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Abstract

Style transfer is a recent field in the development of deep neural networks, which allows
for the style from one image to be transferred onto another image. This has been well-
researched for 2D images, but transferring style onto 3D reconstructed content can still be
further developed. Being able to style a 3D reconstruction would allow users to recreate
anything in the real world, such as a chair, with any style they see fit. Where other methods
use texture-based approaches which often create low quality geometry and appearance, or
use radiance fields which style a whole scene instead of just the 3D reconstructed object, we
have developed a method which styles an implicit surface.

We achieve this by using Implicit Differentiable Renderer (IDR), which trains, using masked
images as input, two neural networks that learn the geometry and appearance. Rendered
views of the object are styled using 2D neural style transfer (NST) methods, and the style
information is used to further train the appearance network to display the given style. With
Masked deferred back-propagation we are able to optimize the appearance renderer, which is
normally trained on only patches of the rendered image to save memory, while using style
transfers designed for full-resolution images.

We showcase different results from our method using different 3D reconstruction datasets
and style images, and showcase how to implement a user-created dataset. We carry out
extensive tests on what effects different parameters have on the final result. Comparing our
results to similar 3D style methods demonstrates that our method performs equally well in
achieving faithful style transfer, while having the benefits of creating high quality geometry
and only styling the reconstructed surface.
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1. Introduction

1.1. Motivation

Two interesting fields in machine learning right now are the development of differentiable
3D reconstruction and stylistic rendering. Using deep neural networks it is possible to
reconstruct from a collection of images an object as a 3D model with the correct appearance.
It is also possible to transfer style, as in the artistic elements applied by certain artists, from
one image to another image, using deep learning. A user is then able to create a new art
piece of any subject containing any style they want. The next step is to expand this to the
third dimension, having 3D reconstructed models styled based on a given style image. We
explore the possibilities of this by styling a neural network representing appearance which
we create using Implicit Differentiable Renderer (IDR).

IDR recreates the 3D geometry, color and reflectance of an object, requiring only masked
images as input. The 3D reconstructed object is represented by an implicit surface, instead
of the commonly used pointcloud and triangle mesh representations. The benefit of implicit
surfaces are the fixed memory footprint and no need for discretization [Niemeyer et al.,
2020]. This surface is differentiable, which implies that it can be trained using a neural
network to learn the correct shape and appearance [Loper and Black, 2014]. IDR further
introduces an appearance renderer, which is able to store a faithful representation of the
surface’s color and reflectance. Instead of representing the original object’s appearance, we
want to instead have it represent a style based off of some input style image, using stylistic
rendering.

Figure 1.1.: From a set of input images, IDR is able to reconstruct the geometry, as well as it’s
appearance and camera information. Figure taken from [Yariv et al., 2020].

1



1. Introduction

Stylistic rendering, first popularized by Neural Style Transfer (NST) Gatys et al. [2015a],
allows for the ability to transfer style, which can be described as the artistic characteristics
of an artwork, to an image. Style transfer is achieved by extracting features from different
layers of a convolutional neural network (CNN), and uses those features to evoke the style
from a given style image onto a different image, as shown in Figure 1.2.

Figure 1.2.: The Neckarfront in Tübingen, Germany, stylized using van Gogh’s The Starry
Night. Figure taken from [Gatys et al., 2015a].

The power of style transfer is that we are able to apply a variety of styles onto different
images with minimal effort. Users are able to easily create new works of art inspired by any
artist. The next development is to extend this into the third dimension, which can be useful
in developing 3D printed furniture based on 3D reconstructed and styled objects.

Joris Laarman is a Dutch designer focused on creating 3D-printed furniture. His experiments
with making aesthetic pieces of furniture lead to the development of the Makerchairs, de-
signs that are publicly available and easily replicable with consumer-grade 3D printers [High
Museum of Art, 2018]. As 3D color printers become larger and more affordable [Peels, 2021],
a future where consumers are able to not only create, but also recreate furniture from the real
world, with a chosen style applied to it, becomes ever more realizable. What is required is a
method to transfer style from a 2D image to a reconstructed 3D object.

While style transfer for 2D images is well-developed, extending this to 3D introduces new
challenges. The styling effect should be applied in a logical fashion for the given geometry,
and be consistent across different views. Previous methods have relied on styling a texture,
which require storing the geometry as a mesh, limiting the final result to the quality of the
geometry. Using neural networks and implicit surfaces avoids this problem. Zhang et al.
[2022] achieved this with Artistic Radiance Fields (ARF), which styles a neural radiance field,
a function able to create new views of a scene based on a set of input images. The whole
scene is however styled, which is undesirable when only a specific object, for example a piece
of furniture or a building, are the expected outputs from style transfer. By instead styling
the implicit surface from IDR, we are able limit our style transfer to a faithful reconstruction
of the desired object.

We explore the possibility of fusing IDR and NST, such that we can create a 3D reconstruction
from a collection of 2D masked images, as well as further train the learnt appearance to have
the style transferred from some style image. We want to ensure that no matter the view
direction when rendering an image of the styled object, the style will remain unchanged.

2



1.1. Motivation

Figure 1.3.: Joris Leerman’s Puzzle 3D Makerchair. Figure taken from [Friedman Benda,
2014]

Figure 1.4.: An example of what is possible in 3D printing a styled reconstruction. Shown is
a 3D color print of the Stanford bunny [Turk, 2000], styled using Leger’s La grand parade
sur fond rouge. Figure take from Mordvintsev et al. [2018].

We explore two methods of style transfer, Gram matrix styling which was introduced in
NST, and Nearest Neighbor Feature Matching (NNFM) which was introduced in ARF. We
compare the results of each method to see which creates the most faithful 3D style transfer.
We will also compare our results to the previously mentioned texture based approach, as
well as ARF.

3



1. Introduction

1.2. Research Question

The research question is as follows,

To what extent can a styled 3D reconstruction from a set of content images and a style
image be created such that style consistency is present across all views.

This will be achieved by training IDR’s appearance network to optimize for style, which is
created using NST. Further subquestions are:

• What style transfer method creates the most faithful result for 3D style transfer?

• How does our method compare to other 3D style transfer methods?

• What effect do the parameters have on the final result?

1.3. Scope

The focus of this thesis is to develop a model that is able to reconstruct 3D geometry based
on masked images, as well as style the geometry using a style image. The 3D reconstruction
method as well as the styling will be created using previous works, which will be combined
into one pipeline seamlessly. The geometry trained will not be affected by styling, only
the appearance will change. Once a method has been established, we will explore how to
achieve the best results based on the different parameters available, as well as compare our
method to previous 3D style transfer models.

1.4. Thesis Outline

In Chapter 2 we expand on how IDR achieves 3D reconstruction, and discuss two methods,
using Gram matrices and NNFM, for styling the surface. We discuss further in Chapter 3 how
ARF is able to create 3D style transfer, and outline an approach using textures by Mordvintsev
et al. [2018]. We examine both their limitations. We describe our method for 3D style
transfer in Chapter 4, showcasing the general architecture and going into further detail on
how style transfer is achieved. We also discuss the implementation differences of the style
methods. We mention how we will compare our method to previous approaches, describing
the qualitative comparison and user study performed. In Chapter 5 we examine how to
implement the model, which datasets have been used for experimentation, and how a user
can implement their own dataset. Chapter 6 describes the results of the experiments, and
includes a discussion on how to achieve the best results based on the different parameters
available. We also conduct a comparison study between previous methods and our model,
and showcase the results of the user study. We finish by discussing the main contributions
as well as limitations of our model, and describe possible future work in Chapter 7.
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2. Theoretical Background

2.1. Implicit Differentiable Renderer

Implicit Differentiable Renderer (IDR) developed by Yariv et al. [2020] allows us to create a
3D reconstruction of an object as well as infer the appearance of said object, using an input
of masked 2D images. This is achieved by training two neural networks to represent the
geometry and appearance. An image of the reconstructed object is then rendered based on
learnable camera information, which is used to compare its result to the original images, as
a way to optimize the networks.

Figure 2.1.: Example of input image with its mask. The dataset is taken from Jensen et al.
[2014a].

We define our parameters for learning: θ for geometry , γ for appearance, and τ for camera
information.

IDR is initialized with a grey unit sphere (Figure 2.3). The surface will be defined by a signed
distance function (SDF) f, an implicit function with the property that, for some 3D point x,

• f (x; θ) > 0, if the point is outside the surface

• f (x; θ) < 0, if the point is inside the surface

• f (x; θ) = 0, if the point is on the surface

We can therefore define our surface as the zero level set of f,

Sθ = {x ∈ R3 | f (x; θ) = 0}

This function is represented by a neural network, optimizing θ, which will be morphed into
the correct geometry.

5



2. Theoretical Background

Figure 2.2.: No-
tation used
by Yariv et al.
[2020]

From a given camera position c(τ) and some image pixel p we can
define the viewing direction v(τ) and calculate the intersection x(θ, τ)
of the viewing ray R(τ) = {c + tv | t ≥ 0}, shown in red in Fig-
ure 2.2, with the implicit surface. This is achieved by sphere tracing
(Section 2.1.1). From this point on the surface we calculate the normal
using the gradient n(θ) = ∇ f (x).

To calculate appearance, we take as input the calculated surface point
x, normal n, camera direction v, and global light effects, a global fea-
ture vector which allows the renderer to better handle lighting effects
created by the geometry itself, such as secondary lighting and self-
shadows. This is accounted for by introducing a vector z(x; θ)

The amount of light reflected from the surface point x into the cam-
era pointing in direction v is determined based on the light emitted
in the scene, as well as the bidirectional reflectance distribution func-
tion (BRDF), which describes the amount of light leaving surface point
x towards the camera in proportion to the light arriving at x. We store
these values as a function, which is approximated by a neural network
M(x, n, z, v; γ).

Figure 2.3.: Initialisation compared to ground truth

By combining these two models, we are then able to render predicted images L(θ, γ, τ) of
the trainable geometry and appearance at a camera positions similar to our input images.
We compare pixel by pixel the predicted images to the ground truth from our input images
to compute a loss used to optimize these parameters. Included are three losses; the color
(RGB) and mask loss at pixel p, as well as the Eikonal loss term, ensuring the geometry is
regular and smooth [Gropp et al., 2020].

The mask loss is calculated by creating a mask of the approximation L, based on if the ray
and the surface intersect,

S(θ, τ) =

{
1 if R(τ) ∩ Sθ ̸= ∅
0 otherwise

(2.1)

As this is not differentiable, we approximate,

Sα(θ, τ) = sigmoid(−α min
t≥0

f (c + tv; θ)) (2.2)

6



2.1. Implicit Differentiable Renderer

Such that limα→∞ Sα = S. We can now compare Sα with the ground truth mask O for each
pixel of the input and ground truth image, using the cross-entropy loss,

Lmask(θ, τ) =
1

α|P| ∑
p∈Pout

Op log(Sp,α(θ, τ)) (2.3)

with P the collection of pixels of the image, and Pout ⊂ P containing only pixels outside of
the mask of Sα or O.

The RGB loss is calculated by comparing the color value of each pixel of the input and
ground truth image,

LRGB(θ, γ, τ) =
1
|P| ∑

p∈Pin

| Ip − Lp(θ, γ, τ) | (2.4)

with Pin ⊂ P containing only pixels inside of the mask of Sα and O. Finally, we have the
Eikonal loss term, applied to the SDF,

LE(θ) = Ex(∥∇x f (x; θ)∥ − 1)2 (2.5)

with E the Eikonal term which encourages the normals to have a unit magnitude. This
ensures the surface to be smooth. The three loss terms are combined,

L(θ, γ, τ) = LRGB(θ, γ, τ) + ρLmask(θ, τ) + λLE(θ) (2.6)

with weights ρ, λ to adjust the importance of each loss term. To decrease memory us-
age, a random subsample of points are taken instead of rendering a complete view every
iteration to compare to the ground truth. A useful ability that IDR has is that the two net-
works are seperate, which allows geometry and appearance to be trained seperately from
eachother. After creating a faithful 3D reconstruction of the object, the apperance renderer
can be trained further to achieve a different appearance. This is the basis for this research.

Figure 2.4.: IDR architecture, taken from Yariv et al. [2020].
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2. Theoretical Background

2.1.1. Sphere tracing algorithm

To calculate the exact intersection x0 of the ray {c + tv | t ≥ 0} and the surface Sθ , we apply
sphere tracing. We postulate that the object lies inside the unit sphere, which is achieved
by preprocessing the dataset. We begin from the intersection point c + t∗v of the ray and
the unit sphere, with t∗ the value at which the ray intersects the surface. We calculate the
distance from the surface using the SDF, equal to f (c + t∗v). We then march by f (c + t∗v)
along the ray, getting us closer to the surface. We repeat this until the SDF value falls below
some threshold, in which case we can say it intersects with the surface, or diverges, i.e. the
ray steps out of the unit sphere, which implies no intersection.

Figure 2.5.: Example of a hit and miss in sphere tracing. From Hart [1995].
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2.2. Neural Style Transfer

2.2. Neural Style Transfer

Schapiro [1952] defines style as ”the constant form - and sometimes the constant elements,
qualities, and expression - in the art of an individual or a group [...], exemplified in a mo-
tive or pattern”. This consistency has in recent years become replicable using deep neural
networks, which synthesize the content from one image and the style from another.

2.2.1. VGG Network

To learn styling, Neural Style Transfer (NST) relies on the VGG network, developed by Si-
monyan and Zisserman [2015], designed for large-scale image recognition. It is a type of
convolutional neural network (CNN), which filters an input image to extract certain features
present. These extracted features can then be used to detect certain details in the image,
such as a face being recognised from specific facial features, such as eyes or a mouth. For
style transfer, feature extraction allows for the content as well as style of an image to be
detected.

Convolutional Neural Network

Convolutional neural networks (CNNs) process images to extract lines, patterns, and spe-
cific details such as the aforementioned facial features. This is achieved by utilizing filters
called kernels, which are matrices applied on a neighborhood of pixels in a process called
convolution. This convolution is applied along the whole image, creating a feature map, a
representative image of a specific feature found in the input image.

Kernels are designed around emphasizing certain features, such as edges or corners. In
Figure 2.6 we see the outputs created by the following two kernels,

k1 =


0 −1 2 −1 0
0 −1 2 −1 0
0 −1 2 −1 0
0 −1 2 −1 0
0 −1 2 −1 0

 , k2 =


0 0 0 0 0
−1 −1 −1 −1 −1
2 2 2 2 2
−1 −1 −1 −1 −1
0 0 0 0 0

 (2.7)

which respectively detect vertical and horizontal lines in the input image.

An activation function, for example the ReLU function f (x) = max(0, x), is applied to each
output. Only positive values are then present, emphasizing the exaggerated features, while
removing any noise from unimportant features.

A collection of kernels, which is called a convolutional layer, is applied to the input image,
as well as ReLU, to create feature maps representing different specific features of the input
image [Bealdung, 2023].

Further feature detection is realized by reapplying kernels to the created feature maps, as
well as applying a max pooling layer, which lowers the resolution of the input image by only
taking the maximum in a region of pixels [Wood, 2020].
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2. Theoretical Background

Figure 2.6.: Feature maps from applying kernels 2.7 to the input image shown in Figure 2.1.
We see that the vertical and horizontal lines are only visible.

VGG-16 Architecture

VGG-16 is a publicly available CNN used mainly for image classification, and is the backbone
for the style transfers discussed in this paper. VGG-16 consists of 16 convolutional layers
split into 5 blocks, with a pooling layers in between each block. VGG-16 takes in images of
size 244x244, which are normalised by the Imagenet mean µ = [0.485, 0.456, 0.406], and std
σ = [0.229, 0.224, 0.225]) [Simonyan and Zisserman, 2015].

Figure 2.7.: The architecture of VGG-16

From these features we are able to detect objects in the input image, regardless of appear-
ance. For style transfer this can be used to detect what we want to keep consistent from our
content image, i.e. having the original shape of the building still visible, while changing its
appearance based on a style.
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2.2. Neural Style Transfer

Figure 2.8.: Feature map of Figure 2.1 from the first convolution layer (1 1) of VGG-16,
which contains 64 images of shape 224x224 (here 9 are shown). We see certain features
emphasized in different layers, such as the complete façade, or just the windows.

2.2.2. Extracting Content and Style from VGG-16

Gatys et al. [2015a] developed a method using the VGG-16 feature extraction to learn and
transfer content and style from two different images. NST takes as input two images, a
content image p⃗ and a style image a⃗. An output image x⃗, which as an example case will be
initialized as a random noise image, will be optimized by minimizing the difference between
its content and style compared to the input images. For style minimization, we will discuss
two methods; using Gram matrices as applied by Gatys et al. [2015a], and NNFM from Zhang
et al. [2022].

Figure 2.9.: Example content image p⃗ and style image a⃗, van Gogh’s The Starry Night.
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2. Theoretical Background

Content loss minimization

As mentioned in the Section 2.2.1, the content can be found by feature extraction. Passing
the output image x⃗ and content image p⃗ through VGG-16 allows us to extract and compare
the content of each image. This is achieved by calculating the mean squared error (MSE) of
each feature map of convolutional layer l,

Lcontent(x⃗, p⃗, l) =
1
2 ∑

i,j
(Fl

ij − Pl
ij)

2 (2.8)

with Fl , Pl containing Nl feature maps each of size Ml , calculated by multiplying the map’s
height and width. i, j correspond to the ith feature map at pixel coordinate j. We can see in
Figure 2.10 the result of minimizing content loss between the output image x⃗ and content
image p⃗.

Figure 2.10.: Output image from content learning after 10, 30, 50 epochs. The buildings as
well as their color become more clearly defined.
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2.2. Neural Style Transfer

Gram matrix style transfer

For styling, Gatys et al. [2015b] developed a method able to generate image textures from
a source image. Image textures quantify the regular pattern visible in an image, and are
therefore invariant to spatial information. A description of the texture that discards said
spatial information can be given by the correlation between different features in the feature
maps. For some pixel location j, we compute this correlation from the product of the feature
maps. If both features occur together, then the product will be large, while if there is no
correlation the product will be small. Comparing all feature maps for each pixel of the
image creates a usable description of texture, which is given by the Gram matrix Gl

ik, which
for feature maps i and k at layer l, summing over all pixel coordinates j, is defined as,

Gl
ik = ∑

j
Fl

ijF
l
kj (2.9)

The definition of the Gram matrix aligns with the definition we gave for style at the start of
Section 2.2. When applied to a piece of visual art, the Gram matrix is able to represent the
consistent patterns that we correspond with style. We see this is the case in Figure 2.11.

Just as we optimized content by minimizing the difference between feature maps of our
output image x⃗ and content image p⃗, we can optimize style by minimizing the difference
between the entries of the Gram matrices Gl and Al of the output image x⃗ and style image
a⃗. The loss function at layer l is as follows,

El =
1

4N2
l M2

l
∑
i,k
(Gl

ik − Al
ik)

2 (2.10)

with, as mentioned earlier, Nl the number of feature maps, each of size Ml . The total style
loss is,

Lstyle(x⃗, a⃗) =
L

∑
l

wlEl (2.11)

for some collection of layers L, with wl a weighting factor defined for each layer. We can see
in Figure 2.11 the result of minimizing style loss between the output image x⃗ and content
image a⃗.

By simultaneously training the output image x⃗ for content and style, we can optimise for an
image including both. We sum both loss functions 2.8 and 2.11,

Ltotal(x⃗, p⃗, a⃗) = αLcontent(x⃗, p⃗) + βLstyle(x⃗, a⃗) (2.12)

with α and β weighting factors deciding how much of either is visible in the output image.

Since only the feature maps are compared, image size is not restricted, however to ensure
that the feature maps have the same effect on both images, they should be of the same size.
The style image is therefore resized before computation. To improve convergence time, the
output image x⃗ can be initialized with the content image, instead of with a noise image.
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2. Theoretical Background

Figure 2.11.: Output image from style learning after 20, 100, 300 epochs. It takes more epochs
for the expected style patterns to appear.

Figure 2.12.: Output of NST. We see the buildings are preserved while van Gogh’s thick
stroke style, as well as color, becomes visible.
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2.2. Neural Style Transfer

Figure 2.13.: Architecture of NST.

Nearest Neighbour Feature Matching

A different method for Style transfer was developed by Zhang et al. [2022], specifically for
3D style transfer. This method, NNFM, takes a similar input of a content and style image,
and calculates content in a similar fashion as NST. NNFM differs however in the method to
calculate style loss.

Zhang et al. argue that for 3D scenes, a global measurement of feature correlation fails to
capture local details. Instead of calculating Gram matrices, they apply cosine similarity. The
cosine distance of two vectors v1, v2 is

D(v1, v2) = 1 − v1 · v2

∥v1∥∥v2∥
(2.13)

The output of the cosine distance lies between [0, 1], with 0 implying max similarity, the
vectors are colinear, and 1 decorrelation, the vectors are perpendicular. For some layer l
of the input image and style image, we take the value of each feature map along the pixel
location j as our input vectors, giving us the feature vectors Fl

·j, Pl
·j. For each feature vector

of the input image Fl we find the most correlated feature vector in the style image Pl , and
minimize their cosine distance.

Lnnfm(x⃗, a⃗, l) =
1

Ml
∑

j
min

k
D(F·j, P·k) (2.14)

Note that by taking the minimum, global correlation is avoided, only the strongest feature
correlation is taken. By matching the most similar features, we find that similar colors and
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2. Theoretical Background

edges are matched between images, and the features from the input image are converted to
the matched features of the style image to create a styled image.

As before, we can calculate a complete loss of content and style by joining the two loss
functions 2.8 and 2.14,

Ltotal(x⃗, p⃗, a⃗) = αLcontent(x⃗, p⃗) + βLnnfm(x⃗, a⃗) (2.15)

Figure 2.14.: Result of NNFM styling.

We find that the output styling from NNFM is less faithful compared to using Gram matrices.
This is because each pixel has its own feature correlation, without any effect from neighbor-
ing pixels being included. A neighborhood of pixels can therefore have a lot of variation,
which we see with the noisy result in Figure 2.14. However later it will be apparent that the
more local approach to style transfer will benefit the final result of 3D style transfer.
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3. Related work

3.1. Artistic Radiance Fields (ARF)

3.1.1. NeRF

Neural Radiance Fields (NeRF), introduced by Mildenhall et al. [2020] are currently a popular
approach to create new photorealistic images of a scene from a collection of input images.
Different to IDR where an implicit function represents the geometry, NeRF creates a volume
density σ.

NeRF defines a radiance field, based on rays from known camera locations,

F(x, θ, ϕ) → (c, σ) (3.1)

where x is a 3D point along the ray, (θ, ϕ) viewing direction angles, c the RGB color and σ
the volume density. The volume density represents the probability that the ray terminates
at x. To render out a view, called Volume Rendering, we integrate along the ray r = o + tv,

C(r) =
∫

Tσc dt (3.2)

With T the accumalated transmittence, the probability the ray does not terminate. The
output image can then be compared to the ground truth, and the rendering loss can be back-
propagated to create a correct 3D reconstruction. Since this radiance field can be calculated
for any camera location, it is possible to synthesize new views.

Figure 3.1.: NeRF’s approach to 3D reconstruction.

17



3. Related work

3.1.2. ARF

From these novel view renderings, Zhang et al. [2022] developed ARF to create, similar to our
goal, a view-consistent, stylized rendering. This is achieved by taking the rendered image
from NeRF as input for style transfer.

As mentioned in Section 2.2.2, VGG-16 feature maps from the rendered and styled image
are calculated, and NNFM is applied to calculate style loss. The loss is then back-propagated
to update the color of the scene based on the style.

An important addition ARF included for combining 3D reconstruction with style transfer is
deferred back-propagation. As every pixel of the output of ARF is rendered from a ray, creat-
ing a new full-resolution image at each optimization step would be very memory intensive.
Sparse pixel-sampling, which as mentioned before is used by IDR for training, but styling
requires the whole image for optimization.

Instead, full-resolution images are rendered with automatic differentiation turned off, so
that the gradient for each ray is not stored in memory. We then compute the style loss and
gradient of each pixel, giving us a cached gradient image. We can then rerender the im-
age using random pixel-sampling, now with auto-differentiation enabled, using the cached
gradient image as gradients to back-propagate, reducing memory usage.

There are limitations to ARF, specifically due to the usage of NeRF. NeRF recreates a complete
scene, instead of just the surface with IDR. ARF then creates a complete styling of the scene
instead of only the surface. For our purposes it is preferred to have only the surface styled,
as this allows us to extract it from the rest of the scene. It also can create artifacts called
floaters, where an incorrect ray intersection is established, leaving floating bits of geometry.
While there are methods to remove this [Warburg et al., 2023], we find that IDR improves on
this as it does not create such artifacts.

3.2. Texture-based 3D style transfer

Mordvintsev et al. [2018] apply a method for style transfer by styling and creating a texture
for the object. The approach taken is similar to UV-mapping, where each point x⃗ of the
geometry is associated with a coordinate (u, v) of the texture image. Instead of styling the
UV-map and re-projecting the style colors to 3D, which causes issues discussed in appendix
B, their approach is to optimize the style texture by, similar to ARF, creating a view which is
used as input for style transfer. The style loss is then back-propagated through the renderer,
optimizing the texture.

While this method has the benefit of creating a style of only the surface, since a texture
is being optimized, the styled 3D object still has some discontinuities caused by trying to
project a 3D object onto a 2D plane. The 3D object is also represented using a triangulated
mesh, which can be of varying quality when 3D reconstructed and can be computationally
costly [Niemeyer et al., 2020].
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4. Methodology

4.1. Data preparation

For initialization, we require masked images for 3D reconstruction, and a style image. The
masks are generated manually,using photoshop. IDR also requires a noisy camera setup,
which can be created using an included preprocessing script. This creates an approximate
camera projection matrix and normalization matrix, to ensure that the object is inside of the
unit sphere, required for sphere tracing, as mentioned in Section 2.1.1.

4.2. Architecture

The network architecture is shown in Figure 4.1. We combine Implicit Differentiable Ren-
derer (IDR) and Neural Style Transfer (NST), and do so in a seamless manner.

f Mstyle

Lcontent

Lstyle

VGG-16

VGG-16

VGG-16
p⃗

x⃗

a⃗

back-propogation

Figure 4.1.: Architecture of our method. We train the style renderer to create a styled ap-
pearance of the original object.

The approach is to first train both geometry f and appearance M using IDR. We then train
a copy of the appearance renderer Mstyle to further style the appearance based on a given
style image, which is outlined in Section 4.3.
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4. Methodology

We adapt from ARF deferred back-propagation for our masked input (Section 4.4) to reduce
memory usage. We further discuss the differences of styling methods (Section 4.5) for styling
the geometry.

4.3. Style transfer

Our goal is to train a style renderer Mstyle to create a stylized 3D scene given a 2D style
image. This is achieved by creating a rendered view of the trained object, and using style
transfer to calculate the content and style loss of said view. We then back-propagate the
losses to optimize the renderer.

Once we have the rendered view, it is resized to reduce memory cost. The amount of
rescaling affects the detail in the final render however, so image size should be maximised.
As described in Section 2.2, we use the view as the training image x⃗, introduce a style image
a⃗, and a content image p⃗, which can be the original image. We calculate the content and style
loss, which we back-propagate to the renderer to optimize its parameters. We go into further
detail on how this is done in the next section. This process is iterated for this single view
to achieve the desired amount of style. We then repeat the process also for different views
to create the optimal style for all views. Training using different views ensures that areas
of the surface that were hidden at an are correctly styled. Figure 4.2 shows what happens
when styling is only done for to one view.

Since geometry has been trained, we disable grad calculation for the geometry network. This
ensures that geometry stays consistent while appearance is further trained.

Figure 4.2.: Styling using a single view gives a correctly styled result from one angle, but not
from the other.
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4.4. Masked deferred back-propagation

4.4. Masked deferred back-propagation

+ Style Loss

Masked full-resolution image Cached-gradients Masked
Cached-
gradients

Autodifferentiation disabled

Accumulate Gradients

Autodifferentiation enabled

back-propagation

Figure 4.3.: The structure of masked deferred back-propogation. We disable autodifferen-
tiation to save on memory, and render a full-resolution image. We then calculate style
loss and store the loss gradient of each pixel. We enable auto-differentiation and return to
patch based rendering to back-propagate the losses and train the style renderer.

It is important to note that what we are optimizing is not the whole scene visible in the
training image, but the masked output of the Neural Renderer. This masked output is
created by sphere tracing from the camera position to the geometry, based on pixels inside
of the input mask. As sphere tracing is a memory-intensive process, and since only certain
pixels are of importance during training, to improve performance we use masked deferred
back-propagation.

Instead of rendering the full-resolution image, IDR uses sparse pixel-sampling, where ran-
dom sets of pixels are sampled, to save on memory. Since style transfer methods, relying
on CNNs, require the complete image to create the correct styling, it is necessary to combine
these patches which is done using deferred back-propagation [Zhang et al., 2022].

For each patch, we render the appearance without auto-differentiation. These patches are
then synthesized to form a full-resolution image, which is used to calculate style loss. This
calculated loss gives for each pixel a gradient, generating a cached gradient image. The
Neural Renderer is only trained on pixels inside of the mask, therefore background pixels
have their gradients filtered out.

Re-rendering the appearance of each patch, now with auto-differentiation enabled, allows
for the masked cached gradient to be used for back-propagation. This ensures that image
rendering for styling as well as back-propagation is less memory-intensive, while having
only masked points styled.
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4. Methodology

4.5. NNFM and Gram matrix styling

When styling, we can style with either NNFM or Gram matrix styling. It is also possible to
combine both methods, using weights,

Lstyle = αLGram matrix + βLNNFM (4.1)

Since the styling methods have a different order of magnitude, we scale our values of α and
β such that they have a similar effect on the final output.

4.5.1. Qualitative Comparison and User Study

We compare our results to ARF and texture-based 3D style transfer. We compare our results
based off of a similar result from the texture-based approach, specifically the Louvre statue
[Bardou, 2017], with styling from van Gogh’s Starry Night. For ARF we created a result using
the same dataset as for our model, but we find that the output is not of high enough quality
for comparison, so we also include a render of the lego truck dataset from Yu et al. [2021] in
our comparison study, taken straight from the ARF project page.

We also perform a user study to compare the related works to our method. We present a
video of an object created by each method, styled using van Gogh’s Starry Night. Users are
then asked to rate out of 5 how faithful each method preserves the style when transferring
it onto the 3D object.

The surveyed group consist of Geomatics students as well as members of the general public,
to ensure a wide range of results.
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5. Implementation and Experiments

5.1. Implementation

For IDR, the parameters are untouched, with the geometry network f having 8 layers with
hidden layers of width 512. The renderer M has 4 layers with width 512 hidden layers. The
loss function has an Eikonal weight of 0.1 and a mask weight of 100. The mask approxima-
tion value α is initialized at 50, and multiplied by 2 every every 250 epochs.

IDR’s learning rate is set at 1e−4, which decreases by a factor of 2 at epochs 1000 and 1500,
trained for a total of 2000 epochs. The Adam optimizer is used [Kingma and Ba, 2017].

Styling uses pre-trained VGG-16 model, rendering the styling using convolutional block 2
for both NNFM and NST. Styling is also trained using Adam, for consistency. It’s learning
rate is set at 1e−4, trained for 200 epochs on each view. The results are rendered using only
style loss, except for the content ablation study, where the content weight is set to 5e−3 and
style weight to 1, and the combined style ablation study, where the Gram weight is set to
0.05 and the NNFM weight to 1e11 .

PyTorch [Paszke et al., 2019] is used to create and train the neural networks.

Both IDR and style transfer were trained on the DelftBlue supercomputer using a NVIDIA
Tesla V100. IDR ran for 8 hours, while styling took 3 minutes per view. The images used
for style loss were resized to 500x500.

For the comparison study, we use the ARF-svox2 release of ARF, which uses Plenoxels [Yu
et al., 2021], a model similar to NeRF, since it is as of now the only available ARF model. This
was trained on a NVIDIA GTX 1600s card.
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5. Implementation and Experiments

5.2. Datasets

For experimentation, we use

• The DTU dataset from Jensen et al. [2014b], specifically scan24, with mask information
and fixed camera from Yariv et al. [2020]

• Statue dataset from BlendedMVS [Yao et al., 2020]

We use a diverse collection of style images to test for quality with different style forms,
specifically

• van Gogh’s Starry Night

• Munch’s the Scream

• Escher’s Relativity

• Mondriaan’s Compositie met groot rood vlak, geel, zwart, grijs en blauw

• Kandinsky’s Squares with Concentric Circles

5.3. Creating your own dataset

To create a 3D reconstruction and style a collection of user created images, a preprocessing
python script is included to create the required files for IDR to run. The script is specifically
designed to read COLMAP outputs.

COLMAP [Schönberger and Frahm, 2016] is able to estimate camera information and posi-
tion from a set of images. This is an easy method to create usable input for data IDR. The
preprocessing script converts the output camera files from COLMAP to be readable by IDR,
as well as normalize the camera matrices.

We create masks using photoshop, simply using the wand tool to remove the background.
Figure 5.1 displays an overview of the complete method.
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5.3. Creating your own dataset

Data Creation

IMG COLMAP

Mask
creation

Cams

Masks

Preprocessing

Camera normalization 3D Reconstruction

f M Loss

3D Style Transfer

f Mstyle NST

Render

Evaluation

IMG

Figure 5.1.: Overview of how to apply our method with a user-generated dataset.
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6. Results and Analysis

6.1. Multiview 3D reconstruction and styling

We find when styling with NNFM, shown in Figure 6.1, the faithful reconstruction as well
as styling of the DTU dataset scan24 is achieved. The content of the building, such as the
windows and roof are still visible, while being stylized in a fashion that corresponds to the
style image. When styling using Gram matrix style transfer, shown in Figure 6.2, we find
that color has been transferred, the styling is less painterly.

Once trained, we can set the appearance renderer to evaluate, allowing us to render different
views, shown in Figure 6.4.

Figure 6.1.: Results of 3D style transfer using our method, with NNFM style loss.
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6. Results and Analysis

Figure 6.2.: Results of 3D style transfer using our method, with Gram matrix style loss.

Figure 6.3.: Render of different views.

Figure 6.4.: Render of the statue dataset from BlendedMVS [Yao et al., 2020], styled with
Munch’s the Scream.
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6.2. BK and table dataset

6.2. BK and table dataset

We create a styled 3D reconstruction of two user generated datasets, one of the TU Delft
Faculty of Architecture and the Built Environment building, and another of a coffee table.
We create estimated camera positions using COLMAP, and apply our method to create the
results shown in Figure 6.5 and Figure 6.6.

Figure 6.5.: The Architecture building styled. We use a 3D model of the building to improve
IDR’s result, as it allows for more varied camera poses. The model is taken from van
Faassen [2014]
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6. Results and Analysis

Figure 6.6.: A coffee table styled. The complicated geometry as well as lack of horizontal
camera views creates artifacts on the top surface. We visualize what it is like having the
object recreated in the real world.

6.3. Qualitative comparisons

When comparing results of each method, we find that our method is able to display a similar
style representation to ARF, with the benefit that the background is not reconstructed and
styled. Using IDR also creates a closed surface, avoiding the floating artifacts present in NeRF.
ARF is however a lot faster in creating a 3D reconstruction. This is due to sphere-tracing being
a time-consuming method. While the texture-based approach achieves a similar result, and
transfers detail well, we find that the color is not faithful to the painting, and has more
apparent patches, due to the texture having separate regions in 2D, shown in Figure 6.9.

Figure 6.7.: ARF, with our result on the right and the left image taken from the project page
[Zhang et al., 2022]. We find the result to be a faithful style transfer similar to our method,
but the background is also styled.
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6.4. User study

Figure 6.8.: We see that between two views that the surface changes color, with one view
showing yellow streaks not present in the other. This is not due to inconsistent styling
between the views, but due to floaters covering the yellow streaks.

Figure 6.9.: Results from [Mordvintsev et al., 2018]. The strokes are there, but the colors
do not completely match, and there are regions of inconsistencies, visible at the mane,
created by the gaps in the texture shown on the right.

6.4. User study

From a collection of 55 respondents, we find that on average ARF received a score of 3.77,
textured style transfer received a score of 3.49, and our method scored 3.75, all out of 5. The
complete results are shown in Figure 6.10. We therefore argue that our method is just as
faithful in transferring style as the other methods mentioned.
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Figure 6.10.: User Study Results.
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6. Results and Analysis

6.5. Ablation study

Style transfer method

We find that the results of NNFM are more faithful compared to Gram matrix styling. Gram
matrix styling varies more when styling different views, leading to the inconsisten result.
Furthermore, as shown in Figure 6.2, Gram matrix styling has the white background bleed
into the geometry styling, causing a white vignette to appear at the borders. While Gram
matrix styling is not as faithful as NNFM, it does emphasize the global characteristics of the
style. This is visible in Figure 6.11, where NNFM only styles using two colours, while Gram
matrix styling shows a wider range of palettes . By combining both styles, we can introduce
a more faithful, as well as more colourful style transfer.

Figure 6.11.: Styling from Kandinsky only with NNFM (L), Gram matrix styling (R), and
with both (B). We see that while NNFM is more pleasant looking, Gram matrix styling
introduces more colours. Combining both methods allows for an even better result.
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6.5. Ablation study

Content loss

Introducing content loss ensures that more detail of the reconstructed object is maintained
when styling. In Figure 6.12 we see the window frames are largely untouched after styling.
The effect is minimal, but can be further emphasized by increasing the content weight.

Figure 6.12.: Including content loss ensures that the window frames are clearly visible.

Image size

Rescaling the rendered image before applying style transfer ensures that the process does
not run out of memory. It however also has an effect on the final styling, which is shown in
Figure 6.13. Having a larger image size allows for more detail to be transferred, as there are
more pixels carrying style information.

Figure 6.13.: Results where the input for style transfer is scaled to be (300,300) and (500,500).
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6. Results and Analysis

Convolutional layer

In Section 2.2.1 we see that VGG-16 has 5 blocks of layers. We experiment styling with
different blocks, shown in Figure 6.14.

conv1 conv2

conv3 conv4

Figure 6.14.: Styling using different convolutional layers from VGG-16.

Note that as the we use deeper layers, the color becomes less striking, while the painterly
technique is more developed. Blocks conv2 and conv3 are the most aesthetically faithful.

View and normal independent results

We examine the results of training the style renderer without view information and normal
information. We set the input of the view and normal vectors to 0, so that they do not affect
the render results.

The results, shown in Figure 6.15, show that without view information, the strokes become
more apparent, leading to a better stylized image. For IDR to approximate the correct light-
ing effects, such as specularity, viewing direction is required [Yariv et al., 2020]. However
NST, which is specifically designed for 2D images, is invariant to viewing direction. We
however argue that, since we expect style consistency across views and lighting effects such
as specularity are not important, it is preferable to have viewing direction ignored.
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6.5. Ablation study

Ignoring normals however has a negative effect on the overall result. When normal infor-
mation is ignored, the estimated lighting does not become unique, leading to inconsistent
results.

Figure 6.15.: Without viewing direction (L), without normals (R), and both included (B).
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7. Conclusions

This thesis focused on developing a novel method able to 3D reconstruct and style an object
from a collection of masked images and a style image. We approached this by using IDR’s
neural renderer, which has been trained to represent the appearance of the 3D reconstructed
object, and training it further by applying NST models to the rendered views. Since IDR trains
using only a subsample of pixels, and NST methods require a complete image, we introduced
masked deferred back-propagation. We examined the effect different parameters have on the
final styling results, and discuss how to achieve the most faithful styling. As 3D printing
becomes more important for architecture in creating new designs, our model allows for a
streamlined method to create a styled 3D reconstruction of any object, from a table to a
building, for example in Figure 7.1.

Figure 7.1.: An imagined recreation of a coffee table styled with van Gogh’s Starry Night.

We restate the research question,

To what extent can a styled 3D reconstruction from a set of content images and a style
image be created such that style consistency is present across all views.

By creating a 3D reconstruction using IDR, we further train the neural renderer by calculating
the style loss of a rendered output, and back-propagating the calculated gradient. After
training on sufficient views, we are left with a styled result. By having view direction not
affect the renderer, we are able to have style consistency across all views. Performing a user
study allows us to conclude that the styled result is consistent and faithful to the original
style image.
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7. Conclusions

What style transfer method creates the most faithful result for 3D style transfer?

We have explored two style transfer methods, using Gram matrices and using NNFM. We
found that NNFM creates the most faithful results, which we correspond to the fact that it
focuses on comparing local features instead of the effect of global features. This ensures that
when training different views there is more style consistency, and that the white mask has
no effect on the geometry’s appearance. We do however see a fault in NNFM in Figure 6.11.
NNFM does not utilize all the colors present in the painting, as a consequence of nearest
neighbour matching. Gram matrix styling does include more colors, and by combining both
methods we can overcome both these method’s limitations.

How does our method compare to other 3D style transfer methods?

We find that our method is able to create comparable results to other 3D style transfer
methods, specifically ARF and 3D texture-based style transfer. Based on user feedback the
result is just as faithful in transferring style as the other methods. We argue that our method
has the further benefit that only the surface is styled, and in a consistent manner without
patches.

What effect do the parameters have on the final result?

We find that training using deeper convolutional layers amplify the strokes found in the
painting, at the cost of the less vivid colors being displayed. We argue that block conv2
creates the most faithful result. To have the original appearance be visible, the content loss
can be included. Including content loss when calculating style loss ensures that finer details,
such as the window frames of the building, stay present. To have as much detail transferred
as possible, the image size as input for the style transfer should be maximized.

We find having the viewing direction removed while including normal information creates
the most pleasing results. With viewing direction the swirls disappear, while without normal
information flat surfaces become too homogeneous.

7.1. Discussion

7.1.1. Contributions

This research furthers the field of 3D reconstruction and style transfer. We have accom-
plished,

• Creating a new form of 3D style transfer that transfers style onto an implicit surface,
which has a fixed memory footprint and requiring no discretization. Only the surface
is styled, creating a closed separate styled model.

• Reviewing and experimenting with different datasets, styles, and with different pa-
rameters to explore how to create the most faithful results.

• Comparing our method with established 3D style transfer methods, and discussing
similarities and differences the results.
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7.1. Discussion

7.1.2. Limitations

Geometric artifacts from IDR, due to a lack of information caused by occlusion, has an effect
on the final styling. We can see this in the surface of Figure 6.6. When training, no horizontal
images were included, causing unnatural artifacts to be created which are still visible in the
final style results.

IDR itself is time-consuming method. All the datasets shown took 8 hours to reconstruct.
Since for styling we require the object to be correctly modelled, it is not feasible to begin
styling before IDR has completed. To optimize for different views, views have to be rendered
completely, which requires sphere-traching, which is also time-consuming.

For users to create their own datasets, it is required for the input dataset to include mask
information, which has to be manually created. Some form of segmentation can be used to
simplify this process.

While we have performed a user study to argue how successful our method is in faithfully
transferring style, one can still wonder how, or if it is even possible, to objectively quantify
style. A larger study can be performed to create a clear answer to simplify further research
in this field.

7.1.3. Future work

For future work, one may explore a maskless adaption of our model, using for example
VolSDF [Yariv et al., 2021] or NeuS [Wang et al., 2023]. While having masked data allows
for the creation and styling of scenes containing only the intended geometry, having not to
create masks can simplify the process while still creating a implicit surface to be styled.

A new developement by Yariv et al. [2023] is BakedSDF, which not only includes a separable
appearance renderer similar to IDR, but also allows for the separation of diffuse and specular
information. It is very interesting to explore the possibilities for styling only color, keeping
specularity intact.

Having a geometry network affected by style could create interesting results, where not only
the appearance is affected, but also the geometry, creating for example a chair with sharp
angles based on Mondriaan’s style.

Now that the method has been established, the next step is for someone to use it to style a
piece of furniture, such as a chair, and recreate it using 3D printing.
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A. Reproducibility self-assessment

A.1. Marks for each of the criteria

1. Input data: 3
All input data used is available and free to use.

2. Preprocessing: 3
COLMAP and preprocessing script are available, and minimal preprocessing is re-
quired.

3. Methods: 3
Method will be available on Github, and is easy to use.

4. Computational environment: 1
CUDA is required, and for high quality results a good graphics card is needed.

5. Results: 3
Results as images and checkpoints will be available on Github.

A.2. Self-reflection

It is possible to reproduce this thesis, only with lower quality results. The input datasets,
for 3D reconstruction and styling, are publicly available, and designed for such a method in
mind. Therefore minimal preprocessing is required, only needing the necessary input masks
and normalized camera information. The method itself is user-friendly, using open-source
methods. To run the method however requires a good graphics card and CUDA, which for
this thesis was achieved using the Deltblue supercomputer. A user could create results of
lower quality themselves. The results created will also be publicly available, with results
images as well as checkpoints of the model before and after styling.
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B. Projection Style Transfer (Preliminary
method)

A preliminary method examined during this thesis was to style the output surface from IDR.
The approach was two unwrap the surface, represented as a triangle mesh, using a form
of 2D projection, such that the created UV-map could be stylized using NST. The stylized
UV-map could then be reprojected onto the surface, creating a styled surface.

An example of a 2D projection is equirectangular projection, where the surface points are
projected on the unit sphere,

θ = arccos
z√

x2 + y2 + z2
, ϕ = arctan

y
x

(B.1)

which is then unwrapped using for example equirectangular projection.

u =
Mϕ

2π
, v =

Nθ

π
(B.2)

With N, M the size of output image. This image can be stylized using NST, to create a stylized
image which can be reprojected onto the surface. This method is however rather expensive,
as many points have to then be projected for a high resolution. Since a 3D to 2D projection
is discontinuous, this will create seams at, in the case of equirectangular projection, the
poles of the object. This method was therefore discontinued in favor of styling IDRs neural
renderer based on rendered views.
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B. Projection Style Transfer (Preliminary method)

Figure B.1.: 2D projection stylized of DTU’s scan65 (skull).

Figure B.2.: Output styling. While the styling looks faithful, the resolution is low. We also
see discontinuities at the poles.
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