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ABSTRACT

In this study, a pressure filtration model for a slurry of milk fat crystal aggregates is devel-
oped, validated and used to investigate the effect of pressure-time profiles. The model
focuses on the expression step and describes oil flow locally. The filter cake is modelled
as a double porous non-linear elastic medium with permeabilities described by the re-
lation of Meyer & Smith. Conservation equations lead to a coupled system of differential
equations, which are numerically solved exploiting a finite-difference scheme.
Simulations with the model give insight through graphs of volume fractions versus filter
chamber location at any given time step. Diagrams of oil outflow velocities and solid fat
content of produced filter cakes show qualitatively good behaviour when compared to
experiments.
Studying the effect of pressure-time profiles, the model predicts that a low rate of pres-
sure increase gives the driest filter cakes. Simulations also indicate that putting steps in
pressure-time profiles is hardly effective.
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1
INTRODUCTION

When the gods performed the sacrifice,
with the first Man as the offering,

spring was the clarified butter,
summer the fuel,

autumn the oblation.

They anointed the Man,
the sacrifice born at the beginning,

upon the sacred grass.
With him the gods, Sadhyas,

and sages sacrificed.

From that sacrifice in which everything was offered,
the melted fat was collected,

and he made it into those beasts who live in the air,
in the forest,

and in villages.

The Rigveda, Mandala 10, ca 1200 BCE [1]
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D AIRY is as old as the first agricultural revolution. The Dey in dairy is thought to have
a root meaning to knead bread, pointing to squeezing buttermilk out of butter and

whey out of cheese [2]. Pressure filtration is in that sense part of the essence of dairy.
To better understand the relation between pressure filtration and dairy, this introduction
starts with a general introduction into filtration. After that, the benefits of butter are
briefly discussed and this is followed by a short description of the production process
of milk fat fractions. Next, a literature review and scope of this thesis is presented. The
introduction is concluded with an outline of the thesis.

1.1. GENERAL INTRODUCTION TO FILTRATION
Filtration is a process in which a solid-liquid mixture is separated through a semi-permeable
material that retains the solids and conducts the liquid (see figure 1.1). The liquid that
is passed through is known as filtrate. Filtration can be seen in many different processes
throughout the world in industry, in biological systems and so forth. For example, kid-
neys clean our blood by filtering it. In addition, one can think of preparing food and
beverages in the kitchen. Making coffee or preparing pasta usually involves filtration.

Figure 1.1: Filtration is a process in which a solid-liquid mixture, the feed, is separated through a semi-
permeable material that retains the solids, while the liquid passes through as filtrate.

If the particles are larger than the pores of the filter medium, a filter cake will form
on the filter medium. Therefore, this type of filtration is known as cake filtration[3]. In
turn, pressure filtration is a form of cake filtration where the filter cake is squeezed out
in the final stage to retrieve more liquid from the solid-liquid mixture, thereby attaining
a better separation. This press step, also known as expression step, is often done using a
pump which creates a positive pressure above the semi-permeable separating surface[4].
A filter press usually processes suspensions in a batch-wise manner. Pressure filtration
serves a wide range of chemical and process industries. It is the right technique to use
for suspensions that contain fine particles that settle slowly or when the solid content of
the feed is high[4]. Examples where pressure filtration is utilised include:

• Dewatering of waste water sludge in waste water treatment[5],

• Thickening of minerals tailings in the mining industry[6], and

• Expression of biological material such as sugar beet pulp in the food industry[7].
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The membrane filter press with compressible filter chambers was developed in the early
1980s for processing palm oil[8]. It is treated in more detail in section 2.1.
Pressure filtration is the subject of this thesis and to this day it is the preferred sepa-
ration method for producing edible oil fractions[8].

Figure 1.2: The membrane filter press.

1.2. BUTTER, A CHEF’S GOLDMINE
Butter and other milk fat-based products are valuable products for the dairy industry
due to their unique taste, their textural characteristics, and nutritional value[9]. For the
same reasons they are indispensable ingredients in a chef’s kitchen. Furthermore, milk
fat is lauded for its reputation as a natural product[10].
Triglycerides, more commonly known as fats, are esters from three fatty acids and glyc-
erol. Milk fat is the most complex natural fat[11]. It can be composed of a large variety of
fatty acids and has a wide melting range. Dry fractionation, also known as melt crystalli-
sation, is a physical separation process that can select milk fat components according
to melting temperatures[10]. This enables to produce milk fat fractions with different
functionalities. The liquid fraction is called olein fraction. The solid fraction, that can
still contain part of the liquid, is called stearin fraction. Olein fractions are used for their
structural, nutritional and sensorial functionalities. Examples include ice cream and
butter that is spreadable at refrigerator temperature. The stearin fractions are mainly
used for structural functionalities. One can think of specialty butters for the bakery, de-
livering extra crunchy croissant crusts adding to a better mouth feel. In chocolate it is
used to act as an anti blooming agent.
Improving separation results in improved functionalities of milk fat fractions, creat-
ing more value for dairy companies. This thesis focuses on improving separation effi-
ciency.

1.3. PRODUCTION PROCESS OF MILK FAT FRACTIONS
The production process starts with cattle in the meadow eating grass, ruminating and
producing milk. The milk is collected from which the cream is skimmed. The cream is
centrifuged undergoing a phase inversion process reaching a fat content of nearly
100 %. The resulting substance is named anhydrous milk fat (AMF), better known to
chefs as clarified butter. The AMF is then separated using dry fractionation into an olein
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(O) and a stearin (S) fraction.
Dry fractionation comprises two steps: crystallisation and pressure filtration. In the
crystallisation process the AMF is completely melted at 60◦C and then cooled down in a
slowly stirred batch crystallizer according to a specific temperature profile that typically
takes a quarter of a day. In this slow process, fat crystals nucleate and grow, eventually
forming spherulitic aggregates that have a diameter of 100 µm in order of magnitude.
The result is a slurry of fat crystal aggregates in oil (see figure 1.3), which is pressure
filtrated using a particular pressure-time profile in a membrane filter press separating
olein from stearin.

Figure 1.3: Microscopical image of the slurry with the milk fat crystal aggregates. In the bottom right corner,
the 0.1 mm graphic scale is depicted.

Dry fractionation can be repeated on the O and S fractions in a multistep fractionation
to create higher order O and S fractions like OO, OOO or SS fractions, all with different
(melting) characteristics which can be useful in food products. With these fractions the
problem can arise that the produced filter cake is too wet, which constitutes a product
of poor quality that cannot be used or sold to costumers.
It is the purpose of this thesis and the model presented to give insights paving the way
for solutions to this problem.

Some remarks about word use in this thesis: the words olein and O fraction will be strictly
reserved for the filtrate, i.e. the oil that has been separated. The liquid phase that has not
been separated will be denoted oil or simply as liquid (phase). The words stearin and S
fraction will be used for the filter cake when the press step is finished.

1.4. LITERATURE REVIEW
Ruth formulated the basic filtration equations still in use today. His equations relate fil-
trate volume as function of time to pressure drop over the filter cake and filter medium
combined. These equations are based on filter cake averaged quantities such as specific
resistance and filter cake volume[12].
Carman was the first to take filter cake structure into account relating its porosity to
permeability[13]. Tiller et al. developed the conventional cake theory which combines
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Darcy’s law for the flow through porous media with the notion of a solid pressure[14].
This combination yields a diffusion equation with a diffusion coefficient that is named
(modified) consolidation coefficient. It was first used by Terzaghi to model the consolida-
tion of soils[15]. It is also in the field of soil mechanics that the concept of solid pressure
finds its origin. Solid pressure is the accumulated average normal stress on the filter cake
due to drag caused by liquid flow. Shirato expanded the Terzaghi model based on Voigt’s
notion of secondary consolidation to account for creep effects of the solid[16].

More recently, the work by Buttersack presented a simple approach to predict outcomes
in pressure filtration of biological material requiring only three material specific param-
eters [17]. His model revolves around a threshold value for the void ratio, for which an
elastic network is formed. This elastic network can be associated with dense sphere
packings for a filter cake composed of spherical particles. The threshold value defines
two zones, instead of chronological periods, that differentiate filtration from expression.
Lanoisellé’s paper on pressure filtration of cellular material is of interest as he recognises
and implements different volumes in the filter cake[18]. He describes having a double
porous medium which can account for flow from intraparticle to extraparticle volume
and differences in flow resistance. He points out, that for cellular filter cakes the expres-
sion step is much more complex than for mineral cakes. The same might hold for filter
cakes composed of AMF fat crystal aggregates. The Liquid-Containing Biporous Particles
Expression Model shows promising results in comparison to the more classical Terzaghi-
Voight and Terzaghi models. The paper by Petryk and Vorobiev uses a similar model to
describe the expression of soft plant materials[19]. However, in both papers, the studied
material and the applied pressures are very different from the ones subject in the present
thesis.
A couple of papers dealing with pressure filtration of a material very similar to AMF were
written by Kamst[20, 21]. Both papers deal with the expression of palm oil filter cakes.
Kamst incorporates viscoelastic models from soil mechanics into his expression model.
Nutting’s non-linear viscoelastic model was originally designed to model asphalt and
pitch[22]. In Kamst’s modified form, it shows good correspondence with experiments
[20]. Also, he reports good agreements with experiments using another non-linear vis-
coelastic model that takes into account the pressure history of the filter cake: the strain
hardening model. He uses this model together with an empirical relation for the per-
meability in an expression model. Numerical implementation is done with a finite-
difference scheme exploiting an exponential grid and a variable time step. Kamst’s ex-
pression model predicts a pressure of 4.7 bar above which the solid fat content (SFC)
does not increase[23]. He reports that constant pressure profiles in comparison with
time-dependent pressure profiles with the same end pressure do not lead to a higher
eventual SFC [24]. However, he did not compare different pressure-time profiles. The
current thesis provides in the need for this comparison.
Some of Kamst’s experiments and simulations exceed time scales that are relevant for
the current thesis by an order of magnitude. In pursuit of finding a model for cake per-
meability, he discards the Kozeny-Carman equation[25]. However, it can be questioned
whether Kamst uses the right porosity to draw this conclusion, as he ignores the double
porous nature of the palm oil filter cake.
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1.5. SCOPE OF THIS THESIS
The present thesis utilises Lanoisellé’s concept of the double porous medium to study
whether it can successfully model the expression of AMF filter cakes. Simulations based
on the model are used to investigate the effect of different pressure-time profiles on the
eventual SFC .

The overall goals of this thesis are:

• To develop a pressure filtration model and to write the computer code to perform
numerical simulations.

• To validate the pressure filtration model.

• To perform simulations to gain insight into critical factors that lead to a higher
olein yield.

Specific questions that will be addressed are:

• Is it favourable to apply a high rate of pressure increase in the pressure-time profile
during the expression of AMF?

• Given a certain rate of pressure increase, does a one-step linear pressure-time pro-
file give the highest eventual SFC ?

These questions will be answered by using the pressure filtration model developed in
this thesis.

1.6. OUTLINE OF THE THESIS
To create a firm foundation, the thesis will continue in chapter 2 with the Theoretical
background. Here, it is explained how the membrane filter press operates, concepts as
volume fraction, flow resistance, sphere packing and strain are introduced and govern-
ing equations are formulated. Chapter 3 formulates the novel Pressure filtration model.
One of the important elements of the model is that the aggregates are regarded as sources
for oil, when squeezed. Chapter 4 follows with a Numerical implementation of this
model. The finite-difference scheme will be treated and it is shown how the behaviour
near the boundary can be adequately dealt with. Next, the Results of comparisons of the
model with experiments and results of simulations to investigate different pressure-time
profiles will be presented in chapter 5. Chapter 6 completes this thesis with the Conclu-
sions and recommendations.



2
THEORETICAL BACKGROUND

I N this chapter the theoretical foundation is established for this thesis. First, the appa-
ratus on which pressure filtration of milk fat fractions is performed is presented. Then,

some geometrical definitions are given after which the governing equations for the filter
cake are formulated. This is followed by the concept of flow resistance and experimen-
tal relations for permeability. A description of deformation concludes this theoretical
background.

2.1. THE MEMBRANE FILTER PRESS

A membrane (plate) filter press, also known as diaphragm filter press, is composed of
vertical plates which can slide on a rail with two layers of filter cloth in between (see fig-
ure 2.1). Stationary plates alternate with plates with a membrane that encloses a com-
pression chamber on each side of the membrane plates. The plates form circa 3 cm thick
filter chambers when they are held together with a thrust cylinder. The slurry is fed from
the crystallisation tank into the filter chambers through a central pipe (see figure 2.2).
This is referred to here as the filling mode. In this mode most of the filtrate is produced.
When the filter chambers are full with crystal mass, the compression chambers are filled
with air or water squeezing the filter cakes to push out more oil. This pressing mode is
usually done with a prescribed pressure-time profile allowing the oil to flow through the
pores of the filter cake.
The operation is finalised by blowing nitrogen through the pipes releasing the last oil,
core cleaning and a cake discharge when the filter plates are taken apart which opens
the filter chambers.
Cleaning the filter press and its filter cloth is usually done by rinsing it with warm oil.

7
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Figure 2.1: One membrane plate and one stationary plate are indicated. When held together, they seal off a
filter chamber. The membranes separate the filter chambers from the compression chambers. In the filter
chamber on the right, the location of the two filter cloths is indicated. (Modified version of [26]).

Figure 2.2: Sludge (slurry) is fed through a central pipe filling the filter chambers. As the squeezing medium
is pumped inside, the membranes express the filter cakes. After core cleaning and membrane emptying, the
cakes can be discharged. (Image taken from [26]).
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2.2. VOLUME FRACTIONS OF A DOUBLE POROUS FILTER CAKE
The fat crystal aggregates in the process under consideration are spherulitic. Therefore,
a filter cake composed of these aggregates resembles a mono-disperse sphere packing.
The aggregate packing has pores that constitute the volume between the aggregates, the
interaggregate volume. The aggregates are also porous and consist of fat crystals and oil.
The pores of the aggregates are smaller by at least an order of magnitude compared to
the interaggregate pores, which justifies referring to the filter cake as a double porous
medium. A similar division of volumes and similar definitions treated in this section can
be found in the paper of Lanoisellé et al [18].
Four different volumes can be distinguished in a fragment of filter cake with total volume
δV (t ) which is depicted in figure 2.3:

1. Interaggregate volume δVi a ;

2. Aggregate volume δVa ;

3. Aggregate pore volume δVap ;

4. Solid fat volume δVs ;

Figure 2.3: Identification of different volumes within a fragment of filter cake. δVi a and δVa sum up to δV .
δVa consists of δVap and δVs .

The interaggregate volume and aggregate volume sum up to the total volume:

δV = δVi a +δVa . (2.1)

The aggregate volume is composed of aggregate pore volume and solid fat volume such
that:

δVa = δVap +δVs . (2.2)

Dimensionless volumes such as the interaggregate porosity ε1 and the aggregate poros-
ity ε2 are defined as follows:

ε1 ≡ δVi a

δV
, ε2 ≡

δVap

δVa
. (2.3)
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The volume fraction complements, i.e. the interaggregate solidosity s1 and the aggregate
solidosity s2, are formulated in a similar fashion:

s1 ≡ δVa

δV
= 1−ε1, s2 ≡ δVs

δVa
= 1−ε2. (2.4)

The total solidosity (s), i.e. the solid fat volume fraction, is written as:

s ≡ δVs

δV
= s1s2. (2.5)

Another ratio of volumes that is commonly found in filtration literature is the void ratio.
The following definitions of the interaggregate void ratio e1 and aggregate void ratio e2

are used in this thesis:

e1 ≡ δVi a

δVa
= ε1

s1
, e2 ≡

δVap

δVs
= ε2

s2
. (2.6)

In parallel, the total void ratio is defined as:

e ≡ δVi a +δVap

δVs
. (2.7)

2.3. GOVERNING EQUATIONS
In this section the conservation of mass and momentum are formulated for both the
solid phase and the interaggregate liquid phase to develop multiple useful relations.

2.3.1. CONSERVATION OF MASS
Mass conservation for the solid phase can be formulated as follows [27]:

∂(sρs )

∂t
+~∇· (sρs~vs ) = 0. (2.8)

Here, ρs and ~vs are the density and the velocity of the solid phase respectively.
Integration over a filter cake fragment with a volume δV (t ) = δx(t ) ·δy ·δz (see figure
2.4), applying both Gauss’s theorem and Leibniz–Reynolds transport theorem [28], leads
to:

d

dt

∫
δV (t )

sρs dV = 0. (2.9)

Considering δV (t ) À Vp , where Vp is the typical pore volume, taking the 1D geometry
encountered in the membrane plate filter press into account and assuming ρs constant,
equation 2.9 reduces to:

d

dt

∫
δx(t )

sdx = 0. (2.10)

This should hold for any slice thickness δx(t ) so that:

dω≡ sdx = constant, (2.11)
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defining the infinitesimal 1D solid volume dω. Equation 2.11 also expresses a transfor-
mation of coordinates x 7→ω that will be used in this thesis.

Analogously, taking ρl as the density of the liquid, conservation of interaggregate liquid
mass is formulated as [27]:

∂(ε1ρl )

∂t
+~∇· (ε1ρl~vl ) = 0, (2.12)

where the velocity of the liquid is denoted ~vl .

Figure 2.4: Conservation of mass for a small filter cake volume δV (t ) = δx(t ) ·δy ·δz.

Once more, integration over a tiny volume δV (t ) (depicted in figure 2.4) and appli-
cation of the above mentioned theorems is performed to arrive at:

d

dt

∫
δV (t )

(ε1ρl )dV +
∫

δV (t )

~∇· [ε1ρl (~vl − ~vs )]dV = 0. (2.13)

Following the same considerations as above concerning δV and geometry, assuming the
oil to be incompressible yields:

d

dt

∫
δx(t )

ε1dx +
∫

δx(t )

∂[ε1(vl ,x − vs,x )]

∂x
dx = 0. (2.14)

Using the transformation of equation 2.11, letting vσ ≡ ε1(vl ,x −vs,x ) denote the superfi-
cial velocity, taking the time derivative inside the integral and noting that the expression
must hold for any slice, simplifies equation 2.14 to:

∂

∂t

ε1

s
=−∂vσ

∂ω
(2.15)
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2.3.2. CONSERVATION OF MOMENTUM
Conservation of momentum for the solid phase in 1D can be written as [29]:

sρs
Ds vs,x

D t
=−∂τxx

∂x
+Fd − sρs g . (2.16)

In this equation
Ds vs,x

D t indicates the material derivative of vs,x moving with the solid
phase [30]. vs,x is the x-component of ~vs . τxx is the principal stress in the x-direction.
It is equal to the solid pressure ps that is encountered frequently in filtration literature
(ps ≡ τxx ). Fd is the force per unit volume of the liquid phase on the solid phase due to
the flow of the liquid, i.e. a drag force.
If the gravitational term g is negligible in comparison to the solid pressure gradient,
equation 2.16 becomes:

0 =−∂ps

∂x
+Fd (2.17)

In parallel, the Navier-Stokes equation for the interaggregate liquid can be stated as [29]:

ε1ρl
D~v

D t
=−~∇pl − ~Fd +µ∇2~v +ε1ρl~g , (2.18)

in which pl is the liquid pressure, µ is the viscosity of the liquid and~g is the gravitational
acceleration. In pressure filtration the assumption of creeping flow i.e. Reh ¿ 1 is usually
valid. The Reynolds number based on hydraulic diameter of the interaggregate pores,
Reh , has the aggregate diameter dp as a characteristic length scale [31]:

Reh = 2

3

ρl vσdp

s1µ
(2.19)

In the creeping flow regime the inertial terms can be neglected. Furthermore, in pressure
filtration the gravitational force is small in comparison to the pressure force. Finally,
because dp ¿ Ly and dp ¿ Lz , with Ly and Lz the characteristic dimensions of the filter
chambers perpendicular to the main flow, wall effects can be neglected and therefore
the viscous term can be dropped, reducing equation 2.18 to:

0 =−∂pl

∂x
−Fd , (2.20)

Following the suggestion of Brinkman [32], the drag force Fd is proportional to the super-
ficial velocity of the liquid and inversely proportional to the permeability k of the filter
cake:

Fd = µ

k
vσ, (2.21)

Substituting this expression in equation 2.20 gives a relation which is a modified version
of Darcy’s law [33]:

vσ =−k

µ

∂pl

∂x
. (2.22)

Another useful result can be obtained by addition of formulas 2.17 and 2.20:

∂pl

∂x
+ ∂ps

∂x
= 0, (2.23)
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which expresses that locally the pressure force due to the liquid pressure is in equilib-
rium with the stress on the filter cake at all times.
Integration of equation 2.23 shows that the sum of the liquid and solid pressure equals
the pressure drop over the whole cake ∆pk :

pl (x)+ps (x) = ps (0) =∆pk (2.24)

2.4. FLOW RESISTANCE IN A FILTER CAKE
In analogy with Ohm’s law, for a porous slab of thickness dx with permeability k(x) the
local flow resistance dR can be defined as:

dR ≡ dx

k(x)
. (2.25)

Integration over the filter cake with length L gives the total flow resistance of the filter
cake Rk :

Rk =
∫ L

0

1

k(x)
dx. (2.26)

This allows for a reformulation of equation 2.22:

vσ = ∆pk

µRk
. (2.27)

2.5. LAMINAR FLOW THROUGH A SOLID SPHERE PACKING
As stated in section 2.2, a filter cake composed of aggregates resembles a mono-disperse
sphere packing. For laminar flow through a mono disperse collection of spheres there
exist multiple relations describing permeability as a function of porosity and particle
size. In the filter cake, particle size is characterised by the aggregate diameter dp . The
Kozeny-Carman equation is often encountered in industry. It describes the strong de-
pendence of permeability on particle size and porosity as [13]:

k =
d 2

p

180

ε3
1

(1−ε1)2 . (2.28)

Generally, k and ε1 are functions of location in the cake x.
The ordering of the spheres gives rise to different porosities. The corresponding solidos-
ity is also known as the packing fraction. If the spheres are considered incompressible

there exists a maximum close packing fraction shcp
1 = 0.74 [34]. In practice, however,

this packing fraction might not be achieved due to the random nature of the process
and its lack of time. The packing is more likely to attain a random close packing fraction
sr cp

1 = 1−εr cp
1 ≈ 0.64 [34]. Before this fraction is reached in pressure filtration, the filter

chamber average ε1 is larger than εr cp
1 , the porosity at random close packing. This stage

is referred to as the filtration step (see figure 2.5).
Sphere configurations with porosities lower than the random close packing porosity can
only be obtained by compressing the spheres. In soil mechanics this process is known
as consolidation. In pressure filtration, it starts when the piston begins to touch the
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Figure 2.5: Stages in pressure filtration are discriminated through the interaggregate porosity. ε1 = εr cp
1 forms

the boundary between filtration step and press step.

spheres. As a stage, it is referred to here as the press step. It follows after the filtration
step (see figure 2.5). For consolidation (ε1 < εr cp

1 ) experiments have shown that Kozeny-
Carman is no longer valid [35, 36]. A similar relation for the permeability of a porous
medium in consolidation is given by Meyer and Smith [37]:

k =
d 2

p

90

ε4.1
1

(1−ε1)2 . (2.29)

Often however, it is found that relations for k give rather big errors on the order of 50%
and experimental relations for the permeability as function of porosity are used [35].
During an experiment on an AMF crystal aggregate slurry, it was found that the Meyer
and Smith relation improved the permeability estimation of the Kozeny-Carman relation
by half an order of magnitude [38].

2.6. LARGE DEFORMATIONS OF A POROUS MEDIUM
A measure of the relative change in length of a porous medium in compression is the
strain. In our case of interest, large one-dimensional deformations are encountered and
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therefore the logarithmic strain εl s is used. This thesis only deals with compression,
hence a convenient sign convention leads to the following definition:

εl s =− ln

(
δx(t )

δxu

)
, (2.30)

where δxu is the thickness of a porous medium slice before deformation. Using defi-
nitions 2.1, 2.2 and 2.5 introduced earlier together with conservation of mass (equation
2.10) for a deformed porous medium a relationship between strain and total void ratio
can be derived:

εl s =− ln

(
1+e

1+e0

)
. (2.31)

Here e0 corresponds to the total void ratio of the porous medium before deformation
(i.e. at random close packing).
For a non-linear elastic semisolid an elastic modulus E(εl s ) can be determined from the
slope of the stress (ps ) versus strain curve as follows:

E(εl s ) = dps

dεl s
. (2.32)





3
PRESSURE FILTRATION MODEL

I N this chapter the model for pressure filtration is developed. The model is built upon
results obtained in chapter 2. Apart from similarity in the formulation of the conser-

vation equations, this model is different from the models used by Lanoisellé et al [18]
and Kamst [39].
First, the conservation equations are revisited to implement the aggregates as a source
term for interaggregate oil. After that, the source term is elaborated, before putting all
the equations explicitly in terms of void ratios. The chapter is concluded with sections
on the boundary and initial conditions that are applied in the pressure filtration model.

3.1. CONSERVATION OF INTERAGGREGATE OIL WITH SOURCES
When a crystal aggregate is compressed, its volume changes. As the intrinsic densities
of the oil and fat are assumed constant, this can only be accomplished by a release of oil
from the aggregate. This is modelled by treating the aggregates as sources of interaggre-
gate oil and therefore equation 2.12 needs slight modification:

∂(ε1ρl )

∂t
+~∇· (ε1ρl~vl ) = s1ρl q, (3.1)

where q is the production of interaggregate oil volume per aggregate volume (in s−1).
Following the same steps as in the derivation that leads to equation 2.15, a result can be
obtained that is similar, apart from the source term:

∂

∂t

ε1

s︸ ︷︷ ︸
Accumulation

= −∂vσ
∂ω︸ ︷︷ ︸

Diffusion

+ q

s2︸︷︷︸
Source

(3.2)

The equation shows that the problem is essentially one-dimensional. The second term
in the equation might be recognised as a convective term instead. However, its diffusive
character will become clear later in this section.

17



3

18 3. PRESSURE FILTRATION MODEL

The accumulation term
The accumulation term can be rewritten as follows:

∂

∂t

ε1

s
= (1+e2)

∂e1

∂t
+e1

∂e2

∂t
(3.3)

The diffusion term
The diffusion term label will become clear by invoking Darcy’s law (equation 2.22) in
which the viscosity is taken constant over the filter chamber:

− ∂vσ
∂ω

= 1

µ

∂

∂ω
k1
∂pl

∂x
. (3.4)

The permeability of the interaggregate volume is denoted k1 = k1(e1).
Focussing on the liquid pressure gradient which plays an important role in the model,
making use of equations 2.23 and 2.32 and applying the chain rule twice:

∂pl

∂x
(2.23)= −∂ps

∂x
=−∂ps

∂ω

∂ω

∂x
=−s

∂ps

∂ω
=−s

∂ps

∂εl s

∂εl s

∂e1

∂e1

∂ω

(2.32)= sE

1+e1

∂e1

∂ω
, (3.5)

so that the pressure gradient can be seen to be linked to the gradient of the interaggregate
void ratio with respect to ω:

∂pl

∂x
= E

(1+e1)2

1

(1+e2)

∂e1

∂ω
. (3.6)

Applying this result to the diffusion term:

− ∂vσ
∂ω

= 1

µ

∂

∂ω

k1E

(1+e1)2

1

(1+e2)

∂e1

∂ω
, (3.7)

where the elastic modulus of the filter cake E can be determined from a constant load
experiment. This modulus depends on the filter cake strain and therefore E = E(e1,e2).
The diffusion term can now be recognised as such, as it is written in terms of a second
order derivative of the density like variable e1 with respect to the spatial coordinate ω.
This diffusive formulation is not uncommon, see e.g. Olivier et al.[33]

The source term
Finally, the source term can be reformulated:

q

s2
= (1+e2)q (3.8)

The production q = q(e1,e2) will be explored later on.

Putting all terms together gives:

(1+e2)
∂e1

∂t
+e1

∂e2

∂t︸ ︷︷ ︸
Accumulation

= 1

µ

∂

∂ω

k1E

(1+e1)2

1

(1+e2)

∂e1

∂ω︸ ︷︷ ︸
Diffusion

+ (1+e2)q︸ ︷︷ ︸
Source

. (3.9)
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Rearranging:

∂e1

∂t
= 1

(1+e2)

[
1

µ

∂

∂ω

k1E

(1+e1)2

1

(1+e2)

∂e1

∂ω
−e1

∂e2

∂t
+ (1+e2)q

]
, (3.10)

leaving a second order differential equation for the interaggregate void ratio which is
coupled with the differential equation for the aggregate void ratio.

3.2. CONSERVATION OF AGGREGATE OIL
The conservation of aggregate oil is formulated in a way similar to the conservation of
interaggregate oil as in equation 3.1:

∂(s1ε2ρl )

∂t
+~∇· (s1ε2ρl~vl2 ) =−s1ρl q. (3.11)

Here, ~vl ,2 is the velocity of the oil within the aggregates.
Once more, the derivation follows the same steps as is done going from equation 2.12
to equation 2.15 and writing vσ2 = s1ε2(vl2,x − vs,x ) as the superficial velocity of the oil
within the aggregates to arrive at:

∂e2

∂t
+ ∂

∂ω

( vσ2

s

)
︸ ︷︷ ︸

≈ 0

=−(1+e2)q. (3.12)

The second term in equation 3.12 is taken to be negligible as it is assumed that oil trans-

Figure 3.1: Looking through the eye of an oil parcel being squeezed out of an aggregate: Oil transport mainly
takes place through the interaggregate volume as it conducts the oil a lot better.

port mainly takes place through the interaggregate volume. This idea is sketched in fig-
ure 3.1. This assumption is justified by the fact that the permeability of the interaggregate
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volume is orders of magnitude larger than the permeability of the aggregates. A differ-
ence that arises due to a difference in characteristic length scales and the dependence
of permeability on this characteristic length scale as can be verified with the relation of
Meyer and Smith (equation 2.29). The resulting equation for the aggregate void ratio is:

∂e2

∂t
=−(1+e2)q. (3.13)

This result can be taken to rewrite the equation for the interaggregate void ratio as fol-
lows:

∂e1

∂t
= 1

µ(1+e2)

∂

∂ω

k1E

(1+e1)2

1

(1+e2)

∂e1

∂ω
+ (1+e1)q. (3.14)

The production of interaggregate oil q , which couples both differential equations 3.13
and 3.14, will be elaborated in the next section.

3.3. PRODUCTION OF INTERAGGREGATE OIL (I)
The production of interaggregate oil arises from transport of oil from within the aggre-
gates to the interaggregate volume due to compression of the aggregates. It can be writ-
ten as the product of the aggregate area per volume a, and the flux of oil from inside the
aggregate outwards, vl ,a→i a , as follows:

q = a · vl ,a→i a =
πd 2

p

(π/6)d 3
p
· k2

µ

∣∣∣∣−∂pl

∂x

∣∣∣∣= 6

dp
· k2

µ

∣∣∣∣∂pl

∂x

∣∣∣∣ , (3.15)

where a = 6/dp for spherulitic aggregates with diameter dp . It is assumed that the flow
out of the aggregates is Darcian, with a permeability based on the permeability of the ag-
gregates k2 = k2(e2) and the characteristic length within the aggregates equal to the size
of its fat crystals. Furthermore, the effective pressure gradient responsible for oil flow
from inside to outside of the aggregates is taken to be the pressure gradient in which the
aggregate is immersed, i.e. the pressure gradient present in the interaggregate volume.
Aggregates subject to compression release oil regardless of the direction of this pressure

Figure 3.2: The rheological model for the milk fat filter cake: two dashpots in series in parallel with a spring.

gradient, hence the absolute value of the pressure gradient determines production. Also
it is assumed that the diameter of the aggregates does not change, i.e. dp is constant al-
though the size of the aggregates changes as aggregate oil flows out during compression.
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Moreover, the full surface of the aggregates is taken to be susceptible of oil transport to
the interaggregate volume.
Equation 3.15, together with equation 2.23, completes the rheological model describing
the viscoelastic behaviour of the slurry. It can be represented by two dashpots in series,
in parallel with one spring as depicted in figure 3.2.

The result for the pressure gradient obtained earlier in equation 3.6, can be used to
rephrase equation 3.15:

q = 6

dp
· k2

µ

E

(1+e1)2

1

(1+e2)

∣∣∣∣∂e1

∂ω

∣∣∣∣ . (3.16)

3.4. VOID RATIO DEPENDENCE
In this section, all the equations that describe the compression of the filter cake are put
in terms of the void ratios e1 and e2, starting with the differential equation of the inter-
aggregate void ratio e1.

3.4.1. THE DIFFERENTIAL EQUATION OF THE INTERAGGREGATE VOID RATIO
For reasons mentioned in section 2.5, the relation of Meyer and Smith (equation 2.29) is
used for the permeability of the interaggregate volume k1:

k1 =
d 2

p

90

ε4.1
1

(1−ε1)2 =
d 2

p

90

e4.1
1

(1+e1)2.1 . (3.17)

The elastic modulus can be determined from experiments by fitting an exponential func-
tion with coefficients c1 and c2 through measurements of strain εl s at constant load ps

in the following way:
ps = c1 exp(c2εl s )− c1. (3.18)

Then, following definition 2.32, the elastic modulus of the filter cake can be expressed
as:

E(εl s ) = dps

dεl s
= c1c2 exp(c2εl s ). (3.19)

Substituting for the strain using equation 2.31:

E(e1,e2) = c1c2

(
1+e0

(1+e1)(1+e2)

)c2

. (3.20)

Putting the results for the permeability and the elastic modulus into the differential equa-
tion for the interaggregate oil (equation 3.14), putting terms that are constant with re-
spect to ω in front of the operator and contracting them with:

ce1 =
c1c2d 2

p

90µ
(1+e0)c2 , (3.21)

yields:

∂e1

∂t
= ce1

(1+e2)

∂

∂ω

[(
e1

1+e1

)4.1 (
1

(1+e1)(1+e2)

)c2 1

(1+e2)

∂e1

∂ω

]
+ (1+e1)q, (3.22)



3

22 3. PRESSURE FILTRATION MODEL

which can be rewritten in terms of the consolidation coefficient Ce (e1,e2):

Ce (e1,e2) = ce1

(
e1

1+e1

)4.1 (
1

(1+e1)(1+e2)

)c2 1

(1+e2)
, (3.23)

as:
∂e1

∂t
= 1

(1+e2)

∂

∂ω

[
Ce (e1,e2)

∂e1

∂ω

]
+ (1+e1)q. (3.24)

In this formulation, the constant ce1 can be identified as a maximum for the variable
consolidation coefficient Ce (e1,e2).

3.4.2. PRODUCTION OF INTERAGGREGATE OIL (II)
In the production term, the permeability of the aggregates k2 is once more described
by the Meyer and Smith relation. In this permeability, the characteristic diameter of the
crystals dc and the porosity of the aggregates ε2 are used:

k2 =
d 2

c

90

ε4.1
2

(1−ε2)2 = d 2
c

90

e4.1
2

(1+e2)2.1 . (3.25)

Putting this expression together with relation 3.20 into equation 3.16 yields:

q = 6

90µ

d 2
c

dp
· c1c2

(1+e0)c2

(1+e1)2+c2

e4.1
2

(1+e2)3.1+c2

∣∣∣∣∂e1

∂ω

∣∣∣∣ . (3.26)

Contracting constants with:

cq = 6

90µ

d 2
c

dp
· c1c2(1+e0)c2 = 6d 2

c

d 3
p

· ce1 , (3.27)

results in:

q = cq

(1+e1)2+c2

e4.1
2

(1+e2)3.1+c2

∣∣∣∣∂e1

∂ω

∣∣∣∣ . (3.28)

3.5. SUMMARY OF THE EQUATIONS
In this section, a summary of the equations that need to be solved for the press step in
the pressure filtration model is presented:

Equation 3.24, describing the evolution of the interaggregate void ratio:

∂e1

∂t
= ce1

(1+e2)

∂

∂ω

[(
e1

1+e1

)4.1 (
1

(1+e1)(1+e2)

)c2 1

(1+e2)

∂e1

∂ω

]
+ (1+e1)q, (3.29)

with a maximum for the variable consolidation coefficient:

ce1 =
c1c2d 2

p

90µ
(1+e0)c2 . (3.30)
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Formula 3.13, describing the change with respect to time of the aggregate void ratio:

∂e2

∂t
=−(1+e2)q. (3.31)

And the production term q connecting both differential equations that was found in
equation 3.28:

q = cq

(1+e1)2+c2

e4.1
2

(1+e2)3.1+c2

∣∣∣∣∂e1

∂ω

∣∣∣∣ , (3.32)

with:

cq = 6d 2
c

d 3
p

· ce1 . (3.33)

3.6. DOMAIN AND BOUNDARY CONDITIONS
The membrane plate filter press has filter chambers which in this thesis are assumed
to resemble rectangular cuboids. The chambers have filter cloths on both sides, which
presents a symmetric problem. The symmetry is illustrated in figure 3.3. It follows from
symmetry, that a domain with a length of 2L(t ) with filter cloths on both sides behaves
as a domain with a length of L(t ) with a filter cloth on only one side. The latter is chosen
in this thesis to simplify analysis. Hence, the domain starts from ω= 0, denoted bound-
ary Γ1, the position of the cloth, and runs up to ω = Ω, denoted Γ2, the position of the
piston as is indicated in figure 3.4. The cloth is assumed to be infinitely thin. Advantage
is taken from using the ω-coordinate system: in ω both boundaries are static, while in
x one would be dealing with a moving boundary problem, as the piston is moving. The
one-dimensional character of the problem was already mentioned below equation 3.2.

The boundary condition for the piston atω=Ω is a no-penetration i.e. Neumann bound-
ary condition for all modes of operation. However, the boundary condition for the cloth
at ω= 0 does depend on the mode of operation of the filter press.
During the filling mode, the first part is recognised as the filtration step as discussed in
section 2.5. The filtration step is not modelled in this thesis. When the interaggregate
porosity passes the point where it is lower than the interaggregate porosity at random
close packing, i.e. ε1 < ε

r cp
1 , the press step starts as was explained in section 2.5. In ex-

periments it was found that the press step already occurs in the filling mode [38]. In this
final stage of the filling step a Dirichlet boundary condition is imposed at ω= 0.
Between the filling mode and the pressing mode there can be a period of rest which is
named rest mode here. This mode is modelled with Neumann boundary conditions on
both sides of the domain.
When the pressing mode starts, the press step is continued and hence the boundary
condition for the cloth side is changed back to the Dirichlet boundary condition. The
various boundary conditions within the different modes of operation are summarised in
table 3.1.
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Figure 3.3: The symmetry of the filter chambers is exploited in this thesis.

Figure 3.4: The domain which represents half a filter chamber with its boundaries.

3.6.1. DIRICHLET BOUNDARY CONDITION
The boundary condition on the cloth side during the press step is an effect of the over
pressure that is being applied by the piston pp (t ). In general, this applied pressure is a
function of time and this function can be modified. This pressure is in equilibrium with
the total pressure drop ∆pt over the domain at all times, i.e.: pp (t ) =∆pt (t ). Due to the
fact that the oil flows through the filter cake and the cloth, the liquid pressure drop takes
place over both, i.e.:

∆pt =∆pk +∆pd , (3.34)

where ∆pd is the pressure drop over the cloth. Together with equation 2.27 it can be
found that the pressure drop over the cake ∆pk can be calculated with:

∆pk = pp

1+Rd /Rk
. (3.35)

In this equation Rd is the flow resistance of the cloth and Rk is the flow resistance of the
filter cake which can be found by using equation 2.26.
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Table 3.1: The various types of boundary conditions within the different modes of operation.

Boundary condition

Mode of operation Step Γ1 (ω= 0) Γ2 (ω=Ω)

Filling mode
(
ε1 > εr cp

1

)
filtration n/a (not modelled) n/a (not modelled)

Filling mode
(
ε1 < εr cp

1

)
press Dirichlet Neumann

Rest mode n/a Neumann Neumann

Pressing mode press Dirichlet Neumann

Next, the experimental relation 3.18 can be used to arrive at a boundary condition for
the strain:

ε
Γ1
l s = 1

c2
ln

(
∆pk

c1
+1

)
, (3.36)

which in turn can be translated into a boundary condition for the void ratio using 2.31:

eΓ1 = 1+e0

exp
(
ε
Γ1
l s

) −1. (3.37)

Finally, as the boundary value for the aggregate void ratio can be determined from its
differential equation (equation 3.31), the boundary condition for the interaggregate void
ratio can be calculated with:

eΓ1
1 = 1+eΓ1

1+eΓ1
2

−1. (3.38)

Note: it is assumed that in the pressing mode, the boundary value of the interaggregate
void ratio is only changed and subject to the boundary condition when the applied pres-
sure is higher than the pressure that is needed to obtain the boundary value that was
reached after the rest mode. This is the minimum pressure for oil outflow in the pressing
mode. It would be non-physical if a lower pressure would lead to an increased value of
the boundary value i.e. oil flowing back into the filter chamber.
No boundary conditions are required for the aggregate void ratio. Both eΓ1

2 and eΓ2
2 can

be obtained by solving equation 3.31, which only requires an initial condition.

3.6.2. NEUMANN BOUNDARY CONDITION
The no-penetration condition which is in place at the piston at ω=Ω at all times and at
the cloth at ω= 0 during the rest mode can be summarised as:

[vσ]Γ1
Rest mode = 0, [vσ]Γ2 . (3.39)

Equation 2.22 shows that this results in a boundary condition for the liquid pressure
gradient: [

∂pl

∂x

]Γ1

Rest mode
= 0,

[
∂pl

∂x

]Γ2

= 0, (3.40)
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which in turn, following equation 3.6, has a boundary condition for the interaggregate
void ratio gradient with respect to ω as a consequence:[

∂e1

∂ω

]Γ1

Rest mode
= 0,

[
∂e1

∂ω

]Γ2

= 0. (3.41)

3.7. INITIAL CONDITIONS
The initial condition for the interaggregate void ratio across the domain is determined
by its value at random close packing:

e1(ω,0) = ε
r cp
1

sr cp
1

. (3.42)

The initial value of the aggregate void ratio over the entire domain is also calculated from
known values associated with random close packing:

e2(ω,0) = sr cp
1

sr cp −1. (3.43)

The solid fat volume fraction at random close packing is denoted sr cp . By definition it is
connected to the total void ratio of the porous medium before deformation e0 as follows:

e0 = 1− sr cp

sr cp . (3.44)
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NUMERICAL IMPLEMENTATION

I N this chapter, a numerical implementation of the pressure filtration model is formu-
lated. Discretisations of the domain, time, the equations and the boundary conditions

are given. An estimation procedure for the ghost node concludes this chapter.

4.1. DISCRETISATION OF THE DOMAIN
The domain, which represents half a filter chamber, is discretised in a straightforward
manner using a uniform grid. The interval [0,Ω] is divided into J +1 nodes with position
ω j = j ·∆ω. The j in superscript denotes grid position. At each side, with indices j = 1
and j = J +3, a ghost node is added outside the domain, to allow for imposing boundary
conditions. The discretisation of the domain is depicted in figure 4.1.
To facilitate calculating the thickness of the filter cake at any time or any other thickness
averaged quantities, every interior node is assigned a length ∆ω which has an interval[
ω j − 1

2∆ω,ω j + 1
2

]
. Both boundary nodes have half the length of an interior node i.e.

1
2∆ω.

4.2. DISCRETISATION OF TIME
The time step of a variable is indicated with an i in superscript. The choice for the size
of the time step ∆t = t i+1 − t i is connected to the choice for the magnitude of ∆ω. To
impose stability in an explicit scheme, the following criterion is used:

Fo∆ = Ce0 ·∆t

∆ω2 < 1

2
. (4.1)

In this relation, Fo∆ is the local Fourier number and Ce0 is a constant which is an over-
estimation of the maximum for the consolidation coefficient ce1 , i.e.:

Ce0 À ce1 . (4.2)

27
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Figure 4.1: The discretisation of the domain: the shaded area represents the continuous domain with interval
[0,Ω]. The nodes, which are the discrete values of the void ratios are depicted as circles and the discrete strains
drawn as two dots connected by a line.

4.3. DISCRETISATION OF THE EQUATIONS
The equations are solved with an Euler-forward finite-difference scheme. Recalling the
differential equations of section 3.5, equations 3.29 and 3.31:

∂e1

∂t
= ce1

(1+e2)

∂

∂ω

[(
e1

1+e1

)4.1 (
1

(1+e1)(1+e2)

)c2 1

(1+e2)

∂e1

∂ω

]
+ (1+e1)q, (4.3)

which can be rewritten in a more compact form:

∂e1

∂t
= ce1 f (e2)

∂

∂ω
g (e1,e2)

∂e1

∂ω
+ (1+e1)q, (4.4)

and
∂e2

∂t
=−(1+e2)q. (4.5)

First, applying the Euler-forward scheme to the left hand side of equation 4.4:

∂e1

∂t
≈ e i+1, j

1 −e i , j
1

∆t
. (4.6)

Applying the product rule to the first term on the right hand side in equation 4.4:

ce1 f (e2)
∂

∂ω
g (e1,e2)

∂e1

∂ω
= ce1 f (e2)

[
g (e1,e2)

∂2e1

∂ω2 + ∂g (e1,e2)

∂ω
· ∂e1

∂ω

]
. (4.7)

Using central differencing, this term can be discretised as follows:

ce1 f i , j

[
g i , j e i , j+1

1 −2e i , j
1 +e i , j−1

1

∆ω2 + g i , j+1 − g i , j−1

2∆ω
· e i , j+1

1 −e i , j−1
1

2∆ω

]
. (4.8)
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The second term on the right hand side in equation 4.4 can be made discrete as follows:

(1+e1)q ≈
(
1+e i , j

1

)
q i , j . (4.9)

The discrete result for equation 4.5 is obtained analogously:

e i+1, j
2 −e i , j

2

∆t
=−

(
1+e i , j

2

)
q i , j . (4.10)

Focussing on the production term which was formulated in equation 3.32:

q = cq

(1+e1)2+c2

e4.1
2

(1+e2)3.1+c2

∣∣∣∣∂e1

∂ω

∣∣∣∣ . (4.11)

It is numerically implemented with:

q i , j = cq

2∆ω
(
1+e i , j

1

)2+c2

[
e i , j

2

]4.1

(
1+e i , j

2

)3.1+c2
·abs

(
e i , j+1

1 −e i , j−1
1

)
. (4.12)

To summarise and write out the result in explicit form, the equations that determine a
next time step for the void ratios are:

e i+1, j
1 = e i , j

1 +∆t ·{
ce1 f i , j

4∆ω2

[
4g i , j

(
e i , j+1

1 −2e i , j
1 +e i , j−1

1

)
+

(
g i , j+1 − g i , j−1

)
·
(
e i , j+1

1 −e i , j−1
1

)]
+

(
1+e i , j

1

)
q i , j

}
, (4.13)

and

e i+1, j
2 = e i , j

2 −∆t ·
(
1+e i , j

2

)
q i , j , (4.14)

with

f i , j = 1

1+e i , j
2

, (4.15)

g i , j =
(

e i , j
1

1+e i , j
1

)4.1  1(
1+e i , j

1

)(
1+e i , j

2

)
c2

f i , j , (4.16)

and the production term presented in equation 4.12:

q i , j = cq

2∆ω
(
1+e i , j

1

)2+c2

[
e i , j

2

]4.1

(
1+e i , j

2

)3.1+c2
·abs

(
e i , j+1

1 −e i , j−1
1

)
. (4.17)
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4.4. DISCRETISATION OF THE BOUNDARY CONDITIONS
The discretised equations for the boundary conditions follow naturally from the equa-
tions in section 3.6. They are treated here according to type: first, the Dirichlet boundary
condition and then the Neumann boundary condition.

4.4.1. DIRICHLET BOUNDARY CONDITION
A Dirichlet boundary condition is in place at boundary Γ1 during the press step (see
figure 4.1). The boundary Γ1 corresponds to variables with index j = 2. The applied
pressure by the piston at every time step p i

p needs to be translated to a boundary value

e i ,2
1 . This is done according to the discrete counterparts of equations 3.35 to 3.38:

∆p i
k =

p i
p

1+Rd /R i
k

→ εi ,2
l s = 1

c2
ln

(
∆p i

k

c1
+1

)
→ (4.18)

e i ,2 = 1+e0

exp
(
εi ,2

l s

) −1 → e i ,2
1 = 1+e i ,2

1+e i ,2
2

−1. (4.19)

The last equality in equation 4.19 shows that e i ,2
2 is needed to calculate e i ,2

1 . From equa-

tions 4.14 and 4.17 it can be deduced that for e i ,2
2 one would need e i−1,1

1 . The latter is the
value of the interaggregate void ratio with index j = 1 i.e. the ghost node. A scheme for
estimating this value is given in section 4.5.
Finally, to calculate R i

k in equation 4.18, equations 2.4, 2.6, 2.11, 2.26 and 2.29 can be
combined to arrive at:

R i
k = 90∆ω

d 2
p

·
J+2∑
j=2

w j
R

(
1+e i , j

2

)(
1+e i , j

1

)3.1

[
e i , j

1

]4.1 , (4.20)

with a weighting factor w j
R , as only half of the lengths of the boundary nodes fall within

the domain:

w j
R =

{
1
2 if j = 2 or j = J +2

1 otherwise
(4.21)

4.4.2. NEUMANN BOUNDARY CONDITION
The discrete form of the Neumann boundary condition follows from applying a central
differencing scheme to equation 3.41. It is used at the node corresponding to the piston
boundary at ω=Ωwith index j = J +1 at all times (see figure 4.1):

e i ,J+3
1 = e i ,J+1

1 . (4.22)

The no-penetration condition is used at the node corresponding to the cloth boundary
at ω= 0 with index j = 2 during the rest mode only:

e i ,1
1 = e i ,3

1 (Rest mode). (4.23)
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4.5. A SCHEME FOR ESTIMATING THE GHOST NODE
The estimation of the ghost node is embedded in a routine. This routine will first be
clarified with the help of stencils.

4.5.1. STENCILS USED FOR COMPUTATION
Stencils are given in figures 4.2-4.6, representing the numerical routine that is associated
with boundary Γ1 at ω2.

In figure 4.2, the node points are shown, along with the associated strains that are

Figure 4.2: The node points together with the associated strains that are known at an arbitrary time step t i .

Figure 4.3: The applied pressure pi
p ultimately determines the node ei ,2

1 , locally and instantaneously squeezing
out oil.

known at an arbitrary time step t i . Moving to figure 4.3, the applied pressure p i
p deter-

mines the strain εi ,2
l s through equation 4.18. Subsequently, the node e i ,2

1 is calculated

with 4.19 using e i ,2
2 and εi ,2

l s . In the next step in figure 4.4, the ghost node e i ,1
1 is ex-

trapolated from the node points e i ,2
1 , e i ,3

1 and e i ,4
1 using equation 4.24. The method for
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Figure 4.4: The ghost node ei ,1
1 is extrapolated from its three interaggregate neighbours.

Figure 4.5: Step-wise time evolution producing e
i+1, j
2 . Here the stencil is given for ei+1,2

2 serving as a blueprint

for e
i+1, j
2 .

estimation is explained in subsection 4.5.2. The following image in figure 4.5 shows how

the aggregate void ratio nodes of the next time step, e i+1, j
2 , are related to the void ra-

tio nodes of the current time step e i , j
2 , e i , j−1

1 , e i , j
1 and e i , j+1

1 , exploiting the ghost node.
It is done according to equation 4.14. Continuing the algorithm with figure 4.6, where

the interaggregate void ratio nodes for the new time step e i+1, j
1 are obtained from both

aggregate and interaggregate void ratio nodes from the previous time step
(
e i , j−1

1 , e i , j
1 ,

e i , j+1
1 , e i , j−1

2 , e i , j
2 and e i , j+1

2

)
. This is done with equation 4.13. Finally, in figure 4.7, it is

made clear that this operation finalises the routine: the time step t i+1 contains the same
amount of information that was started with in time step t i in the first image of the se-
ries, figure 4.2.
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Figure 4.6: All nearby nodes from the current time step are needed to calculate the interaggregate void ratio

node of the next time step e
i+1, j
1 . Here the stencil is given for ei+1,3

1 , the archetype for e
i+1, j
1 .

Figure 4.7: The information status for time step t i+1 resembles that of t i in figure 4.2: the routine can start
over again.

4.5.2. ESTIMATION OF THE GHOST NODE

Solutions for the interaggregate void ratio tend to have a square root shape. Therefore,
to estimate the ghost node e i ,1

1 it is imposed that the following relation holds for the
differences between interaggregate void ratio nodes depicted in figure 4.8:

∆e i ,1
1

∆e i ,2
1

= ∆e i ,2
1

∆e i ,3
1

, (4.24)

where ∆e i , j
1 = e i , j+1

1 − e i , j
1 . However, this gives non-physical (negative) values for the

ghost node when ∆e i ,2
1 À ∆e i ,3

1 or when ∆e i ,3
1 = 0. Therefore, in case ∆e i ,1

1 > 0.01 the
following is imposed:

∆e i ,1
1 =∆e i ,2

1 . (4.25)
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And when ∆e i ,3
1 = 0 it is enforced that ∆e i ,1

1 = 0.
From these considerations, it follows that the ghost node can be calculated with:

e i ,1
1 =



e i ,2
1 if e i ,3

1 = e i ,4
1

e i ,2
1 −

[
∆ei ,2

1

]2

∆ei ,3
1

if e i ,2
1 −

[
∆ei ,2

1

]2

∆ei ,3
1

< 0.01

2e i ,2
1 −e i ,3

1 if e i ,2
1 −

[
∆ei ,2

1

]2

∆ei ,3
1

> 0.01

(4.26)

Figure 4.8: Equal ratios of differences between nodes are proposed as the solution tends to be square root
shaped.
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RESULTS

I N this chapter the results of the simulations with the pressure filtration model are pre-
sented. First, simulations that were performed with the model are compared to mea-

surements that were obtained during experiments. Thereafter, rates of pressure increase
are contrasted and finally, the influence of multistep pressure profiles is studied.

5.1. COMPARISON OF SIMULATIONS WITH EXPERIMENTS
The model was numerically implemented with MATLAB R2014b to perform simulations.
Before the pressure filtration model can make valuable predictions however, it has to
be contrasted with measurements. These measurements have been taken from experi-
ments conducted in a pilot plant with a small membrane filter press. Filtration experi-
ments were done with slurries of milk fat crystal aggregates prepared on-site. More de-
tails on the experiments conducted can be found in subsection 5.1.1.
A strict comparison is challenging, as the pressure filtration model only models an ide-
alised filter chamber. Other components of the membrane filter press are not part of the
model. One can think of the tubes and pipes were slurry or oil can reside that cannot
be taken into account in measurements (directly). Also assumptions have to be made
regarding the filling mode. It is assumed that during the filling mode, prior to the press
step, the filter cake is formed homogeneously. The pressure-time profiles used in the
simulations are idealised versions of the versions applied in experiments.
Nonetheless, comparison is done as follows: first, the numerous coefficients that the
model contains are estimated and calculated. Five coefficients are left to be determined
by calibration (subsection 5.1.2). Then, with all coefficients fixed, graphs showing vol-
ume fractions as a function of filter chamber location are produced for a typical case in
subsection 5.1.3. This is possible, as the model is capable of resolving volume fractions
locally as function of time. Thereafter, pressure-time profiles are varied to study whether
the model produces valid results. Validation will be done with respect to outflow velocity,
eventual SFC and eventual SFC of filter cake layers in subsection 5.1.4.

35
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5.1.1. EXPERIMENTS
The experiments were performed with a membrane filter press that is small in compari-
son to industrial standards. It contained five filter plates with dimensions 40 cm × 40 cm,
creating 3 cm thick filter chambers. The milk fat crystal aggregate slurry was prepared
from melted AMF in a crystallizer on-site. The slurry was then pumped by a slurry pump
from the crystallizer into the filter chambers in the membrane filter press. The produced
olein was collected in a milk churn standing on a balance to allow for calculations of the
oil outflow (see figure 5.1). The weight of the olein was registered by a computer every
second. Typically 20 kg of olein was produced per experiment. To convert to volume, the
density of olein was taken to be 910 kg/m3.

In total, seven successful experiments were done which are listed in table 5.1. Every

Figure 5.1: The experimental set-up used in the pilot plant: a slurry pump to transport the slurry from crystal-
lizer to filter chambers and a milk churn on a balance to facilitate oil outflow measurements.

Table 5.1: The labels referring to seven experiments with six different pressure-time profiles. For the two
pressure-time profiles used for the calibration, kal1 and kal2, the maximum rate of pressure increase (RPI)
is given.

Label Maximum Number Pressing mode Date of

RPI of steps duration experiment [40]

(bar/min) (min)

kal1 1 (see fig. 5.2) 1 10.5 8 Nov 2017

kal2 0.5 1 15.2 14 Nov 2017

ptp1a n/a 3 13.5 4 Oct 2017

ptp1b n/a 3 11.8 10 Oct 2017

ptp2 n/a 4 14.9 17 Oct 2017

ptp3 n/a 3 12.7 31 Oct 2017

ptp4 n/a 3 28.1 21 Nov 2017

pressure-time profile that was applied was controlled manually. The labels in the table
refer, in this thesis, to the idealised pressure-time profiles, not to the exact pressure-time
profiles that were applied in the experiments. The eventual SFC (the SFC of the S frac-
tion) was measured with a nuclear magnetic resonance (NMR) analyser.
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The experiments are formally not part of this thesis. Further details regarding the exper-
iments have been reported in earlier work [41].

5.1.2. CALIBRATION OF THE MODEL

Five coefficients of the model were taken to perform a calibration: they were varied to
let the model fit the outflow velocity measured in experiments. The best fit determined
the value of these coefficients.

Table 5.2: Values of model constants used in the simulations.

Quantity Value Units Derivation

c1 3.31 ·10−2 Pa -

c2 5.18 - -

Ce0 10−5 m2/s -

dc 2 µm -

L0 2.05 cm -

J 23 - -

µ 0.06 Pa·s -

∆ω 2.03 ·10−4 m Ω/J

Ω 0.467 cm sr cp ·L0

Rd 1.6 ·109 m−1 -

sr cp 0.228 [42] - -

∆t 2.10 ·10−3 s ∆ω2/2Ce0

The values listed in table 5.2 were used for the constants within the model. The val-
ues for c1 and c2 from equation 3.18 were retrieved from a least squares regression. Ce0

was chosen based on an overestimation of ce1 from equation 3.30. The effective crys-
tal diameter dc was estimated during a discussion with the supervisors. L0 is the initial
equivalent thickness of the filter cake if consolidation was reached purely by use of the
compression chambers instead of consolidation through filling. It was obtained by cal-
culating Ω/s0,P , where s0,P is a provisional back calculated value of the solid fat volume
fraction at the start of the pressing mode (the provisional value was used to obtain a
value for L0, the value of s0,P was later adjusted in the calibration). J was obtained after a
sensitivity analysis and chosen large enough to keep the computational burden bearable
and small enough to adequately reduce errors. µ is an estimate based on the typical vis-
cosity of oils. Rd and sr cp were obtained in experiments, the first by filtering oil without
solid fat [42]. sr cp was obtained by measuring SFCs of a deposited filter cakes in cen-
trifugation experiments. The other constants in table 5.2 are derived quantities. Density
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Figure 5.2: Pressure-time profile kal1: a one-step pressure-time profile: linearly increasing with a certain pres-
sure rate followed by a constant pressure.

Figure 5.3: The best fit for the outflow velocity after application of pressure-time profile kal1.

differences between the solid fat and the oil were assumed negligible such that solid fat
content is equal to solid fat volume:

SFC (ω, t ) ≈ s(ω, t ) (5.1)

With the values of 5.2, a calibration can be done by comparing a temporally resolved
outflow velocity from simulation, with an outflow velocity obtained from experiment.
The simulated outflow velocity v i

l is derived from the spatially and temporally resolved

filter cake thickness Li as follows:

v i
l =

Li−1 −Li

∆t
. (5.2)

At any time, filter cake thickness can be calculated with the following formula:

Li =∆ω ·
J+2∑
j=2

w j
R

(
1+e i , j

1

)(
1+e i , j

2

)
, (5.3)
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Figure 5.4: The best fit for the outflow velocity after application of pressure-time profile kal2.

where w j
R is given by equation 4.21. Moving averages, with a period of 1 min, were ob-

tained from both the experimental and the simulated outflow velocities before calculat-
ing a coefficient of determination (R2) for the fit of the model.

The following five coefficients were chosen to perform a calibration:

• a1, a flow resistance factor for the interaggregate volume

• a2, a flow resistance factor for the aggregate volume

• dp , the aggregate diameter

• sr cp
1 , the random close packing of the aggregates

• SFC0,P , the solid fat content at the start of the pressing mode

The coefficients were varied within the boundaries that are considered physically plau-
sible.
The flow resistance factor a1 was added to equation 4.13 by replacing ce1 by ce1 /a1. Anal-
ogously, the flow resistance factor a2 was added to equation 4.17 by substituting cq by
cq /a2. The solid fat content at the start of the pressing mode was varied by varying the
effective pressure responsible for expression during the filling mode. This was done by
varying kp , a multiplication factor for the pressure profile during filling. This pressure
profile resembles one that was measured at the slurry pump (see figure 5.1).
Both calibrations were done with a one-step pressure-time profile (OSPP) as depicted in
figure 5.2. An R2 = 0.97 was obtained with pressure-time profile kal1 (figure 5.3), while
an R2 = 0.92 was produced with pressure-time profile kal2 (figure 5.4). The calibrations
led to two different sets of coefficients which were averaged to retrieve the following set:

a1 = 2.7 a2 = 42 dp = 230 µm sr cp
1 = 0.59 SFC0,P = 0.35 (5.4)
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(a) kal1 (b) kal2

Figure 5.5: The fit of the outflow velocity for the pressure-time profiles kal1 and kal2 using the coefficients
obtained in the calibration (equation 5.4).

The flow resistance factor a1 = 2.7 can be expected from a measurement that found
Meyer & Smith’s relation to overestimate the permeability by half an order of magni-
tude [38]. The other flow resistance factor is large with a value of 42. This can stem
from the effective diameter of the crystals being an order of magnitude smaller. The ag-
gregate diameter is on the large side with 230 µm. However, this might be ascribable
to the agglomeration of aggregates, which was observed during experiments (see figure
1.3). The packing fraction sr cp

1 = 0.59 is the least dense packing associated with random
close packing found in literature[34]. The solid fat content of SFC0,P = 0.35 (kp = 0.85) is
3% higher than provisional back calculated values found during experiments[38]. This
might be due to oil already flown out of the cake still occupying tubes and pipes of the
filter press which is not accounted for in the provisional back calculation.
In figure 5.5, the effect of the coefficients given in equation 5.4 is shown for the pres-
sure profiles which were used in the calibration. Comparing 5.3 with 5.5a, both display-
ing outflow velocities for the 1 bar/min OSPP (kal1), it can be observed that the fit is
still good, except for the values around the maximum which are underestimated by the
model. This is a result of taking an average to determine the calibration coefficients of
equation 5.4, causing a1 to be too low and both a2 and dp to be too high for this pres-
sure profile. This can be explained as follows: When taking the coefficients acquired
from the 0.5 bar/min OSPP (kal2) and using them on the 1 bar/min OSPP (kal1), it seems
from these experimental results that the model lacks some sensitivity with respect to rate
of pressure increase (RPI), giving an underestimate for the outflow velocity. The coeffi-
cients of equation 5.4 give a better fit, but still give an underestimate.
The statement about sensitivity with respect to RPI cannot be made in general, since it
is based only on two experiments.
For pressure-time profile kal2 one can see that the model picks up the outflow veloc-
ity too late in figure 5.5b. This is mainly due to the value of kp that is relatively high.
The previous fit in figure 5.4 for the first part of the outflow velocity graph was better.
This is also the case for the period around the maximum between 4 and 10 minutes.
With the calibration coefficients of equation 5.4 the outflow velocity is overestimated for
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pressure-time profile kal2, again a result of taking an average to determine the calibra-
tion coefficients of equation 5.4, causing a1 to be too high and both a2 and dp to be too
low for this case.

During the calibration, it was confirmed that medium resistance is negligible compared
to filter cake resistance [43]. Filter cake resistance at the beginning of the pressing mode
was a factor of 20 larger than the resistance of the cloth and this factor grew to a factor of
100 during expression.

5.1.3. VOLUME FRACTIONS AS FUNCTION OF FILTER CHAMBER LOCATION

The pressure filtration model is capable of resolving volume fractions locally as func-
tion of time. During simulations the void ratios e1 and e2 have been solved numerically
for J − 1 = 22 points within the filter chamber and for every time step with ∆t = 2.10
ms (table 5.2). The void ratios can be translated with equations 2.1-2.4 and 2.6 to the
volume fractions ε1, s1 ·ε2 and s1 · s2. In this order, from the bottom upwards, these vol-
ume fractions are shown as surfaces in figure 5.6. The surfaces are plotted as function
of filter chamber location measured from the cloth (indicated by the dashed line) for
various operation modes and time steps. They were generated during a simulation with
pressure-time profile kal1 (see figures 5.5a and 5.2).
The commencement of the press step during the filling mode is recognisable in the sur-
face representing the interaggregate porosity ε1 and the line that forms its boundary,
starting at 0.2 on x = 0 cm and ending at 0.4 on x = 1.85 cm in figure 5.6a. The line has
the shape of an error function that is typical for solutions of a diffusion equation. At
tfill = 0.3 min, the value of e1 is a little lower than its initial value of 1− sr cp

1 = 0.41 (see
equation 5.4), throughout the whole cake. Via equations 2.1-2.5, 2.7, 2.31 and 3.18, it can
be interpreted as the moment that the solid pressure has fully penetrated the filter cake.
Typically this penetration time is ∼ L2

0/πCe0 = 0.2 min.
Even though aggregate oil is released near the cloth, the fraction s1ε2, which is propor-
tional to the height of the middle surface, increases in the initial stage (of the simulated
part) of the filling mode. This is due to interaggregate oil leaving the filter chamber faster
than aggregate oil can flow to the interaggregate volume. Still, the line separating the top
two surfaces (s1 · ε2 and s1 · s2), i.e. 1− SFC , inherits the error function shape through
equations 3.31 and 3.32.
The interaggregate oil near the cloth is the first oil to flow out of the filter chamber and
this head start causes the filter cake to be dryer near the cloth. The error function shape
of 1−SFC is maintained during the rest mode, as the gradients in e1 decrease, and flat-
tens a bit in the pressing mode.
The decrease of filter cake thickness can be observed through the position of the piston.
The piston displacement is relatively large in the filling mode, and relatively small in the
pressing mode as the filter cake becomes more stiff (elastic modulus increases, see equa-
tion 3.20) and permeability decreases (see equations 3.17 and 3.25).
During the rest mode ε1 obtains an s-shape due to Neumann boundary conditions on
both sides. At the end of the pressing mode, ε1 smooths out completely, indicating that
the filter cake has obtained a state of equilibrium. This seems to be in accordance with
experiment as it was observed that oil outflow stops at the end of the process.



5

42 5. RESULTS

(a) Start of press step in filling mode. (b) The beginning of the rest mode.

(c) First porosity drop in the pressing mode. (d) Late stage of the pressing mode.

Figure 5.6: Volume fractions, shown as surfaces, at particular moments in the three modes of operation of the
membrane filter press. On the horizontal axis the filter chamber location as measured from the filter cloth.
tfill, trest and tpress denote the time passed after the start of the filling, rest and pressing mode respectively.

5.1.4. VALIDATION OF THE MODEL

In this subsection, the results of the validation are presented. The validation with respect
to outflow velocity is followed by a comparison of simulation with experiment regarding
eventual SFCs . The validation that concludes this subsection is one with respect to even-
tual SFC of separate cake layers.

VALIDATION WITH RESPECT TO OUTFLOW VELOCITY

For the purpose of validation, simulations are compared to five other experiments (see
table 5.1. Two experiments ptp1a and ptp1b where done with the same pressure-time
profile.
Apart from ptp2 with R2 = 0.80 (figure 5.7), the agreement between simulated and ex-
perimental outflow velocities is poor. Especially in the experimental profiles that contain
three maxima (caused by the three steps in the pressure-time profile): ptp1a, ptp1b, ptp3
and ptp4, where the first maximum is not observed in the simulations. This is thought to
be due to an overestimated SFC0,P -value. When the SFC0,P -value is overestimated, the
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Figure 5.7: Validation with pressure time profile ptp2.

minimum pressure to squeeze the filter cake is overestimated. This minimum pressure
was discussed in the last part of subsection 3.6.1. The result is that in the first step of the
pressure-time profile, the minimum pressure is not reached. This in turn results in the
absence of oil outflow and hence, no outflow velocity maximum can be recorded in the
simulation.
The outflow velocities of the simulations of ptp1a, ptp1b and ptp3 seem to be shifted to
the right compared to the experimental curves. This is thought to arise from the delay
in the measurements, which was already touched upon in the beginning of section 5.1.
This delay is due to the oil having to travel through the tubes and pipes first, before ar-
riving on the balance to be weighed.
Comparing the experiments of ptp1a and ptp1b, which were executed with the same tar-
geted pressure profile, one can see a difference of 2 ·10−6 m/s in the maximum outflow
velocity. This reflects that there is substantial uncertainty in the values obtained from
measurements. This uncertainty makes a proper validation difficult. Furthermore, sen-
sitivity of the balance is an issue: the experimental outflow velocity of ptp4 suffers from
a low signal-to-noise ratio.

Nevertheless, the behaviour of the model is good qualitatively, mirroring constant ac-
celeration in the beginning, and maxima followed by an exponential decay during retar-
dation.
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(a) ptp1a . (b) ptp1b .

(c) ptp3 . (d) ptp4 .

Figure 5.8: Validation for three more pressure-time profiles: ptp1(a/b) , ptp3 and ptp4 . The targeted pressure-
time profiles for figures 5.8a and 5.8b are the same.

VALIDATION WITH RESPECT TO EVENTUAL SFC
Besides outflow velocities, the eventual SFCs are compared (see figure 5.9). For the error
bars of the experiments the difference between the two experiments of ptp1a and ptp1b
are taken as a measure. The error bars of the simulations are based upon the difference
between eventual SFCs generated with the simulations of figures 5.3 and 5.5a i.e. with
two different sets of calibration coefficients that capture the typical variance associated
with the model.
The results of the simulation seem to be in agreement with experiment. The uncertain-
ties, especially of the experiments, are rather large though. This was partly caused by
the pressure-time profiles being controlled manually. There is a tendency for the ex-
periments to have a higher eventual SFC , this is the case in five out of seven pressure
profiles. As anticipated in the beginning of section 5.1, the cause might be that the oil
that is still in the tubes and pipes of the filter press is not recorded in the experimental
outflow velocity, with which the model is calibrated. This leads to an underestimation of
the simulated eventual SFC .
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Figure 5.9: Eventual SFCs compared between experiment and simulation for different pressure-time
profiles[44]: All are in agreement with each other.

VALIDATION WITH RESPECT TO EVENTUAL SFC of cake layers
During the experiment with pressure-time profile kal2, the filter cake that was produced
in the pilot plant, was sliced into five layers of approximately the same thickness. This
was done for ten samples of the filter cake. Of every cake layer, the eventual SFC was
measured and per layer the average was taken from the ten samples. After the simu-

Figure 5.10: Eventual SFCs of five cake layers compared between experiment and simulation, both generated
with the pressure-time profile kal2. The m1 - m10 indicate the measurements of ten samples that were taken
from one filter cake that was produced in the pilot plant.

lation with pressure-time profile kal2, the cake was divided into five equally thick cake
layers and the average eventual SFC per cake layer was computed from the eventual SFC
as function of ω j .
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Both results, from simulation and experiment, are depicted in figure 5.10. Eventual SFC
is plotted against filter cake location as measured from the membrane side. The loca-
tions of the values in the graph correspond to the locations of the middle points of the
cake layers. The uncertainties for the simulation are the same that were used in the pre-
vious subsection (see figure 5.9). The uncertainties of the experiments are 95 % confi-
dence intervals based on the ten measurements for this particular cake (it does not show
the uncertainty due to the appliance of the pressure-time profile as in figure 5.9) Uncer-
tainties in the x-direction are not taken into account.

From figure 5.9, it could already be noted that for this pressure profile the average even-
tual SFC shows good agreement. However, in the more detailed version, it can be ob-
served that eventual SFC gradients in the simulation are larger than in the experiment.
Furthermore, eventual SFC values of separate layers do not show agreement.
In the simulation, the gradients in the interaggregate void ratio disappear eventually (see
figure 5.6). Therefore, the origin of the SFC gradient lies in the behaviour of the aggre-
gate oil. From equations 3.13 and 3.15, it can be deduced that the parabolic shape of the
eventual SFC versus cake location graph emanates from the pressure gradient that has
higher time-averaged values near the filter cloth.
Qualitatively, there is agreement as both the simulated and the experimental graph have
this parabolic shape.
The thickness of the simulated filter cake is smaller than the filter cake from the exper-
iment. Because the simulated average eventual SFC is higher than the corresponding
value obtained from the experiment, this can be expected.

5.2. EFFECT OF RATE OF PRESSURE INCREASE (RPI)
The model has shown the potential to qualitatively predict the outcomes of pressure fil-
tration under a certain pressure-time profile.In this section it is used to study differences
in performance of the most basic pressure-time profiles. These profiles only contain a
linearly increasing pressure followed by a constant pressure which is held until pressing
mode duration reaches 30 minutes, as shown in figure 5.11. One should be careful to
use these figures and the fits constructed from it as the model is not validated quanti-
tatively. The results given here are intended to give an idea of the qualitative behaviour
during the pressing mode in pressure filtration of milk fat. Results are also drawn from
the model to show its possible application in process optimisation and design.

Figure 5.12 shows the SFC as function of time for the pressure profiles shown in figure
5.11. Almost being a mirror image of figure 5.12, figure 5.13 confirms that the origin of
a large eventual SFC is the low amount of oil being left in the aggregates. The aggregate
void ratio e2 is a measure of this as it is the aggregate oil volume s1ε2 ·V per solid fat vol-
ume s1s2 ·V , the latter being constant in time according to equation 2.9. From equations
3.31 and 3.32 it follows that the evolution of e2 is dependent on the gradient in e1. If the
RPI is lower, the longer it takes for the gradients in e1 to vanish and for the filter cake to
obtain a state of equilibrium. Therefore, it follows from equations 3.31 and 3.32 that the
aggregates have more time to be squeezed out, which in turn leads to a larger eventual
SFC .
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Figure 5.11: One-step pressure-time profiles used to study the effect of rates of pressure increase on eventual
SFC .

Figure 5.12: Simulated solid fat content as a function of time for the pressure-time profiles in figure 5.11.

It takes a few minutes for the SFC to start increasing, the exact time depending on
the RPI of the OSPP. This delay is caused by the existence of a minimum pressure that
needs to be reached to squeeze out the filter cake in the pressing mode. The minimum
pressure is associated with the boundary value of the interaggregate void ratio after the
rest mode, as pointed out in the concluding part in subsection 3.6.1.

Another graph that can be constructed from figure 5.12 shows the time required to reach
a certain eventual SFC (figure 5.15). Like figure 5.14, it can be used to make decisions re-
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Figure 5.13: The simulated evolution of the aggregate oil in the filter cake for the pressure profiles in figure
5.11.

Figure 5.14: Solid fat content as a function of rate of pressure increase in the one-step pressure-time profile.

garding process optimisation and design. The trend is that the higher the desired even-
tual SFC is, the more time the pressing mode takes. Although firm quantitative conclu-
sions cannot be drawn, from this graph it would follow that increasing the eventual SFC
from 41.8 to 44.2 % would increase pressing mode duration by almost 50 %.
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Figure 5.15: Time to reach to within 0.1 % of desired eventual SFC (in the pressing mode) versus eventual SFC :
simulations and trend line

5.3. ONE-STEP VERSUS TWO-STEP PRESSURE PROFILES

The basic OSPPs can be extended adding one layer of complexity to arrive at two-step
pressure-time profiles (TSPP), of which one example is shown in figure 5.16. To facili-
tate proper comparison to an OSPP, it is important to compare it with an OSPP with the
same average RPI i.e. the same starting pressure and the same pressure after pressure
increase. A second precondition for good comparison is that the time averaged pressure
of both pressure profiles is the same. This is identical to stating that the areas under the
pt (t )-graphs have to be equal. For the pressure profiles in figure 5.16 these precondi-
tions are met. Here, a TSPP with steps of 1 bar/min and an average RPI during the steps
of 0.25 bar/min is depicted next to an 0.25 bar/min OSPP. To allow for good comparison,
both pressure profiles start at the minimum pressure required to squeeze out oil from
the filter cake after the rest mode as discussed in sections 3.6 and 5.2.

Results from comparisons with an 0.25 bar/min OSPP can be seen in figure 5.16. Im-
mediately, it is clear from figure 5.17, that the OSPP delivers the largest eventual SFC .
The TSPPs follow according to step RPI: the lower the step RPI, the higher the eventual
SFC reached. The difference between the 0.25 bar/min OSPP and the 3 bar/min TSPP is
just over 1 % in eventual SFC . The reasoning here is along the same lines as in section
5.2: figure 5.18 confirms a high eventual SFC due to more oil flowing out of the aggre-
gates. A higher RPI allows less time for the aggregates to be squeezed out as the filter
cake reaches an (temporary) equilibrium typically after two minutes. This in turn leads
to a higher eventual SFC .
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Figure 5.16: A one-step and a two-step pressure-time profile, both with the same time-averaged rate of pressure
increase of 0.25 bar/min.

Observing figure 5.17, it would be interesting to see the result for the case where the sec-
ond precondition for proper comparison is dropped, which states that the time-averaged
pressure has to be identical. In figure 5.17 at t ≈ 7.5 min, all TSPPs intersect with the 0.25
bar/min OSPP. One could choose a pressure profile starting like the TSPPs shown in fig-
ure 5.16, which at the intersection of the pressure profile at t ≈ 6 min starts following the
OSPP instead, i.e. a strictly leading two-step pressure-time profile . This should result in
a higher eventual SFC , or at least result in obtaining higher SFC values more rapidly.

If the average RPI and the RPI of the OSPP is increased to for example 0.75 bar/min (see
figure 5.19), the differences prove to be negligible. This stems from the fact that when
comparing to a 0.75 bar/min OSPP the differences with the TSPPs in temporal time-
averaged applied pressures (i.e. the areas between the profiles) are smaller than for the
0.25 bar/min OSPP case. If the difference in temporal time-averaged applied pressure is
taken as a measure for the difference in pressure history, this shows that pressure history
plays a role in pressure profile performance.
Although differences are small, focussing on part of figure 5.19, it shows that the model
is capable of displaying complex behaviour. This is depicted in figure 5.20. In the case
of the 0.75 bar/min OSPP it is not the OSPP that outperforms the TSPPs. The 1 bar/min
TSPP yields the highest eventual SFC followed by the 2 bar/min TSPP. Similar results were
obtained in comparisons with a 0.5 bar/min OSPP. It is thought to arise from the gradient
in e1 which can be larger with a larger RPI and that this has a more profound effect when
the steps take less time.
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Figure 5.17: Time evolution of SFC for TSPPs with step rates of pressure increase ranging from 0.5 to 3 bar/min,
compared to the 0.25 bar/min OSPP.

Figure 5.18: Aggregate void ratio as function of time for TSPPs with step rates of pressure increase ranging from
0.5 to 3 bar/min, compared to the 0.25 bar/min OSPP.
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Figure 5.19: Solid fat content as function of time for TSPPs with step rates of pressure increase ranging from 1
to 3 bar/min, compared to the 0.75 bar/min OSPP.

Figure 5.20: Close-up of the top right part of the graph in figure 5.19



6
CONCLUSIONS AND

RECOMMENDATIONS

I N the introduction of this thesis, goals and research questions were formulated. In this
concluding chapter each of them will be revisited before giving recommendations for

further research.

6.1. CONCLUSIONS
Starting with the first goal that was announced in the introduction:

• Goal I: To develop a pressure filtration model and to write the computer code to
perform numerical simulations.

A pressure filtration model focussing on the press step has been developed. In short,
it is a rheological model composed of two dashpots in series, which are parallel to a
spring. The double porous nature of the milk fat crystal aggregate filter cake is repre-
sented by the two dashpots, which are described by a relation established by Meyer &
Smith, which is an alternative to the Kozeny-Carman relation. The spring is described by
an elastic modulus that was determined experimentally with a constant load test.
The model was successfully numerically implemented writing the computer code in
MATLAB, from scratch. A numerical algorithm was found to successfully resolve the
behaviour near the cloth boundary.
The model is capable of displaying porosities and solidosities as function of time and fil-
ter chamber location. This makes it possible to compare it with solid fat contents (SFCs)
of different cake layers retrieved from experiment. It can also generate graphs with oil
outflow velocity, filter cake SFC and aggregate oil volume as function of time. It is pos-
sible, to do this analysis for different pressure-time profiles. This allows a comparison
between pressure-time profiles to select one that obtains a better separation and con-
sequently, a dryer filter cake. The model provides a guidance in the search for values of
different parameters through specific tests.
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In the process of creating the model and in the evaluation of its performance compared
to experiments, the model has given valuable insights and understanding regarding the
role of numerous parameters.

• Goal II: To validate the pressure filtration model.

Simulations with the pressure filtration model have been compared to experiments
to contrast outcomes regarding oil outflow velocity, eventual SFC and eventual SFC of
different cake layers. This has lead to the conclusion that quantitatively, the model could
not be validated. However, qualitatively, the model has been validated or at least has
shown the potential to be qualitatively valid.

• Goal III: To perform simulations to gain insight into critical factors that lead to a
higher olein yield.

Computer simulations have been performed to investigate the effect of different
pressure-time profiles. The time-averaged RPI (rate of pressure increase) has been found
to be a critical factor to attain a higher SFC in the stearin fraction (S fraction) and simul-
taneously obtain a higher olein yield.
The addition of a step in the two-step pressure profiles (TSPPs) has been observed not
to be a critical factor for olein yield.

• Question I: Is it favourable to apply a high rate of pressure increase in the pressure-
time profile during the expression of anhydrous milk fat (AMF)?

No, it is not preferred to have a high RPI. The contrary has been found in section
5.2: a simulation with the 0.25 bar/min one-step pressure profile (OSPP) resulted in the
highest eventual SFC (and thus the highest olein yield) of the OSPPs simulated. It was
found that the higher the RPI is, the lower the eventual SFC attained. The longer it takes
for the filter cake to reach a state of equilibrium, the more time the aggregates have to
release their oil. Hence, it is favourable to apply a low RPI.

• Question II: Given a certain rate of pressure increase, does a linear one-step
pressure-time profile give the highest eventual SFC ?

It depends. For a time-average RPI of 0.25 bar/min the linear OSPP gives the best result,
when compared to TSPPs with the same time-averaged applied piston pressure. The dif-
ference in eventual SFC was observed in section 5.3 to be in the order of 1 %.
For a time-average RPI of 0.5 and 0.75 bar/min, the differences between OSPP and TSPP
are negligible (if time-averaged applied piston pressures are equal).

Main conclusion from this research is that a lower RPI yields a higher eventual SFC
and thus yields a better result. The question for the process technologist is whether it
is worth taking the extra time to reach this SFC (see figure 5.15).
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6.2. RECOMMENDATIONS
One of the problems in the validation is the large uncertainty in the measurements ob-
tained in experiments. Conducting more experiments will lead to decreased uncertain-
ties in outflow velocities and SFC outcomes measured. This also allows for a calibration
with one pressure profile with less uncertainty or with more different pressure profiles,
so that the calibration is less sensitive to the uncertainties in the experiments. During
experiments it is also advised to use a balance that is more sensitive and is able to make
measurements at a higher frequency. This should result in an outflow velocity signal
which contains less noise.
Experiments with a compression cell under similar conditions as that of the membrane
filter press might solve the problem with the delay associated with the oil travelling from
cloth to balance.

Furthermore, within the model some components could be critically reassessed. Is the
method for establishing the experimental relation for the elastic modulus valid within
the context of the present model? Is the use of only one elastic modulus enough when
modelling a double porous filter cake? Various other rheological models can be tested
and compared to the one presented in this thesis to study whether it improves predic-
tions.
The relatively high gradients in simulated eventual SFC suggest that a model where the
interaggregate oil production is dependent on solid pressure could be an alternative
worth investigating.

With the current model it would be interesting to research whether strictly leading two-
step pressure profiles can produce S fractions with a higher SFC .
Only 24 nodes were used and therefore, simulation duration was not substantial (3 min-
utes per simulation). However, during a calibration this can add up to a large time span.
Implementation of a non-equidistant grid and a variable time step would allow for faster
computation while maintaining the same level of accuracy.
Since the differences between OSPPs and TSPPs are small, it is expected that other mul-
tistep pressure profiles also yield small differences, even more so because under precon-
ditions mentioned in section 5.3 a multistep pressure profile with n steps converges to
an OSPP when n →∞. This expectation can be verified in future research.





NOMENCLATURE

ROMAN SYMBOLS

Symbol Description Units Equation of

introduction

a Aggregate area per volume m−1 3.15

a1 Flow resistance factor for interaggregate volume - -

a2 Flow resistance factor for aggregate volume - -

c1 Fit coefficient Pa 3.18

c2 Fit coefficient - 3.18

Ce0 Overestimation of ce1 m2/s 4.1

ce1 Consolidation coefficient maximum m2/s 3.21

Ce (e1,e2) Consolidation coefficient m2/s 3.23

cq Constant for production q m/s 3.28

Ds

D t Solid phase material derivative s−1 2.16

dc Characteristic diameter of the crystals m 3.25

dp Aggregate diameter m 2.19

dR Local flow resistance m−1 2.25

dω Infinitesimal 1D solid volume m 2.11

E(εl s ) Elastic modulus Pa 2.32

e Total void ratio - 2.7

e0 Total void ratio at random close packing - 2.31

e1 Interaggregate void ratio - 2.6

e i , j
1 Interaggregate void ratio at time step i and - 4.6

grid position j

eΓ1
1 Interaggregate void ratio at cloth boundary - 3.38
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Symbol Description Units Equation of

introduction

e2 Aggregate void ratio - 2.6

eΓ1
2 Aggregate void ratio at cloth boundary - 3.38

eΓ2
2 Aggregate void ratio at piston boundary - -

e i , j Total void ratio at time step i and grid position j - 4.19

eΓ1 Total void ratio at cloth boundary - 3.37

e i , j
2 Aggregate void ratio at time step i and - 4.10

grid position j

Fd Drag force per unit volume N/m3 2.16

f (e2) Substitution function for equation 4.3 - 4.4

f i , j Discrete f (e2) at time step i and grid position j - 4.8

Fo∆ Local Fourier number - 4.1

g Gravitational acceleration m/s2 2.16

~g Gravitational acceleration m/s2 2.18

g (e1,e2) Substitution function for equation 4.3 - 4.4

g i , j Discrete g (e1,e2) at time step i and - 4.8

grid position j

J Number of length segments between nodes - -

j Index denoting grid position - 4.6

k Permeability m2 2.21

kp Multiplication factor for pressure profile during - -

filling

L Length of filter cake/chamber m 2.26

L0 Initial (equivalent) filter cake thickness m -

Li Filter cake length at time step i m 5.2

Ly Width of the filter chamber m -

Lz Height of the filter chamber m -

pl Liquid pressure Pa 2.18

p i
p Piston pressure at time step i Pa 4.18
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Symbol Description Units Equation of

introduction

pp (t ) Over pressure applied by piston Pa 3.35

ps Solid pressure Pa 2.17

q Production of interaggregate oil s−1 3.1

q i , j Discrete q at time step i and grid position j s−1 4.9

R2 Coefficient of determination - -

Reh Reynolds number based on hydraulic diameter - 2.19

Rd Flow resistance of cloth m−1 3.34

Rk Total flow resistance of filter cake m−1

R i
k Discrete Rk at time step i m−1 4.18

s Total solidosity (solid fat volume fraction) - 2.5

s0,P Solid fat volume fraction at start of pressing mode - -

s1 Interaggregate solidosity - 2.4

shcp
1 Maximum close packing fraction (solidosity) - -

sr cp
1 Random close packing fraction (solidosity) - -

s2 Aggregate solidosity - 2.4

SFC Solid fat content - 5.1

SFC0,P Solid fat content at start of pressing mode - -

sr cp Solid fat volume fraction at random close packing - 3.43

t Time s 2.8

tfill Time passed after start of filling mode s (figure 5.6)

t i Index denoting time step s 4.6

tpress Time passed after start of pressing mode s (figure 5.6)

trest Time passed after start of rest mode s (figure 5.6)

V Filter cake volume m3 -

Vp Typical pore volume m3 -

~vl Velocity of the liquid m/s 2.12

~vl ,2 Velocity of the aggregate oil m/s 3.11

vl2,x The x-component of ~vl ,2 m/s 3.12
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Symbol Description Units Equation of

introduction

vl ,a→i a Oil flux through aggregate surface m/s 3.15

v i
l Outflow velocity at time step i m/s 5.2

~vs Velocity of the solid phase m/s 2.8

vs,x The x-component of ~vs m/s 2.16

vσ Superficial velocity m/s 2.15

vσ2 Superficial velocity of aggregate oil m/s 3.12

w j
R Weighting factor defined in equation 4.21 - 4.20

x Filter chamber location, Cartesian coordinate m -

GREEK SYMBOLS

Symbol Description Units Equation of

introduction

Γ1 Cloth boundary - -

Γ2 Piston boundary - -

∆e i , j
1 Difference between interaggregate void ratios - 4.24

at time step i and grid position j

∆pd Pressure drop over cloth Pa 3.34

∆pk Pressure drop over the whole cake Pa 2.24

∆p i
k Discrete ∆pk at time step i Pa 4.18

∆pt Total pressure drop over the domain Pa 3.34

∆t Size of time step s 4.6

∆ω Distance between two nodes in grid m 4.1

δV (t ) Total volume of fragment of filter cake m3 2.1

δVa Aggregate volume m3 2.1

δVap Aggregate pore volume m3 2.2

δVi a Interaggregate volume m3 2.1
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Symbol Description Units Equation of

introduction

δVs Solid fat volume m3 2.2

δx(t ) Thickness of filter cake element m 2.10

δxu Thickness of filter cake slice before deformation m 2.30

δy Width of filter cake element m -

δz Height of filter cake element m -

ε1 Interaggregate porosity - 2.3

ε
r cp
1 Porosity at random close packing - -

ε2 Aggregate porosity - 2.3

εl s logarithmic strain - 2.30

ε
i , j
l s Strain at time step i and grid position j - 4.18

ε
Γ1
l s Logarithmic strain at cloth boundary - 3.36

µ Viscosity of oil Pa · s 2.18

ρl Density of the liquid kg/m3 2.12

ρs Density of the solid phase kg/m3 2.8

τxx Principal stress in the x-direction Pa 2.16

Ω 1D solid volume of filter cake/chamber m -

ω Filter chamber location, material coordinate m -

ω j Discrete material coordinate m -
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ABBREVIATIONS

Abbreviation Word/phrase

AMF Anhydrous milk fat

kal Calibration pressure-time profile

NMR Nuclear magnetic resonance

O Olein

OSPP One-step pressure-time profile

ptp Pressure-time profile

RPI Rate of pressure increase

S Stearin

SFC Solid fat content

TSPP Two-step pressure-time profile
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