. The strain radius was
selected to be 5, allowing for minimal smoothening and maximal expression of local features.
Smaller radii produce artefacts from unreliable calculations, while larger radii result in over-
smoothening and a loss of resolution. Because we want a maximal consistency between the
images, it is important to include a maximal amount of elements in the calculations of the
strains- a condition that is appeased by a strain radius of 5.

Figure D.10: The Lagrangian strains are calculated with a radius of 5. These points fit the plane in the
Least Squares fit.

D.3. Optimising DIC
Correct speckle application can already largely improve the image quality. This is dictated by
three constraints: non-repetitiveness, isotropic and high contrast. The speckle density should
be approximately 50%, where half of the tissue is covered by speckles and the other half is
not. This is achieved by applying a random but uniformly distributed pattern of equally sized
speckles. The speckles should lie between 3 x 3 to 7 x 7 pixels to prevent aliasing and overly
dense speckle populations. According to the dimensions of the tissue engineered samples
included in the report, this corresponds to 15 to 34 microns per speckle.

𝑆𝑖𝑧𝑒 𝑝𝑒𝑟 𝑠𝑝𝑒𝑐𝑘𝑙𝑒 = 𝑡𝑖𝑠𝑠𝑢𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
2048 𝑝𝑥 ∗ [3 𝑡𝑜 7 𝑝𝑥 𝑝𝑒𝑟 𝑠𝑝𝑒𝑐𝑘𝑙𝑒]
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The equipment used to capture the images and their cleaning protocol also play a deter-
mining role in image quality. The most suitable cameras for this application have a black and
white lens, with low noise, high quantum efficiency and a high dynamic range (maximal signal-
to-noise ratio). Colour capture is unnecessary for DIC images and may give rise to artefacts
[68]. Lens distortion may also be a source of inaccuracies and should therefore be minimal,
despite any compensation strategies offered by the DIC program. Another criteria that must
be carefully controlled is lighting. Correct lighting must perpendicularly illuminate the sample
without oversaturating pixels or heating tissue. Finally, camera dust may hinder experimen-
tation, motivating the need for camera maintenance. Poor cleaning regimes can be directly
responsible for incorrect DIC.

This study has identified two metrics that define image quality. These are calculated by
the DIC program during seed preview. Seeds are the initial guess point of DIC, used to detect
local deformation parameters, independent from its neighbours. After setting the seeds, the
DIC program outputs values for the image quality metrics. The first metric is the correlation
coefficient, which quantitatively indicates the similarity between the reference and current im-
ages. It follows a least-squares criterion and indicates a good match when the value is close to
zero. Therefore, it is beneficial to make this metric as small as possible. The second metric is
the number of Gaussian-Newton iterations needed for seed convergence. The faster the seed
converges, the quicker the program works. Hence, a high amount of iterations indicates that
the operation is computationally expensive or that seed placement is incorrect. This metric
must also stay as small as possible and has a cut off at 50 iterations.





E
All strain fields

The strain fields of all samples are summarised in this chapter. Two time points of main interest
are looked at: the physiological time point and the final time point. As has been mentioned in
the report, the physiological time point corresponds to 10% of the global strain. This selection
is not specific to to localised strain, but the tissue as a whole. Therefore, in this frame we
would observe tissue responses that would be expected in vivo. The final frame is the last
frame before rupture ensues. This frame corresponds to the ultimate tension that can be
withstood by the sample.

E.1. Cartesian coordinate system
E.1.1. Marked local strain fields in final frame

Table E.1: Strain fields before SI rupture.

test Exx Absolute Exy Eyy

Sample 13
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Table E.1: Strain fields before SI rupture.

test Exx Absolute Exy Eyy

Sample 14

Sample 15

Sample 34

Sample 36

E.1.2. Marked local strain fields in the physiological frame
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Table E.2: Strain fields at physiological frame.

test Exx Absolute Exy Eyy

Sample 13

Sample 14

Sample 15

Sample 34

Sample 36
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E.1.3. Maxima of local strain fields in final frame
Table E.3: Strain fields before SI rupture.

Exx Exy Absolute Exy Eyy

Sample 13

Sample 14

Sample 15

Sample 34

Sample 36

E.1.4. Maxima of local strain fields in physiological frame



E.1. Cartesian coordinate system 71

Table E.4: Strain fields before SI rupture.

Exx Exy Absolute Exy Eyy

Sample 13

Sample 14

Sample 15

Sample 34

Sample 36
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E.2. Polar coordinate system
E.2.1. Marked local strain fields in the final frame
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(a) Sample 13

(b) Sample 14

(c) Sample 15

(d) Sample 34

(e) Sample 36

Figure E.1: Exx, Exy and Eyy strains converted into circular polar strains.
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E.2.2. Marked local strain field at a physiological frame
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(a) Sample 13

(b) Sample 14

(c) Sample 15

(d) Sample 34

(e) Sample 36

Figure E.2: Exx, Exy and Eyy strains converted into circular polar strains.
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E.2.3. Maxima of local strain fields in final frame
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(a) Sample 13

(b) Sample 14

(c) Sample 15

(d) Sample 34

(e) Sample 36

Figure E.3: Exx, Exy and Eyy strains converted into circular polar strains.



78 E. All strain fields

E.2.4. Maxima of local strain rates in the physiological frame.
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(a) Sample 13

(b) Sample 14

(c) Sample 15

(d) Sample 34

(e) Sample 36

Figure E.4: Exx, Exy and Eyy strains converted into circular polar strains.





F
Local strain maxima in the full tissue

construct

This appendix discusses data extracted from tissue regions identified by figure F.1.

Figure F.1: Full and zoomed tissue perspectives. The red boundaries highlight from where the local
maxima are considered.

The ten maxima and minima are highlighted in each strain map of figure F.2 by the symbols
‘+’ and ‘o’, respectively. The approximate dimensions of the ROI are 8.1 mm by 8.2 mm. No
points are identified along the edges of the maps because of the restrictive boundary condition
used in the extraction of ultimate strain points (see appendix E).

The local 𝜀𝑥𝑥 maxima are concentrated at the left tissue edge while the local minima lie
right of the SI. The maxima (average magnitude of 0.3) lie 2.3 mm from the SI rupture box.
The minima (average magnitude of -0.1) lie closer to this box, with less than 2 mm separating
them. The comparison with other samples shows that these distances vary significantly, with
a standard deviation of ± 1.5 mm.

The 𝜀𝑥𝑦 maxima lie in the centre of the SI, less than a millimetre away from the centre of the
black rupture box. It reaches a magnitude of 0.15, which is slightly lower than the maximal 𝜀𝑥𝑥
strain. Because the map shows absolute strains, there are no minima. The location of these
maxima differs per sample, where three of the five samples find them inside the SI. Figure F.3
shows that these maxima perform second best at approaching the rupture site. However, the
corresponding standard deviation of 1 mm shows that this performance is sample dependent.

The maximal 𝜀𝑦𝑦 strain in the figure F.2c reaches 0.54, which is more than twice the mag-
nitudes found in the 𝜀𝑥𝑥 and 𝜀𝑥𝑦 distributions. These maxima show the most consistency in
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(a) Exx strain field (b) Absolute 𝜀𝑥𝑦 strain field (c) 𝜀𝑦𝑦 strain field

Figure F.2: Strain field maps before SI rupture, with maximal strain points highlighted by ‘+’ and
minimal strain points by ‘o’. The black and white rectangles correspond to the SI and fibrous tissue

rupture sites, while the white ellipse represents the location and shape of the SI.

their approximation of the SI rupture box. This is because, throughout all samples, the maxima
lie in the centre of the SI. This consistency is reflected by figure F.3, where the 𝜀𝑦𝑦 maxima
show the least variation (±0.3 mm) of all strains. The minima consistently lie at the periphery
of the SI, which is on average 1.8 mm from the SI rupture box.

Figure F.4a summarises the distances described for all samples.

Figure F.3: Average distance (in mm) between SI rupture box and maxima and minima. The error
bars indicate the standard deviation between all samples.

The locations of 𝜀𝑥𝑦 and 𝜀𝑦𝑦 minima and maxima are unchanged from the zoomed per-
spective of the entire tissue construct, which implies that the distances and magnitudes are
the same. Therefore, the observations made for the entire ROI hold for the given sample.

The effect of ROI size reduction is most prominent when looking at the distances of all
samples collectively. This is presented in figure F.4a, where the average distances to the
minima and maxima of all strains are significantly different. The 𝜀𝑥𝑥 maxima show the greatest
average change in their positions. Reducing by 64%, they estimate an average distance of 0.9
± 0.3 mm to the centre of the SI rupture box. A minor change between the two perspectives
is found at the position of the 𝜀𝑦𝑦 maxima, which are separated from the box by the same
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(a) Comparison of distances between SI rupture
box and local maxima and minima, in the entire
ROI and Zoomed SI. The error bars indicate the

standard deviation across all five samples.

(b) Comparison of the local strain maxima and
minima found in the entire ROI and Zoomed SI.
The error bars indicate the standard deviation

across all five samples.

distance as the 𝜀𝑥𝑥 maxima.
Interestingly, the magnitudes of all minima and maxima are highly similar in both perspec-

tives. For the 𝜀𝑦𝑦 maxima, this indicates that the entire ROI identifies the same maxima as the
zoomed ROI. However, changes in displacement found for other minima and maxima are a
consequence of multiple strain modes of similar calibre. Hence, the estimation of distances is
highly susceptible to strain heterogeneity Figure F.4b summarises the average strains magni-
tudes found throughout all samples.





G
Different coordinate systems

The local strain patterns were analysed with respect to two coordinate systems: the global
and the polar coordinate systems.

Global coordinate system
The global coordinate system corresponds to the previously defined two-dimensional system
in figure 2.3. The y-direction lies along the tensile direction, which is depicted here as the
vertical axis. The x-direction lies perpendicular to the y-direction, observed along the horizontal
axis.

G.0.1. Polar coordinates
The polar coordinate system is a circular orientation of the global coordinate system. These
perpendicularly intersect a circular SI. The first step requires the transformation of the global
cartesian coordinates to polar coordinates. The formulas that describe the relationship are as
follows:

r
𝑥 = 𝑟 cos𝜙
𝑦 = 𝑟 sin𝜙
𝑟 = √𝑥2 + 𝑦2

𝜙 = arctan
𝑦
𝑥

(G.1)

Here, x and y are the Cartesian axes, r is the radius of the circle, and 𝜙 is the angular
orientation. Rotation of the object about the origin by 𝜃 degrees results in the shown x’ and
y’, whose Cartesian equation is as following:
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x axis

y axis

(x, y)

(x’, y’)

𝜃
𝜙

𝑥′ = 𝑟 cos𝜃 + 𝜙
= 𝑟 cos𝜃 cos𝜙 − 𝑟 sin𝜃 sin𝜙
= 𝑥 cos𝜃 − 𝑦 sin𝜃

𝑦′ = 𝑟 sin𝜃 + 𝜙
= 𝑟 sin𝜃 cos𝜙 + 𝑟 sin𝜙 cos𝜃
= 𝑥 sin𝜃 + 𝑦 cos𝜃

(G.2)

The transformation of the Cartesian coordinates into the rotated coordinates is governed
by the following rotational matrix.

[𝑥
′

𝑦′] = [
cos𝜃 − sin𝜃
sin𝜃 cos𝜃 ] [

𝑥
𝑦] (G.3)

Accordingly, the tensors of the strain maps in the cartesian coordinates may be trans-
formed towards a circular polar coordinate by the following rule:

𝜀𝑝𝑜𝑙𝑎𝑟 = 𝑅𝑇(𝜃) ⋅ 𝜀𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 ⋅ 𝑅(𝜃) (G.4)

A correct origin must be selected prior to the matrix transformation described by equation
G.4. All rotations occur about this point, and therefore the desired location must be carefully
selected. For the given tissues, the coordinate system is translated such that the point of origin
lies at the centre of the SI. Here the distance to the fibrous tissue is symmetric along the global
x and y-axis, which is reflected in much of the tissue behaviour. Although the rotational matrix
assumes circularity, which does not agree with the elliptical shape of the SI, an approximation
of the polar strain field is regarded as a good product for observational conclusions.
The rotated strains are extracted by the following equation, which combine the results of equa-
tions G.3 and G.4.

[𝜀𝑟𝑟 𝜀𝑟𝜃
𝜀𝜃𝑟 𝜀𝜃𝜃

] = [ cos𝜃 sin𝜃
− sin𝜃 cos𝜃] [

𝜀𝑥𝑥 𝜀𝑥𝑦
𝜀𝑦𝑥 𝜀𝑥𝑥

] [cos𝜃 − sin𝜃
sin𝜃 cos𝜃 ] (G.5)

Because 𝜀𝑦𝑥 is an empty entity, only 𝜀𝑟𝑟 𝜀𝑟𝜃 and 𝜀𝜃𝜃 matrixes are produced.



H
Segmentation

The circumferential length of an ellipse can be calculated by the following equations, where
𝑅𝑥 and 𝑅𝑦 are the radii in the x and y directions.

ℎ =
(𝑅𝑥 − 𝑅𝑦)2
(𝑅𝑥 + 𝑅𝑦)2

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 ≈ 𝜋(𝑅𝑥 + 𝑅𝑦) (1 +
3ℎ

10 + √4 − 3ℎ
)

(H.1)

Following the guideline of ultrasound resolution, a criterion was set for the minimal allowed
arc length. The criterion that corresponded to each slice was 0.5 mm. This was decided based
on the values reported in literature, including IVUS, which have a radial resolution of 0.2 mm
[23]. Division of the ellipse occurs by powers of two, where the amount of new segments are
constantly doubled. By calculating the arc length following each division, the maximal amount
of segments can be deduced.

The given distances are calculated by dividing the circumferential length by the number of
sections. Adhering to the 0.5 mm threshold, four versions of segmentation can be conducted
for all the data.

Table H.1: The arc lengths corresponding to different amounts of segmentation

Amount of segments Arc length
21 2 6.40 mm
22 4 3.20 mm
23 8 1.60 mm
24 16 0.80 mm
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Arc < 0.5mm

An additional level in the segmentation process is the angle at which the sections are de-
rived. By encoding a rotational variable, partitioning the samples at different angles is possible.
This result is that the segmentation can be oriented to isolate the point of rupture perfectly.
Following this definition of partitioning, the written Matlab code allows for rotation relative to
the global axis system. This objective is achieved by the following plastic definition of angular
boundaries. Noting that a full revolution about the origin requires 2 𝜋, symmetric adjustments
to the ultimate angles create different starting points.

𝜃𝑖 = (𝑖 − 1)
2𝜋

#𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 + 𝜙𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛, 𝑖
2𝜋

#𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 + 𝜙𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 (H.2)

Here, i is the segment number, 𝜃𝑖 is the starting angle of the corresponding segment num-
ber, and 𝜙𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 is the angular offset. To find the new boundaries of the segments, the
angular offset can be entered into the final formula.

𝑋𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑅𝑥𝑐𝑜𝑠(𝜃𝑖) + 𝑋𝑐𝑒𝑛𝑡𝑒𝑟; 𝑌𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑅𝑦𝑠𝑖𝑛(𝜃𝑖) + 𝑌𝑐𝑒𝑛𝑡𝑒𝑟; (H.3)



I
Polar Strains

I.1. Patterns analysis and rupture
I.1.1. Polar strains
The 𝜀𝑟𝑟, 𝜀𝜃𝑟 and 𝜀𝜃𝜃 strain maps are presented in figure I.1. As is mathematically described
in appendix G, the 𝜀𝑟𝑟 and 𝜀𝜃𝜃 match their Cartesian counterpart where 𝜃 is a multiple of 𝜋.
Moreover, these distributions match the predicted response. For example, the highest radial
strains occur when the polar orientation of the subsets is aligned to the vertical direction.

(a) 𝜀𝑟𝑟 strain field (b) 𝜀𝜃𝑟 strain field (c) 𝜀𝜃𝜃 strain field

Figure I.1: Marked strain field maps before SI rupture. Rupture of the SI and fibrous tissue initiate at
the black and white rectangles respectively. The shape and boundary of the SI is indicated by the

white oval at the center of the images.

The 𝜀𝑟𝑟 strain distribution has an ‘8’-shaped high strain region (greater than 0.3) at the
centre of the SI, aligned to the y-direction. This indicates that from top to bottom, the SI
experiences extension in the r-direction. The SI rupture box is nestled between the two loops,
where the median strain is nearly 0. The fibrous tissue rupture boxes also enclose areas with
low and negative radial strains found on the right and left of the SI. Looking at appendix E, the
‘8’ shape can be distinguished in four of the five samples, where the rupture boxes associate
with similar strain modes in the same way.
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The 𝜀𝜃𝑟 strain distribution shows the contribution of both angular and radial strains. The
SI contains a distinct ‘x’-shaped region produced by intersecting high strains (greater than
0.1). The strains measured along the diagonals of the ‘x’ shape are consistently higher than
off-diagonal strains. The SI and fibrous tissue rupture boxes lie between these diagonals,
overlaying low strains (0.05 or lower). The other samples considered in this report show con-
sistency with these observations.

The 𝜀𝜃𝜃 in the figure I.1c bears likeness to the 𝜀𝑦𝑦 distribution. A high strain region in the
shape of an ’8’ spans through the SI from left to right, indicating that the underlying tissue
experiences the highest circular extension. This phenomenon can be related to the alignment
of the circular direction with the tensile straining direction. Where the SI rupture box overlays a
single loop in the high strain region, the fibrous tissue rupture boxes are situated on the edge
of the region. Here they capture a transition in strain modes. The observations from other
samples concur with the above description.

I.1.2. Failure criteria

(a) Failure criterion: nominal strain (b) Failure criterion: quadratic strain

High nominal strains in the polar coordinate system accumulate in the SI, producing a
flower-like shape (see figure I.2a). The SI rupture box lies on the high curvature edge of the
region and captures various failure values, ranging between 0.5 and 0.8. These magnitudes
are notably smaller than those observed in the cartesian coordinate system. The fibrous tissue
rupture boxes lie outside this region, overlying lower strains. While the ’flower’-shape pattern
is only prominent in three of the five samples, the association between the rupture boxes and
strain modes are alike.

The polar quadratic strain criterion presented in figure I.2b shows that its high failure values
lie within the SI. This ‘x’-shaped region has a magnitude larger than 1.5, while the surrounding
tissue never exceeds 0.5. The SI rupture box overlays the intersection between the shape
and the SI boundary, once again overlapping a gradient between high and low failure values.
The fibrous tissue rupture sites lie in the sea of low strains. Here, no unique patterns suggest
vulnerability. All other samples find a nearly identical situation.
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I.2. Local analysis
The following section is structured to analyse the results from data segmentation and the
relationship between the local maxima and the rupture site.

I.2.1. Segmentation
The segmentation of the polar 𝜀𝑟𝑟 distribution is summarised in figure I.3a. It does not follow
a regular sinusoidal pattern, as two peaks of different heights emerge from the plot, accom-
panied by a small elevation in strains in segment 10. The rupture segments lie in the second
highest peak, with a medium strain between 0.12 and 0.18. The boxplots from other sam-
ples resemble the presented pattern, where the respective rupture segments also correspond
to a peak in strains. However, as was seen in the cartesian coordinate system, the location
appears insensitive to the peak width, medium strain magnitude, or other features.

(a) 𝜀𝑟𝑟 (b) 𝜀𝜃𝑟 (c) 𝜀𝜃𝜃

Figure I.3: Boxplots based on 16-fold segmentation

The boxplot of the 𝜀𝜃𝑟 segments show that the medians oscillate similar to segmented
𝜀𝑥𝑥 strain. As is presented in figure I.3b, two peaks lie at segments 7 and 16. The ruptured
segments occupy the highest peak, where the median strains lie between 0.13 and 0.15.
Inspecting the strains in other samples affirms that the rupture segments consistently associate
with peaks in median strain but that they are not required to occur at a global maximum.

The segmentation map of the 𝜀𝜃𝜃 strain also lacks a regular pattern. In figure I.3c, strains
oscillate to form three nearly indistinguishable peaks corresponding to segments 4, 8 and 13.
In this plot, rupture finds itself in the segment with the highest median strain. Comparing this
to other samples reveals that rupture segments are always associated with a peak but wavers
between different relative peak heights.

I.2.2. Local maxima
The maxima and minima found in the polar strain maps are described below. The figures that
visualise their positions can be found in appendix E.

Inspecting the entire ROI
The polar maxima and minima strains reach similar or greater heights than those measured for
the cartesian coordinate system. This is presented in figure I.4a. Except for the 𝜀𝑡𝑡 maxima,
the strain magnitudes for the polar strains are consistently greater. The 𝜀𝑡𝑡 strains capture the
greatest range, where strains lie between -0.16 ±0.13 and 0.64 ±0.14.

Comparing the measured average distances in the polar coordinate system to those in
the cartesian system shows that the polar maxima and minima collectively perform better at
estimating the distance to the SI rupture box. This is evident from figure I.4b, which expresses
the ultimate strains for both coordinate systems. Both the distances and the standard deviation
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between samples are smaller for the polar strains. Together with the 𝜀𝑦𝑦 maxima, the 𝜀𝑡𝑟
maxima 𝜀𝑟𝑟 maxima lie the closest to the SI rupture site.

Inspecting the SI and surrounding tissue

The maxima and minima in the SI and surrounding tissue reach nearly identical magni-
tudes as those found for the entire ROI in figure I.4a. Similarly, their standard deviations
remain unchanged. Therefore, the zoomed perspective of the polar strains offers no novel
observations with regard to the strain magnitudes. The average distances between both per-
spectives are also nearly identical. The zoomed perspective only alters the average distance
to the 𝜀𝑥𝑥 minima. This is visualised in figure I.4c.

(a) Comparing the minima and
maxima found in the polar and

cartesian strain maps. The error bars
show the standard deviation across

all samples.

(b) Comparing the distances to the
polar and cartesian strain minim and
maxima. The error bars indicate the

standard deviation across all
samples.

(c) Comparing the distances between
polar strain maxima and minima to
the SI rupture site for all samples.
The error bars indicate the standard

deviation.



J
Script necessities

This report established several basic scripts which accommodated for the strategies discussed
in this appendix. Although the details of these scripts are not elaborated, their motivation and
execution are briefly discussed. The scripts can be obtained from R.M.Hengst or H. Crielaard.

J.0.1. Elimination of boundary elements
It is noticeable that artefacts alwaysmanifest around the periphery of the ROI. This observation
is especially strong at the superior and inferior edges connected to the clamps. DIC analysis
can not successfully complete the calculations around these surfaces and generate artefacts.

Aberrations at the tissue periphery are undesired in strain analysis. Different offsets from
the ROI edge have been considered to exclude these artefacts with a minimal loss. A thresh-
old of 10 matrix elements most effectively excludes the pathological variation along the lateral
tissue edges. The superior and inferior edges of the tissue construct are marred with artefacts
of larger sizes. An exclusion border size of 20 matrix elements along the vertical edges sig-
nificantly reduced the effects of these artefacts. Consequently, the boundary elements were
eliminated by an asymmetric threshold (10 elements from lateral edges, 20 elements from the
top and bottom edges.

J.1. Zoomed perspective of the SI
The isolation of the SI during local analysis was achieved by selecting the SI and its surround-
ing tissue. This report found that the ring of fibrous tissue around the SI should be 20 elements
to capture the local strain regions in the SI fully. The dimension of this ring is approximately
equivalent to 0.77 mm.

J.2. Structural similarity index
The structural similarity index is amathematical approach formeasuring the quality for grayscale
images [69]. The closer this value is to 1, the higher the uniformity between the regions. Its
computation follows the equation:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑓 ([𝑙(𝑥, 𝑦)]𝛼 ⋅ [𝑐(𝑥, 𝑦)]𝛽 ⋅ [𝑙(𝑥, 𝑦)] 𝛾) (J.1)

where l, c and s are the luminance, contrast and structure of the image constituents. These
components are relatively independent and serve to unbias and normalise the signals from the
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Figure J.1: Summary of SSIM measurement. Image taken from Wang, et al. [69]

images. Together they allocate a quantitative value between 0 and 1 to indicate the similarity
between the images.

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1
𝜇2𝑥 + 𝜇2𝑦 + 𝐶1

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2
𝜎2𝑥 + 𝜎2𝑦 + 𝐶2

𝑠(𝑥, 𝑦) =
2𝜎𝑥𝑦 + 𝐶3
𝜎𝑥𝜎𝑦 + 𝐶3

(J.2)

Figure J.1 summarises the workings of this function
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