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1. Abstract

In this paper, we briefly discuss a new proposed 
architecture, Computation-In-Memory (CIM) 
architecture, that targets specifically data-intensive 
applications. The architecture consists of the 
interwoven placement of computing and storage units, 
which are physically tightly integrated together inside a 
non-volatile memristor crossbar. The architecture has 
the potential of improving the energy-delay product, 
computing efficiency and performance per area by at 
least two orders of magnitude with respect to 
conventional CMOS architectures.  

2. The Need for a New Architecture
One of the most critical challenges of today’s and 
future data-intensive and big-data problems (ranging 
from economics and business activities to public 
administration, from national security to many 
scientific research areas) is data storage and analysis. 
The required amount of data to process has already 
surpassed the capabilities of today’s computation 
architectures, which suffer from the limited bandwidth 
[1,2,3] (due to memory-access bottlenecks), energy 
inefficiency and limited scalability [3,4,5] (due to 
CMOS technology).  

Computing systems, developed since the introduction 
of stored program computers by John von Neumann in 
the forties, can be classified based on the location of 
the so-called “working set” (defined as the collection of 
information referenced by a program during its 
execution) into four classes (a) to (d) as shown in 
Figure 1. In the early computers (typically before the 
80s), the working set was contained in main memory. 
Caches were introduced to reduce the gap between the 
core (CPU) and the memory speed, and increase the 
overall performance; the caches have become the 
location of the working set. Today’s many/multi core 
(parallel CPUs, GPUs, SIMD-VLIWs, vector 
processors) computing systems are still based on von 
Neumann (VN) architectures; see Figure 1(c). 
Recently, the design of high-performance computing 
systems based on data-centric approach (i.e., having 
memory closer to the processing units) rather than 
conventional computation-centric model is attracting a 
lot of attention, although the concept is more than 40 
years old [6]; see Figure 1(d).   

Several efforts [6,7] have tried to close the gap between 
processor and memory speed. However, as the 
computation and the storage are kept separately, they 
fundamentally use the von Neumann stored-program 
computer concept and therefore suffer from a memory 
bottleneck, which negatively impacts the performance. 
The situation becomes even worse when the size of 
data-intensive applications and big-data problems 
increases. Clearly, the speed at which data is growing 
has already surpassed the capabilities of today’s 
computation architectures. Having supercomputers to 
solve big-data problems (as it is today for limited 
applications) is not affordable due to the cost (hundreds 
millions of US$) and power consumption (Megawatts).  

Today’s computers are manufactured mainly using 
CMOS technology. Such technology is reaching its 
inherent physical limits due to down-scaling, and is 
suffering from major limitations; high static power, 
reduced reliability, reduced performance gain, and 
higher production cost due to an increased number of 
masks and manufacturing tolerances are just a couple 
of examples [3,4,5]. Hence, the need of new device 
technology that can be combined with CMOS or even 
replace it, are needed to sustain technology scaling. 

3. Memristor Based CIM Architecture
To overcome/ mitigate one or more of the 
disadvantages of the prior art, recently Computing-In-
Memory (CIM) architecture [8,9] has been introduced; 
CIM takes the data-centric computing concept much 
further by interweaving the processing units and the 
memory in the same physical location and therefore 
moving the working set into the core as shown in 
Figure 1 (e). 

Figure 2 illustrates the concept of CIM 
architecture; the storage and computation are integrated 
together in a dense crossbar array where memristors are 
injected at each crossbar junction (top electrode and 
bottom electrode). The communication is realized 
within the crossbar and/or with the support of CMOS 
block (communication and control); the latter is 
responsible for the overall control. Figure 3 shows the 
different levels of the control circuits that map an 
algorithm on the architecture.   Algorithms are 
compiled into macro-instructions, each comprises a set 
of micro-instructions. Micro-instructions are primitive 
operations such as single add/subtract; they are 
translated into nano-instructions, which are electrical 
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  Fig.1. Classification of computing systems based on working set location 

  Fig. 3.  Control Circuits 

Fig. 2.  CIM Concept 

signals (generated by CMOS control part) that 
independently control the columns and the rows of the 
memristor crossbar tile. A tile is a flexible unit 
performing a function (micro or macro-instruction) 
determined by the compiler to minimize 
communications in memristor crossbar array. The 
controller is a state machine which enables and 
distributes required functions to each tile at a time. 

CIM architecture has huge potentials which go 
substantially beyond the current state-of-the-art: 

Non program stored based-computer: CIM
interweaves the storage and computing units, which
significantly reduces the memory bottleneck.
Instructions are performed on data by surrounding
computing elements. Therefore, traditional cache
misses are not applicable.
Flattened data-memory: all the traditional memory
hierarchies are combined in a single distributed
memory across the crossbar.
Practically zero leakage: Today’s architectures
heavily rely on SRAM caches. These are required to
have a very fast R/W access, leading to higher
leakage with technology scaling. Hence, the
memristor crossbar architecture solves the leakage
bottleneck, at least in the memory.
Near zero communication: Fully configurable
flattened data-memory enables a communication
optimization between storage and computing units.
Full configurability and flexibility: the crossbar can
be optimized for storage, computation and
communication at each location within the crossbar.
The architecture can be configured statically at
design stage (as an accelerator) or dynamically at
run-time (general purpose). An algorithm (program)
can be compiled into a set of macro-instructions; no

restrictions are put on the size and the functionality 
of the macro-instruction. 
Explore maximum parallelism: The interweaved
nature of the architecture and the size of the crossbar
enable massive parallelism. The maximum
parallelism of each algorithm (program) is explored
by compiling it into macro-instructions (functions);
these are performed in parallel within the crossbar.

The preliminary results based on simulation for CIM 
architecture show that depending on the application, at 
least two order of magnitude improvements can be 
realised with respect to state-of-the art regarding the 
energy-delay product per operations,  the computation 
efficiency (defined as the number  of operations per 
required energy), and  performance (#operations) per 
area [8,9].  The results clearly show an increased 
computing energy and area efficiency by orders of 
magnitude; this enables the computation of currently 
infeasible big data applications, fuelling important 
societal change! 
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