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Abstract
NedTrain is a Dutch company tasked with performing the maintenance of the rolling stock of the national
railway company, NS. NedTrain owns several workshops at different locations. The scheduling in one such
workshop will be taken as point of departure for the discussion in this paper. After discussing a suitable
representation of the NedTrain task workplan problem that allows for a significant speed up in answering
basic questions about schedules, we address the problem of modeling possible delays of individual tasks
in a NedTrain workplan in such a way that questions concerning the likelihood of violation of deadlines
can be easily answered. In particular, a method is presented to make use of a probabilistic representation
of the possible delays in task executions, making it possible to better evaluate the quality of the schedule
with regard to makespan extensions and deadline violations.

1 Introduction
NedTrain is a Dutch company tasked with performing the maintenance of the rolling stock of the national
railway company, NS. NedTrain owns several workshops at different locations. The scheduling in one such
workshop will be taken as point of departure for the discussion in this paper.

Typically, each workshop is confronted with the maintenance of arriving rolling stock units that arrive
at some time at the workshop and have to be repaired before an agreed upon departure time. For each unit a
set of maintenance tasks has to be performed. The time window of each such maintenance task is limited by
the arrival time and departure time of the rolling stock unit, the available resources (personnel availability,
tool or track availability) and some precedence constraints that might be imposed upon the tasks themselves,
such as requiring that a final inspection is the last task to be performed.

Taking into account all these restrictions, a preliminary work plan is composed where all the tasks
belonging to the rolling stock units to be maintained are placed in a partial order. Based upon this workplan,
NedTrain is able to answer basic questions as: what is the makespan of this schedule, i.e., what is the
completion time of the last job scheduled in the workplan, and does the workplan satisfy all the deadlines
imposed on the rolling stock units?

Example 1 As a practical example, consider two rolling stock units. The first one arrives at 08:00, and on
this train three maintenance tasks need to be performed, taking one, two and one hours respectively. The
due time for this train is 19:00. The second train arrives at 9:00, and needs two tasks: one of two hours and
one of three hours. This train has a due time of 22:00. Additionally, the last task of the first train shares a
resource with the last task of the second train, and as such, these tasks cannot be executed in parallel.

Often, however, disturbances of the proposed workplan occur. Tasks take more time than foreseen,
additional tasks have to be scheduled because inspection has shown that additional repair actions have to
be performed, or some tasks have to be delayed because of lack of personnel. Hence, NedTrain is not only
interested in having a scheduling tool where scheduling repair actions can be performed quite easily and
efficiently, but also in the question whether or not such scheduling repair actions are likely to be performed
in the near future with the current workplan and if so, whether there exists a better schedule where such
changes are less likely to happen.



In order to build a system capable of handling such questions, first of all, it is essential that basic oper-
ations on workplans such as computing schedules and checking whether or not deadlines will be violated
can be done very efficiently. Currently, Nedtrain has built a prototype to solve such task schedule problems
using Simple Temporal Networks (STNs, see [4]) as the underlying representation of tasks and their con-
straints. It is well-known ([3]) that solutions to such systems, i.e., suitable dispatching times of the jobs,
can be found in polynomial time. Testing these methods in practice on representative scheduling problems
originating from within NedTrain, it was found that a significant part of computation time was used purely
creating and maintaining the temporal network representing the solution. Improving the computation time
to manipulate operations on the STN could speed up the scheduling system significantly and would enable
the representation and manipulation of larger scheduling problems than can be handled at this moment.

Therefore the first problem we will deal with in this paper is the following question:

Is there a suitable representation of the NedTrain task workplan problem that allows for a
significant speed up in answering basic questions about properties of schedules derived from
such work plans?

As we remarked before, speeding up the current problem, however, is not the only problem NedTrain
is interested in. In this paper we will also focus upon an important problem which is encountered at Ned-
Train, and probably in almost every other organization as well: the actual execution duration of jobs might
often exceed the predicted execution time. Such delays can easily influence the rest of the schedule or
the makespan, or they might even cause a violation of the deadlines imposed upon the completion of jobs.
Therefore, we will also address the following problem:

Is it possible to model possible delays of individual tasks in a NedTrain workplan in such a way
that questions concerning the likelihood of violation of deadlines can be easily answered?

To address both these problems, we start by defining the underlying task scheduling problem and investigate
its embedding in STNs. Then we show that common operations on task scheduling problems such as extract-
ing solutions can be achieved much faster by using specialized algorithms rather than using STN-inspired
solution methods. In particular we will show that common operations requiring O(n3) time on STNs can be
performed in linear time using a direct representation.

Next, we will introduce delays of task durations and investigate methods to establish their consequences
for makespan extensions as well as deadline violation. In particular, a method is presented to make use of
a probabilistic representation of the possible delays in task executions, making it possible to better evaluate
the quality of the schedule with regard to makespan extensions and deadline violations.

2 Preliminaries
With the global form of the problem outlined above, this section will be used to formalize the exact details.
The first problem we have to address is the exact specification of the NedTrain maintenance scheduling
problem. We call this problem the task schedule problem, where given a partial order of tasks to be executed
we have to find out whether there exists a scheduling of the tasks meeting the deadlines specified.

2.1 The task schedule problem
We start by defining the task schedule problem.

Definition 1 A task schedule problem is a five-tuple (T,≺, l, a, d), where T is the set of tasks to be sched-
uled, ≺ a precedence relation defined on T , l : T → N+ defining the length of each task, a : T → N+

the release (arrival) times, and d : T → N+ the due times of the tasks. It is assumed that the precedence
relation ≺ induces a partial order on the set of tasks T .

The goal is to find assignments to each time point variable, satisfying the constraints imposed by the
precedence relation, the task lengths, release times and due times.

Example 2 The example problem described in the introduction can be modeled with five time points, one
for each task. Points t1, t2 and t3 correspond to the first train, and t4 and t5 to the second train. Time
is measured in hours relative to a reference time point. If we take 08:00 as reference time point, a(t1) =
a(t2) = a(t3) = 0, since the first train arrives at 08:00. For the second train, we have a(t4) = a(t5) = 1.



In similar fashion, the due times are set: d(t1) = d(t2) = d(t3) = 11 and d(t4) = d(t5) = 14. For the task
lengths, we have l(t1) = l(t3) = 1, l(t2) = l(t4) = 2 and l(t5) = 3. Lastly, the precedence constraints must
be set. It is assumed that only one task can be performed at a time on each train, so we have t1 ≺ t2 ≺ t3
and t4 ≺ t5. Additionally, due to the resource constraint described between t3 and t5, either t3 ≺ t5 or
t5 ≺ t3 has to be added. In this case, t3 ≺ t5 is chosen.

2.2 Finding solutions
To solve the task schedule problem, we need to find a start time for every task respecting all constraints.
One way is to embed the problem in a so-called Simple Temporal Network or STN. Such an STN is a tuple
S = (T , C) where T is a set of time points and every constraint c ∈ C is of the form τi − τj ≤ wi,j where
τi, τj ∈ T and wi,j is a given constant. A solution of an STN S is an assignment σ of values to time points
in T such that all constraints are satisfied. It is well-known that deciding whether or not such an STN has a
solution or finding a solution can be done in polynomial time.

It is simple to embed a task schedule problem (T,≺, l, a, d) into a simple temporal network S = (T , C):

• For each task ti ∈ T , T contains two timepoints τi,1 and τi,2 representing the starting time and the
end time, respectively, of task ti. Besides these time points a reference time point z is added to T .

• For each precedence constraint ti ≺ tj , C contains two constraints τj,1−τi,2 ≤ ∞ and τi,2−τj,1 ≤ 0.

• For each task ti ∈ T , C contains two constraints τi,2− τi,1 ≤ l(ti) and τi,1− τi,2 ≤ −l(ti) to encode
the task durations.

• And, finally, for each task ti ∈ T , C contains the constraints z − τi,1 ≤ −a(ti) and τi,2 − z ≤ d(ti)
to encode the restrictions on release time and the due time.

To find a solution for an STN, the Floyd-Warshall algorithm can be used to specify the earliest and latest
starting times. Finding such solutions requires roughly O(n3) time.

Although STNs might be used to solve the task schedule problem, we can solve quite a lot of problems
much faster by specializing algorithms to task schedule problems instead of solving them via their STN
representation. We will start by computing the minimal and maximal solutions of a task schedule problem
and then show how arbitrary solutions can be obtained in linear time instead of cubic time.

Such a more efficient computation of the earliest and latest start times is possible by exploiting the
topological ordering defined by the precedence relationships. Defining PRE(ti) as the set of direct precedents
of ti, i.e., PRE(ti) = {t ∈ T | t ≺ ti}, the earliest starting time EST(ti) can be computed by calculating the
maximum of the earliest finishing times of the predecessors, except if the release time is later, in which case
the release time is used as earliest starting time. Hence, we have:

EST(ti) = max({EST(t) + l(t) | t ∈ PRE(ti)} ∪ {a(ti)}) (1)

The latest starting time LST(ti) can be defined in similar fashion, using the set of successors SUC(ti) =
{t ∈ T | ti ≺ t} of a task ti:

LST(ti) = min({LST(t)− l(ti) | t ∈ SUC(ti)} ∪ {d(ti)− l(ti)} (2)

To compute these starting times efficiently, we use a topological ordering of the underlying graph (T,≺).
This ensures that each time point is only updated once. Since the topological ordering can be computed in
linear time [5], earliest and latest starting times for all tasks can be computed in O(n) time.

Example 3 One topological ordering for the example is [t4, t1, t2, t3, t5]. Using this ordering, the earliest
start times are computed as follows:

• EST(t4) = max({EST(t) + l(t) | t ∈ ∅} ∪ {a(t4)}) = a(t4) = 1

• EST(t1) = max({EST(t) + l(t) | t ∈ ∅} ∪ {a(t1)}) = a(t1) = 0

• EST(t2) = max({EST(t) + l(t) | t ∈ {t1}} ∪ {a(t2)}) = EST(t1) + l(t1) = 1 + 1 = 2

• EST(t3) = max({EST(t) + l(t) | t ∈ {t2}} ∪ {a(t3)}) = EST(t2) + l(t2) = 2 + 1 = 3

• EST(t5) = max({EST(t) + l(t) | t ∈ {t3, t4}} ∪ {a(t5)}) = EST(t3) + l(t3) = 3 + 1 = 4

In similar fashion, the latest start times can be computed: LST(t1) = 7, LST(t2) = 8, LST(t3) = 10,
LST(t4) = 9 and LST(t5) = 11.



1 q ← ∅
2 while ∃t ∈ T do
3 select starting time σ(t) ∈ [EST(t), LST(t)]
4 for ti ∈ SUC(t) do
5 a(ti)← max(a(ti), σ(t) + l(t))
6 if a(ti) was updated then q ← q ∪ ti
7 end
8 UPDATE-EST(q)
9 q ← ∅

10 for ti ∈ PRE(t) do
11 d(ti)← min(d(ti, σ(t))
12 if d(ti) was updated then q ← q ∪ ti
13 end
14 UPDATE-LST(q)
15 q ← ∅
16 remove t from T

17 end

Algorithm 1: FIND-SOLUTION

Input: q: queue of nodes to be updated
1 while q 6= ∅ do
2 let ti be the topologically lowest task in q
3 EST(ti) = max({EST(t) + l(t) | t ∈ PRE(ti)} ∪ {a(ti)})
4 if EST(ti) was updated then q ← q ∪ SUC(ti)
5 remove ti from q

6 end

Algorithm 2: UPDATE-EST

Input: q: queue of nodes to be updated
1 while q 6= ∅ do
2 let ti be the topologically highest task in q
3 LST(ti) = min({LST(t)− l(ti) | t ∈ SUC(ti)} ∪ {d(ti)− l(ti)}
4 if LST(ti) was updated then q ← q ∪ PRE(ti)
5 remove ti from q

6 end

Algorithm 3: UPDATE-LST

2.3 Finding arbitrary solutions
Like in STNs, given these minimal and maximal starting times for the tasks, we can construct arbitrary
solutions using FIND-SOLUTION (see Algorithm 1). Such an arbitrary solution algorithm can be used during
execution: actual start times might be altered due to external factors, the algorithm can update the schedule
when the actual start time of tasks becomes known. This algorithm begins by fixing the start time σ(t)
of an arbitrary task t, within the interval [EST(t), LST(t)]. Fixing this start time has consequences for the
predecessors and successors of t: any predecessors must be finished at σ(t), and any successors can only
start after σ(t). Therefore, the algorithm adjusts the due time of the predecessors and the release time of
the successors, such that the due time is at or before σ(t), and the release time is at or past σ(t). Then, the
procedures UPDATE-EST and UPDATE-LST (see Algorithm 2 and 3, respectively) are used to propagate the
effects of the changed due/release times through the network. The task for which the start time was decided
is removed from the network, and the algorithm starts over again until all start times have been decided.

The propagation through the network after choosing each σ(t) ∈ [EST(t), LST(t)] ensures that future
task start times are compatible with σ(t). In the worst case, O(n2) time is needed to find a solution. If the
tasks to which start times are assigned are chosen in a sequence respecting their topological ordering, the



propagation can be combined with the start time assignment. This reduces the time complexity of finding a
solution to O(n).

3 Delay management
As noted in the introduction, being able to cope with delays during execution of the schedule is important.
In this section, we will first introduce the general concept of a delay and how to cope with them during
execution. Then, the reverse is done, to calculate how sensitive to delay the schedule is. Finally, probabilistic
techniques are introduced to analyze the schedule using advance information on delay distribution.

A delay is modeled as additional time δ(ti) needed for the execution of the task, increasing the task
length l(ti) to l(ti) + δ(ti). If the delay is sufficiently large, parts of the network might have to be updated:
the earliest starting times of some or all of ti’s successors might need to be increased, and the latest starting
time of ti and some or all of its predecessors might need to be decreased. To update the earliest starting
times, UPDATE-EST(SUC(ti)) can be used. Similarly, to update the latest starting times, UPDATE-LST(ti)
can be used.

Example 4 In our example described earlier, suppose t2 suffers a delay of one hour, δ(t2) = 1, such that
l(t2) increases to three. UPDATE-EST is called with q = SUC(t2) = {t3}. This procedure starts by updating
EST(t3) to EST(t2) + l(t2) = 1 + 3 = 4. Then, SUC(t3) = {t5} is added, and immediately processed:
EST(t5) is set to EST(t3) + l(t3) = 4 + 1 = 5. Since SUC(t5) = ∅ and q is empty as well, processing stops.

With these procedures, a delay in a task can be propagated in O(n) time, since every node is at most
visited once. While a full recomputation of earliest and latest start times can also be performed in O(n),
the procedure described here is, in general, faster, since not all nodes have to be visited. The exact speedup
however depends on the structure of the network. In the example above, the speedup is very small: except
t1, all nodes have to be visited.

In some cases a delay is sufficiently large to violate one or more of the constraints in the network. This
can fortunately be easily detected by making use of the computed latest start time of the delayed task: if the
new earliest start time is later than the latest start time, one or more due times will be violated. Since the
latest start times are pre-computed, such a violation can be detected in constant time.

3.1 Delay resistance
The idea outlined in the previous paragraph can also be applied in reverse: instead of waiting on a delay
and checking if it can be absorbed by the schedule, we can calculate in advance the level of delay resistance
δ⊥(ti) = LST(ti) − EST(ti), i.e., the time which can maximally be absorbed by the schedule before due
time violations will occur. If this is done for each task, it is possible to gain insight in the robustness of the
schedule, in terms of being able to handle various delays.

Example 5 For the example problem, we can compute that δ⊥(t1) = δ⊥(t5) = 3, and δ⊥(t2) = δ⊥(t3) =
δ⊥(t4) = 1. From this, it is clear that the schedule is less sensitive to delays in t1 and t5 than to delays in
t2, t3 and t4. During execution, this can be taken into account by extra monitoring of these last three tasks,
or even allocation of extra resources.

Next to causing due time violations, delays can extend the minimal makespan MM of a schedule. If we
define the critical starting time CST(ti) as

CST(ti) = min({CST(t)− l(ti) | t ∈ SUC(ti)} ∪ {MM − l(ti)}) (3)

and propagate this through the network, we know for each task the latest time at which it can be started
without extending the minimal makespan. The delay level δ+(ti) = CST(ti) − EST(ti) then gives an
indication of the delay resistance each task has in the schedule with respect to the minimal makespan. Also,
instead of the critical path1, we can define a set of critical tasks Tc = {ti ∈ T | δ+(ti) = 0}, in which any
delay will have immediate effect on the minimal makespan.

1The critical path in a schedule is a sequence of tasks with the longest total duration, hereby determining the minimal makespan of
the schedule.



Table 1: Task length probability distributions

Task length 1 2 3 4 5

t1 0.80 0.20
t2 0.60 0.30 0.10
t3 0.70 0.20 0.10
t4 0.95 0.05
t5 0.85 0.10 0.05

3.2 Using advance delay information
If advance information is known about the likelihood of certain delays occurring during schedule execution,
it is worthwhile to be able to assess the delay-resistancy of a schedule, for example by determining the
likelihood a given makespan will be met. To be able to do this, the advance delay information has to be
represented in some form, and it has to be propagated through the network. One of the more intuitive ways
of representing a potential delay is to include uncertainty in the task durations.

Discrete probability distributions seem like a good candidate to represent the task duration uncertainty,
since they fit well with the generally sparse character of the available information. While it would be possible
to fit continuous distributions to the task duration information, this tends to overrepresent the available
information. Additionally, discrete distributions make it possible to simplify the modeling of inspection-and-
repair tasks, which are very common in maintenance. These tasks represent the inspection of a component,
with the chance that a repair needs to be performed. While modeling the repair tasks as an optional tasks
with some probability is possible, discrete distributions enable us to model both task in one single task, with
a bi-modal probability distribution.

An additional argument for using discrete probability distributions is that whatever representation of this
uncertainty is chosen, it must be able to support the operations needed to propagate it through the network.
Calculating the maximum end time of the predecessors for each task is very difficult using continuous
probability distributions; using discrete distributions this problem is avoided.

3.3 Operations on continous probability distributions
To support the use of continous probability distributions, we must define the basic operations for task sched-
ule calculations. If we assume two random variables X1 and X2, with distribution functions f and g,
respectively, defined on some finite subset of N, the needed operations can be defined as follows:

• For the maximum of two independent random variables, the cumulative distribution function is used,
since the maximum of two cumulative distributions can easily be calculated: Pr(max(X1, X2) ≤
x) = Pr(X1 ≤ x)Pr(X2 ≤ x).

• Similarly, the minimum can be calculated: Pr(min(X1, X2) ≤ x) = 1− Pr(min(X1, X2) > x) =
1− Pr(X1 > x)Pr(X2 > x).

• For the sum, the convolution (f ∗ g) of the two distribution functions f and g is calculated:

(f ∗ g)(n) =
∑

m∈supp(f),m−n∈supp(g)

f(m)g(n−m), (4)

where supp(f) denotes the support of f , i.e., supp(f) = {x | f(x) 6= 0}.

Example 6 To demonstrate the operations, assumeX1 has distribution f(1) = 0.9, f(2) = 0.1 and f(n) =
0 otherwise, and X2 has distribution g(1) = 0.8, g(2) = 0.15, g(3) = 0.05 and g(n) = 0 otherwise.
X1+X2 now has distribution f ∗g, with (f ∗g)(2) = f(1)g(1) = 0.72, (f ∗g)(3) = f(2)g(1)+f(1)g(2) =
0.215, etc.

To calculate max(f, g), we first need the cumulative distribution functions F and G of X1 and X2:
F (0) = 0, F (1) = 0.9 and F (n) = 1 for n ≥ 2; and G(0) = 0, G(1) = 0.8, G(2) = 0.95
and G(n) = 1 for n ≥ 3. Then, we can compute max(F,G): max(F,G)(1) = F (1)G(1) = 0.72,
max(F,G)(2) = F (2)G(2) = 0.95, etc. Converting this back to a probability distribution function, we
obtain max(f, g)(1) = 0.72, max(f, g)(2) = 0.23 and max(f, g)(3) = 0.05.
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Figure 1: Probability distribution of the makespan of the schedule

Note that the maximum operation assumes independently distributed random variables; in actual sched-
ules this condition might not always hold. Still, it is believed that for most schedules, the error introduced
by this assumption is marginal.

To apply this to the example problem introduced earlier, consider the task length probability distributions
in Table 1. Most tasks have the peak of their distribution around the original task length. Task t3 is a slight
exception, it is modeled as an inspection task. In most (p = 0.70) of the cases, this task will last only one
hour. But in some cases, the inspection performed will lead to a significant amount of additional work, hence
the peak around l(t3) = 4. Using the data from Table 1, it can be calculated that the expected value of the
makespan is 8.17. The probability that the due time of the first train is violated is none; for the second train
this probability is p = 0.0001. The probability distribution for the makespan is shown in Figure 1.

While the precedence ordering decision t3 ≺ t5 made sense using the original data, with the more
detailed task duration data from Table 1, it might make more sense to reverse this ordering. Using t5 ≺ t3,
the expected makespan slightly decreases to 7.30. While the due time for the second train will now always
be met, the probability for a due time violation for the first train is now p = 0.006. The new probability
distribution is also shown in Figure 1.

3.4 Computational complexity
Using discrete probability distributions obviously raises the computational complexity. If it is assumed that
all discrete probability functions are defined on equidistant points, the size of their support can be used to
represent the complexity of calculations on the distributions. For each sum X1 + X2, the support size of
(f ∗ g) is defined as∣∣ supp(f ∗ g)∣∣ = ∣∣[min(supp(f)) + min(supp(g)),max(supp(f)) + max(supp(g))]

∣∣
=
∣∣ supp(f)∣∣+ ∣∣ supp(g)∣∣.

For each point in the support of (f ∗ g), Equation 4 has to be computed. The number of operations is
therefore bounded by

(∣∣ supp(f)∣∣+ ∣∣ supp(g)∣∣)2.
For max(X1, X2), we have∣∣ supp(max(f, g))

∣∣ = ∣∣[max(min(supp(f)),min(supp(g))),max(supp(f) ∪ supp(g))]
∣∣

< max(| supp(f)|, | supp(g)|).

Each point in the support of max(f, g) only needs one multiplication, hence the number of operations is
bounded by max(| supp(f)|, | supp(g)|).

If the network has the form of a linear sequence of tasks with p = |≺| precedence constraints, the worst-
case support size for the makespan is smax = sp, if all task lengths have equal support size s. To arrive at this
makespan, p additions of probability distributions have to be performed, of cost 4s2max. Over all additions,
the total cost is thus O(s2maxp) = O(s2p3). Calculating the maximum does not increase the support size
of the probability distributions. In the worst case, every precedence link induces the computation of a
maximum; the total cost of determining all maxima is therefore O(smaxp) = O(sp2).

The main cause of the higher computational complexity is the dependence of the support size of the
distribution on the number of precedence constraints in the graph. A very simple remedy is to limit the size
of the support beforehand, trading a bit of accuracy for a gain in computational speed. If smax is limited to



some constant c, the addition complexity reduces toO(s2maxp) = O(p). If a calculation results in probability
mass outside the maximum support interval, this probability mass is ignored; the probability mass inside the
support interval must however be normalized to sum to one.

3.5 Determining consistency
When using normal numbers, determining if the schedule is consistent (i.e., if all due time constraints are
respected) is rather straightforward: if it holds for all tasks t that EST(t) ≤ LST(t), it is easy to see that start
times for the tasks can be chosen in such a way that all tasks are started before their latest starting times,
and as such will meet their due times. Using discrete probability distribution, the comparison somewhat
more involved. Instead of calculating a yes or no answer, we can compute the probability Pr(X1 ≤ X2) =
Pr(X1−X2 ≤ 0) that the due time will be met, whereX1 is the random variable representing the distribution
of the earliest start time of t, and X2 of the latest start time.

4 Discussion
Summarizing, we have introduced a simple formalism with enough expressive power to support the schedul-
ing of NedTrain workshop activities. Due to its simplicity, manipulation of schedules can be performed very
efficiently. In particular, it has been shown that the schedule can be updated quickly when delays occur
during execution. To make use of advance delay information, the basic operations needed for schedule
manipulations are redefined in terms of discrete probability distribution.

Next to updating the schedule to incorporate delays, the algorithms described in this paper can be used
for fully dynamic schedule manipulation. If a constraint ta ≺ tb has been added or removed, the earliest and
latest start time information can be updated using the same process as used for a delayed task. For the earliest
starting times, UPDATE-EST(tb) can be used; for the latest starting times, UPDATE-LST(ta) can be used.

If a task tc needs to be inserted between two existing, dependent, activities ta and tb in the STN, the
delay calculations described above can be used as well. The insertion is only possible if l(tc) ≤ δ⊥(ta),
similarly, the makespan is not affected if l(tc) ≤ δ+(ta). Updating the constraints of dependent tasks can
be done by propagating a “delay” of l(tc), using the procedure described earlier.

Note also that, if multiple options for placing a task are available, the delay levels of the various tasks can
be used to effectively guide some higher-level algorithm in choosing a suitable location; a location where
the slack is large enough to absorb the new task completely is usually to be preferred over a location where
(almost) all of the task length has impact on the makespan of the schedule.

An important future research direction is the combination of the task schedule framework with con-
straint posting algorithms ([1, 2]). The efficient operations, combined with the possibility to add and retract
constraints, make this formalism very suitable to better explore the search space of resource-constrained
schedules. Additionally, the delay level information and the probabilistic task length representation repre-
sent useful sources of information for new and improved heuristics. Lastly, it is important to investigate the
error caused by the assumption of independently distributed task lengths in calculating the maximum.
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