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Abstract

3-D Target Classification in Short range Radar Applications

Over the years in the automotive industry, the use of radar sensors in advanced driver assistant systems (ADAS)
has been increasing, shining a light on various safety and security concerns to be dealt, that come along with it.
The performances of existing sensor technologies such as camera, LIDAR and GPS can be very well comple-
mented by the use of millimeter-wave radar due to its robust performance in various conditions.

In assisted or autonomous driving tasks, localization of targets and their height information is important to be
determined. Since height information is lacking from automotive radar systems without elevation measurements
capabilities, this remains a challenge to be worked on. In the application discussed in this thesis, using the radar
specifications providing a high range and velocity resolution, the multi-paths can be resolved in the range-Doppler
domain and be used for height estimation techniques. The automotive applications for which short and ultra-short
range radar systems are used, require a high range and velocity resolution.

In this thesis, a low complexity and fast target height classification algorithm is presented using a FMCW radar.
In the process of having a quick response automotive radar system, low latency DoA estimation technique was
employed. To estimate the height properly, knowledge of the ego-velocity is needed. A histogram method can be
used to roughly estimate the ego-velocity. The ego-velocity estimate can be refined using an Extended Kalman
filter that tracks targets that are supposed to be annotated with height information. Using the vertical doppler beam
sharpening technique, the improved ego-motion estimate helps in estimating the elevation angles of the targets
and therefore, their corresponding height. An overview of the height estimation process is explained to provide a
real time mapping of the target in 3-Dimensions, showcasing the improvement in ego-motion estimation leading
to an elevation angle estimation. Simulations and experiments are carried out to validate and verify the algorithm.
The results show promising results and also reveal potential improvements and the need for more simulations and
experiments to mature the concept further.

A.V ijayaraghavan
Delft, December 2022
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Nomenclature

Abbreviations

Abbreviation Definition

ADAS Advanced driver assistant systems
SRR Short Range Radar
LRR Long Range Radar
MRR Medium Range Radar
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Symbols

Symbol Definition Unit
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1
Introduction

Automotive industry over the years have advanced when it comes to the involvement of radar sensors, which play
a key role in the development of assisted and autonomous driving concepts and applications such as advanced
driver assistant systems (ADAS). Their usage is expected to grow further in the coming years as well as corre-
sponding safety and security concerns. Different sensor technologies have been active in providing the safety
measures of the vehicle such as blind spot detection, collision avoidance and so on. The Millimeter-wave radar
provides robust performances in low lighting and rough environmental conditions such as rain, compared to the
other sensors in the market like camera, LIDAR andGPS (Global Positioning System) [1]. The radar technologies
have developed from 24 GHz to 77-81GHz, thus allowing a better resolution. The modulation method employed
in automotive radar is Frequency Modulated Continuous-Wave (FMCW) which holds advantages that include
high resolution distance measurement, quick updating and low sampling frequency requirements of analog-to-
digital converter. The radar transmits a burst of chirps and upon reflection from the target, a sequence of chirps
is received. Based on these chirps, the range, velocity and angle are calculated. MIMO radar technology is used
to determine the angle information of the targets. The applications of using automotive radar would include
Adaptive Cruise control, brake assist, lane change, assist, target classification and so on. These respective au-
tomotive applications fall under three radar classifications, namely Short Range Radar (SRR), Medium Range
Radar (MRR) and Long Range Radar (LRR). Adaptive Cruise control falls under the LRR, lane change assist
under MRR and obstacle detection under SRR, with it requiring a better range resolution comparatively [2].

1.1. Motivation

In today’s world, with increase in the growth of automotive industry, as mentioned before, the spotlight has been
shining bright on the safety of drivers, passengers and pedestrians and the reliability provided by the automotive
radar system. There are multiple targets present on the road and to guarantee safety, detecting these targets in a
reliable fashion or localization is important. While performing assisted or autonomous driving tasks, one of the
challenges is to determine, using automotive radar system, whether it is possible to drive under, over or through
certain objects in the driving direction or within the maneuvering area of the car. However, this is not a simple task
for automotive radar systems since an object detection in the driving direction does not contain height information.
The automotive applications for which short and ultra-short range radar systems are used, require a high range
and velocity resolution. In such case, the multi-path components can be separated from the the direct path, thus
enabling height estimation techniques in the range and Doppler domain which can be used to retrieve the height
information of the target. Having an extra information on the elevation angle of the target can further improve
the height classification of the targets for instance, in the case of overhead structures.

1.2. State of the art

As mentioned in the motivation, the classifications of the target can be improved using azimuth and elevation
angle estimation. Hence, selecting a DoA estimation technique adhering to the application requirements, such as
low latency, is a significant issue. In general radar applications, the performances of super-resolution algorithms
such asMUSIC and ESPRIT in DoA estimations, which are considered to be state-of-the-art, are well documented

1



1.3. Novelty in the study 2

[3][4]. However, the estimation performance suffers when fewmeasurements are available and the computational
cost is high, which is not desired in quick response automotive radar system. The concept of Monopulse is a well
established technique in DoA estimation due to its benefits in computational cost and ability to work with few
measurements as compared to MUSIC and ESPRIT [5].

Furthermore, the velocity of the automobile also plays a significant role in the height estimation of the targets
as we are dealing with relative velocities. The dependency of the relative velocity estimates in height estimation
techniques such as vertical doppler beam sharpening makes ego-motion estimation a crucial aspect of the algo-
rithm. In vertical doppler beam sharpening, the height of the object is determined from the doppler frequency
shift induced by the target’s velocity relative to the radar [6]. Thus far, many publications are also present on
providing various ego-motion estimation techniques such as analysis on the measured radial velocity over the
azimuth position of targets being done along with RANSAC (fitting algorithm) [7]. LSQ (Least Squares) estima-
tors are also used to reduce significant bias error. D. Kellner et al. through the publications has explained the
ego-motion estimation using single and multiple doppler radars [8][9]. However, elevation angle is not being
used in any part of the analysis. Also, T. Miyasaka et al. published a study on laser-based ego-motion estimation
using multi-layer LIDAR mounted on the bumper of the vehicle [10]. The ego-motion obtained by the standard
vehicle odometry i.e. through wheel-based odometry and inertial sensing (gyroscopes and accelerometers), is a
good estimation of the velocity of the automobile. But it comes with an uncertainty that increases with increase
in the dynamic movement of the vehicle e.g. drift [11][12]. The unevenness of the terrain also aids to the error
along with systematic errors caused by kinematic imperfections e.g. unequal wheelbase.

An error in ego-velocity estimation and absence of angle information can alter the localization of targets and
produce a non-reliable result, thereby, putting the driver and other road users in danger. Literature has been
provided on estimating ego-velocity based on azimuth angle and various target localization algorithms in collab-
oration with SLAM. Furthermore, Robin van Gaalen did a study on localization of autonomous vehicle based
on radar and LIDAR Fusion, also in collaboration with NXP Semiconductors for this M.Sc. Thesis at Delft Uni-
versity of Technology [13]. However, the velocity estimator employed was biased as elevation angles were not
incorporated. Multiple ideas to refine the DoA estimation, so as to improve the height and ego-motion estimation
accuracy were suggested to be applied, i.e. using MUSIC algorithm or different target detection schemes, and
using SLAM algorithms.

1.3. Novelty in the study

The research objective of the thesis is to achieve a fast and low-complexity algorithm providing a reliable estimate
of ego-velocity and target classification inclusive of elevation angle.

This thesis aims to contribute novelty in the following aspects:

1. Investigating how a classical tracker needs to be modified to address a different clustering approach which
includes ego-velocity.

2. Inspecting the improvement in height estimation and localization procedure by adding the dependency of
elevation angle to the current ego-velocity estimation which are based only on azimuth behaviour.

1.4. Project Approach

This thesis will provide a study on how the use of elevation angle and multipath improves the classification as
well as ego-motion estimation in a fast, low-complex manner using a certain array configuration. The property
of multipaths can be used in the association of targets. The monopulse technique provides a fast and precise
estimate of the azimuth positions of the targets using limited availablemeasurements. An analysis on themeasured
radial velocities of the target is done, which contains the information of the azimuth position of the targets as
well as the elevation angles. The distribution of this velocity profile inclusive of elevation angle information is
analyzed and improved over the course using an Extended Kalman Filter (EKF). The use of EKF provides an
improved ego-motion estimate, which helps in estimating the elevation angles of targets, thereby providing a
3-Dimensional localization algorithm, along with a velocity estimator. The height information extracted through
this methodology helps in classifying those targets as an object that you can drive under, over or through it. The
signal model and algorithm are created and tested through MATLAB and validated on actual radar measurement.
A Fully-Integrated 77 GHz Radar Transceiver was used to collect the real data in an outdoor environment [14].
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1.5. Outline of the thesis

The structure of the thesis is defined as follows to have an understanding of the flow of information involved in
the project.

• Chapter 2 - The fundamentals of FMCWradar and the signalmodel will be explained alongwith a literature
overview of the super resolution techniques employed in DoA estimation. The chapter concludes with an
insight into the state of the art approaches in height estimation and ego-motion estimation which is a key
feature in the algorithm presented.

• Chapter 3 - Using the literature review, a conclusion has been provided with an efficient design created
with the appropriate techniques, obeying the application requirements of the project. A detailed account of
the strategy employed and the flow of information shall be discussed in this chapter.

• Chapter 4 - The signal processing chain is evaluated in the MATLAB simulation environment. The results
and the observations shall be analysed and conclusions would be made to support the research questions
introduced in this thesis.

• Chapter 5 - The simulation results are validated by real-time experiments done with the Fully-Integrated
77 GHz Radar Transceiver, provided by NXP Semiconductors, in the premises of Delft University of Tech-
nology.

• Chapter 6 - Chapter 6 finalizes the research studies and recommendations will be provided on the future
prospects in this field.



2
Fundamentals of Automotive Radar

In this chapter, an introduction is provided on the various underlying concepts and techniques in automotive radar
discussed and utilized during the course of this thesis. To start with, the fundamentals of FMCW is discussed, to
provide with a basic understanding on its working principle. The signal model and its configuration discussed
taking into account the application of the project. In the following section, an analysis on the state-of-the-art DoA
estimation techniques is provided along with multiple height estimation techniques using the existing literature is
discussed. This chapter serves as a literature study for the following chapter, to have an understanding on the the
reasoning behind the design choices employed in constructing the fast, low-complexity classification algorithm.

2.1. Measurement Parameters

At present, the automotive radar detects targets based on the three parameters such as range, velocity and angle.
The range can be determined via the measurement of the delay of the received signal (reflection from the target),
velocity calculation done using the Doppler effect property and the angle of targets are determined using more
than one transmit or receive channel. Various signal processing techniques are involved in the the accuracy and
precision of the estimated parameters to the true value. The resolution factor plays a significant role in being able
to resolve targets in all measurement dimensions: range, velocity and angle, which are shown below:

∆R =
c

2B
[ m ] (2.1)

∆v =
λ

2Tframe
[ m/s ] (2.2)

∆θ ≈ 0.886λ

(N − 1)d cos θ
[ deg ] (2.3)

where, c is the speed of the light, B is the transmission bandwidth, λ is the wavelength, Tframe is frame time, d is
the inter-element spacing in the virtual array, and N is the number of of virtual array elements. With d equal to
λ/2, it becomes a Uniform Linear Array (ULA).

2.2. Frequency Modulated Continuous Wave (FMCW) Radar

Radar which stands for ”Radio Detection and Ranging”, is an object detection system that employs electromag-
netic wave (radio or micro waves) in detecting and localizing targets. The radar waveforms are mainly classified
into two categories, namely, Pulsed Waveform and Continuous Waveform. Pulsed radars transmit pulses of short
duration, at regular time intervals. The reflected signal from the target is received in the time intervals between
transmissions. The range of the reflected target is calculated from the delay or the time elapsed between the trans-
mission and reception, of the reflected signal. While the pulsed radar systems employs a sequential transmission
and reception, Continuous Wave radars transmits a stream of continuous waveform signals i.e. a simultaneous
transmission and reception. In CW radars, the velocity of the target can be calculated using the property of
Doppler effect, which produces a frequency shift in the reflected signal in comparison to the transmitted signal.

4



2.2. Frequency Modulated Continuous Wave (FMCW) Radar 5

However, to carry out target range estimation, frequency modulation is employed on the transmitted signal which
brings us to Frequency Modulated Continuous Wave (FMCW). In FMCW radar utilizing the linear frequency
modulated waveform (LFM), the range of the target is calculated from the frequency shift between the transmit-
ted and received signal [15]. The FMCW radars are widely used in the automotive radar systems, aiding safety
applications in ADAS such as adaptive cruise control, collision avoidance, parking aid and so on due to various
advantages [16]. In comparison to pulsed radars, the advantages of FMCW radar are the low measurement time,
low power consumption and cost-effective. Theoretically, unlike the pulsed radar, the FMCW radar do not re-
quire signal blanking and can measure targets at short ranges with high accuracy and resolution.

Figure 2.1: Visualization of the FMCW chirp signal

In automotive application, the primary concept of FMCW radar is to generate, as previously mentioned, a
linear frequency modulated ramp as transmit signal, also called a chirp. The illustration of the chirp signal is
shown in Figure 2.2.

sT (t) = At exp
{
j2π

(α
2
t2 + fct

)}
(2.4)

The received signal upon reflection from k targets includes the time delay τ between the transmit and received
signal.

sR(t, k) = Ar exp
{
j2π

(α
2
(t− τk)

2 + fc(t− τk)
)}

(2.5)

where, chirp slope α = B/T

B being the bandwidth, T being the chirp duration, fc being the center frequency and At and Ar being the
complex amplitudes of the transmitted and received signal.

Upon reception, received signal from the reflection of the target is mixed with the transmit signal. This is
called stretch processing (deramp/dechirp), as the received signal is transformed into a sinusoidal form through
the mixer and resulting in an IF signal or beat signal.

sbeat (t, k) = Ab exp
{
j2π

(
ατkt−

α

2
τ2k + fcτk

)}
(2.6)

This dechirped received FMCWwaveform is used for the estimation of range and radial velocity of the targets
through FFT. In case of a single object or a target in front of the radar, the frequency spectrum of the IF signal
reveals a constant frequency tone, called beat frequency. Similarly multiple objects reveal multiple frequency
tones in the frequency spectrum of the IF signal. This beat frequency is the difference between the transmit and
received frequency and it is proportional to the range of the object from the radar.

sbeat (t, k) = Ab exp (j2πατkt) exp j2π
(
fcτk − α

2
τ2k

)
(2.7)

The generalized beat frequency representation can be derived, when the value of τk = 2(R + v · t)/c, where R
and v is the range and relative velocity of the kth target respectively, is substituted in Equation 2.7, given below.
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Since 4(R+ v.t)2 << c2, τ2 ≈ 0, the last term can be neglected.

sbeat(t, k) = exp
{
j2π

(
2fc ·R

c
+

(
2fc · v

c
+

2α ·R
c

)
t+

2αv

c
t2
)}

(2.8)

Collecting terms that are linear with t, we find that the beat frequency term contains the range information polluted
with doppler.

fbeat =
2α ·R

c
+

2fc · v
c

(2.9)

This shows the so-called range-Doppler coupling, where a target at distance R and velocity v is not seen at range
bin R, but at a shifted range bin R’ due to the effect of the velocity v. With respect to stationary targets, i.e.
τk = 2.R/c and subsequently substituting in Equation 2.7, we can see that the ατ term in the beat signal repre-
sents the beat frequency fbeat to compute range and the fc · τ represents the phase information, which is used for
DoA estimation.

Figure 2.2: Radar data cube

Radar signal processing operates on data that are sampled in more than one dimension, with the idea to extract
range, velocity and angle. The radar information collected is stored in a data cube with dimensions being, fast
time, slow time and spatial samples as shown in Figure 2.2. As discussed in the previous section, a sequence
of chirps (pulses) is being transmitted by the radar and these are received upon reflection from the target. Upon
reception, and undergoing stretch processing, the resulting IF signal or beat signal, given in Equation 2.7 is sam-
pled. The collected samples within a pulse or a chirp are referred to as fast time samples. These fast time samples
containing the delay of the reflected signal, correspond to successive range intervals and are used to estimate the
range of the target through Fast Fourier Transform (FFT). The range samples are also called as range gates or
range bins. An important parameter, named PRI (Pulse Repetition Interval) should be introduced, as it determines
the number of chirps (pulses) transmitted per second. Due to the long sampling interval of typical PRI’s com-
pared to the fast time interval, samples are taken from different pulses. Within the same range gate or range bin,
these complex samples collected from different pulses are called as slow time samples. This allows for Doppler
processing by means of FFT along the slow time dimension, thereby exploiting the phase difference between
chirps to obtain the radial velocity of targets at a given range bin. Hence, on applying the 2-Dimensional FFT,
we can see that the peak will appear at a bin, giving the information about the range and velocity of the target that
correlates with the terms [ 2·Rc , 2fc·v

c ], which the beat signal represents, as mentioned in the Equation 2.9. In case
of multiple receiver channels or based on number of transmitter receiver pairs, the collected samples representing
the reflections from the object at different antenna elements, are stored in the spatial dimension. This dimension
is used in the estimation of DoA by means of FFT on the spatial samples corresponding to the range-Doppler
bin associated to the target. The phase differences of the received signal between different antenna elements is
exploited in determining the DoA of the target. The range resolution as defined in the Section 2.1, depends on
the bandwidth of the FMCW waveform and the Doppler resolution depends on the total measurement time and
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SNR (Signal-to-Noise Ratio).

To summarize, in case of a single target, upon reception of the reflected signal from the target and demodula-
tion, the radar data is stored in the form of data cube. The range-Doppler processing is carried out for each spatial
channel by applying an FFT on the fast time and an FFT on the slow time samples, for instance, in a virtual array
of 12 receive (spatial) channels with 3 transmitters and 4 receivers which shall be explained in further in Section
2.3. A single target will be perceived in a range and Doppler bin having more energy. After extracting the spatial
samples associated to the target range and Doppler bin, another FFT is performed along the spatial dimension to
determine the angle of the target. These extracted samples together constitute a snapshot, which is illustrated in
Figure 2.3.

Figure 2.3: Representation of single snapshot extraction after range-Doppler processing [17]

2.3. Signal Model

In this section, we discuss the MIMO (Multiple-Input Multiple-Output) radar. MIMO radar utilizes multiple ele-
ments in transmitter and receiver array, giving rise to a larger virtual array. Suppose usingMtx transmitters and
Mrx receiver antennas, one can realize a virtual array ofMtx ∗Mrx elements. In this manner, a virtual array of,
for example, 16 elements can be realized using 4 transmitter and 4 receiver antennas, which is cheaper than the
conventional way of having 1 transmitter and 16 receiver antennas i.e. 17 analog channels, compared to 4 + 4 = 8
analog channels. Hence, MIMO radar provides an improved angular resolution in an efficient way as compared
to the conventional radar with a single transmitter. MIMO radar offers waveform diversity at the transmitter
(Tx), by the use of multiple antennas to transmit diverse waveforms simultaneously. MIMO radar systems are
classified into two categories: widely separated MIMO and collocated MIMO. One providing higher detection
performance and the other, giving an improved angular resolution, respectively [18][19]. In this project, we shall
focus on the concept of collocated MIMO radar and its application in DoA estimation.

In collocated MIMO radar, the signals transmitted from the multiple transmitters can be separated at the
receiver by using orthogonal waveforms. The four common techniques in achieving these are: time division mul-
tiplexing (TDM), code division multiplexing (CDM), frequency division multiplexing (FDM) and doppler divi-
sion multiplexing (DDM). Of the four, the DDM scheme is widely used in automotive radars. These multiplexing
schemes supports the creation of mutual orthogonal waveforms for the transmitters, which gives the ability for
the receiver array to separate the transmitter signals [20]. The MIMO configuration of multiple transmitter and
receiver elements creates virtual position of receiving channels/antenna elements through spatial convolution of
transmitter and receiver phase centers, called virtual array [21]. This provides an increase in the effective number
of antenna elements compared to the conventional radar, thereby providing an improved angular resolution and
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larger virtual array aperture.

Suppose a MIMO radar system with Mtx transmitters and Mrx receivers giving rise to a virtual array of
elements, N = Mtx ∗Mrx elements. The inter-element spacing of the virtual array d is a significant parameter.
To avoid grating lobes in the beamforming spectrum, the inter-element spacing should be equal to or smaller than
half the wavelength λ. Having all inter-element spacings the same, the resulting virtual array is defined as uniform
linear array (ULA). To satisfy this condition, we can compute the inter-element spacing of the virtual array by
employing the relation between the inter-element spacing of the receiver and transmitter array and number of
receiver antennas, given as:

dR =
dT
Mrx

(2.10)

For our application in this thesis, we have employed a a virtual array with 12 elements, where Mtx = 3 and
Mrx = 4. By using the condition in 2.10, we can also achieve the desirable inter-element spacing of λ/2, by
taking dT = 2λ and dR = λ/2. We can also note that the angular resolution increases with increase in number
of sensors or antenna elements (N ), which is validated by the Equation 2.3.

Figure 2.4: Virtual array with 12 elements, the number of transmitter,Mtx = 3 and receiver,Mrx = 4. The blue solid antennas represent
the transmitter elements, and the green dashed antennas represent the virtual elements generated from red receiver antennas [5].

In line of sight (LOS) scenario, the direct path of reflected signal from the target is assumed to be parallel
and the delay of the recieved signals is increasing between consecutive elements in the antenna array. Under
the narrow band assumption, the delay between the arrival of reflected signals to each antenna element can be
translated into phase shifts. The phase shift is increasing linearly in ULA. However, in the case of multipath or
non-line of sight (NLOS), the phase shift differs between elements as the direction of departure (DoD) of signals
from the transmitter is different from the direction of arrival (DoA) of the reflected signals. In the LOS scenario,
the phase difference relative to the Nth element is given as:

ϕn =
2π(n− 1)d sin θ

λ
(2.11)

where, n = 0,1,...,N-1 with respect to the Figure 2.5.
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Figure 2.5: Approaching wave-front on the ULA from the target [22]

In LOS scenario, angle of arrival of the target, θt = θr i.e. DoD = DoA. However, in NLOS or multipath
scenario, θt ̸= θr, i.e. DoD ̸= DoA. The steering vector representing the reflected signal from the target at an
angle θ, indicates the phase delay of each element in the array, aT (θt) of transmitter array and aR(θr) of receiver
array

aT (θt) =
[
1, ej2π

dT
λ sin(θt), . . . , ej2π(Mtx−1)

dT
λ sin(θt)

]T
(2.12)

aR(θr) =
[
1, ej2π

dR
λ sin(θr), . . . , ej2π(Mrx−1)

dR
λ sin(θr)

]T
(2.13)

where, dT is the inter-element spacing of the transmitter array and dR is the inter-element spacing of the receiver
array.

The steering vector of the virtual array, a(θ) is formed by the Kronecker product, ⊗, of the steering vectors
of transmitter and receiver array. It represents the signal received from the target present at a DoA angle, θ from
the antenna elements in the array. The visualization of the incoming signal is given in Figure 2.5.

a(θt, θr) = aT (θt)⊗ aR(θr) (2.14)
In NLOS scenario, the a(θ) in the steering vector includes the information of both DoA and DoD as θt and θr

are different. However, in LOS scenario, the a(θ) contains the information of a single angle parameter, i.e. DoA
as θt and θr are equal.

The MIMO signal model for received signals fromK targets can be expressed as:

x = As+ n, (2.15)

where, k = 1, ...,K
In the model definition, A is the steering matrix of dimension N × K containing the complex elements in the
steering vectors a(θk), s is the column vector of dimensionK × 1 containing the complex signals, sk, that arise
due to the attenuation of signals and change of phase upon reflection from the targets,K and n is the noise vector.

For the current MIMO configuration, the sensor receives the snapshot consisting ofMtx ·Mrx i.e. 12 spatial
samples. These spatial samples corresponding to the range-Doppler bin of the target is then processed for DoA
estimation. Moving forward in this thesis, single snapshot DoA estimation becomes a requirement in the project
as the automotive application dealt with in this project should be provided with low latency. From the safety
point of view, low latency becomes a key factor in automotive applications as it gives the road user and the driver
ample amount of time to react in various scenarios.

2.4. Super Resolution Techniques in DoA Estimation

Previously, inDoA estimation, we estimate the angle parameter through FFT along the spatial axis of the radar data
cube, achieving a certain angular resolution. In MIMO radar systems, conventional DoA estimation techniques
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can be classified into parametric and non-parametric methods. The parametric techniques include Deterministic
and Stochastic Maximum Likelihood, DML and SML, respectively, which achieve good performance in DoA
estimation. However, it comes at a cost of high computational complexity and it requires a priori information on
the number of targets to guarantee maximum likelihood performance, for example, in a probabilistic fashion i.e.
P (|θ̂ − θ| < ϵ) > 90% for a given ϵ and SNR. The non-parametric techniques include the conventional digital
beamforming and subspace-based algorithms such as MUSIC and ESPRIT. In this section, a short discussion will
be provided on these super resolution algorithms of MUSIC and ESPRIT, that were considered and discuss the
challenges faced due to the requirements of the automotive application dealt in this project.

2.4.1. MUltiple SIgnal Classification (MUSIC)

MUSIC algorithm is a spectral estimation technique which works on the principle of decomposition of eigen
values [23]. The approach is based on the covariance matrices of the signals. It provides high resolution, accu-
racy and stability, but it is limited to uncorrelated signals and it is computationally expensive. When it comes to
correlated signals or low SNR scenarios, the performance of MUSIC deteriorates [24]. To restore the rank of cor-
relation matrix when signals are highly coherent, there exists decorrelation algorithms such as forward-backward
averaging (FBA) and spatial smoothing (SS) [25]. In limited number of snapshots scenario, the estimation of
noise covariance matrix becomes difficult, i.e. having only a few measurement bins adjacent to the peak range
cells of the target, hence the decrease in performance in such scenarios. Taking snapshots from consecutive
measurements (frames) has a negative impact on the latency. Another challenge of MUSIC is that the eigen-
value analysis is used to determine the rank of the signal space and therefore the number of targets, to effectively
determine the rank of the correlation matrix. However, this is difficult in practical scenarios.

2.4.2. Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)

Another subspace based DOA estimation technique that was looked upon was the ESPRIT, whose technique relies
on a special array structure. After the division of the array of antennas into subarrays or doublets and calculation
of correlation matrix, the signal subspaces are computed respectively. As the subspaces are translationally related,
there exists a unique non-singular transformation matrix which connects the subspaces of eigen vectors. The DoA
estimation is computed through the information of this transformation matrix or rotational operator that maps the
signal subspace of one subarray to the other. Hence, ESPRIT exploits an underlying rotational invariance among
signal subspaces induced by an array of sensors with a translational invariance structure [26]. It does not require
pseudo-spectrum calculation like in MUSIC. However, the main challenge of the algorithm exists in scenarios or
applications with limited number of snapshots (single) and unknown number of targets [27].

2.5. Space-Time Adaptive Processing (STAP)

STAP is an adaptive filtering technique, providing an ability in detecting targets obscured by clutter or by jamming
in airborne radar systems, conventionally. It exploits the target signal structure, jointly in time (pulses in the slow
time) and space (antenna array) to detect the velocity and DoA of the target suppressed by clutter or jamming [28].
However, since space-time adaptive processing is just an extension of adaptive beamforming, the problems related
to the latter will exist for STAP as well when estimating the space-time adaptive weights. The low number of
data samples (training data) does not help the case in estimating the space-time interference-plus-noise covariance
matrix, which is of large dimension. Also, there is an issue of computational load when it comes to the application
of STAP [29].

2.6. Ego-motion

Asmentioned in Section 1.2, the velocity of the car plays an important role in height estimation techniques making
Ego-motion estimation, a crucial aspect of the height classification algorithm. The general methods employed in
carrying out the Ego-motion estimation is discussed in this section.

2.6.1. Ego-motion based on other modalities

Through visual odometry, the vehicle motion is estimated by employing feature tracking or feature matching
on a sequence of images captured through a camera, which can be categorized as monocular or stereoscopic
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[30]. In stereovision, the 3D points are reconstructed using triangulation and point features are located using
iterative closest point approach (ICP). On the other hand, the monocular cameras require tracking image features
over a number of images. The stereo outperforms monocular visual odometry in most number of cases [31].
Using a trifocal tensor, which incorporates all geometric relationships among three views, the features are related
between three images of the same static scene, through which the ego-motion of the vehicle is estimated [32]. A
combination of wheel-based odometry and inertial sensors with good GPS reception provides an accurate ego-
motion estimation. However, external factors related to the terrain, and imperfections in wheel dimensions can
lead to an erroneous measurement. Added disadvantages include, expensive highly accurate gyroscopes, the
poor signal-to-noise ratio offered by the accelerometers at low accelerations and effects of extensive drift on the
respective measurement.

2.6.2. SLAM-based ego-motion

At first, a landmark-based global navigation systemwas present where artificial landmarks are placed strategically
at a test site and its global locations are noted using a radar sensor and its position relative to the radar sensor.
Through Kalman filter, the radar range and position measurements noted are fused with vehicle control signals
[33]. Upon further expansion to with natural features, Simultaneous Localization and Mapping (SLAM) was
used where, the position measurements of the radar system are probabilistically fused with the modeled vehicle
motion [34]. Without the knowledge of global positions, the features are identified through the polarization of
the reflected radar signal. However, in each scan certain retrievable landmarks are required. Added to that, the
approach deals with occlusion, moving targets and clutter targets in each scan. In high speed, it is impossible
to provide a reliable result as one landmark is only confined to a limited number of frames. Instead of sparse
landmarks, a detailed map was used through a scan matching approach in another SLAM application using a
360° radar sensor. Through scan correlation, a maximum likelihood alignment is computed between two sets of
sensor data through which a trajectory of the vehicle can be estimated [35]. However, the disadvantages with the
approach include a complex time dependant signal processing and an initialization period.

2.6.3. Radar-based ego-motion

The increase in use of Doppler radars and measurement accuracy offered in the automotive field has opened doors
for multiple possibilities for a fast and reliable ego-motion estimation. It is based on the relative motion of the
ego-vehicle with respect to stationary targets i.e. the ego-motion is based on the Doppler velocity and azimuth
angle of themeasured targets in the field of view (FoV) [9]. Themovement or the trajectory of the radar sensor can
be computed by examining the sinusoidal progress of the radial velocities of the measured stationary targets over
their positions in the azimuth angle domain, also called as the velocity profile. By analyzing the velocity profile
using a least-square (LS) approach and single-track model with the Ackermann condition, the ego-motion of the
vehicle can be estimated [8]. The Ackermann condition mentioned, states that the extended rotational axes of all
wheels of a vehicle intersect at one point. The properties of the ego-motion estimation include a time-independent
signal processing without any initialization period and high sampling rate. Unlike the measurements based on
Section 2.6.1, it is free of bias, drift and does not take into account the interaction of the vehicle to the ground
while estimating a 2-D motion state of the vehicle. Furthermore, the added derivation of velocity by changing
position over two or more successive frames in visual odometry can be avoided as Doppler radars are able to
measure relative velocities of stationary targets in a single measurement.

2.7. Kalman Filter

Kalman filter is a recursive estimation algorithm that can be used for target tracking in localization and navigation
systems [36][37]. In this section, the working of the Kalman filter will be discussed and to do so, a 1-Dimensional
constant velocity model with xn being the location at time instant, n, ẋn being the velocity at time n and∆t being
the time steps, is assumed as shown in Equation 2.16.

xn+1 = xn +∆tẋn

ẋn+1 = ẋn

(2.16)

One of the major challenges in tracking systems is to provide an accurate and precise estimate of the states of the
target i.e. range and velocity in this model, in the presence of uncertainty. The uncertainty in measurement from
the GPS receivers or radar arises from the external factors such as thermal noise, changes in satellite positions,
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atmospheric effects and so on. The Kalman Filter produces estimates of state variables based on uncertain mea-
surements and helps in predicting the future system states based on past estimates.

As previously mentioned, the two equations presented above represents the dynamic model of a system with
constant velocity motion where, xn represents the range of the target at time instant n and ẋn represents the veloc-
ity of the target at time instant n. ∆t represents the time-elapse between two instants. The model in Equation 2.16
assumes zero acceleration. For advanced tracking, constant acceleration model can be also applied. However,
this is outside the scope of this project.

To summarize, the process of Kalman filter revolves around three important operation blocks: Predict, Mea-
sure and Update. The Kalman filter computations are based on five equations: two prediction equations, two
update equations, and Kalman gain equation, which shall be explained in further below.

• Prediction Block

From the dynamic model in Equation 2.16, a prediction of the state i.e. range, assuming a constant velocity
can be made. As part of the prediction process, the two equations involved are the state extrapolation
equation and covariance extrapolation equation, where the former is shown in the Equation below.

x̂n+1,n =

[
x̂n+1,n

ˆ̇xn+1,n

]
=

[
1 ∆t
0 1

] [
x̂n,n

ˆ̇xn,n

]
+
[
0
]
[un] + [wn] (2.17)

x̂n+1,n = F x̂n,n +Gun +wn (2.18)

where, F is the state transition matrix, G is the control matrix, un is the control variable and wn is the
process noise at time instant, n.

This equations takes care of the prediction or estimation of the future state, based on the known present
estimation. The covariance extrapolation equation shown below provides the measure of uncertainty in our
prediction.

P n+1,n = FP n,nF
T +Q (2.19)

where,P n,n is the covariance matrix at time instant n andQ is the process noise matrix. The process noise
incorporates the uncertainty in the dynamic model, which includes the random changes in acceleration dur-
ing sudden maneuvers i.e. factors affecting the target motion. The value of process noise variances has
an impact on the performance of the Kalman Filter as a smaller value can create a lag in estimations when
compared to the true value and a higher value can make the Kalman filter create a measurement bias and
produce noisy estimations.

• Measurement Block

The predicted value of the states is then compared with the measured value of the states, for instance, the
radar measurement. The Equation 2.20, represents the state update equation for the measurement block,
where zn represents the measurement. It produces updated estimates the states i.e. range and velocity,
based on the present measurement and known past estimation, under the assumption of zero acceleration of
the dynamic model represented by Equation 2.16. The term (zn −Hx̂n,n−1), is called as the measurement
update yn, where zn is the actual measurement and x̂n,n−1 is the predicted measurement.

x̂n,n = x̂n,n−1 +Kn (zn −Hx̂n,n−1) (2.20)

where, H is the observation matrix whose purpose is to convert system state (inputs) into outputs (mea-
surements) using linear transformations.
Kalman Gain equation, represented by K in the above update equation, is a weighting parameter for the
measurement and past estimations, in estimating the current system state. It can be computed through the
following equation:

Kn = P n,n−1H
T
(
HP n,n−1H

T +Rn

)−1

(2.21)
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where,Rn is the measurement noise covariance matrix. In the case of radar measurement, the uncertainty
in the measurements depends on parameters such as SNR, beamwidth, bandwidth and so on.

• Update Block

As part of the update process, the two equations involved are the aforementioned state update equation and
the covariance update equation. The covariance update equation, shown below, measures the uncertainty
in the estimation.

P n,n = (I −KnH)P n,n−1 (2.22)

where,Kn is the Kalman gain at time instant n.

If there is an error or a discrepancy with respect to the measurement block, then the predicted parameters
of the states are updated to account for this error to produce a precise value of the current state.

Through repeated iterations, in the presence of uncertainity, more precise and accurate estimation of the states
can be made. Kalman filter provides consistent performance in linear systems.

However, as radar provides us with distance, radial velocity and angular measurements in polar coordinate
systems and and theKalman filter has its state in cartesian coordinate system, there is a non-linear relation between
measurements and state. Therefore, default Kalman filter can’t be used and the so-called Extended Kalman filter
(EKF) has to be used.

xn+1 = f(xn,un) +wn (2.23)

In EKF, the non-Linear functions are made linear through approximation using the linear term in the Taylor series
which is related to the 1st derivative of the function that is linearized, called Jacobian Matrix (Hj).

yn = zn − h (xn−1) (2.24)

where, h (x) is a function that specifies the required mapping of the measurements from one coordinate system
to another, i.e. in radar measurements, between Cartesian coordinates and Polar coordinates. In addition, H is
replaced withHj in all further equations of a Kalman filter.

2.8. Height Estimation Techniques

To create a 3-Dimensional localization map of objects in the vehicle surroundings, the task of determining the
height of targets plays a significant role, which also is crucial in the safety of autonomous driving. In this section,
two methodologies in height estimation are presented.

2.8.1. Multipath Height Finding

Figure 2.6: Multi-path propagation model used in the height estimation technique [38]
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The following height estimation technique determines the height of the target using the multi path properties of
the reflected signal [38]. In this technique, the operation is based on the assumptions that the ground is flat and
the height of the radar sensor from the ground is known. From the Figure 2.6, the multipath propagation model
of the radar signal can be illustrated. Assuming the ground is flat, there are two propagation paths to be noted.
One being the direct path (AB) i.e. a LOS scenario and the other is the indirect path (ACB), which is reflected
from the ground at point C, i.e. a NLOS scenario. The radar receives the reflected signals from the target through
these paths.

Figure 2.7: Geometry used in derivation of target height [39]. Top: Frame n =1; Bottom: n = M
Direct path - solid blue line and Indirect path - dotted blue line

Using geometry in Figure 2.7 representing a target at broadside (θ = 0°), and a time reference (in terms of
frame number) represented by the superscript, n, the height of the targetHtk can be formulated, with the known
information of the radar sensor height from the groundHs. For explaining the concept, two paths are considered
i.e. the radar sensor receives the backscattered signal from the target k through a direct path (DP – solid blue line)
and an indirect path (IP – dotted blue line) as shown in Figure 2.7. The range of the DP (RDP ) and IP (RIP ) are
given as:

Rn
DP =

√
(Htk −Hs)

2
+ (Rn

k )
2

Rn
IP =

√
(Htk +Hs)

2
+ (Rn

k )
2

(2.25)

Using the range information,

Htk =
(Rn

IP )
2 − (Rn

DP )
2

4Hs
(2.26)

Using Taylor expansion and replacing the ground distance d with radial distance RDP , the Equation 2.26 can be
further approximated to the following [38]:

Htk ≈ ∆rRn
DP

2Hs
(2.27)

where, ∆r represents the range difference information between the direct path and indirect path.

However, in this technique, the means by which the direct path and indirect path is differentiated is through
the difference in the amplitude of the spectral peaks in the range domain. The highest amplitude peak is selected
as direct path or LOS component and the highest amplitude peak with range further than the direct peak’s range
is considered as the indirect path or multipath or NLOS component. However, ideally either one or two spectral
peaks in the range domain are expected, but in practice, there can be much more additional peaks originating
from the diffuse scattering from rough surfaces and reflections from other parts of the target, which can create
ambiguities and make the selection of LOS component difficult.
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2.8.2. Vertical Doppler Beam Sharpening

In this technique, the height is determined by relying on the doppler frequency shift induced by the target’s velocity
relative to the radar. The relative velocity detected by the radar with respect to the stationary objects depends on
the elevation and azimuth angle of the object.

Figure 2.8: Geometry employed for height estimation using Doppler Beam Sharpening [40]

From the Figure 2.8, assuming the car driving with velocity, v in the y-direction towards a stationary target of
height ht, the radar receives a detection with range R, radial velocity vr and angle θ. Hence, the radial velocity
formulation is computed as shown below:

vr = −v cosα (2.28)

where, α contains the information of the azimuth (horizontal) and vertical angle (elevation) component of the
target.

Furthermore, in expanding and deriving the radial velocity component vrel dependent on the elevation angle,
ϵ can be given as:

vrel = −v cos(ϵ) =
vr

cos(θ)
(2.29)

Using the geometry, the height of the target, ht is calculated as:

ht = hs +R sin ϵ = hs +R sin
(
arccos

(
−vrel

v

))
(2.30)

where, R is the measured range of the target.

The high accuracy in the height estimation of targets using this technique, has been documented [40]. Unlike
the multipath height finding, this technique does not require a separate detection and classification of direct and
indirect path, in terms of range information, before proceeding into the height estimation procedure. From the
above equation, the effect of the ego-velocity in height estimation can also be seen, where the error in ego-velocity
can alter the height estimation, thereby providing an unreliable 3-D localization of targets.
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2.8.3. Conclusion

In this chapter, the fundamentals of the automotive radar and the techniques involved in the estimation of measure-
ment parameters are discussed. The FMCW radar employed in the automotive radar systems is studied and the
equations are presented in detail, which are used to estimate the range and DoA of the target. Subsequently, the
MIMO radar signal model for a target is presented and discussed along with a brief overview of the range-Doppler
processing with respect to the radar cube for a FMCW waveform. After the range-Doppler processing, the DoA
estimation is to be conducted, for which a short discussion is provided on multiple DoA estimation techniques for
instance, the super resolution techniques such as MUSIC and ESPRIT. Through the discussion, it is shown that
the super resolution techniques has its disadvantages in single snapshot estimation scenarios. However, a DoA
estimation using single snapshot is needed and to be looked at for a quick response automotive radar system. A
short discussion is also provided on the methods employed in carrying out the ego-motion estimation detailing
the state-of-the-art and the challenges it faces. Through the discussion, the dependance of Dopper velocity and
azimuth is seen in the radar based ego-motion methodology. However, the focus of this project is to remove the
bias and add the elevation angle factor in the ego-motion estimation technique, which shall be discussed in fur-
ther, in the documentation. The application of Kalman Filter in target tracking is discussed along with equations
to provide a rudimentary understanding on its operation. Two methodologies in height estimation are presented
showcasing the difference in two approaches and an idea of how it can be implemented or used in the application
of the proposed algorithm.



3
Signal Processing Chain

This chapter introduces the height classification algorithm explaining the flow of information through the different
stages. Adhering to the application requirements, a methodology has been chosen which shall be explained in
this chapter.

3.1. Application Specifications

In developing an efficient and low-complexity localization algorithm, certain specifications i.e. assumptions and
requirements were taken into account. The targets dealt with are assumed to be stationary in this model and the
antenna configuration is oriented in such a manner to incorporate the azimuth angle domain and does not cover
the elevation angle domain, enabling a better performance in detection in the azimuth.

Low latency parameter (range, velocity, DoA) estimation is an important requirement in automotive applica-
tions due to the safety requirements, as it enables the user or automobile to act quickly in emergency situations.
For DoA estimation, this is achieved by using a technique based on single snapshot, i.e. for every detected target,
one estimation per radar frame. The lack of time integration for the estimated parameters is compensated by
tracking algorithms that do averaging and consistency checks.

3.2. DoA Estimation

As discussed in Section 2.2, in FMCW radar systems, the beat signals convey range and angle information. This
enables us to employ joint parameter estimation techniques such as 2-D MUSIC, 2-D ESPRIT to estimate the
azimuth/elevation and range of targets [41]. However such techniques increases the computational load which is
not desirable in real-time FMCW automotive radar systems. Furthermore, taking into account the aforementioned
application requirements, MIMO-Monopulse was chosen to carry out the DoA estimation of the targets i.e. by
combining the monopulse approach with MIMO radar [5]. The application of monopulse in MIMO collocated
radar is discussed in [42].

Monopulse is a fast and accurate angle estimation technique well developed for target tracking. The advantage
of the monopulse technique is to be able to work with a single snapshot for DoA estimation and is computationally
less expensive compared to the other DoA estimation techniques mentioned in Section 2.4. In tracking, usually
analog beamforming is used and 2 beams (or 4 beams) are put on the target to be tracked. The two types of
monopulse radar are phase comparison monopulse and amplitude comparison monopulse radar.

Amplitude comparison monopulse can be realised in a conventional monopulse system consisting of two iden-
tical antennas at the same phase center with a squint angle, whose outputs are subtracted to produce a difference
beam and summed up to produce a sum beam as shown in Figure 3.1a. It compares the voltages of the receiving
beams which differ by a squint angle, simultaneously with an overlapping pattern on the main direction. The idea
of the amplitude comparison monopulse is that for every direction of arrival, the difference in the amplitude of
the received signal will be a measure for angular displacement [43].

17
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Similarly, phase comparison monopulse can be realised in a conventional monopulse system consisting of two
identical antennas, seperated by a certain distance as shown in the Figure 3.1b. Furthermore, more antennas can
be used for getting more robust estimation, where the certain distance has to be less than or equal to λ

2 for atleast
one pair of antennas. The idea of the phase comparison monopulse is that angle of arrival is computed using the
phase difference measurement between the two received signals from the target due to the angular position of the
object, received by the two different channels.

(a) Amplitude Comparison approach

(b) Phase Comparison approach

Figure 3.1: Classification of Monopulse radar [44]

In our application we use digital beamforming and use beamforming spectrum to find 2 consecutive ”beams”
that ”illuminate” the target. The 2 beams are the 2 FFT bins if we use FFT for calculating the beamforming
spectrum, which shall be explained further below. Furthermore, Phase Comparison Monopulse (PCM) can be
implemented directly on the snapshot, and Amplitude Comparison Monopulse (ACM) after FFT (beamforming)
of the snapshot. Provided that targets are sufficiently separated in DoA domain, ACM can be used to estimate
multiple targets per snapshot. With PCM, the technique is limited to single target per snapshot. Amplitude
comparison technology is widely used due to its straightforward design and minimal equipment requirements .

3.2.1. MIMO-Monopulse

Unlike the classical monopulse or phased array monopulse approach, in MIMO-Monopulse technique, the virtual
array is utilized to synthesize monopulse beams, which takes the advantage of both transmit and receive array
elements. Using the virtual array of the collocated MIMO radar, the sum and difference beams are generated
through digital beamforming (DBF) to estimate the angle of arrival of a target at a particular direction [44]. For
a received signal, the output of the beamformer can be expressed as:

y = wHx (3.1)

where, w is the beamforming vector, obtained through beamforming algorithms such as Bartlett or Capon and
(.)H is the Hermitian operator (complex-conjugate transpose) and x is the signal to be processed.
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Under the far-field assumption, the wave incident on the array is planar. Considering a ULA with N antenna
elements, the received plane wave at n-th antenna element characterized by a reflection coefficient A and a DoA
angle θ of a single source can be expressed as:

xn(t) = a(θ)As0 (t− Tn) e
−j2πfcTn (3.2)

where a(θ) is the gain pattern and is assumed to be the same for all antennas in ULA.

Defining s(t) = s0 (t− T1) , τn = Tn − T1, and β = Ae−j2πfcT1 , where Tn is the propagation time to the
n-th element, results in the below Equation:

xn(t) = a(θ)βs (t− τn) e
−j2πfcτn (3.3)

Furthermore, using the narrow band assumption, i.e. τn smaller compared to the inverse bandwidth of s(t), sτn(t)
:= s (t− τn) e

−j2πfcτn can be equated to s (t) e−j2πfcτn . The above Equation 3.3 can then be written as:

xn(t) = a(θ)βs (t) e−j2πfcτn (3.4)

where, time delay, τn = (n−1)d sin θ
c and n = 1, 2, 3, ...., N .

Collecting all the received signals into a vector x, results in the data model of the form given as:

x(t) = a(θ)β


sτ1(t)
sτ2(t)
...

sτN (t)

 =


1

e−j2πfcτ2

...
e−j2πfcτN

 a(θ)βs(t) := a(θ)βs(t) (3.5)

where, a(θ) is the array response vector or the steering vector of the signal. Furthermore, the gain pattern, a(θ) is
generally omitted by assuming omnidirectional antennas with unity gain. The following expression is the noise-
less response for a single target, in practice, there is additive noise.

Considering a single unit amplitude signal i.e. |βs(t)| = 1, arriving from a DoA angle θ0, given as:

x(t) = a(θ0)βs(t) (3.6)

Substituting the aforementioned beamforming vector, w i.e. w = a(θ) over all values of the theta ranging from
−π to π, and the above signal parameter in the Equation 3.1, the output power of beamformer can be computed
as follows:

|y(t)| =
∣∣wHa(θ0)

∣∣ (3.7)

In summary, using DBF, DoA estimation can be realised by searching the maximum of the DBF response
pattern at the direction of the steering vector, which can be defined as [44]:

P (θ) = wHa(θ0) (3.8)

where, a(θ0) is the steering vector of the received signal and w is the aforementioned beamforming vector.

The amplitude comparison monopulse utilizes DBF algorithm to generate the difference and sum beam. The
ratio of difference to sum beamforming output, called as monopulse ratio, can be computed to the determine the
DoA of the target.

3.2.2. Amplitude Comparison Monopulse (ACM)

In amplitude comparison monopulse, the approach taken is to generate the left and the right beams using two
beamforming vectors centered at a look direction θ0, seperated by a squint angle θs to left and right respectively.
Using the MIMO virtual array of M elements and definition of steering vector given in 2.12, the ACM weights
of the two beamformers corresponding to the left (l) and right (r) beams, can be expressed as:

wl = a (θ0 − θs/2)

wr = a (θ0 + θs/2)
(3.9)
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where, wl and wr are Bartlett beamforming vectors.
Furthermore, the sum and difference weight vectors, are expressed as:

w∆ = wl − wr

wΣ = wl + wr.
(3.10)

where, ∆ and Σ represent the difference and sum.

Figure 3.2: Real part of sum and difference beam

After beamforming using the vectors given above, the beamformer output of the sum and difference beams is
compared to localize the angle of the target. When the radar scans over the target, if the target is present exactly
in the look direction θ0, then the difference beam output will be zero and the corresponding sum beam output will
be maximum. The Figure 3.2 shows the real part of sum and difference beam. The comparison is made using the
monopulse ratio, which is defined as the ratio of the difference to sum beamforming outputs. When the target is
not exactly in the look direction θ0 i.e. having a small offset angle (θ − θ0), the output of the difference beam
results in an ”error voltage”, which can be defined as the real part of the monopulse ratio.

ϵ = ℜ
{
wH

∆x
wH

Σ x

}
(3.11)

where, ϵ represents the ”error voltage” and x is the received array response.
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Figure 3.3: Monopulse ratio [5]

Once an error voltage is present, it can be used in conjunction with an ideal monopulse ratio resulting in an
monopulse response curve (MRC) to arrive at an angle estimate θ̂ close to the true azimuth of the target, θ. An
ideal monopulse ratio is defined as the real part of the ratio of difference to sum responses with the angle to be
estimated, which is given by:

ℜ
{
wH

∆a(θ)
wH

Σ a(θ)

}
(3.12)

Furthermore, a linear approximation of the monopulse ratio is carried out in a local region around the looking
direction. The target angle is then estimated, as shown below, through linear mapping the error voltage using the
constant slope of the linear approximation, which is given by γ.

θT = θ0 − γ−1ϵ (3.13)

where, θT is the final DoA estimate of the target.

Figure 3.4: Inverse mapping the error voltage [5]

Therefore, for a given error voltage measurement, the target DoA can be determined by inverse mapping the
error voltage through the monopulse response curve (MRC).
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Moreover, a trade-off exists when it comes to choosing a value of the squint angle. A small squint angle leads
to a sharp monopulse ratio but a narrow linear region for tracking the target. On the other hand, a large squint
angle leads to a distortion of sum beam pattern. Usually, the -3dB point of the beam is chosen as the squint angle.

3.2.3. Phase Comparison Monopulse (PCM)

In phase comparison mononpulse, as the name suggests, the phase information is employed to compute the angle
measurement. Using the MIMO configuration, the virtual array of N elements is divided into two sub arrays, the
left sub-array consisting of N

2 elements and the rest of the elements constituting the right sub-array [45]. The left
and the right beams are generated by the two sub arrays and the left and right beamforming vectors of length N

2
are respectively defined as wl and wr. Unlike the amplitude comparison monopulse, the left and the right beam
pattern have almost similar amplitude at the looking direction θ0, but a different phase between the two subarrays.
This difference in the phase information is used to determine the target angle. The phase difference between the
left and right beam is zero, when the target is located exactly in the look direction of the beam. The sum and
difference beamforming outputs are defined as:

P∆(θ) = wH
l al(θ)− wH

r ar(θ)
PΣ(θ) = wH

l al(θ) + wH
r ar(θ)

(3.14)

where, al and ar are the steering vectors of the two sub arrays respectively and wl = al(θ0) and wr = ar(θ0).

The monopulse ratio, in a similar fashion, is represented as the ratio of the difference to sum beamforming
outputs. However, unlike amplitude comparison monopulse, the imaginary part of the monopulse ratio is taken as
”error voltage” in the process of DoA estimation. The linear approximation of the imaginary part of themonopulse
ratio, which is a tangent function, is done around the looking direction [5].

3.3. Multipath distinction

In height classification, the detections of the indirect path along with the direct path of the reflections from the
target holds a significant value as it helps in the association of the detections to the respective target. Furthermore,
it can also be used as a reference in traversability conditions for an algorithm [39]. In scenarios where the DoA
is not equal to DoD, i.e. indirect path/multipath, an approach using phase comparison monopulse was taken into
account. Using the phase information of the virtual antenna element pairs, the indirect paths can be differentiated.
As discussed in Section 2.12, in the virtual array consisting of Mtx transmitters and Mrx receivers, one has
elements that belong to the same transmitter (Tx) and different receivers (Rx). The DoA information lies in the
phase difference between these elements and it can be used to estimate the DoA of a single target. On the other
hand, there also exists elements falling under a different transmitter (Tx) and same receivers (Rx). Similarly,
the DoD can be calculated by utilizing the phase information between these elements. The representation of the
aforementioned process using the antenna configuration is shown in the Figure 3.5.

Figure 3.5: MIMO model having a virtual array of 12 elements with 3 Tx and 4 Rx

Corresponding to the Figure 3.5, in DoA estimation, the phase difference between antenna element pairs 2-1,
3-2, 4-3, 6-5,...12-11 is considered, whereas in DoD estimation, the phase difference between antenna element



3.4. Geometry 23

pairs 5-1, 6-2, 7-3,....12-8 is considered.

For instance, in DoA calculation, consider the antenna elements 1 and 2. The phasor is calculated by multiply-
ing the complex responses of the antenna elements i.e. A2 ∗AH

1 where the angle of the result provides the phase
difference. In a similar fashion, with the rest of the aforementioned antenna elements, their respective phasors
can be calculated. At the end of the calculation of the phasor of final antenna element pair, the following phasor
can be summed up to get a robust estimate of the phase difference. Substituting the resulting value in the Equation
3.15, we get an estimate of the DoA.

θ = asin
(

ϕλ

2πd

)
(3.15)

where d is the distance between the respective antenna element pair i.e. λ/2 between 2 Tx and λ/2 between 2
Rx.

The calculations can be repeated for estimating the DoD by using the associated antenna element pairs.
Exploiting the phase differences between virtual antenna element pairs, a robust estimator of DoA and DoD

can be made and scenarios with direct path and indirect path can be differentiated. When the DoA is equal to
DoD, only the direct path is involved and on the other hand, when the DoA is not equal to DoD, there exists an
indirect path. However, the measure of DoD is ambiguous because of the 2λ spacing between the 2 Tx.

3.4. Geometry

The geometry model followed for the presented height classification algorithm is shown in the Figure 3.9. The
vehicle is assumed to be moving in the X-direction with a constant velocity v which is the same as ego-velocity
vego. The velocity of the vehicle is called the ego-velocity. From the Figure, it can be seen that the position of
the car is taken at the origin and the position of the target of height, ht is defined by the x,y,z coordinates, along
with the azimuth and elevation angle represented as θ and φ respectively. The radial distance to the target from
the vehicle is represented as Rd.

Figure 3.6: Geometry Model

Using geometry, the radial distance (Rd), azimuth (θ) and elevation angle (φ) with respect to the target coor-
dinates can be formulated as follows:

Rd =
√

x2 + y2 + z2 (3.16)

θ = atan
(y
x

)
(3.17)
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φ = atan

(
z√

x2 + y2

)
(3.18)

These equations will be further considered in the Kalman filter section while defining the equations.

Assuming the vehicle moving towards a stationary target with an ego-velocity vego the radar mounted at the
front of the vehicle will measure a radial velocity estimate vr of the observed target. Since the target is stationary,
vr is the perceived velocity of the target, but in practice it is the velocity of the car. This radial velocity estimate
under the influence of both azimuth and elevation angle information, can be formulated as:

vr = vego.cos(θ). cos(φ) (3.19)

where θ is the azimuth angle and φ is the elevation angle of the target.

3.5. Flowchart of the proposed algorithm

The goal of this thesis is to achieve the 3-D classification of stationary targets. Due to the limited elevation estima-
tion capabilities, the height information cannot be directly obtained. The core of the proposed algorithm revolves
around the estimation of the elevation angle with the knowledge of the the ego-velocity. The ego-velocity esti-
mation can be done using histogram techniques, and with the use of the Kalman Filter, the ego-velocity can be
improved resulting in a more reliable elevation angle estimation.

In this section, the flow of information involved in achieving the aforementioned goal is discussed using the
flowchart shown below. For every frame of measurements, a radar data cube is formed. Upon reception of the
radar data cube for the respective frame, range-Doppler processing is carried out to estimate the range and velocity
of the reflected targets. After identifying (detecting) the range and velocity bins of the targets, the snapshots are
extracted to carry out DoA estimation using MIMO-Monopulse technique. At the next stage, an initial target list
comprising of range, velocity and angle can be formed. Using the radial velocities and the angle parameters of
the target, a velocity profile is created, which provides the means by which an initial ego-velocity estimate can
be selected.

Figure 3.7: Flowchart representing depicting the flow of information using the presented approach
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The distribution of the velocity profile in the form of a histogram is analyzed and an initial estimate of the ego-
velocity is extracted. Furthermore, the extracted ego-velocity estimate is served as an input to the Kalman filter.
The Kalman filter is designed to track the ego-velocity of the vehicle, thereby produces an ego-velocity estimate
as an output as well as provides a prediction of the states of the stationary target as well. The improved ego-
velocity parameter can then be used to estimate the elevation angles of the targets through pre-defined geometry
and can also serve as an additional parameter in improving the histogram distribution for the next frame. After
estimating the elevation angles of the targets, an extended target list can be created which is then passed on
to create a 3-Dimensional map for the user. The process is then repeated for each frame and through multiple
frames, the process delivers an improved estimate of ego-velocity, which in turn provides an improved estimation
of elevation angles of the targets.

3.6. Ego-velocity estimation using velocity histogram

The idea behind the approach is to determine an initial ego-motion estimate from the reflected targets in the field
of view (FoV). In this approach, the targets are assumed to be stationary. The distribution of radial velocity es-
timates from multiple targets is analyzed every measurement cycle to determine an ego-motion estimate which
serves as an input to the Kalman Filter. This is done by creating a histogram, which is the approximation of the
distribution for all the radial velocity estimates over the respective azimuth positions of the targets in a single
frame. Using the histogram, the center of the highest bin (most occurring velocity) is assumed to be the best es-
timate of the ego-velocity with respect to the particular frame. Whether the right velocity bin can be sufficiently
discriminated from other velocity bins depend on the number of bins, the bin width and the number of detections
per frame. If the amount of bins are increased, then the amount of possible ego-motion estimates increases as well
as the computation time. Hence, the increase in resolution along the X axis i.e. the velocity bin axis adversely
affects the resolution on Y axis i.e. the number of values per bin, as multiple highest bins of the same size can
occur and the wanted discrimination of ego-velocity compared to other velocities will deteriorate. In such situa-
tions, an appropriate value of the number of bins, is chosen. In spite, if multiple highest bins occur, the average of
the center values of such bins can be taken as the best ego-motion estimate. Figure 3.8 provides a demonstration
on how the varying binWidth affects the histogram bins, which in turn can affect the ego-motion estimate. The
binWidth values seen below is taken in reference to the velocity resolution of 0.0089 km/h.

Figure 3.8: Effects of varying binWidth (km/h) in histogram distribution: X Axis represents the velocity values (km/h) and Y Axis
represents the number of bins
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For the first frame, since our antenna configuration does not produce an elevation angle measurement, the
ego-motion estimate from the histogram will be biased. The Equation 3.19 points out the relation between ego-
motion estimate and elevation angle. As a result, better the ego-motion estimate, better would be the elevation
angle. Over the number of frames, the addition of elevation angles estimated using the Equation 3.19 can be
fed into the histogram analysis, thereby gradually removing the bias. The idea is to have an improved estimate
of the ego-velocity after a few measurement cycles through the use of an EKF with the help of elevation angle
estimations. These elevation angle estimations will further improve the histogram distribution over the number
of frames and produce an unbiased ego-motion estimate.

3.7. Target tracking using Kalman Filter

To improve the accuracy of the ego-velocity estimate, a Kalman filter is employed. The main idea behind the
Kalman filter is to track the 2-D states of the targets and the ego-velocity in the Cartesian coordinates. However,
the radar measurements in range, radial velocity and azimuth angle results in a non-linear function, due to which
a 2-D Extended Kalman Filter is employed. To carry forward the working of the EKF, the radar measurements
have to be converted to X-Y coordinates which involves non-linear conversion which is explained in Section
3.7.1. The ego-velocity estimate produced from the histogram is fed as an input to the 2-D Extended Kalman
Filter, under the assumption of flat earth, i.e. no elevation angle. The states of the system forK targets are defined
as follows:

X = Rd,k. cos (θk) ;Y = Rd,k. sin (θk) ; Ẋ = −vego; Ẏ = 0 (3.20)

where, k = 1,..,K.

The summary of the algorithm employed is shown in the table below. In the procedure, as our current antenna

Algorithm 1 Extended Kalman Filter in ego-Velocity estimation
Input: Rd, θ, vego Output: vego, φ

1: procedure EKF(vego)
2: if p = 1 then ▷ p - Frame number
3: Initialize φ1,K = 0
4: Extract the vego estimate from the histogram: vego,p = histfunc(vr,k, cos (θk) , cos (φ1,K))
5: else
6: Extract the vego estimate from the histogram: vego,p = histfunc(vr,k, cos (θk) , cos (φKF,p,k))
7: Estimate elevation angles: φp,k = cos−1 (vr,k/ (vego,p. cos (θk)))
8: end
9: Estimate states of the system, E(Sp) ▷ Equation 3.21
10: Obtain radar measurement data of the targets, E(Zp,k) ▷ Equation 3.22
11: Compute Jacobian matrix,Hj ▷Mapping radar measurements
12: Compute Kalman gain,Kp ▷ Equation 3.36
13: Update system states, E(Sp,k) ▷ Equation 3.37
14: Predict system states,E(Sp+1,k) ▷ Equation 3.38
15: Estimate elevation angle: φKF,p+1,k ▷ Utilized in Step 6 for the next frame
16: Compute average of the ego-velocity estimates over K targets ▷ Final ego-velocity estimate

configuration does not provide an elevation angle estimate, for the first frame, they are initialised to zero. Hence,
in the velocity histogram analysis, the ego-motion estimate for the first frame will be biased. But moving on,
from the next frame onwards, the histogram takes into account the elevation angle variables which provides a
better initial ego-motion estimate. After extracting the ego-velocity from the histogram, the states of the system
(target) per frame p, given by E(Sp,k) can be expressed as:

E(Sp,k) = [xk ẋ yk ẏ] (3.21)

The radar measurement data, given by E(Zp) can be expressed as:

E(Zp,k) = [Rd,k vr,k θk] (3.22)
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3.7.1. Coordinate Conversion function

Since the tracking is done in Cartesian coordinates, the state variables will be derived from the radar measure-
ments, which are done in 2-D polar coordinates. Meanwhile from the above equations, there is a visible difference
in the coordinate system of the state variables, which is in Cartesian and the radar measurements, which is in Po-
lar. As mentioned in Section 2.7, following the Equation 3.37, the measurement update i.e. the measure of
deviation of the predicted states from the given measurement, cannot be computed directly due to unobservable
system states. Hence, a measurement conversion function or Coordinate conversion function is required, which
is expressed as:

M (Sp) =

 Rd

θ
vr

 =

 f(x, y)
g(x, y)
h(ẋ, ẏ)

 (3.23)

Figure 3.9: Expanding the X-Y axes in Figure

The geometry represents in general, the velocity components with respect to the target at an angle θ for
a particular time instant. Considering at one point in the target trajectory, the tangential ego-motion vector v,
creates an angle β, which can be expressed as:

β = atan
(
ẏ

ẋ

)
(3.24)

From the Figure 3.9, incorporating the β, the v can be formulated as:

vr = v · cos(θ − β) (3.25)

Substituting Equation 3.16, Equation 3.17 and vr inM(Sp), we get:

M (Sp) =

 f(x, y)
g(x, y)
h(ẋ, ẏ)

 =


√
x2 + y2

atan 2 (y, x)√
ẋ2 + ẏ2 × cos (atan 2 (y, x)− atan2 (ẏ, ẋ))

 (3.26)

where, the notations of f , g, and h correspond to the radial distance (Rd), azimuth (θ) and radial velocity (vrad)
respectively. It is to be noted that these conversion functions hold for every target k, and every frame.
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As mentioned in the Section 2.7, the Jacobian matrixHj has to be computed for mapping the radar measure-
ments between Polar coordinates and Cartesian coordinates and to linearly approximate the non-linear functions.
The derivation and equations, in general, involved in the EKF are shown in Appendix B, for a single target i.e. k
= 1, starting with the definition ofHj given as:

Hj =


df
dx

df
dẋ

df
dy

df
dẏ

dg
dx

dg
dẋ

dg
dy

dg
dẏ

dh
dx

dh
dẋ

dh
dy

dh
dẏ

 (3.27)

The matrix elements are calculated as follows:
df

dx
=

x√
x2 + y2

(3.28)

dg

dx
=

−y

x2 + y2
(3.29)

dh

dx
= v · − sin(θ − β) · dg

dx
(3.30)

Similarly with respect to y,
df

dy
=

y√
x2 + y2

(3.31)

dg

dy
=

x

x2 + y2
(3.32)

dh

dy
= v · − sin(θ − β) · dg

dy
(3.33)

dh

dẋ
=

ẋ cos(θ − β)− ẏ sin(θ − β)

v
(3.34)

Similarly,
dh

dẏ
=

ẏ cos(θ − β) + ẋ sin(θ − β)

v
(3.35)

In this manner, M(Sp) is approximated using the Jacobian matrix Hj in equations to maintain linear transfor-
mations. These derived general equations are adapted to the states of the system defined in Equation 3.20.

The Kalman gain is computed as follows:

Kp = P p,p−1H
T
j

(
HjP p,p−1H

T
j +Rp

)−1

(3.36)

where, the covariance parameter, P can be updated and predicted for the frames respectively using the Equations
2.22 and 2.19.
The state of the system is updated using the Equation given below:

E(Sp,k) = E(Sp−1,k) +Kp.(E(Zp,k)−Hj .E(Sp−1,k)) (3.37)

Furthermore, using the state transition matrix F of a 2-D constant velocity model with respect to the defined
system states, the states of the system for the next frame is predicted which can be expressed as:

E(Sp+1,k) = F .E(Sp,k) (3.38)

where,

F =


1 ∆t 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (3.39)

(3.40)

Using the updated and predicted value, the Rd, θ and φ can be updated and in particular the updated φ
estimates can be fed back into the histogram phase. This is done in order to have a refined estimate of ego-
velocity estimate from the histogram. Utilizing this process over the frames, i.e. as the vehicle moves towards
a target, the ego-motion estimate is improved, thereby providing a better estimate of the elevation angle of the
target.
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3.7.2. Conclusion

In this chapter, the flow of information along the signal processing chain is discussed to provide a clarity in the
working of the proposed algorithm. First, the application specifications considered in the thesis are presented,
providing the antenna configuration which is employed and the significant requirement of a low latency DoA
estimation technique based on a single snapshot. To enable the latter requirement, the monopulse technique is
explained, followed by its application in MIMO radar i.e. MIMO-Monopulse. The working of ACM and PCM
are discussed in detail. The ACM is employed in the DoA estimation phase in the proposed algorithm. The
basic approach of the ACM is that the received signals are used to generate sum and difference beams through
digital beamforming (DBF), which can be used to compute a monopulse ratio in order to produce a precise DoA
estimation. As an additional feature to create a distinction in direct path and indirect path, a simple application
of phase comparison monopulse was also employed which can help in estimating the DoD in a NLOS scenario.
Subsequently, before moving into the target tracking using Kalman filter, the geometry model defined for the
proposed algorithm is presented, using which the equations for radial distance, azimuth and elevation of the
targets are derived. The ego-motion estimation holds a significant value in the estimation of elevation angle.
Using the geometry model, a 2-D Extended Kalman Filter was designed as a means to track the ego-velocity and
the steps involved in performing the algorithm are summarized in Table 1. The working of the 2-D EKF, along
with the state space model is explained in detail using equations. Furthermore, a histogram approach was used
in the velocity profile analysis, to provide a refined input of the ego-velocity estimate per frame to the Kalman
filter. As we go through the flow of information, it is shown that the elevation angle estimated per frame at the
end of the Kalman filter operation, is used in improving the histogram for the successive frame, thereby providing
an improved unbiased ego-velocity estimate. Through multiple iterations or frames, these ego-velocity estimates
can be used to estimate the elevation angles of the target, thereby providing a fast and precise 3-Dimensional
height classification algorithm.



4
Simulation Results

In this chapter, the simulation analysis of the proposed height classification algorithm is presented using the
MATLAB software. Improvements made using the presented approach, has been supported with results through
Monte-Carlo simulations and the performance parameters are studied. The goal of carrying forward these simula-
tions is to determine the improvement in ego-velocity using the histogram approach presented. The improvements
made using the presented approach has been supported with results through Monte-Carlo simulations and the per-
formance parameters are studied.

For the simulations, the targets are present at various orientations and the car is moving towards the targets
as depicted in the geometry shown in Figure 3.9. The radar specifications applied are summarised in the table
below:

Number of transmit antennas 3
Number of receive antennas 4
Bandwidth 1 GHz
Number of pulses 256
Sample Frequency 20 MHz
PRI 25.6µs

Table 4.1: Radar Specifications

MIMO array using 3 Tx’s and 4 Rx’s with an inter-antenna spacing of λ/2 i.e. a ULA is employed. Utilizing
these specifications, the measurement parameters with respect to range and velocity can be computed, which is
given by:

Rmax = 19.2m | ∆R = 0.15m | ∆V = 0.0089km/h | Vmax = 5km/h

To initialize the simulations, 30 stationary targets are created in the x-y-z plane and a trajectory directing towards
the automobile i.e. assuming the motion of the automobile along the x-axis, is created to emulate the real-time
tracking with a SNR of 20dB. The target are distributed within 10 to 18m in the x axis, -5 to 5m in the y axis and
0 to 4m in the z axis. The visualization of the targets i.e the direct path of the radar reflections can be seen in the
Figure below.

30
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Figure 4.1: Isometric view on the position of the targets and the color shift represents the motion of the vehicle towards the targets. The
orange color represents the initial position of the targets and the blue color represents the positions at the end of the measurement

4.1. Simulation process

Before proceeding with the simulation of the proposed algorithm, using the aforementioned target distribution
within the x-y-z axes, 1000 stationary targets were created. This is done to provide a validation to the histogram
approach. Since the target is stationary, vr is the perceived velocity of the target, but in practice it is the velocity
of the car i.e. ego-velocity. From the Figure 4.2b, the histogram shows that one can expect the ego-velocity
being the most occurring velocity which supports the idea of the highest bin in the histogram giving the best
ego-velocity estimate. In principle, higher velocities than the ego-velocity cannot occur, unless they come from
the moving targets. Furthermore, due to noise, one can expect certain detected velocities larger than ego-velocity.

(a) X-Y plot representing the distribution of radial velocities (b) Histogram representation of radial velocities

Figure 4.2: Validation of velocity histogram

Following the flowchart discussed in Figure 3.7, on acquiring the radar data cube consisting of target informa-
tion with respect to the initial simulation parameters of 30 targets, range-Doppler processing as shown below in
Figure 4.3b is carried out to determine the range and velocity bin of the targets for the subsequent DoA processing
using MIMO-Monopulse.
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(a) X-Y plot representing the distribution of 1000 targets (b) The range-Doppler map of the detected 30 targets

Figure 4.3: Representation of the target information

The deviation of the detections or the bending of the line observed in the Figure 4.3b is due to the influence
of elevation and azimuth angles on the radial velocity and distance of the targets. Comparing the plots in Figure
4.3, the bent line in the range-Doppler map could be thought of as the realization of 30 random targets. After the
range-Doppler and angle processing, a target list is created comprising the range, velocity and angle parameters.
Using the target list generated along the trajectory of the vehicle, the algorithm using the histogram approach was
simulated for an initial ego-velocity of 5km/h.

(a) ego-Velocity estimates (b) Elevation angle estimates

Figure 4.4: (a) Convergence of ego-motion estimates over multiple frames. (b) Evolution of elevation angle estimates for a particular target
over multiple frames. Note: The red circles represent ground true elevation of the target

Observing the convergence plot in Figure 4.4a, we can see that the ego-velocity estimates do not converge to
the reference value of 5km/h. This is due to the limitations of the application of 2-Dimensional KF as the elevation
angle is not tracked in particular or defined in the states of the system. However, the algorithm is able to estimate
the ego-velocity with an average error of 0.15km/h. The effect of the ego-velocity can be seen in the elevation
angle estimates as it improves over the frames. The elevation angle estimates can then be used to estimate the
height in the z-coordinate. To illustrate the procedure, looking at the Figure 4.5 the target plot is shown with the
estimated position of 30 targets in a particular frame computed using the proposed algorithm. The elevation angle
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estimates produced are used to estimate the height in the z-coordinate as shown in the Figure 4.6a, which then
can be used in the height classification to deem it as traversable, non-traversable or a pass through object.

Figure 4.5: Target plot with true positions and estimated positions

(a) Comparison of Z estimates of targets with true values (b) Error in Z coordinate estimation of respective targets

Figure 4.6: Height estimation (Z-coordinate) of 30 targets of one random realization of 30 targets

The height estimation error is shown in Figure 4.6b which is related to the height of 30 targets of one random
realization of 30 targets. Although we get an undesirable maximum error of +/- 1.5m, the concept is that over the
number of frames, as the ego-velocity improves, better would be the elevation angle estimates. Thereby, reducing
the Z coordinate estimation error or the height estimation error.
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4.2. Comparison

In this section, the improvement offered using the application of velocity histogram in estimating the ego-velocity
is shown in contrast to the application without histogram.

Figure 4.7: Showcasing the improvement using Histogram approach for a single iteration

In the Figure 4.7, the simulation was conducted for an ego-velocity of 4km/h over a single iteration consisting
of 20 radar frames with a SNR of 20 dB. The purpose of histogram to diminish the errors due to the elevation
angles and azimuth are evident in the improvement of ego-velocity using the histogram method.

To validate the consistency of the proposed algorithm, the performance of the algorithm was tested by per-
forming Monte-Carlo simulations. The algorithm was run for 1000 iterations each consisting of 20 radar frames.
The goal is to achieve a constant change in bias while using the velocity histogram in the proposed algorithm.
The observations are plotted below:
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Figure 4.8: Monte Carlo Simulations of the algorithm using Histogram and without Histogram Approach: Top - Ego-motion estimates of
1000 iterations. Bottom - Exploded view of ego-motion estimates at every 100 iterations

The goal of carrying forward these simulations is to determine the consistency of improvement in the ego-
velocity estimates using the velocity histogram approach. From the Figure 4.8, we can infer that there is a consis-
tent and constant improvement in the ego-velocity estimates using the velocity histogram approach as opposed
to the approach without using the histogram method. The following distinction between the approaches can be
noted using the legend. The simulation was carried out for a reference ego-velocity of 4km/h.

Looking at the Figure 4.8, there is a visible bias with respect to both the approaches. However, the bias is
smaller with the application of the velocity histogram. The bias comes from the limitations of the 2-Dimensional
KF and the elevation angle is not being tracked in particular in the KF. Due to this reason, as previously mentioned,
the true convergence is not achieved. On the contrary, in comparison with the non-histogram approach, the bias
is larger as the errors in ego-velocity in every frame accumulates and there is no improvement in the estimation.
It changes as a function of ego-velocity, also with the errors in the elevation angle and azimuth domain. We can
attain an improvement in the range of 0.06-0.08 km/h using the proposed algorithm. Equation 3.19 highlights the
importance of having an improvement in ego-velocity using the proposed algorithm in the estimation of elevation
angles.
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(a) ego-Velocity estimates (b) Standard deviation plot

Figure 4.9: Monte-Carlo Simulations of the proposed algorithm with the velocity histogram for varying SNR

The simulations were carried out for varying SNR (Signal-to-Noise Ratio) to determine the variation in ego-
velocity estimates and subsequently, the standard deviation chart is also plotted to determine the extend of devi-
ation under the influence of low to high SNR. For SNR of 10dB, as expected from the Figure 4.9, a deviation of
0.06 to 0.12 m/s (0.2 to 0.4km/h) can be seen. A much less deviation of 0.02 to 0.04 m/s (0.07 to 0.1km/h) as
well can be seen for 20dB and 30dB SNR.

(a) ego-Velocity estimates (b) Standard deviation plot

Figure 4.10: Monte-Carlo Simulations using Histogram and without Histogram

To determine the standard deviation for two approaches one being the Histogram approach and the other being
the one without Histogram approach was tested. From the Figure 4.10, it is represented in the form of error bar
as well as a bar graph for a better understanding. Comparatively, more deviation is seen in the algorithm without
applying the histogram method.



4.3. Conclusion 37

(a) ego-Velocity estimates (b) Standard deviation plot

Figure 4.11: Monte-Carlo Simulations (Frame level)

Monte-Carlo simulations were carried out in the frame level, i.e. for every frame multiple iterations were
carried out to understand the impact of the proposed algorithm in each and every individual frame. A standard
deviation chart is plotted as well and we can infer that the ego-velocity estimates within a particular frame is
improved using the histogram approach as opposed to the algorithm without the histogram approach.

The ego-velocity estimates will not completely converge to the reference velocity of 4 km/h due to the influ-
ence of the elevation angles and the assumptions of the proposed Kalman Filter model as discussed in Section
3.7. To improve the algorithm in further, and to track the elevation angles in particular as well, an extended
3-Dimensional KF can be used.

4.3. Conclusion

In this chapter, the simulation results of the proposed algorithm using MATLAB software was presented. Using
the ego-velocity estimates, the elevation angles of the target was produced. Subsequently, the 3-Dimensional map
was produced by estimating the height using the Z coordinates. The performance of the proposed algorithm is
studied, tested and compared to the approach with the histogram and verified thorough Monte-Carlo simulations.
Scenarios with different levels of SNR was used to analyze the performance of the algorithm and the comparison
was made using the standard deviation parameter. Furthermore, the convergence plots of the algorithm in regard
to the reference ego-motion and elevation angle of a particular target was also presented. In these simulations,
it was apparent that the proposed algorithm using the histogram approach provided a consistent improvement in
ego-motion as opposed to the one without the histogram. However, true convergence could not be achieved due
to the application of the 2-Dimensional EKF but can be improved in the future using a 3-Dimensional EKF.



5
Experimental Validation

To validate the estimation results in the ego-motion and elevation angle of targets obtained from the simulation
model in Chapter 4.1, measurements from real-time experiments in an outdoor environment carried out by N.
Petrov in his project, was used which was provided through internal communications [46]. The experiments
were carried forward using the Fully-Integrated 77 GHz Radar Transceiver, provided by NXP Semiconductors,
mounted on the front of the automobile. The goal is to utilize the real measurement data consisting of the tar-
get parameters such as range, velocity, and angle (azimuth) in testing the proposed algorithm in creating a 3-
Dimensional map using the estimated ego-Velocity and elevation angles.

5.1. Measurement Setup

The real-measurement was conducted in the premises of TU-Delft, using an automobile with the radar mounted
in the front of the vehicle as shown in the Figure 5.1. The radar specifications are summarized in the Table below:

Number of transmit antennas 3
Number of receive antennas 4
Bandwidth 1 GHz
Carrier Frequency 78 GHz
Number of Chirps 256
Sample Frequency 20 MHz
Number of FPS 10

Table 5.1: Radar Specifications
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Figure 5.1: Measurement Setup

For visual reference, the camera is placed on the deck which can be used to align the 3-Dimensional estimates
of the target using the proposed algorithm. The real-time image also provides the velocity of the automobile
through GPS which shall be useful in validating the ego-motion estimate produced using the proposed algorithm
in the following sections below.

Figure 5.2: Visual reference

5.2. Observations

This section provides an overview of the results obtained through the various phases of the processing of the real
measurement data. The real measurement data received consisted of a detection list comprising of the range, angle
(θ) and velocity of the respective target. The Figure 5.3 depicts the comparison of the 2-Dimensional estimates
directly from the radar with the 2-Dimensional estimates from the proposed algorithm for the particular frame.
The 2-D estimates were predicted for the particular frame using the proposed algorithm and similar detections
were to be foundwith the radar measurement and almost accurate, for instance, the detectionmarked using a circle.
The following processing is done to validate the algorithm in 2-Dimensions, before proceeding to 3-Dimensions.
We can also observe a few missing detections as there was a limit on the detections considered for the algorithm
due to the association factor, which is outside the scope of this thesis.
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(a) 2-Dimensional estimates from radar (b) 2-D estimates from proposed algorithm

Figure 5.3: Comparison plot displaying estimates in 2-Dimensions. The red vertical line represent the building boundary and the green
dotted vertical line represents the outline of the street.

(a) Velocity histogram (b) ego-Velocity estimations using the proposed algorithm

Figure 5.4: Real Measurement data 1: ego-Velocity estimation

From Figure 5.4, the ego-velocity estimation was performed and the velocity histogram can be seen. It can
be observed that center of the highest bin provides us at 4.13m/s which can be equated to 14.8 km/h. The actual
velocity of the car as recorded from the dash camera is around 15km/h (4.16m/s). By decreasing the process noise,
the following ego-estimation curve can be smoothed out. However, from the velocity histogram in Figure 5.4a, we
can see a number of bins with velocities higher than the ego-velocity. This is because in practical scenarios/reality,
there exists moving targets and those velocities can thought to be as radial velocities. The noise factor and the
manual increase in the speed of the vehicle can also lead to having certain detected velocities larger than the ego-
velocity as highlighted in Section 4.1. In an attempt to validate the ego-motion tracking aspect of the algorithm
further, a particular incident was used. In the particular frame shown below, there appears to be an unfortunate
cycle crash and in reality, there is a reduction in velocity of the car due to the braking. The algorithm was run
for the particular set of frames which covers the event and this particular reduction in velocity was noted, where
the desired result would be to have them aligned with the ego-velocity estimates produced using the proposed
algorithm. The comparison plot used for validation is shown below.
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Figure 5.5: Real Measurement data 2: Validation of ego-velocity tracking

Using the proposed algorithm, the ego-velocity was estimated and tracked across the set of frames. The ref-
erence velocity of the car is found to be around 15km/h. As expected, the plot depicts a drastic reduction of
ego-velocity i.e. from 15km/h to 8km/h approx due to the cycle incident which validates the ego-motion tracking
aspect of the algorithm.

The next step is to produce a 3-Dimensional map using the elevation angle estimates that is computed from
the ego-velocity estimates using the Equation 3.19. Association of targets is important during the processing of
the real measurement data to produce a 3-Dimensional map. In reality, the procedure is done using the NXP
module as part of the pre-processing. However, in this scenario/case, to simplify the processing, a rough manual
association with respect to the Z coordinates was performed to determine if the detections belong to the same
target. The following equations shown below are used to produce the 3-Dimensional map with respect to the X,
Y and Z coordinates.

X = Rd ∗ cos(θ) ∗ cos(φ) (5.1)
Y = Rd ∗ sin(θ) ∗ cos(φ) (5.2)

Z = Rd ∗ sin(φ) (5.3)

For the following real-measurement results shown below, around 50 detections from a single frame were
taken, after which the manual association was conducted before proceeding to carry out the proposed algorithm.
The 3-Dimensional map created from the estimates of the proposed algorithm, is compared with the targets in the
camera image. The targets in focus are marked by oval shapes with respective colors to correlate with the video
frame. Looking at the detections in plots, different color codes within the contour can be seen as it represents
different elevation features. Visually, for reference purposes, the outline of the road has been marked with a width
of 4m to align with the road seen in the camera image. To correlate the target detections in the plot with the video
frame, standard measurements of the target was used i.e. the length of the street light pole of around 6-7m and
the distance between the street lamps of around 18-19m was referred.
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(a) Image from the camera for the particular frame (b) Corresponding GPS coordinates for the frame

Figure 5.6: Real Measurement data 3

Figure 5.7: Real Measurement data 3: The red, yellow and green color is used to cluster the extended objects. The horizontal lines
represent the outline of the street

The Figure 5.6 shows the video image of the frame showcasing the targets of interest. Utilizing the GPS
coordinates of the respective frame, we can validate the location of the car which correlates to the video image.
From the Figure 5.7, in comparison to the respective video image of the frame, the signal board, and two lamp
posts were detected. The height estimation of lampost was found to be around 7m. The error in height estimations
can be attributed to the error in ego-velocity. Due to the limit on the detections taken due to association factor,
the cluster of detections belonging to the TNO building on the right hand side and the subsequent lamp post was
not visible. However, we can see some detections on the right hand side within the Z coordinate estimate of 4-6m
that comes from the reflections of the building.
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Figure 5.8: Real measurement Data 4: Top - Image from the camera for the particular frame. Bottom - The red, yellow and green color is
used to cluster the extended objects. The red horizontal lines represent the outline of the road.

From the Figure 5.8, the detections seen in the 3-Dimensional map is produced from the elevation angle
estimates using the proposed algorithm. On comparing the particular detections in the plot to the camera image,
we can see three distinct targets, the lamp post, tree and the subsequent lamp post at around 20 - 30m range. We
can also see some reflections from the ground at an early distance. Some reflections from the building entrance on
the right can also be seen beside the green contour (lampost). However, due to the association factor which is not
in the scope of this thesis, only 50 detections from a single frame were considered. From Figure 5.8 and Figure
5.7, we can see that at the initial distances, there appears to be a cluster of detections which can be attributed as
ground reflections.

5.2.1. Conclusion

In this chapter, the results from the real-time experiments using the Fully-Integrated 77 GHz Radar Transceiver,
provided by NXP Semiconductors, mounted on the front of the automobile, conducted in the outdoor premises of
TU-Delft were presented. The proposed algorithm was able to provide a 3-Dimensional map of the surroundings
detailing its height information along with the ego-motion estimation. The visual images from the camera was
used as a reference to align the results from the proposed algorithm and was able to point out the detections to
the respective object or targets in the image. An accurate tracking of the ego-motion was also achieved.



6
Conclusion

In this section, the work conducted on this thesis will be summarized with respect to the novelty and results
obtained, using which certain conclusions will be drawn. This opens and sets up the platform to provide and im-
plement further research ideas on this topic, which shall be discussed in Section 6.2. Furthermore, the challenges
faced during the project and in the experimental validation phase will be touched upon along with a solution
prospect in the future.

6.1. Results and Novelties

Radars hold a significant value in providing the safety factor in autonomous driving as they can be used for de-
tection of road objects, pedestrians, cyclists and other vehicles. The important factor with respect to the targets is
its height information which can help in classifying the targets, and give the necessary information to the driver
to make a decision regarding whether to go over, under or through the object. The main challenge for automotive
radar system of not having the height information (elevation measurements) in the object detection in the driv-
ing direction is addressed in this project. To carry out the height estimation procedure, ego-motion estimation
plays a significant role. This work introduces a novel algorithm that jointly carries out ego-motion estimation
and provides a 3-Dimensional map of the surroundings i.e. a low complexity and fast target height classifica-
tion algorithm was developed to achieve the research goals mentioned in Section 1.3. The suggested approach
utilizes a single snapshot of data obtained following range-Doppler processing, enabling simple integration and
quick response times. The radar scene was assumed to be of stationary targets and the orientation of the radar
covers the azimuth domain. To enable this quick response automotive radar system, DoA estimation technique
using a single snapshot along with the approach of 2-Dimensional Extended Kalman Filter was used.

A MIMO radar system is employed with 3 Tx’s and 4 Rx’s with the inter-element spacing of λ/2, creating a
ULA. In achieving a low compexity and fast target classification algorithm, low latency becomes a key require-
ment. In the DoA estimation aspect of the project, super resolution techniques like MUSIC, ESPRIT offers the
disadvantages in estimating DoA using a single snapshot due to the factor of correlated signals in subspace calcu-
lation. As a result, MIMO-Monopulse technique was used to determine the target DoA’s. Taking into account the
cost effectiveness and ease in implementation, ACM was used to determine the DoA, while an approach using
PCM was conducted as an extra feature in being able to distinct the multipaths from direct path using the DoA
and DoD information.

The velocity of the automobile or the ego-velocity is important as it helps in determining the height of the
objects through the height estimation technique of Doppler beam sharpening. In the current state of the ego-
motion estimation, a velocity profile is created using the radial velocities of the targets and its respective azimuth
positions and analyzed. However, employing this approach leads to a biased velocity estimator as the elevation
angle is not incorporated. In this work, a velocity profile employing a histogram is used to factor in the elevation
angle dependence in the ego-motion estimation providing an velocity estimator inclusive of the elevation angles
of the targets. As a means to track the ego-motion and elevation angle across the frames, 2-D EKF was employed.
The histogram provides an initial ego-motion estimate which serves as an input for the EKF. Over the multiple
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number of frames, the histogram proves to provide an improved initial ego-motion estimate.

The target tracking using the 2-D EKF provides a means by which the ego-motion can be tracked across
frames and helps in conjunction with the velocity histogram to produce an improved ego-motion estimate, which
in turn improves the elevation angle estimates of the respective targets. The EKF does tracks the states of the tar-
get and since stationary targets are dealt with in the application, the perceived velocity of the target, in practice is
the velocity of the car. These improved ego-motion estimates are used to estimate the elevation angle information
using the geometry. Subsequently, the elevation angle estimates can be used to compute the Z-coordinates which
then generates a 3-Dimensional map giving a visualization on the height information of the targets. The height in-
formation helps in classifying those targets as something that an automobile can pass through, over or under. For
one random realisation of 30 targets, the proposed algorithm created a 3-Dimensional map with a margin of error
using the Z-coordinates providing the height information required for the classification procedure. However, the
improvement in ego-velocity over the number of frames can help in lowering the Z-coordinate estimation error,
thereby, improving the height classification procedure.

Through Monte Carlo simulations on a testbench created in MATLAB software that replicates the hardware
and the application scenario, the viability of the proposed algorithm using a velocity histogram is confirmed.
Comparisons were drawn between the approaches with and without histogram to understand the improvement
and the effect or improvement it has on the bias. An improvement in the range of 0.06km/h - 0.08km/h was seen
in the ego-velocity estimates using the histogram approach. The effect of SNR on the proposed algorithm is such
that a deviation of around 0.2km/h - 0.4km/h is found for SNR of 10 dB as opposed to 0.07km/h - 0.14km/h for
SNR of 30 dB. The improvement in bias was also validated at the frame level and is found to be consistent in
performance of ego-motion estimation when compared to the algorithm without the histogram approach. The
experimental validation using NXP radar was subsequently done to validate and to estimate the ego-motion and
the 3-Dimensional map of the surroundings simultaneously. Using the four real-measurement data sets acquired,
the ego-motion was estimated, using which elevation angles of the detected targets were calculated. Using the
subsequent Z coordinate estimation, the height of the targets were estimated with a margin of error.. The esti-
mation of ego-velocity was found to be accurate as the ground speed of the vehicle was recorded to be 15km/h.
Using the elevation angles, the 3-Dimensional objects such as the lamp post and the side board was reconstructed
and was able to create a realistic 3-Dimensional map providing the height information.

6.1.1. Challenges met during this thesis project

• Experimental Validation during COVID
The final phase of testing the simulation data with the real-measurement was faced with a huge challenge
due to the COVID situation and inability to conduct the required test cases for experimental validation. The
real measurement data had to be collected from another project and was only able to use a certain section
of the data to validate [46].

• Using direct path detections
Due to time constraint and also to validate the detections and its respective associations to the target, the
direct path detections were only considered. However, the incorporation of the indirect path detections can
be done in the future work to improve the height classification.

6.2. Future Recommendations

In this section, based on the observations and the limitations of the proposed algorithm, the recommendations/-
suggestions which can provide an improvement in the height classification of the targets are given below:

6.2.1. 3-Dimensional EKF

From the results shown in the Chapter 4.1, we can observe that the estimates of the elevation angle and the ego-
velocity does not converge to their respective true value. This is due to the constraint brought in by the application
of the 2-Dimensional Extended Kalman Filter, as we are not tracking the elevation angle explicitly. This can be
improved by applying a 3-Dimensional Kalman Filter by defining the states involving the elevation angle and
tracking it across frames. The application of 3-D EKF in radar tracking has been documented [47].
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6.2.2. Indirect path method

During the internship at NXP, a binary classification algorithm was developed using the combination of direct
path and indirect path in determining the traversability of the road objects [39]. However, the elevation angle
and the azimuth angle was not incorporated into the project. On the contrary, utilizing the idea of combining the
indirect path detections and the direct path detections can help in the association and also in the elevation angle
tracking which can be a future prospect in this research topic. When there are multiple detections, there can be
an association made between the direct path and the indirect path in terms of the range and velocity. However,
it does not necessarily mean it belongs to the same target without the information of the DoA and DoD. In the
later stage, an initial attempt was successfully done in being able to distinct the multipaths in terms of DoA and
DoD using a simple phase comparison monopulse technique. This angle information can be used to associate the
multipaths to the target which can help in the clustering phase of the algorithm in the future.

6.2.3. Experimental test cases

The results of the proposed algorithm can be validated and quantified in further by having multiple experimental
test cases which can be a future aspect in carrying forward the research. Multiple targets of varying height, for
instance, a bridge and different target structures can be placed in front of the car for the validation of the proposed
algorithm and can help in optimizing and increasing the robustness of the algorithm. Moving targets in different
distributions can also help in understanding the behaviour of the histogram and its responses to extreme cases,
making the proposed algorithm universal.
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A
Validation Code Example

The validation of the approach was first tested for simulation excluding the elevation angle parameter of the
targets using the algorithm below, the result of which proved to be a success in tracking the azimuth angle of the
target as well as the ego-motion estimate.

Algorithm 2 Extended Kalman Filter in ego-Velocity estimation (Excl. Elevation Angle)
Input: Rd, θ, vego Output: vego, θ

1: procedure EKF(vego)
2: if p = 1 then ▷ p - Frame number
3: Initialize θp,k = θRD ▷ θ from the r-D processing
4: Extract the vego estimate from the histogram: vego,p = histfunc(vr,k, cos (θk))
5: else
6: Extract the vego estimate from the histogram: vego,p = histfunc(vr,k, cos (θKF,p,k)

7: end
8: Estimate states of the system, E(Sp) ▷ Equation 3.21
9: Obtain radar measurement data of the targets, E(Zp) ▷ Equation 3.22
10: Compute Jacobian matrix,Hj ▷Mapping radar measurements
11: Compute Kalman gain,Kp ▷ Equation 3.36
12: Update system states, E(Sp) ▷ Equation 3.37
13: Predict system states,E(Sp+1) ▷ Equation 3.38
14: Estimate azimuth angles: θKF,p+1,k ▷ Utilized in Step 6
15: Compute average of the ego-velocity estimates over K targets ▷ Final ego-velocity estimate
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B
Coordinate Conversion function Derivations

The derivations involved in the computation of the matrix elements inM(Sp) are given below:
df
dx

df
dẋ

df
dy

df
dẏ

dg
dx

dg
dẋ

dg
dy

dg
dẏ

dh
dx

dh
dẋ

dh
dy

dh
dẏ
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The matrix elements can be calculated as follows:
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=

d (Rd)

dx
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d
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)
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2
√
x2 + y2

· 2x =
x√

x2 + y2
(B.2)

dg

dx
=

d(θ)

dx
=

d(atan(y/x))
dx

=
1

1 + (y/x)2
· y · −1

x2
=

−y

x2 + y2
(B.3)

dh

dx
=

d (vr)

dx
=

d (v · cos(θ − β))

dx
=

d (v · cos(atan(y/x)− β)

dx

=
√
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Similarly with respect to y,
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Similarly,
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