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Abstract—Addressing the optimal operation of modern distri-
bution networks has become a computationally complex problem
due to the integration of various distributed energy resources
(DERs) and the need to handle numerous network constraints.
Although data-driven methodologies show promise in addressing
the non-linearity and non-convexity of such optimization prob-
lems, they often face challenges in satisfying system constraints.
This paper proposes combining imitation learning (IL) with a
surrogate optimization model (SOM) to minimize operational
costs and active power losses, bypassing the nonlinearity in the
original optimization problem while ensuring feasible solutions.
The effectiveness of the proposed IL-SOM approach in accurately
predicting the variables of the optimization problem is validated
using a 25-bus unbalanced three-phase distribution network test
case. Furthermore, the predicted variables fully comply with
critical system constraints, including active and reactive power
balance constraints, phase voltage, and line current magnitude
limits.

Index Terms—Distribution networks, Imitation learning, Op-
timal operation, Optimization, Surrogate model

I. INTRODUCTION

Employing data-driven online methodologies, particularly
imitation learning (IL) approaches, offers an effective strategy
for addressing the complex and non-linear constraints of mod-
ern distribution systems while managing various integrated
distributed energy resources (DERs), along with dynamic load
profiles, renewable energy source (RES) generation patterns,
and fluctuating electricity prices [1]. By emulating the func-
tionality of nonlinear programming (NLP) solvers, IL-based
methods can predict system outputs for new datasets [2]. While
data-driven approaches are advantageous in bypassing non-
linearity and complexity to provide real-time predictions, they
often struggle to meet system constraints, potentially resulting
in less precise outcomes compared to traditional optimization
solvers [3].

A. Literature review

Optimal operation problems have traditionally relied on
model-driven and classical optimization methods. Numerous
studies have tackled the optimal operation of DER-integrated
distribution systems using conventional optimization tech-
niques suited to the problem’s complexity [4]. For instance,
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literature [5] presents a two-level optimization model for
scheduling active distribution systems with DERs and en-
ergy storage systems. A comprehensive review of distribution
system optimization problems, focusing on the algorithms,
objectives, and decision variables involved, is provided in [6].
The highly non-linear, non-convex, non-differentiable, and
multi-modal nature of optimal operation problems makes
classical optimization methods inadequate, especially when
addressing network power flow constraints and cost mini-
mization [7]. Various linear and non-linear formulations of
optimal power flow (OPF) problems in distribution systems
are discussed in [8]. Accordingly, linear approximations can
result in inaccuracies and infeasible solutions, while non-
linear formulations struggle with computational tractability
and multiple local solutions. Another crucial consideration
is the distribution network configuration as highlighted in
[9], which discusses a convex approximation of the AC-OPF
problem based on nodal admittance matrix power flow, consid-
ering the three-phase configuration of unbalanced distribution
networks.

The aforementioned complexities have led to the adoption of
and data-driven techniques, leveraging historical data to extract
patterns and predict system behavior [10]. Unlike traditional
optimization methods, data-driven approaches provide flexibil-
ity and adaptability, enabling operators to respond effectively
to system changes [11]. For instance, [12] develops real-
time power dispatch approaches to maximize RES utilization,
while [13] explores Neural Network (NN) models to emulate
distribution system behavior in OPF problems. However, data-
driven methods struggle to capture the complex relations
between system parameters [14]. These algorithms encounter
challenges in meeting strict operational constraints, particu-
larly equality constraints such as power balance. To address
this, [15] introduces a deep reinforcement learning algorithm
that models deep NNs as mixed-integer programming (MIP)
formulations, allowing for rigorous enforcement of operational
constraints in real-time operations.

B. Contribution

This paper proposes a novel approach that integrates imita-
tion learning (IL) with a surrogate optimization model (SOM)
to efficiently tackle the optimal operation problem of an
unbalanced three-phase distribution network. By employing an
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NN to mimic the optimization task, the IL-SOM predicts the
variables for real-time, unseen input data, bypassing the orig-
inal problem’s complex and non-linear equations. Although
the NN is trained based on optimization solver results, it
does not inherently guarantee operational constraint satisfac-
tion. To address this, the proposed approach translates the
pre-trained NN into a mathematical formulation compatible
with commercial solvers and enforces the desired constraints.
This ensures solution feasibility by maintaining correlations
between system variables and parameters, particularly con-
sidering power balance constraints, line current, and phase
voltage magnitude limitations in the three-phase distribution
system. Consequently, the problem shifts from a nonlinear
setting to a mixed-integer quadratic framework, simplifying
complexity while meeting critical operational constraints.

The remainder of the paper is organized as follows: Section
II elaborates on the proposed approach, with Section II-A dis-
cussing the optimal operation problem framework and Section
II-B outlining the proposed approach. In addition, Section
IIT elaborates on simulation results and discussions. Finally,
Section IV concludes the paper, summarizing the proposed
approach and the obtained results.

II. METHODOLOGY

A. Optimal Operation Problem

The optimal operation of the three-phase medium-voltage
distribution network, with phases denoted by ¢, € F, nodes
represented by m,n € N, and lines by mn € L, can be
modeled using the equations given by (1)-(10) [16].
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The objective function in (1) minimizes operational costs
and active power losses. Operational costs include the cost of
purchasing power from the grid at the slack bus P, m . at price
7 and the quadratic cost of DG unit generation [17], which
depends on the decision variables Pf,? i The total active power
losses me . across all lines is multiplied by a cost coefficient
0 to represent the corresponding cost.

The three-phase power flow constraints of the grid are
defined in (2) to (9). Active and reactive power losses through
the lines Prﬁi ¢,Qﬁl§h o are modeled by (2) and (3), where
R . o and X! mn,6. are the transformed resistance and reac-
tance between phases defined as R}, 4, = R, o0 Z(0p —
0s) and X, . oo = Xinn,g,pZ(0p — f), respectively. Here,
Prn,g and Q¢ represent the active and reactive power
flowing in the lines. Active and reactive power balance con-
straints, given by (4) and (5), ensure that the total power
entering each node equals the total power leaving it. Py, ¢ and
Qrm,s represent the active and reactive power from incoming
lines km, while P, ¢ and Qn,s correspond to the power
flowing through outgoing lines mn. Additionally, Pf,?y » and
Qﬁ » denote the active and reactive power demand at each
node and phase. Equation (6) ensures that injected power from
the external grid is zero at all buses except the slack bus. The
voltage magnitude drop along the lines is given by (7), while
(8), (9) and (10) impose limits on current, voltage magnitudes,
and DG unit active power generation, respectively, with I,,,,,,
V, and V as system parameters.

B. Proposed Approach

As illustrated in Fig. 1, the proposed approach includes
two stages. In the first stage, an IL technique is employed
to replace the original non-linear optimization problem with a
NN. In the second stage, the trained NN is translated into a
MIP formulation, which can be integrated with other system
variables and constraints. This approach ensures a feasible so-
lution by strictly enforcing power balance constraints, variable
bounds, and the relation between NN inputs, outputs, and other
variables. The details of each stage are outlined below.
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Fig. 1.

1) Imitation Learning: During the IL stage, a NN mimics
the task of the NLP solver, thereby eliminating the need to
repeatedly solve the optimization problem for new, unseen
input data. This process, illustrated in part 1 of Fig. 1, consists
of three steps: data generation, offline training, and online
deployment. In the data generation step, a training dataset
is generated by solving the original nonlinear optimization
problem using a NLP solver for a large input dataset. The
effectiveness of the IL approach is closely tied to the size
of the training dataset, with larger datasets leading to more
accurate IL models [18]. Vector X in Fig. 1, represents input
states including active and reactive power demand, PV power
generation, and the active power generation of DG units.
The reasoning behind the inclusion of PDG, a variable of
the optimization problem, as an input state is elaborated in
Section II-B2. The output action set Y includes the phase
voltage magnitudes of all buses and the active and reactive
power losses of all lines. In the offline training phase, a NN
designed for regression tasks is trained, and validated using the
X — Y training set, generated in Step (a). Through extensive
training, the NN approximates the function employed by the
NLP solver to map input states to their corresponding actions.
This acquired policy is subsequently utilized in the online
deployment step, where the trained NN predicts the defined
state variables for unseen data encountered by the system.

2) Surrogate Optimization Model: The NN introduced in
Section II-B1 faces challenges in providing feasible solutions
that fully comply with the optimization constraints. As shown
in part 2 of Fig. 1, the second stage of the proposed approach
addresses this issue by incorporating hard constraints and
variable bounds into the IL process. This is achieved by
embedding the NN within the Pyomo environment' using
the Optimization and Machine Learning Toolkit (OMLT)2.

Thttps://pyomo.readthedocs.io
2https://omlt.readthedocs.io

Proposed IL-SOM approach: 1. IL, 2. SOM.

OMLT simplifies this process by encapsulating NN compo-
nents within a Pyomo block, referred to as the OMLT block,
which includes an MIP formulation for the NN translation.

The OMLT block, shown in Step (d) of Fig. 1, encapsulates
the trained NN within the Pyomo environment, defined by
its inputs and outputs, denoted as X and Y of the X — Y
training set. This approach allows users to focus on the NN’s
input/output structure without delving into the detailed equa-
tions. When optimizing OMLT blocks, the solver finds optimal
values for inputs within specified bounds to ensure feasible
solutions considering the objective function and the enforced

constraints. Fixed parameters, denoted by X' including P, ¢,
Qm’ e and Pm & remain constant, while the optimal value of
X" comprising PG, is computed within predefined bounds
given to the OMLT block. This explains why P,)¢ is included
as a feature in the NN for the IL process in Sect1on II-B1.

In Step (e) of the proposed SOM, OMLT inputs X', X",
and output Y, along with additional variables represented by
Y” (including active and reactive power flowing in lines, and
the active and reactive power injected from the slack bus) are
integrated as Pyomo variables into the broader optimization
problem. To maintain the relation between the input and output
variables of the OMLT block, which are the features and
labels of the NN, and the Pyomo variables, the constraints of
the original optimization problem can be involved. While the
same objective function, which minimizes operational costs
and active power losses, is employed, the constraints (4), (5),
(6), (8), (9), and (10) are enforced to avoid ending up with
an MINLP problem. Finally, the constraint-enforcing IL-SOM
is effectively handled in Pyomo using a GUROBI solver, as
shown in step (f).

III. SIMULATION RESULTS AND DISCUSSIONS

The proposed approach is tested on a 25-bus, three-phase
medium-voltage distribution network, based on the config-
uration outlined in [16], with modifications applied to the
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included DERs, as shown in Fig. 2. The active generation
capacities of the DERs at each bus, including five DG and ten
PV units, are listed in Table I.

Both the original and the surrogate optimization problems

11 ml}

-

Ext. Grid HV/MV

Fig. 2. The considered medium-voltage distribution network.

are formulated in the Pyomo environment, a Python-based
tool for modeling optimization problems. The IPOPT 3, and
GUROBI * solvers are used to deal with the original and
surrogate optimization problems, respectively.

A random input dataset is generated using (11) and the base
active/reactive demand and PV generation capacity at each
node and phase [19]. Here, H,, 4 denotes the base data, H dev
is the maximum deviation from the base value (set at 0.005),
and n(7) is a random sample from the base data distributions.
The NN is trained based on the results from solving the
original NLP problem for 3,000 randomly generated inputs.
This dataset size balances training time and performance,
achieving strong regression metrics: MSE of 0.01, MAE of
0.09, RMSE of 0.12, and R? score of 0.98. These results
indicate the designed NN’s effectiveness in capturing data
patterns and making accurate predictions. The NN in the IL
procedure is implemented in Keras with a single hidden layer
of 100 neurons.

Himg = (14 n(i) x H)H,, 4 (11)

Further considerations involve defining the scaler object
used in data preparation during the training of the NN. This
addresses the challenge of training the NN with scaled features
and labels, while the embedded NN operates in unscaled
space in the optimization framework. Additionally, a suitable
formulation object must be utilized to translate the NN from its
higher-level representation (ONNX or Keras) to fit within the
optimization framework. For this purpose, ReluBigMFormu-
lation [20] is selected when replacing the NN with the OMLT
block, as the trained NN uses the ReLU activation function in
its hidden layer, resulting in a MILP problem solvable by the
GUROBI solver.

Figure 3 presents the distribution of the NN’s target la-
bels (Vi 4, PLS ¢ and an ), calculated with the original
optimization (OPT), IL, and IL-SOM approaches for a set

3https://coin-or.github.io/Tpopt
“https://www.gurobi.com

TABLE I
DER GENERATION CAPACITIES

4 5 6 9 14 15 19 22 23 25

1>£2} (kW) 15 30 12 20 15 40 20 20 15 10

P, (kW) 0 0 40 2 0 10 30 0 0 30

TABLE II
STATISTICAL MEASUREMENTS OF THE OBJECTIVE FUNCTION

Statistical Measures (€) mean std median
OPT 105375.3  9219.51  106067.25
IL-SOM 74673.81  4546.59 71858.41

of unseen data. The boxplots reveal that both IL and IL-
SOM predictions closely align with the actual values obtained
from the OPT model, highlighting the effectiveness of these
methods in accurately following the NLP solver’s policy for
variable calculation.

Additionally, Fig. 4 illustrates the average of the absolute
difference between active power generation and demand
for each phase and bus within the considered three-phase
unbalanced distribution network over the unseen data. It
is obvious that the power imbalance is always zero with
the proposed IL-SOM approach, unlike the values obtained
using only the IL approach. This highlights that despite the
alignment of the labels generated solely by the IL method
to the actual labels calculated by the OPT model, they do
not ensure the active power balance constraint. In contrast,
outputs from the IL-SOM approach consistently meet this
constraint across all buses and phases for all unseen input
data.

Various statistical measurements such as mean, median,
and standard deviation are given by Table II to compare the
objective values in OPT and IL-SOM approaches obtained
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Fig. 3. Distribution of NN target labels across buses over unseen datasets;
via OPT (red), IL (blue), IL-SOM (green) approaches.
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for a set of unseen data. Furthermore, the IL-SOM approach
achieves a longer solving time (47.5 seconds) than the
NLP solver (14.5 seconds) for the same set of unseen data.
However, the strength of the proposed approach lies in
its ability to bypass nonlinearity and enforce constraints
effectively, rather than in reducing solving time. Additionally,
the increased solving time can result from factors such
as overhead costs associated with OMLT blocks or other
code-related considerations, which are beyond the scope of
this paper.

IV. CONCLUSION

Addressing the optimal operation problem in distribution
networks is vital to its safe and efficient operation; and
managing DERs effectively. However, tackling this issue in
real-time applications is complex due to the nonlinear AC
OPF constraints of the grid, and numerous decision variables.
This paper introduced an IL-based approach that overcomes
these nonlinearities by using a neural network to predict the
variables of the optimization problem. The implemented IL
model demonstrated proficiency in accurately predicting the
desired labels, achieving an MSE of 0.01 and an R2 score
of 0.98. Furthermore, by integrating the pre-trained NN into
the optimization framework, a surrogate optimization model
is formulated that is able to follow the original objective
function and enforce constraints. Testing this approach on a
25-bus unbalanced three-phase distribution network confirmed
its adherence to critical constraints, such as active and reactive
power balance, and line current and voltage magnitude limits.
Future work could focus on reducing the solving time of the
proposed IL-SOM approach to enable its application in larger
optimization problems.
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