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Quantum computer-assisted global optimization in geophysics illustrated
with stack-power maximization for refraction residual statics estimation

Marcin Dukalski1, Diego Rovetta1, Stan van der Linde2, Matthias Möller3, Niels Neumann4, and
Frank Phillipson5

ABSTRACT

Much of recent progress in geophysics can be attributed to
the adaptation of heterogeneous high-performance computing
architectures. It is projected that the next major leap in many
areas of science, and hence hopefully in geophysics too, will
be due to the emergence of quantum computers. Finding a right
combination of hardware, algorithms, and a use case, however,
proves to be a very challenging task — especially when look-
ing for a relevant application that scales efficiently on a quantum
computer and is difficult to solve using classical means. We find
that maximizing stack power for residual statics correction,
an NP-hard combinatorial optimization problem, appears to nat-
urally fit a particular type of quantum computing known as
quantum annealing. We express the underlying objective func-
tion as a quadratic unconstrained binary optimization, which is a

quantum-native formulation of the problem. We choose some
solution space and define a proper encoding to translate the
problem variables into qubit states. We find that these choices
can have a significant impact on the maximum problem size that
can fit on the quantum annealer and on the fidelity of the final
result. To improve the latter, we embed the quantum optimiza-
tion step in a hybrid classical-quantum workflow, which aims to
increase the frequency of finding the global, rather than some
local, optimum of the objective function. Finally, we find that
a generic, black-box, hybrid classical-quantum solver also could
be used to solve stack-power maximization problems proximal
to industrial relevance and capable of surpassing deterministic
solvers prone to cycle skipping. A custom-built workflow
capable of solving larger problems with an even higher robust-
ness and greater control of the user appears to be within reach in
the very near future.

INTRODUCTION

Geophysics features some of the most challenging problems that
can be found in the computational sciences. Those that can be reliably
solved require sufficient data frommeasurements, efficient algorithms,
and enough computing power. Improvements in either of the three
aspects facilitate much of the progress in geophysics and help bolster
our confidence in the information we have about the subsurface.
Adaptation of heterogeneous high-performance computing

(HPC), e.g., the use of central and graphical processing units (CPUs

and GPUs), was a major driver behind the expansion of the set of
problems that we can address in geophysics today. It is expected,
and perhaps with excessive hype (Grumbling and Horowitz, 2018;
Ruane et al., 2022), that the quantum processing units (QPUs)
would address some specific computational tasks, which are beyond
the reach of CPUs and GPUs (Möller and Vuik, 2017). However,
the question is, what are these tasks? Are any of them of any prac-
tical relevance? And are there any geophysical problems that can
benefit from them? Here, we show that answering these questions
requires sufficient understanding of quantum hardware, quantum
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software, and the use case. One needs to consider the capabilities
and limitations of the hardware, the available hardware-dependent
software, and its ability to handle classical information. Finally, the
use case has to be one that is relatively hard enough to solve, yet not
be constrained by the hardware and software limitations.
The field of quantum computing is very broad in scope, with the

underlying principle being using quantum effects to perform com-
putations (Feynman, 1985; Mermin, 2007; Nielsen and Chuang,
2010). The field features several physical quantum realizations,
e.g., cold atoms/ions (Bruzewicz et al., 2019; Henriet et al., 2020),
various integrated circuits (Humble et al., 2019; Gonzalez-Zalba et al.,
2021), and photons (Flamini et al., 2018). On top of that, there also are
two different quantum computing philosophies: (1) gate-based univer-
sal or programmable (Rieffel and Polak, 2011) and (2) annealing/adia-
batic quantum computing (AQC) (McGeoch, 2014; Albash and Lidar,
2018). Each combination of physical realization and philosophy
comes with its own strengths and limitations. This can have a very
big impact on the likelihood of success at superseding a classical com-
puter at one’s use case (Leymann and Barzen, 2020), which is espe-
cially true because many of these systems are still in their relative
infancy (Preskill, 2018; Córcoles et al., 2019).
Contrary to some expectations, gate-based QPUs are very limited

in what they can do at the moment or could do in the future. In ad-
dition, it can be difficult to assess what relevant task they can do faster,
cheaper, or better than CPUs or GPUs (Leymann and Barzen, 2020).
As a result, the range of potential use cases, at least for now, is rel-
atively narrow. Using quantum systems to simulate other quantum
systems (e.g., in the field of quantum chemistry; Cao et al., 2019;
Bauer et al., 2020; Outeiral et al., 2021) was one of the earliest
and most obvious use cases. The relatively small pool of gate-based
quantum computing algorithms (Montanaro, 2016) still gave rise to a
range of future potential applications in, for example, finance (Orus
et al., 2019; Woerner and Egger, 2019), telecom (Phillipson et al.,
2021a), and energy system optimization (Koretsky et al., 2021). A
growing recent popularity of quantum machine learning (QML) (Bia-
monte et al., 2017) could give rise to applications in many other fields.
The concept of quantum annealing (QA) QPU goes back to a QA

algorithm (Kadowaki and Nishimori, 1998), which also found its
applications in geosciences (Liu et al., 2018). This algorithm ex-
tends the concepts of simulated (thermal) annealing and appends
them with a classical simulation of quantum effects, such as quan-
tum tunneling and superposition, aiding transitions between local
minima. This promises higher certainty that the optimization finds
a global, rather than a local, optimum of some multimodal objective
function. A QA QPU is a physical realization of the QA algorithm
— a device consisting of superconducting qubits and couplers,
which can be adjusted to emulate the quantum dynamics of a cus-
tom Ising model (IM) Hamiltonian. Recently, Abel et al. (2021)
show that this device is very likely to be more successful in finding
a global optimum of an objective function than many classical
methods. Because QA QPUs specialize in solving optimization
problems, these machines have so far shown a much wider range
of use cases (Laumann et al., 2015; Neukart et al., 2017; Crosson
and Lidar, 2021; Mato et al., 2021; Phillipson and Chiscop, 2021c;
Phillipson et al., 2021b). Quantum annealers also are seen as pos-
sible enablers in training any ML/artificial intelligence applications
(Delilbasic et al., 2021; Phillipson et al., 2021a).
For these reasons, using QA QPUs, henceforth just called QA, is

very interesting in geophysical applications, in which getting stuck in

a local optimum is a not-uncommon problem (Bosisio et al. 2014). In
many cases, finding a second best optimum, one which is far away in
some parameter space from the global one, is of little interest and
could offer little improvement to, or worse, provide a false sense
of certainty about the subsurface. O’Malley (2018), Greer and O’Mal-
ley (2020), and Souza et al. (2022) show first examples of the types of
problems that can be encountered in geophysics and solved using a
quantum annealer, albeit with a lesser focus on addressing a realistic
and business relevant problem with a multimodal objective function.
The main result of this work is to present a use case of quantum

computing that is both scalable and practically relevant. We dem-
onstrate that using QA to solve a stack-power maximization (SPM)
problem satisfies the conditions of finding the right combination of
hardware, software, and relevance. SPM can be used, for example,
in refraction residual statics estimation (RRSE). This problem often
suffers from cycle skipping and finding the optimal solution may
require clever sampling of the objective function (Wiggins et al.,
1976). This can be done, for example, through some meta-heuristic
approaches (Rothmann, 1985; Pierini et al., 2019). We demonstrate
the QA implementation of the problem on a 5000-qubit machine
(McGeoch et al., 2020) and propose a classical-quantum workflow,
which improves the probability of finding the global optimum. We
also use qbsolv (Booth et al., 2017), a standard hybrid classical-
quantum solver, to demonstrate that this very first implementation
is at least on par with the industry standard classical solvers on
problems of industrially relevant size.
This work is structured as follows. We dedicate the first three sec-

tions to explain and justify the choices that we made when selecting
the quantum computing philosophy, the hardware, and the use case. In
the “Are all problems equally difficult?” section, we explain the com-
puter scientist perception of what makes a problem hard and contrast it
with that of a geophysicist in the “Difficult problems in geophysics”
section. Upon establishing this, it should become clear why there
might be little point of trying to solve certain geophysical problems
using quantum computers. In the “Quantum computing in a nutshell”
section, we review the relevant basics of quantum computing, in which
we briefly describe and compare the gate and the adiabatic models of
quantum computing. We use this analysis to justify the choice of the
AQC, and QA specifically because of the current most likely platform
for geophysical applications. This narrows down the class of geophysi-
cally relevant optimization problems, and in the “Stackpower maxi-
mization (SPM) for refraction residual statics estimation (RRSE)”
section, we explain and show that SPM makes for a good candidate.
We also discuss the application of simulated annealing (SA) to solve
this problem. Furthermore, in the “Stack-power maximization as a
quadratic unconstrained binary optimization” section, we show
how to translate the problem into one that is native to a quantum com-
puter and consider different variable encodings and constraints. We
also explain why this quantum computation requires classical prepro-
cessing and may benefit from classical postprocessing in practice. In
the “Discussion” section, we present the process of identifying another
quantum-assisted optimization candidate and offer some outlook. The
acronyms used throughout this paper are listed in the “Nomenclature”
section. This work is an extension of the work previously presented by
van der Linde (2021) and van der Linde et al. (2022a, 2022b).

ARE ALL PROBLEMS EQUALLY DIFFICULT?

Combinatorial optimization problems often are considered to be
harder to solve than continuous ones (Schrijver, 2003). Admittedly,
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one may argue whether, for example, in an inverse scattering prob-
lem, finding the set of parameters that characterize a given medium
and explain the measured data should be considered easy, but, at least
conceptually, the continuous nature of the problem enables a variety
of systematic and well-established computational approaches to
approximate the optimal solution step by step. It often is difficult
to tune all these parameters in such a way that the global optimum
is attained exactly — especially in multiobjective optimization prob-
lems — but in many practical cases a good-enough solution that is
close to the optimum can be obtained efficiently. It is the continuous
nature of this type of optimization problems that ensures that a small
change in the input implicates a not-too-large change in the output.
This is no longer the case in combinatorial optimization problems

due to their discrete nature. Since a small discrete change in prob-
lem parameters can lead to a very large change in the output, one
may need to exhaustively check among all the outcomes before
guaranteeing that a better solution cannot be found. The difficulty
level of such problems is commonly characterized by the classes P
and NP. Problems for which a deterministic algorithm with poly-
nomial runtime exists belong to the class P and are considered easy
to solve. Polynomial runtime of course covers a wide range, from
linear or quadratic in the number of inputs to very large powers that
make them prohibitively expensive and far from what one would in
practice call easy. An example is the solution of a linear system of
equations of the form Ax ¼ b using the Gaussian elimination algo-
rithm, which scales cubically in the number of vector entries n,
i.e., Oðn3Þ. Although this is still polynomial complexity, and there-
fore classified as easy in the P-NP landscape, this algorithm is
considered prohibitively expensive for practical large-scale compu-
tations. As a remedy, special-purpose iterative solution algorithms
have been developed for specific instances of the system matrix A,
which, at best, lead to linearly scaling runtime, i.e., OðnÞ.
On the other hand, the class NP comprises problems for which a

nondeterministic algorithm exists to solve the problem at hand in
polynomial time. This concept might need some further explana-
tion. For example, we consider an n × n Sudoku puzzle. Finding
the solution often is difficult (and can take hours), but checking that
a given answer is indeed a solution is easy, that is, doable in poly-
nomial time. More formally, NP problems often assume a so-called
oracle — the nondeterministic part — that guesses the solution
somewhat magically, whereas the verification step can be performed
deterministically and in polynomial time.
The reason why many combinatorial optimization problems be-

long to the class NP is because of the fact that a small number of
input variables can lead to exponentially many combinations of out-
comes that need to be considered. Think of packing different items,
each having a different weight and value, into a knapsack with
fixed-size capacity. The goal is to maximize the overall value of
the items selected for being put into the knapsack while at the same
time not exceeding the capacity limit.
NP-hard problems are even worse than their NP counterparts be-

cause they are considered to be at least as hard to solve as the hard-
est problem in NP. Moreover, for NP-hard problems, it is as difficult
to find or verify that something is a solution to a problem. The in-
tersection of NP and NP-hard problems is called the class of NP-
complete problems and is commonly referred to as the most difficult
to solve problems in NP. It can be shown that a solution to any prob-
lem in NP-complete implies that one is able to solve any problem
in NP.

The question whether the two classes P and NP fall together is
one of the outstanding challenges in modern theoretical computer
science. Luckily, we do not have to wait for the ultimate solution of
the P-versus-NP problem to exploit the internal structure of the dif-
ferent complexity classes. It often is possible to convert one difficult
problem A into another difficult problem B in polynomial time.
This does not change the overall complexity of the original prob-
lem, but it might well be that finding an efficient algorithm for prob-
lem B is easier. This is exactly the process that we will use in the
section “SPM for RRSE”, in which we will attempt to rewrite the
problem in terms of the so-called IM, a prominent example of an
NP-hard problem. This forms the basis for using QA to solve com-
binatorial problems.

DIFFICULT PROBLEMS IN GEOPHYSICS

The problems (just) outside of the intersection of algorithms, data,
and HPC are what geophysicists consider to be hard; however, that
does not make them hard in the context of computational complexity
classes discussed previously. For example, 3D seismic multiple at-
tenuations could be deemed difficult (Dragoset et al., 2010) because
it requires a very large amount of data (with costly input/output [I/O])
and adaptive subtraction, which has to be assessed by the end user.
This, however, is a problem that is not hard in our context because its
computational complexity grows polynomially (i.e.,OðNkÞ, whereN
is the number of traces and k is some problem-dependent constant,
which happens to be large). In addition, for simple enough cases with
only one or two relevant multiples that need to be removed, the cor-
rect outcome is either known a priori or can be easily assessed to be
correct on output, e.g., for first-order deepwater surface-related multi-
ples. This becomes hard in shallow water, where consecutive orders
of multiples overlap. The only known way to address that is to for-
mulate this as underconstrained inverse problem, whereby for each
possible source wavelet there is a possible surface primary, both of
which are a priori unknown (see, e.g., Lin and Herrmann [2014]).
Full-waveform inversion (FWI) is a great example of another hard
problem from the perspective of a geophysicist, in which its multi-
modal objective function can only be explored by repeatedly model-
ing large volumes of (elastic) data and by using clever tricks aimed at
avoiding local minima or barren plateaus (Yang et al., 2018). From
the point of view of a (quantum) computational scientist, however, it
is mainly the question of certainty of whether the minimum found is
global and how to get there efficiently that makes the problem hard.
The modeling, even though it might consume most of computational
time, falls into the easy or deterministic class.
The question remains, are these problems suitable for a quantum

computer? And if so, which quantum-computing philosophy —
gate-based universal quantum computing or QA — is the most suit-
able one? To better appreciate the answer to this, we have to look
closely at what these computers can and cannot do and the size
of the current intersection of the three sets: field measurement, quan-
tum algorithms, and quantum compute power. In particular, here we
will find an additional quandary of how to move the measurements to
a quantum computer, as well as physical limitations on the range of
calculations that a quantum algorithm can carry out. We will discuss
two forms of quantum computing: so-called gate or circuit model
(requiring algorithms) and AQC or QA (algorithm free and optimi-
zation focused). We will show how the range of applications in geo-
physics on the former is quite limited, whereas the latter can already
boast a few use cases (delegating the optimization step of FWI on a
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toy model example being one of them; Greer and O’Malley, 2020).
However, wewish to show that the SPM problem, such as for residual
statics estimation, is an interesting candidate for being solved effi-
ciently by a quantum computer. This is because this problem is
not only hard but also easily implementable and scalable for today’s
quantum computers. We also show that (much like in the Greer and
O’Malley [2020] example) classical computing will remain indispen-
sable in theory and also in practice, in which all the imperfections
from the interface of the classical and quantum worlds enter our
solutions.

QUANTUM COMPUTING IN A NUTSHELL

The basic elements

In this section, we wish to give only a very small glimpse at the
aspects of quantum computing that are relevant for potential geo-
physical applications. Awealth of details on what we cover here and
beyond can be found in Nielsen and Chuang (2010).
A basic element of any quantum computer is a so-called quantum

bit (qubit). Unlike a classical bit, which can be either zero or one, a
qubit can be in a superposition of two states at once — much like a
superposition of two differently polarized waves — which we de-
note by a0j0i þ a1j1i, using the Dirac’s ket j · · · i notation, with
complex-valued amplitudes ak. To perform any practically mean-
ingful computation, one needs a wavefunction ψ of a register of
N qubits

jψ¼a00 : : :0j00 : : :0iþa00 : : :1j00 : : :1iþ : : :þa11 : ::1j11 : : :1i;
(1)

which form a superposition of up to 2N N-bit long classical regis-
ters. This superposition state also could be used to efficiently store
and encode information. For instance, a vector of length M can be
mapped onto a quantum state of log2 M qubits, e.g., a vector
½b1; b2; : : : ; b16� can be encoded onto four qubits with a0000 ¼ b1;
a0001 ¼ b2; : : : ; a1111 ¼ b16: A vector of length M ¼ 109 can be
encoded with only 30 qubits. Computation amounts to changes
in the amplitudes ak. The extraction of the information encoded
in and processed by the quantum states requires an irreversible
measurement, which collapses the qubit register to any of the pos-
sible binary registers, which takes place with probability given by
the square of the amplitude in front of the given register,
e.g., ja0010011j2. However, the latter can only be estimated with in-
creasing precision by repeating the quantum computation and the
measurement for a given number of times. This is similar to deter-
mining the probabilities of a biased coin. In spite of this additional
computational overhead, there are some calculations that, in theory,
using perfect quantum computers, can still be done much faster (in
terms of number of elementary computational steps) using a quan-
tum computer than its classical counterpart.

The gate/circuit model

The gate-based quantum computing model uses a sequence of
single- and two-qubit reversible operations and the irreversible
measurement to perform computations. There are only very few al-
gorithms known that perform some meaningful operation with a
very clear application with sights of scaling it up to an industry-rel-
evant problem and at the same time offer some kind of quantum

advantage. These include scenario testing, or unstructured search
algorithm (Grover, 1996), factorization of semiprime numbers
(Shor, 1994), or solving (some) linear inverse problems through the
Harrow Hassidim Lloyd (HHL) algorithm (Harrow et al., 2009).
The development of new quantum algorithms can be a huge chal-
lenge. First, algorithm design often relies on human intuition, which
can be at odds with the laws of quantum mechanics (Venegas-An-
draca et al., 2018). Second, even a correctly functioning quantum
algorithm might be of little value if it does not provide a significant
quantum advantage; that is, it outperforms its best known classical
counterpart that solves the same problem. In addition, with the state-
of-the-art circuit model machines of today, quantum algorithms that
require a large number of gates are unusable in practice because gate
application is imperfect and introduces a significant amount of
noise that quickly ruins the results.
For example, the HHL algorithm, offering to solve least-squares

minimization problems of the kind kAx − bk22 with a theoretically
exponential speed up over a classical algorithm, could be appealing
as a subroutine in several applications in geophysics. However, Aar-
onson (2015) points out several caveats, which were discussed by
Dukalski (2019) for geophysical applications. First, the algorithm
only offers a speed up for inverse problems in which only a single
scalar piece of information about x is needed, and it does so with a
probability proportional to the inverse square of the condition num-
ber of A. If field data measurements are part of A or b, then feeding
them to a quantum computer can be a complex and very computa-
tionally expensive process — more so than solving the initial prob-
lem classically (Clader et al., 2013). Current hardware has so far
only produced examples of very small, often custom built, examples
of solving such an inverse problem (see, e.g., Barz et al., 2014; Pan
et al., 2014; Zheng et al., 2017). Dukalski (2021) discusses a
potential geophysical application example (solving the Gelfand-
Levitan-Marchenko equation) that appears to fit most of the HHL
algorithm caveats reasonably well, but only once the classical
problem is reformulated to better fit the requirements imposed
by quantum mechanics. Moreover, it appears that directly solving
the wave equation in an arbitrarily complicated heterogeneous
medium might, even in theory, be currently not possible using
the HHL algorithm. More research is needed to see if this problem
can be solved by other means, e.g., using some physics-informed
and quantum-assisted ML (Kyriienko et al., 2021).
For these reasons, gate-model quantum computing does not appear

to offer many advantages for solving geophysical problems, which is
why we now turn to a lesser-known form of quantum computing.

AQC and QA

AQC solves problems by mapping the objective function of a prob-
lem of interest onto the energy landscape of some tunable quantum
system (Albash and Lidar, 2018). This way, starting in a simple sys-
tem with a known global optimum, we can slowly tune the parameters
of the quantum system (and have it such that its energy landscape is
more complex). Performing this process slowly allows for the initial
system configuration to adjust as well, such that it remains in the
global optimum. This process amounts to “computation” as the final
system configuration encodes the global optimum of the complex ob-
jective function of the problem we were trying to solve.

HðtÞ ¼ fðtÞHproblem þ ð1 − fðtÞÞHsimple; (2)
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where Hproblem is the Hamiltonian that represents our problem of in-
terest and Hsimple encodes the simple problem whose global optimum
is known a priori. Moreover, fðtÞ is some smooth function of time t,
with fð0Þ ¼ 0 and limt→TfðtÞ ¼ 1. Since everything is governed by
laws of quantum mechanics, then one can additionally benefit from
quantum tunneling between local minima — a process mathemati-
cally similar to seismic wave tunneling as an evanescent mode
through thin high-velocity layers in the subsurface. AQC could there-
fore be a great tool for solving problems described by multimodal
objective functions in which only a global optimum is of interest
— not only found quicker than other meta-heuristic approaches
but also offering additional certainty that no other better solution
can be found. AQC can be shown to be (in theory) equivalent to
the gate-model QC, in which the translation between the two can
be carried out in polynomial time and without any constraints on
the physical device (Mizel et al., 2007). In practice, however, with
limitations imposed by the devices, this equivalence is no longer that
clear.
QA is very similar to AQC. There we have the simple system —

a so-called driving or tunneling Hamiltonian, which introduces
magnetic field fluctuations that have a simple and a priori known
ground state. The so-called IM is particularly useful:

Hproblem ¼ HIM ¼
X
i∈V

hisi þ
X

ði;jÞ∈E
Jijsisj; (3)

where si represents the variables taking values�1, hi represents the
energies (biases) of individual spins (the magnetic models), and Jij
represents the coupling/interaction strengths. The objective function
of some relevant problem is mapped onto a Hamiltonian in equa-
tion 3, by means of physically fixing the biases and the coupling
strengths. The latter form a so-called graph G, which will be dis-
cussed later. The subtle difference between AQC and QA is that the
terms in front of Hsimple and Hproblem need not add to one. Finding
the minimum energy of the IM for the majority of graphs G is NP-
hard, which makes it particularly suitable for solving a wide range
of (NP-hard) problems. Hence, it is a great design choice for a quan-
tum annealer. A notable example of the latter is comprised of an
array of interconnected tunable superconducting flux qubits (Ven-
egas-Andraca et al., 2018). From an engineering standpoint, when
constructing such a device, one has to balance the ability to control
and tune the energies of the individual qubits and the coupling be-
tween them, as well as reading out their state at the end of the cal-
culation. This means that one has to decide on the so-called
hardware graph, a quantum computer architecture that specifies
which set of qubits (on the vertices of the graph) are connected
(by edges of the graph) to other qubits. Construction of the next
generation of quantum annealers amounts to balancing the increase
in the qubit-qubit connectivity, while not making the device overall
noisier and harder to control.
A good analogy of this system would be a set of compasses (in

which the needle plays the role of the qubit with j0i and j1i corre-
sponding to the north–south and east–west directions, respectively),
with varying field strengths (which dictate their resistance to change
their orientation) and varying coupling to each other (e.g., controlled
by their relative distance) in the absence of any external magnetic
field. By appropriately magnetizing the magnets beforehand and
choosing their relative position to control their coupling, we can
make sure that the energy landscape (the energy as a function of the

magnetic needle orientation of each of the compasses) is the same as
some objective function that we wish to optimize. This system will
settle in a local minimum and some externally applied stimulus could
displace its configuration toward another local (and perhaps asymp-
totically global) minimum. However, this system is not capable of
tunneling. The driving or tunneling Hamiltonian could be linked
to an external oscillating magnetic field, which sets all the compasses
in some spinning motion, allowing them to explore all possible com-
binations of solutions. As the external field strength is reduced, their
mutual interactions start dominating and increasing the chances of
finding the ground state, albeit here without tunneling.

Solving problems using quantum annealers

Solving a (combinatorial optimization) problem with a quantum
annealer in practice requires first converting its original formulation
into an IM formulation (Venegas-Andraca et al., 2018). This new
problem will most likely be described by a so-called problem graph.
Subsequently, to solve the problem of choice, one needs to translate
this intermediate problem graph into a hardware graph — a process
called minor embedding. Finding an optimal minor embedding is
itself an NP-hard problem, but without much sacrifice to the original
problem, one can use heuristics to obtain acceptable solutions (Cai
et al., 2014). This enables quantum annealers to solve a very large
class of (combinatorial) optimization problems in which most of the
work is dedicated outside of the QA step, namely, to finding an
efficient way to carry out the “inexpensive” (problem-conversion)
steps and interpret the solutions in the presence of noise intrinsic to
the quantum annealer.
To illustrate the concept of minor embedding, we consider the IM

Hamiltonian:

H ¼ 6s1 þ 5s2 þ 3s3 þ 9s4 þ s5 þ 20s1s2 þ 8s2s3

þ 14s2s4 þ 5s3s4 þ 7s4s5; (4)

with its problem graph example shown in Figure 1a. The so-called
Chimera hardware graph, a particular quantum annealer architec-
ture, is shown in Figure 1b. It can be rigorously proven to be impos-
sible to map the problem to the hardware graph because the
connectivity of nodes in the latter is not sufficient (the problem
graph has a threefold loop, whereas the hardware graph has fourfold
loops and no threefold ones). Minor embedding in this case dupli-
cates the problem graph’s node five, which represents the variable
s5, and insert a so-called chain between the two copies to tie them
together so that they do not behave as two individual variables (see
Figure 1c). The strength of this tying together is controlled by the
chain-strength parameter that is addressed later in this paper.
The IM formulation and the interacting magnetic moments anal-

ogy is a convenient way to understand the workings of the quantum
annealer. However, it is sometimes preferable to formulate the op-
timization problem as a quadratic unconstrained binary optimiza-
tion (QUBO) problem of the form

min
x∈f0;1gn

xTQx; (5)

whereQ is an upper triangular real matrix and x and its transpose xT

are the vectors of binary variables xi with the property x2i ¼ xi,
i.e., taking values zero or one. The entries of Q can be mapped
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to those of hi and Jij from equation 3 through the transforma-
tion xi ¼ ðsi þ 1Þ=2.
Very few problems in geophysics are naturally discrete and formu-

lated in terms of binary variables. To use the QUBO formulation, the
underlying variables not only need to be discretized, but a set of al-
lowed discrete values also needs to be specified a priori. Furthermore,
these discrete values have to be encoded in terms of the binary var-
iables xi. Depending on the choice of encoding, additional constraints
or penalty terms (with their corresponding Lagrange multiplier) might
need to be appended to the original QUBO to obtain meaningful
solutions. This may introduce a host of new complications, which
not only have an impact on the maximum problem size that a quantum
computer can handle as well as tuning of the QA parameters, but these
also could require additional classical pre- and postprocessing.
In the “SPM as a QUBO” section, we illustrate and discuss the

transformation process for a geophysical application — the prob-
lem of RRSE. This problem is particularly suited because it is of
great industrial importance for land seismic exploration and near-
surface characterization for civil engineering, for example, and at
the same time fits very well with the requirements imposed by
the quantum annealer. Before we come to the RRSE application,
we would like to compare QA and SA and point out some important
differences between the two approaches.

Quantum versus simulated (thermal) annealing

SA imitates the technique of annealing in metallurgy in which the
physical properties of a material are altered by heating, followed by
controlled cooling. Slow cooling produces a material with average
energy across the molecules lower when compared with the energy
of the same material cooled quickly. Kirkpatrick et al. (1983) realize
that the behavior of a thermodynamic system reaching the low-en-
ergy state at the equilibrium during the annealing process is similar
to the one of an optimization algorithm searching for the global
optimum of an objective function, and therefore, the mathematical
description of such a process could be used to solve general opti-
mization problems. The algorithm is an adaptation of the Metropo-
lis-Hastings algorithm, a Monte Carlo method to generate sample
states of a thermodynamic system, and works by starting with an
initial solution and an initial temperature. Then, the temperature
progressively decreases, and at each decreasing step the algorithm

randomly selects a solution close to the current one following a cri-
terion based on an adaptation of the Metropolis-Hastings algorithm,
in which the acceptance probability is a function of the temperature.
Two nested cycles related to the random moves and to the adjust-
ment of the steps are repeated, respectively, Ns and Nt times, for
each temperature reduction Nr and for each search dimension B
(Corana et al., 1987). The computational complexity of SA is there-
fore equal to O(Ns Nt Nr B). Geman and Geman (1984) prove that
SA converges to the global optimumwhen a logarithmic (very slow)
annealing schedule is used. However, in practice, logarithmic
annealing schedules are too slow to find meaningful results for
high-dimensional problems in an acceptable amount of time.
In SA, the objective function of the problem is the same as the

energy function, whereas in QA, the initial objective function needs
to be translated to an IM, which then gets embedded into the hard-
ware. SA starts with some initial guess, whereas QA starts with an
eigenstate of the drive Hamiltonian, which is a superposition state
of all possible solutions. QA and SA are similar in that movement
between different local minima is facilitated by modulation of some
kind of fluctuations — the driving Hamiltonian (in QA) and the
“temperature” of the system (in SA). In addition, these approaches
are probabilistic in nature, which is why the processes need to be
repeated multiple times, and the result in these cases could strongly
depend on the annealing time T. The difference there however is that
SA and QA might still be stuck in some local minimum (though this
is expected to be less likely so for QA), but more importantly, at the
end of QA, the system could still be in a superposition state of ground
and excited (higher energy) state, and a quantum measurement col-
lapses the system to a configuration that could still be in an excited
state.
Let us now turn to our demonstrator application — the problem

of RRSE. In the next section, we will start with a brief description of
the problem, followed by two different encodings. We will then
present the overall classical-quantum hybrid workflow composed
of classical preprocessing, QA, and classical postprocessing step,
which are needed to obtain the best solution.

SPM FOR RRSE

Subsurface seismic imaging in land environments often is difficult
due to the presence of complex geologic features in the near surface

that affect the propagation of seismic waves dis-
torting their amplitude and phase (Taner et al.,
1974). As a result, the acquired seismic data
(traces) corresponding to the waves traveling
through subsurface anomalies will show seismic
events that are amplified or reduced and antici-
pated or delayed when compared with the ones
associated with the waves not traveling through
such anomalies. The relative delays of the seismic
events in the traces due to this phenomenon also
are known as statics.
If the anomalies are resolvable, statics can be

estimated and corrected by building a subsurface
compressional velocity model through techniques,
such as reflection/refraction tomography or FWI
(Virieux and Operto, 2009). Amplitude distortions
also can be calculated and corrected with similar
approaches, such as amplitude tomography (Quan
and Harris, 1997). However, if the anomalies are

Figure 1. (a) The problem graph corresponding to the IM from equation 4. The colored
circles correspond to the set of vertices V, with the numbers inside corresponding to the
biases hi, and the black lines are the edges E with the numbers next to them correspond-
ing to the coupling strengths Jij. (b) The Chimera hardware graph, in which the strength
of each node and vertex is tunable. (c) The embedding of (a) onto (b) with vertex and
edge strengths denoted, and the blue line denoting a chain.
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not resolvable with tomographic techniques, then there will be am-
plitude and phase residuals in the seismic traces.
A standard way in the industry of tackling the problem of com-

pensating for such residuals is to use surface-consistent approaches
(Wiggins et al., 1976; Taner and Koehler, 1981), trying to decouple
the wave propagation effects occurring at the surface (or at the shal-
low subsurface) to the ones occurring at the (deeper) subsurface.
After removing the deeper subsurface distortions, the analysis fo-
cuses on a statistical evaluation and inversion of the residual com-
ponents of the wave propagation that are characteristic of surface
positions occupied by either seismic sources or receivers. Even
though surface-consistent approaches have been initially developed
for reflection seismology, they also can be applied to the transmitted
part of the seismic wavefield, which is the one mostly traveling in
the near surface and mostly sensing its complex heterogeneities
(Colombo et al., 2021). In addition, surface-consistent statics cor-
rection methods can address most of the statics and therefore are
routinely applied in seismic data processing; it is worth mentioning
that nonsurface-consistent statics correction approaches also are
possible, sometimes providing more accurate near-surface correc-
tions (Alfaraj et al., 2021).
In this work, we are focusing on the problem of phase distortion

of the seismic waves in terms of RRSE and correction. We follow
the surface-consistent framework for the transmitted portion of the
wavefield as detailed by Colombo et al. (2021). Starting from the
convolutional model of the wave propagation (Cambois and Stoffa,
1992), the authors isolate the contribution of the subsurface from
the source and receiver impulse responses that are mapped as a
function of surface positions. The decomposition has been adapted
to the transmitted wavefield involving sorting in common-mid-
point and offset (CMP)-offset (the so-called XYO domain), in
which the traces are collected in small bins. A hypercube of X-
Y-offset dimensions and the corresponding XYO gathers are gen-
erated, and the surface-consistent analysis is performed for each of
these bins and gathers. More details can be found in Colombo et al.
(2016,2020).
In the frequency domain, the convolutional model of the wave

propagation for each XYO gather can be written as

dmðfÞ ¼ wðfÞsiðfÞrjðfÞqðfÞ; (6)

where f denotes the frequency; dmðfÞ is the seismic trace of index
m in that specific gather of M traces, related to the source and
receiver index couple ði; jÞ; siðfÞ and rjðfÞ are the source and
receiver surface-consistent residual terms, respectively; qðfÞ is a
subsurface-related residual term; and wðfÞ represents the XYO
gather statistical response (pilot trace) that can be approximated
by the stack of the gather traces.
The decomposition for the residuals is then obtained by solving

dmðfÞ
wðfÞ ¼ siðfÞrjðfÞqðfÞ: (7)

By specifying equation 7 for phase differences and assuming linear
distortion in the frequency domain (Taner and Koehler, 1981), the
correction is reduced to a constant time shift for each surface position

Δτm ¼ τDm
− τW ¼ τsi þ τrj þ τq; (8)

where Δτm is the time shift of the trace dmðtÞ with respect to the pilot
trace wðtÞ, and τsi ; τrj , and τq are the time shifts added by source,
receiver, and XYO bin operators, respectively. Equation 8 defines a
system of equations involving all the source and receiver combinations
ði; jÞ for which a residual is calculated, and it can be solved through a
preconditioned conjugate gradient algorithm (Barrett et al., 1994).
The crosscorrelation operation, which is computing the time

shifts Δτm, is therefore solving

max
Δτm

Z
T

−T
dmðtÞwðtþ τÞdt; (9)

where 2T corresponds to the time length of the crosscorrelation
window and wðtÞ is the time-domain pilot trace introduced pre-
viously.
The previous operations to calculate Δτm suffer from cycle skips,

which is when one seismic arrival on the trace dmðtÞ is aligned with
the wrong arrival on the pilot trace wðtÞ because there are multiple
wiggles within the crosscorrelation window. This can happen for
many reasons, including limited signal bandwidth, noise in the data,
and a short crosscorrelation window.
For each XYO gather, one crosscorrelation and the related maxi-

mization operations need to be repeatedM times, one for each trace
of the gather. The crosscorrelation operation can be efficiently com-
puted with the fast Fourier transform and its computational com-
plexity is therefore OðN log 2NÞ for each trace and for each
bin, with N denoting the number of samples per trace.
Trying to counteract the effect of the cycle skips, Ronen and

Claerbout (1985) suggest reformulating the problem as an equiva-
lent SPM of the form

max
Δτm

����
XM
m¼1

dmðt − τmÞL
����
2

2

; (10)

whereΔτm is the vector of the optimal time shifts of the traces in the
XYO gather. In this approach, instead of solving M maximizations
of M mono-dimensional crosscorrelation functions, an M-dimen-
sional function, corresponding to the power of the stack of the
traces, has to be maximized.
Equation 10 corresponds to a global optimization problem that

can be tackled with different global optimization techniques, the
most popular and successful of which, in the field of SPM, include
SA (Rothmann, 1985) and others inspired by natural processes,
such as swarm intelligence (Beni and Wang, 1993). Unfortunately,
none of these methods guarantee to find the global optimum in an
affordable amount of time (Pierini et al., 2019).
Using SA for the SPM problem has been studied by Rovetta

(2006) for a simple three-trace problem (see Figure 2) with the com-
plicated multimodal objective function shown in Figure 3a. Here,
variables τ1 and τ2 are the relative time shifts of signals s1 and s2
with respect to the reference signal s0, which also could be the stack
of the two traces. After few iterations, the algorithm is moving from
the initial solution to the optimal solution. Some evaluations of
the stack power at different annealing temperatures are shown in
Figure 3b–3d. At high temperatures, the algorithm works as a
common uniform sampler, whereas, at low temperatures, the sam-
pling interval is located in the region corresponding to the highest
probability of finding the global maximum. SA is typically compu-
tationally expensive, but its performances can be improved when it
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is combined with linear optimization techniques (i.e., steepest
descent). In this case, a hybrid algorithm can be designed to use
the global optimization capabilities of the SA during the first part
of the process, which identifies the region around the global maxi-
mum, and subsequently the local optimizer is used in the second
part of the process to speed up the convergence (Bosisio et al.,
2014).
Current hardware limitations restrict the maximum dimension of

the function to be optimized. In addition, for this reason, in this
work we have applied QA on the RRSE problem in the specific
formulation of XYO bins and gathers, in which the number of traces
is relatively small. Finally, as for the SA hybrid algorithm, in which
local optimizers are used in the proximity of the global optimum, for
the QA we also make use of hybrid solvers, combining the best of
the quantum and classical approaches, to circumvent current limi-
tations on the number of variables to be estimated.

SPM AS A QUBO

Finding the QUBO form of the stack maximization problem can
be done in three steps:

1) Determining discretization and solution space. This amounts
to deciding what values the shift variables τi will be allowed
to take.

2) Expressing the objective function in terms of the time-shift
operators and establishing the encoding, in which such dis-
crete shifts are expressed in terms of the binary variables xi.
We will consider two choices for such encoding.

3) Checking if, upon the chosen encoding, the problem is indeed
a QUBO and/or if it is still an SPM objective function with
physically meaningful solutions. If not, we need to undertake
additional steps to make it so (if possible).

Determining the solution space

In the first step, we denote a solution space (all
the allowable values) of the shift variable τi with
Si;K ¼ SK ¼ ft1; : : : ; tKg. We assume the same
set of possible shifts for all traces, for example,
for all of the shift variable τi, which is why we
drop the index i on SK in what follows. This
choice will have an impact on the problem size
and the energy landscape of the quantum annealer.
For example, one could consider a simple set
(K ¼ 3), where t1 ¼ 0, and t2 ¼ −t3 ¼ 2 ms.
As a result, any relative shift larger than 2 ms will
not be a part of the solution. A good choice of K
or the exact values of ta should be based on the
data used. Note that adding a constant to all ele-
ments of SK will have no impact on the solution
because this operation would introduce an overall
shift to a gather and hence not influence the trace
alignment.
By looking at the data, one also could decide to

fix one, e.g., the nth, trace and hence set
Sn;K ¼ ∅, which would not only slightly reduce
the number of variables but also improve the
choices of maximum and minimum shifts applied
to all the other traces. This is of course not limited
to the QA implementation, but to solving the SPM
in general. However, the problem is that we do not
know a priori which trace to fix. For sufficiently
large problem sizes, currently those involving tens
of traces, we have observed that fixing the
“wrong” trace leads the quantum computer to very
rarely return a result corresponding to a global
minimum, and oftentimes not even a local one.

Reexpressing the objective function

We can use the sampling property of the
Kronecker delta function δij and denote the proc-
ess of shifting a particular trace by a particular
amount as a selection from a set of traces shifted
by all possible values of ta. In particular, the shift
of txi of the ith trace reads

Figure 2. Seismic gather of three traces to be aligned (a) before and (b) after SPM.

Figure 3. Two-dimensional objective function to be maximized to solve the problem of
Figure 2: (a) path of the SA algorithm from the starting solution (marked with a black
dot) to the final one (marked with a red dot) and (b–d) evaluations of the objective
function, respectively, at temperatures of T0 = 300[K], T = 23.33[K], and T = 14[K].
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diðtxiÞ ¼
XK
a¼1

δxiadiðtaÞ: (11)

This should give us a first hint of the classical preprocessing be-
cause it suggests that we will need to calculate traces with all
the possible shifts applied to them. Substitution in equation 10 gives
the objective function

argmax
x∈f1; : : : ;KgM

����
XM
i¼1

XK
a¼1

δxiadiðtaÞ
����
2

2

: (12)

Next, we want to reexpress the preceding result in terms of prod-
ucts of Kronecker delta functions, which later will be expressed in
terms of the binary variables xi. Using basic linear algebra gives

argmax
x∈f1; : : : ;KgM

XM
i¼1

XK
a¼1

ðδxiaÞ2hdiðtaÞ; diðtaÞi

þ 2
XM
i¼1

XM
j¼iþ1

XK
a¼1

XK
b¼1

δxiaδxjbhdiðtaÞ; djðtbÞi; (13)

where hdiðtaÞ; djðtbÞi is the inner product (i.e., the crosscorrelation
evaluated at t ¼ 0) between the ith and the jth traces shifted by ta
and tb, respectively. The term hdiðtaÞ; diðtaÞi ¼ kdiðtaÞk22 ¼ kdik22
is independent of ta, and hence we will drop it because it does not
affect the solution.

Encoding

The next step is to encode the variables in the combinatorial op-
timization problem of equation 13 using binary variables. For this
purpose, we use two different encodings: an indicator (or one-hot)
encoding (IE) and the standard binary encoding (BE).

Indicator encoding

With the IE, we introduce MK binary variables xia,
1 ≤ i < M; 1 ≤ a ≤ K, where xia is one when the shift ta is applied
to trace i and zero otherwise. This means that we can replace δxia by
xia with the additional constraint

P
K
a¼1 xia ¼ 1 because each shifted

trace can be present only once (as dictated by the Kronecker delta).
However, this encoding allows for more solutions with more than one
xia ¼ 1, e.g., xi1 ¼ 1 and xiK ¼ 1, which means that the same trace
will contribute to the stack-power twice — once shifted by t1 and
another time shifted by tK. The only way to avoid this happening is
by introducing a constraint into the QUBO formulation with the aid
of a penalty term. Here, we choose p

P
M
i¼1ð

P
K
a¼1 xia − 1Þ2, where p

is a Lagrange multiplier. The outer sum over i enforces the constraint
over each of the M traces. This penalty term is nonzero if more than
one xia is equal to one. Substituting the binary variables and adding
the penalty produces the IEQUBO

max
x∈f0;1gMK

XM
i¼1

XM
j¼iþ1

XK
a¼1

XK
b¼1

xiaxjbhdiðtaÞ; djðtbÞi

− p
XM
i¼1

�XK
a¼1

xia − 1

�
2

: (14)

In the process, we also have dropped the factor two in front of the
second term in equation 13. There are two apparent disadvantages of
this encoding: (1) a relatively noncompact representation of the Kro-
necker deltas and (2) as a result the need for the penalty term. The first
disadvantage will result in requiring probably more than theoretically
necessary qubits with as consequence the restriction to smaller prob-
lems fitting on the QPU, whereas the second one introduces a free
parameter with some additional disadvantages, which we will discuss
later.

Binary encoding

The second strategy is to encode the variables in equation 13 using
the standard BE, i.e., three is represented by variables x1 ¼ x2 ¼ 1

and xk>2 ¼ 0 (i.e., 112 ¼ 310) and 16 is represented by x5 ¼ 1 and
all others are zero (i.e., 100002 ¼ 1610). The hope is that with this
“more natural” encoding choice, additional constraints become ob-
solete and that fewer binary variables are required to encode the prob-
lem and its solution. As a consequence, this would allow for a larger
problem (with either a much greater number of shifts or a larger num-
ber of traces) to fit into the QPU and be simultaneously optimized. At
first glance, one would need Mk variables, where k ¼ dlog2 Ke;
however, this is not the case, as we will show next.
We introduce the BE by defining a Boolean polynomial of degree

k, ca∶f0; 1gk → f0; 1g,

caðxÞ ¼
X

A∈PðVÞ
ð−1ÞwðaÞþjAjY

i∈Ac

āi
Y
i∈A

xi: (15)

Previously, we have used a ¼ ½a1; a 2; · · · ; ak� as a vector of zeros
and ones representing a, (e.g., [1,0,1] describes five),
āi ¼ mod2ðai þ 1Þ means not ai, and wðaÞ is the Hamming weight
— the l0 “norm” of a. Furthermore, PðVÞ denotes the powerset of
V ¼ f1; : : : ; kg, e.g., for V ¼ f1; 2; 3g, we have
PðVÞ ¼ f∅; f1g; f2g; f3g; f1; 2g;
f1; 3g; f2; 3g; f1; 2; 3gg. For instance, for k ¼ 3, we obtain

caðxÞ ¼ �ā1ā2ā3 � ā1ā2x3 � ā1ā3x2 � ā2ā3x1

� ā1x2x3 � ā2x1x3 � ā3x1x2 � x1x2x3; (16)

where we sum, in equation 15, over all these in subsets of the power-
set of V (these are the A and their complements Ac, e.g., with the first
one being A ¼ ∅ and Ac ¼ V=A ¼ f1; 2; 3g). Each � choice is in-
dependent of the other ones and comes from the ð−1ÞwðaÞþjAj term.
Thus, to encode a shift corresponding to ta¼5, which has a ¼ ½1; 0; 1�,
we would use a polynomial of the form

c5ðxÞ ¼ x1x3 − x1x2x3: (17)

By definition, caðxÞ is one if and only if the binary representation of
a corresponds to that of x. In this example, it is easy to check that
c5ð½1 1 0�Þ ¼ 0 and c5ð½0 0 0�Þ ¼ 0, but c5ð½1 0 1�Þ ¼ 1.
When we replace the Kronecker deltas in equation 13 with the

encoding from equation 15, and because caðxiÞ is polynomials, we
obtain a higher-order unconstrained binary optimization (HUBO)
problem:

max
x∈f0;1gMk

XM
i¼1

XM
j¼iþ1

X2k−1
a¼0

X2k−1
b¼0

caðxiÞcbðxjÞhdiðtaÞ;djðtbÞi: (18)
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To obtain a standard BE, QUBO polynomials caðxiÞ need to be
replaced with a new (much larger) set of binary (auxiliary) variables
~xi. Moreover, this has to be done in such a way that the inclusion of the
auxiliary binary variables does not shift the optimal point of the original
higher-order model. There is a variety of different methods to achieve
this task (Venegas-Andraca et al., 2018). We wish to select a method
that does not add a very large number of auxiliary variables (which
unnecessarily use up space on the QPU). Methods due to Freedman
and Drineas (2005) or Ishikawa (2010), handle terms like x1x2x5. The
nonmonomials in individual variables xi, for example, terms of the
form x21x2x5, are handled by the pairwise substitution method (Dattani
and Bryans, 2014; Tanburn et al., 2015). This replaces frequently used
variable pairs in higher-order terms with the same and a new set of
auxiliary variables. Moreover, a penalty term is added to ensure that
the optimum point does not move. The quadratization process is car-
ried out using the “make_quadratic” functionality (McGeoch et al.,
2020), which uses a blend of the aforementioned three methods. In
the end, with this more promising encoding, we are still left with a
constraint and several variables that are larger than initially expected.
In the next section, wewill try to determine the maximum problem size
that could fit on the QPU for these two encodings.

Maximum problem size for purely quantum
optimization

The machine’s hardware graph and the minor embedding strat-
egy determine the maximum problem size that can be fit on the
QPU at once, and hence, the advantage one could expect from using
a quantum computer. Minor embedding determines howmany next-
neighbor coupled qubits need to be “tied together” to match the
problem graph, and hence, need to be excluded as an independent
variable. The more connected the machine’s hardware graph, the
less computationally intensive it is to embed any QUBO and the
fewer qubits become “sacrificed.” The worst-case scenario is where
the QUBO is “fully connected,” in that all variables are coupled to
each other (no zero entries inQ), and that appears to be the case for
SPM because the static shift of one trace relative to any other trace
contributes to the overall energy.

In fact, one can rigorously show that the indicator encoded problem
is fully connected, but it is less straightforward to show this result for
the easier BE. We instead studied this issue experimentally. We try
to determine the maximum value of KmaxðMÞ for some fixed value
of M by trying to find if a minor embedding is possible. The results
are shown in Figure 4a. With M traces in the CMP gather, and
the number of possible shifts K, the IEQUBO has MK variables,
and ð1=2ÞMKðMK − 1Þ quadratic interactions — a fully connected
graph. This means that in theory, when embedding the problem graph
on a quantum annealer,MK will be approximately constant (asM and
K vary). In practice, however, this is not necessarily the case due to
fabrication imperfections that render certain couplings and individual
qubits inaccessible. This is why the orange line shown in Figure 4a is
not straight. For the BE, the theoretical bounds analysis is much more
difficult. The binary HUBO consists of M log2 K variables; however,
after quadratization, the exact number of variables is not immediately
known. We have found empirically this number to be roughly
ð1 − ð1=KÞÞMK. The number of quadratic terms was roughly
ð1=2ÞMK2 logK for K ≤ 23, and asymptotically ðK ≫ 23Þ tends
to ð1=2ÞMKðMK − 1Þ — the number of quadratic terms found
in IEQUBO. Thus, for a smaller number of shifts, the BE model con-
tains fewer variables and quadratic terms than IEQUBO and is not a
fully connected problem, perhaps offering some advantages, such as
handling a much larger number of traces at once. This could be of
interest when extending the hybrid workflow to include chunking
of large CMP gathers and multiple attempts at realignment with differ-
ent sets of allowable shifts SK . Finally, we also see that the total num-
ber of variables MK ∼ 27 is similar to that found for fully connected
problems on the 5000 qubits quantum annealer (McGeoch et al.,
2020). This is of course no longer true for a BE model, where for
K ≤ 23 the problem is visibly “less than fully connected.”
However, it should be stressed that the minor-embedding com-

putation by the quantum computer software suite took only a few
seconds for IEQUBO in contrast to minutes for maximum size BE-
QUBOs. This could be due to two reasons. First, a deterministic
algorithm for an a priori known to be fully connected graph is more
efficient, rather than for one which is just short to meet this quali-
fication (such as the BEQUBO). Second, the quadratization step

could become a dominant part in the computa-
tional cost for large K problems. Thus, when try-
ing to optimize alignments of many CMP gathers
in a processing flow, perhaps a predetermined M
and K quadratization algorithm could be pro-
vided by the user once, such that the structure
of the BEQUBO problem graph is fixed and only
the hdiðtaÞ; djðtbÞi terms need to be recomputed
every time.

Classical preprocessing

The preprocessing is relatively straightforward
and requires finding the inner products hdiðtaÞ;
djðtbÞi for all possible pairs of time shifts and
traces. This may seem like a near-brute-force
sampling approach that we are trying to avoid
with QA; however, it is important to note that
here we only need to calculate the pairwise over-
laps, and the ones involving a larger number of
traces need not be found. These inner products
can be calculated efficiently as

Figure 4. (a) A log-log plot showing the maximum size of a problem that can fit on a
QPU at once. (b) The trace used to generate gathers for the controlled experiments.
(c–f) The box-and-whisker diagrams of the QUBO-relative errors, with dots showing
outliers 1.5 times outside the interquartile range.
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hdiðtaÞ; djðtbÞi ¼
X
ω

F ½dið0Þ��F ½djð0Þ�eiωðta−tbÞ; (19)

where F denotes the Fourier transform. Here, the sum is over all
frequencies ω, and * denotes the complex conjugation. The Fourier
transforms need to be calculated only once per trace, and maximally
only KðK − 1Þ possible combinations of eiωðta−tbÞ are required. Al-
ternatively, if the allowable shifts in the set SK correspond to the
integer multiples of the signal sampling interval, then we can find
all possible inner products at once from F−1½F ½dið0Þ��F ½djð0Þ��
and collecting the time sample corresponding to time t ¼ ta − tb.
It is important to note a major advantage of this formulation rel-

ative to the I/O limitations discussed in the “Quantum computing in
a nutshell” section. Here, the classical information contained in the
original problem — the crosscorrelations between pairs of shifted
traces — remains classical because it is mapped onto the biases and
the coupling strengths of the Ising Hamiltonian, which is a tuning
parameter inside a quantum annealer. The relevant information is
not only abstracted away from a classical problem in a very compact
fashion — just one scalar for each trace pair and relative shift —
but also at no point do we have to create a quantum register, in
which the information about the seismic signal is encoded in
and manipulated within quantum amplitudes ak from equation 1.

Quantum annealing

The quantum computer software toolkit (McGeoch et al., 2020)
makes this part of the programming rather simple. The developer
has to specify only three parameters: the annealing time, the chain
strength, and the Lagrange multiplier, all of which have an impact
on the solution (Coffrin, 2019). In what follows, we will briefly
describe the meaning of the three parameters and report on our ex-
perience with selecting particular value ranges.
The annealing time can be chosen in the 1–2000 range and rep-

resents the actual physical time in microseconds spent on the
annealing process on the quantum computer. Based on the controlled
experiments discussed later, we have found that setting this parameter
in the 100–500 μs range is sufficient because longer annealing times
were not the main driver leading to improved solutions.
The chain strength plays a major role in minor embedding be-

cause it specifies the strength of the physical coupling between
neighboring (on the machine’s hardware graph) qubits, whose val-
ues have to be “tied-together.” Tying together qubits means that they
should not act as independent variables. The chain-strength param-
eter has to be set high enough, such that the physical quantum sys-
tem ensures that the qubits return the same value; however, there is
no guarantee of that happening, which results in “chain-breaks” —
an often-found problem with the previous generation of quantum
computers (Rieffel et al., 2015). Setting this value to infinity would
of course seem like an obvious choice; however, (1) this is an actual
physical system, thus it cannot have an infinite amount of energy,
and (2) this would prohibit finding the solution to the problem. The
latter is caused by the fact that the system would be tuned toward
favoring the tied-up qubits having the same value, rather than any-
thing else. Finding the solution to the actual problem (the qubits
relevant for the problem and not the machine’s hardware graph)
would be of secondary importance. The last problem has to do with
resolution, which we will discuss later. The solution to the problem
is found using the “uniform_torque_compensation” functionality,

which is a proprietary algorithm that attempts to strike the right bal-
ance between optimally unbroken chains and maximum resolution.
Finally, the Lagrange multiplier p has to be determined, which is

done by experimentation. The penalty term adds energy on top of
the first term, which means that a large value of p that ensures that
the encoding-resultant constraint is preserved will suppress the en-
ergy of the first term. This is the same problem as with setting the
chain strength, except that the penalty term pertains to the problem
rather than the machine’s hardware graph. Quantum annealers have
a limited energy resolution that the machine Hamiltonian can han-
dle. This has the consequence that adding a large amount of energy
in the constraints (also from chains) pushes the energies of all the
other solutions together. This is a problem that has two origins,
quantum and classical, which dictate that the actual energy of a
quantum system (and hence the encoding of the solution to the op-
timization problem we seek) is broadened. Quantum mechanics,
specifically the Heisenberg’s uncertainty principle, dictates that
the exact energy of something can only be found if it is measured
for an infinitely long time (much like a DC component of any sig-
nal). Classically, we should remember that the qubits are subject to
thermal fluctuations (noise) present inside and outside of the QPU,
which can shift the energy levels of each qubit and hence result in
the same solution corresponding to slightly different energies every
time a qubit register is read out. Therefore, a good balance between
resolution and the enforcement of the constraint (magnitude of p)
has to be found. A general rule could be to set p an order of mag-
nitude larger than the largest coefficient in the first term. However,
more advanced approaches might be required to better fine tune the
value of p, e.g., by experimentation on problems with a known sol-
ution. In our experiments, we have noticed that when applied to the
large BEQUBO problems, this could be a time-consuming process.
This is because most of the computational effort is spent on HUBO
quadratization. In the next section, we show that the problem of find-
ing the right constraint or chain strength could perhaps be lessened by
(relatively) inexpensive classical postprocessing.

Classical postprocessing

With the list of challenges mentioned previously, it should not
come as a surprise that QA in some cases failed to output a global
optimum. As wewill show later, the output often was not even a local
minimum. The cause of this could be multifold: incomplete tunneling
to a global optimum, suboptimal parameter setting, and quantum and
environmental noise. To obtain a more robust outcome and reduce the
requirements and sensitivity to careful parameter tuning, we propose
to use a classical postprocessing procedure to correct the QA output.
For cases in which the outcomewas at most a couple of bit flips away
from a global optimum, we can use a steepest descent algorithm,
which greedily evaluates if flipping a given bit increases the QUBO
energy. The postprocessing step can be run within the quantum com-
puter provider software suite.

NUMERICAL EXAMPLES

In the spirit of geophysical methods, we first verify our approach
on several simple synthetic examples with known solutions and
later test the approach on a realistic case. We will use the former to
verify that our classical-quantum workflow works, in which we will
be able to study every part from input to output separately. We then
switch to testing the generic and proprietary black-box classical-
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quantum hybrid solver, in which a larger problem, in a QUBO for-
mulation, is optimized by a combination of problem segmentation,
QA of a smaller subproblem, and merging, as well as classical
optimization.

Controlled experiments

The purpose of the controlled experiments is to illustrate the
method described previously in detail and to test the efficacy of the
workflow and potential problems encountered at each step. The ap-
proximately 5000 qubit machine that was used for our experiment
can handle a maximum problem size of 180 variables, which needs
to be distributed between M and K. In the following experiments,
we have opted for MK ¼ 64 because, for MK > 100, we have ob-
served that the chances of finding the global optimum without pre-
processing have practically shrunk to zero, the reasons for which
require further research. We have studied two extreme cases: a
many-trace problem with 16 traces scrambled with four shifts
ðM;KÞ ¼ ð16; 4Þ, and a many-shift problem with four traces
scrambled over 16 shifts ðM;KÞ ¼ ð4; 16Þ. We have generated
these 4- and 16-trace gathers using multiple copies of the same trace
(see Figure 4b), which was chosen to generate a large number of
possible local optima. The traces were shifted by an amount from
SK that was later used in encoding. In this way, the problem has an
exact and known solution (global optimum). A range of annealing
times was used because we expect that the longer that parameter the
more likely it is to reach the global optimum. To generate output for
further statistical analysis of solution distribution, we repeated the
QA process 500 times. The results are shown in Figure 4c–4f, in
which we calculate the relative error ϵðx 0Þ of the quantum an-
nealer’s output x 0 relative to the actual global optimum configura-
tion x0 given by

ϵðx 0Þ ¼
���� x

T
0Qx0 − x 0TQx 0

xT0Qx0

����; (20)

before and after postprocessing. Note that this relative error might
differ from that for the original SPM in equation 10 as ϵðx 0Þ is
evaluated at the QUBO level in equation 5, which, in particular
for the BE, features auxiliary variables with a constraint function.
For many traces, unlike for BEQUBO, QA IEQUBO did not

yield the global optimum. Applying postprocessing changed the
solution energy distribution significantly such that the optimal
solution was found by IEQUBO more often (see Figure 4c and 4d).
Interesting differences between the two encodings can be observed

for the many-shift problem (see Figure 4e and 4f). There, at first BE-
QUBO found solutions with a greater stack power compared with the
IEQUBO; however, neither resulted in finding the global optimum.
The distribution of solutions obtained by BEQUBO produces many
of them with a far larger relative error compared with the IEQUBO.
Postprocessing helped the IEQUBO to find the optimal solution,
which required approximately three iterations of the greedy algo-
rithm. This postprocessing choice, however, did not help the BE-
QUBO. This step was, at most, as computationally expensive as
building the QUBOs and had very minor overall effect on the com-
putational cost. We anticipate that the postprocessing choice is par-
ticularly helpful and native to the IEQUBO, whereas this is less so for
the BEQUBO. This could be due to bit flips on the auxiliary (con-
straint) variables introduced by quadratization. The discussion on the
impact of these variables on the initial problem and the encoding-spe-

cific postprocessing choice are beyond the scope of this work and
require further in-depth investigation.
The differences between the many-shift or many-trace problem

for the two encodings sheds some light on the optimal choices and
the solution quality within a hybrid workflow. This is particularly
evident for larger problems. For example, one could benefit from
solving a few shifts and many traces, maximum size problem,
and simultaneously loop over different choices of possible shifts
in SK . We also see that there is a relationship between the encoding
choice and how successful that, or another type of postprocessing,
could be in obtaining the global optimum. The observations require
further investigation and are likely to be important when problem-
specific classical problem segmentation is used, or when the prob-
lem is run on a more powerful quantum annealer, such as the one
slated for release in the coming years.

Larger uncontrolled experiments and hybrid solvers

We also have tested the generic classical-quantum hybrid solver
that is provided by the quantum annealer (McGeoch et al., 2020) to
estimate optimal residual statics for a much larger data set. We have
decided to use the Society of Exploration Geophysicists Advanced
Modeling (SEAM) Arid Model synthetic data set, representing a
realistic desert environment characterized by complex geologic fea-
tures, such as karsts, wadis, sand dunes and other unconsolidated
sediments, outcropping bedrock, and highly variable topography
(Oristaglio, 2015). One of the seismic data sets produced by SEAM
for this model, called “classic data set 1,” has been decimated to
reproduce a standard seismic survey with sources and receiver
crosslines spaced 100 m and 150 m, respectively, and inline spatial
sampling of 50 m for the sources and 25 m for the receivers. Such a
decimated data set has been processed with a transmission surface-
consistent scheme (Colombo et al., 2021): the traces have been
sorted in a CMP and common-offset domain (XYO) before apply-
ing residual statics correction. In this example, we show the behav-
ior of the quantum annealer for one XYO bin consisting of 108
traces in which we have used SK with 16 equidistant shifts every
6 ms, giving 16108 ≈ 10126 possible solutions. Approximately 1700
variable QUBO was constructed in the same fashion as outlined
previously and sent to the quantum annealer. For this problem,
unlike the previous examples, it is now known a priori what the
solution looks like.
The difference between the generic hybrid and the dedicated quan-

tum workflow discussed previously is many fold. First, the generic
hybrid solver optimizes the QUBO by means of classical algorithms
as well as by segmenting the problem and optimizing parts of it on a
quantum annealer. This way a larger than MK ≈ 27 problem can be
processed by the hybrid solver. No control or ability to significantly
influence the process is granted to the user. The optimization also
does not pay attention to the physical nature of the initial problem
and only focuses on the QUBO, which by then is stripped of any
physical meaning known only to the user. At the end, the solver out-
puts only a single optimal outcome and provides the total amount of
time that was spent on the quantum annealer. Whether the final out-
come, or parts of it, are found using the quantum computer or just by
means of classical algorithms is not communicated to the user, which
makes it difficult to interpret the degree of “quantumness” of out-
come of the hybrid solver with scientific rigor.
In Figure 5, we show the data used on input, the outcome of the

simple crosscorrelational solver (sensitive to cycle skipping), and
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the result of the hybrid solver applied to the IEQUBO. The hybrid
solver output has the energy 10.7% higher than that of the simple
crosscorrelational approach. Applying the hybrid solver to the BE-
QUBO was unsuccessful, resulting in solutions with the stack
power smaller than the input, hence, with a much worse alignment.
This could be due to greater focus on satisfying the constraint (aux-
iliary) variables and perhaps additional difficulties when automati-
cally partitioning the larger problem. We believe that instead of
further researching the reasons for that, it might be more worthwhile
to construct a purpose-built problem partitioning classical-hybrid
workflow using the findings from the previous section.

DISCUSSION

Quantum computing is entering a higher technological readiness
level, and it is now important to ask what applications it will be most
suitable for. In the process, it is becoming clear that perhaps the
initially considered gate-model applications, such as factorization
or unstructured database search, are not going to be the most rel-
evant applications everyone is hoping for. It is more likely, however,
that the future could feature a significant amount of quantum-as-
sisted optimization. This is particularly true for the noisy intermedi-
ate scale machines of the 2020s. In all this, the adiabatic or analog
quantum computing paradigm appears to be gaining popularity and
QA appears to be a very interesting candidate for solving real-world
applications. The main reason for that is that the use cases are rel-
atively clear, and they require relatively straight-forward classical
algorithms to support the quantum optimization step. These ma-
chines also are much more robust to noise — a topic that we were
only able to cover briefly. For these reasons, understanding and de-
veloping the QUBO or IM formulation on any optimization prob-
lem in geophysics might be worthwhile exploring. Because several
recipes for NP-hard problems to QUBO or IM conversion exist
(Lucas, 2014), it might be very convenient to
identify the computational complexity classes
and types of optimization problems commonly
found in geophysics. In the end, it will be the
work of geophysicists to find the QUBO for their
geophysical problem and incorporate it in a
meaningful workflow. This process can and
should be started already today, while waiting
for the purely quantum engineering problems
to be solved, which will enable building quantum
annealers that feature larger and more intercon-
nected QPUs. Quantum computing in geoscience
could benefit from a structured framework in
which software practitioners, researchers, aca-
demic educators, and professional associations
work together and learn from each other to accel-
erate developments in this exciting field (see,
e.g., Piattini et al, 2020).
Based on what we have seen for the SPM

problem, there are two relevant questions that
need to be answered for a successful porting
of an application onto a quantum computer:
(1) what are we trying to accomplish when we
attempt to solve a problem on a quantum com-
puter and (2) what are the characteristics of a
suitable candidate for a QA application? Quan-
tum computing often is promoted as something

that would solve a very specific problem with some computational
complexity scaling speed up. For geophysical applications today
that speed up is most likely to be found when trying to find strictly
global optimum of some multimodal optimization problem solved
using a quantum annealer. This is because the gate-model QC is still
in its relative infancy, and appropriate algorithms are lacking. As far
as QA is concerned, we have to consider the pre- and postprocess-
ing, as well as the partitioning overhead and embedding as addi-
tional computational cost. Therefore, it is only the search for the
global optimum in a problem with a second-best local optimum
far away in the parameter space that could bring substantial advan-
tages. In other words, we are only interested in the global optimum,
and we would like the added certainty that we have found it rather
than just a “better” solution. In addition, a suitable geophysical prob-
lem has to be combinatorial in nature, where continuum optimization
problem tools do not yield good results (like sudden shallow anoma-
lies induced discontinuities) or a nonconvex optimization problem,
which currently is being replaced/approximated with a second-best
alternative. Finally, a problem which (1) is susceptible to easy par-
titioning, (2) has possible encoding which results in a sparsely con-
nected problem graph, and (3) has an intuitive and easy to implement
quality control and classical postprocessing measures is more likely
to be solved with quantum annealers with a limited number of qubits.
A problem frequently found in geophysics, yet not strictly com-

binatorial in its nature, which appears to meet these specifications
is least-squares optimization with sparsity requirements on the
solution. This technique often is used in seismic data interpolation
(Cao et al., 2011), simultaneous source separation (deblending)
(Kumar et al., 2015), and denoising (Pilikos and Faul, 2017).
One of the most prominent ways to enforce sparsity is to use
the least absolute shrinkage and selection operator (LASSO) objec-
tive function (Tibshirani, 1996). In this unconstrained formulation,

Figure 5. Results of 108 traces of the SEAM arid model data set in the XYO domain.
(a) Unaligned traces used on input. (b) The result of a crosscorrelational (determinis-
tic) solver. (c) The result of a generic classical-quantum hybrid solver. (d) Shifts applied
to (a) to produce (b) in solid red and (c) in dashed blue.
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the objective function consists of two terms: a data-misfit quadratic
term and a sparsity-promoting regularization term — typically, the
l1-norm of the solution vector. The LASSO formulation is of par-
ticular interest to this discussion because it has been demonstrated
in Ayanzadeh et al. (2020) that a version of it with binary variables
can be converted into a QUBO problem. However, geophysical ap-
plications usually require real-valued solution vectors. Away to ad-
dress this issue is an extension, described in Ide and Ohzeki (2022),
that allows for approximating vectors of real numbers by a product
of a matrix of predefined weights and a binary vector — a form of
encoding not too dissimilar as the sampling trick used in equa-
tion 12. This, of course, comes at the cost of a reduced number
of “real-valued” variables available for optimizing (similar to the
set SK in the RRSE problem). A partial remedy is to work with
small patches of data, which is common practice in denoising
and deblending workflows. An intriguing aspect of the quantum
version of LASSO is that the l0-norm is used in the regularization
term. Classical computer implementations tend to use the l1-norm
for sparsity regularization because the l0 version of the problem is
NP hard. The fact that the quantum LASSO solves the l0-regular-
ized objective function could lead to sparser solutions than the
classical version, possibly less affected by signal noise leakage.
A problem frequently found in geophysics and perceived as

costly is sorting a list of numbers. Other than applications during
standard seismic data processing, sorting also is used as a subrou-
tine in many other algorithms, for example, calculation of truncated
(α-trimmed) mean values, in which a controlled percentage of out-
liers are discarded in the process (Bednar and Watt, 1984). This is
particularly useful as a robust estimator of the mean value in the
presence of noise, which finds applications in tomography (Gersz-
tenkorn and Scales, 1988), stack gather denoising (Watt and Bednar,
1983; Haldorsen and Farmer, 1989), seismic interpretation (Al-Dos-
sary and Marfurt, 2007), and robust inner product calculation
(Moore et al., 2016), which sometimes replaces the usual inner
product in regression algorithms. A QUBO formulation for this
problem has been proposed by Bauckhage and Welke (2021),
and hence it would seem that this would be an interesting candidate
for QA. However, it is important to consider the full picture here
because sorting only becomes prohibitively costly for large data
sets. The limitation stems mainly from I/O in which the trace head-
ers are being sorted, but the entire trace needs to be accessed with it.
The sorting process has efficient algorithms, with the fastest imple-
mentation scaling as Oðn log nÞ; and the solution is relatively easy
to verify to be correct, putting this problem in the P computational
complexity scaling class and hence be an unlikely candidate for QA.
Moreover, it is unlikely that a QAwould be able to be a stand-alone
solution, especially when its QUBO is fully connected and con-
sumes many qubits to minor embed. It is much more likely that
again a classical-quantum hybrid sorting algorithm would be re-
quired, but the benefit of using a quantum computer for this task
is not that obvious.
A last plausible example pertains to a field that has seen growing

popularity in the recent years — ML. The training of an ML algo-
rithm is a large optimization problem, which can suffer from many
local minima and barren plateaus, hence it could benefit from QA
or other quantum computing algorithms (Phillipson and Chiscop,
2021c).
Finally, regarding the SPM problem, there are several elements

worth considering in the follow-up work. First, we have noticed that

the encoding choice could play a major role for QA, and recently a
more machine-native, so-called domain-wall, encoding of discrete
variables has been proposed by Chancellor (2019). Second, this en-
coding can be thought of as a running sum of the IE, and hence
transitioning from one discrete variable to the next requires only
a single bit flip instead of two for IE or potentially many more
for BE, which is one of the reasons why it is thought to be more
efficient (Chen et al., 2021). It also offers some improvement when
it comes to the number of possible variables it can encode, which
could be advantageous provided that the constraints that would need
to be introduced are not too complex to implement. Third, one can
attempt to exercise greater control over the annealing schedule and
implement some of the techniques presented by Pelofske et al.
(2020). Fourth, there are several classical tricks known from
“classical” RRSE or other optimization algorithms, such as FWI,
that can be incorporated in the hybrid workflow as pre- or postpro-
cessing. Fifth, most likely the real power of QA for SPM would be
unlocked with a hybrid solver in which a too-large-for-the-QPU
problem is split into subproblems individually optimized and then
merged again. SPM is definitely a problem that can be subject to
easy partitioning and using a purpose built, rather than the all-pur-
pose classical-quantum hybrid workflow used in this work (Booth
et al., 2017), would be the natural next step. Finally, SPM is a step
for other purposes in seismic data processing, (for example, Etgen,
2020), and may require a different hybrid workflow than the one
proposed here.

CONCLUSION

Quantum computing is an umbrella term for several emerging
hardware architectures, which by controlling the quantum state
of some physical system try to perform calculations. The problem
is that it is not obvious what practical application and at what scale
could be implemented on what device. In this work, we have shown
that QA could be a great tool for solving NP-hard problems in geo-
physics, characterized by rapidly varying multimodal objective
functions. This could be a great tool in particular, in which only
the global optimum is relevant, and all other local minima (espe-
cially those far in the parameter space) should be avoided. In par-
ticular, we have shown how to cast SPM as a QUBO — a quantum-
native form of the problem. We have discussed two discrete variable
encodings, their advantages and disadvantages, which are likely to
be present for other geophysical use cases. Most significantly, we
have shown the importance of embedding the quantum computer
within a classical-quantum hybrid workflow, in which not just
the best quantum result, but all outputs, are used and postprocessed
to identify the most plausible global optimum. This approach to
analyzing the quantum computer output transcends this particular
application. We have identified several extensions aimed at poten-
tially further improving the probability of success as well as opti-
mize larger problems on a quantum computer as we scale up to take
steps toward attempting to benchmark these results against the best
classical algorithms. Finally, with this work we have offered not
only a tutorial into how to carry out SPM on a quantum annealer
but also presented an approach to discover and consider other ap-
plications than RRSE or completely other optimization problems
(QUBO) objective functions that could be run on an even larger
quantum annealer in the near future.
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DATA AND MATERIALS AVAILABILITY

No data have been required for this paper.

NOMENCLATURE

AI = Artificial intelligence
AQC = Adiabatic quantum computing
BE = Binary encoding
BEQUBO = Binary encoded quadratic unconstrained binary

optimization
CPU = Central processing unit
GPU = Graphical processing unit
HHL = Harrow Hassidim Lloyd (algorithm)
HPC = High-performance computing
HUBO = Higher-order unconstrained binary optimization
IE = Indicator encoding
IEQUBO = Indicator encoded quadratic unconstrained

binary optimization
IM = Ising model
LASSO = Least absolute shrinkage and selection operator
ML = Machine learning
QA = Quantum annealing
QML = Quantum machine learning
QPU = Quantum processing unit
QUBO = Quadratic unconstrained binary optimization
RRSE = Refraction residual statics estimation
SA = Simulated annealing
SEAM = SEG advanced modeling
SPM = Stack-power maximization
XYO = Horizontal (X, Y) and offset (O) sorted data
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