I VN SO 4 TR diss
2224

RITL: An Information System for
Application Reuse—in—the—Large

HaiKuan Li

RITL: An Information System for
Application Reuse-in-the-Large

RITL: An Information System for
Application Reuse-in-the-Large

Proefschrift

Ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus,

Prof. Drs. P.A. Schenck,
in het openbaar te verdedigen
ten overstaan van een commissie
aangewezen door het College van Dekanen
op 7 juni 1993 te 14.00 uur

door
Haikuan Li

geboren te ShanXi, China

Delft University Press/1993

Dit proefschrift is goedgekeurd door de promotoren

Prof.Dr. H.G. Sol,
Prof.Dr.Ir. M. Looijen

en door de leden van de promotiecommissie:

Prof.Drs. C. Bron,
Prof.Dr. W. Gerhardt,
Prof.Dr. H. Koppelaar,
Prof.Dr. D.J. McConalogue

Published by:

Delft University Press
Stevinweg 1

2628 CN Delft

The Netherlands

ISBN 90-6275-871-1

Copyright ¢ 1993 by Haikuan Li. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, elec-
tronic, mechanical, photocoping, recording or otherwise, without the prior written permission
of the author.

Stellingen

behorende bij het proefschrift

RITL: An Information System for Application

Reuse-in-the-Large

door

HaiKuan Li

1. The necessity of maintenance is re-

flected in Hinds’ law in program-
ming: any given program, when
running, is obsolete, and if a pro-
gram is useful, it will have to be
changed.

. The real difficulty of maintaining
information systems does not lie
in the complexity of dealing with
the existing systems, but lies in the
endless ambitions to have a better
system.

. It is ironic that very much infor-
mation fails to be represented in
system development (forward engi-
neering), whereas quite similar in-
formation has to be recovered in re-
verse engineering for the purpose of
maintenance. That is, system pro-
ducers make puzzles and let reverse
engineers solve them.

. It is too late to look at maintenance
of information systems after deliv-
ery.

5. The retrieval of system components

from a component library is a ma-
jor problem for component reuse.
Such a problem can be solved in
reuse-in-the-large by organizing the
components according to the pro-
cess of system development and
maintenance, i.e. by putting them
at the ‘places’ where they are cre-
ated.

. Hashing is not only a means to

mess up something but also a
means to sort out the mess.

. A sketch is not a painting, but

a guideline for imagination. The
charm of a sketch is allowing ap-
preciators to derive their own im-
ages respectively, so as to enjoy the
creativeness of both the author and
the appreciators themselves.

. If scientific research can be divided

into several stages, then the first
stage is a dream, and the last stage
is another dream.

To Meiling and Yun

Contents

Preface v
1 From Reuse-in-the-Small to Reuse-in-the-Large 1
1.1 A survey of application reuse 1
1.1.1 What is application reuse? 2
1.1.2 Why is application reuse necessary? 3
1.1.3 How does application reuse happen? 4
1.1.4 The development of application reuse 8
1.1.5 Summary o e e e 9

1.2 The outline of theresearch 10
1.2.1 Researchsetting 10
1.2.2 Research questions 12
1.2.3 The contents of the dissertation 14

2 The Reuse of Abstract Datatypes and Algorithm Structures 17

2.1 Approaches to componentreuse 18
2.2 Basic considerations L 00 20
2.3 Ourapproach it it e 22
2.3.1 Principles for components representation. 22
2.3.2 Outline of a reuse support system 23
2.3.3 Ocomp and Scomp: Semantics 25
2.3.4 Ocomp and Scomp: Syntax 27
2.3.5 Generation of operations 29
24 Reuse e e e e e 30
2.4.1 ScomprTeuse e e 30
242 Ocompreusettt 31

2.5 Anexample: bindingtoC++ 31

ii
3 The

3.1
3.2

3.3

34

3.5

4 The
4.1
4.2
4.3

44

4.5

4.6
4.7

reuse of system architectures and design templates 35

Introduction e 36
Actor and its refinemento oL 37
3.2.1 The definition ofanactor 37
3.2.2 The hierarchy ofanactor 38
3.2.3 The rules for actor refinement 40
324 ActorandEDFG 42
System architecture, 44
3.3.1 Creating a system architecture 44
3.3.2 Reusing system architecture 45
Templates of system design 47
341 Template i 48
3.4.2 Import and inheritance 51
Summary e e 54
reuse of large-scale components 55
The abstractions for component modeling 56
The pragmatic model of large-scale components 58
The operating model of large-scale components 61
4.3.1 The relationship between an object and its refinement . 62
4.3.2 A design framework: a parameterized design 63
4.3.3 Domain resources: objects for instantiation 63
4.3.4 Design instance: a specialized design 63
4.3.5 The formalization 65
Management of large-scale components 66
4.4.1 Retrieval problem 67
4.4.2 Semantic data base and semantic data modeling. 67
4.4.3 The representation of large-scale components 68
444 The componentbase 71
4.4.5 The process of creating and reusing large-scale components 74
The capability of reusing large-scale component 77
4.5.1 The life-cycle oriented reuse 77
4.5.2 Incremental domain analysis 79

An information system for application reuse-in-the-large 81
Summary e e 83

iii

5 The Specification of Large-Scale Components 85

5.1 The specification of large-scale components 85
5.1.1 Multiple-level Specification 86
5.1.2 Specifying large-scale components 90

5.2 An example of large-scale components 94

5.3 The consistency verification 100
5.3.1 The conceptsof actorand edfg 101
5.3.2 The refinement consistency 103

5.4 Summary e e 116

6 Reuse-in-the-Large and Application Prototyping 117

6.1 Imtroduction 117

6.2 Representing large-scale component in terms of EDFG 118
6.2.1 The concepts about EDFG 118
6.2.2 The process of EDFG decomposition 119
6.2.3 The definition of prototypes in terms of EDFG 120
6.2.4 Representing large-scale components in terms of proto-

types o . e e 121

6.3 Using large-scale components in application prototyping 124
6.3.1 The process of application prototyping 124
6.3.2 Component specification and EDFG mapping 127
6.3.3 The management of large-scale components 129

6.4 Summary e e 131

7 Reuse-in-the-large: A case study 133

7.1 Introduction. 133

7.2 Representing a large-scale component 137
7.2.1 Specifying the C-REPORTER (top node) 138
7.2.2 Specifying the PRINTER (A second level node) 144
7.2.3 Specifying the RETRIEVER (Another second level node)149

7.3 Browsing and manipulation 154
7.3.1 Browsing a large-scale component 154
7.3.2 Manipulating a large-scale component 160

7.4 Generating alternative design 163

7.5 Generating implementation 166

7.6 Summary e e 170

iv

9 aQ w »

Epilogue

8.1 Reuse-in-thellarge
8.2 Supporting management of information system
8.3 Supporting dynamic modelling of applications

Summary

Scomps and Ocomps in Duplex Shell
Index

Bibliography

Curriculum Vitae

173
173
174
176

179

185

213

219

231

Preface

All things in the world are originated from ezistence. Existence is originated
from non-existence.
— Lao Tsu, 6th century B.C.

This dissertation provides system developers with a set of methods for
application reuse, particularly for application reuse-in-the-large. The idea of
reuse-in-the-large, in contrast with that of traditional reuse (the reuse of
small code components), aims at reusing large-grain components of informa-
tion systems and, more importantly, the information about the creation of the
components. Such kind of reuse reflects the requirements for developing large
and complex applications. The methods for application reuse-in-the-large, as
provided in this dissertation, include a method for reusing abstract data types
and algorithm structures, a method for reusing system architectures and de-
sign templates, and a method for modelling, specification, management and
manipulation of large-scale components. These methods are applied in an
information system for application development and maintenance with reuse-
in-the-large.

This dissertation would have never been possible without the help of many
people. Acknowledgements are due to Prof.Dr. H.G. Sol, my promoter, for his
constructive and imaginative way of directing research, for his continuing in-
spiration and for his challenge to my intellectual capability, and for his careful
review and effective revision of this dissertation.

I am greatly indebted to Prof.Dr.Ir. M. Looijen, my second promoter, for
his careful reading of the drafts, for his fruitful guidance and confidence in the
dissertation work, and for his continuing encouragement and support.

Acknowledgements are also due Prof.Dr.Ir. J. van Katwijk for his valuable
contribution to the dissertation work leading to several publications, for the

vi Preface

unforgettable cooperation with him for several years, and for his advise and
help.

I would like to thank Prof.Drs. C. Bron of Groningen University for his
continually keeping an eye on the dissertation work, and for his critical com-
ments and constructive suggestions on the earlier version of the dissertation.

Special thanks are given to Ir. F. Ververs and Drs. E. M. Dusink for a
good cooperation with them on the same project during a long period of time,
for many beneficial discussions with them, and for their help in every possible
way concerning the research related to the dissertation.

[appreciate very much the efforts given by Prof.Dr.Ir. F.W. Jansen,
Prof.Dr. S.C. van Westrhenen and Prof.Dr.Ir. v.d. Poel, for their under-
standing and support of the dissertation work. I am grateful to Dr. W. Tracz
of IBM Corporation, USA, for his enthusiastic approval of the approach re-
garding the dissertation, when he was the chairman of WISR’91.

I also wish to express my gratitude to Prof. L. Latour of the University of
Maine, USA, Prof. L. Lugi of Navy Graduate School, USA, Prof. M. Wirsing
of Passau University, Germany, Prof. R. Mittermeir of Klagenfurt University,
Austria, Prof. H. Weber of Dortmund University, Germany, and Dr. R.
Prieto-Diaz of Software Productivity Consortium, USA, for their support and
encouragement.

I am very grateful to Mrs G.M.A. Stoute for her correction of almost all
my papers. 1 am also very grateful to Mr. A.W.W.M. Biegstraaten and Mr.
H.M.M. Engelen who were always ready for quickly solving problems with the
computer systems and for helping me in various ways.

Chapter 1

From Reuse-in-the-Small to
Reuse-in-the-Large

The drive to create reusable rather than transitory artifacts has aesthetic and
intellectual as well as economic motivations and is part of man’s desire for im-
mortality. It distinguishes man from other creatures and civilized from primi-
tive societies.

- Peter Wegner, 1984

In this chapter a survey on the state of the art in the field of application
reuse is provided, and our research on application reuse is introduced.

1.1 A survey of application reuse

The discrepancy between the demand for large and complex information sys-
tems and the ability to build such systems is still large. For a long time many
efforts aiming at solving the problem have been tried from several aspects
including system modelling methodologies, programming languages, develop-
ment environments, and application reuse. Although all the efforts are useful
and capable of providing partial solutions of the problem, application reuse
is especially attractive to improve system quality and productivity, because
a large amount of expensive work has been found redundant in the practice
of system development [41], and quite some achievements to avoid the redun-
dancy are already there[116].

2 Chapter 1. From Reuse-in-the-Small to Reuse-in-the-Large

In this section, we describe what application reuse is, why it is necessary,
how it can be achieved, what the current achievements are, and our future
work.

1.1.1 What is application reuse?

Reuse happens in our daily life as well as in various scientific areas and is,
therefore, a general concept. We see construction workers using the same
kind of bricks to build different kinds of buildings, architects applying the
same design principles to different architectural designs, mathematicians using
the same formulas to solve different problems, and physicists using the same
laws to explain different phenomena. If we derive the concept of reuse from
the general experience of daily life and various scientific areas, then reuse is
just the reapplication of the same object or the same knowledge to different
applications.

Similarly, application reuse is the reapplication of artifacts and/or knowl-
edge on the development of one application to another application, in order to
reduce the effort of application development and maintenance of that other
application [18]. Artifacts refer to any products of the engineering process
of application development, such as systems, components and documentation.
The knowledge refers to the facts and experience known by system develop-
ers and maintainers about system development and maintenance, such as the
information on system analysis and design. An application is a system which
provides a set of services for solving some type of user problem[96]. An appli-
cation can also be a part of an information system which is produced for the
functional use of the information system [81]. An information system is a sys-
tem for collecting, storing and processing of data. It is the sum of data sets,
application software, system software, hardware, procedures (among which
working instructions), documentation (among which manuals), technical fea-
tures and people.

Application reuse can be classified into reuse-in-the-small and reuse-in-
the-large. The former is centered on the reuse of small system components,
and the latter is centered on the reuse of large-grain components and design
information, i.e. the knowledge about the creation of the components. A
component or system component in this dissertation, particularly refers to one
of the parts that make up an application, which may be software, hardware

Why is application reuse necessary? 3

or other artifacts, and may be subdivided into other components.

Although there is quite some experience on reuse-in-the-small and it is
proved to be moderately successful in some areas [38][116][95] [50], such kind
of reuse is insufficient to improve the process of system development and main-
tenance [18]. In contrast, reuse-in-the-large aims at obtaining design informa-
tion from each phase of system development, and at taking this information as
a basis to improve the process of similar development and maintenance[9][93]
[106]. System development refers to the activities of analysis, design, and im-
plementation [20]. Analysis is a process of studying the capability needed by
a user to solve a problem or achieve an objective. According to Sol, design is
a process of problem solving, which can be viewed as a chain of transforma-
tions in which the products of various activities in the process superimpose in
successive layers[127][112]. The activities include the definition of the system
architecture, components, data, interfaces for a system to satisfy specified
requirements[51]. Implementation is a process to realize a design in more
concrete terms; in particular, in terms of hardware, software, or both[96].
Moreover, system maintenance refers to the activities of modifying a system
or component after delivery to correct faults, improve performance or other
attributes or adapt to a changed environment[96][81].

1.1.2 Why is application reuse necessary?

According to Cox[35], the software crisis causes software to be too expensive,
its quality insufficient and its development almost impossible to be managed.
Our opinion is that application reuse, especially the reuse of components of
applications, might reduce the pressure of the software crisis.

First, it was reported that the Electronics Industries Association (US)
estimated that the DOD (The Department of Defence) would spend $23.1
billion on mission-critical software in one year[38). Another report described
that the cost of maintenance can be reduced by 90%, using application reuse
[116], while according to [95] the cost of software maintenance is usually about
75% of the total cost of the whole life-cycle of software. Other studies [50]
show that on a given project 40% of a design and 75% of the code are reused.
If we assume that the expenses needed for application reuse are considerably
small, the cost of system development and maintenance can be significantly
reduced by applying reuse.

4 Chapter 1. From Reuse-in-the-Small to Reuse-in-the-Large

Thirdly, application reuse may lead to a better process of system develop-
ment. In this area some achievements have already been made while others
are in progress[18]. On the one hand, we have already means to manage source
code components, such as libraries[100][20](26], on the other hand, reverse en-
gineering and re-engineering, as discussed later on, provide improved means
for managing system development and maintenance, and the development of
some environments is in progress [17] [9]. Moreover, there are good exam-
ples of managing design information, e.g. the Draco system([93], in which the
knowledge about the system development process itself is kept under control.

1.1.8 How does application reuse happen?

The question how application reuse happens basically depends on what kind
of application reuse is applied. Our discussion will be focused on reuse-in-the-
small and reuse-in-the-large.

Reuse-in-the-small

Reuse-in-the-small is centered on reusing small system components. A system
component is smallif its implementation or description can be compared with
a primitive language construct such as a class in C++, a package in Ada and
so on[18], or it can be represented in terms of 10-100’s lines of source code[16].
The research on reuse-in-the-small is basically concerned with component rep-
resentation and component management.

Component representation deals with the form and content of system com-
ponents. The research on component representation is often oriented towards
programming languages. Most methods to achieve appropriate representa-
tions of components are based on classical techniques: divide and rule [24]
and abstraction. A large application is usually built up from a set of building
blocks, e.g. modules in Modula 2 (dividing); secondly, applications may be
generated from domain knowledge, e.g. the rules and the patterns for appli-
cation construction [122] (ruling); and, thirdly, a complex component can be
represented as a black box and, therefore, can be reused at an abstract level,
e.g. the specification of an Ada package (abstraction).

Component management is concerned with repositories, classification and
the retrieval of system components. A component repository is a component

How does reuse happen? 5

library providing permanent , archival storage for components and relevant
documentation. Component classification is a mapping of a collection of com-
ponents to a taxonomy or the process of determining such a mapping{96].
Component retrieval is the activity to search a required component from a
component library. One kind of component management, perhaps the most
successful one at this time, is based on the application of data base techniques
to the management of system components. Using data base techniques, library
components can be classified and retrieved according to the properties of the
components[100][88].

Programming language facilities form another basis for managing compo-
nents. Inheritance is a prime example of this kind. By organizing system
components in a hierarchical structure, the content of an existing component
can be shared by its descendants[125].

The problems with reuse-in-the-small are well known[18][124][43]: First,
reuse-in-the-small provides insufficient means and artifacts to manage and sup-
port the process of system development and maintenance. Secondly, building
up a system from small code components leaves a lot of work to be done in
building the architecture that bind the components into a whole system, while
the cost to build this architecture, as indicated by Biggerstaff[18], is typically
very much larger than the savings afforded by reusing a set of small compo-
nents. An architecture refers to the organizational structure of a system or
component, i.e. the structure and relationship among the components of a
system[96][51].

Reuse-in-the-large

In contrast with reuse-in-the-small, reuse-in-the-large is concerned with reusing
large-grain components and, perhaps more important, with the reuse of design
information. A component is said to be a large-grain component if it consists
of a set of small system components or their composition, such as subsystems
or even complete systems.

The requirements for reuse-in-the-large are quite different from that of
reuse-in-the-small. While it is often reasonable to regard a small code com-
ponent as a reusable black box, this view is hardly possible for a large-grain
component. A large-grain component — say a subsystem — usually contains
much more features concerned with a particular application than a small com-

6 Chapter 1. From Reuse-in-the-Small to Reuse-in-the-Large

ponent. When such a component is reused in a new application, these features
must be replaced by the features matching the requirements of the new ap-
plication. If the large component is a parameterless black box, it is hardly
possible to adapt the component to different applications. If it is parameter-
ized on these features, reusers shrink at the sight of too many parameters[64].
On the other hand, it is nearly impossible to ask a reuser to understand the
inside structure of a large-grain component in sufficient detail either.

However, reuse-in-the-large is possible. The development of reuse-in-the-
large can be traced back to the original motivation of system maintenance.
The goal of maintenance, according to Looijen[81], is far beyond the correc-
tion of the design mistakes in a system. It also aims at adapting an existing
system to the application environment which is continually changing, at im-
proving the performance or other attributes of a system, at extending the
functionality of a system, and at enabling a system to defend itself from pos-
sible turbulence, i.e. improving robustness. These activities lead to several
research aspects including corrective maintenance, adaptive maintenance, per-
fective maintenance, additive maintenance, and preventive maintenance[81].
The activities of maintenance result in successive versions of evolving sys-
tems, which, according to Biggerstaff, is highly focused reuse-in-the-large[18].
Moreover, research[125] pointed out that such kind of reuse appears to be
a more important source of increased productivity than reuse of small code
components in different applications.

In our opinion, maintenance is a kind of system development with reuse-
in-the-large. A support for such an idea is Basili’s reuse-model. Treating
maintenance as a reuse-oriented development process, according to Basili[9],
provides a choice of maintenance approaches and improves the overall evolu-
tion process.

Some other technologies on reuse-in-the-large are reverse engineering and
re-engineering.

Reverse engineering is defined by Chikofsky and Cross II, as “ the process
of analyzing a subject system to identify the system’s components and their
interrelationships and create representations of the system in another form or
at a higher level of abstraction”[31]. Methods supporting reverse engineering
are concerned with providing means for a better understanding of an existing
system, identifying reusable artifacts in the system and recovering the artifacts

The development of application reuse 7

about the creation of the system, such as the design specification of the system.
The Desire System[17] is an example of reverse engineering, aiming at recovery
of domain knowledge, external information and other useful information about
systems.

Re-engineering aims at evolving old systems or building new system out
of existing ones by utilizing the information provided by reverse engineering.
Methods supporting re-engineering may be concerned with an evolutionary
process of development or the reconstruction of existing systems and the in-
formation on the development of the systems. Basili’s approach [9] is also an
example of re-engineering, which provides a possibility of reusing the informa-
tion on requirements, design, coding and testing in the development process.

Unfortunately, reverse engineering and even re-engineering almost always
have to be applied to poorly designed and incomplete products without a
structure appropriately supporting reusability [94], i.e. the capability of being
reused. A way to avoid this problem is to create reusability during system
development, i.e. to improve the skills in forward engineering.

Forward engineering is the process of going from requirements through de-
sign to implementation[31]. Forward engineering providing support for reuse is
called reuse-supported forward engineering. Methods supporting such forward
engineering may be concerned with formalizing the information of analysis
and design, with generalizing components, and with building high abstrac-
tions of components. Some application generators(125] are examples of tools
supporting reuse-supported forward engineering. Such tools usually keep up
rules and domain knowledge and provide possible automation at some phases
of analysis, design, implementation and even maintenance [93] [15] [125].

Although reverse engineering, re-engineering and reuse-supported forward
engineering provide experience that forms a basis for dealing with reuse-in-
the-large, there is still quite a large research space to look into. Biggerstaff[18]
even claims that reuse-in-the-large introduces a whole new set of research
problems. These problems especially include how to represent, manage and
manipulate both large-grain components and the design information, so as to
allow reuse over a broad range of target systems and over the process of system
development and maintenance.

8 Chapter 1. From Reuse-in-the-Small to Reuse-in-the-Large

1.1.4 The development of application reuse

Reuse-in-the-small and reuse-in-the-large are rooted in programming-in-the-
small and programming-in-the-large respectively.

Programming-in-the-small and reuse-in-the-small

System development lived through its childhood until the mid of 1960s when
research attention was concentrated on how to represent structure and sym-
bolic information and the elementary understanding of control flows{108]. In
the mid 1960s, according to Shaw, research attention on system development
was shifted from its childhood to programming-in-the-small when the abstrac-
tions of algorithms and data structures emerged, and the studies on program
specification were started[108]. However, programming-in-the-small is pro-
gram centered. The programs are usually simple and made through individ-
ual effort; the system components are code components; and the component
specifications are often simple input/output specifications[108].

The history of application reuse may be traced back to the component reuse
which, as early as 1950, according to Wegner, when Wilkes, Wheeler and Gill
recognized the importance of subprogram libraries of reusable programs[125].
In the mid 1960’s, the capability of component reuse was further improved
when data structures emerged[59][108]. In the late 1960’s, the idea of compo-
nent reuse was formulated by McIlroy who advocated what he called a compo-
nent manufacturing facility [84][50]. However, corresponding to programming-
in-the-small, component reuse was reuse-in-the-small at that time. The char-
acteristic is that the reused components are usually small code components
such as procedures, functions, classes and so on. Some techniques applied
to reuse-in-the-small include parameterization, information hiding and inher-
itance. The idea is building libraries which are well populated with reusable
code components.

However, many reuse problems were not solved yet before research atten-
tion was shifted from programming-in-the-small to programming-in-the-large,
such as how to identify reusable components, how to retrieve the components
from the library, how to fit a component into different applications and so on.

Summary 9

Programming-in-the-large and reuse-in-the-large

In the mid 1970s, according to Shaw([108], research attention on system devel-
opment was shifted from programming-in-the-small to programming-in-the-
large. Programming-in-the-large is centered on the development of complex
systems which are implemented by a team rather than by an individual. It is
recognized that system development may include several phases such as anal-
ysis, design, implementation and maintenance. The artifacts produced during
the development include both the components of code and design information.

Programming-in-the-large is quite different from programming-in-the-small.
First, the coding which was a major part of programming-in-the-small became
less important to programming-in-the-large. The cost of coding may be only
13-18% of the whole cost of system development[50] [32]. Secondly, mainte-
nance has become a very important part of the system life-cycle. The cost
of system maintenance may reach 756% of the whole cost of a system during
its lifetime[36]. Thirdly, the importance of system design was increased. The
cost of design together with analysis is 32-46% of the whole cost of system
development[50] [32]; additionally, both code components and design informa-
tion are needed for maintenance.

The shift from programming-in-the-small to programming-in-the-large re-
flects the maturity of development techniques. However, programming-in-the-
large introduces a new set of reuse problems, such as maintenance, evolu-
tion, prototyping, and re-engineering. Attracted by the importance of these
problems, research attention on reuse was shifted from reuse-in-the-small to
reuse-in-the-large.

The characterization of the shift from reuse-in-the-small to reuse-in-the-
large is the shift from the reuse of small components to the reuse of both
small and large components, from the reuse of code components to the reuse
of both code components and design information, and the shift from aiming
at improving implementation to aiming at improving the process of system
development and maintenance.

1.1.5 Summary

In this section, a survey and a classification of application reuse were pro-
vided. Application reuse does provide technologies to deal with the reusabil-

10 Chapter 1. From Reuse-in-the-Small to Reuse-in-the-Large

ity of system components and the knowledge about system development and
maintenance. The classification of application reuse was provided in terms of
reuse-in-the-small and reuse-in-the-large. The former is centered on the reuse
of small source code components, whereas the latter is centered on the reuse
of large-grain components extended with design information.

Comparing reuse-in-the-large with reuse-in-the-small, we conclude that —
although there is quite some experience on reuse-in-the-small and it proved
to be moderately successful in some areas — such kind of reuse is insufficient
to improve the process of system development and maintenance. In contrast,
reuse-in-the-large aims at obtaining design information from each phase of
system development, and taking this information as a basis to improve the
process of system development and maintenance.

Future developments in the field of application reuse should continually
concentrate on methods and support for representation and management of
the artifacts to be reused, especially for the representation of large-grain com-
ponent and design information.

1.2 The outline of the research

In this section we describe the research setting, research questions and the
contents of the dissertation.

1.2.1 Research setting

As discussed in the previous section, reverse engineering and re-engineering are
important ways of application reuse. However, they lack efficiency in achieving
reuse-in-the-large if they are applied to poor representations of applications
[94][124][106]. Unfortunately, as pointed out by Webster[124], conventional
system development methodologies are product-oriented; they were developed
to address the artifacts being designed, they do not adequately address design
information, particularly the representation about the information for the cre-
ation of the artifacts. Accordingly, we need to address novel requirements for
system development.

The novel requirements for system development, according to Sol[113],
are the need for a common frame of reference, concerning a coherent set of
descriptive building blocks, the need for an extendible system description and

Research setting 11

analysis context, the need for an iterative process of analysis and synthesis,
and the need for the generation of alternative possibilities.

To meet the requirements above, Sol introduced the concept of dynamic
modelling. The philosophy of dynamic modelling, he wrote, aims at the im-
provement of staff performance by creating an environment which supports
problem solving processes. The modelling method should stress the specifica-
tion of conceptual and empirical models for better understanding of existing
situations and possible alternative solutions. The modelling should be based
on possible changes in task structures and working processes, and on an effec-
tive application of technology.

As to the state of the research on dynamic modelling, a start has been made
by Dur and Bots[25]; many description methods are based on static modelling,
adding dynamic aspects at later stage. Sol indicated that we need to seek other
effective coordination means, instead of spending too much efforts to decide
which description method promotes the translation into software best. The
essence of dynamic (system) modelling requires more detailed investigation
into proper concepts and ways of representation.

In this dissertation we develop an approach for application reuse-in-the-
large. Our research is focused on: (i) the representation of large-grain com-
ponents extended with design information, (ii) the realization of a reuse in-
frastructure for the acquisition, storing and manipulation of the artifacts to
be reused, and (iii) the possibility of generating alternative applications in an
application domain.

A reuse infrastructure refers to the information and its structure which
must be available to system developers, together with the auxiliary information
needed to locate and manipulate this information[3]. An application domain
refers to a set of current and future applications marketed by a set of common
capabilities and data [96].

From a reuse point of view, this approach integrates reuse into the process
of system development and maintenance. It is a systematic way of creat-
ing and reusing artifacts and is capable of improving the process of system
development and maintenance. However, the information to be handled, as
focused on by us in this approach, is limited to the information which can
be represented in terms of popular notations such as diagrammatic notations
and formal specification[72]. We do not try to handle further upstream de-

12 Chapter 1. From Reuse-in-the-Small to Reuse-in-the-Large

sign information[124], which is usually informal and concerned with the early
aspects of a system development process.

The process of system development and maintenance corresponds to a life-
cycle model, in particular an improved waterfall model. A life-cycle model is a
description of the process of system development and maintenance according
to the life-cycle of systems to be developed. A system life-cycle refers to the
period of time that starts when the system is conceived and ends when the
system is no longer available for use[51]. A model is a representation of a
process, phenomenon or concept in the real world[51].

The waterfall model[125] is a traditional life-cycle model. According to this
model, the development of system proceeds through a number of stages:analysis
— design — implementation — maintenance[125]. The improved waterfall
model is similar to the life-cycle model in object-oriented design[20], which al-
lows a jump in waterfall model from each higher stage to any lower stage and a
trace-back from each lower stage to any higher stage [20]. The former reflects
the need to reuse lower level resources at an early stage of system develop-
ment, the latter reflects the need of iterative analysis, design, implementation
and maintenance.

1.2.2 Research questions

Many methodologies have been proposed as being effective to application
reuse[125][18]. But we claim that none of them provides a representation
form to meet the requirements of reuse-in-the-large in both the scope and the
organizational structure of the information to be reused, and none of them
supports a systematic process to be followed.

There are several well-known approaches that have been proposed for
reusing design information and/or large-grain components, including MILs[99],
Draco[92] and EPROS[48]. MILs (Module Interconnection Languages) pro-
vide a description of system structure and resources flowing among system
components[99]. MILs are useful for reusing system architecture and can be
used to support system design and analysis. The research question is, however,
according to Prieto-Diaz[99], how could an MIL be expanded or argumented
to include information about the availability of resources and modules? More
information is needed to indicate the specification of such modules and re-
sources. Draco is the first approach that supports application reuse in terms

Research questions 13

of domain analysis. Domain analysis refers to the process of identifying, col-
lecting, organizing, analyzing, and representing a domain model and system
architecture from study of existing systems, underlying theory, emerging tech-
nology, and development histories within the domain of interest[96]. Draco is
successful for identifying reusable artifacts prior to developing the first system
in an application domain and organizing them together for application reuse,
but the cost of domain analysis, as evaluated by Balda[7], makes the Draco
approach very expensive in its initial use. EPROS supports reuse by gener-
ating prototypes from a formal description of a system, although it does not
provide means to extend the reuse process into domain analysis.

In order to support application reuse-in-the-large a new approach is re-
quired to support several features missing in the discussed approaches. Qur
goal is to seek an approach to support representation, management and reap-
plication of reusable artifacts, and to support a systematic process for appli-
cation or system development and maintenance with reuse-in-the-large.

We need to go one step further than the related approaches. First, in
contrast with MILs, an approach for application reuse-in-the-large may not
only allow the reuse of system architectures (system structures in MILs) but
also provides the specification of resources, particularly concerning what the
necessary resources may be, where they are placed and how they are reused.
Secondly, in contrast to the Draco approach, we need an incremental domain
analysis: The artifacts which are acquired during the process of developing the
earlier system(s) may be both reused and enriched during the process of devel-
oping other systems later on. The enrichment can be continued until domain
analysis is completed. Thirdly, in order to support maintenance and reuse
large-grain components rather than frequently compose them from primitive
components, we need to maintain an instance of a system and its design. This
will also allow system developer and customer to deal with their requirements
over an existing design or an executable system, and to develop new systems
based on the modification and reconstruction of an existing one in a problem
domain.

Consequently, we intend to address an information system which supports
(application) system development and maintenance with Reuse-in-the-Large.
It supports the reuse of both large-grain components and design information,
supplies artifacts to be reused at the time and place when reuse is necessary,

14 Chapter 1. From Reuse-in-the-Small to Reuse-in-the-Large

and provides the capability of acquiring artifacts to be reused during the pro-
cess of reuse.

1.2.83 The contents of the dissertation

Our research on application reuse can be traced back to 1988, when our at-
tention was mainly focused on the reuse of source code components. At the
very beginning, our work was centered on the reuse of C and C++ program
units[69]. Later on, a method was addressed for the reuse of algorithm struc-
tures and abstract data types [68], the former representing the context to
compose a program, and the latter representing the lower level entities to
be composed with. Such a method led to a proposal for a reuse supporting
environment(70][71]. From such a method we noticed that (1) the context for
component composition as represented in terms of algorithm structures may
play an important role in application reuse, (2) component modelling may not
only be useful to package operations oriented to certain objects, but also to
package the operations with respect to certain algorithm structures. For a
detailed discussion, see also chapter 2.

Soon after the method above was addressed, we understood that the con-
text for component composition should be an architectural structure for large-
grain components. Therefore, our research attention was shifted to the EDFG
approach [65] in mid-1990, which allowed us to look into the possibility of
reusing system design information. During this period, a method iwaswass
presented to reuse both source code components and design information, in-
cluding system architectures and other artifacts of system design. According
to this method, a design can be represented in terms of Extended Data-Flow
Graphs (EDFGs) and formal specifications. The graphs, specifications and
code components can be organized into a hierarchical structure, representing
different levels of abstraction. Such a structure can easily be maintained and
reconstructed to meet varieties of design targets. For a detailed discussion,
see also chapter 3.

As soon as we had experience in reusing large-grain components and design
information concerning a specific project, we intended to go one step further by
introducing a general method for reuse-in-the-large. Such a method concerns
the modelling, representation, management and reapplication of large-scale
components. A large-scale component is an extended system component which

The contents of the dissertation 15

contains design information, including concept, content and context about the
construction of varieties of large-grain components such as subsystems or even
complete systems in an application domain. The concept is described by
a functional specification; the content is the refinement and implementation
of a component; the context is the architectural structure or algorithm to
compose a component from lower resources. All information of a large-scale
component is organized in a hierarchical structure, representing different levels
of abstraction. All the information can be incrementally accumulated and
reused in the process of system development and maintenance. For a detailed
discussion, see also chapter 4.

An abstraction refers to a representation or specification of a system or
component that focuses on the information relevant to a particular purpose
and ignores the remainder of the information. Different levels of abstraction
refers to a set of interrelated abstractions which are classified into several levels
according to an architecture. A higher-level abstraction catches the common-
alities of a set of lower level abstraction. A lower-level abstraction refines a
higher-level abstraction with detailed or additional parts and properties.

In order to represent and understand large-scale components in a precise
manner so as to reuse them effectively, we introduce a principle for the specifi-
cation of large-scale components and describe how to apply such a principle for
the representation of large-scale components. Moreover, we address a method
for the consistency verification of large-scale components. This method sug-
gests that the verification can, with a few rules, be simplified by inference from
the extended data flow graphs.

As an investigation of applying the approach for reuse-in-the-large to the
practice of system development, we looked into how a large-scale component is
capable of supporting system prototyping. By such an example, some perfor-
mance of the method was verified. For a detailed discussion, see also chapter
6.

In order to convince readers how RITL is practically applied in a more
specific manner than before, we discuss how reuse-in-the-large happens in
a support environment, regarding a particular application domain: Student
Management System (SMS), which is represented in terms of a large-scale
component. Particularly, we discuss how SMS is specified in terms of RSL,
an available specification language, how it is understood and manipulated

16 Chapter 1. From Reuse-in-the-Small to Reuse-in-the-Large

and how varieties of designs and implementations can be generated from the
large-scale component so as to meet varieties of requirements in an application
domain. For a detailed discussion, see also chapter 7.

Scientific research has no end, “Still achieving, still pursuing, learn to
labour and to wait (Longfellow).”

Chapter 2

The Reuse of Abstract
Datatypes and Algorithm
Structures

algorithms + data-structures = programs.

N. Wirth, Prentice Hall, 1976.

As a preparation of application reuse-in-the-large, the representation and
reapplication of source code components are discussed in this chapter. When
looking into some popular programming languages and some approaches of
reuse[18], we find that abstract data types and algorithm structures can be a
basis for building larger-grain components. While abstract data types can be
used to represent objects, algorithm structures can be used to bind the objects
into large-grain components. An abstract data type is a data type for which
only the properties of the data and the operations to be performed on the data
are specified, without concern for how the data will be represented or how the
operations will be implemented[96]. An algorithm structure is a parameterized
module from which one or more abstract data types are extracted and replaced
by proper parameters. A module refers to a logically separable part of a
system[51].

17

18 Chapter 2. Abstract Datatypes and Algorithm Structures

2.1 Approaches to component reuse

Quality requirements concerning the reusability of system components [85[15][69]
seem difficult to be met. On the one hand, system components should be soft
(changeable) so that they can flexibly be reused for different requirements
and/or in different application environments (the adaptability demand); on
the other hand, system components should be hard (unchanged) as well, so
that they can form the basis for further component composition (the com-
posibility demand) without modification of the components. Additionally, its
reuse should be easy to be carried out (the simplicity demand). ! Adaptability
refers to the quality of system components which allow different application
constraints and user-needs to be satisfied[51]. Composibility refers to the
quality of system components from which large-components or systems can be
built [104]. Simplicity refers to the quality of system components, which al-
lows the reapplication of the components with less effort than that of creating
the components. Additionally, that a component can be flexibly reused or has
flexibility for reuse, according to Peterson[96], implies the ease with which the
component can be tailored for the use in applications or environments other
than those for which it was specifically designed.

Years of efforts from different corners have been spent in addressing reuse.
The approaches to reuse can be divided into two groups depending on the
nature of the components being reused, namely, composition-based approaches
and generation-based approaches(15].

The composition-based approaches, according to Biggerstaff, are charac-
terized by the fact that the reusable components are largely atomic and ideally
unchanged in the course of their reuse. In generation-based approaches com-
ponents are viewed as rules and patterns [15] and are meant to be modified
(hopefully mechanically) in their reuse.

An example of composition-based approaches is using abstract data types
or its extension as in object-oriented programming. The extension of using
abstract data type results in object-oriented programming in which the de-
composition of a system is based upon objects [20]. An object, according to
Booch[19], is an entity whose behaviour is characterized by the operations that
it suffers and that it requires from other objects. Object-oriented program-

!Simplicity does not imply that the components themselves should be simple, it does
imply that composing systems or complex components should be easy.

Approaches to component reuse 19

ming supports a certain degree of flexibility in the definition and composition
of components. The basic components in object-oriented programming are
usually represented as abstract data types or its extension, e.g. classes in
C++. A class denotes the potential to create a set of similar but unique
objects[19]. It serves to describe the common properties of a set of objects
and to specify the behavior of all instances. An abstract data type provides a
way of information hiding. The extension of abstract data types also supports
a way for component composition, typically, the mechanism of inheritance. In-
formation hiding is an abstraction technique in which the visibility of defined
entities of components is limited and controlled. Inheritance is a technique for
hierarchical resource sharing which provides means to define components as
extensions of previously defined ones[126] [85].

Examples of the generation-based approaches are the template approach
[121] and the frame-based approach[10]. The template approach as advocated
by Volpano[122] aims at reusing the representation of algorithm in terms of
templates. A template is an algorithm specification which is free from any
commitment to specific types and representations of data. In other words,
the specification of algorithms is parameterized in terms of polymorphic ab-
stract data types. As such, the instantiation of a template requires abstract
data types as (actual) parameters. However, the template approach supports
neither inheritance directly for the creation of abstract data types which are
maintained in a library, nor flexible algorithm tailoring which seems essential
to allow the usage of similar (though not equal) algorithms. Tailoring is a
technique for representing components which provides support to change the
components into varieties. Algorithm tailoring refers to generating a repre-
sentation of a similar algorithm with reusing an existing one.

The frame-based approach, advocated by Bassett [10], aims at reusing
abstract algorithms, which supports a flexible tailoring of algorithms. In this
approach, an algorithm corresponds to a piece of program, and an abstract
algorithm is defined in terms of a frame. A frame is built up as a macro
with a set of macro parameters. In terms of a macro almost any part of a
program appearing in a frame can be defined as a macro parameter. Apart
from providing a wide form of genericity, this kind of parameterization makes
both the tailoring of data structure and the tailoring of algorithm available.
Genericity is a property of a system component. A system component has

20 Chapter 2. Abstract Datatypes and Algorithm Structures

genericity if it has more than one interpretation depending on parameters
representing types or subcomponents[85].

We think that the frame-based approach is especially successful in those
cases where a high degree of algorithm tailoring is required. It does support
flexible reuse of algorithms, but it does not support abstract data types to be
used for component construction.

Considering the facts above, we find that the techniques which are ap-
plied to the different approaches above can complement each other for reuse.
On one hand object-oriented approaches allow the creation of abstract data
types or its extensions, they fail in algorithmic reuse as effective as that of
the template approach and frame-based approach. On the other hand the
template approach is especially useful for the specification of algorithms but
needs abstract data types to instantiate the algorithms into system compo-
nents. Moreover, if a higher degree of tailoring is required, e.g. to solve
problems concerned with same-as-ezcept %, it might be better to extend an
object-oriented approach with a frame-based approach.

Consequently, in order to emphasize the reusability of both abstract data
types and algorithms as well as the tailoring of components, we think that a
single approach is needed in which elements of compositional approaches and
elements of generation approaches are combined.

2.2 Basic considerations

In this section we describe our basic considerations about how to meet the
quality requirements of components including adaptability, composibility and
simplicity as mentioned at the beginning of section 1, and how to enhance the
reusability.

Firstly, considering the techniques used in the approaches that were dis-
cussed in the last section, we think that inheritance, information hiding, gener-
icity and tailoring are especially useful techniques to meet the quality re-
quirements of system components, which are described as follows:

2 same-as-ezcept means that components to be reused do not exactly match requirements

of reuse. This may be considered to be a general possible notion of reusability. Refer to
Bassett[10] for further detail.

Basic considerations 21

o genericity and tailoring allows components to be used in several appli-
cations and therefore support aedaptability.

o inheritance provides a systematic method for component composition
and therefore supports composibility;

o information-hiding deals with the complexity of data and algorithms,
and therefore supports simplicity.

Secondly, considering the components used in the previously discussed ap-
proach, we believe that reusability can be enhanced by using more than a
single kind of component, which are complementary to each other. These
components may include

e abstract data types and objects, which support both information hiding
and inheritance as appearing in object-oriented approaches and provide
values for the instantiation of algorithm structure.

o algorithm structures which, as appearing in e.g. the template approach,
support genericity and tailoring, and provide means to compose large
components or systems from abstract data types or objects.

Reusability refers to the degree to which resources can be used in more
than one application or in building other components. Resource refers to any
entity placed in a library for the purpose of reuse. Finally, we also think that
reusability can be enhanced by addressing the following problems:

o The contradiction between information hiding and algorithm reuse: if in-
formation hiding is supposed to hide the implementation of components,
the algorithm structures which are contained in the implementation and
might be reusable, are hidden as well then. However, if the implemen-
tation is open, there would be no more information hidden.

o The contradiction between different approaches: a component represen-
tation, which is useful in composition approaches[15], may not be a
proper representation in generation-based approaches. The ideal com-
ponents being reused in composition-based approaches are atomic and

22 Chapter 2. Abstract Datatypes and Algorithm Structures

unchangeable ones, which may be use-as-is 3; while the components be-
ing reused in generation-based approaches are often patterns (patterns
of code and patterns of transformation rules) woven into the fabric of
generator programs [15].

Our approach is based on the hypothesis above, which will be discussed in
the next section.

2.3 Our approach

In this section we propose some principles for component representation and
we explain their influence on reuse.

2.3.1 Principles for component representation.

We propose principles for component representations: one is object-oriented
abstraction, and the other is structure-oriented abstraction.

e Object-oriented abstraction is a principle for component representation
which catches the commonality of operations which are able to operate
on a type of object.

o Structure-oriented abstraction is a principle for component representa-
tion which catches the commonality of the operations whose implemen-
tations are isomorphic with respect to the algorithm structures used.

Object-oriented abstraction resembles what has been represented in object-
oriented approaches; structure-oriented abstraction is (partially) what has
been represented in both the template-based approach and the frame-based
approach as mentioned earlier.

According to the principles above, we propose two kinds of components:
object-oriented components and structure-oriented components.

¢ An object-oriented component (Ocomp) is a component which represents
an abstract data type or its extension, such as a class.

3 use-as-is means to use something atomically, which is considered to be the simplest
possible notion of reusability[10].

Our approach 23

o A structure-oriented component (Scomp) is a component which repre-
sents a set of interrelated algorithm structures and a set of operations
with respect to the algorithm structures.

According to the definition of abstract data type algorithm structure, an
operation can be considered to be the sum of abstract data types and algorithm
structures. An operation is a program unit such as a procedure or function.
Our approach supports representing an operation as two separate parts: one
representing algorithm structures and the other representing abstract data
types, i.e. Ocomps and an Scomp. In this case the reusability of a program
can be enhanced: the Ocomps may also serve as parameters of (other) Scomps,
while, conversely, the Scomp may receive other Ocomps as its parameters and,
in this way, new programs can be produced. In section 2.3.3 and 2.3.4, we will
discuss the semantics and the syntax of the two components in further detail.

Limitations. Although our proposed approach is supposed to reflect the
characteristics of both compositional and generational approaches, the char-
acteristics are limited to inheritance, genericity, information hiding and tai-
loring.

2.3.2 Outline of a reuse support system

A system which supports component reuse, realizing our ideas, can be im-
plemented as a reuse support environment. This environment supports pro-
grammers to represent algorithm structures and abstract data types or classes
using Scomps and Ocomps respectively. It also permits the elements of an
Ocomp to be parameters for the instantiation of an Scomp and the result of
the instantiation, conversely, can be a part of other Ocomps.

The system contains a component manager and an operation generator.
The component manager logically manages two component bases, an QObase,
and an Sbase, corresponding to the two kinds of components. The operation
generator is responsible for the transformation of algorithm structures and
abstract data types into new operations that can be used to compose new
Ocomps. The component manager can be a data base management system.
The Obase contains a set of Ocomps, the Sbase contains a set of Scomps.

Below we diagrammatically represent a reuse support environment in terms
of three blocks and the relationships between them.

24 Chapter 2. Abstract Datatypes and Algorithm Structures

The block Ocomp depicts an Ocomp base which contains a set of abstract
data types (ADTs). The block Scomp depicts an Scomp base which contains
a set of algorithm structures; frame(ADTs) is an abbreviation of algorithm
structures, frame indicates a representation of algorithm structure; (ADTs)
indicates the arguments of the frame. The construct implies that the algo-
rithm structures can be instantiated with abstract data types. For the lay-
out of frame(ADTs), see also the description of semantics and the syntax of
Scomps in this section. The block in the middle is a set of operations which
are candidate elements of new Ocomps.

generalize
Vo) Ocomp
frame(ADTs)s | transform, operations compose_ ADTs Jew components
automatic
r 3
instantiate

Figure 2.1. A reuse support system.

Let’s explain how the system works. Programmers produce new components
in the form of Ocomps. An Ocomp defines an abstract data type in terms of
data structures, variables and operations. The implementation of the opera-
tions, such as procedures, functions and so forth, can be generalized by the
programmer into frame(ADTs)s, from which Scomps can be produced. An
Scomp defines an algorithm structure in terms of a template[10]. An Scomp
may also contain a set of descriptions about its instantiation. The algorithm
structures (indicatively frame(ADTs)) can be instantiated by using a set of
other ADTs. If the Scomp already contains a description of such an instantia-
tion, this instantiation can be done automatically by a transformer. The result

Our approach 25

of the transformation is a set of new operations. These new operations can
then be used to compose other new Ocomps. The programming complexity
is, therefore, reduced.

2.3.3 Ocomp and Scomp: Semantics

In this section we discuss the semantics of Ocomp and Scomp. In principle an
Ocomp is not a new language construct. It can be either a module in Modula,
a class in C++, or a package in Ada. However, for a convenient discussion,
we provide an independent semantics and syntax in contrast with that of an
Scomp.

Ocomp An Ocomp is defined by two tuples: one providing specification, the
other, implementation. The implementation defines data types and provides
the operations which operate on values of the data types; the specification is
an abstraction of the implementation. The representation of an Ocomp is as
follows:

Ocomp(Ocomp-spec, Ocomp-impl)
Ocomp-spec(Oname, Data-spec, Qoperation-spec, Inherit-spec)

Ocomp-impl(Oname, datatype-def, Ooperation-def)

In the Ocomp-spec, the Oname is an identifier; Data-spec is a set of data
types which are defined in the Ocomp; Qoperation-spec is a set of signatures
(headings) of operations; Inherit-spec (inheritance specification) is a set of
names of existing Ocomps, whose elements are inherited by the Ocomp being
defined.

In the Ocomp-impl, the Oname is equal to the Oname of the correspond-
ing Ocomp-spec; datatype-def is a set of data type definitions and a group
of variable declarations; Ooperation-def is the implementations of a set of
operations.

In the Ooperation-spec, we distinguish between two cases: the operation
specification (a signature of operation) without an accompanying Scomp’s
name specifies what we call a normal operation (a normal operation is an
operation which is implemented in the Ocomp), whereas a specification ac-
companied by an Scomp’s name specifies what we call a virtual operation,

26 Chapter 2. Abstract Datatypes and Algorithm Structures

such an operation can be generated from combining the Ocomp under consid-
eration with the Scomp the name is provided for.

Scomp An Scomp is also defined by two tuples: one providing specification,
the other one, implementation. The specification specifies a group of inter-
related algorithm structures, a set of operations (to be implemented by in-
stantiating the algorithm structures), and one or more names of Ocomps that
define abstract data types for the instantiation of the algorithm structures.
The implementation of the Scomp consists of one or more representations of
algorithm structures and a set of instantiation descriptions. Each of these
instantiation descriptions can be used to generate one of the operations which
are specified in the specification.
An Scomp can be described as:

Scomp(Scomp-spec, Scomp-impl)
Scomp-spec(Sname, Algorithm-spec, Soperation-spec, Srelation-spec)

Scomp-impl(Sname, Algorithm-structs, Instant-desc)

In the Scomp-spec the Sname is an identifier, Algorithm-spec is a set of
signatures of algorithm structures contained in the Scomp, and Soperation-
spec is a set of signatures of operations. Srelation-spec is a specification
of the relationship between the Scomp and some Ocomps which are capable
of providing parameters (abstract data types) for instantiating the algorithm
structures contained in the Scomp.

In the Scomp-impl, the Sname is equal to the Sname in Scomp-spec ;
Algorithm-structs is a set of representations of algorithm structures; and
Instant-desc is a set of instantiation descriptions.

The algorithm structures are represented in terms of frames. The frames
are a form of macros[103] [10]. We prefer the frame as a basis for the repre-
sentation, since a frame is capable of representing an algorithm structure and
is capable of being tailored into a set of alternative operations.

The instant-desc is a set of instantiation description. An instantiation
description is a group of instructions that tell a generator how to conduct par-
ameter substitutions, and how to modify the algorithm structures (if slightly
different algorithm structures are required). Concrete techniques for operation

Our approach 27
generation and for such a tailoring are described by e.g. Bassett[10].

2.3.4 Ocomp and Scomp: Syntax

The syntax of the Ocomp can be briefly presented as shown in figure 2.2.

Ocomp Specification Ocomp Implementation
Ocomp Oname interit Ocomps { Obody Oname {

data: data:

typei1 variablesi;; [data-structy];

typeiz variables;s; [data-structy);

typeim variablesim,; [data-structy);
operation: type; variables;

outputiy opi (inputy); type, variables;

output;z opiz(inputi2);
typer variables,

outputin opin(inputin); operation:

outputz; opzi(inputsz;):Scomp ; [prog-unit;y];
outputze opzz(inputsz):Scomps; [prog-unity2);
outputzr opax(inputak):Scompk; [prog-unit;];

Figure 2.2. The syntax of Ocomps.

The left part of figure 2.2 “Ocomp ...interit...{ data:... operation:...}”
provides a syntactic framework of an Ocomp specification:

o “Oname” is the name of the Ocomp, an identifier;
o “Ocomps” is a list of the Ocomp names, a set of identifiers;

o “type;; variables;;” is a variable declaration which consists of a data type
and a set of variables. The former is an identifier, the latter is a list of
identifiers;

o “output;; op;; (inputs;;)” is an operation signature. output;; is the output
type of the operation, an identifier; op;; is the name of the operation, an
identifier; the inputs;; is a set of arguments, a set of identifiers;

28 Chapter 2. Abstract Datatypes and Algorithm Structures

o “output;; op;;(inputs;;):Scomp;” is an operation signature with a post-
fix—a name of an Scomp, an identifier.

In the right part of figure 2.2 “Obody ... { data: ... operation: ... }”
provides a syntactic framework of an Ocomp implementation.

o “[data-struct;]” is a definition of data structure;
o “type; variables;” is a variable declaration;

o “[prog-unit;;]” is a program unit, such as procedure, function, etc.

In addition, the variables specified in the specification are different from
the variables specified in the implementation. Both of them can be accessed
by the specified operations, but only the variables which appear in the speci-
fication can be accessed by other Ocomps.

The syntax of Scomp is briefly presented as shown in figure 2.3.

Scomp Specification Scomp Implementation
Scomp Sname{ Sbody Sname {
algorithm: algorithm:
alg, {type:args11;oper:args,2;expr:argsia} alg; [framei];
algs {type:argsa);oper:argsy:;exproargsas } alg; [framez];
algn {types:-argsn1;oper-argsnz; ezpr:argsns} algn [frames];
operation: instance:
outputy op;(input;):Ocomps;; op1 [macrodefs,];
outputz opz(inputz):Ocompsz; op2 [macrodefsy);
output, op,(input,):Ocomps,; op, [macrodefs,);

Figure 2.3. The syntax of Scomps.

In the left part of figure 2.3 “Scomp ... { algorithm: ... operation: ... }”
provides a syntactic structure for Scomp specification.

Reuse 29

o “alg;{type:args;1;oper:args;2;expr:args;3} ” is a signature of an algorithm
structure. alg; is the name of the structure, an identifier; type, oper and
ezpr are keywords; args;; is a list of macro arguments, a set of capitalized
identifiers.

o “output; op;(input;):Ocomps;” is an operation signature with a postfix.
output; is an output type of the operation, an identifier; op; is the
name of the operation, an identifier; input; is a parameter list, a set of
identifiers; Ocomps;; is a list of Ocomp names, a set of identifiers.

The right part of figure 2.3 “ Sbody ... { algorithm: ... instant ... }
”? provides syntactic structure for a Scomp implementation.

o “alg; [frame;]” includes the name of an algorithm structure and its rep-
resentation. alg; is the name, an identifier; [frame;] is the representation:
a program unit in macro form[10].

o “op; [macrodefs;]” is an instantiation description. op; is the name of the
description, an identifier; [macrodefs;] is a set of expressions for macro
substitution.

2.3.5 Generation of operations

In the approach proposed, the system contains an operations generator. The
function of the operations generator is to transform a virtual operation into
its implementation.

The input of the operations generator are: (1) an instantiation description
represented by the macrodefs;, macrodefs; € Instant-desc; (2) algorithm struc-
tures represented by the frames , frames C Algorithm-structs; and (3) the
Ocomps;, Ocomps; C Srelation-spec. The output of the operations generator
is an operation implementation.

The specification of a virtual operation in an Ocomp specification includes
two elements: a signature of the operation, and the name of an Scomp. The
signature tells a user how to use the operation; the name of an Scomp pro-
vides information to the system about which Scomp is to be used in generating
the implementation of the operation. The Scomp (its specification and imple-
mentation) contains all the input required for the generation. For a detailed
discussion, see also [70].

30 Chapter 2. Abstract Datatypes and Algorithm Structures

2.4 Reuse

By using Scomps and Ocomps, both abstract data types and algorithm struc-
tures can be a basis for component reuse. The Ocomp supports inheritance
by specifying names of other Ocomps. The Scomp supports genericity by pre-
senting algorithm structure. Tailoring can be conducted by the instantiation
description, and information hiding is implemented by specification. Even
more important: an Ocomp can be used as a basis for Scomp construction
and vice versa. Some other features about reuse are discussed in the following
sections.

2.4.1 Scomp reuse

Reuse of Scomps can be categorized into foreseen reuse and unforeseen reuse.
Foreseen reuse focuses on reusing operations, unforeseen reuse is focused on
reusing algorithm structures.

Foreseen reuse It is quite common for a programmer to make decisions
about the level of genericity of program fragments, based on some expectations
of the use of such a unit, and for the reuser to make decisions on actual
parameters. Nevertheless, too many or too complex parameters often confuse
reusers.

The Scomp structure enables programmers to provide reusers not only with
algorithm structures, but also with groups of operations which are loosely-
isomorphic with respect to the algorithm structures and are considered as
thesauri. The operations being included in the tuple of Soperation-spec (see
2.3.3), show the programmer’s expectation on reuse, and which is, therefore,
called foreseen reuse.

Unforeseen reuse Reuse that was not expected by the programmer is called
unforeseen reuse. As we know, in foreseen reuse the programmer has expec-
tations on reusing the algorithm structures and, therefore, specifies a set of
operations originating from the algorithm structures in Scomps. Providing
the specification, however, depends on the programmer’s experience (hence
the name foreseen reuse). Complementary to the foreseen reuse, in order to
support unforeseen reuse, the Scomps allow reusers to create new applications

An Example: binding to C++ 31

of the algorithm structures by tailoring.

Such tailoring is supported by allowing the augmentation of new opera-
tions to an Scomp, and the modification of the algorithm structures. Both
the augmentation and modification can be safely conducted on the original
algorithm structure.

Since each operation originates independently from the algorithm struc-
tures, the augmentation of a new operation to an Scomp has no side effect
upon other operations.

By using macro and default techniques, such as proposed by e.g. Bassett[10],
tailoring the algorithm structures for a new operation has no side effect on al-
ternative reuse of the algorithm structures.

It might be a hard job for reusers to directly reuse the algorithm struc-
tures, because they have to read it. However, the result of the reuse can be a
contribution to other reusers, i.e. the newly specified operations can directly
be reused from now on. The reusability of the modified Scomp is, therefore,
increased.

2.4.2 Ocomp reuse

Reuse of Ocomps can be categorized into two elements. First, the facilities of
an existing Ocomp can be inherited by a new Ocomp. Although a new Ocomp
may augment or replace any subsets of the inherited data and operations, the
ideal case is use-as-is. This reflects the character of composition-based ap-
proaches (section 2.1). Secondly, the facilities of existing Ocomps can be used
to instantiate algorithm structures of Scomps. New operations can, there-
fore, be produced by means of the operations generator (section 2.3.5), which
reflects the character of generation-based approaches (section 2.1).

2.5 An example: binding to C++

In order to explain a possible binding with C++, we give an example with
definitions of an Scomp and an Ocomp. Figure 2.4 is a specification of an
Scomp, while figure 2.5 is the implementation of this Scomp.

32 Chapter 2. Abstract Datatypes and Algorithm Structures

Scomp Scan {
algorithm:
typedef ELEM * TEXT;
scan{ type: TEXT, ELEM;
oper: END, MATCH;
expr: OP}
operation:
int lr-scan(STRING, int, char);
int rl-scan(STRING, int, char);
int list-Ir-scan(LIST, int, RECORD):0bj2;
int list-rl-scan(LIST, int, RECORD):Obj2;
int find-Ir (DOCUM, int, CARD):Obj3;
int find-rl (DOCUM, int, CARD):0bj3;

Figure 2.4. An Scomp Specification.

In the specification there is an algorithm structure, Scan, and six opera-
tions. The 0bj2, 0Obj8, are names of existing Ocomps respectively.

In the implementation (Sbody), under algorithm, there is a frame (a
representation of an algorithm structure) in C++, in which the capitalized
terms TEXT, ELEM, END and MATCH are macro variables (Mvariables);
under instance, there are several instantiation descriptions beginning with
an identifier. There is a special instantiation description beginning with an
identifier default, in which all undefined Mvariables have values assigned in
the description. The other instantiation descriptions begin with an identifier
which is the name of the description.

Following each identifier, there is a set of macro exzpressions (Mezpres-
sions) with expression {<Muvariable>={<value>}}. This expression implies
substitution of the value for the Mvariable [Bassett-87]. The value can be a
term or expression of the programming language (C++).

An Example: binding to C++ 33

Sbody Scan {
algorithm:
scan(TEXT t, int p, ELEM e) {
int j;
=p;
while(! (END(j) || MATCH(t[j],e)))
=) OP 1;
if(END(j))
return(NIL);
else
return(j);
}
instance:
default: {TEXT={STRING}} {ELEM={char}}

{MATCH={eq}} {OP={+}} {END={end}}

Ir-scan:

rl-scan: {OP={-}}

list-lr-scan: {MATCH={match}} {TEXT={LIST}}
{ELEM={RECORD}}

list-rl-scan: {*list-lr-scan, rl-scan}

find-Ir: {TEXT={DOCUM}} {MATCH={find}}
{ELEM={CARD}}

find-rl: {* find-lr, rl-scan}

Figure 2.5. An Scomp Implementation.

There are also some special expressions with expression {* <identifier>
...}, which provide a hint for reusing the previous Mexpressions identified by
the identifier. This kind of inheritance is only for reducing the duplication of
Mexpressions.

In order to illustrate how Scomps can be applied to construct object-

oriented components, InfProc, an Ocomp, is represented in figure 2.6 and
2.7.

The Ocomp, InfProc, inherits three other existing Ocomps, Obj2, ObjL,

34 Chapter 2. Abstract Datatypes and Algorithm Structures

and ObjX; it contains three variables and six operations. There are three
virtual operations which refer to two existing Scomps: Scan and ShellSort. -
In the Obody, two data types and three operations are defined in C++. The
“..” stands for source code being omitted.

Ocomp InfProc interit Obj2, ObjectL,0BjX {
data:
RESULT x,y;
DATE z;
operation:
BOOL retrieve(DATE);
void evaluate();
int list-Ir-scan (LIST, int, RECORD):Scan;
int list-rl-scan (LIST, int, RECORD):Scan;
void ListSort(LIST,int):ShellSort;
void show-result();

Figure 2.6. An Ocomp Specification.

Obody InfProc {

data:
typedef struct { ... } RESULT;
typedef struct { ... } DATE;
RECORD a,b;
RESULT ¢;

operation:
BOOL retrieve(DATE){ ... }
void evaluate(){ ... }
void show-result() {...}

Figure 2.7. An Ocomp Implementation.

Chapter 3

The reuse of system
architectures and design
templates

Hardware engineering’s levels of integration are a good model for software en-
gineering. “Object-oriented” means different things at different levels of inte-

gration.

Brad J. Cox, IEEE Software 1990

Although the combination of abstract data types and algorithm structures is
useful for system construction, such an effort is limited to software coding.
In this chapter a method is presented for the reuse of system components
and system designs which includes system architectures and design templates.
A system design refers to the abstractions and mechanisms that provide the
required behavior of a system or a component. A system architecture refers
to the organizational structure of a system or a component. A design tem-
plate refers to a pattern of design representation. According to this method,
a system design can be represented in terms of Extended Data-Flow Graphs
(EDFGs), textual specifications and the templates of such specifications. The
graphs, specifications and code components can be organized into a hierarchi-
cal structure, representing different levels of abstraction. Such a structure can
easily be maintained and reconstructed to meet varieties of requirements.

35

36 . Chapter 3. The reuse of system architectures and design templates

3.1 Introduction

The method presented in this chapter is concerned with the EDFG approach
[65] in a system development environment SEPDS[66]. The EDFG approach
is an approach for the design and implementation of distributed and real-time
systems using Extended Data Flow Graphs (EDFGs)[65).

In the EDFG approach(66], a set of extended data flow graphs (EDFGs) are
generated during the process of system design. An EDFG is the representation
and specification of a coherent set of actors and the relationships between
them. An actor in the EDFG approach is a system component which can
be used to represent a process, subsystem or some other system component.
An actor can be refined into a lower-level EDFG. According to this approach,
the process of system design starts by creating a highly abstract EDFG and
by following different levels of refinement until the actors contained in the
EDFGs are found in a component base, or the grain of the actors are suited to
be implemented in terms of small code components. The refinement of EDFG
is to provide a detailed design of at least one actor of the EDFG to be refined
with a subgraph (sub-EDFG) [65].

The method advocated is intended to enhance the reusability of system
design. The reusability of system design refers to the reapplication of the
representations of one system or component to the construction of similar ones
in an application domain. We think that the reusability can be enhanced if
the system designs are explicitly represented and can easily be understood and
manipulated (modified and reconstructed) towards a variety of target systems.

An EDFG is a diagrammatic notation. Although such a notation may be
criticized by its lack of precise semantics, it can be effectively applied to the
practice of system development because of its graphical nature; a semantic
extension of this notation can be provided in terms of a textual specification.
We think that the method advocated is to a large degree independent of the
kind of development method and design representation. As such, EDFGs can
be replaced by other, perhaps more precisely defined notations.

The remaining part of this chapter is organized as follows: in section 3.2
actors and EDFGs are introduced; in section 3.3 the representation and reap-
plication of system architectures are discussed; in section 3.4 we describe some
mechanisms for actor composition and parameterization; in section 4. a con-
clusion is drawn.

Actor and its refinement 37

3.2 The actor and its refinement

In the EDFG approach, the actor is the basic element of system design. An
actor can be an abstraction of a subsystem or its components.

3.2.1 The definition of an actor

An actor, a, as defined in the SEPDS[66], is a 5-tuple as in figure 3.1. A link
represents a place holder, a buffer of data values as they flow from actor to
actor; and a token is an arbitrary complex value structure. It is possible
to allow more than one token contained in a single link at the same time. A
link appearing in the actor definition can also be a state link. A state link is
used to indicate global data indicated by a global variable. An action refers
to a system component which can be a high abstraction of a subsystem or a
primary function or operation. Additionally, IFS is short for Input Firing Set
and OFS is short for Qutput Firing Set[66], also called input links and output
links in this chapter respectively.

a = (IFS(a),OFS(a), FIRE(a), PRE(a) POST(a))
IFS(a) = (h,l2,...1n): a set of input links connected to the actor;
OFS(a) = (In41,ln42, --dntk): a set of output links connected to the actor;
FIRE(a): IFS(a) — Boolean: the fire condition indicating the links that
should (or should not) contain a token for the actor to fire;
PRE(a) : IFS(a) — Boolean: the precondition that needs to be satisfied
to allow the actor to perform its action properly;
POST(a) : IFS(a),OF S(a) — Boolean: the postcondition resulting
from firing the actor.

Figure 3.1. The definition of actor.

actor spec ais
IFS(a) = (I s di, b2 i da, .. dn i dn)
OFS(G) = (ln+1 : dn+1,ln+2 . dn+2, ~~-In+k H dn+k)
FIR(a): IFS(a) — Boolean
PRE({a): IFS(a) — Boolean
POST(a): IFS(a), OFS(a) — Boolean
end a

Figure 3.2. The module structure of an actor.

38 Chapter 3. The reuse of system architectures and design templates

In order to describe the tokens a link may have, the term link type is
addressed. A link type is a description of a set of links of actors which are
allowed to contain tokens of the same data type. Any link of the link type is
called a member of the type.

Following the definition of an actor and the definition of a link type, the
module structure of actors is described as shown in figure 3.2. A module
structure is an abstraction, describing the structure of modules. A module is
a unit of program or a design representation of a system or system component.
The @ appearing in this figure is the name of an actor. I; : d; means the link
l; is a member of the link type d;, i=1,2,...n+k.

3.2.2 The hierarchy of an actor

There are two factors concerning the representation of an actor. First, the
representation should be easily generated during the process of system design.
Secondly, the representation should support a kind of hierarchy for component
structuring and component composition.

Normally, systems and components can be structured or composed by us-
ing two types of hierarchies, i.e. a vertical hierarchy and a horizontal hierarchy.
According to Tracz[118], the former refers to levels of abstraction or stratifi-
cation, and the latter refers to aggregation and inheritance. In this subsection
we discuss the vertical hierarchy of actors. Such a hierarchy reflects the re-
finement process of system design in the EDFG approach, providing different
levels of a component.

In order to represent the vertical hierarchy, we classify the actors as either
primitive or non-primitive. A primitive actor can be implemented in terms
of a small code component. A non-primitive actor can be represented by a
combination of its abstract representation and its refinement. The former
provides an integral understanding of the actor as a whole, the latter consists
of a set of other actors which can be primitive or non-primitive and which are
the constitution of the refinement of the actor. The hierarchy of an actor is
based on the definition given by Levy[65] as follows.

definition 1 An actor which is called non-primitive is an actor which is re-
fined into other actors. That is, if an actor a is non-primitive, then 3ay, az, ..., an,
such that

a = (a1, az...,Gy)

Actor and its refinement 39

where = stands for refinement and each a; is either primitive or non-primitive,
0<j<n

According to the definition above, we suggest that a representation of a
non-primitive actor is as follows,

actor spec a is

IFS(a)

OFS(a)

FIRE(a)

PRE(a)

POST(a)

end a actor body a is

actor spec a is
IFS(a,)
OFS(a,)
FIRE(a1)
PRE(G;[)
POST(a1)

end a, actor spec a; is
IFS(az)
OFS(az)
FIRE(a;)
PRE(a3)
POST(a2)

end a:

actor spec a, is

1FS(an)
OFS(a,)
FIRE(an)
PRE(ay,)
POST(an)
end an,
end a

Figure 3.3. The representation of a non-primitive actor.

A non-primitive actor consists of two parts: a specification and a refinement.
The specification part is identified by actor spec and a refinement part is
identified by actor body. The specification part specifies a single actor which
is composed by all actors appearing in its body. The refinement part packages a

40 Chapter 3. The reuse of system architectures and design templates

set of interrelated actors which may be either non-primitive actors or primitive
ones.

3.2.3 The rules for actor refinement

In the previous subsection we provided a structure to represent the actor and
its refinement in terms of an actor specification and a one level refinement.
Now we discuss this representation in certain details. There are several repre-
sentation rules which the representation of actors must follow. Qur discussion
will concentrate on the representation of actors and the relationships between
the specification part and the refinement part of an actor, as well as on the
relationships between the actors of the refinement part.
The representation of a non-primitive actor a is

actor spec a is
IFS(G):(I;I :dl,lz . dz, ...lk . dk)
0FS(a)=(lk+1 : dk+1, lk+2 H dk+2, ...lk+r M dk+,~)
FIRE(a) : d1,d2,...dx — Boolean;
PRE(a) : dy,dz,...dx — Boolean;
POST(a) : d1,d2,...dx, dk41...dk4r — Boolean
end a

According to the definition of the non-primitive actor in the last subsection,
we have refinement a = (a1, a9, ...a,). Ignoring the relationships between the
actors at the right hand of the refinement, let

Abody = {a;,az, ...a,}

Then, for all a; € Abody, ¢ = 1,2, ...n, the representation of a; can be

actor spec q; is
IFS(a,') = (l.‘l : dil,l.'z H d.‘:, ...l.'m : (l,‘m);
OFS(II.) = (lim+1 : dim+1, lim+2 : -ulv'm-l»s : dim+s);
FIRE(a;) : di1, diz, ...dim — Boolean;
PRE(a;) : dix, diz, ...dim — Boolean;
POST(ai) : dir, diz, ...dim, dim41...dim4s — Boolean
end a;

Actor and its refinement 41

Furthermore, according to the signature above, for any actor
z € {a,ay,a,...,a,}, let

INPUT(z) == {l, 2, ...lm };
OUTPUT(I:) = {lm+1,lm+2, ...lm*,,}',
STATE(z) = {z||z € INPUT(2) UOUTPUT(z)) A xis a state link}

Then, for any actor a, as previously specified, there are some rules to be
followed by us for the actor representation, see figure 3.4, although the con-
sistency can only be checked manually rather than automatically.

(1) Y1 ¢l € INPUT(a) => Ja; € Abody, (I € INPUT(a:));
(2) V1 o1 € OUTPUT(a) = ai € Abody, (1 € OUTPUT(ai));
(B)V I, a; ea; € Abody ANl € OUTPUT(a;) ANl g OUTPUT(a)
Al g STATE(a;) => 3a; € Abody e 1| € INPUT(a;);
(4) FIRE(a;), PRE(ai) and POST(a:) must be consistent
with PRE(a) and POST(a) .

Figure 3.4. The rules for actor representation.

Rules 1 and 2 require that the role of an ezternal link of an actor should
be played by one of the links appearing in its refinement part, if any. An
external link refers to a link appearing in the specification part of the actor.
Rule 3 requires that an internal link (except state link) of an actor must be a
connection between two actors of its refinement. The internal link of an actor
refers to the link appearing in the refinement of the actor but not appearing
in the specification part of the actor at the same time. Rule 4 requires the
specification to be consistent with the predicates on the external links in the
specification part of the actor and the predicates on the (external) links in the
refinement part of the actor, which will be discussed in chapter 5.

Finally, we discuss the representation of primitive actors. The specification
part of a primitive actor is the same to the specification part of a non-primitive
actor. However, the refinement part of a primitive actor is a program text in
some programming language.

42 Chapter 3. The reuse of system architectures and design templates

3.2.4 Actor and EDFG

In the previous section the rules for representing actors have been addressed.
The rules stipulate the connections between different actors in an actor body.
In this section we discuss a method to represent the connections of different
actors in an actor body.

The rules for representing a refinement require that an internal link con-
nects two actors in the actor body. However, the connections between the
actors inside an actor body are not yet reflected in the specification of an ac-
tor body as expressed previously. These connections can be represented with
an additional feature, called edfg. The purpose of using the additional feature
rather than expressing the connection inside the actor definitions (or specifi-
cations) is to keep the actor definitions independent of their application. An
edfg is a part of Actor body, which specifies the connections between actors
as expressed by the links of the actors in an actor body. The structure of
an actor representation, containing an edfg, is (schematically) described as in
figure 3.5.

The key word type in figure 3.5 is used to define link (data) types, which
is similar to the definition of a data type in Ada, since link types are defined
by means of data types. The key word link is used to declare links and their
types. The expression

a;(input :ly, 1y, ...Iy;output i1, by dngm)

represents any instance of actor ¢;. The key word input indicates the pa-
rameters of IFS(a;), and the key word output indicates the parameters of
OFS (a,').

In an edfg, two actors are connected to each other if the same link appears
in the input links of one actor and in the output links of another actor at
the same time. A characteristic of using an edfg is that, for all edfg, there
is an EDFG (Extended Data Flow Graph)[65] and vice versa. An EDFG,
as represented in terms of a diagram[66], is a labeled graph which consists of
actors (A), links (L) and arcs (E), where

EC(AxL)U(Lx A)

An example of the correspondence between an edfg and an EDFG is given in
figure 3.6.

Actor and its refinement

actor spec a is

end a;
actor body a is
type di1
type di;

actor spec a; is ...
actor spec az is ...

actor spec g; is

IFS(ai)= (I : d1, b2 1 da, .0 s dn);

OFS(a.) = (1n+1 : dn+1, In+2 : dn+2, n+k: dn+k);
FIRE(a;): dy,d2,...dn — Boolean,

PRE(ai) : d1,d2,...dn — Boolean;

POST(a:): d1,d2,...dn,dny1...dnsx — Boolean
end a;

actor spec ay, is ...
begin edfg
link &1, b2... 1 dna;
link 121, 122... : d12,'

sink ln1,ln2...lx... : dnz,‘
sink ln+1,1, In+1,2... M dn+1,2,’
az(input :...;output :....);
ai(input :...I;...;output :....);
aj(input :...;output :...0:....);
ar(input :lp1, lr2, .. lre; output dregr, bty dream);
an(input :...; output...)
end edfg
end a

di € {d11,d12,...} i=12,.n+k
lei, 1z € {111,112...121, 122...} 1=1,2,..t+m

Figure 3.5. An actor.

43

44 Chapter 3. The reuse of system architectures and design templates

¢. 9.
begin edfg a;
link 11,12,13 : dl;
link 14, 15 : dg; I, 13
slink I; : d3;
ai(input : §,1;;output : L, i3); az a3
az(input : iz;output : ,);
as(input : l3;output : is); L 1s
as(input : Iy, Is; output : I, is);
end edfg a4

Figure 3.6. edfg and EDFG.

3.3 System architecture

In this section we discuss how a system architecture is built in terms of the con-
cepts and the expressions of actors and EDFGs, and how system architectures
can be reused to improve the process of system development and maintenance.

3.3.1 Creating a system architecture

A system architecture, as defined before, is the organizational structure of a
system or a component. According to our approach, such an organizational
structure can be represented in terms of different levels of EDFGs and their
specifications, which can be obtained during the process of system design in
the EDFG approach.

According to the EDFG approach, a highly abstract EDFG is created at
the very beginning of the design process as described in 3.1. Such an EDFG
will be refined into different levels of EDFGs, representing different levels of
abstraction of a system. Following the design process, we can organize the
different levels of EDFGs and their formal specifications into a hierarchical
structure and maintain the hierarchical structure in terms of a semantic data
base and additional tools, which will be discussed in 4.4 further.

System architecture 45

In the hierarchical structure, each node represents an EDFG which consists
of a set of actors and the relationships between them. Each actor of the EDFG
has a formal specification. The refinement of each actor is presented at a lower
level of the structure in terms of a lower level EDFG. An architecture of a
system, for example, can be sketched as in figure 3.7.

Figure 3.7. The system architecture.

We see that a system consists of two subsystems, which are expressed with
two interrelated actors at the highest abstraction level. The two actors are
refined recursively level by level. The actors which are not further refined are
the primitive actors which can be implemented in terms of code components.

3.3.2 Reusing system architecture

Apart from the capability of binding small code components into a whole sys-
tem, the reusability of an architecture also implies the capability of supporting
the maintenance, evolution and reconstruction of the architecture, aiming at
varieties of design target in an application domain.

46 Chapter 3. The reuse of system architectures and design templates

Understanding complex systems

It seems that a human’s capability of dealing with complex information is lim-
ited by the ‘magic number seven’, according to Miller[87]'. However, complex
information can always be understood in terms of abstraction. This is one
way of representing the architecture of a system or a component in terms of
different levels of abstraction as shown in figure 3.7. In order to overcome the
difficulty of understanding complex systems, a designer may produce EDFGs
containing no more than seven actors and organize them into the architecture.
The process of understanding a system design may be realized through tracing
the architecture. Tracing refers to finding all decomposed system designs and
their dependencies, so that a system developer can easily understand, control
and manage the design[52]. Tracing can be supported in terms of a tool which
can be implemented, based on a data base in which the system architecture is
maintained. An example of such a tool is described in chapter 7.

The flexibility for design modification

In principle, an abstraction, according to Shaw[107], is a specification of an
object that emphasizes some properties of the object while suppressing oth-
ers. When an actor is specified at a high-level in terms of an abstraction, it
can be refined, based on lower-level design decisions. In this case, providing
alternative lower-level design decisions result in alternative refinements. The
alternative refinements may lead to alternative designs and implementations
of the system.

From a reuse point of view, a higher-level specification can be shared by
alternative refinements. Therefore, representing a system design in terms of
different levels of abstraction as shown in figure 3.7 provides flezibility to
modify the system design into an alternative one.

Enhancing design process

It is known that source code components may be used to improve the process
of system implementation. However, source code components may not be very
helpful to system design for a large and complex system[18][99][43]. We are

! According to Miller{87), the short-term memory of an average person has a limit of seven
plus or minus two items.

Templates of system design 47

going to describe how the architecture as defined in our approach can be used
to improve the process of system design.

In contrast with the design process of the EDFG approach as described
at the beginning of this chapter, the design process with reusing a system
architecture can be described as follows. The process may be started from
reviewing the top-level EDFG and its specification. A system developer needs
to evaluate whether the new system also needs to be decomposed in the same
way as shown in the EDFG at this level, and whether the new system has
the same requirement to that of each existing subsystem, i.e. an actor of
the EDFG. If the answer is yes, one may look into the refinement of each
subsystem. At the refinement level, corresponding to each subsystem, one
needs to evaluate whether the new subsystem can be built by reusing the
existing design at this level, which is similar to the activities at the top-level.
The process can be continued level by level until the reuser is satisfied with the
design at a level and does not care about the detailed design or implementation,
or until the reuser finds a refinement or a specification which is necessarily to
be modified or replaced.

It seems quite different from reusing only small code components that
reusing architectures can obtain additional savings from the knowledge about
how to analyze and design a similar system, from the awareness about binding
small components into a system and from the easiness of understanding and
maintaining a system.

3.4 Templates of system design

In the previous sections we see how system architectures provide vertical hier-
archies for structuring system design. In this section we deal with horizontal
hierarchies of system design. While vertical hierarchies in our method refer
to different levels of abstraction, horizontal hierarchies refer to the template
of system designs and some relative features supporting reusability, such as
import and inheritance.

A template is a pattern of a set of similar actors or EDFGs at the same
abstraction level. Import refers to using the textual resources defined in other
components. Inheritance can be realized by using the textual resources previ-
ously defined in the hierarchical structure representing system architecture.

48 Chapter 3. The reuse of system architectures and design templates

3.4.1 Template

The term template is defined in different ways in literature. It may be defined
as “any fixed theme plus the means to accommodate unforeseen variations on
the theme”[10], or as “an algorithm specification that is free from the commit-
ments to specific types and representation of data”[122]. A template can be
formally defined as a functor which is a mapping from objects and morphisms
in one category to objects and morphisms in another, preserving morphism
source, morphism target, and the actions of identity and composition[80]. In
our approach, a template is defined as a mapping from components to compo-
nents. The components in this chapter are restricted to the design represen-
tations at different levels of design decomposition. The design representations
might be given in the forms of Extended Data Flow Graphs(EDFGs) or the
specification of actors[66).

The actor type. In order to represent template of EDFGs and actors, let
us first represent the pattern of actors, i.e. a specification of a set of alternative
actors. For example, assume a system includes an actor which represents a
device. In order to apply the same design of the system to different application
environments, the actor can be alternatively defined with different input links
such as l:char / l:line / l:file . In this case a generic specification is required.
Such a specification is called an actor type. An actor type is an abstraction of
a set of alternative actor specifications.

Since the properties of an actor are determined by the attributes of the
5-tuple, an actor type can be defined with a generic specification accordingly.
The structure of the generic specification is described by

Atype AT is
IFS(AT) = (11 : Gl,lz : Gz, ln H Gn);
OFS(AT) = (ln+1 . Gn+1,ln+2 : Gn+2, -nln+k H Gn+k);
FIRE(AT) : G1,G2,...Gn — Boolean;
PRE(AT) : G1,G2,...Gn — Boolean;
POST(AT) H G1, Gz, ...Gn, Gn+1...Gn+k — Boolean
end AT

The G1,Gs,...Gnyx are link types or generic link types which are defined
as follows.

definition 2 A generic link type is a universal link type or a union link

Templates of system design 49

type. A link type is said to be universal if and only if each link of the type
is capable of accepting the tokens of any data types. A union link type is a
link type which allows every link of the type to accept the tokens of different
data types for different application. A generic link type can be denoted by

< Generic-link-type> =
U-type |
‘[’ link-type;, link-types,.... link-type, ‘]’

where U-type stands for universal link type.

In terms of generic link types, IFS(AT) of the actor type AT can be rewrit-
ten as in figure 3.8. Similarly, OFS(AT) can also be rewritten. The represen-
tations of the rewritten IFS(AT) and OFS(AT) are useful to understand the
relationship between an actor type and a particular actor specification of the
type.

The most direct application of an actor type is the definition of the formal
parameter of a template. The basic operations on an actor type include: (1)
creating actors which bind to a given actor type, and (2) verifying whether
a given actor satisfies a given formal actor type. We will use the predicate
Satisfies(a, AT) later on to denote “actor a satisfies actor type AT”.

IFS(AT):(I} M Gl,lz : Gz, ln : Gn) =

d; =G; if G;is a link type,
))) di=yg; if Gi=[g1,92,..-9m];
{h:dilp i dzyln i dn) | 7 €{1,2,..m},g; is a link type };
di = any link type, if G;is a U_type.

Figure 3.8. A rewritten clause of a generic type.

Template representation

The specification of a template can be represented in terms of a parameterized
actor and its refinement. For example, the signature of a template, Templ,
with actor parameters A and B of type AT is shown in figure 3.9, in which

50 Chapter 3. The reuse of system architectures and design templates

actor Templ (A, B: AT)
IFS(Templ)
OFS(Templ)
FIRE(Templ)
PRE(Templ)
POST(Templ)
end Templ
actor body Templ is
actor g is
IFS(al)
OFS(a1)
FIRE(G])
PRE(m)
POST(m)
end a;

actor a; is A
actor a; is B

actor a,, is

IFS(an)
FS(am)
FIRE(an)
PRE(am)
POST(am)
end anm,

begin edfg

end edfg

end Templ

Figure 3.9. A template.

(A, B: AT) is a parameter list in which A and B are the formal parameters
of the actors Templ, and AT is the actor type of the parameters. In the actor
body, actor a; and a; are allowed to be any actor satisfying the actor type AT
respectively.

Obviously, the representation of a template is a parameterized actor which
has a pattern of actor bodies. The EDFG derived from the pattern of an actor
body is a parameterized EDFG, which can easily be seen from the represen-

Templates of system design 51
tation of a template and from the relationships between actors and EDFGs.

Instantiation

From the definition above we see that a template is a pattern of an actor.
Such a pattern can be used to generate particular actor specifications which
are known as instances of the pattern. The process of generating an instance
of the pattern is known as instantiation, which is concerned with selecting
alternative sub-actors to fulfill the pattern. An actor instantiation can be
declared with an expression, e.g.

new-actor = Templ(actorl, actor2)

where Satisfies(actor!, AT) and Satisfies(actor?, AT) must be true. The
expression above defines a new actor, new-actor.

3.4.2 Import and inheritance

In order to increase the possibility of an application reuse, mechanisms are
required to allow the composition of a new component with existing resources
of an application. Two of the fundamental operations for the composition are
import and inheritance, which are discussed in this subsection.

Import

An import allows the textual resources of imported actors to be logically owned
by an importing actor, therefore, reducing the effort of constructing the im-
porting actor. The textual resources of an actor refer to the textual represen-
tation of the actor or its parts, including link types, sub-actors and edfg. A
resource is said to be owned by an actor if and only if the resource is available
in the actor as if it is defined in the actor.

An import is described by an import clause appearing in the specification
of an importing actor in the form of

import a; [(parameter_list)], as[(parameter_list))...an[(parameter_list))

52 Chapter 3. The reuse of system architectures and design templates

The parameter-lists are optional, which allow the import of parameterized
actors. There are several rules for import. Assume actor a is imported into
actor b.

1. If a is a primitive actor and b is a non-primitive one, a is available to
be used to construct the edfg of b.

2. If both a and b are primitive, the import rule might depend on concrete
details of the programming language, which is out of the discussion of
the chapter.

3. If both a and b are non-primitive, all resources of a are available in b,
i.e.,

(a) every actor owned by the actor body of a is owned by the actor body
of b;

(b) all type definition owned by a are owned by the actor body of b;

(c) the edfg owned by a is owned by b, but it can only be reused as a
whole to construct the edfg of b.

4. If a is a template, it can be applied to define one or more actors owned
by b. However, the actual parameter of the template must be the actors
which are owned by b.

In order to give an intuitive impression about the notion import, an exam-
ple is provided. The key word import in the example indicates that template
ak1, and actors age and ags are imported into b. Actor a; is defined by in-
stantiating template ag; with actual parameter a; and ax3. The edfg of actor
aiz is applied to form the edfg of b.

Templates of system design 53

actor spec b (parameter-list) is
import ax; (parameter_list_1), axz, ak3;

end b
actor body b is
type ...
actor spec ap is ...
actor spec a; is ...

actor spec a; is ax1(a1,ax3);

actor spec a, is...
begin edfg
link ...
ar(...);
)

az(...);
ak2(...);
an(...);
end edfg
end b;

Figure 3.10. Template with import.

Inheritance

Inheritance is a technique for sharing resources following a hierarchical struc-
ture, which provides means to define system components as extensions of pre-
viously defined ones. There are two kinds of inheritance in the representation
of actors.

First, the refinement of actors must preserve the relationships between
them. Applying such a principle to the architecture of a system or a compo-
nent, we see that the relationships between actors in an edfg defined earlier in
the hierarchical structure are inherited by the refinements of the edfg level by
level.

Secondly, although it is legal to define (external) link types inside an actor
body and to define the same actor in different actor bodies, this is often

54 Chapter 3. The reuse of system architectures and design templates

redundant because such definitions may already be defined in its parent (node)
or ancestors in the hierarchical structure. The data and the actor definition
appearing in an actor body can be inherited by its descendants.

3.5 Summary

In this chapter a method was presented for an explicit representation of sys-
tem design. Such a representation includes both a vertical and a horizontal
hierarchy, the former representing system design in terms of different levels of
abstraction, the latter representing the parameterization of design represen-
tations. Each of them tells us how a complex application system or system
component can be composed from lower level entities.

By an explicit representation of system designs, a complex system or a
large-grain component can easily be understood and manipulated, and can
easily be maintained and reconstructed to meet varieties of requirements.

Chapter 4

The reuse of large-scale
components

The change from a program-centered to a data centered view of programming is
comparable to the shift from the earth-centered to the sun-centered view of the
solar system brought about by the Copernican revolution.

— Charles Bachman, Turing Lecture, 1973.

In the previous chapter a method was described for the reuse of system
architectures and design templates, so that reuse-in-the-large is realized. How-
ever, such a method is limited by a particular approach for application devel-
opment, i.e. the EDFG approach. The reuse is limited to reusing the repre-
sentation of a single system rather than that of an application domain, and
there is no specification of the resources to be reused when reuse is needed for
the maintenance, evolution or reconstruction of the system. In this chapter
we discuss the reuse of large-scale components. Our claim is that the reuse of
large-scale components is capable of solving the problems above and capable
of improving the process of analysis, design, implementation and maintenance.

The remaining part of this chapter is organized as follows. In section 1
we identify the notations for modelling large-scale components. In section 2
we introduce the pragmatic model of large-scale components. In section 3
we present the operating model of large-scale components. In section 4 we
describe the management and specification of large-scale components respec-
tively. In section 5 we discuss the capabilities of reusing large-scale compo-

55

56 Chapter 4. The Reuse of large-scale components

nents. In section 6 we address an information system in the form of a support
environment for reusing large-scale components. Finally, in section 7 we draw
a conclusion.

abstractions &
modelling

generalization
specialization

instantiation

c
2
=
8
g
e
<
a

Figure 4.1. The abstractions for component modelling.

4.1 The abstractions for component modelling

System components are a kind of data or can be described in terms of data,
indicating the possibility of applying the notations for data modelling to the
practice of component modelling. For modelling a large-scale component, we
borrow notations from both semantic data modelling [13] and application de-
velopment including aggregation, decomposition, generalization, specialization,
parameterization and instantiation. These notations have formed the basis to
describe our approach for the reuse of large-scale components.

Aggregation and decomposition are two complementary activities which
relate the similar abstractions from opposite directions. Aggregation abstracts
the composition of several objects to a higher-level aggregate object[13]; de-
composition represents a high level object in terms of a set of interrelated

Chapter 4. The Reuse of large-scale components 57

lower-level objects. The abstractions of aggregation and decomposition are
described in figure 4.1.a.

Generalization and specialization are another pair of complementary
activities which relate abstractions from different directions. Generalization
abstracts a number of common characteristics of a collection of objects to
a generalized object[13]; specialization composes some special characteristics
with the common characteristics to a specialized object. The abstractions of
generalization and specialization are described in figure 4.1.b.

Parameterization and instantiation are the third pair of complementary
activities which relate abstractions in different forms. Parameterization ab-
stracts an object to a pattern, which is normally done by replacing some ele-
ments (sub-objects) of the object with their abstract forms. The pattern can
be reused to form various similar objects. In contrast with parameterization,
instantiation fills the pattern with special elements (sub-objects), so as to pro-
duce a specific object. The abstractions of parameterization and instantiation
are described in figure 4.1.c.

Generalization and parameterization. Parameterization is considered to
be a kind of generalization in literature [106]. We prefer a different categoriza-
tion since a generalization captures the basic features of a component, whereas
parameterization provides a pattern for component composition. The distinc-
tion between generalization and parameterization is very important in this
dissertation. Sometimes we need to generalize a component first and then pa-
rameterize the generalized component, which will be described more precisely
in section 4.3.5.

Instantiation and specialization. Instantiation is an activity to generate
an instance of a kind of component with respect to a parameterized com-
ponent. But an instance can also be a generalized component which needs
sometimes to be specialized further. An example for such a specification is
provided as follows.

58 Chapter 4. The Reuse of large-scale components

(1) editor(W: Window; 1: Link; k: Keyboard).

(2) constructor(d: Drawing; e: Editor).

(3) Dbasic-editor = editor(multi-window, multi-link, std-keyboard).
(4) graphic-editor =constructor(drawing, basic-editor)

Assume — in the example above — that the editor in (1) and the constructor
in (2) are the signatures (headings) of two parameterized components. The
basic-editor in (3) is an instance from the instantiation of the editor in (1).
Such an instance is a generalized component in contrast with the graphic-
editor in (4), in other words, the graphic-editor in (4) is a specialization of the
basic-editor in (3).

4.2 The pragmatic model of large-scale components

A large-scale component is the combination of both a large-grain code com-
ponent and its design information, which is represented integrately in terms
of different levels of abstraction. A large-scale component (LSC) is defined as
a 4-tuple,

LSC := (design-framework, design-instance
domain-resources, refinement)

A design framework describes how to integrate lower-level entities (objects
and relationships) into alternative design instances. It is made up from a set
of abstract objects and the relationships between them represented in terms of
a module interconnection language[99], e.g. EDFG (Semantically Extended
Data Flow Graph)[74].

A design instance is an instance of the design framework or a specializa-
tion of the instance of a design framework. A design instance consists of a
specification and an architecture. The specification specifies the semantics of
the design as well as the syntax and semantics of its interface in terms of a
specification language. The architecture describes the structure of the design
in terms of (relatively) particular objects and their composition in terms of a
model interconnection language.

A set of domain resources consists of a domain model and an associated
set of domain entities[96] which can be used for the instantiation of the design

The pragmatic model of large-scale components 59

framework. The domain model consists of a set of attributes defining the re-
quirements (or constraints) for the objects appearing in the design framework.
The definition of the requirements (or constraints) may be provided in terms
of a specification language. The domain entities provide instances (or values)
of the attributes already known to exist.

A refinement refers to the decomposition or the implementation of the
design instance. A refinement consists of a set of (lower level) large-scale com-
ponents or implementations. Each of the (lower level) large-scale components
or implementations is an elaboration of an object appearing in the design in-
stance which is viewed as a set of objects and the relationships between them.
Such an elaboration inherits the semantics of this object and relationships
between this object and others. The refinement may be recursively continued
until all objects in the design instance are suitable to be implemented in terms
of small components, such as objects in an object-oriented programming lan-
guage or packages in Ada.

The pragmatic model of a large-scale component is a hierarchical struc-
ture (H-structure), as in figure 4.2. Each node of an H-structure contains
three. pieces of information: a design framework, a design instance and a set
of domain resources. The relationship between the three pieces of information
is that the design framework is a mapping from a set of domain resources to
a range of design instances. An H-structure is defined recursively, in which
each lower level node is the detailed design of an object appearing in a higher
level design instance (not design framework and domain resources). Such an
organization not only allows a large-scale component to represent a target
component but also makes the different levels of the design frameworks and
design resources independent of each other.

Additionally, the nodes in an H-structure, corresponding to small code
components, are called terminal nodes, otherwise, non-terminal nodes. A
terminal node of an H-structure need not to be refined into lower-level large-
scale components, whereas a non-terminal node does.

60 Chapter 4. The Reuse of large-scale components

H-Structure := record
design-framework;
design-instance;
domain-resources;
refinement
end

a set of small code components;
refinement ::= { and
a set of (lower) H-Structures

An H-Structure

Figure 4.2. The pragmatic model of a large-scale component.

Obviously, an H-structure provides a clear organizational structure of a
large-scale component. The interconnections between the constituent parts
of the components are especially useful for designing alternative large-grain

The operating model of large-scale components 61

components (subsystems or even systems) in an application domain. For ex-
ample, if a similar design is needed for a new application, it can be obtained
by modifying the existing design instance. First, the existing design (con-
cerning all design instances of a large-scale component) can be understood
according to different levels of abstraction. Secondly, the instances to be mod-
ified or replaced can be located by browsing the H-structure. Thirdly, once
an alternative design instance is needed, there are domain resources and a
design framework. The former provides lower level entities the design instance
may be composed from; the latter suggests how the design instance can be
composed with the entities.

4.3 The operating model of large-scale components

In order to support reuse-in-the-large, different views are needed to model a
large-scale component. Whereas the H-structure of a large-scale component
captures the organizational structure of the component, an operating model
of a large-scale component captures the logic relationships between different
parts of the component. From an operating model we see how different parts
of a large-scale component depend on each other. The operating model of a
large-scale component can be described in terms of the activities applied to the
creation and manipulation of the constituent parts of a large-scale component,
as shown in figure 4.3.

Figure 4.3 consists of five forms of component representation: an object
(top), a design instance (left), a design framework (right), a set of domain
resources (bottom) and an interim instance (center). The object at the top
of the figure is assumed to be an object of a design instance at an abstract
level. The design instance, design framework and the domain resources form
one-level refinement of the object. The interim instance, which may also be
called interim design instance, is a transient component for illustrating the
relationships between the other four forms of component representation. The
relationships between the different forms of representation are described in
terms of labeled arrows. The arrows show the transformation or dependency
between the different forms of representation, and the labels describe the ac-
tions concerned with the transformation or dependency.

62 Chapter 4. The Reuse of large-scale components

tigh-level obsect

aggregation

to further refinement

@D
domain entities

Figure 4.3. The operating model of a large-scale component.

4.3.1 The relationship between an object and its refinement

As shown in figure 4.3, the relationship between an object and its refinement
can be given in terms of decomposition and aggregation.

In a large-scale component a high-level object represents an abstraction.
Such a high-level abstraction can be decomposed into several interrelated
lower-level abstractions. The elements of such a decomposition can be further
decomposed into more lower-level abstractions until the resulting abstractions
can easily be implemented in terms of small code components.

The opposite result can be obtained by aggregation. In terms of aggrega-
tion we identify several interrelated objects, then raise an abstraction repre-
senting a higher-level object.

Although both decomposition and aggregation result in similar structures
regarding the relationship between an object and its refinement, decomposition
is useful to simplify the complexity of components to be designed, whereas
aggregation is useful to utilize existing resources.

The operating model of large-scale components 63

4.3.2 A design framework: a parameterized design

A design framework is the encoding of the information about the composition
of a system design from its lower-level entities. A design framework is used as a
basis for the construction of design instances according to the requirements on
the instances to be built. A design framework itself should be both generalized
and parameterized. The representation of the design framework should be
generalized to capture the common characteristics of the different instances
of the design. It should be parameterized so that various instances can be
generated by filling a pattern with given objects.

A design framework can be constructed by parameterizing a generalized
design, either originated from the decomposition of an object or from the
generalization of a design instance.

4.3.3 Domain resources: objects for instantiation

A domain model represents the requirements from the application area, and
is the necessary part for the parameterization of a generalized design. The
parameterization of a design implies formulating constraints on the objects
appearing in a given design, in order to allow the actual substitution for these
objects in terms of other objects satisfying the constraints. The specification
of these constraints is the domain model.

A domain model is specified by giving the specifications for the constraints
on the objects appearing in the design framework. These specifications are
useful to check whether a group of objects are feasible to form a legal design
by the instantiation of the design framework. The specifications are also useful
to identify the candidate objects for alternative instantiations of the design
framework. Such candidate objects are known as domain entities.

4.3.4 Design instance: a specialized design

A design instance is a delegate of all the possible designs at an abstract level
covered by the respected higher-level object. Such a delegate is not intended
to present the common behaviors of all possible designs but, instead, to catch
the particular characteristics of .a design for a target system or component.
Such a delegate can be either generated directly by the decomposition of a
higher-level object or by a specialization of a design resulting from the instan-

64 Chapter 4. The Reuse of large-scale components

tiation of a design framework.

scheme LARGE-SCALE-COMPONENT(0:0BJECT, P:PRIMITIVE,
F:FRAME, D:DOMAIN, I'INSTANCE)=
class
type
Object = O.Object
Primitive = P.Primitive
Frame = F.Frame
Domain = D.Element
Instance = IInstance
value
parameterize: Instance — Frame x Domain
instantiate: Domain x Frame — Instance
generalize: Instance — Instance
specialize: Instance — Instance
decompose: Object — Instance
aggregate: Instance — Object
axiom forall i,inst:Instance, f:Frame,d:Domain, o:0Object ®
(1) parameterize(i) as df
post 3 d:Domain, f:Frame o df = (d, f)
pre 3 o0:0bject o aggregate(i)= o A generalize(i)=i
(2) instantiate(parameterize(i)) = inst
post 3 f:Frame, d1,d2: Domain e
parameterize(inst)=(f,d1) A parameterize(i)=(f,d2)
pre 3 o0:Object o aggregate(i)= o A generalize(i)=i
(3) specialize(generalize(i)) as inst
post generalize(inst)=generalize(i)
(4) generalize(specialize(i)) = i
(5) decompose(aggregate(i)) as inst
post aggregate(inst)= aggregate(i)
(6) aggregate(decompose(o)) = o
end

Figure 4.4. The specification of the operating model.

The operating model of large-scale components 65

4.3.5 The formalization

With the notations addressed in previous sections and following the previous
discussion in this section, the operating model can be formalized in terms of the
specification language RSL[47], see also figure 4.4. Such a formalization aims
at providing an exact description of the relationships between the different
constituent parts of a large-scale component and building a basis for developing
a set of tools supporting reuse-in-the-large, although the latter will not be
discussed in this chapter.

In figure 4.4, we assume that the types Object, Primitive, Frame, Domain
and Instance have been defined somewhere else. The detailed specification of
them is not important here, but will be discussed in chapter 5.

In this specification the operating model of a large-scale component is spec-
ified in terms of transformation between its constituent parts: objects, design
instance (instance), design framework (frame) and domain resources (domain).
The transformation is built in terms of several values [47] including parame-
terize, instantiate, generalize, specialize, decompose, and aggregate. The six
axioms in figure 4.4 describe the constraints on the transformation.

Axiom (1) implies that an interim instance can be parameterized into a de-
sign framework and domain resources. An interim instance is a design instance
which satisfies the precondition of the axiom.

Axiom (2)implies that, if an interim instance is parameterized into a design
framework and domain resources, alternative interim instances with respect to
the same design framework can be generated by means of instantiation. Note
that the domain resources might be changed by putting (or removing) domain
entities in them dynamically.

Axiom (3) implies that, if a design instance is generalized, alternative de-
sign instances with respect to the generalized design instance can be generated
by means of specialization.

Axiom (4) implies that, if a design instance is specialized, its original
representation can be recovered from the specialized design instance by means
of generalization.

Axiom (5) implies that, if a design instance is aggregated into a high-level
object, alternative design instances with respect to the high-level object can
be generated by means of decomposition.

Axiom (6) implies that, if a high-level object is decomposed into a design
instance, the high-level object can be recovered from the design instance by

66 Chapter 4. The Reuse of large-scale components

means of aggregation.

According to the axioms in the specification and considering the operating
model as shown in figure 4.3, we can explicitly describe how the constituent
parts of a large-scale component are generated, i.e.

high-level-object <« aggregate(interim-instance)
< aggregate(design-instance)
interim-instance < decompose(high-level-object)
& generalize(design-instance)
< instantiate(domain-resources, design-framework)
design-framework < parameterize(interim-instance)
domain-model & paremeterize(interim-instance)
design-instance < interim-instance
& specialize(interim-instance)
< decompose(high-level-object)

The table tells us that the different constituent parts of a large-scale compo-
nent can be constructed from each other. This implies flexibility and reusabil-
ity concerning the maintenance, evolution and reconstruction of a large-scale
component to meet variety of requirements. For example, in order to change
a design instance in a node of an H-structure, one may (1) directly produce
a new design instance, (2) modify the original design instance, (3) generate
an interim instance and use-as-it-is, or (4) generate and specialize an interim
instance. Moreover, in order to get the interim instance, one may (5) gener-
alize the original design instance, (6) decompose the high-level object, or (7)
instantiate the design framework with the domain resources.

Practically, we think that the operating model of large-scale components
provides a guideline for building and composing the constituent parts of the
components.

4.4 Management of large-scale components

In this section we discuss how large-scale components can be represented in
terms of a semantic database and how the components can be reused.

The operating model of large-scale components 67

4.4.1 Retrieval problem

One of the key problems of component management in application reuse is
retrieval. Quite often it is easier for a potential user to build a component from
scratch than to find the component in a library and understand the constraints
on its use [93]. Although the facet classification[102] by Prieto-Diaz is a good
method for component retrieval, especially the problem of component retrieval,
the problem of semantic matching between user’s requirement description (e.g.
semantic specification) and the specification of the components are far from
being solved.

The retrieval problem can, however, in many cases be settled in particular
application domains by using domain analysis e.g. Draco approach[93]. While
most methods for component retrieval are centered on classifying components
according to their functionality and properties, we organize the components in
a library according to a process of system development which can be partially
traced according to the H-structure of a large-scale component. As a result,
both system components and the context for the application of the components
are maintained. Obviously, the context information has been clearly described
in the pragmatic model of large-scale components. The remaining problem is
how to represent the organizational structure in a component management
system, so that a large-scale component can be manipulated according to the
operating model of the component.

4.4.2 Semantic data base and semantic data modelling.

Semantic databases allow dealing with semantics in terms of conceptual
models[13]. A conceptual model, according to [13], is a predefined partial im-
age of the real world. Conceptual models can be represented by types and
their assertions. In this context a type is an aggregation of distinct attributes,
including an object identity for naming the object of this type. Assertions
are predicates, describing the properties of the attributes and the relation-
ships between them. They can be used to express the relationships between a
conceptual model and the real world. Any object satisfying the definition is
known as an instance of the conceptual model.

Semantic data modelling refers to the use of semantic data models (con-
ceptual models) for the description of the real world. For semantic data mod-
elling, a useful theory is type algebra[13] which consists of semantic models
(types) and a set of operations including generalization, specialization and

68 Chapter 4. The Reuse of large-scale components

aggregation.

There are several principles for semantic data modelling, including con-
vertibility, relatability and object- relativity [13]. Convertibility implies a one-
to-one relationship between assertion subject and predicates. It is useful to
avoid ambiguity of the concepts regarding the objects appearing in large-scale
components. Relatability indicates that an attribute is related to one and
only one type with the same name, and each type can play a role of attributes
in various other types. If relatability is followed, a hierarchical structure can
be built without ambiguity, which is necessary for representing the organiza-
tional structure of a large-scale component. Object-relativity indicates that
the same abstract object can have different interpretations including type, in-
stance, generalization, aggregation, specialization, and attribute. The different
interpretations correspond to the operating model of large-scale components.
The principles discussed above are useful for the representation of large-scale
components, since system components are really a kind of data and can be
represented in terms of the concepts from semantic data modelling,.

4.4.3 The representation of large-scale components

The representation of a large-scale component describes the constituent parts
of a large-scale component and their interconnections. Such a representation
can be based on the notations provided in semantic data modelling.

The domain resources As discussed in 4.2, each set of domain resources
in a large-scale component consists of a domain model and an associated set
of domain entities. The domain model consists of a set of attributes defining
the abstract objects appearing in the design framework. The domain enti-
ties provide the instances (or values) of the attribute. Assume that a design
framework represents an editor and that the abstract objects appearing in the
design framework are window, keyboard and link. The domain model of the
editor can be defined in terms of a conceptual model as follows:

type editor = window, keyboard, link
assert editor =
the specification of window
the specification of keyboard
the specification of link

Assume that the specifications in the conceptual model are provided in

The operating model of large-scale components 69

terms of a semantic specification language and that the general requirements
for each attribute are described semantically.

The domain model above can be used to identify domain entities. Objects
which are feasible to an attribute specification are the entities (values) of the
attribute. The entities from each attribute form a domain instance of the
model. For example, a domain instance can be

graphic-editor = multi-window, graph-keyboard, multi-link.

In this case the domain resources of the editor correspond to a relation as
follows:

editor window keyboard link

graph-editor | multi-window | graph-keyboard | multi-link

The design framework. A design framework describes a set of abstract
(or non-abstract) objects and the relationships between the objects. Since
the abstract objects are already defined inside the domain model, the design
framework is only necessary to specify the relationships between the objects.
In this sense, a design framework can be viewed as additional semantic or
syntactic constraints on a domain model, which, therefore, can be part of a
domain model from a managerial point of view. A frame for representing both
the domain model and the design framework is provided by an example as
follows:

type editor = window, keyboard, link
assert editor =
domain
the specification of window,
the specification of keyboard,
the specification of link.
frame
the relationships between window,
keyboard and link.
end

70 Chapter 4. The Reuse of large-scale components

The design instance. According to the operating model of a large-scale
component, a design instance is a specialization of an instance of a design
framework. The instance can be obtained by instantiating the design frame-
work with the domain entities of domain resources. In this sense, a design
instance is specific. However, a design instance might be generic as well since
it can be a higher-level abstraction of a particular target design, i.e. the objects
appearing in a design instance can be abstract objects for further decompo-
sition. Therefore, a design instance is a type rather than only an instance.
Fortunately, semantic data modelling allows an instance of one type to be a
type.

For example, in the representation of design resources we see that a graph-
editor is an instance of the type editor and all the sub-objects appearing in
the instance may not necessarily be primitive concepts. We may, therefore,
further provide the semantics of such an instance by a type definition

type graph-editor = multi-window, graph-keyboard, multi-link

As a graph-editor may contain more attributes than the basic attributes of an
editor, such as draw, the definition above can be specialized by adding a new
attribute, i.e.

type graph-editor = multi-window, graph-keyboard, multi-link, draw
The assertion of the graph-editor is as follows,

assert graph-editor =
object
the specification of a multi-window,
the specification of a graph-keyboard,
the specification of a multi-link,
the specification of draw.
instance
the architectural specification of a graph-editor.
end

The specification of the graph-editor above is the design instance of the editor.
Refinement. Apart from the domain resources, design framework and de-

sign instance as represented above, we also need to describe the refinement
in order to represent a large-scale component. Such a refinement allows us to

The operating model of large-scale components 71

look into each object appearing in the design instance and to represent the
domain resources, design framework and design instance of this object. This
can be done by representing lower-level large-scale components in terms of the
type notation recursively. From a managerial point of view, the structure of
the refinement can be described as in figure 4.5. Figure 4.5 represents a large-
scale component OBJX. The domain model of OBJX consists of the attributes
OBJi, OBJj and OBJk. The constraints of OBJX contain the semantic spec-
ification of the domain model and the specification of the design framework.
OBJA and OBJB are domain instances. The OBJB consists of objects objB1,
objB2 and objB3, which is further specialized by adding objB4, leading to a
design instance objBi. The semantics of the design instance are provided by
its constraints, including an architectural specification. The design instance
objBi is a type. Its attributes can be refined into lower-level large-scale com-
ponents such as OBJY and OBJZ.

management modsl

constraints constraints

URIF =PI G2 GoiF S GhiF D) gbiH] = @D i+ CbiHD i)

Figure 4.5. The refinement structure of a large-scale component.

4.4.4 The component base

The component base supporting the reuse of large-scale components can be a
semantic data base as mentioned before. The semantic data base is not only
capable of supporting the representation of large-scale components, leading
to conceptual models, but also provides support to guarantee the semantic

72 Chapter 4. The Reuse of large-scale components

integrity of the model in terms of semantic constraints (specification). The
semantic constraints include inherent, static and dynamic constraints. The
inherent constraints guarantee relatability and convertibility, the static

I srec L Lbbrary Management Menu (ib—menu} Irm L Liorary Management Menu & ib-menu) I

|
FRAMEWORK-Lib-men | |
[bomain-ta-neu
INETANGE-Uo-meny Munsger.Lib-Maraget) =
oxiand FRAMEWORK-FMM wilh
ype
Library = Systemibesry
Bock-raport = Repart Baok-report
Lb—desk = Courtteriboesk
Retder-meny = Custone rescei-meny
value
[nsTance | Library Management Menu Lib-menu) DONMAN Library Management Menu Lib-menu)
RMM | System | Report | Counter Customer
[Stock-meny ock part-report | dmrvice ber-menu
-men Reary book-report | M-desk
JArch-menu wohive Ibe-repert OoUA! mpkyss
odit l save I parent [tefine | L 1 l l I

Figure 4.6.a. The user interface of a large-scale component.

speC | Library desk fib-desk) FRAMEWOR Library desk (ib-desk]

[rmamEwoRK--Des =
| pomAN-®Dex -

axtond FRAMEWORK-LR-Desk with
type
Op~Henu—A = op-manu.Op-Menu
Lown = leanloanA

I INSTANCELb-Dosk =

Renew = renew.Renew-A
Return-A = retun.feturnA 3
INSTANCE | Library desk fib-desk) DOMAIN Lbrary desk (ib-desk

lip-desk [op-menu! loan renew | return

Lb—Oeat-A [Op-Meru-A| Loan-a | PenewA |Relurm
iLb-Desk-B [op-Merw-A| Loan-B | Renew— | Retun-B

Op—Mermu-A| Loan-C

po-Desk-C

lodlt 1 save l parent l refine I

Figure 4.6.b. The user interface of a large-scale component.

The operating model of large-scale components 73

constraints guarantee some statement to be true on a defined structure of a
conceptual model, and the dynamic constraints guarantee the correctness of
the operations including insert and update. The three kinds of constraints are
useful to guarantee the correct representation and reuse of large-scale compo-
nents.

Since large-scale components are represented in terms of conceptual mod-
els, the semantic operations can be applied to create, retrieve, modify and
reconstruct the components. Moreover, additional tools are needed to support
system developers and reusers to represent and reuse large-scale components.

One of the tools to be mentioned is a graphical structure as an interface
between a large-grain component and reusers, which are prototyped as shown
in figure 4.6.a and figure 4.6.b, the former presenting a node of a large-scale
component at top-level, the latter representing a refinement of an object, ap-
pearing in the design instance of its parent node.

The figure 4.6.a and 4.6.b show a user view of a large-scale component. In
Figure 4.6.a we see intuitively that a Library Management Model, a large-scale
component, is displayed by four windows: specification (spec, left-top), design
instance (instance, left-bottom), design framework (frame, right-top), domain
resources (domain, right-bottom).

In window frame a design framework is displayed, which consists of four
interrelated abstract objects: system, counter, report and customer. The tex-
tual specification of the design framework can be found in window spec. The
design framework may be specified in terms of a module interconnection lan-
guage, e.g. EDFG.

In window domain a domain model RMM (Resource Management Menu)
is displayed, which consists of the abstract objects appearing in the design
framework. The functional specification can be found in window spec. The
domain entities are listed in a table under the domain model. The domain
entities, under each attribute of the domain model, are instances or values of
the attribute. For example, the entities part-report, book-report and file-report
are the instances of the attribute Report. The domain entities in each row of
the table is a domain instance. The three rows of domain entities are three
domain instances, namely, Stock-menu, Lib-menu and Arch-menu. A domain
model corresponds to a conceptual model in semantic data modelling. The
attributes of a domain model define abstract concepts, and domain entities
are the instances of the concepts.

74 Chapter 4. The Reuse of large-scale components

In window frame a design framework is displayed, which consists of five
interrelated objects: library, book-report, lib-desk, reader-menu and manager.
The textual specification can be found in window spec.

In window instance a design instance, i.e. a particular Lib-menu, is dis-
played, which consists of five objects and the relationships between them. The
objects are library, book-report, lib-desk, reader-menu, and manager. Compar-
ing the objects appearing in the design instance and those of design frame-
work, we see that the design instance is a specialized instance of the design
framework. The design instance can be built by (1) instantiating the design
framework with the domain instance lib-menu, producing an instance of the
design framework, and (2) specializing the instance of the design framework
by adding manager, a new object, to the instance of the design framework.

Figure 4.6.a is the top-level representation of the large-scale component
Lib-menu. The objects as shown in the design instance of Lib-menu, can be
refined into lower-level large-scale components. In order to see the refinement
of an object one needs to click the node of the diagram which stands for the
object to be refined. For example, figure 4.6.b can be displayed by clicking
the node lib-desk of the design instance in figure 4.6.a.

The interface in figure 4.6.b is similar to that of figure 4.6.a. There are,
however, some special nodes which are rectangular in shape in figure 4.6.b,
such as loan and return in the design framework and loan-A and return-C'in the
design instance. A node which is rectangular in shape represents a primitive
object. The specification of primitive objects can be found in window spec;
the refinement of a primitive object is a source code component, which can be
displayed if one clicks an object (a node of the diagram) of the design instance.

4.4.5 The process of creating and reusing large-scale compo-
nents

The process of creating and reusing large-scale components is sketched in figure
4.7 and described as follows.

Creating large-scale components

The process of creating a large-scale component is concerned with the identi-
fication of an application domain, the creation of a

The operating model of large-scale components 75

(1 .
Paianos and ot Sare
gotalied desigg

Identify the problem domain
large componant belongs 1

o

Identify objects the large

component needs Selact (create) domaln enlities

agoregatipon

the objects
SN

Bulld design framework and
domain model

Instantiation

Instance

’ specilaization

get design Instance
decomposition W gimm——
ook into each non-termina
Ject of the design instance

decomposition

Zidentlty sub—problem domi
for non-primitive objects

Figure 4.7. The process of creating and reusing large-scale components.

target system (or a large-grain component) in the domain, and generalization
and parameterization of the target system with respect to the domain. Such
a process can be largely described as follows:

1.

Bt e

Identify the application domain concerned with a large-grain component.
Identify the objects of an application domain at an abstract level.
Build a design instance from the objects identified (aggregation).

Generate a design framework and domain resources by generalization
and parameterization of the design instance.

Stop design process if all objects contained in the design instance are
primitive.

Identify the sub-application domain represented by each non-primitive
object in the design instance, then go to (2).

76 Chapter 4. The Reuse of large-scale components

Although aggregation and decomposition are alternatives for the creation
of a large-scale component, aggregation is usually applied in object-oriented
design as shown in the topology of large applications[20].

Reusing large-scale components

The process of reusing a large-scale component follows the H-structure of the
component, dealing with the composition process at each level of abstraction
and within the context of (1) a design framework, acting as an algorithm
explaining how to organize lower level entities into alternative design instances,
(2) a collection of design instances, each describing a particular design, (3)
domain resources consisting of a domain model and a set of domain entities,
and (4) a refinement as a detailed design and a particular implementation
of a design instance. These four concerns are combined into an H-structure,
encapsulating both a component’s design and the context in which the design
is realized, by which both the design information and the large-grain source
code can be managed and manipulated to meet different design targets of an
application domain.

A composition process refers to the process of building a design instance
or an implementation of a system or a system component from existing ar-
tifacts which are available to be reused. The process of reusing a large-scale
component can be largely described as follows:

1. Verifying the design instance at an abstract level to see whether the
ezisting design meets the requirement of the target object at this level. If

yes, go to (5).

2. Selecting a domain instance from the domain resources or building
a new domain instance. The latter can be done by selecting reusable
entities from domain resources and/or creating new entities, if necessary.
As a side effect, put the new domain instance into domain resources.

3. Instantiating the design framework with the domain instance in
(2), resulting in an instance of the design frame work.

4. Specializing the instance in (8) into a design instance, and replacing
the old design instance with the new one.

The operating model of large-scale components 77

5. Stop if the design instance is complete and the designer satisfies the
design (at an abstract level) and do not care about further details. Oth-
erwise, looking into the refinement of the design instance, go to (1).
A design instance is complete if it is a primitive object or if all the ob-
Jects contained in the design instance are refined in terms of (lower-level)
complete design instances.

4.5 The capability of reusing large-scale compo-
nents

The capabilities of reusing large-scale components are mainly reflected in two
aspects: the capability of being reused and the capability of incremental do-
main analysis, which are described in this section respectively.

4.5.1 The life-cycle oriented reuse

The reusability of large-scale components is described in this subsection, con-
cerning the stages of the improved waterfall model as discussed before. The
stages are: analysis, design, implementation and maintenance.

Reusability information for analysis

Analysis is the process of modelling the world by identifying real world com-
ponents which form the vocabulary of an application domain. Practically,
each large-scale component (or its sub-component) models a concept from the
real world, which is characterized by three dimensions: a design framework (a
general concept), a design instance (an instance of the general concept), and
a set of domain resources (sub-concepts and their thesauri), and these provide
a vocabulary of an application domain.

Analysis represents the behavior of the system (or component) we must
build. Such a behavior is contained in a large-scale component. The design
framework of a large-scale component catches the common behaviors of a set
of components of a domain, while the design instance describes the behavior of
a specific component in terms of a set of objects and the relationships between
them.

78 Chapter 4. The Reuse of large-scale components

Reusability information for design

Design is the process of problem solving[112], which provides the abstractions
and mechanisms that describe the behavior a system requires [20]. Large-scale
components contain information to support this process.

A design framework provides a generic design by representing the common-
alities of a set of design instances. Such a specification can be fully reapplied
to build a collection of similar design instances in a domain and is, therefore,
reusability information for design.

Although a design instance is horizontally specific with respect to the de-
sign framework at the same level, it is vertically a framework to be inherited
by lower-level representations for varieties of design targets.

The domain resources are collected during the process of creating and
reusing the large-scale component. They are listed in a large-scale component
as candidate for the re-design or re-implementation of the constituent of a
large-grain component, in order to reuse this component in different applica-
tions. Therefore, they contribute to the reuse of the design.

Reusability information for implementation

The major activity for system implementation is the construction of code
components. Large-scale components not only contain code components but
also provide a structure to integrate small code components into a large-grain
component. Following such a structure, the large-grain component can be
easily modified and reconstructed to implement varieties of target systems.
An example of this will be provided in 7.

Actually, a large-scale component may be viewed as a mechanism in which
small components are organized in such a way that reusability is emphasized.
For example, in order to look up components in a software library, a domain
model provides guidelines for the retrieval, while domain entities provide the
components when needed. By identifying the relationships between a compo-
nent and its related domain resources and design frameworks, the user may
not only obtain the thesauri of the component, but also find a group of appli-
cation environments where the component may be applied to. Therefore, the
process of system implementation will be enhanced by using the information
provided by large-scale components.

The operating model of large-scale components 79

Reusability information for maintenance

It is generally accepted that the lack of design information and the lack of au-
tomated support in component manipulation complicate system maintenance.
Large-scale components support system maintenance by providing infor-
mation which is useful for an easy modification and reconstruction of a sub-
system or system (large-grain component) at different design levels. When a
system is represented as a large-scale component, the design information of
the system is distributed in a hierarchical structure. Information on this struc-
ture can be browsed with a tool. Any particular part of the system can be
located when it needs to be modified, enhanced or reconstructed. Associated
with each part, there is a template (design framework) which may be used
to produce a similar design of the part, while furthermore there are domain
resources which provide candidates to instantiate the template. Since the ele-
ments of domain resources may be other large-scale components, the detailed
design and the code of the located part may be provided automatically.

4.5.2 Incremental domain analysis

Domain analysis, as first addressed by Neighbors[92] in 1980, refers to the
activity of examining the requirements of a collection of systems that model a
specific part of the real world. He thinks that domain analysis is only successful
if it is done by a person who has built many systems for different clients in
the same application domain[93].

Domain analysis is important as it is a basis for automating some aspects
of system development in terms of reuse, such as application generators [92],
domain-specific automatic programming [8] and so on. However, traditional
domain analysis is done by ezperts and completed before using the analysis
according to [92]. Such an analysis not only makes the initial use of the
analysis very expensive, but also misses many opportunities to collect reusable
resources from the process of system development.

In 1989, Arango[3] proposed that practical domain analysis should be based
on a method for the systematic evolution of a reuser’s model of the domain.
In order to realize domain analysis, Arango also suggested a term reuse infras-
tructure, referring to the information and its structure which must be made
available to the system developer, together with the auxiliary information
needed to locate and manipulate this information.

We claim that large-scale components and the tools to manage and ma-

80 Chapter 4. The Reuse of large-scale components

nipulate the components provide an infrastructure for reuse. While the design
instances contained in a large-scale component are available to system devel-
oper to be used-as-is[10], the explicitly represented organizational structure
provides means to localize the design instances at different levels of abstrac-
tion and to bind the instances into a whole system or a large-grain component.
Moreover, the design framework and domain resources, corresponding to each
design instance, provide the information to manipulate or reconstruct each
part of the design instance to meet a reuser’s requirements. Therefore, a large-
scale component integrates information to be reused, and the information to
realize the reuse.

We also claim that the process of reusing large-scale components supports
incremental domain analysis. A large-scale component is created during the
process of developing the first application system or large-grain component
rather than performing domain analysis explicitly. The design information
contained in a large-scale component can be incrementally extended during the
reuse of the component, leading to an effective incremental domain analysis.

First, the design instance is a delegate of a set of similar designs in an
application domain. Such a delegate can be replaced or modified into similar
(but different) ones for different target systems or large-grain components in
the same application domain. The new delegate is expected to be generated
based on the domain resources and design framework. However, once the cur-
rent domain entities in the domain resources are not sufficient to compose
a new design instance, additional domain entities are needed. Reusers are
responsible to supply these entities to enrich the current domain resources.
Furthermore, if a reuser is not satisfied with the current design framework, a
new one should be supplied. Replacing a design framework implies replacing a
respected higher-level object with a new one. In this case the higher-level ob-
ject together with its lower-level design will be put into the domain resources.

Obviously, the organizational structure of a large-scale component is a
dynamic structure allowing the design information of an application domain
to be incrementally accumulated. The more the component is reused, the
more it will become reusable.

An information system for reuse-in-the-large 81

4.6 An information system for application reuse-
in-the-large

According to title of this dissertation, as well, the discussion in previous sec-
tions, we address RITL, an information system for application Reuse-In-The-
Large. Such an information system is centered on the representation and
reapplication of large-scale components, leading to a support environment for
application development and maintenance with reuse-in-the-large.

The data sets of the information system are the constituent parts of large-
scale components as defined in section 4.2. The system software of the infor-
mation system can be a semantic database management system as discussed
in section 4.4. The people who use the information system are application
developers. The major activities to deal with a large-scale component are de-
scribed in terms of the type algebra as in section 4.3, including decomposition,
aggregation parameterization, instantiation, generalization and specialization.
The activity to collect and maintain the resources of a large-scale component
is domain analysis as discussed in section 4.5.

The tools and languages to furnish the information system include:

1. a user interface, as discussed in 4.4.4, guiding application developers to
browse and deal with large-scale components.

2. a specification language, specifying the constituent parts of a large-scale
component,

3. graphic notations together with textual specification e.g. EDFG, rep-
resenting the architecture of the design and the design framework of
applications.

4. an implementation generator, providing support for composing large-
grain source code components from lower-level entities, or delivering the
large-grain source code components for an application,

5. a programming language, e.g. Scomp/Ocomp notations binding to C++,
implementing code components or applications.

6. an editor, preparing specification and program.

Chapter 4. The Reuse of large-scale components

82

oBie|—ay}-ul-asneJ uonesljdde 10j wie)sAs uoljewIoOu| UY ‘8°'¥ einbi4

ydoddns @ seol}IAnoY

@oejioul Josn

g

NI

uoljejuasaiday

An information system for reuse-in-the-large 83

In figure 4.8, RITL is depicted, aiming at providing the logic structure
of the information system, i.e. an outline of a support environment for ap-
plication development and maintenance with reuse-in-the-large. The figure is
focused on what information is represented in the information system, how it is
presented, understood, processed, and applied to produce a set of applications
in an application domain.

In the middle of figure 4.8, a large-scale component (AnLSC) is pre-
sented in terms of an H-structure. Each node of the H-structure contains
information, concerning a design instance, a design framework and do-
main resources. The nodes can be browsed and dealt with in terms of a user
interface (left-bottom corner). At the mid-bottom of the figure, a set of tools
are listed. The tools can be used to support a set of activities (besides the
box tools). The activities are concerned with representing and manipulating
design instances, design frameworks and domain resources (mid-right).
Design instances can be composed from (‘=) design frameworks and (‘+°) do-
main resources. The artifacts contained in the domain resources are collected
in terms of domain analysis(mid-right) and managed in terms of a seman-
tic data base (right bottom). The design instances, design frameworks and
domain resources are specified in terms of a specification language (be-
sides the box domain analysis). The specification describes the properties of
artifacts, corresponding to the intention(right-top) of concepts; the domain
analysis deals with the membership of the artifacts, corresponding to the ex-
tension (right-top corner) of concepts. Concepts (mid-top) can be expressed
(=) in terms of intention and (‘+’) extension, which is helpful to understand
things. Finally, as the output of the information system, a set of applica-
tions (left-top corner) can be derived from or developed with ‘<=?) reusing
a large-scale component.

4.7 Summary

In this chapter we described a method about how a large-scale component can
be represented, managed and manipulated. At the beginning, we identified
several notations which form a basis to describe the method. Then, the rep-
resentation, manipulation and management of a large-scale component were
described from different views in terms of an operating model and a man-

84 Chapter 4. The Reuse of large-scale components

agement model. Moreover, component specification was discussed. Finally,
we discussed the specification of large-scale components, binding to a module
interconnection language.

Based on the discussions above, several conclusions can be drawn:

1. Reuse-in-the-large — the reuse of large-grain components and the in-
formation about the creation of the components — can be realized by
the reuse of large-scale components which contains design instances, de-
sign frameworks and domain resources, representing different levels of
abstraction.

2. The management and manipulation of a large-scale component can be
supported by the technologies applied in semantic data modelling, lead-
ing to a component base, supporting the process of reuse-in-the-large.

3. The reuse of large-scale components supports incremental domain anal-
ysis, and is capable of improving system development and maintenance.

Chapter 5

The Specification of
Large-Scale Components

Specification languages usually insist upon specifying the details precisely or not
at all. But we cannot specify the details too precisely, else we reduce the reuse
potential. ‘

— Ted J. Biggerstaff, Software Reusability, 1989.

In the previous chapter we discussed the management of large-scale com-
ponents by assuming that large-scale components are represented in terms of
primitive code components and specifications. In this chapter we discuss a
principle for such specifications and describe how to apply such a principle for
the representation of large-scale components. Moreover, we address a method
for consistency verification.

5.1 The specification of large-scale components

The specification of a large-scale component is the design representation of
the component. In order to enhance the reusability of such a representation,
multiple-level specification is used.

Multiple-level specification was first addressed in 1991 by Gabrielian[44]
for specifying real-time systems. He distinguishes multiple-level specification
from hierarchical specification. Hierarchical specification usually begins with
a top-level specification. Thereafter, one creates successively lower-level inde-

85

86 Chapter 5. The Specification of Large-Scale Components

pendent specifications that are proved to be consistent with higher-levels. At
the end of the process, the lowest level stands alone as a final specification. In
contrast, multiple-level specification allows each higher-level specification to
impose constraints on lower-level specifications, so that all levels remain part
of the final specification[44]. An important feature of multiple-level specifica-
tion is that each level can be reused in other contexts.

The multiple-level specification in our approach is realized in two dimen-
sions: vertically, in the relationships between different levels of refinement,
and horizontally, in the relationships between domain model, design frame-
work and design instance.

Vertically, the specification of a design instance must inherit the specifica-
tion of its parent object, if any, and the specification of an object appearing in
the design instance must be inherited by the specification of its refinement, if
any. Horizontally, the specification of a design instance may inherit the speci-
fication of the design framework, and the specification of the design framework
must inherit the specification of the domain model.

In terms of multiple-level specification, the specification of system compo-
nents can be specified in different levels of abstraction. Each level is a partial
specification, and a complete specification can be finally obtained at the lowest
level in terms of inheritance. A specification is called partial specification if it
describes the broad structure of an object and leaves the details incomplete,
i.e. only minimally constrained[18].

In this section we describe the principle of the multiple-level specification
and how to apply such a principle to the specification of large-scale compo-
nents.

5.1.1 Multiple-level Specification

In this subsection we provide a definition of multiple-level specification as well
as the refinement consistency regarding multiple-level specification. Then we
discuss the reusability of such kind of specification.

What is multiple-level specification?

Assuming that the specification of a system component, say A, can be repre-
sented in terms of a conjunction of a set of predicates in first-order logic, the

Chapter 5. The Specification of Large-Scale Components 87

complete specification of A can be represented as follows:

SPEC(A) = P1(A) A P2(A) A ... A Pn(A) (%)

where SPEC(A) refers to the specification of a component A, P;(4) (i =
1,2,...n)is a predicate regarding the component A. In contrast, the multiple-
level specification of component A can be

level 1 SPEC;(A)=P1(A)
level 2 SPEC2(A)=P2(A)

level n SPEC,(A)=Pn(A)

For the specification above we further stipulate that each lower-level specifica-
tion inherits the specification of higher-level ones, then the specification above
is equivalent to a description logically as follows:

level 1 SPEC; (A)=P1(A)
level 2 SPEC,(A)=P1(A)A P2(A)

leveln SPEC,(A)=P1(A) A P2(A)A ... A Pn(A)

From the representation above, we see that the lowest-level specification is
(logically) equivalent to that of an original specification (*), without violating
the principle of multiple-level specification.

Refinement consistency

The consistency between lower level and higher level specifications, namely,
refinement consistency, is defined as follows:

88 Chapter 5. The Specification of Large-Scale Components

definition 3 (refinement consistency) Refinement consistency is valid by a
multiple-level specification iff

SPECi(A) => SPEC, {(A)
for i=2,38,...n.

Consequently, assuming that set-A; (=2, 3, ..., n) is a set of components
satisfying the specification SPEC;(A), then

set-A; C set-Aj

As a result, the lowest level specification SPEC,(A) presents the complete
specification of component A, and each SPEC;(A), SPEC;(A), ..., SPEC,(A)
are partial specifications.

In order to understand the definition above more precisely, it seems neces-
sary to distinguish the refinement of multiple-level specification from that of
hierarchical specification. An example is provided in figure 5.1.

Items Hierarchical Multiple-level
function f(x) return y function f(x) return y
parent spec. pre(f): € Integer Az > 0 pre(f): z € Number
post(f): y = /= post(f): y = V=
function f'(z) return y function f'(x) return y
refinement pre(f): z € Number Az > 0 pre(f'): « € Integer Az > 0
post(f’): y = /= post(f’): y =z Ay <100
consistency | pre(f) => pre(f’) pre(f’) = pre(f)
post(f') = post(f) post(f') => post(f)

Figure 5.1. Hierarchical Refinement versus Multiple-level Refinement.

In figure 5.1 we assume that Vz(z € Integer => Number). Notice that the
precondition must be equivalent or weaker than that of the parent specification
in hierarchical refinement, whereas it must be equivalent or stronger than that
of parent specification in multiple-level refinement.

The reusability of multiple-level specification

We present the reusability of multiple-level specification in terms of an example
as follows,

Chapter 5. The Specification of Large-Scale Components 89

level 1 BUILDING(A): A is an object with wall and roof.
level 2 HOUSE(A): A is a BUILDING which is for people to live in.
level 3 B-HOUSE(A): A is a HOUSE with bungalow style.

where BUILDING(A), HOUSE(A), and B-HOUSE(A) are predicates of object A.
The example above is intended to specify a bungalow style house. The specifi-
cation is provided with three levels of specification. At the first level the basic
structure of a house is specified, at the second level the function of a house is
provided, and at the third level the style of a house is given.

From the example above, we can see intuitively that the refinement con-
sistency is held in the specification. If an object is a B-HOUSE, it must be a
HOUSE; if an object is a HOUSE, it must be a BUILDING, i.e.

Yz € Object(B-HOUSE(z) => HOUSE(z))A
Vy € Object(HOUSE(y) => BUILDING(y))

where Object refers to all objects which are considered in an application
domain. Moreover, assuming set-B-HOUSE presents all objects which satisfy
the specification at level 3, set-HOUSE presents all objects which satisfy the
specification at level 2, and set-BUILDING presents all objects which satisfy
the specification at level 1, the following expression must be held:

set-B-HOUSE C set-HOUSE C set-BUILDING

The reusability of the specification above is obvious. On the one hand,
each higher-level specification can be reused by the lower-level specification:
the level 1 can be reused for the specification of alternative buildings, the levels
1 and 2 together can be reused for the specification of alternative houses and
the levels 1, 2, and 3 can be reused for the specification of alternative houses
with bungalow style; on the other hand, the lower-level specifications provide
instances of the higher-level specification conceptually: B-HOUSE is an in-
stance of HOUSE and HOUSE is an instance of BUILDING. Moreover, as the
specification is divided into several levels, the specification can be understood
and manipulated easily. This follows the strategy “divide and conquer”, an
old saying.

90 Chapter 5. The Specification of Large-Scale Components

5.1.2 Specifying large-scale components

In this subsection we discuss how multiple-level specification can be applied
to the specification of large-scale components. The discussion will be focused
on how to specify design frameworks, domain models, design instances and
the levels of refinement. The feature of multiple-level specification is the in-
heritance between different levels of specification. For convenience’s sake, the
notations in EDFG (extended data flow graph)[74], a module interconnection
language, are frequently used.

Specifying design frameworks

Design frameworks represent the organizational structure of the objects at each
level of abstraction. The organizational structure corresponds to the compo-
sition of a higher-level object from its sub-objects. The complexity of such
a composition can be reduced by hiding the complex control structures and
data structures inside the sub-objects, and leaving a unified control structure
to connect the sub-objects into a whole. The well-known methods supporting
such an idea include Unix pipeline, data flow graph, the messages between
objects in object-oriented programming, and so on.

For the same reason the specification of a design framework is limited to
the relationships between the sub-objects to be composed with, concerning a
unified control structure. We assume that a set of sub-objects can be composed
into a single component by using algorithm structures or system architectures.

The languages representing a design framework are typically MILs[99]
which provide a specification of component structures. The specification can
be precise if a semantics is provided. As an example, we use semantically ex-
tended data flow graphs (EDFG[74]) for the specification, see also section 5.2.
The question seems how data flow graphs can be used to precisely describe
the interconnections between actors.

We argue that data flow graphs can be used to describe precisely the in-
terconnections between objects by a semantic extension, i.e. by providing a
textual specification as we did in the EDFG approach[74]. Some experience
for such a capability has also been given by Larsen’s work[61] and France’s
report[40]. In the former data flow graphs extended with pre/post style se-
mantic specification can be directly transformed into VDM specification; in
the latter both data flows and control flows of a system can be represented in
terms of semantically extended data flow graphs. Moreover, the consistency

Chapter 5. The Specification of Large-Scale Components 91

between a semantically extended data flow graph and its refinement can be
verified in a rigorous manner, which will be discussed later on.

The specification of a design framework is a partial specification. Although
the specification of a design framework describes the general structure of a
set of similar design instances in an application domain, such a specification
may provide no semantic constraints on the objects appearing in the design
framework. These constraints will be provided by a domain model.

Specifying domain models

A domain model describes the constraints of the (abstract) objects appearing
in a design framework. These constraints can be provided in terms of a specifi-
cation. The specification is characterized by semantics with abstraction. The
semantics with abstraction can be used to identify a collection of resources for
the instantiation of the design frameworks.

The specification of a domain model should meet the constraints imposed
on the design framework. For example, if two objects appear in the design
framework as being connected, the specification of these two objects in the
domain model should express the possibility of the required connection. In
other words, we may stipulate that one can only connect two objects in a design
framework if the interconnection is consistent with the domain specification.
The consistency of such an interconnection should be verified, based on the
specification of the two components.

In order to emphasize the abstraction of the objects appearing in a de-
sign framework and to identify resources for the instantiation of the design
framework, the specification of the domain model emphasizes only necessary
properties of the system components and ignores the others, so that the same
specification catches the commonality of a set of similar components and can
be shared by all the components. Following the abstract specification, a col-
lection of domain entities can be identified as thesauri, which can be reused
to instantiate the design framework. For example, sort, as an attribute of a
domain model, can be specified as an abstract object: its input includes a set
of data items with the same type in which an total order is defined, and its
output is a set of sorted data items. The domain entities which can be identi-
fied by such a specification may include quick-sort, hashing-sort, tree-sort and
so on. These domain entities are so-called thesauri regarding to sort.

92 Chapter 5. The Specification of Large-Scale Components
Specifying design instances

According to the definition of a large-scale component, the specification of a
design instance requires three activities: (1) describing the architectural struc-
ture of the design instance; (2) defining the objects appearing in the design
instance; (3) specifying the external interface.

Specifying the objects appearing in a design instance. Specifying the
objects appearing in a design instance can be viewed as an extension of the
corresponding domain model. This is because most of the objects appearing
in a design instance are the domain entities of the domain resources and the
domain entities are partially specified by the domain model at an abstract
level. By an extension of the domain model, only some particular properties
of the objects are need to be specified. This is a kind of reuse. However, the
extension may not be available for each object, since a design instance can be
an instance of the design framework and can also be the specialization of the
instance. The latter may need some particular objects which are not covered
by the corresponding domain model.

Specifying the organizational structure of a design instance. The
same holds for the specification of a design framework. An organizational
structure of a design instance can be specified in terms of a module inter-
connection language. For specifying such a structure, the specification of the
design framework can be reused because the organizational structure of a de-
sign instance is but a more specific design framework, or the specialization of
the design framework. For example, assume that the data type of a link from
an abstract actor Al to A2 in the design framework is a union List, List={real-
List, integer-List, ...}, the data type of the corresponding link in the design
instance may be a particular link, say real-List. Of course, it is necessary to
specify additional structures when the design instance is a specialized instance
of the design framework. From this point of view, the specification of design
framework provides a partial specification of the design instance.

Specifying external interface. The external interface of a design instance
can be specified in a model interconnection language, e.g. the EDFG notation.
If the design instance is at the top-level of a large-scale component, the inter-
face can be specified straight forward; if the design instance is at a lower-level
of a large-scale component, the specification of its external interface should be
consistent with that of higher-level specification. The consistency implies two

Chapter 5. The Specification of Large-Scale Components 93

things. On the one hand, the specification at the lower-level should inherit
all the specifications at the higher-level; on the other hand, the specification
of a lower-level design instance should be consistent with the specification of
another design instance which the current design instance has to be connected
with. For example, suppose there is a design instance at top-level, see also
figure 5.2, which consists of two actor Al and A2. Al has an input link 101 and
an output link 102; A2 has an input link 102 and an output link 103; Al and
A2 are connected in terms of 102. Suppose there are edfgl and edfg2 which
are the refinements of actors A1 and A2 respectively. The external input links
of edfgl are 101 and 102 and the external output links of edfg2 are 102 and 103,
corresponding to the higher-level actors A1 and A2. Then the specification of
the four objects A1, A2, edfgl and edfg2 can be formalized as

PRE(A1)=P.,(101) PRE(A2)=P3,,(102)
POST(A1)=P,(102) POST(A2)=P4,,(103)

PRE(edfgl)=P.:1(101) PRE(edfg2)=P.2(102)
POST(edfgl1)=P.1(102) POST(edfg2)=P.2(103)

Figure 5.2. The refinement of a design instance.

where P;(1j) is a predicate on link /j, presenting the pre/post condition of an
object zj. In this case the following predicate must be true:

94 Chapter 5. The Specification of Large-Scale Components

Poa(101) = Par(I01)A Pay(102) => Pay (102)A
Pez(mZ) == P¢2(102)/\ Pez(103) = P¢2(103)/\
Pe1(102) = Pe2(102)

The boolean expression P;(l101) => P,1(I01)A Pey(102) = F,1(102) must
be true. This implies that the links 101 and 102, the external links of edfg1,
must be the instances of the (abstract) links with the same names appearing
in A1, or be the same to the links in Al. For the similar reason, the boolean
expression P.2(102) => P,2(102)A Pey(103) => P,2(103) must be true as well.
Finally, the boolean expression Pe;(102) => P.3(102) must be true since the
connection is necessary between edfg! and edfg2 through link /02 as indicated
in the higher-level specification.

5.2 An example of large-scale components

As an example, we specify data processor (or dataproc), a large-scale compo-
nent, with a purpose of the production and sorting of data. Assume that the
general structure of the component is as a triple with a producer, sorter and
deliverer. The component is parameterized on the objects of the triple. These
objects, therefore, appear in the domain model. The general structure of the
large-scale component is described by the design framework, while an instance
of the example is given in the design instance. For convenience’s sake, such
an example is specified in the EDFG notation [74].

The top-level representation of the large-scale components. In the
example, see also figure 5.3, the domain model at the top-level of the large-
scale component consists of three attributes which are specified in terms of
pre/post conditions. Under each attribute of the domain model, several ob-
jects, i.e. domain entities, are listed. As a rule, the specification of each
domain entity must be consistent with the specification of the corresponding
attribute. Each set of entities at the same row, which is called a domain in-
stance, is sufficient to instantiate the design framework so as to build a design
instance.

95

Scale Components

ion of Large

ficat

Chapter 5. The Speci

‘jusuodwoo ajess-abie| e
———— J0883%0id-Bleq -g°'g ainbiy

HIERZY!

150101

oAl IWId

JOINRP pue
Etaﬁw&ww%%.ﬂu.oswxm
EEN 8,8A9D)] d LNO
ﬁan::-z_o LGN

o 1313RD IO

{Q:A=0e1I08)INd1 N0
{Q)={3U08) LNaNI

8] i3lio% 0109

Ronpoid pue
_Eoéo.ﬂhwo&_asgsmma
‘ebessaN:ZA ‘Q:LA=(RINPOIBLNGLNO
{19=eonposd) | (NI

RNPOX Wjoe

8)pa pua
HPOrINGING ‘SOI'E0INduY sBanjep
{E0EIRGING ‘Z01:3NduUY JapOS
*(60120RINdINe 1101ndu) Jeanposd
‘abessaw :GO| WUl
‘O Phh=o w0l Wl
A URLD *¥SM)=Q :€OIZ0I YU
™ ‘29 *A5)=1 401 U1
(wornding orandug soideiep 8ipe

6ipe pua
{POINAING ‘GOFEONINdW Jetunid
4eorindine ‘Zokindug Los-xomb
4SOI'ZORINEYNG J0FINdUY J3rL}a)
3DRSSIN GO HU|
‘914 ol ul
‘IS €0I20) %ul
NS 401 YUl
(POFINGYNO A0KINBLY D0sd-p Bypa

108-3omb pus
00| SOLNNLUATHY
ML A=pRUA LN 100
{POEITINZX 1IAR=(RUN) LNGNI

2} Wy Joroy

1108-opb pus
uon-3oriy] SO/Gos-¥Omb)Ibd
BEA=0108-4IN NG LNO
DINHH108- OO LNINI

A LOB-OMND SO0V

RAN2) PUD
(0A0019 | SO T
20ERSEIN ZA VS IA=$INALIRINILNG
ARSHI=HRAUIR LN

1 19AI) 1010Y

$92.N0sa4 ulewop

siomawes) ubissp

soue)sul ubisop

Scale Components

Chapter 5. The Specification of Large

96

IA0Idde

Ayebey

ASHH

RET

W:GOI

OS2l

N:2Q

=

28451

22d3:10

AW

|

4OIRER PUD
DIR9N | SO Ik
{PORSSONZ ‘|SIAS(PISEE) LNGLNO
{AORO=HORIT)| N

1 0se0T JO)IY

J018fEURIL PUS
Yo19reueIY LSOdAOIERURA) L
AUNOA=OLIIY | 11O
ne=poreisuen) NdM

% JOJRITA, JORY

Kyyebe; pue
R0 LSOANA V0N Ttd
WISA=AIe00LNALNO
SN(AeOL NN

w1 Aymba s0y

6)po pud
4S04 “201INAIN0 ‘ZLENdw) yoiees
YZuandyno ‘indug ojeisuen
GEINANO YorINduY Alnedey
‘ebesson :GO) Wull
S 1ST-08H IST-N)=18T] 201 MY
‘{Asenbg OL)=A18m0D 24| Uy
(shey ‘woD '58dSG)=AS I 101 HuY
(S0I'201NAINO "LOYINduY JoAsiILl B)pe

6ype

HSOrZokINdiNo ‘Zyiindug anboe

YZFINING “YLINchy) PpOws
{WrIndine 1LoFinduy Buniodyo

:00834N :GO| HUI

$N-N 201 Nl

“Aonbg 2L WM

0943 1411 101 WM

(S0I'201:INGIN0 "LOFINdw) Joy13) Bjpe

sunboe pue
{(94NboR) 1 SOAP MO Itd
{obussaN T I8N A=9Inbo% 1Nd 1IN0
pud A mnbgX=PMNDON LNciNI
5 aarbe J0)0Y

9pous) pus
§opown 4| SO/ IPOUSATH
KIonbS 4= 0pOWRAINA 1IN0
PRSX)=FIROURALNAN!
 jopowie! i0joy

Bupiaey? pus
HOUDRILL SOOI
%408d5A=PUOMA LNILNO
${ped Sxj=(Bunyoeudh NI

31 BUpPUP J0j0¥

$32)N0S3I UlRWIOpR

yiomaures) ubisep

SEY RIS

wocﬁm* ubisep

97

Scale Components

. The Specification of Large

Chapter 5

Buidnoif) (ajebiiseau

bojeied

d

SRV

2NN
{eai

wsol | €0l

1IWiIG

ydesd pua
e} SOd/MARIB I
‘R A=ndeIB) i Nd 1IN0
‘02X 8pOW P={udeiBiLNANI
§1 ydesd J00Y
Bojeyed pue
“Bore3ed} LSOd/BoIeIRAInd
‘A= B01RIBD) 1N LINO
hisn-NX)=Fo[RIea) 1 NgNI
91 BoJRIRD JOYOY
azAjeue pua
‘(9zAIRue) 1SO/(PZARUR TG
ASN-NZA ‘9DON:IA=(3ZARURILNALNO
‘(9DRSSINA 181-N:X=(ZARUTLNINI
&1 3zAjeue 10Oy

B)pa pua
“pORIndine '2ijandug ydesd
‘Eusndine ynauy boeiea
“Gi1 ‘€L Indino KGO8 ‘EORINdu) ezARUR
{all4-edJ *aj4-1x }=al 1pOl WUl
3PON €41 I
ooy il
abessap 1501 Hul
(8O-} S1-R=ISTT-N 34 'E0) U
(FO1:INdin0 ‘GOIE O INd) Jejuixd Bipe

byp3 pua
1pOLANAING “ZLindup Leyo
fzuandyno fyndug Suidnob
HEWWEINAING (LOFINGUY AJLisA
‘8)13-5d3 QI Hu
“3pON €L M
08y Y
abessap :GOH un
Y)SrI-28) 34} ‘E08 YU
{POIANAANG 'GOI'E0RINdUY J3juLd-3 Bjps

Y pud
[{IRYA1SOA/RIBUA T
{14-543A=QBUALNGLNO
PITX "WON =12 INANI

s IR 1093y

Buidneid pus
{{Burdna.d)) SOJ/OUKIN0I T
Pog:R=(0udn0iB)INdINO
t0sr]-easxqj=(Buidno.b | NaN|

§1 duinosB 103y

Ajuoa pud
AHIRNLSOdNAIPATEd
‘A8r1-RILZA ‘IPONIA=IALIALNALNO
14811-1801:2X *SORSOWIX)=K SN LNANI

31 AJuan 1019y

$924N0S8J UjeWOp

yiomauiel) ubisop

aoue)suj ubisep

Joyund

98 Chapter 5. The Specification of Large-Scale Components

dataproc, the design framework at the top-level of the large-scale compo-
nent, describes the organizational structure of the components in terms of the
attributes of the domain model. In this example the structure is described
in two parts, a textual part and a graphic part. The textual part describes
the interface of the objects (actors). The graphic part explicitly shows the
interconnections between the objects. Two objects are connected if the input
link of one object is the output link of the other one.

d-proc, the design instance at the top-level of the large-scale component
represents an instantiated component in this example, which consists of re-
triever, quick-sorter, and printer.
The refinement. Although d-proc, the design instance at the top-level of the
large-scale component, is a particular instance of the design framework of this
level, it is too abstract to act as a specific data-processor. For example, the
link type List still has to be supplied as shown in the type tree of figure 5.3a.

A NN

eps-File ixi-File Key Spec Com i st Rec-List

real-List int-List

Figure 5.3a. A type tree.

The lower-level representation of the large-scale component is concerned
with the three objects appearing in d-proc, i.e. retriever, quick-sort and
printer. Since quick-sort is a primitive object, it is connected with a source
code component which can be accessed to be used-as-is and no more refine-
ment is necessary. The refinements of retriever and printer, two non-primitive
objects, are shown in (A-1) and (A-2), the remaining part (in other two pages)
of figure 5.3.

The refinement of retriever. The refinement of retriever is given by a design

framework with the same name, as shown in (A-1), which suggests that re-
triever basically consists of three objects: legality, translator and search. The

Chapter 5. The Specification of Large-Scale Components 99

legality receives a requirement description from link [01:Str and checks if such
a description is legally right. After the checking, it sends a correct requirement
description via link 111:Str to translator which transforms the requirement de-
scription into query notations of a database. The query notations are sent
to search, another object, via link [12:Query. The search realizes retrieval in
terms of the query notations, resulting in a list of data and a message about
the data. The data and message are sent out via links {05 and {02 respectively.

The objects legality, translator and search appearing in the design frame-
work retriever, are still abstract objects. Their constraints are described in the
domain model regarding the design framework. Suppose that domain entities
have been collected as many as shown in (A-1), a set of alternative retrievers
can be composed by instantiating the design framework with the entities.

As a delegate of all possible retrievers, fetcher presents the design instance.
The correspondence between the design framework and the design instance is
as follows:

Design-framework & Design-instance

retriever +— fetcher: a particular retriever.
legality — checking: a particular legality.
translator — remodel: a particular translator.
search — acquire: a particular search.

Str — Spec: a subtype of Str.

Query — Squery: a subtype of Query.

List — N-List: a subtype of List.

Message — Message: a subtype of Message.

where “—” refers to the correspondence between an abstract object and one
of its instance.

When a design instance is created, the refinement consistency must be
verified with respect to the higher-level design instance. Viewing the design
instance as a box, we only need to pay attention to the external links of this
design instance. In this example, the external links include 101, {02 and 105.
If the refinement consistency is held, the following boolean expressions must
be true.

100 Chapter 5. The Specification of Large-Scale Components

One-level refinement consistency

PREy(checking) => PREjp(retriever)A

PO STio2,105(acquire) => PO STz 105(retriever)A
POSTipz(acquire) => PREjg, (quick-sort) A
POSTyos(acquire) => PREjps(analyze)

Note that we use “—> (implies)” in the table above, rather than “<= (be
implied)” and “<= (is equivalent to)”, which reflects the feature of multiple-
level specification as discussed before.

In the table above the object analyze appearing in PREjgs(analyze) refers
to an object in the refinement of printer, see also (A-2), the third part of figure
5.3.

The refinement of printer. The third part of figure 5.3 shows the refinement
of printer. The process of such a refinement is roughly similar to that of the
refinement for retriever. However, there is only one domain instance contained
in the domain resources. If a reuser does not satisfy the current design instance
for its sub-objects, new domain entities should be provided directly. In this
way, new domain resources are accumulated. This is important, for only by
such an accumulation an incremental domain analysis can be realized, so that
the reusability of data-processor can continually be increased.

Finally, although the example in this subsection is only described partially,
we suppose that the rest part, the further lower-level refinement of the large-
scale component, can be completed by readers since a large-scale component is
recursively defined. Additionally, the notations used for the specification are
only used for an example, as we believe that the general form of large-scale
components is language independent.

5.3 The consistency verification

In the previous sections we discussed how large-scale components are specified
and represented in terms of different levels of abstraction. In this section a
method is presented for consistency verification between the different levels,
especially between a high level object and its refinement. This method suggests

The concept of actor and edfg 101

that the verification can be simplified by inference from the extended data-flow
graphs with a few rules.

In chapter 3 an EDFG approach was presented as a basis for the reuse
of system design. According to this approach an application system can be
represented in terms of semantically extended data flow graphs (edfg), a kind
of model interconnection language. If an application system or a large-grain
component is represented in terms of different levels of abstraction with edfg
notation, it can easily be maintained and reconstructed to meet the require-
ments for varieties of design targets.

In chapter 4 the structure of different levels of abstraction — which are
described in chapter 3 — is extended into a general structure, the H-structure,
for the representation of large-scale components. In this case, the edfg nota-
tion, which was used in representing system designs, can also be the basic
notation for the specification of large-scale components.

Since edfgs are semantically extended data flow graphs, the semantic ex-
tension should lead to a possibility to rigorously verify refinement consistency.
In this section we will discuss what we mean by refinement consistency and
how to verify the consistency.

The techniques applied in our method for consistency verification are
drawn from France’s method for refinement verification[40] and Hoare’s nota-
tion on correctness proof[49]. Like France’s method, a black-box approach is
used for consistency verification. Like Hoare’s notation a set of inference rules
are used for the verification.

The result is a method, edfg-merging, by which a complex edfg can be
simplified with a few inference rules, without loosing its properties in order
to verify consistency. In this case the consistency verification of a refinement
with respect to its parent actor amounts to the verification of a predicate.

5.3.1 The concepts of actor and edfyg

The concepts of actor and edfg were described for the representation of system
design in chapter 3. They are discussed again in this subsection, in order
to make clear the needs for the specification of large-scale components. The
discussion from now on will follow the description in this subsection. As
discussed in chapter 3, a system component can be modeled in terms of an
actor and an edfg. An actor is a system component which consists of an agent
for application processing and links for the input and output of the agent. An

102 Chapter 5. The Specification of Large-Scale Components

edfg consists of a set of interconnected actors. Two actors are interconnected
if at least one output link of one actor is an input link of the other actor. The
relationships between actors and edfgs are that: an actor can be an abstraction
of an edfg; an edfg can be a refinement of an actor and contains a set of other
actors.

An actor or an edfg can be described in two forms, i.e. graphically or
textually. A graphical actor, see also figure 5.4, consists of a box and links.
The box represents the application agent of the actor, which is labeled with
the name of the actor. The links coming to the agent are the input links of
the actor, and the links leaving the agent are the output links of the actor.
Each link is labeled with a link name. Moreover, the identifiers of precondition
and postcondition of the actor are attached to the box at the sides of input
links and output links respectively.

A graphical edfg, see also the example in figure 5.4, is a group of graphical
actors. Each actor of this group must at least have one input link coming from
(or one output link going to) another actor of the same group. A link, which
is both an output link of one actor and an input link of another actor of an
edfg, is called an internal link of the edfg, otherwise an ezternal link.

A teztual actor is a 5-tuple: actor-name, input links, output links, precon-
dition and postcondition, which can be generally represented as follows:

actor a i8
INPUT(a)=(h : di, bz : da, ...ln : d)
OUTPUT(G)=(1n+1 . dn+1, In+2 : dn+2, ...ln+k . dn+k)
PRE(a): INPUT(a) — Boolean
POST(a): INPUT(a}, OUTPUT(a) — Boolean
end a

where a is the name of an actor. INPUT(a)/OUTPUT(a)define input/output
links of the actor, corresponding to IFS(a) and OFS(a) in chapter 3. A link
can be either a queued link that behaves like a queue, or a state link that be-
haves like a program variable [40]. PRE(a)/POST(a)define the pre/postcondition
of the actor. A pre/post condition is a predicate or assertion on the in-
put/output links. The notation in VDM[54] can be adopted for such defi-
nitions. Moreover, in contrast with the PRE(a) in chapter 3, the same no-
tation in this section is short for the conjunction of PRE(a) and FIRE(a)
in chapter 3. Additionally, both the signatures /N PUT(a) — Boolean and
OUTPUT(a) — Boolean indicate the necessity of a kind of predicates and
should be replaced in practice.

Refinement consistency 103

The textual edfg, see also the example in figure 5.4, contains a series of
actor specifications and a structure description, the former providing the syn-
tactic and semantic description of the actors, the latter describing the inter-
connections between the actors. The interconnection between actors can be
described by providing the signature of each actor and definitions of all links
required. Two actors are interconnected if the same link appears in each of
their signatures.

Additionally, the internal and external links should be distinguishable and
a distinction must be made between queued links and state links.

The relationships between graphic edfgs and textual edfgs are, that the
graphical edfg provides an intuitive view of the textual edfg, and that the tex-
tual edfg provides a precise definition and a semantic extension of the graphical
edfg.

The purpose of using edfg is to represent a system design with different
levels of abstraction. The relationships between the different levels is that an
actor appearing in a higher level edfg can be refined in terms of a lower level
edfg. In order to emphasize such a relationship, the basic system component,
see also figure 5.4, is represented in terms of a specification part, i.e. actor
spec, and a refinement part, i.e actor body. The former is simply an actor
specification, the latter packages an edfg and provides the definitions of all
actors appearing in the edfg.

Restriction. An actor is either a data transform or a state bearing object.
The output of a data transform depends solely on its input, whereas a state
bearing object may also depend on past input. However, our discussion in this
section will be restricted to data transform because, as indicated by France[40],
processing objects whose output also depends on past input can be modeled
as data transforms communicating with a data store that stores the effects
of past execution. Such a data store can be modeled with state links in our
approach.

5.3.2 The refinement consistency

Consistency of refinement in our approach implies that the specification of
a detailed design or implementation of an actor is capable of meeting the
(requirement) specification of the actor. Such a consistency refers to both
syntactic consistency and semantic consistency, which are defined as follows:

104 Chapter 5. The Specification of Large-Scale Components

actor spec alis

actor spec a3 is

actor spec a s le:d3] la: dl
INPUT(a) PRE()
OUTPUT(a)
PRE(a) ﬂ— a
POST(a) POST(@)
end a Ic: d3 L Ib: d2
__actorbodya actor spec a2 is actor spec a4 is
INPUT(22) INPUT(a4)
type d1 = buffer OUTPUT(22) OUTPUT(a4)
type d2 = int-gue PRE(a2) PRE(a4)
type d3 = record POST(a2) POSTia4)
end a2 end a4

INPUT(at) INPUT(a3)

OUTPUT(al) OUTPUT(a3)

PRE(al} PRE(a3)

POST(al) POST(a3)
end ail end a3

begin edfg a

link 13,12,13:d1;
fink 14, 15, 16: d2;
slink: Ix d3;

alinout:l,Ix; output: 12,13);
a2(input:2; output (4);
a3linput:l3; output:is);
ad(input:l4,15; output:Ix,|6);

end edfg a

end a

Figure 5.4. An edfg and its parent actor.

definition 4 (syntactic consistency). An edfg is said to be syntactically con-
sistent with an actor, if the external input links of the edfg correspond to the
input links of the actor, and the external output links of the edfg correspond

Refinement consistency 105

to the output links of the actor.

According to the definition above, the syntactic consistency of an edfg
with respect to its parent actor can be mechanically verified according to the
signature of the actor and the edfg, although the detailed discussion for such
a technique is considered trivial in this thesis.

In order to illustrate what we mean by the semantic consistency of a re-
finement with respect to its parent actor in our approach, we first discuss what
the refinement is. In some other kinds of design specification, e.g. hierarchical
specification, the higher level specification is independent of the lower level
specification. This implies that the higher level specification specifies the full
requirement that a component should meet. The refinement specifies the de-
tails of the component but provides no more decision about the requirement.
In contrast, the refinement in a large-scale component may provide comple-
mentary information on the requirement. When multiple-level specification is
adopted, the requirement may only be partially specified at a higher-level. In
particular, the specification of the actor to be refined in terms of an edfg may
contain only partial information about the properties of the actor, and the
additional information can be provided by the specification of the edfg.

As indicated by France[40], the semantic consistency of a refinement with
respect to an object to be refined can be represented in terms of I/O con-
sistency. The notion I/0 consistency captures the black-box approach to
refinement, where only the values going into and coming out of an object are
of concern. According to such an issue, the semantic consistency of an edfg
can be defined as follows:

definition 5 (the connection consistency of actors) Two actors A and B have
a connection if an output link of actor A is an input link of actor B. The
connection is consistent if the postcondition of actor A concerning the link
implies the precondition of actor B concerning the link. i.e.

POSTa(l) => PRE5(})
where | is an output link of actor A and an input link of actor B.

definition 6 (the refinement consistency of an actor) An edfy is said to be
consistent semantically with its parent actor if the edfg is syntactically con-
sistent with its parent actor, and the preconditions on the external input-links
of the edfg imply the preconditions on the input-links of the actor, and the
postconditions on the external output links of the edfg imply the postconditions

106 Chapter 5. The Specification of Large-Scale Components

on the output links of the parent actor, i.e.

(PRE(edfg) = PRE(A)) A (POST(edfg) = POST(A))

where PRE(A)/POST(A) are the pre/postconditions on the input/output links
of actor A, and PRE(edfg)/POST(edfg) are the pre/postconditions on the ez-
ternal input/output links of edfg.

The definition above is based on the assumption that the actors appearing
in an edfg are appropriately represented and that the detailed design of the
actors is consistent with them. Such an assumption reflects the black-box
approach which allows the consistency verification to be done independently at
each level of abstraction. This implies the possibility of consistency verification
in an early phase of system development, which is often a significant way to
reduce the cost of system development and maintenance.

The refinement consistency as defined above refers to the multiple-level
specification, i.e. the specification of the parent actor may only provide partial
specification of an actor, the further information is provided by the specifica-
tion of its refinement. For example, assume that A is an actor which has input
link 11 and output link 12. A specification of the actor is

PRE(a)=F(11): type(i1)=FILE A
FILE={Eps-FILE, Tzt-FILE}

POST(a)=L(12): type(i2)=LIST A
LIST={Int-List, Real-List}

where type(z) is a function. The input of this function is a link name, and
output, the type of the link that the link name refers to. Assume E is an edjfy,
the refinement of actor A, and links 11 and 12 are only external input link and
output link of E. The specification concerning the external links of F is

PRE(E)=EF(11): type(l1)=Eps-FILE A
E-FILE={Std-Eps-FILE, Old-Eps-FILE)}

POST(E)=RL(12): type(i1)=Int-LIST A
Int-LIST={Pos-List, Neg-List}

Refinement consistency 107

Then, according to the definition of refinement consistency (ignoring the syn-
tax consistency), the following expression must be true.

EF(i1) => F(I1) A RL(12) = L(12)

Obviously, a refinement of an actor is only a delegate of all possible refinements

of the actor. A refinement inherits all the constraints of its parent actor
and has additional constraints. The consistency verification is to verify the
consistency of the additional constraints with respect to that of the actor to
be refined.

The verification of the semantic consistency of an edfg, particularly, a de-
sign instance, with respect to its parent actor in a large-scale component in-
cludes three steps: (1) Viewing an edfg as a set of interrelated boxes, one
verifies the consistency between the boxes; (2) Viewing the whole edfg as a
box, one deals with the consistency of this box with respect to its parent ac-
tor; (3) Looking into the boxes — the actors contained in an edfg — in order
to verify the consistency of the lower-level edfgs with respect to the actors.
Step (1) can be done by following definition 5; step (2) can be done by fol-
lowing definition 6; step (3) can be done recursively by repeating step (1) and
step (2) until primitive components are reached. Since the use of definition
2 is only concerned with two boxes, the consistency verification is relatively
not complex. Our discussion will be centered on step (1), as the interconnec-
tions inside an edfg often associates several boxes and are relatively complex.
The method for dealing with the complexity is edfg-merging, which allows the
verification in a structured manner.

Our discussion will include two parts. In the first part we discuss the
definition of well-formed edfgs, as well as their consistency verification. In the
second part we discuss the definition and verification for general edfg-merging.
In each part an example is given.

The consistency verification for well-formed edfgs

definition 7 (well-formed edfgs). An edfg is well-formed (wf for short) if and
only if it is one of the edfgs constructed with constructors (1), (2), (3) and/or

(4).

1. A single actor with at least one input link and one output link is a wf-edfg.
The input (output) links of the actor are the input (output) links of the

108 Chapter 5. The Specification of Large-Scale Components

wf-edfg and the pre/postconditions of the actor are the pre/postconditions
of the wf-edfg;

2. Two sequentially connected wf-edfgs form a (sequential) wf-edfg. Two
wf-edfgs are sequentially connected if and only if all output links of one
wf-edfg are the only input links of the other.

3. A splitter is a wf-edfg. A wf-edfg is said to be a splitter if it consists
of at least three (sub)wf-edfgs, and all output links of one (sub)wf-edfg
constitute all input links of all other (sub)wf-edfgs;

4. A binder is a wf-edfg. A wf-edfq is said to be a binder if it consists of at
least three (sub)wf-edfgs, and all input links of one wf-edfg constitute all
output links of all other (sub)wf-edfgs;

The constructors 1, 2, 3, and 4 are depicted by (c1), (c2), (c3) and (c4) in
figure 5.5 respectively. Although the splitter or the binder contains only three
actors as shown in (c3) and (c4) respectively, a splitter or a binder with more
actors can easily be extended from them.

Rules for (well-formed) edfg-merging. The term edfg-merging refers to
merging the sub-actors of an edfg without loosing its properties for consistency
verification. The rules for such a merging are as follows:

1. The rule for a single actor edfg is:

{PRE(a)}a{POST(a)}
{PRE(edfg)}edf g{ POST (edf g)}

where PRE(edfg) = PRE(a) A POST(edfg) = POST(a) A edfg=a.

2. The rule for a sequential edfg is:

{PRE(edfg1)}edf g1 { POST (edf 1)}
{PRE(edf g2)}edf g2{ POST (edf g2)}
POST(edfg1) => PRE(edfg2)
{PRE(edfg1)}edf g{ POST (edf g2)}

3. The rule for a splitter edfg is :

Refinement consistency 109

{PRE(edf g1)}edf o {POST(edfg:)}
{PRE(edfgz)}edf g2 { POST (edf g2)}
{PRE(edfgs)}edf gs{ POST(edfg2)}
POST(edfg) => (PRE(edfg2) A PRE(edf g3))
{PRE(edfg1)}edf 9{ POST (edf g2) A POST (edfgs)]

4. The rule for a binder edfg is :

{PRE(edfg:1)}edf g1 { POST(edf g1)}
{PRE(edf g2)}edf g:{ POST (edf g2)}
{PRE(edfga)}edfgs{POST(edfga)}
POST(edfg1) A POST(edf g2) —> PRE(edfgs)
{PRE(edfg1) A PRE(cdf g2)}edf g{POST (edf gs)]

Notice that all edfgs in the rules above are well-formed and that the rules for
splitter and binder can be similarly addressed in case the actors contained are
more than three.

For the well-formed edfgs, the process of consistency verification can be
viewed as a series of edfg-merging steps until the simplest edfg is obtained.
The simplest edfg is an edfg which contains one box with explicitly repre-
sented PRE(edfg)/POST(edfg). In this case the verification can be completed
according to the definition of refinement consistency.

110 ' Chapter 5. The Specification of Large-Scale Components

Figure 5.5. The constructors for wf-edfgs.

An example of (well-formed) edfg-merging and consistency verifica-
tion. In figure 5.6 an example is provided for edfg-merging. The block (i) is
the original edfg. From block (i) to block (ii) rule 1 is applied, which rewrites
the original edfg into an abstract form.

Since edfgl, edfg2 and edfg3 in block (ii) form a splitter, they are merged
into edfg123 according to rule 3, resulting in block (iii). For such a merging,
we need to check

POST(al) = PRE(al) A PRE(a2).

Similarly, since edfg4, edfg5, and edfg6 in block (iii) form a binder, they
are merged into edfg456, resulting in block (iv). For such a merging, we need
to check

POST(a4) A POST(a5) => PRE(a6)

Refinement consistency

111

i. edfg il. Riledfg} il R1A3ledfgl)

PR 0120456)

iv. RIR3A4N v. RUR3R4R2(edigh

Figure 5.6. An example for (well-formed) edfg-merging.

112 Chapter 5. The Specification of Large-Scale Components

Applying rule 2 to the sequential structure edfg123 and edfg456 in block (iv),
edfg123456 is obtained, resulting in block (v). For such a merging, we need to
check

POST(a2) A POST(a3) => PRE(a4) A PRE(a5)

Finally, the consistency verification can be completed according to the
definition of consistency if the following predicate is verified:

PRE(al) = PRE(A) A POST(a6) => POST(A)

where actor A is the parent actor to be refined.

Finally, we must indicate that — although the notion of well-formed edfgs
is useful — it forms only a subset of edfgs which are defined in chapter 3. In
the following part we are going to define general edfgs and to provide rules for
their merging.

The consistency verification for well-structured edfg

Well-structured edfgs refer to a broader rang of edfgs than well-formed edfgs.
The semantic verification concerned with well-formed edfgs is relatively more
complex than that of well-formed edfgs.

definition 8 (well-structured edfgs). An edfg is well-structured if and only if
it can be constructed with constructors (1) and/or (2).

1. A single actor with at least one input link and one output link is a well-
structured edfg. The input (output) links of the actor are the input (out-
put) links of the edfg and the pre/postconditions of the actor are the
pre/postconditions of the edfg;

2. Two well-structured edfgs A and B form a well-structured edfg if a non-
empty external output-link-set of A goes to B directly and all other output
links of A do not go to B directly or indirectly.

Refinement consistency 113

PrEdigl FAEldfy |

FRElatgh

o
e woateat 12 | [POSTweist

. L B

POSTIR)

Yy h -

2

Figure 5.7. The constructors for well-structured edfgs.

Notice that the link set L2 and L4 can be empty, while the link set L3
must be non-empty. Obviously, the notion of well-structured edfgs is more
general than the well-formed edfgs, as all well-formed edfg constructors can be
constructed in terms of well-structured edfg constructors.

Rules for well-structured edfg-merging. The rules for well-structured edfg-
merging are given corresponding to the rules for the construction of such edfgs.

1. The rule for a single actor edfg

{PRE(a)} a {POST(a)}
{PRE(edf g)}edf g{ POST(edfg)}

where
PRE(edfg) = Pre(a) A POST(edfg) = POST(a) Aedfg = a.

2. The rule for well-structured edfg constructor

114 Chapter 5. The Specification of Large-Scale Components

{PRE(edfg:)}edf g1 { POST (edf g1, L2) A POST(edf g1, L3)}
{PRE(edfg2, L3) A PRE(edf gz, L4)}edf g2 { POST (edf g2)}
POST(edfg1, L3) => PRE(edfga, L3)

{PRE(edfg1) A PRE(edf g2, L4) } edfg{ POST(edf g1, L2) A POST(edf g2)}

where
[2nL3=L3NnLi={}

The expression PRE(E,L)/POST(E,R) refers to the preconditions on input
link set L before executing the edfg E and to the postconditions on output
link set R after executing the edig.

An example for (well-structured) edfg-merging and consistency ver-
ification. The process of merging a well-structured edfg is shown in figure
5.8. The first step, the step from block (i) to block (ii), is the same to that of
merging well-formed edfgs.

Since edfgl and edfg2 in block (ii) form a constructor, they are merged
into edfgl2 according to rule 2, resulting in block (iii). For such a merging,
we need to check

POST(a1, L3) => PRE(a2, L3)
Since edfg12 and edfg3 in block (iii) form a constructor, they are merged into
edfg123 according to rule 2, resulting in block (iv). For such an edfg-merging,
we need to check

POST(al, L4) A POST(a2, L6) => PRE(a3, L4) A PRE(A3, L)

Since edfg123 and edfg4 in block (iv) form a constructor, they are merged
into edfgl234, resulting in block (v). For such an edfg-merging, we need to
check

POST (a2, L5) => PRE(a4)

Finally, according to definition 6 verification can be completed by verifying
the following predicate.

Refinement consistency 115

L2

PosTeaL “ﬂ"tﬁl
PosTedgtla
/ L6
mam.s.uu
‘ PREey) L4
e
POSTodgd
8
yr=
[~]
u
|
i. edfg ii. Riledigh ii. R{R2tedf gl
L2
PrERIN R
L AL
LIt
L v}
POSTRLS POETRe3 m:;‘lu:l
PREMG2LD
0] i
POSTMg R
POSTedld &
POSTiedioh
\ H L
[|
|
! Y
Y renaga f
(] |
POSThoR 1
v i
|
' !
. AR2(R2{edtg) v. R{R2(A2(R2ledf gl

" Figure 5.8. An example for (well-structured) edfg-merging.

116 - Summary

((PRE(a1) A PRE(a2, L2)) = PRE(A))A
((POST(a3) A POST(a4)) => POST(A))

where actor A is the parent actor of the edfg.
Additionally, notice that block (iii) is already a well-formed edfg, it is
possible to merge this block to block (v) directly.

5.4 Summary

In this chapter we discussed a principle for design specification, we described
how to apply such a principle for the representation of large-scale components,
and we introduced a method for consistency verification.

Particularly, we discussed the idea of multiple-level specification for the
specification of large-scale components, and described how to specify design
frameworks, domain models, design instances and levels of refinements. The
multiple-level specification was reflected in the representation of large-scale
components in two dimensions, i.e., vertically, in the relationships between
different levels of refinement, and horizontally, in the relationships between
domain model, design framework and design instance. The advantages of us-
ing multiple-level specification is the capability of specifying large-scale com-
ponents without loosing their reusability.

As an effort to stress both the application of formal methods and the
advantages of using data flow graphs, several papers have recently been pub-
lished as a combination of data flow graphs and formal specifications such as
[27][42] [105], emphasizing building a connection of graphic notation with for-
mal semantic specification. More recent work is Larsen’s method and France’s
approach. The former emphasizes a transformation from a kind of data flow
diagram into a VDM specification, the latter specifies in the semantics of di-
agram notation directly. Our method suggests a diagram guided semantic
verification, by which a refinement verification is straightforward and efficient.
It is straightforward as the verification can be done with semantically extended
data flow graphs. It is efficient as such a verification can be simplified with
a set of inference rules and guided with graphical structures which can be
intuitively understood. '

Chapter 6

Reuse-in-the-Large and
Application Prototyping

Prototyping originated from those engineering disciplines which are involved in

mass production.

—Sharam Hekmatpour & Darrel Ince, 1988.

In this chapter the model for reuse-in-the-large is applied to application pro-
totyping with a combination of this model and the EDFG approach.

6.1 Introduction

Application prototyping refers to the practice of building an early version of
an application system which does not necessarily reflect all features of the final
system, but rather those which are of interest[48]. The methods applied to
application prototyping include throw-it-away prototyping, incremental proto-
typing and evolutionary prototyping. We prefer evolutionary prototyping, since
such a method allows the inconsistencies and shortcomings of an application
to be experimentally uncovered, and the application developer and customer
to experimentally learn more about their own needs [48]. According to this
method, the process of application development is to continually generate a
series of experimental versions of an application and each new version of the
application is built by the modification and reconstruction of existing versions.
Such a process certainly implies a kind of application reuse. The question is

117

118 Chapter 6. Reuse-in-the-Large and Application Prototyping

what methodology is a good choice to support such kind of reuse. In this
chapter we argue that applying RITL to such kind of reuse will lead to rapid
application prototyping.

As discussed before, RITL suggests an integrated representation of both
the large-grain code components and the design information. Such a represen-
tation is called a large-scale component, providing a basis to generate a new
version of application by the reuse of design information and implementation
of existing applications and components. To set an example, we discuss how
this method may support the EDFG approach.

In section 6.2 the concrete representation of large-scale components is dis-
cussed in terms of extended data flow graphs (EDFG). In section 6.3 we discuss
the process of application prototyping in terms of RITL.

6.2 Representing large-scale components in terms
of EDFG

In this section we discuss prototypes and large-scale components in terms of
EDFG concepts, which may, as discussed later on, lead to a particular method
for application prototyping concerned with RITL. Firstly, the concepts about
EDFG are introduced, then prototypes are defined in terms of EDFG and,
finally, a large-scale component is represented in terms of prototypes.

6.2.1 The concepts of EDFG

Most EDFG concepts were introduced in chapters 3 and 5. Now, we will pro-
vide some more concepts which are capable of forming a basis to demonstrate
our method of applying RITL to application prototyping in this chapter.

definition 9 (loosely constrained EDFG and actor). An EDFG is said to
be loosely constrained if there is at least one loosely constrained actor in the
EDFG. An actor is said to be loosely constrained if it is a loosely constrained
EDFG or it may be refined or implemented with different components alterna-
tively (genericity).

The components refer to either the components of an application design or
the components of an application implementation such as EDFGs, actors,
function, data abstraction and so forth.

Representing large-scale component in terms of EDFG 119

definition 10 (stronger constraints). The constraints on an EDFG E2 (actor
al) are said to be stronger than the constraints on an EDFG EZ (actor ai?),
iff the corresponding specifications or implementations of E2 (a2) satisfy the
specification of E1 (al) (specificity).

The constraints in definition 10 refer to logical assertions described in[47).

definition 11 (the refinement of an EDFG) . The refinement of an EDFG
is also an EDFG which inherits all the properties of the refined EDFG and
replaces at least one actor of the refined EDFG with a sub-EDFG. The sub-
EDFG satisfies the specification of the replaced actor.

6.2.2 The process of EDFG decomposition

According to the EDFG approach, the process of application design starts from
the creation of a highly abstract EDFG and follows a series of refinements un-
til the actors contained in the refined EDFGs are found in a component base,
or the actors are small and simple enough to be directly implemented easily.
Refining an EDFG is replacing at least one actor of the refined EDFG with a
sub-EDFG. The implementation of a designed application is the implementa-
tion of all actors of the finally refined EDFGs[65].

In order to understand the refinement of an EDFG, it is necessary to un-
derstand the relationship between an EDFG and its refinement. An EDFG to
be refined is an abstraction which captures the commonality of a set of alter-
native refinements. For example, when we assume that an EDFG contains an
actor ‘sort’, the actor may be refined by either sub-EDFG quick sort, bubble
sort, hash-sorting or heap sort and so on during a refinement. During appli-
cation prototyping the decision on selecting an instance (sub-EDFG) from the
set of choices is allowed to be made experimentally.

As an experiment, like the experiment in chemistry and physics, the pro-
totyper would be very much concerned with the subsequent choice. Therefore,
we need a mechanism to record the process of the prototyping step by step
from the highest abstraction of EDFG to the final implementation. In order
to support an experimental design, for each abstraction in a step, three pieces
of information are needed: (1) a generic EDFG which presents the common
structure of a set of alternative designs at an abstraction level; (2) resources to
instantiate the generic EDFG into alternative designs; (3) a particular EDFG

120 Chapter 6. Reuse-in-the-Large and Application Prototyping

which presents the currently selected design. The three pieces of informa-
tion may forin a prototype, as described later on, and a hierarchical structure
coﬁsisting of a set of prototypes at different levels of abstraction will form a
large-scale component, which can be a basis to produce a variety of applica-
tions in an application domain.

6.2.3 The definition of prototypes in terms of EDFGs

In order to represent a concrete large-scale component in terms of EDFG,
we first define a prototype. A prototype as shown in some delegate-based
languages, is defined as an object which serves as both an instance and a
template[126]. The advantages of such a definition are, that the instance can
present the default for the operations and the value of the prototype, and
the template can be a basis to generate a set of alternative instances, which
could be convenient for prototyping. However, the information contained in
the prototype is limited only by the constructs of the programming language.
In order to support RITL, we further extend the definition of a prototype to
represent a design including design instance, design framework and domain
resources.

definition 12 A prototype is defined in terms of EDFG as follows.

prototype=(edfg, EDFG, domain)

o The EDFG! is a design framework, which represents a loosely constrained
EDFG or a loosely constrained actor. An EDFG captures the common-
ality of a set of edfgs, which can be instantiated in terms of domain
resources, in order to produce alternative edfgs.

e The domain is short for domain resources, which includes a set of spec-
ifications and a set of entities. The specifications ezpress what kind of
components may be used to form alternative edfgs, i.e. the instances of
EDFG. The entities may be large-scale components or the implementa-
tion of actors or data abstractions.

!Note that in the following part of this chapter we use underlined “EDFG” to stand for
the template of a prototype and small case italic “edfg’ for the instance of a prototype.

Representing large-scale component in terms of EDFG 121

o The edfg is a particular design instance, a default instance of EDFG.
The constraints on the edfg are stronger than (or equal to) the constraints
on the EDFG. The functionality of the edfg delegates the functionality
of this prototype.

According to the definition above, we could create a prototype with a 3-
tuple as in figure 6.1. The actors Ag, Ag; and Ag;; are loosely constrained;
and the type F and T are union types (see also 4.4.1), F=[..., file,...] and
T=[...,tree, ...]. The edfg describes a more peculiar component than the EDFG.
The constraints on the actors ag, ag; and ag; of the edfg are stronger than
the constraints on the corresponding actors Ag, Ao and Ag; in the EDFG.

The domain defines a set of components which may be used to instantiate
the EDFG. For the textual representation of edfg, EDFG and domain specifi-
cation, see also 3.2.4 and 3.4.1. For the repository of the prototype, see also
4.4 and 6.3.3.

There is another example of a prototype in figure 6.2, which contains quite
some constraints on the EDFG of a prototype. The links 13,2, 13,14,15,and lg
are constrained with data types and the link type U is a union type so that
U=[..., tree, ...]. The domain specification in this example is limited to two
actors of the EDFG.

6.2.4 Representing large-scale components in terms of proto-
types

With prototypes as defined before, a large-scale component can be described
by a hierarchical structure, every node of the structure is a prototype, see
also figure 6.3. The edfgs of the large-scale component at one level are the
specifications of the edfgs at a lower level of the hierarchical structure. For
example, in the large-scale component-A, the edfg of a; is the specification of
the edfgs aj1,a12 and a;3 together, see figure 6.3 and the left part of figure 6.4,
and the EDFG of aj7 is the specification of the edfgs of ajs1, a122 and ajo3
together, see figure 6.3 and the right part of figure 6.4. Apart from being easy
to understand, a significant characteristic of the large-scale component is its
large-grain and genericity. For example, based on large-scale component-A,
various different large-grain components, i.e. peculiar designs and implemen-
tations, can be obtained by adjusting the edfgs of the prototypes in the

122 Chapter 6. Reuse-in-the-Large and Application Prototyping

edfg

é lo : file

ag:read file

I

: tree

Ip : tree

13 : tree

ag11:print file

*14 : file

EDFG

b

Ap: input

12:T

Ag11: output

3.

domain

(1) all components which
satlisfy spec. of Ao;

(2) all components which
satisfy spec.of Ag1;’

(3) all components which
satisfy spec. of Apii.

Figure 6.1. An example of prototypes.

edfg

* 1; : str
1z :tree 1, tree
9 2 :tnt 9

ap

éh:int §l5:int

a4

é lg : str

EDFG

& h : str

o |

a4

;ls:atr

2
éh:int élszint

domain

(1) all components which

satisfy spec. of Az;

(2) all components which
satisfy spec.of Az;

Figure 6.2. An example of constrained prototypes.

Representing large-scale component in terms of EDFG 123

large-scale component: A

edfg JEDFGRomaid,,

Y
omair, , | edff IEDFG omair, , | edff IEDFGEO‘“&idam
edfg JEDF' omaiﬂ,ll¥
| ed-ff IEDFGEomaiiia1

l edff IEDF‘GEomaidan21 edfg |EDFGHomai a1222

Figure 6.3. An example of a large-scale component.

1; : tree

Figure 6.4. The refinement of an edfg

large-scale component. The adjustment of the edfgs is involved in applying the
EDFG mapping to different elements of its domain and therefore producing a
different edfg. The EDFG mapping will be discussed later on. The large-grain
component may be different for any change of any edfg of the component.

124 Chapter 6. Reuse-in-the-Large and Application Prototyping

6.3 Using large-scale components in application pro-
totyping

In this section we discuss the method of applying large-scale components to
the process of application prototyping.

6.3.1 The process of application prototyping

The genericity of a large-scale component makes the large-scale component
itself reusable, especially in application prototyping when many different in-
stances of a large-scale component may be required for experimenting a target
application system. The process of application prototyping with large-scale
components is described in figure 6.5. The process starts from building a
large-scale component, then goes through a loop ezecution, evaluation and
modification until the target application system is obtained. '

¢

compose
large-scale comp.

¢

execution
evaluation
L deliver
the target
) Y * —— applicationJ_.._’
system
modify

large-scale comp.

Figure 6.5. The process of application prototyping.

Using large-scale components in application prototyping 125

Building large-scale components

The process of building a large-scale component follows the process of top-
down decomposition. This can be started by creating a prototype which rep-
resents the application at the highest level of abstraction, and then refining
the prototype with a set of lower level prototypes until the prototypes to be
refined become primitive ones. A primitive prototype is a prototype, the edfg
of which contains only primitive actors and these actors are implemented in
terms of code components.

Refining prototypes is to refine the edfg of a prototype, as shown in figures
6.3 and 6.4. A new EDFG which represents the (generic) decomposition of
an actor of the refined edfg is the EDFG of a new prototype. The new edfg
of the new prototype may be generated by proposing more constraints on the
EDFG. Then the new prototype is made by adding the domain according to
the requirement of the EDFG, including both the domain specification and
the domain entities.

Executing large-scale components

It is known that the most significant characteristic of application prototyp-
ing is to allow designers and users to exchange their ideas about the target
application system over an executable (experimental) system. This can be
supported by large-scale components. A large-scale component can be used
to present an executable subsystem or system if all lowest level refinements of
the large-scale component end with primitive prototypes.

Modifying large-scale components

After executing the experimental system, designers should make decisions
about redesign or modification of the experimental system. The redesign or the
modification often refers to the reconstruction of the design instances (edfgs
here) which are contained in the prototypes of a large-scale component. Such a
redesign or modification can be guided by browsing the structure of the large-
scale component hierarchically. Once a prototype (a node of the hierarchical
structure) is located for a redesign or modification, there are two possibilities
to do so. First, one may make a new edfg by EDFG mapping, i.e. by the
instantiation of the EDFG of this prototype. Because of the domain of the

126 Chapter 6. Reuse-in-the-Large and Application Prototyping

prototype, there are a set of alternative entities which can be used for the
instantiation. Secondly, one may want to rebuild the lower level design of a
particular actor of the current edfg. This can be done by looking into the
refinement of the actor, i.e. looking into the corresponding lower level proto-
type. Inside the prototype at the lower level, a new edfg can be produced by
the EDFG mapping at this level. Since the EDFG at this level is the (generic)
decomposition of the actor at the higher level as discussed before, the new edfg
can meet the requirement of the actor at the higher level. The consistency of
an edfg with the requirement described by the specification of the higher level
actor can be verified semantically, also recall chapter 5.

Sometimes, the resources contained in the domain may not be sufficient
to build a new edfg, then new resources must be supplied by reusers. If the
supplied resources satisfy the domain specification, they can be added to the
domain resources for reuse later on.

Delivering the target application system

The target application system of prototyping is the result of experiments with
a series of experimental systems. The relationship between the large-scale
component-A and the prototyped subsystem-A is shown in figure 6.6. As the
results of prototyping, we may not only have a specific application system, but
also a set of prototypes, a large-scale component and a set of sub-large-scale
components. As these objects have genericity, they are usually regarded as
resources to be reused later on. More important, the large-scale component as
a basis to generate the delivered application system can be further used as a
basis for the maintenance of this system. In this case the system maintenance
can be regarded as the continuation of the prototyping. This may further
reduce the cost of system maintenance, because the large-scale component is
easy to be understood and modified.

Consequently, application prototyping with large-scale components pro-
vides not only possibilities to reuse system components (code components and
design information), but also possibilities to create the artifacts for reuse, by
which the reusability of a large-scale component can be increased and domain
analysis can be incrementally completed.

Using large-scale components in application prototyping 127

large-scale component: A Subsystem-A

| edighk Dl qomall

21

[eZEDFdomaih, [TZED)

Ledig D domaiin, }
| edizEDEFdomail

| edigk Diqomall ["domal]

22 L ediZR D] 21222

Figure 6.6. A large-scale component and the prototyped application
system.

6.3.2 Component specification and EDFG mapping

It is known that application reuse can be significantly supported in terms of
specification and the manipulation of system components. In this subsection
we discuss how to specify and manipulate large-scale components for applica-
tion prototyping. The component manipulation refers to the EDFG mapping
here.

Specifying prototypes

Since a large-scale component can be viewed as an organization of a set of
prototypes, a language is required for the specification of the prototypes and
the relationships between them.

The language to specify prototypes should be able to specify edfg, EDFG
and domain. The specification of an edfg includes graphical specification and
textual specification. The former demonstrates the structure of a component
and the latter provides the interface and the semantics of the component
precisely. Both of them are helpful to the practice of application development.
Our method is to provide a textual specification which can be transformed

128 Chapter 6. Reuse-in-the-Large and Application Prototyping

into a data flow graph|[74]. There are two cases: (1) if an edfg is an actor, it
can be specified by an actor module as in figure 3.2; (2) if an edfg is an EDFG,
it can be specified by a package as represented in the left part of figure 3.6.
The module shown in figure 3.2 can directly be derived from the definition of
an actor. The package shown in figure 3.6 specifies an edfg in terms of link
declarations and the signatures of the actors.

In a package the link declarations declare the data types which the tokens
of the links and state links (slink) may have. The actor declarations declare
the names of actors and the input links and output links of the actors as well.
Since different actors may share the same link, the connection between actors
is reflected in the package. Such a package can be transformed into a data flow
graph as shown on the right of figure 3.6. The semantic specification of the
edfg, and of each actor contained in the package, can be additionally provided
as shown in figure 3.5.

The specification of an EDFG is similar to the specification of edfg. The
only difference is that the EDF'G is a more loosely constrained EDFG than the
corresponding edfg. The difference can be reflected by allowing the module or
the package to have generic parameters as discussed in section 3.4. A generic
parameter is a parameter of components, the values of which may be modules,
including source code or large-scale components.

If the genericity of the EDFG is specified in terms of generic parameters,
the domain specification may specify the domain of the generic parameters.
This can be done in terms of actor modules and the notions in some specifi-
cation languages such as VDM][54], Z [60] or RSL[47].

EDFG mapping

EDFG mapping refers to the activity of instantiating an EDFG with domain
resources into an instance of the EDFG. The instance may be directly an edfg
or further specialized into an edfg. The process of an EDFG mapping is:

1. retrieve existing components (the actual parameters of the EDFG) which
satisfy the domain specification;

2. select proper components from the retrieved components, if any, or create
proper components satisfying the domain specification;

3. transform the selected components and the EDFG into an instance of

the EDFG.

Using large-scale components in application prototyping 129

4. specialize the instance of the EDFG if necessary.

As an EDFG may be expressed by a parameterized module (for actor) or a
package (for EDFG), the process of transforming the EDFG and the com-
ponents of the domain into an edfg is equivalent to the process of binding
the parameters of an EDFG with the components. This is largely similar to
instantiating a generic component in Ada and can, therefore, be conducted
automatically. However, this does not imply that the EDFG mapping is a
generic instantiation as in Ada. The semantics of the generic parameters of an
EDFG is completely provided by domain specification, whereas the semantics
of the generic parameters of generic components as in Ada is not sufficiently
described[80]. Furthermore, the domain and the range of the EDFG mapping
may not only include source code but also, more important, large-scale com-
ponents containing design instance, design framework and design resources.

Additionally, for a specialization, an EDFG mapping may not only include
the instantiation of the EDFG, but also the activity to add additional actors
or links to the instance of the EDFG, resulting in an edfg.

6.3.3 The management of large-scale components

In this subsection we discuss the possibility of automatic retrieval and the re-
quirement of a component base for the management of large-scale components.

The possibility of automatic retrieval

It is known that efficient retrieval of components to meet the requirement of an
application is of key importance for component reuse. However, the techniques
for such a retrieval are currently not efficient, i.e. the cost for the retrieval is
still very high. A special issue on this topic concerned with EDFG mapping
is discussed in this paragraph.

The major activity of an EDFG mapping is to generate an instance of the
EDFG. The basic condition to realize the mapping is to provide necessary
components as actual parameters of the EDFG. Instead of creating those
components required from a rough draft, we will try to retrieve them from the
component base. The retrieval may be done by specifying the requirements in
terms of a query language of a component base. However, such a specification
implies transforming the domain specification into the specification for entity
retrieval. The domain specification may be described in terms of a specification

130 Chapter 6. Reuse-in-the-Large and Application Prototyping

language; the specification for retrieval may be described in terms of a query
language of the data base. As the two languages are usually very different
from each other, the transformation is often complex if not impossible.

In order to reduce the cost for the transformation and, therefore, to speed
up EDFG mapping, we propose the reuse of the retrieval specification; i.e.
connecting to the domain of each prototype there may be an existing retrieval
specification which can be used to retrieve the components of the domain
directly. Since the domain specification of a prototype is normally unchanged,
such a retrieval specification may be provided by the prototype producer or
by the reuser when there is a successful retrieval. The specification is reusable
if the connected prototype is reusable. Therefore, we have reason to let every
prototype be prepared for reuse to be connected to a retrieval specification.

The storage of retrieval specification practically classifies the components
of the component base according to the domain specification. Such a classifica-
tion is dynamically done by either designer or reuser. The result is automatic
retrieval.

The possibility of avoiding retrieval

Automatic retrieval is the reuse of the information for component retrieval, i.e.
a reuser may not need to retrieve if the similar retrieval has been done by some
earlier retriever. However, the retrieval problem has not been solved yet and
retrieval is still necessary. Instead of trying to solve the well-known retrieval
problem directly, we tried to find a way to avoid the problem. By observing the
process of application prototyping, we find that the reuse activity for a system
component often happens at the place where this component is created. For
example, when we decompose an operating system at top-level into subsystems
process management, file management, device management, job management
and memory management, we need to create these subsystems. In many cases
the reuse of these subsystems for the prototyping of varieties of operating
systems happens at the same place. Therefore, the retrieval activity can be
avoided if we put the component to be reused at the place where it is created.
Moreover, as discussed before, the H-structure of a large-scale component
provides the data structure for the repository of the created components.

Consequently, either the automatic retrieval or the way of avoiding retrieval
provides partial solution of retrieval problem. A component base may support
both of them.

Summary 131

The component base

In order to support application prototyping concerned with RITL, a compo-
nent base is required for repository, classification and retrieval of components.

The general requirement of the repository and retrieval may be realized by
a data base[88], and the general component classification can be done, based
on the method given by Prieto-Diaz [100]. Particular requirements are that
the component base should be capable of dealing with both the structures of
components and the relationships among components. This is because large-
scale components are structured components and EDFG mapping is concerned
with the relationships among a set of components. Such requirements can be
met by developing the component base based on a semantic data base man-
agement system[11], or an object-oriented data base management system[2].
Those data base management systems provide means to conveniently describe
and deal with both the structures of objects and the relationships among the
objects. The component base concerning our research, supporting rapid pro-
totyping, is a semantic data base as discussed in chapter 6.

6.4 Summary

In this chapter we discussed how RITL is applied to evolutionary applica-
tion prototyping. First, we described how large-scale components can be rep-
resented in terms of the EDFG notation; then we discussed how to apply
large-scale components in the process of application prototyping. We con-
clude that RITL is capable of building a basis for prototyping varieties of
target application systems in an application domain. In terms of RITL, the
process of application prototyping can be effectively improved. This is be-
cause the information to be reused for prototyping includes different levels of
design representations, such as design instance, design structure, and domain
resources. Moreover, the information to be reused is often at the hands of
reusers once the reuse is necessary. For example, when a designer is going to
modify quick-sort, i.e. a design instance of a node in a large-scale component
as in figures 6.3 and 6.1, a group of alternative components for sorting can be
picked up from the domain resources of the same node.

132 Chapter 6. Reuse-in-the-Large and Application Prototyping

Chapter 7

Reuse-in-the-large: A case
study

Information systems are designed and implemented in a rapidly changing and
turbulent environment.

— Henk G. Sol, 1991

In this chapter we discuss how reuse-in-the-large is realized within an envis-
aged support environment, regarding the Student Management System (SMS).
Particularly, we discuss how the credit-reporter, a subsystem of the SMS, is
specified in terms of an available specification language, how it is understood
and manipulated and how varieties of designs and implementations can be gen-
erated from the large-scale component, so as to meet varieties of requirements
in an application domain.

7.1 Introduction

When an approach is addressed and developed to a certain degree, a prototype
of such an approach is often useful to convince users with an intuitive and close
view of the approach and with practical experience concerning the application
of the approach. We will provide a prototype for reuse-in-the-large in terms
of large-scale components in an application domain, regarding the practical
specification of a large-scale component, the user interface of the large-scale
component, the generation of alternative designs and implementations from

133

134 Chapter 7. Reuse-in-the-large: A case study

the large-scale component, and the practical method for incremental domain
analysis.

131

Figure 7.1. The H-structure of the sms

We assume that an envisaged support environment for the prototype includes
a semantic database for the management of the large-scale component and
a tool for browsing, creation and modification of the large-scale component
as described in chapter 4. Moreover, it also includes a formal specification
language for component specification.

The applications in this case study are student management systems (SMS).
An SMS is defined preliminarily as an application system for student registra-
tion, course-election and credit report. We assume that different universities
or even different departments may have different requirements or regulations
for student registration, course-election and credit report. We also assume
that — after a certain lapse of time — the requirements or regulations for
a single university or even a single department will be changed. We assume
that a set of alternative SMSs are needed practically, so that an application
domain exists.

Chapter 7. Reuse-in-the-large: A case study 135

According to the method for reuse-in-the-large in this dissertation, the
design information and the source code of the SMS can be organized into a
hierarchical structure, representing a large-scale component. The hierarchical
structure of the SMS is partially depicted in figure 7.1, the top-node of the
hierarchical structure is sketched in figure 7.2, and some outputs of the SMS
are shown in figure 7.3.

According to the preliminary decomposition as shown in figure 7.2, an
SMS consists of the subsystems: student-register, credit-reporter and course-
election. The student-register is used for student admission and course regis-
tration, the credit-reporter is used for analyzing the progress of the students,
and the course-election serves for arranging lectures, laboratories and class
rooms, and providing the time schedules for both teachers and students.

Instead of describing the whole system broadly in a chapter, our discussion
will be focused on the credit-reporter. With such an example we discuss how
a large-scale component is specified in terms of a specification language, how
it is understood and manipulated, and how varieties of design instance and
implementations can be generated from the large-scale component.

We select the credit-reporter also as an example because such a component
is an instance of the data-processor which has been discussed before. The
reasons for such a decision are (1) readers may directly catch the points to be
described instead of bothering with additional information about a completely
new application, (2) the credit-reporter is complex enough to demonstrate the
capability of reuse-in-the-large, and (3) it allows us to represent the language
independency of representing large-scale components by specifying the same
large-scale component in a different language.

As discussed before, a large-scale component is first created based on the
development of a particular component. The information contained in the
large-scale component can be incrementally accumulated towards a complete
domain analysis. However, in order to be brief and to the point for illustrating
how reuse-in-the-large happens regarding a large-scale component, we assume
that C-REPORTER, a large-scale component, has already been applied to
develop several similar but different credit-reporters rather than at the state
of initialization. For the same reason we will try to ignore any trivial de-
scriptions about the component and its support environment, although these
are necessary in building a real system. The C-REPORTER is an envisaged

136 Chapter 7. Reuse-in-the-large: A case study

large-scale component, which contains the information accumulated from the
development of several alternative credit-reporters, or c-reporters for short. A
c-reporter can be as simple as a small program concerning simple input, sort-
ing and output of credit lists, or as complex as a subsystem concerning data
description, data retrieval, analysis, classification, graphic simulation and so
on. Nevertheless, all of them are integrated into the large-scale component.

design framework

Figure 7.2. The top-node of the SMS.

In section 2 we describe the specification of a particular large-scale compo-
nent. In section 3 we illustrate how a large-scale component can be browsed
and manipulated in terms of a user interface. In section 4 we discuss how
the designs of alternative large-grain components can be generated from an
existing large-scale component. In section 5 we describe how the implementa-
tion of alternative large-scale components can be generated from the existing
large-scale component.

Additionally, in order to understand the example precisely, we must re-
member the distinction between large-scale components (see also section 4.2)
and large-grain components (see also section 1.1.3). The former refers to the
design information about developing a set of products in an application do-

Chapter 7. Reuse-in-the-large: A case study 137

main, whereas the latter refers to a particular product, although a large-scale
component always contains a large-grain component as discussed before.

Figure 7.3. Some outputs of the SMS.

7.2 Representing a large-scale component

In this section we provide the representation of the C-REPORTER, a large-
scale component. Its H-structure is sketched in figure 7.1; its specification can
be given in RSL ! and diagram notation.

The specification of the first several nodes of the large-scale component are
the C-REPORTER, the PRINTER , and the RETRIEVER. Each of them con-
sists of three pieces of description: a MODEL (domain model), a FRAME (de-
sign framework) and an INSTANCE (design instance). The INSTANCE fur-
ther consists of INSTANCE-ENTITIES (the subcomponents in the design in-
stance) and INSTANCE-SUBSYSTEM (the structure of the design instance).
Moreover, corresponding to each design FRAME or INSTANCE, there is a
diagram by which the organizational structure is specified intuitively.

'RSL is a trademark of Computer Researches International A/S.

138 Chapter 7. Reuse-in-the-large: A case study

The specification is a multiple-level one. The subcomponents (entities) ap-
pearing in a design instance can be classified into primitive subcomponents and
non-primitive subcomponents. The specification of primitive subcomponents
must be fully provided, whereas the specification of nonprimitive subcompo-
nents might be partially provided and needs to be supplemented latter on.

Additionally, we would like to indicate that the name C-REPORTER is
not only the name of the large-scale component it stands for, but also the
name of the top-node of the large-scale component. It is only a convention to
use the name of the top-node as the name of the whole large-scale component.

In the remaining parts of this section, we will discuss the specifications,
regarding the C-REPORTER (the top-node), the PRINTER (one of the two
second-level nodes), and the RETRIEVER (the other second-level node) re-
spectively.

7.2.1 Specifying the C-REPORTER (top node)

In this subsection the top-node of the large-scale component is specified in four
text files: document 1.1, document 1.2, document 1.3a and document 1.3b.
Document 1.1 contains the domain model of the C-REPORTER; document
1.2 contains the design framework of the C-REPORTER; document 1.3a and
1.3b contain the design instance of the C-REPORTER, including the subcom-
ponents the design instance consists of and the structure the design instance
is composed with.

The Domain model of the C-REPORTER

The domain model of the C-REPORTER is specified in terms of the C-
REPORTER-MODEL, a scheme in document 1.1.

A scheme in RSL[47] is either a class or a parameterized class. A class is a
collection of models. A parameterized class is a mapping from lists of objects
to classes: each object list is mapped to a class. An object is either a model or
an array of models. A model in RSL is an association of names with entities:
each name is associated with a single entity.

The attributes of the domain model of the C-REPORTER (top-node) are
specified in this scheme, including producer, sorter and deliver. The producer
is a function space from type Desc to type List X Message; the sorter from

Chapter 7. Reuse-in-the-large: A case study 139

List to List, and the deliver from List X Message to File.

In the axiom part of the scheme some quite general properties of pro-
ducer, sorter and deliver are specified. More specific properties of them will
be supplemented in design instance, if necessary. In other words, the general
properties specified here will be inherited by the design instances, which will
be discussed later on.

The design-framework of the C-REPORTER

The design framework of the C-REPORTER is defined as an extension of the
domain model. Such an extension allows the definitions in the domain model
to be inherited.

The c-reporter, as defined in document 1.2, represents the specific design
framework. It is an abstract component which is described in terms of the
behaviors of the attributes: producer, sorter and deliver and the relationships
between them. The relationships between these attributes define the architec-
tural structure of the component. For example, the output of producer, ! and
m are the input of sorter and deliver respectively; the output of sorter, i.e. I1,
is the input of deliver. Such a structure is also explicitly depicted in terms of
a diagram, see also figure 7.4.

The design instance of the C-REPORTER

The design instance of the C-REPORTER is specified in terms of two schemes
in the documents 1.3a and 1.3b. The former specifies the subcomponents, the
later specifies the composition of them. The specific design instance refers to
nlc-reporter, the component defined in document 1.3b.

The entities of the design instance of the C-REPORTER are specified in
terms of the C-REPORTER-INSTANCE-ATTRIBUTES, a scheme in docu-
ment 1.3a. The subcomponents retriever, quick-sorter and printer defined
in this scheme, are the instances or values of the attributes producer, sorter
and deliver defined in the scheme C-REPORTER-DOMAIN respectively. The
specificity is reflected in the data types which are derived from an instan-
tiation (see object part of the scheme) of the C-REPORTER-FRAME. The
actual parameters are prepared by the schemes NUMB, KEY, and LINE at
the beginning of document 1.3a. Moreover, the

140

Chapter 7. Reuse-in-the-large: A case study

Document 1.1, The domain _model of the C-REPORTER.

scheme ELEM = class type Elem end
scheme LIST (E:ELEM) = class type

List == empty | add (head:E:Elem, tail:List) end
scheme DESC (E:ELEM) = class type

Desc == empty | add (head:E:Elem, tail:Desc) end
scheme FILE (E:ELEM) = class type

File == empty | add (head:E:Elem, tail:File) end

scheme C-REPORTER-MODEL(E1: ELEM, E2:ELEM, E3:ELEM)=
class
object
D: DESC(E1),
L: LIST(E2),
F: FILE(E3)
type
Desc = D.Desc,
List = L.List,
File = F.File,
Message
value
empty: <>
producer: Desc — (List x Message),
sorter: List — List,
deliver: (List x Message) — File
axiom forall d: Desc, 1,11: List, f:File, m:Message o
producer(d) as (1,m)
pre d # empty
sorter(l) as 11
post card elems] = card elems 11
deliver(l, m) as f
pre sorter(l)=1
end

specificity is also reflected in the axiom part in which the properties of quick-
sorter are precisely provided, although a refinement is still necessary for re-
triever and printer.

The structure of the design instance in the C-REPORTER is specified in

Chapter 7. Reusé-in-the-large: A case study 141

Document 1.2. The design framework of the C-REPORTER.

scheme C-REPORTER-FRAME(E1: ELEM, E2:ELEM, E3:ELEM)=
extend C-REPORTER-MODEL(E1, E2, E3) with
value
c-reporter: Desc — File,
axiom forall d: Desc, f:File »
c-reporter(d) as f
post 3 111:List, m:Messagee
producer(d)=(l,m) A
sorter(l)=I1 A
deliver(11,m)=f
end

Figure 7.4. The Design Framework of the C-REPORTER.

data~

producer

I1:List

m:Message

gata-—
deliver

document 1.3b in terms of the scheme C-REPORTER-INSTANCE-SUBSYSTEM.
Such a scheme is an extension of the entity specification in document 1.3a. As
the entities are already specified, the C-REPORTER-INSTANCE-SUBSYSTEM
captures only the composition of the entities, resulting in nlc-reporter, a

142

Chapter 7. Reuse-in-the-large: A case study

Document 1.3a. The entities of the design instance of the C-REPORTER.

scheme NUMB = class type Numb == Real | Int | Nat | — end
scheme KEY = class type Key = Text end
scheme LINE = class type
eps-Line, pic-Line,
txt-Line = Text,
Line == eps-Line | pic-Line | txt-Line
end

scheme
C-REPORTER-INSTANCE-ENTITIES (K:KEY, N:NUMB, L:LINE)=
class
object
DF: C-REPORTER-FRAME(K{Key for Elem},
N{Numb for Elem}, L{Line for Elem})
type
KeyList = DF.Desc
NumlList = DF.List
File = DF.File
Message = DF.Message
value
retriever: KeyList — (NumList x Message),
quick-sorter: NumList — NumlList,
printer: (NumList x Message) — File
axiom forall k: KeyList, 1,]11:NumList, m: Message
retriever(k) = DF.producer(k)
quick-sorter(l) as 11
Vi,j: Nate {i,7} Cinds l1 A1 < 5= 11(3) < I1(5)A
Ve : Listo card{i|i: Nate: € inds IAl(i) =e} =
card{j | j : Nate j € inds I1 Al1(j) = ¢}
printer(l,m) = DF.deliver(l,m)
end

compositive component. The structure of nlc-reporter is reflected in the re-
lationships between the entities, as described in the axiom part of the spec-
ification. Such a structure is also depicted in terms of a diagram in figure

7.5.
Notice that although the design instance of the C-REPORTER is specific

in contrast with the corresponding design framework, the subcomponents

Chapter 7. Reuse-in-the-large: A case study 143

Document 1.3b. The design instance of the C-REPORTER.

scheme
C-REPORTER-INSTANCE-SUBSYSTEM (E:ELEM, N:NUMB, L:LINE)=
extend C-REPORTER-INSTANCE-ENTITIES(E, N, L) with
value
nlc-reporter: KeyList — File,
axiom forall k: KeyList, f:File o
nlc-reporter(k) as f
post 3 111:NumList, m:Message o
retriever(k)=(l,m) A
quick-sorter(l)=11 A
printer(11,m)=f
end

Figure 7.5. The Design Instance of C-REPORTER.

k:KeyList I:NumberList

retrisver

|1:NumberList

m:Message

printer

contained in it can be abstract in contrast with their refinements which will
be described at lower level. Such an abstraction is reflected not only in the
parameter of the scheme, including E:ELEM, N:NUMBER, L:LINE, but also
in the partially provided semantics of the subcomponents, such as that of
retriever and printer as shown in document 1.3a.

144 Chapter 7. Reuse-in-the-large: A case study

7.2.2 Specifying the PRINTER (A second level node)

In this subsection, PRINTER, the refinement of the printer in the top-node
C-PRINTER, is specified in four text files: document 2.1, document 2.2, doc-
ument 2.3a and document 2.3b. Document 2.1 contains the domain model of
the PRINTER, document 2.2 contains the design framework of the PRINTER,
and documents 2.3a and 2.3b contain the design instance of the PRINTER,
including the subcomponents the design instance consists of and the structure
the design instance is composed with.

The domain model of the PRINTER

The domain model of the PRINTER aims at specifying the attributes (ab-
stract subcomponents), which are used to form the design framework of the
PRINTER, including analyze, catalog and graph.

The domain model of the PRINTER is specified in terms of the PRINTER-
MODEL, a scheme in document 2.1. The attributes of the domain model are
defined in the scheme as function spaces, identified by values with the same
names.

The abstraction of the attributes is reflected in two dimensions. First, the
PRINTER-MODEL is a parameterized scheme. The parameters as defined in
scheme RECEIVED-NUMBER, INTER-RECORD and FILE-LINE determine
the abstraction of the attributes being specified. Besides, the axioms of the
scheme also make the attributes abstract, since the properties (or constraints)
on the subcomponents are only partially described as shown in the axiom part
of the scheme. The abstraction is important since only by such an abstraction
the design framework can be a framework so as to be reused in constructing
various design instances.

Additionally, only for technical reasons, some schemes defined in document
1.1 are reused as type definitions as shown in the object part of the PRINTER-
MODEL, instead of defining them redundantly.

The design framework of the PRINTER

The design framework of the PRINTER is specified in terms of the PRINTER-
FRAME, the scheme in document 2.2. In this scheme, the printer is defined
as a function space, a composition of the attributes defined in the PRINTER-
MODEL. The architectural structure of the composition is also explicitly

Chapter 7. Reuse-in-the-large: A case study 145

Document 2.1. The domain model of the PRINTER.

scheme RECEIVED-NUMBER = class ReceivedNumber end
scheme INTER-RECORD = class type InterRecord end
scheme FILE-LINE = class type FileLine end

scheme PRINTER-MODEL(RN:RECEIVED-NUMBER,
IR:INTERIM-RECORD, FL: FILE-LINE)=
class
object
L:LIST(RN),
R:LIST(IR),
F:FILE(FL)
type
NumUList=L.List,
File=F:File,
RecList=R.List,
Mode
Message=Text
value
analyze: Message X NumList — Mode x NumList,
catalog: NumList — RecList,
graph: Mode x RecList — File
axiom forall L]11:NumList, msg: Message, mod:Mode, r:RecList, f:Filee
analyze(msg,l) as (mod,l1),
catalog(l) as r,
graph(mod,r) as f
end

depicted in figure 7.6.

Additionally, the PRINTER-FRAME is an extension of the PRINTER-
MODEL. Such an extension allows the inheritance of all the definitions pro-
vided by the PRINTER-MODEL.

The design instance of the PRINTER

The entities of the design instance of the PRINTER are specified in terms
of the PRINTER-INSTANCE-ATTRIBUTES, a scheme in document 2.3a.
The subcomponents verify, grouping and chart defined in this scheme, are the
specialization of the attributes analyze, catalog and graph, as defined in the

146 Chapter 7. Reuse-in-the-large: A case study

Document 2.2. The design framework of the PRINTER.

scheme PRINTER-FRAME(RN:RECEIVED-NUMBER,
IR:INTERIM-RECORD, FL: FILE-LINE)=
extend PRINTER-MODEL(RN, IR, FL)
value
printer: NumList x Message — File
axiom forall 1:NumlList, f:Filee
printer(l) as {
post 3 msg:Message, mod:Mode, 11:NumlList, r:RecList o
analyze(msg,l)=(mod,11) A
catalog(ll)=r A
graph(mod,r)= {
pre 1 # empty
end

Figure 7.6. The design framework of the PRINTER.

I:NumberList 11:NumberList

msg:Message

:NumberList

f:File

PRINTER-DOMALIN respectively. The specificity is reflected in the data types
which are derived from an instantiation (see object part of the scheme) of
the PRINTER-FRAME. The actual parameters are prepared by the scheme
REAL-NUMBER, GROUP-RECORD AND PIC-LINE at the beginning of
document 2.3a. Moreover, the specificity is also reflected in the axiom part,

Chapter 7. Reuse-in-the-large: A case study

147

Document 2.3a. The entities of the design instance of the PRINTER.

end

scheme REAL-NUMBER = class type RealNumber=Real end
scheme GROUP-RECORD= class type GroupRecord::

number: Real, group: Int, descript: Text, color: Text end

scheme PIC-LINE = class type PicLine=Text end
scheme PRINTER-INSTANCE-ENTITIES(RN:REAL-NUMBER,

GR:GROUP-RECORD, PL: PIC-LINE)=

object

PF: PRINTER-FRAME(RN{ RealNumber for Numb},
GR{ InterRecord for Record}, PL{ PicLine for Line})

RealList = PF.NumList,
RecList = PF.RecList,
PicFile = PF.File,
Message = PF.Message
Mode = Nat

value

verify: Reallist x Message —+ RealList x Mode,
grouping: RealList — RecList,
Chart: RecList x Mode — PicFile

axiom forall nl:RealList, msg:Message, mod:Mode,

rl: RecList, pf:PicFile, x: Int e
verify (nl,msg) =
if hdal>0
then case msg of
“block-chart” — (nl, 1),
“circular-chart’ — (nl, 2)
e verify(tl nl, msg) end
grouping(nl) asrl,
post Vi in indsnl e
iin indsrl A
rl(i).number = nl(i) A
rl(i).group = it nl(i) A
rl(i).descript = “group” A
rl(i).color = if (i/2 %2 = 1)
then “GREEN” else “READ”
chart(rl) as pf

148 Chapter 7. Reuse-in-the-large: A case study

Document 2.8b. The design instance of the PRINTER.

scheme
PRINTER-INSTANCE-SUBSYSTEM(RN:RECEIVED-NUMBER,
IR:INTERIM-RECORD, PL: PIC-LINE)=
extend PRINTER-INSTANCE-ENTITIES(RN, IR, PL) with
value
PicPrinter: RealList x Message — PicFile
axiom forall nl:Reallist, msg:Message, pf:PicFiles
PicPrinter(nl, msg) as pf
post 3 mod:Mode, rl:RecListe
verify(nl, msg) = (nl, mod) A
grouping(nl) =1l A
chart(rl,mod) = pf
pre nl # empty
end

Figure 7.7. The design Instance of the PRINTER.

rl:Reallist) (i1:Reallist
V@/}”f}/ grouping
msg:Message k / \

rl2:Reallist

mod:Mode

f:PicFile

in which the properties of the subcomponent verify and grouping are precisely
provided, although a refinement is still necessary for the chart.
The design instance of the PRINTER is specified in terms of the PRINTER-

Chapter 7. Reuse-in-the-large: A case study 149

INSTANCE-SUBSYSTEM, a scheme in document 2.3.b. Such a specification
is an extension of the PRINTER-INSTANCE-ENTITIES as shown in docu-
ment 2.3a.

In this scheme PicPrinter stands for the specific design instance, a compo-
sition of the entities (subcomponents) defined in the PRINTER-INSTANCE-
ENTITIES. The structure of the design instance is described in the axiom part
of the scheme, in which the relationships between the subcomponents can be
seen. Such a structure is further depicted in figure 7.7., in which the primitive
subcomponents such as verify and grouping can be identified by the circled
nodes of the diagram.

7.2.3 Specifyingthe RETRIEVER (Another second level node)

The RETRIEVER is the refinement of the non-primitive subcomponent, printer,
which is defined in the design instance of the C-REPORTER (top-node), see
also figure 7.5 and document 1.3a.

In this subsection The RETRIEVER is specified in four text files: docu-
ment 3.1, document 3.2, document 3.3a and document 3.3b. Document 3.1
contains the domain model of the RETRIEVER, document 3.2 contains the
design framework of the RETRIEVER, and documents 3.3a and 3.3b contain
the design instance of the RETRIEVER, including the subcomponents the
design instance consists of and the structure the design instance is composed
with.

The domain model of The RETRIEVER

The domain mode] of the RETRIEVER aims at specifying the attributes (ab-
stract subcomponents) which are used to form the design framework of the
RETRIEVER, including legality, translator and search.

The domain model of the RETRIEVER is specified in terms of the RET-
RIEVER-MODEL, a scheme in document 3.1. The attributes of the domain
model are defined in this scheme as function spaces,thatothat identified by
values with the same names.

The abstraction of the attributes is reflected in two dimensions. First, the
RETRIEVER-MODEL is a parameterized scheme. The parameters as defined
in schemes TERM, CLAUSE and SQUERY determine the abstraction of the
attributes being specified. Besides, the axioms of the scheme also make the
attributes abstract, since the properties (or constraints) of the subcomponents

150

Chapter 7. Reuse-in-the-large: A case study

Document 3.1. The domain model of the RETRIEVER.

scheme TERM = class Term end
scheme CLAUSE = class Clause end
scheme SQUERY (C:CLAUSE) =
class type
Squery == empty | add(head:C.Clause, tail:Squery)
end

scheme RETRIEVER-MODEL(N:NUMB, T:TERM, C:CLAUSE)=
class
object
D: DESC(T {Term for Elem}),
L: LIST(N{Numb for Elem}),
S: SQUERY(C)
type
KeyList = D.KeyList,
NumlList = L.List,
Squery = S.Squery,
Message
value
legality: KeyList — KeyList,
translator: KeyList —— Squery,
search: Squery — (NumList x Message)
axiom forall k, k1: KeyList, q:Squery, 1:NumListe
legality(k) as k1
transform(k) as q
search(q) asl
end

are only partially described.

Additionally, in order to reduce redundancy, some schemes defined in doc-
ument 1.1 are reused here as type definitions appearing in the object part of

the RETRIEVER-MODEL.

The design framework of the RETRIEVER

The design framework of the RETRIEVER is specified in terms of the
RETRIEVER-FRAME, the scheme in document 3.2. In this scheme the

Chapter 7. Reuse-in-the-large: A case study

151

Document 3.2. The design framework of the RETRIEVER.

scheme RETRIEVER-FRAME(N:NUMB, T:TERM, C:CLAUSE)=
extend RETRIEVER-MODEL(N, T, C) with
value

retriever: KeyList ~——— NumlList
axiom forall

end

retriever(k) = search(translator(legality(k))))

Figure 7.8. The Design Framework of the RETRIEVER.

k:KeyList

legality

ki:KeyList

transiator

s:Squery

msg:Message
search

nl:NumberList

printer is defined as a function space, a composition of the attributes defined
in the RETRIEVER-MODEL. The architectural structure of the composition
is also explicitly depicted in figure 7.8.

the RETRIEVER-MODEL.

Additionally, the RETRIEVER-FRAME is an extension of the RETRIEVER-
MODEL. Such an extension allows to inherit all the definitions provided by

152 Chapter 7. Reuse-in-the-large: A case study

Document 3.3a. The entities of the design instance of the RETRIEVER.

scheme INST-NUMB = class type InstNumb = Real end
scheme INST-TERM = class type InstTerm = Text end
scheme INST-CLAUSE = class type

InstClause ::
Label:Nat
Expr:Text
Div:Char
end

scheme
RETRIEVER-INSTANCE-ENTITIES(N:INST-NUMB,
T:INST-TERM, C:INST-CLAUSE)=
object
R: RETRIEVER-FRAME(N{InstNumb for Numb},
T{InstTerm for Term}, C{InstClause for Clause})
type
Spec = R.KeyList,
Squery = R.Squery,
RealList = R.NumList,
Message = Text
value
checking: Spec — Spec,
remodel: Spec — Squery,
acquire: Squery — NumlList x Message,
axiom forall sp, spl: Spec, sq:Squery, l:NumList, msg:Message o
checking(sp) as spl
remodel(sp) as sq
acquire(sq) as (I,msg)
end

The design instance of the RETRIEVER

The entities of the design instance of the RETRIEVER are specified in terms
of the RETRIEVER-INSTANCE-ENTITIES, a scheme in document 3.3a. The
subcomponents, checking, remodel and acquire in this scheme, are the special-
ization of the attributes legality, translator and search in the RETRIEVER-
DOMAIN respectively. The specificity is reflected in the data types which are
derived from an instantiation (see object part of the scheme) of RETRIEVER-

Chapter 7. Reuse-in-the-large: A case study 153

Document 3.3b. The design instance of the RETRIEVER.

scheme
RETRIEVER-INSTANCE-SUBSYSTEM(
N:INST-NUMB, T:INST-TERM, C:INST-CLAUSE)=
extend RETRIEVER-INSTANCE-ENTITIES (N, T, C) with
value
fetcher: Spec — NumList x Message
axiom forall s:Spec,
fetcher(s) = acquire(remodel(checking(Spec)))
end

Figure 7.9. The design Instance of the RETRIEVER.

5;8pec

checking remodef

as:ASquery

msg:Message

acquire

rk:RealList

FRAME. The actual parameters are prepared by the scheme INST-NUMB,
INST-TERM and INST-CLAUSE at the beginning of document 3.3a. How-
ever, the entities of the design instance are not primitive subcomponents.
The constraints (or properties) of these subcomponents are slightly described,
which will be supplemented in their refinements.

The design instance of the RETRIEVER is specified in terms of the RE-
TRIEVER-INSTANCE-SUBSYSTEM, a scheme in document 3.3b. Such a
specification is an extension of the RETRIEVER-INSTANCE-ENTITIES in

154 Chapter 7. Reuse-in-the-large: A case study

document 3.3a.

In this scheme, the fetcher stands for the specific design instance, a compo-
sition of the entities (subcomponents) which are defined in the RETRIEVER-
INSTANCE-ENTITIES. The structure of the design instance is described in
the axiom part of the scheme, in which the relationships between the sub-
components can be seen. Such a structure is further depicted in figure 7.9
explicitly.

7.3 Browsing and manipulation

A large-scale component is not only a piece of static data, but a dynamically
changing infrastructure. Both the structure and the information of a large-
scale component can be browsed and manipulated (modofication and recon-
struction). In this section, we discuss how to browse a large-scale component
and how to manipulate the component in terms of some tools.

7.3.1 Browsing a large-scale component

Browsing a large-scale component aims at looking through the information
contained in the large-scale component, particularly, at looking through the
nodes of the H-structure of the large-scale component. The browsing is started
from viewing the window at a terminal which displays the information con-
tained in the top-node of the H-structure. The browsing is continued by view-
ing the window which displays a lower-level node of the large scale component.
Alternatively, a parent node can always be traced back if the current node is
not top-node.

Browsing a large-scale component from one node to another can be realized
by clicking some keyword of the current node. In order to view the refinement
of a non-primitive subcomponent of the current design instance, one needs
to click the name of the non-primitive subcomponent which appears in the
diagram of the design instance. In order to trace back to the parent node, one
needs to click the keyword parent which appears in the window of the current
node.

In order to illustrate how a large-scale component can be browsed prac-
tically and what information can be viewed during the browsing, there are
three pictures provided, see also figure I1, I2 and I3. Each picture shows
an envisaged interface between a node of an H-structure and users. Each

Chapter 7. Reuse-in-the-large: A case study 155

picture consists of four parts, namely, SPEC (top-left), FRAME (top-right),
INSTANCE (bottom-left) and DOMAIN (bottom-right). The SPEC part con-
tains documents of specification and source code regarding the design instance,
the design framework, and the domain model of the node. The FRAME part
contains a diagram, describing the structure of the design framework. The
INSTANCE part contains another diagram, describing the structure of the
design instance. The DOMAIN part contains domain entities which can be
used for the instantiation of the design framework.

The first picture, see also figure 11, displays the C-REPORTER, the top-
node of a large-scale component.

In the SPEC part of the C-REPORTER, there are four documents: C-
REPORTER-INSTANCE, C-REPORTER-FRAME, C-REPORTER-MODEL
and SOURCE-CODE. The document C-REPORTER-INSTANCE contains
the specification of the design instance in RSL. The document C-REPORTER-
FRAME contains the specification of the design framework in RSL. The docu-
ment C-REPORTER-MODEL contains the specification of the domain model

SPEC lmodel | frame | objects | structure | code text-edit | grapic—edit | checking

| C-REPORTER

I
I

e 98 v o =t - -
167 e iy o Tt : o -
et ety H -

Ly
o=yl | wHie-
L

- H
CRANTIAAC SR S AL >
P

by
-

Figure I1. The user interface of the C-REPORTER.

which specifies the abstract subcomponents appearing in c-reporter in RSL.

156 Chapter 7. Reuse-in-the-large: A case study

The document SOURCE-CODE contains an implementation of the design
instance in the C programming language.

In the FRAME part of the C-REPORTER there is a diagram represent-
ing the structure of the design framework, the C-REPORTER, which consists
of three abstract subcomponents and the relationships between them. The
subcomponents are producer, sorter and deliverer. The producer receives data
d:Desc from some external component and sends data l:List and m:Message
to the subcomponents sorter and deliverer respectively. The sorter receives
data l:List and sends data [1:List to deliverer. The deliverer receives data
m:Message and [1:List and sends data f:File to some other external compo-
nent. The diagram corresponds to the semantic specification contained in the
document C-REPORTER-FRAME.

In the INSTANCE part of the C-REPORTER there is a diagram, namely
NCL-REPORTER, which depicts the structure of the design instance. NCL-
REPORTER consists of three subcomponents and the relationships between
them. The subcomponents are retriever, quick-sorter and printer. The re-
triever receives data k:KeyList from some external component and sends data
I:NumbList and m:Message to the subcomponents quick-sorter and printer re-
spectively. The sorter receives data I:NumList and sends data l1:NumlList to
printer. The printer receives data m:Message and [1:NumList and sends data
f:File to some other external component. The diagram is corresponding to the
semantic specification contained in the document C-REPORTER-INSTANCE.
From the diagram of the design instance we can also tell the difference between
primitive subcomponents and non-primitive ones. The former is characterized
by circles with a thick line, the latter, by a circle with a thin line.

In the DOMAIN part of the C-REPORTER, there is a table. The ti-
tle of the table consists of three attributes: producer, sorter and deliverer,
corresponding to the abstract subcomponents in the diagram of the FRAME
part. Under each attribute, there are domain entities (specific subcomponents)
which represent the values of the attribute. For example, shell-sorter, quick-
sorter and hash-sorter are the values of the attribute sorter. Moreover, in each
row of the table a domain instance is provided. A domain instance consists
of a set of domain entities which can be used for the instantiation of the de-
sign framework consistently. For example, retriever, quick-sorter and printer
form a domain instance which can be used for the instantiation of the design
framework C-REPORTER. Notice that the instantiation of a design frame-
work with a domain instance is always consistent, while there is no guarantee

Chapter 7. Reuse-in-the-large: A case study 157

for consistency if arbitrary domain entities are selected for the instantiation,
although it is often possible.

From the specification of the design instance NCL-REPORTER, we see
that the semantics of the subcomponents retriever and printer are not pro-
vided sufficiently. This is because these subcomponents are non-primitive
subcomponents and their semantics will be further supplemented in their re-
finement. As discussed before, their refinements can be displayed by clicking
their names in the diagram of the design instance.

Suppose that we have clicked the name printer, a lower-level large-scale
component PRINTER is displayed, see also figure 2. As the PRINTER is also
a large-scale component, the organizational structure of figure 12 is similar to
that of figure I1.

SPEC [model | frame | objects | structure | code text-edit | grapic—edit | checking

PRINTER

[
I

U o g e P P - ol
- vyl :

oy
oo i e

text-edit | graplc-edit | checking

PICPRINTER

Figure I2. The user interface of the PRINTER.

In the SPEC part of the PRINTER there are several documents in which the
schemes PRINTER-INSTANCE, PRINTER-FRAME and
PRINTER-MODEL are specified in terms of RSL . Additionally, the document
SOURCE-CODE is provided in terms of the C programming language.

In the FRAME part of the PRINTER a diagram is displayed, which con-

158 Chapter 7. Reuse-in-the-large: A case study

sists of three subcomponents and the relationships between them. The analysis
receives data I:NumList and msg:Message from external components and sends
data l1:List and mod:Mode to subcomponents catalog and graph respectively.
The graph receives data mod:Mode and !1:NumlList and sends data f:File to
an external component.

Since the PRINTER is the refinement of the printer in the higher-level
design instance, the design framework of the PRINTER must be consistent
with that of the printer. From the diagram of the design framework we see
that the external input (the data received by analysis) and the external out-
put (the data sent to other components by graph) are consistent with those
of the printer in the higher-level design instance. Moreover, the semantic
specification of the PRINTER must inherit the related specification from the
higher-level design instance. For example, the data [:NumlList received by
analysis is not allowed to be empty and must have been sorted, i.e. pre | #
empty A sorter(l) = |, see also document 1.3a and document 1.1.

In the INSTANCE part of the PRINTER, the PICPRINTER, the struc-
ture of the design instance is depicted, which is an instance of the design
framework. The PICPRINTER consists of the subcomponents: verify, group-
ing and chart. The verify receives data ri:RealList and msg:Message and sends
ri:List and mod:Mode to subcomponents grouping and chart. The subcompo-
nent grouping receives data rll:RealList and sends data ri2:RealList to chart.
The subcomponent chart receives data mod:Mode and ri2:RealList from verify
and grouping respectively, and sends data f:PicFile to an external component.

Comparing the diagram and the formal specification of the design instance
of this node with that of the parent node, we see that the semantics of the
PICPRINTER (the current design instance) is consistent with that of printer,
the non-primitive subcomponent which is refined by the PRINTER, to current
node.

In the DOMAIN part of the node PRINTER, there are three domain in-
stances. One of them has been used to construct the current design instance.

It is similar to the way of viewing the node PRINTER, the node RE-
TRIEVER, a refinement of the retriever (the other non-primitive subcompo-
nent of the top-level design instance) can be displayed by clicking the name
retriever in the top-node. The information contained in the RETRIEVER is
shown in figure I3.

In the SPEC part of the RETRIEVER, there are several documents in
which the schemes RETRIEVER-INSTANCE, RETRIEVER-FRAME and

Chapter 7. Reuse-in-the-large: A case study 159

RETRIEVER-MODEL are specified in RSL . Additionally, the document
SOURCE-CODE is provided in terms of C programming language.

In the FRAME part of the RETRIEVER a diagram is displayed, which
consists of three subcomponents, legality, translator and search, and relation-
ships between them. The subcomponent legality receives data k:KeyList

SPEC lmodel | frame | objects | structure | code text-edit | grapic-edit | checking

RETRIEVER

k:Keyl.ist i
k1:KeyList

legality

s:Squery

msg:Message ni:NumberList

insert | delete | modity | checking

remodel

msg:Message rl:RealList approve

refine

Figure I3. The user interface of the RETRIEVER.

from an external component and sends data k1:KeyList to the subcomponents
translator. The subcomponent translator receives data KeyList from legality
and send data s:Squery to search. The subcomponent search retrieves data
s:Squery from translator and sends data msg:Message and nl:NumberList to
external component(s).

It is similar to the PRINTER, the design framework of the RETRIEVER
must be consistent with that of the retriever in the higher-level design instance.
From the diagram of the design framework, we see that the external input
(the data received by legality) and the external output (the data sent to other
components by search) are consistent with that of the printer in the higher-
level design instance.

160 Chapter 7. Reuse-in-the-large: A case study

In the INSTANCE part of the RETRIEVER, FETCHER, the structure of
the design instance is depicted, which is an instance of the design framework.
The FETCHER consists of subcomponents: checking, remodel and acquire.
The checking receives data s:Spec and sends s1:Spec to remodel. The subcom-
ponent remodel receives data s1:Spec and sends as:ASquery to acquire. The
subcomponent acquire receives data as:ASquire and sends msg:Message and
ri:RealList to external components. :

Comparing the diagram and the formal specification of the design instance
of this node and that of the parent node, we see that the semantics of the
fetcher, the current design instance, is consistent with that of retriever, the
non-primitive subcomponent which is refined by the RETRIEVER, the current
node.

In the DOMAIN part of the node RETRIEVER, there are domain in-
stances. One of them has been used to construct the current design instance.

7.3.2 Manipulating a large-scale component

Manipulating a large-scale component implies creating, deleting or modifying
the structure of the component or the information contained in the structure,
which can be realized by using the user interface of the component. Since
the user interface of a large-scale component is a window which consists of
four parts: SPEC, FRAME, INSTANCE and DOMAIN, our discussion will
be focused on how each part can be manipulated.

The SPEC part. The SPEC part consists of a set of documents. Each
document is a text file. The basic requirements for manipulating these docu-
ments are no more than the file operations an operating system has, such as
file-creating, file-editing, file-deleting and so on. The activities concerning the
SPEC part include

¢ Programming in a certain programming language, according to the spec-
ification and diagram of current design instance; compiling, linking, test-
ing and executing the implementation of current design instance.

¢ Making a decision about the current version of implementation and spec-
ification, if there are several.

o Specifying the domain model, design framework and design instances.

Chapter 7. Reuse-in-the-large: A case study 161

e Verifying the consistency between the different specifications inside the
node and between the current specifications and that of parent nodes.

The FRAME part. The FRAME part contains a diagram, representing
the structure of the design framework. The basic requirement for manipu-
lating the diagram is a graphic editor or a graphic generation. A graphic
editor provides the means to create, deposit or modify the diagram directly.
A graphic generator allows to create, deposit and modify the diagrams in terms
of textual specification. A graphic editor is more intuitive and flexible than a
graphic generator, whereas a graphic generator is economic in repository and
automatic in drawing the diagram. The activities concerning the FRAME
part include

o Creating a new design framework by the decomposition of a non-primitive
subcomponent of the parent node, resulting in a diagram which will be
a guideline to define domain resources and a guideline for formal speci-
fication.

o Generating a design framework (diagram and specification) by the pa-
rameterization of a new design instance.

¢ Modifying the design framework, concerning the repository of the old
node to its parent domain resources optionally.

¢ Verifying the consistency between the diagram and its semantic specifi-
cation (in SPEC part). For example, each node in the diagram of the
design framework must be corresponding to a function space which is
defined in the document for specifying the domain model. Furthermore,
if two nodes of the diagram are connected together, such a connection
can be identified from the specification of the design framework.

o Carrying out the instantiation of the design framework with domain
resources, resulting in a candidate for a design instance (diagram and
specification).

The INSTANCE part. The INSTANCE part contains a diagram. The
basic requirement of this part is similar to that of the FRAME part.

The INSTANCE part is the most active part in a node of a large-scale
component. It is an abstraction of a real design that a system developer needs,

162 Chapter 7. Reuse-in-the-large: A case study

and a guideline to understand the specification (in the document part) of the
design, and a guideline for the reconstruction of the design. The activities
concerning the INSTANCE part include

e Switching the control to the refinement of a non-primitive subcompo-
nent of the design instance so as to create, review or reconstruct the
refinement, or tracing back to the parent node so as to deal with other
branches of the parent node.

o Making decisions about the modification of current design instance and
replacing one or more subcomponents in the current design instance with
domain entities or with newly created ones.

e Making decisions about the instantiation of the design framework with
a domain instance from the domain resources, in order to generate an
instance of the design framework;

o Making decisions about the specialization of the interim instance, con-
cerning some special requirements of a design instance.

The DOMAIN part. The DOMAIN part displays only the components
(large-scale components or code components) which can be used to instantiate
the current design framework or to modify the current design instance.

The basic requirements of the DOMAIN part include the means to insert,
delete and modify each domain instance or each domain entity of the domain
resources. The particular activities to manipulate the domain resources in-
clude

o Switching the control to a copy of a particular design entity, to review
or reconstruct the design entity into a new one, in order to construct a
new design instance so as to instantiate the design framework or modify
current design instance.

o Making decisions on the acceptance of design instances by verifying the
consistency of this instance with the domain model as specified in the
SPEC part, or making decisions on the deletion of a current domain
instance.

o Switching the control to existing domain entities so as to view the details
of the entity precisely, especially, when a domain entity is a large-scale
component.

Chapter 7. Reuse-in-the-large: A case study 163

7.4 Generating alternative designs

The purpose of having large-scale components is to provide an infrastructure
so that domain resources can be accumulated, and alternative designs and
implementations can be generated with respect to the large-scale component
with reuse-in-the-large.

What is an alternative design? As discussed before, a large-scale compo-
nent has its design instance at each node of its H-structure. The instances at
different levels of the H-structure, as a whole from top to primitive nodes, form
the design of a large-grain component (subsystem or system) at different lev-
els of abstractions. Therefore, generating an alternative design of a large-grain
component from a large-scale component implies the generation of a design
which is different from the current design instances. Such an alternative de-
sign can be generated by replacing or modifying one or more design instances
of the current design. The design instances to be replaced or modified can be
either at high-level abstraction or at low-level in the H-structure.

The application domain of a large-scale component A large-scale com-
ponent aims at developing a set of alternative large-grain components such as
subsystems or even complete systems in an application domain. The bound-
ary of the application domain is defined by the top-level design framework of
a large-scale component, concerning both the degree of abstraction given by
the domain model and the way of their composition as described by the design
framework. For example, the designs of all c-reporters which can be developed
with the reuse of C-REPORTER must be the instances (objects) of the design
framework which is precisely defined by the scheme C-REPORTER-FRAME,
see also document 1.2.

Although such a definition is normally broad enough for an institute that
needs to develop a large-number of large-grain components within the applica-
tion domain, the domain can be extended by building higher-level abstractions.
For example, we may extend the intention of the c-reporters by addressing
a more general concept, saying general-c-reporters. This can be done by re-
constructing the top-node of the large-scale component. For example we may
reconstruct the top-node C-REPORTER into the nodes as shown in figure 14
and I5, leaving all other nodes unmodified.

164 Chapter 7. Reuse-in-the-large: A case study

SPEC |modol | frame | objects | structure | code text—edit | grapic-edit | checking

GENERAL-DATAPROC

general
transformer

Inaert | delete | modify | checking

{:NuberList @ @
=T =S
=S

msy:Message

Figure I4. The user interface of GENERAL-C-REPORTER.

Domain analysis as learning. Domain analysis as learning was addressed
by Arango[3]. “Learning denotes changes in the system that are adaptive in
the sense that they enable the system to do the same tasks or tasks drawn from
the same population more efficiently and more effectively next time”[110]. The
process of reusing large-scale component is a learning process, which allows
the H-structure and the information contained in the structure to be changed
dynamically, leading to more effective reapplication of the component later
on. For example, if there is only one domain instance in the C-REPORTER,
we have one choice to construct a c-reporter at top-level with reuse. However,
if we reuse only input and shell-sorter, the first two entities of the domain
instance, and create printer, the third entity, then a new domain instance is
formed. By putting the new domain instance into domain resources, the next
reuser will have two choices to construct a c-reporter at the top-level.

There is a great difference between traditional library components and
large-scale components. The former are created and managed by different
people concerning universal application; the latter, by system developers them-
selves, concerning an application domain. More importantly, the content of the

Chapter 7. Reuse-in-the-large: A case study 165

traditional library components are normally unchanged after the reuse of the
component; while the content of large-scale components can be modified and
reconstructed by system developer (reusers). There are few operations which
are available to manipulate traditional library components, while a large-scale
component and its support environment form an infrastructure.

In fact, a large-scale component is an open component to system devel-
opers. It is created by system developers, managed by system developers,
manipulated by system developers and reused by system

SPEC |mode| | frame | objects | structure | code text—edit | grapic—edit | checking

TRANSFORMER

I:NuberList -

H:NumberList

msg:Message

text—edit | grapic—edit | checking insert | delete | modify | checking

T

\:NuberList A-TRANSFORMER

quick-sorter

Quick-sorter
H:NumberList

msg:Message f-File

hash-sorter

refine

Figure I5. The user interface of TRANSFORMER.

developers. Although the risk of an open component seems the possibility to
make it worse after some modification, we think such a risk is practically small
for reusing a large-scale component. The wish to have open system compo-
nents originats from domain analysis. The quality of the domain resources is
evaluated by domain analyzers, while the reusers of a large-scale component,
who modify the component, are domain analyzer themselves. Moreover, the
possibility of semantic verification, executable implementation and the trans-
parent organizational structure of a large-scale component are also useful to
guarantee the quality of the domain resources.

166 Chapter 7. Reuse-in-the-large: A case study

7.5 Generating the implementation

Implementation. In a large-scale component, there is always a current de-
stgn which consists of the design instances at different levels of abstraction.
The implementation of the current design is a large-grain component which
is composed from the primitive subcomponents appearing in the design in-
stances at different levels. Such a composition is supported by a large-scale
component by the primitive components and the specification of the design
instances at different levels. The primitive components provide the source
code components which the large-grain component is composed from, while
the specification tells us what a large-grain component needs and how the
large-grain component can be composed from the primitive components.

As a restriction, the current design must be implemented in the same
programming languages or the languages that can be interfaced to each other.

Version control. Although the implementation of the current design must
be implemented in terms of the same programming language, different current
design instances (at different time) can be implemented in terms of different
programming languages. This implies that the large-scale component should
support version control for its implementation so that the reusability of a sin-
gle large-scale component is independent of programming languages.

As discussed before, the version control in a large-scale component can be
realized by allowing different versions of the implementation to be contained in
the SPEC part (for each node of a H-structure) as shown in the window. The
different versions might be either the implementation in different languages or
the implementation in different manner in the same programming language.

In order to realize the version control, we need to mark one of the implementa-
tions as the active or current version which presents the current implementa-
tion of a design. Consequently, during the process of component composition,
we must check not only whether a non-primitive subcomponent is implemented
but also whether it is implemented in a programming language and whether
the proper implementation is marked as the active version.

The process of the composition. The process of composing the imple-
mentation for the design instance (starting from top-level) is that if it contains

Chapter 7. Reuse-in-the-large: A case study 167

non-primitive subcomponents which have not been implemented, go to com-
pose the non-primitive subcomponents first; then compose the implementation
of the current design instance from the primitive components and the imple-
mented non-primitive subcomponents. The composition will be guided by the
specification of the current design instance. For the non-primitive subcompo-
nents, it is needed to switch the control (interface of a large-scale component)
from current node to its refinement. The rest activity for the composition is
similar to that of a top-level design instance, since a large-scale component is
defined recursively.

In order to provide an intuitive impression on the composition process, we de-
scribe how an implementation of C-REPORTER can be composed according
to the specification discussed before. For such a composition we assume that
each primitive subcomponent of the large-scale component is written in C and
can be accessed. To simplify the process of such a composition, we also assume
that the subcomponents appearing in the printer and retriever are primitive
subcomponents or implemented non-primitive subcomponents.

The example given in this subsection consists of a set of files. The C-code which
this file contains is derived from the large-scale component C-REPORTER.
We assume that all primitive subcomponents of the large-scale component are
provided in terms of C-code.

The type.h, a file, contains a group of type definitions which correspond to
several type trees that can be shared by all other files.

File printer.h contains the domain entities of the design instance PRINTER.
File printer.c is a composition of the entities in file printer.h, which can be
done according to the specification of the design instance of the PRINTER.

Similarly, file retriever.h contains the domain entities of the design instance
of the PRINTER. File retriever.c is the composition of the entities which are
contained in file retriever.h. The composition can be done according to the
specification of the design instance in the RETRIEVER. From the printer.c
and retriever.c, c-reporter.h has been made, corresponding to the domain en-
tities appeared in the design instance of C-REPORTER. From the contents
of the c-reporter the large-grain component c-reporter.c has been composed,
according to the C-REPORTER-INSTANCE-SUBSYSTEM, the specification
of the design instance of the C-REPORTER.

168 Chapter 7. Reuse-in-the-large: A case study

TYPE-COLLECTION (type.h)

#define make-type(type, list) struct type { list };
typedef struct type *type

make-type (NumMod, RealList nl; Mode mod)

make-type (NumMsg, RealList nl; Message msg)

make-type (Rec, Real numb; int group; Text

descript; Text Color)

typedef char *Text;

typedef float Real;

typedef int Mode;

typedef Text Message;

typedef Text InstTerm,;

typedef Text PicLine;

typedef Rec *RecList;

typedef Number *RealList;

typedef Text *Spec;

typedef Text xSquery;

typedef PicLine *PicFile;

Chapter 7. Reuse-in-the-large: A case study 169

PRINTER-INSTANCE-ENTITIES (printer.h)

NumMod verify (RealList; Message);
RecList grouping (RealList);
PicFile chart (Mode; RecList);

PRINTER-INSTANCE-SUBSYSTEM (printer.c)

#include “type.h”
#include “printer.h”
PicFile printer (RealList nl; Message msg)

{

NumMod nm;

RecList r1l;

nm = verify (nl, msg);

rl = grouping (nm—nl);

return (chart (rl, nm—mod));
}

RETRIEVER-INSTANCE-ENTITIES (retriever.h)

Spec checking (Spec);
Squery remodel (Spec);
NumMsg acquire (Squery);

170 Chapter 7. Reuse-in-the-large: A case study

RETRIEVER-INSTANCE-SUBSYSTEM (retriever.c)

#include “type.h”
#include “retriever.h”
NumMsg fetcher (Spec s)

{
}

return (acquire (remodel (checking (s))));

C-REPORTER-INSTANCE-ENTITIES (c-reporter.h)

NumMsg fetcher (Spec);
NumList quick-sorter (NumList);

7.6 Summary

In this chapter we discussed how reuse-in-the-large happens in a support en-
vironment, regarding a Student Management System (SMS), an application
domain of reuse-in-the-large.

In section 1 we briefly described SMS, the Student Management System.
In section 2 our discussion was focused on the C-REPORTER, a subsystem of
the SMS. Particularly, we discussed the representation of the C-REPORTER,
including both textual and diagrammatic specification of the component. In
section 3 we described the interface between a system developer and a large-
scale component, i.e. the C-REPORTER, with an assumption that the C-
REPORTER has been reused and a set of domain resources exist. The example

Chapter 7. Reuse-in-the-large: A case study _ 171

in this section shows us that a large-scale component is an infrastructure for
the development of a set of similar components in an application domain. The
constituent parts of a large-scale component are not only transparent but also
manipulatable to system developers.

C-REPORTER-INSTANCE-SUBSYSTEM (c-reporter.c)
#include “type.h”

#include “retriever.h”

#include “printer.h”

PicFile nlc-reporter (Spec s)

{

NumMsg nm;

NumMod mod;

nm = fetcher (s);

nl = quick-sorter (nm—nl);
return (printer (nl, nm—msg));

In section 4 using the C-REPORTER, we illustrated how to generate an al-
ternative design (instance) from a large-scale component and how to collect
the resources of a large-scale component. An alternative design is the design
of a particular (large-grain) component to be made by the system developer.
In section 5 we demonstrated how a particular (large-grain) code component
can be generated when the design of the component is complete as illustrated
in section 4.

From the prototyped example and the discussion concerning the example,
we conclude that, in terms of reuse-in-the-large, (1) an application developer
is capable of reusing not only the source code but also the design informa-
tion of large-grain components; (2) an application maintainer is capable of
maintaining a large-grain component with the manipulation of a large-scale
component, especially with the modification of the design instance. In this
case the maintenance of an application is equivalent to the development of the
application with reuse-in-the-large, and vice versa.

172 Chapter 7. Reuse-in-the-large: A case study

Chapter 8
Epilogue

We now have the second software crisis: maintenance.
- G. Cruman, 1987.

This dissertation has been carried out in the context of two other research
topics: the management of information systems[82] and dynamic modelling of
information systems[113]. On the one hand, this approach was embedded in
the research on the management of information systems, aiming at support-
ing application maintenance; on the other hand, such an approach is a means
for dynamic modelling of applications, aiming at meeting the novel require-
ments for system development. In order to reach both aims, the technology
for application reuse plays a leading role, resulting in an environment to sup-
port application development and maintenance, i.e. an information system for
application reuse-in-the-large.

8.1 Reuse-in-the-large

From a reuse point of view, this dissertation has provided a solution for ap-
plication reuse-in-the-large. According to this work, reuse-in-the-large is not
only an attractive issue but also an applicable means to automate the pro-
cess of application development and maintenance on a large-scale. For the
realization of reuse-in-the-large, the concept of large-scale components was
addressed, concerning an integrated representation of design frameworks, de-
sign instances and domain resources for a set of applications in an application

173

174 Epilogue

domain. For such a representation a pragmatic model was proposed, which
allows the information of a large-scale component to be represented at differ-
ent levels of abstraction. For the manipulation of large-scale components an
operating model was described, covering the activities of application analy-
sis, design, implementation and maintenance. For the management of large-
scale components, a semantic data base management system was investigated,
concerning the repository and retrieval of large-scale components. For the
transparency of large-scale components to users and for supporting applica-
tion development and maintenance with reuse-in-the-large, a user interface
was prototyped, concerning creation, browsing, reconstruction and reuse of
large-scale components.

8.2 Supporting management of information sys-
tems

The research on management of information system, as described in [82], pro-
vides a management framework for the support and maintenance of opera-
tional information systems. An operational information system was defined
as a system for collecting, storing and processing data.

The research on management of information systems can be divided into
three sub-fields: functional management, application management, and tech-
nical management. Functional management is concerned with functional main-
tenance and user support and is related to the use and functionality of hard-
ware, software and data bases. Application management is concerned with the
tasks of application software maintenance and the technical support for such
tasks, including the facilities for the automation of application maintenance.
Technical management is concerned with the tasks of operational control and
the support for such tasks, including technical support for hardware, system
software, communication facilities, data base management systems, data banks
and application software which are operational and in use, including also the
technical services for daily use and for planned use.

Obviously, management of information systems is a broad research field,
involving almost all techniques and facilities applied in information systems.
For instance, the state model[82], a management framework of information
systems as in figure 8.1, involves the whole life-cycle of information systems,
which is expected to define, analyze, evaluate and control management or-

Supporting management of information systems 175

ganization in real world situation. According to this model, the life-cycle of
an information system consists of several states: development, regarding the
analysis, design and implementation of an information system, acceptance, re-
garding the test on performance and functionality of an information system,
ezploitation, regarding the installation and execution of an information sys-
tem, use, regarding the activities to solve users’ problems, and maintenance,
regarding the modification of information systems after delivery.

A Management Framework_
oo | The state model } -

Figure 8.1. The state model of management information systems *.

1

From the management of information systems point of view, the informa-
tion system for application reuse-in-the-large, as described in this dissertation,
is an information system which provides an integrated support for application
development and maintenance, regarding two states of the state model in fig-
ure 8.1, i.e. development and maintenance.

For application development, a large-scale component plays the role of
domain analysis for application construction. An application developer may
design a new application by reusing both the process of design and the ar-
tifacts which represent the design, analysis and implementation of existing
applications.

!Figure 8.1 is derived from a similar figure appearing in {81].

176 Epilogue

For application maintenance, a large-scale component provides an infras-
tructure for the understanding and reconstruction of existing applications.
The maintenance can be corrective maintenance, adaptive maintenance, addi-
tive maintenance and so on, aiming at generating alternative applications in
an application domain.

Maintenance, according to our approach, implies not only the modifica-
tion and reconstruction of existing applications, but also of existing designs.
The advantage of dealing with existing designs is the possibility of allowing
maintenance to be done at abstract (design rather than code) levels. This is
especially important for the maintenance of large and complex applications.

According to our approach, application maintenance can be done at differ-
ent levels of designs. The artifacts to be reused for maintenance at each level
include design instances, design frameworks and domain resources. More-
over, the process of creating these artifacts, i.e. the process of application
development, can also be reused. The process of application development
can be recovered from the H-structure of a large-scale component. To the
whole H-structure an application maintainer can trace the process of design
decomposition top-down and the process of composition bottom-up from the
structure. To each node of the H-structure an application maintainer may find
the information about how the design is constructed, how to build alternative
designs and alternative implementations, and what resources are available to
construct the alternatives.

8.3 Supporting dynamic modelling of applications

As discussed at the beginning of this dissertation, the novel requirements for
system development in dynamic modelling, have been the basis for the research
setting of the dissertation work. According to the philosophy of dynamic
modelling[113], we need an environment which supports the problem solving
process of application development.

In this dissertation work the support environment corresponds to an in-
formation system for application reuse-in-the-large. The problem solving pro-
cess is what Wegner[125] called a uniformed problem solving process, i.e. the
process of analysis, design, implementation and maintenance. The novel re-
quirements are what Sol[113) described as the need for a common frame of
reference, concerning a coherent set of descriptive building blocks, the need
for an eztendible system description and analysis context, the need for an t-

Supporting dynamic modelling of applications 177

erative process of analysis and synthesis, and the need for the generation of
alternative possibilities.

In order to meet the novel requirements, design frameworks have been de-
fined as common frames of reference for the composition of alternative designs
in an application domain. Such a common frame is concerned with a coherent
set of domain resources. The domain resources are lower-level entities which
can be used for the composition of higher-level designs.

In order to support an extendible application description and analysis con-
text, the H-structure was used for the representation of large-scale compo-
nents. An H-structure is a dynamic structure which can be extended from
representing a single application to representing a domain analysis incremen-
tally. A domain analysis is a basis to compose applications with reuse-in-
the-large. Investigating the domain analysis, an application developer may
learn application design from experience. Browsing the H-structure, an appli-
cation designer may understand the analysis context for a particular system
component.

In order to support the iterative process of analysis and synthesis, large-
scale components have been designed by an integration of the design frame-
work with design instances. Such an integration allows application developers
to experimentally complete their analysis and synthesis, which was typically
described in the process of application prototyping. The process of analysis
refers to the process of top-down decomposition, and the process of synthesis
refers to the process of reusing lower-level entities for the construction of the
higher-level designs and implementations.

In order to support the generation of alternative possibilities, flexibility
is provided for modifying design instances, reconstructing design frameworks
and updating domain resources. An alternative design can be generated once
a design instance of the H-structure is changed, resulting in varieties of appli-
cations with alternative functions and performance.

The future research on reuse-in-the-large may be concerned with how to
extend the possibility of reuse-in-the-large to all aspects in the management
of information systems, and how to integrate the techniques applied in reuse-
in-the-large into environments for information system development covering
dynamic modelling.

178 Epilogue

Summary

Reusability is a central concept in life-cycle technology, in system evolution,
and in the development of theories and models.
— Peter Wegner, 1984

Motivation. Many dreams of automation have become true since the ap-
plication of information systems, but the dream to automate the development
and maintenance of information systems is still a dream. Fortunately, appli-
cation reuse is known as a promising technology for such automation, though
many problems remain to be solved. This dissertation aims at seeking solu-
tions for these problems and providing techniques for the automation.

The establishment of RITL (the information system and the approach for
application reuse-in-the-large) is motivated by the observation of the repre-
sentation problems which are reflected in two research fields of application
reuse: forward engineering and reverse engineering. Whereas a lot of infor-
mation fails to be represented in system development (forward engineering),
quite similar information has to be recovered for the purpose of reuse (main-
tenance or re-engineering), i.e. system producers make puzzles and let reverse
engineers solve them. The redundant work is against the basic principle of
reuse. Unfortunately, upto recent years, no great attention has been paid to
representation problems concerning application reuse. Webster’s research on
representing technologies shown that conventional systems do not adequately
cover the representation needs of a design process. Conventional systems ex-
hibit what could be called representational myopia. They are hard to be
reused and have little or no semantic basis in many cases. Rugaber and his
colleagues discovered that system design involves making choices among alter-
natives, but too often, however, the alternatives considered are lost in system

179

180 Summary

representation. They indicated that one reason of loosing design information
is that the commonly used design representation is not expressive enough, the
other reason is that the design representation fails to describe the process by
which design decisions are reached.

The establishment of RITL is also motivated by observing the problems of
reusing source code components. Shaw described that the knowledge expressed
in the form of code can not be useful if programmers do not know about it
or are not encouraged to use it, and the library components require more
care in design, implementation and documentation than similar components
that are simply embedded in systems. Furthermore, Biggerstaff indicated
that building systems out of small (source code) components leaves a lot of
work to be done. While the components are made larger and larger, they
become less and less reusable. Therefore, he addressed the need to eliminate
some of the specificity necessitated by a source code-oriented specification,
and to seek representations that allow the large-grain component structure to
be described precisely, while leaving many of the small, relatively unimportant
details uncommitted.

The dissertation work can be largely divided into 4 parts: research setting,
preliminary exploration, modelling and prototyping. During the research we
encouraged ourselves to reuse all the achievements known by us. As such we
could avoid reinventing wheels and focused on something new.

Research setting. For the research setting we classified the techniques for
application reuse into reuse-in-the-large and reuse-in-the-small, aiming at iden-
tifying the requirements for system development and maintenance. Reuse-in-
the-small reflects the needs of programming-in-the-small where algorithms and
coding are especially important, e.g. making a program for sorting. Reuse-
in-the-large reflects the needs of programming-in-the-large where analysis, de-
sign and maintenance become very important, e.g. building an information
system. Therefore, our research was centered on the methodology for reuse-
in-the-large, aiming at improving the process of application development and
maintenance.

Understanding the state of the art in the field of reuse-in-the-large, we in-
vestigated many approaches in the field of reuse, including Neighbors’ Draco
approach for domain analysis, Havelund and Haxthausen’s EPROS approach
for formal specification and prototyping, Biggerstaff’s Desire system for design
recovery, Booch’s approach for object-oriented design, and Basili’s approach

Summary 181

for re-engineering, and several model interconnection languages for the de-
scription of system structure.

Although most of the approaches investigated are successful in reaching
expected goals, we have found neither an approach which supports an inte-
grated process for the creation and reapplication of system components, nor
an approach which supports an integrated representation of an application,
the information about the creation of the application, and the information
about modification, reconstruction and management of the application in a
structured manner.

Preliminary exploration. The preliminary exploration comprises our ear-
lier work on application reuse including the research on the reuse of algorithm
structures and abstract data types, and the research on the reuse of system
architectures and design templates.

The research on reusing algorithm structures and abstract data types is
a method for reuse-in-the-small. Such a method is based on two principles
for component representations, i.e. object-oriented abstraction and structure-
oriented abstraction. The former catches the commonality of operations which
are able to operate on certain types of objects, which resembles what has been
represented in object-oriented approaches; the latter catches the commonality
of the operations whose implementations are isomorphic with respect to the
algorithm structures used, which is (partially) what has been represented in
some template- or frame-based approaches such as Bron’s library of reusable
modules.

The two principles lead to two kinds of components: object-oriented com-
ponents and structure-oriented components. An object-oriented component is
a component which represents an abstract data type or its extension, such as
a class. A structure-oriented component is a component which represents a
set of interrelated algorithm structures and a set of operations with respect to
the algorithm structures.

The result of such research indicates that the context for component com-
position, as represented in terms of algorithm structure, may play an impor-
tant role in reusing source code, and component modelling may not only be
useful to package operations oriented to certain objects, but also to package
the operations with respect to certain algorithm structures.

As another preliminary exploration, we engaged in a research on the reuse
of system architectures and design templates, aiming at reusing the artifacts

182 Summary

which are produced during system design.

A system architecture is an organizational structure of a (application) sys-
tem, which normally refers to the relationships between different parts of a
system and can be mechanically recovered from source code. However, a
system architecture in our approach is derived from the process of design
decomposition, representing different levels of designs and the relationships
between them. In terms of system architecture, one may understand an ap-
plication easily and maintain an application at different levels of abstraction.
The reusability of a system architecture implies the capability of supporting
the maintenance, evolution and reconstruction of the architectures, resulting
in varieties of design instances in an application domain.

A design template is a mapping from components to components, which
can be represented in terms of a generic design module, i.e. a common frame
of reference for a set of alternative designs in an application domain. The
advantage of using design templates is the possibility of reducing the redun-
dancy of similar design representations, which is useful for the modification
and reconstruction of an application.

Modelling. Our research on reuse-in-the-large is centered on the represen-
tation, management and manipulation of large-scale components, resulting in
RITL, an approach and an information system for application reuse-in-the-
large.

RITL is a novel approach supporting application development and mainte-
nance with reuse-in-the-large. The idea of reuse-in-the-large, in contrast with
that of traditional reuse (the reuse of small source-code components), aims at
reusing large-grain components and, more important, the information about
the creation of the components.

This approach draws from research into re-engineering and forward engi-
neering. From re-engineering research, we understood the necessity of reusing
design information and the possibility of reconstructing a similar system from
existing one. From forward engineering we discovered suitable structures to
represent design information.

This approach is a multiple-level one, dealing with the composition process
at each level of abstraction and within the context of (1) a design framewortk,
acting as an algorithm explaining how to organize lower level entities into al-
ternative design instances, (2) a collection of design instances, each describing
a particular design, (3) domain resources consisting of a domain model and a

Summary 183

set of domain entities, and (4) a refinement as a detailed design and a partic-
ular implementation of a design instance. These four concepts are combined
into a large-scale component, encapsulating both a component’s design and
the context in which the design is realized, by which both the design infor-
mation and large-grain source code can be managed and manipulated to meet
different design targets of an application domain.

According to this approach, application developers are encouraged to reuse
design information as well as source code. At the same time, they are encour-
aged to provide information for maintenance. Moreover, application main-
tenance can be viewed as application development with reuse-in-the-large in
an application domain. As such, forward engineering and re-engineering may
follow the same process and use the same infrastructure — large-scale compo-
nents — and the tools for understanding, and manipulation of the components.
The advantage of using such an infrastructure is the possibility of incremental
domain analysis and semi-automatic component retrieval.

This approach can be supported by an information system. The informa-
tion representation of such a system is based on a pragmatic model, formaliz-
ing the information for application reuse-in-the-large, and an operating model,
formalizing the activities for application development and maintenance with
application reuse-in-the-large. The systematic process of application devel-
opment and maintenance with reuse-in-the-large is potentially determined by
these two models.

The information system is furnished in terms of specification languages,
programming languages, a semantic data base, a user interface, and a set of
tools to support the management and manipulation of large-scale components.

Moreover, in order to represent and understand large-scale components in
a precise ways so as to reuse them effectively, we introduce a principle for the
specification of large-scale components and describe how to apply such a prin-
ciple for the representation of large-scale components. Besides, we address
a method for the consistency verification of large-scale components. This
method suggests a diagram guided semantic verification, by which a refine-
ment verification is straightforward and efficient. It is straightforward as the
verification can be done with semantically extended data flow graphs which
represent system design and system analysis. It is efficient as such a verifica-
tion can be simplified with a set of inference rules and guided with graphical
structures which can be intuitively understood.

184 Summary

Prototyping. As an investigation of applying the approach for reuse-in-the-
large to the practice of system development, we looked into how a large-scale
component is capable of supporting system prototyping. By such an example
the behaviour of reuse-in-the-large was investigated, including the representa-
tion of a large-scale component, the process of application prototyping with
reuse-in-the-large, the activities for application reconstruction, and the possi-
bility of automatic component retrieval.

In order to test how RITL is practically applied in more specific ways, we
discussed how reuse-in-the-large achieved in a support environment, regarding
a particular application domain: Student Management System (SMS), which
is represented by a large-scale component. Particularly, we discussed how SMS
is specified in terms of an available specification language, how it is understood
and manipulated, how varieties of designs and implementations can be gener-
ated from the large-scale component to meet varieties of requirements in an
application domain.

Conclusion. Consequently, this dissertation work provides system develop-
ers with a set of approaches for application reuse, particularly for application
reuse-in-the-large. The approaches are concerned with (i) the reuse of abstract
data types and algorithm structures, providing a means for the construction
of source code components, (ii) the reuse of system architectures and design
templates, providing a means for the representation of design information, and
(iil) the reuse of large-scale components, providing an infrastructure for repre-
sentation, management, manipulation and reapplication of both applications
and the information about the creation of the applications. The approach for
the reuse of large-scale components results in an information system, a support
environment for application development and maintenance with reuse-in-the-
large.

Appendix A

Scomps and Ocomps in
Duplex Shell

Duplex shell is a software tool which supports programming with Scomps and
Ocomps. In this appendix the semantics of the Duplex shell is described with
a set of objects!, axioms and transformation rules. Based on this descrip-
tion, some theorems are presented and an operation generation is specified.
Additionally, the syntax of the system components is appended.

1. Predicates and notations

Conventions As a rule, an identifier beginning with a capital letter stands
for a set of objects, whereas an identifier containing no capital letter stands
for an instance of object. Another convention is that the form of the logical
formula Vz € M(predicate(z)) is equivalent to Vz((z € M) A predicate(z)).

Predicates Three predicates are defined in this appendix. The expressions
with form y =¢< 21, %2,...2, > in this appendix refer to the definition of an
object. An object is a tuple. An element of the tuple may be: a language
construct, another object or a set of other objects. See also section 3 for
details. The three predicates are defined as follows:

1the notion objects in this appendix means some things to be dealt with. It is quite
different from the objects in object-oriented programming.

185

186 Appendix

¢ element(z;y) is a predicate which may be read as z is an element of y.
The definition is as follows:

Vz,y,2z € (Object U Object’)

true if Yy =g< .., T,...>;

true if yis a set, and z € y;

true if y=¢<..,2,..> AT € 2, zis a set;
false otherwise.

element(z;y) =

Set Object contains all the objects that are dealt with in the Duplex
shell. Set Object’ contains sets of the objects. For an exact definition
see also section 3.3. As an abbreviation, element(z1,z3;y) is equivalent
to element(z1; y) A element(za; y).

e element'(z;y) is a predicate which may be read as z is an element or
sub-element of y.

Vz,y,z € (Object U Object’)

true if element(z;y);
element'(z;y) = ¢ true if Jz(element’(z; z) A element'(z; y));
false otherwise.

Set Object and set Object’ are the same to the sets used for defining
element(z;y). The abbreviated form is also the same.

Notations Two notations are defined as follows:

e name(z) : is a notation which denotes the name of z;
z € Object.

e signature(z): is a notation which denotes the signature of z;
z € (Oprt U Voprt U Oprtspec). The sets Oprt, Voprt
and Oprtspec are defined in section 3 and 4.

e y[t/z}: is a notation which denotes a new object created by
substituting all occurrences of z in y by ¢; z,y,t € Object
A element(z; y).

Appendix 187

2. Objects in programming languages
The Duplex shell is independent from the programming languages which might
be used for programming in Duplex shell. However, the Duplex shell is de-
signed, based on the following definitions.
Datatype =g {z|z is a definition of data type and 3!y € Id(name(z) = y).}ZH
Udatatype =4 {z|x € Datatype which is defined by users.}
Sdatatype =45 {z|z € Datatype which is defined in programming language.}
Oprt =4 {z|z is an implementation of a user-defined operation(program
unit); and ls € Oprtsig(element(s; oprt) A signature(z) = sA
name(oprt) = name(s))}
Ezpr =4 {z|z is an expression in a programming language.}

Id =4 {z|z is an identifier in a programming language.}

Oprtsig =4 {z|z is the heading of an operation in a programming language;
3y € Id(element(y;) A name(z) =y).}

Variable =4 {z|z is a variable in a programming language.}

3. Objects in the Duplex

3.1. Basic objects and object sets

The basic objects in the Duplex shell are defined as tuples with the form
T =gf< T1,T2,..., Ty >: expression which is read as “ x consists of 1, 9, ..., 2,
with the condition of ezpression”; the expression is a Boolean expression.

21t We assume that any data type in programming language has a name. Although there
might be anonymous data types, any anonymous data type can be substituted by a named
data type, which is consistent with the application in the Duplex shell.

188 Appendix

As a convention, each object defined in this section implies an object set.
We use an identifier beginning with a capital letter to stand for the set, while
the identifier in lower-case letters stands for an instance of the object. For
example, the virtual operation is defined in the form voprt =< ... > This
definition implies a definition of a set: Voprt =4 {voprtjvoprt =4#< ... >}.

In addition, the object sets used in the section, Cmp, and Cname are de-
fined in 4.3.

¢ Duplex shell, duplez, is a 3-tuple which consists of a set of Scomp, Scp, a set of

Ocomp, Ocp, and an operation generator, generator.

duplez =4 < Scp, Ocp, generator > .

e Ocomp, ocp , is an 8-tuple which consists of the name of the Ocomp, oname, a set of
data types, Datatype’, a set of public variable declarations, Pubdata’, a set of private
variable declarations, Pridata, a set of Operation implementations, Oprt’, a set of
virtual operations, Voprt', and Inkerit, which is a set of names of other Ocomps
inherited by the Ocomp.

ocp =41 < oname, Datatype', Pubdatd’, Pridata’,Oprt', Voprt', Inherit’ >:
oname € Id A name(ocp) = onameA
Datatype' C Datatype A Pubdata' C PubdataA
Pridata’ C Pridata A Oprt’ C OprtA
Voprt' C Voprt A Inherit’ C Inherit.

e private variable declaration, pridata, is a 3-tuple which consists of a mark for pri-
vacy, primark, a name of a data type, {ypename, and a set of variables, Privariable.

pridata =4 < primark,typename, Privariable >: primark € IdA
typename = name(datatype) A datatype € DatatypeA
Privariable C Variable.

o public variable declaration, pubdata, is a 3-tuple which consists of a mark for
publicity, pubmark, a name of a data type, typename, a set of variable, Pubvariable.

Appendix 189

pubdatae =g < pubmark, typename, Pubvariable >, pubmark € IdA
typename = name(datatype) A datatype € DatatypeA
Pubvariable C Variable.

¢ virtual operation, voprt, is a 2-tuple which consists of an operation signature,
oprtsig, and a name of an Scomp, sname. The name of the operation signature is
the name of the virtual operation.

voprt =gr < oprisig, sname >: oprisig € Oprisigh
signature(voprt) = oprtsig A name(voprt) = name(oprtsig)A
sname € ID A Tlscp € Scp(sname = name(scp)).

¢ inherit, inherit, is a name of an Ocomp.

inherit =4 < = >: & = name(ocp) A ocp € Ocp.

® Scomp, scp, is a 6-tuple which consists of a name of the Scomp, sname, a set of al-
gorithm structure specifications, Structspec’, a set of algorithm structures, Struct’, a
set of operation specifications, Oprispec, a default instantiation description, de fault,
and a set of instantiation descriptions, Desc'.

scp =g < sname, Structspec’, Struct’, Oprtspec’, de fault, Desc’ >:
sname € Id A name(scp) = snameA
Structspec’ C Structspec A Structspec’ # ¢
Struct’ C Struct A Struct’ # ¢
Oprtspec’ C Opritspec A default € DefaultA
Desc' C Dese.

e algorithm structure specification, structspec, is a 3-tuple which consists of the
name of the algorithm structure, structname, a set of generic abstract data types,
Abstype’, and a set of generic expressions, Mezpr'.

structspec =g < structname, Abstype’, Mezpr’ >:
structname € Id A Abstype’ C AbstypeA

190

Appendix

Mezpr' C Mexpr A name(structspec) = structname.
4 P

¢ algorithm structure, struct, is an operation in which one or more names of data

types, one or more names of operations, and/or one or more expressions are substi-
tuted by the generic parameter,macro. In addition, the name of the operation is the

name of algorithm structure.

struct =4 < © >: T = oprt[macrofatom] V & = struct[macro’/atom’] :
oprt € Oprt A macro, macro’ € Macro A (Jy,y’ €
(Elem U Datatype)(atom = name(y), atom’ = name(y’))V
(atom, atom’ € Ezpr)) A name(struct) = name(oprt).

operation specification, oprtspec, is a 2-tuple which consists of an operation sig-
nature, oprtsig, and a set of component names,Cname”.

oprtspec =g < oprtsig, Cname" >: signature(oprtspec) = oprisig
name(oprtspec) = name(oprtsig) A Cname” C Cname.

default instantiation description, default, is a 3-tuple which consists of a mark
for default, demark, a set of generic assignments, M’, and a set of component names,

Cname’.

default =4 < demark, M',Cname’ >: demark € Id A M' C MassignA
Cname' C Cname.

instantiation description, desc, is a 2-tuple which consists of the name of the in-
stantiation description, descrame, and a set of generic assignments, M".

desc =4 < descname, M” >: descname € Id A M" C MassignA
name(desc) = descname.

generic abstract data type, abstype, is a 2-tuple which consists of a set of generic
data types, Mdatatype’, and a set of generic operations, Moprt'.

Appendix 191

abstype =4 < Mdatatype', Moprt' >:
Mdatatype' C Mdatatype A Moprt' C Moprt.

e generic data type, mdatatype, is a generic parameter, macro or a name of a user-
defined datatype.

mdatatype =4 < z >: (z € Macro) V y((y € Sdatatype)A
(z = name(y)).

® generic operation, moprt, is a 4-tuple which consists of the name (generic) of the
operation, mname, a set of generic inputs, Minput, a set of generic outputs, Moutput,

and a set of accessible generic data types, Maccess.

moprt =4 < mname, Minput, Moutput, Maccess >:
mname € Macro A Minput C MdatatypeA
M output C Mdatatype A Maccess C Mdatatype.

® generic expression, mezpr, is a 2-tuple which consists of the name (macro) of the

expression, ezprname, and a set of expressions, Ezpr'.

mezpr =< exprname, Expr’' >: exprname € Macro A Exzpr’ C Ezpr.

e generic parameter, macro, is an identifier which is an element of a macro assign-
ment.

macro =4 < identifier >: identifier € Id A Imassign € Massign(
element(identi fier; massign))

¢ value, value, is a name of an element of Elem (see also 4.3), a name of a data type,

or an expression.

value =4 < v >: 3z € (Datatype U Elem)(v = name(z))
V(v € Expr).

192 Appendix

¢ generic assignment, massign, is a 2-tuple which consists of an identifier (generic

parameter) and a value.

massign =4 < identi fier, value >: value € ValueA
identifier € Id.

o full name, fullname(z), is a 2-tuple which consists of the name of the element z
and the name of a component to which the element belongs.

fullname(z) =4 < name(z),name(cmp) >: element(z;cmp) A cmp €
Cmp.

¢ operation generator, generator, is defined in a separate section “Operation gen-

erator”.
generator =g < ... >

3.2. Auxiliary definitions

In this section a complete instantiation description, descz, is defined in terms
of an instantiation description, desc and its default, default.

Let scp € Sep;
element(desc, de fault, oprtspec; scp);
element(descname, M"; desc);
element(M', Cname'; de fault);
element(Cname"; oprtspec) A name(oprtspec) = name(desc);

descx =4 < descname, M",Cname™” >:
Cname"” =4 {z|z € (Cname’' U Cname")}
M" =g {z|c € M" V (z € M' A ~3macro € Macro
(element’(macro; M") A element(macro; z))}

3.3. Additional object sets

By using the definitions in section 3.1, 3.2, we define some other object sets
as follows:

Appendix 193

— the elements of an algorithm structure, the name of the elements.

Elem =4 {z|z € (Oprt U Oprtspec U Voprt U Struct U Udatatype)}
ElemName =g {z|3y(y € Elem A z = name(y))}

— The members of an Ocomp, the names of the members.
Memb =4 {z|z € (Oprt U Voprt U Pubdata U Datatype)}
MembName =4 {z|3y(y € Memb A z = name(y))}
— Components, the name of the components.
Cmp =g {z|z € (ScpU Ocp)}
Cname =4 {z| Iemp € Cmp(z = name(cmp))}
— The basic object sets.
Object’ =4 {Cmp, Datatype, Expr,Oprt, [d, Oprtsig, Variable,
Struct, Structspec, Oprispec, De fault, Desc, Descz,

Massign,Value, Macro, Pridata, Pubdata,
Voprt, Inherit}

— Basic objects, the names of the objects.

Obj =g4r {z|qy(z € y Ay € Object')}
ObjName =4 {z|qy(y € Obj A ¢ = name(y))}

— Objects.

Object =4 {z|(z € (Obj U ObjName)}

194 Appendix

4. Axioms and transformation rules

The notation transform is defined as: for all information z and y, of which
z is said to be transformed into y, holds that there is a function (practical
algorithm) with input z and output y. For further discussion, three symbols
are defined as follows:

ez — yor %: z can be transformed into y. As an abbreviation,
z «— y denotes (z — *y) A (y — *z) : &,y € Object; and
z — y, z denotes (z — y) A (z — 2) : z,y,z € Object;

o £ — *y: (x — y) V 3z € Object((z —> *x2) A (z — *y)) :
z,y € Object.

¢ 2+ 3 : A map from domain z to domain y: z,y C Object.
To be sure not to mix up things, we also use z «— y to denote
Tr— YyAyr— 2.

¢ ObjName «— Object;

Vscp € Sep,ocp € Ocp
Let
scp =< sname, Structspec’, Struct', Oprtspec’, de fault, Desc’ >
ocp =< oname, Datatype', Pubdata’, Pridata’, Oprt',Voprt', Inherit' >
EE =4 {Cmp, Structspec’, Struct’, Oprtspec’, Desc/,
Datatype’, Oprt’,Voprt'}

— Object names in certain domains must be unique.

VE ¢ EE,z,yc E
name(z) = name(y) — =y (A1)
— A component name can be transformed into the component and vice versa.

VYemp € Cmp

name(cmp) «— cmp (1.1)

Appendix 195
¢ Voprt — Oprtspec X Scp

Vvoprt € Voprt 3lscp € Sep, oprtspec € Oprispec.
Let voprt =< oprtsig, sname >

— A virtual operation, voprt, can be transformed into an operation specification,

oprtspec and an Scomp, scp

voprt — oprtspec, scp (A.2)

— If a virtual operation, voprt, is transformed into an operation specification,
oprtspec, and an Scomp, scp, then the operation specification is an element of
the Scomp, and the signature of the operation specification is the same to the

signature of the virtual operation.

voprt — opritspec, scp

(A.3)

name(scp) = sname
element(oprtspec; scp)
signature(oprtspec) = oprtsig

e Inherit:

— If the name of an Ocomp, ocp’, appears in an inherit list, Inherit, of another
Ocomp, ocp, all members (€ Memb) of the Ocomp belong to the other Ocomp,
except the elements which are redefined in the other Ocomp.

et
ocp =< oname, Datatype’, Pubdatd’, Pridata’, Oprt', Voprt', Inherit' >
Yoep, ocp’ € Ocp, Inherit’ C Inherit

name(ocp’) € Inherit' A
element(Inherit'; ocp)

element'(z'; ocp’)A
Va!,z € Memb element'(x; ocp)A — element(z’; ocp)
name(z') # name(z)

(A.4)

196 Appendix

¢ Variable

— In an Ocomp a variable can be private or public, but not both.

Vddecl’, ddecl" € (Pridata U Pubdata), variable’ € Variable,
ocp € Ocp

ddecl’ € Pridata
ddecl” € Pubdata
element(Pridata, Pubdata; ocp)

element(variable’; ddecl’) — —~element(variable’; ddecl”)

(A.5)
¢ Oprtspec «— Desc

— In an Scomp an operation specification, oprtspec, can be transformed into an

instantiation description, desc, and vice versa. The names of both are the same.
Yoprtspec € Oprtspec, scp € Scp, Ildesc € Desc

element(oprtspec; scp)

Ab
element(desc; scp)A (4.6)
name(desc) = name(oprtspec)
element(desc; scp) (A7)

element(oprtspec; scp)A
name(desc) = name(oprtspec)

¢ Desc — Struct

— In an Scomp to any instantiation description, desc, there is one and only one
algorithm structure, struct, in the Scomp, and one and only one generic assign-
ment, massign, in the instantiation description so that the generic parameter,
macro, of the generic assignment is identical with the name of the algorithm

structure.

Appendix 197

Vdesc € Desc,scp € Scp
Let scp =< sname, Structspec’, Struct’, Oprtspec’, default, Desc' >
desc =< descname, M" > Adesc € Desc’

Almassign € M

Jstruct € Struct’

(massign =< name(struct),
descname >)

element(desc, Struct’; scp) —

(A.8)

e Default x Desc —> Descx

— In an Scomp an instantiation description, desc, and its default, can be trans-

formed into a complete instantiation description, descz.
Vscp € Scp,default € Default,desc € Desc,'descx € Descz

element(de fault, desc; scp)
default,desc — descz

(A.9)

¢ Descx x Struct — Oprt

Vdesc € Desc,scp € Sep
Let scp =< sname, Structspec’, Struct’, Oprtspec’, de fault, Desc' >

— In an Scomp a complete instantiation description, descz, and an algorithm

structure, struct, can be transformed into an operation, oprt.

element(desc; Desc')A
default,desc — descz

Vstruct € Struct’, Joprt € Oprt
(descz, struct — oprt)

(A.10)

— For each instantiation description, desc, there is one and only one algorithm

structure, struct, in an Scomp. If the instantiation description and its default

198 Appendix

can be transformed into a complete instantiation description, the complete in-
stantiation description and the algorithm structure can be transformed into an
operation. As a result, the signatures of the operation are the same to those of
an operation specification in the Scomp. The name of the operation specifica-

tion is the same as the instantiation description.

element(desc; Desc')A
default, desc — descz

A1l
Jlstruct € Struct’, oprt € Oprt, oprtspec € Oprtspec ()

(descz, struct — oprtA
name(desc) = name(oprispec)A
signature(desc) = signature(oprt)

— If in an Scomp an operation, opri, is transformed from a complete instantia-
tion description, descz, and an algorithm structure, struct, then the operation
is produced by substituting every generic parameter, macro, appearing in the
algorithm structure with the corresponded value contained in the instantiation

description.

Vstruct € Struct’,descz € Descz,oprt € Oprt
Let descx =< descname, M",Cname"' >
massign =< macro, value >: Ymassign € M""

descz, struct — opri

A.12
oprt = struct[value/macro]A ()

element'(macro; struct)

¢ Struct — Struct

— If the name of an algorithm structure, struct, appears in another algorithm
structure, struct’, the two algorithm structures must belong to the same Scomp,
sCp.

Vstruct, struct’ € Struct

element(name(struct’); struct)
Iscp € Scp(element(struct; scp)) — element(struct’; scp)

(A.13)

Appendix ' 199
¢ Macro —— Value

Vmassign € Massign, structspec € Structspec.

Let structspec =< structname, Abstype', Mexpr' >,
El = Oprt U Voprt U Oprtspec U Struct,
Abstype’ = {abstype|abstype =4 < Mdatatype’, Moprt’ >} and
massign =< macro, value > .

— If the type of a generic parameter is a generic data type, macro € Mdatatype',
the value of the parameter must be a name of a data type.

Jdatatype € Datatype(

!
macro € Mdatatype’ — value = name(datatype))

(A.14)

— If the type of a generic parameter is a generic operation, macro € Moprt’, the

value of the parameter must be a name of an element of El.

macro € Moprt' — Jelem € El(value = name(elem)) (A.15)

— If the type of a generic parameter is a generic expression, macro € Mexpr’, the
value of the parameter must be an expression, ezpr.

macro € Mezpr' — Jexpr € Ezpr(value = expr) (A.16)

¢ ElemName — Elem

Vsep € Sep
Let scp =< sname, Structspec’, Struct’, Oprtspec’, de fault, Desc' >
default =< demark, M',Cname’ >

200

Appendix
desc =< descname, M" >
oprispec =< oprtsig,Cname” >
— Hin an Scomp a name of an element of Elem appears in a de fault instantiation
description or in an algorithm structure, the element is an element of the Scomp
or an element of another component. For the latter, the component name must
be an element of Cname’ in the defaunlt instantiation description.
Ve € Elem, struct € Struct'3emp € Cmp
element’(name(e); default)Vv
element'(name(e); struct) (A.17)
element'(e, cmp)A |
name(cmp) € Cname’
|
e € (Struct’ U Oprtspec’)
If in an Scomp a name of an element of Elem appears in an instantiation de-
scription, desc, the element is an element of the Scomp or an element of another
component. For the latter, the component name must be an element of Cname”
in an operation specification, oprtspec. The name of the operation specification
is the same to the instantiation description.
Ve € Elem,desc € Desc’,Joprtspec € Oprtspec’,emp € Cmp
element'(name(e); desc) (A.18)
element(e, cmp)A ’
name(desc) = name(opritspec)
name(cmp) € Cname”
\
e € (Struct’' U Oprtspec’)

¢ Massign

Vscp € Scp
Let scp =< sname, Structspec’, Struct’, Oprtspec’, de fault, Desc’ >
default =< demark, M’,Cname’ >

Appendix 201

desc =< descname, M" >

— In an instantiation description, desc, or its de fault of an Scomp, there are no
two generic assignments, massign and massign’, containing the same generic

parameter, macro.

Ymacro € Macro, massign, massign’ € M’ (or € M")

element(macro; massign)A
element(macro; massign')

. —J (A.19)

Massign = massign

— Ifin an Scomp a generic parameter, macro, appears in an instantiation descrip-
tion, it must appear in the default instantiation description of the Scomp as
well.

Vmacro € Macro

element’(macro; M") — element'(macro; M) (A.20)

— In an instantiation description of an Scomp only one generic assignment, massign,
is allowed to have a generic parameter, macro, which is identical with the name

of an algorithm structure in the Scomp.

Vstruct, struct’ € Struct’, massign, massign’ € M’
Let massign =< macro,value >
massign' =< macro,value’ >

macro = name(struct)A
macro’ = name(struct’)A

- A21
massign = massign' (A-21)

¢ Macro

— In an Scomp an identifier is a generic parameter, macro, of an algorithm struc-
ture, struct, if and only if the same identifier appears, as a generic parameter,

in the default instantiation description of the Scomp.

202 Appendix

Vid € Id, macro € Macro

element/(id; Struct’)A
element'(macro; M)A
td = macro

A.22
element’'(macro; Struct) ()
¢ Object — Object
Va,b € Object
element’(a; b) (A.23)
b — *a ’
a—b
a_;-—*g’ (A¢24)
a — xb,b — *c (A.25)
a — *c)
a A (a — xb)
5 (A.26)

5. Theorems

In this section several theorems are presented, which are proved in [70] based
on the axioms and transformation rules defined in the previous section.

Theorem 1 In the Duplex shell any virtual operation can be transformed into
an operation through a mechanical method. The signature of the transformed
operation is the same to the signature of the virtual operation.

(a) Yvoprt € Voprt,Joprt € Oprt

voprt — *oprt (A.27)

Appendix 203

(b) Vvoprt € Voprt,Joprt € Oprt
voprt — *oprt
signature(voprt) = signature(oprt)

(A.28)

Theorem 2 For all operation specifications and Scomps, if an operation spec-
ification is an element of an Scomp, the operation specification and the Scomp
can be transformed into an operation; and if an operation specification and
an Scomp are transformed into an operation, the signature of the operation is
identical with the signature of the operation specification.

Yoprtspec € Oprtspec,scp € Scp

(a)

element(oprtspec; scp)

(A.29)
oprispec, scp — oprt

(b)
oprtspec, scp — opri
signature(oprtspec) = signature(oprt)

(A.30)

Theorem 3 For all virtual operations, operations and any member, €, of the
set Elem, there is a transformation. If a virtual operation is transformed
into an operation following the transformation and the name of e occurs in
the operation, then a set of component names can be transformed from the
virtual operation, so that the name of the component to which the e belongs is
a member of the set.

Ye € Elem,voprt € Voprt,oprt € Oprt,3 — %

voprt — xoprt A element(name(e); oprt)

A.31
dCname* C Cname(voprt — *Cname®)A ()

Jemp € Cmp(element’(e; cmp) A (name(cmp) € Cname®)

Theorem 4 For all virtual operations and operations, if a virtual operation
is transformed into two operations, the two operations are identical with each
other.

Yvoprt € Voprt, oprt,oprt’ € Oprt,3 — *

voprt — soprt', oprt
oprt’ = oprt!

(A.32)

204 (Appendix
Theorem 5 The full name of an element of a component (Scomp or Ocomp)
can be transformed into the element and the component.

Velem € Elem,3lemp € Cmp

fullname(elem) — elem, cmp : element(elem, cmp) (A.33)

6. Operation generator

The operation generator is a function which generates an implementation of
any given virtual operation as well as all the implementations of its subroutines
called by the operation and the data types referred to by the operation.

The algorithm of the operation generator is specified by using Pascal-like
programming language constructs and the notations used previously in the
semantic specification.

In the generator specification, the following assumptions are held:

scp € Scp; ocp, ocp’, ocp” € Ocp; oprispec € Oprispec;
struct € Struct; voprt € Voprt; oprt, oprt’, oprt” € Oprt;
udatatype € Udatatype; elem € (Oprt U Udatatype)

and the following predicate and function are available.

atomic(elem): predicate: true, if elem invokes no oprt other than
itself; false, otherwise. elem is a program construct.
get(z,y): a function in which z is a notation, y is an
object. To each call of the function, the function returns a
different object which is denoted by = and is an
element of y. It returns NIL if there is no more
different object to be returned.

The specification of the operation generator is as follows.

Generator(voprt) : return set /* 3z((xz € Ocp) A (element(voprt,z)) */

begin
voprt — oprtspec, scp : element(oprispec, scp); /* A1,A,2 x/
return(Generator’(oprtspec, scp)

end

Appendix 205

Generator'(oprtspec, scp) : return set / * element(oprispec; scp) * /
begin
oprispec, scp — oprt, Oprt'; /* theorem 2, A.6, A.10 */
return (OprtOfScomp(oprt, Oprt’, scp))
end

OprtOfScomp(oprt, Oprt', scp) : return set [+ oprt, Oprt’ generated from scp */
begin
Bag := {oprt} U TypeOfScomp(oprt);
z := get(name(oprt’), oprt);
while (z # NIL) do [+ process the subroutines of oprt. */
begin
if 3y((y € Bag) A (zx = name(y)) then

)
else if 3z, struct(z = name(struct) A element(struct;scp)) then
Bag := Bag U OprtOfScomp(oprt', Oprt’, scp);
/* oprt' € Oprt’ A name(oprt’) = z, see also A.10 */
else if Joprispec(z = name(oprispec) A element(oprtspec,scp)) then
Bag := Bag U Generator'(oprispec, scp);
else if Jvoprt(z = name(voprt) A element(fullname(voprt);oprt)) then

begin
fullname(voprt) — voprt, ocp; /* theorem 5 */
Bag := Bag U Generator(voprt)
end
else if Joprt”’(z = name(oprt”) A element(fullname(oprt”; oprt) then
begin
Ffullname(oprt”) — oprt”, ocp; /* theorem 5 x/
Bag := Bag U OprtO fOcomp(oprt", ocp)
end
z := get(name(oprt'), oprt)
end
return(Bag)

end

206 Appendix

OprtOfOcomp(oprt, ocp) : return set [+ element(oprt;ocp) */

begin
Bag := {oprt} U TypeOfOcomp(, oprt, ocp);
z := get(name(oprt’), oprt);
while (z # NIL) do [+ process the subroutines of oprt */
begin
if Jy((y € Bag) A (z = name(y)) then /x recursive */
else if z = name(oprt’) A element(oprt’;ocp) then
Bag := Bag U OprtO fOcomp(oprt’, ocp);
else if r = name(voprt) A element(voprt; ocp) then
Bag := Bag U Generator(voprt);
t := get(name(oprt'), oprt)
end
return(Bag)
end

TypeOfScomp(oprt) : return set [+ oprt generated from an Scomp */
begin
Bag := ¢;
z := get(fullname(udatatype), oprt);
while (z # NIL) do [+ process data types defined in ocp’s +/
begin
Ffullname(udatatype) — udatatype, ocp; /* theorem 5 */
if atomic(udatatype) then
Bag := Bag U {udatatype};
if —atomic(udatatype) then
Bag := Bag U {udatatype} U
TypeO fOcomp(udatatype, ocp);
z := get(fullname(udatatype), oprt)
end
z := get(name(ocp’); oprt);
while (z# NIL) do /x process data types which are ocp’s */
begin
Bag := Bag U {ocp'} U inherit(ocp’);
z := get(name(ocp'), oprt)
end
return (Bag)
end

Appendix 207

TypeOfOcomp(elem, ocp) : return set [+ element(elem;ocp) */
begin
Bag := {elem};
z := get(name(udatetype), elem);
while (z# NIL) do [+ process udatatype defined in ocp */
begin
if element(fullname(udatatype); ocp) then /[inherit */

if 3y((y € Bag) A (z = name(y)) then /* recursive x/

)
else if atomic(udatatype) then
Bag := Bag U {udatatype};
else if —atomic(udatatype) then
Bag := Bag U {udatatype} U
TypeOfOcomp(udatatype);
z := get(name(udatetype), elem)
end
z := get(fullname(udatatype), oprt);
while (z# NIL) do /* process inherited udatatype x/
begin
Fullname(udatatype) — udatatype, ocp; /* theorem 5 x/
if atomic(udatatype) then
Bag := Bag U {udatatype};
if —atomic(udatatype) then
Bag := Bag U {udatatype} U
TypeO fOcomp(udatatype, ocp);
x:=get(fullname(udatatype), oprt)
end
z = get(name(ocp’), oprt); _
while (z # NIL) do /x process data types which are ocp’s */
begin
Bag := Bag U inherit(ocp’);
z = get(name(ocp'), oprt)
end
return(Bag)
end

208

Appendix

Inherit(ocp): return set /x get inherited ocp’s */

begin
Bag = {ocp};
z := (get(name(inherit), ocp); [+ name(inherit) listed in the heading of ocp */
while (z # NIL) do
begin
Bag := Bag U {ocp} U inherit(ocp);
T ;= (get(name(inherit), ocp)
end
end
return (Bag)
end

7. The syntax of the components

The syntax of the components (Scomps and Ocomps) is represented in an Ex-
tended Backs-Naur Form at an abstract level; the detailed language constructs
are illustrated in natural language.

The syntax of the Ocomp specification

<Ocomp>::=‘Ocomp’ <Oname> [‘inherit:’] <inherit-list>

‘{’<data-part><operation-part>‘}’

<Oname>::=<identifier>

<inherit-list>::=[] | <Oname>{‘,’<Oname>}g
<data-part>::=‘data:’ {<variable-decl>}¢
<operation-part>::=‘operation:’{ <Ocomp-oper-spec>‘;’}g

< identifier >::=< defined in programming language >
<variable-decl>::=<type><variable-list>
<Ocomp-oper-spec>::={ <Oper-signature>[:<Sname>]}g

<type>::=<identifier>

<variable-list >::=<variable>{‘,’<variable> }¢
<oper-signature>::=< a heading of a program unit>
<Sname>::=<identifier>

<variable>::=<identifier>

Appendix 209

The syntax of the Ocomp implementation

<Obody>::=*Obody’ <Oname>
‘{’<type-var-dd><operation-define>‘}’

<type-var-dd>:=‘data:’<type-define><private-variable-decl>
<operation-define>::=‘oper:’<a program unit>

<type-define>:=<...>
<private-variable-decl >::=<variable-decl >

< variable-decl >::=< variable declaration >

The syntax of the Scomp specification
<Scomp>::=‘Scomp’<Sname> *{’ <Alg-spec-part><Oper-spec-part>’}’

<Sname>::=<identifier>
<Alg-spec-part>::=‘algorithm:’ {<alg-spec>‘;’}?
<Oper-spec-part>::=‘operation:’{<Scomp-oper-spec>‘;’}¢

<alg-spec>::=<stru-name>‘{’ { <M-abst-type> }7
{ <M-expr-list> }§ ‘}

<Scomp-oper-spec>::=<signature>:<comp-list>

< stru-name >:=< identifier >
<M-abst-type>::="type:’ { <M-type-list>’;’ }3

*oprt:’ { <M-oprt-list> }3
<M-expr-list>::=’expr:’ { <M-expr-name>’={’ <expr-list> '}’ }¢
<signature>::=<a heading of a program unit >
<comp-list>::={ [<Oname> | <Sname>] }g

<M-type-list>::=<M-type>{ ’,’<M-type>}o
<M-oprt-list>::=<M-oprt>’; { < M-oprt >’;’ }3
<M-expr-name>::=<identifier>
<expr-list>::=<expression>{ ’,’<expression> }g
<Oname>::=<identifier>
<Sname>::=<identifier>

<M-type>::=<identifier>
<M-oprt>::= <type><M-oprt-name>’(’<type-list>’)’ <read-write>
< expression >::=< defined in programming language >

210 Appendix

<type>::=<M-type> | <basic-type>
<M-oprt-name>::=<identifier>
<type-list>:=<type>{ ’,’<type>}¢
<read-write>::={ <RW> <type-list>’;’ }3

<M-type>::=<identifier>
<basic-type>::=<identifier>
<type>::=<identifier>
<RW>:="RW’| 'R’ | 'W’

The syntax of the Scomp implementation
<Sbody>::=*Sbody’<Sname> {’ <Alg-desc-part><Oper-desc-part>’}’

<Sname>::=<identifier>
<Alg-desc-part>::=‘algorithm:’ {<Algorithm-structure>‘;’}7
<Oper-desc-part>::=‘instant:’{ <inst-description>‘;’}?

<algorithm-structure>::=<macro> < text><algorithm-structure> |
<text><macro><algorithm-structure>

<inst-description>::=<desc-name>‘:’<assignment-list> |
‘default:’<assignment-list>*:’<comp-list >

< macro >::=< identifier >

<text>::=<any original part of a program unit>
<desc-name>::=<identifier>
<assignment-list>::=<assign> | <assign><assignment-list>
<comp-list>::={ [<Oname> | <Sname>] }¢

<assign>:=‘{’<macro>=‘{’<text>‘}"}’ |*{*** <desc-name>‘}’
<Sname>::=<identifier>
<Oname>::=<identifier>

Abbreviations

ABT, Abstype, abstype:
Abody:

BOOL:

Cmpt, Cmp, cmp:
Cname, cname:
Datatype, datatype:
Desc, desc:

Descx, descx:

EDFG, edfg:
EDFG:

ELEM, Elem, elem:
Expr,expr:

INST, inst:

LSC:

MIL:

M:

Maccess:

Massign, massign:
Mdatatype, mdatatype:
Mexpr, mexpr:
Minput:

Moprt, moprt:
Moutput:

OFS:

Obase:

Obj: .

abstract data type.

actor body.

Boolean.

component, Scomp or Ocomp.
component name.

data type.

instantiation description.

the instantiation description,
merging default.

Extended Data Flow Graph.
Extended Data flow graph.
element.

expression.

instance.

Large-Scale Component.
Module Interconnection Language.
macro.

macro of accessed data type.
macro assignment.

macro data type.

Macro expression.

macro input.

macro operation.

macro output.

Output Fire Set.
Object-oriented component base.
object.

211

212

Obody:

Ocomp, Ocp, ocp:
Oname, oname:
Oprt, oprt:
Oprtsig, oprtsig:
Oprtsig, oprtsig:

Oprtspec, oprtspec:

POST, post:
PRE, pre:
Pridata, pridata:
Privariable:
Pubdata, pubdata:
Pubvariable:
RITL:

RMM:

RSL:

SEPDS:

SMS, sms:
Sbase:

Scomp, Scp, scp:
Sdatatype:
Sname, sname:

Structspec, structspec:

Udatatype:
Voprt, voprt:
ddecl:
descname:
exprname:
fullname:
mname:
primark:
pubmark:
struct:
structname:

Abbreviations

Ocomp Body.

object-oriented component.

name of Ocomp.

operation.

operation signature.

operation signature.

operation specification.

Post Condition.

Precondition.

private data type declaration.
private variable.

public data type declaration.
public variable.
Reuse-In-The-Large.

Resource Management Menu.
Raise Specification Language.
Support Environment for
Prototyping Distributed Systems.
Students Management System.
Structure-based component base.
structure-oriented component.
system defined data type.

the name of Scomp.

the specification of algorithm structure.
user-defined datatype.

virtual operation.

data declaration.

the name of an instantiation description.
the name of expression.

full name.

name of macro.

the mark of private data.

the mark of public data.
algorithm structure.

the name of algorithm structure.

Index

A component, 2

abstract algorithm, 19 component classification, 5
abstract data type, 17 component management, 4
abstraction, 15 component manager, 23

action, 39 component repository, 5

active version, 169 component representation, 4
actor, 38, 40, 105 component retrieval, 5
adaptability, 18 composibility, 18

aggregation, 58 composition based approach, 18
algorithm, 19 composition process, 78
algorithm structure, 17 conceptual model, 69

algorithm tailoring, 19 connection consistency, 107
alternative design, 166 convertability, 70

analysis, 3, 79 current design, 169

application, 2 current version, 169

application domain, 11

application management, 176 D

application prototyping, 119 data transform, 105

application reuse, 2 decomposition, 58

architecture, 5 Def. 1 (non-primitive actor), 40
artifact, 2 Def. 10 (stronger constraints), 121
assertion, 69 Def. 11 (the refinement of an EDFG),
B 121

Def. 12 (prototype), 122

browsing, 157 L
Def. 2 (generic link type), 50

C Def. 3 (refinement consistency), 89
class, 19, 140 Def. 4 (syntactic consistency), 106
complete design instance, 79 Def. 5 (connection consistency), 107

213

214

Def. 6 (the refinement consistency

of an actor), 107
Def. 7 (well-formed edfg), 109
Def. 8 (well-structured edfgs), 114

Def. 9 (loosely constrained EDFG

and actor), 120
design, 3, 80
design framework, 14, 60
design information, 2, 176
design instance, 14, 60
design process, 38
design template, 37
different levels of abstraction, 15
domain analysis, 81
domain entities, 60
domain instance, 96
domain model, 60
domain resources, 14, 60
dynamic modelling, 11

E

EDFG, 38, 44

edfg, 103

edfg-merging, 103
evolutionary prototyping, 119
external link, 104

F

figure 2.1. A reuse supp..., 24
figure 2.2. The syntax of ..., 27
figure 2.3. The syntax of ..., 29
figure 2.4. An Scomp Spec..., 33
figure 2.5. An Scomp Impl..., 34
figure 2.6. An Ocomp Spec..., 35
figure 2.7. An Ocomp Impl..., 35
figure 3.1. The definition ..., 39

Index

figure 3.10. A template with ..., 55
figure 3.2 The module stru..., 39

figure 3.3.
figure 3.4.
figure 3.5.
figure 3.6.
figure 3.7.
figure 3.8.
figure 3.8.
figure 3.9.
figure 4.1.
figure 4.2.
figure 4.3.
figure 4.4.

The represent..., 41
The rules for ..., 43
An actor, 45

edfg and EDFG, 46
The system ..., 47

A rewritten ..., 51
The state ..., 177

A template, 52

The abstractions..., 58
The pragmatic ..., 62
The operating ..., 64
The specification ..., 66

figure 4.6.a. User interface ..., 74
figure 4.6.b. User interface ..., 74

figure 4.7.
figure 4.8.
figure 5.1.
figure 5.2.
figure 5.3.

The process ..., 77
An information ..., 84
Hierarchical..., 90
The refinement ..., 95
Data proc..., 97-99

figure 5.3a. A type tree, 100

figure 5.4.
figure 5.5.
figure 5.6.
figure 5.7.
figure 5.8.
figure 6.1.
figure 6.2.
figure 6.3.
figure 6.4.
figure 6.5.
figure 6.6.
figure 7.1.
figure 7.2.

An edfg and ..., 106
The constructors ..., 112
A (well-formed) ..., 114
The constructors ..., 115
A (well-str..., 118

An example ..., 125

An example of ..., 125
An example ..., 126
The refine..., 126

The process ..., 127

A large-scale..., 130
The H-structure ..., 136
The top-node of ..., 138

Index

figure 7.3. Some outputs of ..., 139
figure 7.4. The Design..., 144
figure 7.5. The Design ..., 146
figure 7.6. The design..., 149
figure 7.7. The design ..., 151
figure 7.8. The Design ..., 154
figure 7.9. The design..., 156
figure I1. The user interface..., 158
figure I12. The user interface..., 160
figure I3. The user interface..., 162
figure I14. The user interface..., 167
figure I5. The user interface..., 168
flexibility, 18, 48

foreseen reuse, 30

forward engineering, 7

frame, 19

functional management, 176

G

generalization, 59
generic link types, 50
generic parameter, 131
genericity, 19
graphical actor, 104
graphical edfg, 104

H
hierarchical specification, 87
horizontal hierarchy, 40

I

I/O consistency, 107

IFS, 39

implementation, 3, 169
implementation generator, 83
import, 49, 53

incremental domain analysis, 13, 81

215

information hiding, 19

information system, 2, 176
inheritance, 5, 19, 49, 55

input link, 104

instance of a conceptual model, 69
instantiation, 59

interconnection between actors, 105
interim instance, 63

internal link, 104

iterative waterfall mode], 12

L

large-grain component, 5
large-scale component, 14, 60
learning, 167

life-cycle model, 12

link, 39

link type, 40

loosely constrained actor, 120
loosely constrained EDFG, 120

M

management of information systems,
176

manipulating, 163

model, 12, 140

module, 17, 40

module structure, 40

multiple level specification, 87

N
non-primitive actor, 40
non-terminal nodes, 61

o
object, 18, 140
object-oriented abstraction, 22

216

objectivity, 70

Ocomp, 22

OFS, 39

operating model, 63
operation, 23

operation generator, 23
organizational structure, 63
output link, 104

P
parameterization, 59
parameterized class, 140
partial specification, 88
pragmatic model, 61
primitive actor, 40
primitive prototype, 128
process of system development and
maintenance, 12
programming-in-the-small, 8
programming-in-the-large, 9
prototype, 122

Q
quality requirement, 18
queued link, 104

R

re-engineering, 7

refinement, 14, 61

refinement consistency, 88, 89

refinement of an EDFG, 38, 121

refinement structure of a large-scale
component, 73

relatability, 70

retrieval problem, 69

reusability, 38

reuse, 2

Index

reuse infrastructure, 11

reuse-in-the-large, 2

reuse-in-the-small, 2

reuse-supported forward engineer-
ing, 7

reverse engineering, 6

S

scheme, 140

Scomp, 22

semantic data modelling, 69
semantic data models, 69
Semantic databases, 69
simplicity, 18

small system components, 4
specialization, 59

state bearing object, 105
state link, 39, 104

stronger constraints, 121
structure-oriented abstraction, 22
syntactic consistency, 106
system architecture, 37
system component, 2
system design, 37

system development, 3
system life-cycle, 12

system maintenance, 3

T

tailoring, 19

technical management, 176
template, 19, 49

terminal nodes, 61

textual actor, 104

the state model, 176

the state of acceptance, 177

Index 217

the state of development, 177
the state of exploitation, 177
the state of maintenance, 177
the state of use, 177

token, 39

tracing, 48

type, 69

type algebra, 69

U

unforeseen reuse, 30
union link type, 51
use-as-is, 22

A%

version control, 169
vertical hierarchy, 40
virtual operation, 26

w

waterfall model, 12
well-formed edfgs, 109
well-structured edfgs, 114

218 Index

Bibliography

[1] M. Abadi and L. Lamport, The existence of refinement mappings, Pro-
ceeding of the Logic in Computer Science Conference, Edinburgh, Scot-
land, July 1988.

[2] K. Abramowicz, K. Dittrich and others, Damoklas, Data Base Manage-
ment System for Design Application, reference manual, Universitat Karl-
sruhe, release 2.0, March 1988.

[3] G. Arango, DOMAIN ANALYSIS - from Art To Engineering Discipline-,
Communication of ACM, 1989 ACM 0-89791-305-1/89/05000/0152.

[4] C. W.Bachman, The Programmer as Navigator, Comm. ACM, Nov. 1993.

[5] R. Back, A Calculus of Refinements for Program Derivations, Acta Infor-
matica. Vol.25, Springer-Verlag, 593-624.

(6] R. Back, K. Sere, Stepwise Refinement of Action Systems, Structuring
Programming, 12:17-30, 1991.

[7] D. M. Balda, Cost Estimation Models for the Reuse and Prototype Soft-
ware Development Life-Cycle, ACM SIGSOFT, Software Engineering
Notes, vol. 15, No. 3, 1990.

[8] D. Barstow, Domain Specific Automatic Programming, IEEE Transac-
tions on Software Engineering, vol. 7, Jan., 1985.

[9] V. R. Basili, Viewing Maintenance as Reuse-Oriented Software Develop-
ment, IEEE Software, Jan. 1990.

219

220 Bibliography

[10] P. G. Bassett, Frame-based Software Engineering IEEE Software, July,
1987, pp. 9-19.

[11] J. H. ter Bekke, OTO-D: Object type oriented data modelling, Delft
University of Technology, 1990.

(12] J. H. ter Bekke, Semantic Data Modelling in Relational Environment,
PhD thesis, Delft University, The Netherlands, 1991.

[13] J. H. ter Bekke, Semantic Data Modelling, Print-Hall, 1992.

[14] V. Berzins and Lugi, Software Engineering with Abstractions, Addison
Wesley Publishing Company, 1990.

[15] T.J. Biggerstaff and C. Richter, Reusability Framework, Assessment, and
Directions, IEEE Software Vol 4 (2), March 1987, pp. 41-49.

[16] T. J. Biggerstaff, Reuse of very Large Scale Components, MCC Tech.
Report, No. STP-363-88.

[17] T.J. Biggerstaff, Design Recovery for Maintenance and Reuse, Computer,
July, 1989, pp 36-49.

[18] T. J. Biggerstaff and A. J. Perlis, Software Reusability Vol. I, II, ACM
press, Frontier Series, 1989.

[19] G. Booch, Software components with Ada Structures, tools, and subsys-
tems, The Benjamin/Cummings Publishing Company, 1987, pp. 21-22.

[20] G.
Booch, Object Oriented Design with applications, Benjamin/Cummings
Publishing Company, 1991.

[21] M. F. Bott and P. J. L. Wallis, Ada and Software Reuse, Ada Europe
Software Reuse Seminar, June, 1988.

{22] M. F.Bott, A. Elliott, and R. J. Gautier, Ada Reuse Guidelines, Ada
Europe Software Reuse Working Group, March, 1987.

[23] B. A. Burton, R. W. Aragon and others, The Reusable Software Library,
IEEE Software V 4 (4), 25-33, July 1987.

Bibliography 221

[24] E. W. Dijkstra, Programming Considered as a Human Activity, Classics
in Software Engineering, New York, NY: Yourdon Press. p.5.

[25] R. C. J. Dur and P. G. W. Bots, Dynamic Modelling of organizations
Using Task/Actor Simulation, in R. L. Croosslin and H. G. Sol (eds.),
Proceedings of the Second International Working Conference on Dynamic
Modelling of Information Systems, Elsevier Science Publishers (North-
Holland), Amsterdam, 1991.

[26] C. Bron, Towards Libraries of reusable Module, Computer Science notes,
Groningen University, The Netherlands, Jan. 1989.

[27] P. D. Bruza, Th.P.van der Weide, The Semantics of Data Flow Diagrams.
Technical Report 89-16, University of Nijmegen, The Netherlands, Oct,.
1989.

[28] J. K. Chaar, ‘Software Design Methodologies, A survey,” Technical Report
RSD-TR-20-87, The University of Michigan, 1987.

[29] T. E. Cheatham, Reusability through Program transformations, IEEE
Transactions on Software Engineering, Vol. SE-10, No. 5, September 1984.

[30] A. Elliott, R. J. Gautier, and P. H. Welth, Component Engineering in Ada
(some problem and some advise), Ada Furope Software Reuse Seminar,
June, 1988

[31] J. Elliot, J.M. Chikofsky, Cross II, Reverse Engineering and Design Re-
covery: A Taxonomy, IEEE Software, Jan, 1990.

[32] J. H. Cross II, Reverse Engineering News Letter, Software Engineering
Technical Committee News Letter, Jan, 1993.

[33] S. Conte, H. Dunsmore and others, A Software Metrics Survey, Rpt num:
STP-284-86, August 20, 1986

(34] S. Cook, Languages and object-oriented programming, Software Engi-
neering Journal, March 1986

[35] B. J. Cox, Planning the Software Industrial Revolution, IEEE Software,
Sept. 1990.

222 Bibliography

[36] G.Cruman, Process programming: A Seductive Danger?, IEEE Software,
May 1987, pp.91-93.

[37] M. Dewey, Decimal Classification and Relative Indez. 19th ed. Albany,
N.Y.: Forest Press, Inc., 1979.

[38] H. Fischer and G. D. Rozenblat, Reverse Engineering Speeds Software
Development, FElectronic Engineering Times, Issue 539, May 1989.

[39] M. K. Franklin and A. Gabrielian, A transformational Method for Ver-
ifying Safety Properties, Real-time Systems Symposium Santa Monica,
California, 1989.

[40] R. B. France, Semantically Extended Data Flow Diagrams: A Formal
Specification Tool, IEEE Trans. on Soft. Eng. vol.18, No. 4, Apr. 1992

(41] W. L. Frank, What Limits to Software Gains? Computer world, pp. 65-70,
May 4, 1981.

[42] M. D. Fraser and others, Informal and Formal Requirements Specification
Languages:Bridging the Gap, IEEE Trans. on Soft. Eng., vol. 17, No. 5,
May, 1991

[43] P. Freeman, Reusable Software Engineering: Concepts and Research Di-
rection, in workshop on Reusability in programming, Alan Perlis, ed pp.
2-16, ITT Programming, Newport RI, Sept. 1983.

[44] A. Gabrielian and M. Franklin, Multiple-level Specification of real-time
systems, Communication of ACM, Vol. 34, No. 5, May 1991.

[45] J.A. Goguen, J.W. Thatcher, and E. G. Wagner, An Initial Algebra Ap-
proach to the Specification, Correctness and Implementation of Abstract
Data Types, in Yeh, R. (ed). Current Trends in Programming Methodol-
ogy, Prentice Hall, 1977, pp. 80-149.

[46] J. A. Goguen, Reusing and Interconnecting Software Components, Com-
puter, Feb., 1986.

[47] K. Havelund and A. Haxthausen, RSL, Reference Manual, Pre-released
document for VDM’90 RAISE tutorial, 1990.

Bibliography 223

[48] S. Hekmatpour and D. Ince, Software Prototyping, Formal Methods and
VDM, Addison-Wesley Publishing Company, 1988.

[49] C.A.R.Haore and N. Wirth, An Axiomatic Definition of the Programming
Language Pascal, Acta Informatica, Springer-Verlag Berlin, 1973. pp 335-
355.

[50] E. Horowitz, and J. B. Munson, An Expensive View of Software Reusabil-
ity, IEEE transactions on Software Engineering, SE-10, 5, Sept, 1984,
477-487.

[51] American National Standard Institute, IEEE standard Glossary of

Software Engineering Terminology, An American National Standard,
ANSI/IEEE, Std 729-1983 Aug., 1983.

[52] A.T.Jazaa and O. P. Brereton, Software Reuse in Ada, Computer Science
Department, University of Keele, U.K., 1990.

[63] T. C. Jones, Reusability in Programming: A Survey of the State of the
Art. IEEFE Trans. on Software Engineering, V 10 (5), 488-493, Sept 1984.

(54] C. B. Jones, System Software Development Using VDM, Prentice/Hall
international, Series in Computer Sciences, 1986.

[65] G.E. Kaiser, D. Garlan, Melding Software Systems from Reusable Build-
ing Blocks. IEEE Software V4 (4), July 1987, pp. 17-24.

[56] G. E. Kaiser, P. F. Feiler, and S. Popovich, Intelligence Assistance for
Software Reuse and maintenance, IEEFE Software, May, 1988.

[57] K. C. Kang, and L. S. Levy, Software Reuse: What’s Behind the Buz-
zword, Technical Report cmu/SEI-89-TR-27, Software Engineering Insti-
tute, Carnegie Mellon University, May, 1989.

[58] J. van Katwijk, A. M. Levy, and others, Software Design for Distributed
(Real-Time) systems using EDFG approach, Report, TWI, Delft Univ.,
Netherlands, 1990.

[59] D. E. Knuth, Fundamental Algorithms, The Art of Computer Program-
ming, 2nd, ed., Vol.1, Addison-Wesley, 1973.

224 Bibliography

[60] K. Lano and P. T. Breuer, From Programs to Z Specification, Z User’s
Meeting, Dec. 1989.

[61] P. Larsen, N. Plat, and Hans Toetenel, A Formal Semantics of Data Flow
Diagrams, submitted for a publication to Formal Aspects of Computing.

[62] L. Latour and others, Theoretical Foundations Working Group Report,
Fourth Annual Workshop on Software Reuse, Reston, Virginia, 18-22,
1991.

[63] M. Lenz, A. Schmid, and P. F. Wolf, Software Reuse through Building
Blocks, IEEE Software, July, 1987.

[64] P. Levy, and K. Ripken, Experience in Constructing Ada Programs from
Non-Trivial Reuse Models, The Ada companion Series: Ada components
and tools, Cambridge University Press, May 1987.

[65] A. M. Levy, H. Corporaal and J. van Katwijk, Design of Parallel Resource
Controller Using EDFG, Parallel Computing 89, edited by D. J. Evans,
G. R. Joubert and F. J. Peters, Elsevier Science Publishers B. V. (North
Holland), 1990.

[66] A. M. Levy, J. van Katwijk, G. Pavlides, and Tolsma, SEPDS: A Support
Environment for prototyping distributed systems, In Proceedings of the
first International Conference on System Integration, New Jersey, USA,
April 1990.

[67) H. Li, An Introduction to Software Reuse, Technical Report No. 91-50,
ISSN 0922-5641, Faculty of Mathematics and Computer Science. Techni-
cal University of Delft, The Netherlands, 1991.

[68] H. Li, and J. van Katwijk, Abstract Data types and algorithm structures
as a basis for Software Reuse, Technical Report 91-51, ISSN 0922-5641,
Faculty of Mathematics and Computer Science. Technical University of
Deift, The Netherlands, 1991.

(69] H. Li, J. van Katwijk, and J. van Zeijl, Component Construction: Prac-
tical Guidelines for the Construction of Reusable Components, Technical
Report 91-89, ISSN 0922-5641, Faculty of Mathematics and Computer
Science. Technical University of Delft, The Netherlands, 1991.

Bibliography 225

[70] H.Liand J. van Katwijk, The Duplez Programming Environment, Techni-
cal Report 91-90, ISSN 0922-5641, Faculty of Mathematics and Computer
Science. Technical University of Delft, The Netherlands, 1991.

[71] H. Li and J. van Katwijk, The Semantics of the Duplez Programming
Environment, Technical Report 91-91, ISSN 0922-5641, Faculty of Math-
ematics and Computer Science. Technical University of Delft, The Nether-
lands, 1991.

[72] H. Li and J. van Katwijk, A Model For Reuse-In-The-Large, Proceeding
of the 4th Annual Workshop on Software Reuse (WISR’91) sponsored by
the IEEE Computer Society, Reston, Nov. 18-22, 1991.

[73] H.Li and J. van Katwijk, Issues Concerning Software Reuse-in-the-Large,
Proceeding of the 2nd International Conference on Software Integration
(ICSI), IEEE Computer Society Press, June, 1992.

[74] H. Li, J. van Katwijk and M. A. Levy, The Reuse of Software Design
and Software Architecture, Proceeding of the 4th International Conference
on Software Engineering and Knowledge Engineering (SEKE’92), IEEE
Computer Society Press, June, 1992.

[75] H. Li and J. van Katwijk, Reuse-in-the-Large for Software Prototyp-
ing, Proceeding of the Fifth Nordic Workshop on Programming Language
(NORDIC’92), Tampere, Finland, Jan. 1992.

[76] H.Li, The Reuse of Large-Scale Component Technical Report 92-95, ISSN
0922-5641, Faculty of Mathematics and Computer Science, Technical Uni-
versity of Delft, The Netherlands, 1992.

[77] H. Li, Reuse-in-the-Large: Modelling, Specification and Management,
Proceeding of the Second International Workshop on Software Reuse
(IWSR’93), IEEE Computer Society, 1993.

[78] H. Li, Application Development and Maintenance with Reuse-in-the-
large, IEEE International Conference on Computers, Communucation
and Automation (TENCON’93), Beijing, Oct. 19-21, 1993.

226 Bibliography

[79] S. Liu, A Formal Software Design Language and Correctness Proof,
Proceeding of the Fifth Nordic Workshop on Programming Language
(NORDIC’92), Tampere, Finland, Jan. 1992.

(80] S. D. Litvintchouk & A. S. Matsumoto, Design of Ada Systems Yielding
Reusable Components: An Approach Using Structured Algebraic Speci-
fication, in the book[18].

[81] M. Looijen and W. J. Kribbe, Management of Information Systems, Infor-
mation System division, Faculty of Technical Informatics, Delft University
of Technology, The Netherlands, 1989.

[82] M. Looijen, Management of Information Systems, De Controller & Infor-
matiemanagement, Aug., 1992,

[83] M. D. Lubars, Environmental Support for Reuse, Technical Report, MCC,
No. STP-120-88, 1988.

[84] M.D. Mcllory, Mass-Produced Software components, Software Engineer-
ing Concepts and Techniques, 1968 NATO Conf. Software Eng., ed. J. M.
Buxton, P. Naur, and B. Randell, pp. 88-98, 1976.

[85] B. Meyer, Genericity versus Inheritance, OOPSLA’86 Proceedings,
September 1986, pp. 391-405.

[86] B. Meyer, Reusability: The Case for Object-Oriented Design. IEEE Soft-
ware, V 4 (2), March 1987, pp. 50-64.

[87] G. Miller, The Magical Number Seven, Plus or minus two: Some Limits
on our capability for Processing Information, The Psychological Review,
Vol. 63(2), 1956, p.86.

[88] R. T. Mittermeir and M. Oppitz, Software Bases for the Flexible Compo-
sition of Application System, IEEE Trans. on Software Engineering, Vol.
SE-13/4, Apr. 1987

(89] R. T. Mittermeir, Normalization of Software to enhance its Potential for
Reuse, Institut fur Informatik, University of Klagenfurt, Austria.

Bibliography 227

[90] R. T. Mittermeir and E. Kofler, Layered Specifications to Support
Reusability and Integratibility, Proceeding of 2nd International Confer-
ence on System Integration, IEEE Computer Science Press, June, 1992.

[91] J. Morris, A theoretical Basis for Stepwise Refinement and the program-
ming Calculus, Science of Computer programming 9, North-Holland, 287-
306, 1987.

[92] J. M. Neighbors, The Draco Approach to Constructing Software from
Reusable Component, IEEE Transaction on Software Engineering, vol.
10, Sept., 1984.

[93] J. M. Neighbors, Draco: A Method for Engineering Reusable Software
Systems, see also [18]. edited by T. J. Biggerstaff and A. J. Perlis, ACM
press, Frontier Series, 1989.

[94] W. M. Osborne, E. J. Chikofsky, Fitting Pieces to the Maintenance Puz-
zle, IEEFE Software, Jan., 1990.

[95] D. L. Parnas, P.C. Clements and D. M. Weiss, Enhancing Reusability
with Information Hiding, see also [18].

[96] A.S. Peterson, Coming to Terms with Software Reuse Terminology: a
Model-Based Approach ACM SIGSOFT, Software Engineering Notes,
Vol 16, No. 2, Apr 1991, pp. 45-51.

[97] N. Plat, J. van Katwijk and K. Pronk, A case for Structured Analy-
sis/Formal Design, Proceeding of VDM’91- Formal Software Development
Methods, S. Prehn, W.J. Toetenel (editor), Springer-Verlag, LNCS 551,
1991.

[98] R. Prieto-Diaz, A software classification scheme. PhD thesis, Department
of Information and computer science, University of California, Irvine,
1985.

[99] R. Prieto-Diaz and J. M. Neighbors, Module Interconnection Languages,
The Journal of Systems and Software, 6, 307-337, 1986.

[100]) R. Prieto-Diaz, P. Freeman, Classifying Software for Reusability. IEEE
Software, V 4 (1), 6-16, Jan 1987.

228 Bibliography

[101] R. Prieto-Diaz, Making Software Reuse Work:An incremental Model,
ACM SIGSOFT Software Engineering Notes, vol 16, No. 3, July, 1991.

(102] R. Prieto-Diaz, Implementing Faceted Classification for Software Reuse,
Communications of ACM, May 1991, Vol.34, No.5, 89-97.

[103] N. J. Princeton, Cobol/MP Macro Facility Reference Manual version 9,
Applied data research. 1979

[104] C. V. Ramamoorthy, V. Grarg, and A. Prakash, Support for Reusability
in Genesis, IEEE Tran. on Sof. Eng., Vol. 14, No. 8, 1988.

[105] G. P. Randell. Translating Data Flow Diagrams into Z (and Vice Versa).
Technical Report 900019, Procurement Executive, Ministry of Defence,
RSRE, Malvern, Worcestershire, UK, October 1990.

[106] S. Rugaber, S. B. Ornburn, and Jr. LeBlanc, Recognizing Design Deci-
sion in Programs, IEEE Software, January, 1990, pp. 46-54.

[107] M. Shaw, Abstraction Techniques in Modern Programming Languages,
IEEF Software, Oct. 1984.

[108] M. Shaw, Prospects for an Engineering Discipline of Software, IEEE
Software, November, 1990, pp. 15-24.

[109] B. Stroustrup, The C++ Programming Language-Reference Manual,
AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

[110] H. Simon, Why should machines learn? in Machine Learning, Tioga,
CA, 1983, pp. 25-38.

[111]} B. Stroustrup, What is Object-Oriented Programming?, IEEE Software,
May, 1988, pp. 10-20.

[112] H. G. Sol, Simulation in Information Systems development, Ph.D. The-
sis, University of Groningen, The Netherlands, 1982.

[113] H. G. Sol, Dynamic Information Systems, Dynamic Information Systems
H.G. Sol and R. L. Crosslin (Editors), Elsevier Science Publishers B. V.
(North-Holland, 1991).

Bibliography 229

[114] W. F. Tichy, Software Development Control Based on Systems Structure
Description, Ph. D. thesis, Carnegie-Mellon University, Computer Science
Department, Jan. 1980.

[115] D. Thewlis, Programming Language, Software Engineering Journal, Vol.
1, No. 4, July 1986.

[116] W. Tracz, Software Reuse Myths, ACM SISOFT, Software Engineering
Notes, Vol. 13, No. 1, Jan. 1988

[117] W. Tracz, Where does Reuse Start?, ACM SIGSOFT, Software Engi-
neering Notes, Vol. 15, No. 2, 1990.

[118] W. Tracz, A conceptual Model for Megaprogramming, Software Engi-
neering Notes, Vol. 16, No. 3, ACM SIGSOFT, July 1991. pp. 36-45.

[119] J. Tsai and J. Ridge, Intelligent Support for Specifications Transforma-
tion. IEEE Software, vol. 5(6), p. 34.

[120] F. Ververs, J. van Katwijk and L. Dusink, Direction in Reusing Software,
Technical Report 88-58, Faculty of mathematics and ComputerScience,
Delft University of Technology 1988.

[121] D. M. Volpanno, STS-Software System, MCC Tech. Report No. STP-
957-87, July 29,87

[122] D. M. Volpano, The Template approach to Software Reuse, MCC Tech.
Report No. STP-061-88, February, 11, 1988

[123] D. E. Webster, Design Representation Technology: A Survey, MCC
Technical Report, No. STP-361-86, Oct-28-1986.

[124] D. E. Webster, Mapping the Désign information representation Terrain,
Computer, December, 1988.

[125] P. Wegner, Capital Intensive Software Technology, IEEE Software, July,
1984

[126] P. Wegner, Dimensions of Object-based Language Design, OOPSLA 87
conference proceedings, pp. 168-182, 1987

230 Bibliography
[127) G. M. Wijers, Modelling Support in Information systems Development,
Ph.D. Thesis, Delft University of Technology, The Netherlands, 1991.

[128] N. Wirth, Algorithms + Data structures = programs Prentice-Hall, En-
glewood Cliffs, 1986.

Curriculum Vitae

Haikuan Li studied mathematics in the Mathematics Department of Beijing
University in 1974 and graduated from this university in 1978. Then he worked
and studied in the Computer Science Department, the Graduate School of
Academia Sinica, Beijing, China. He completed the necessary courses in the
field of computer science in the Graduate School and was a Teaching Assis-
tant for several different courses in the field of computer science. In 1986 he
was promoted as a lecturer of the Graduate School of Academia Sinica. He
has several years of lecturing experience in teaching the graduate students of
Academia Sinica.

. Since 1988 Mr. Li, as a PhD candidate, has worked and studied in the Fac-
ulty of Mathematics and Computer Science, Delft University of Technology,
the Netherlands. His research work was concerned with both software engi-
neering and information systems. His research interest has been continually
focused on reuse. The concepts, structures and models on reuse-in-the-large,
as addressed by himself, regard to an information system, a support environ-
ment for application development and maintenance. This research resulted in
twelve publications, including articles and technical reports.

231

