

Delft University of Technology

CIM100x
Computation in-Memory Architecture Based on Resistive Devices
Hamdioui, Said; Taouil, Mottaqiallah; Du Nguyen, Hoang Anh; Haron, Adib; Xie, Lei; Bertels, Koen

Publication date
2016

Published in
Proceedings of CNNA 2016

Citation (APA)
Hamdioui, S., Taouil, M., Du Nguyen, H. A., Haron, A., Xie, L., & Bertels, K. (2016). CIM100x: Computation
in-Memory Architecture Based on Resistive Devices. In Proceedings of CNNA 2016: 15th International
Workshop on Cellular Nanoscale and their Applications (pp. 95-96). VDE.
http://ieeexplore.ieee.org/document/7827975/
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

http://ieeexplore.ieee.org/document/7827975/

1. Abstract

In this paper, we briefly discuss a new proposed
architecture, Computation-In-Memory (CIM)
architecture, that targets specifically data-intensive
applications. The architecture consists of the
interwoven placement of computing and storage units,
which are physically tightly integrated together inside a
non-volatile memristor crossbar. The architecture has
the potential of improving the energy-delay product,
computing efficiency and performance per area by at
least two orders of magnitude with respect to
conventional CMOS architectures.

2. The Need for a New Architecture
One of the most critical challenges of today’s and
future data-intensive and big-data problems (ranging
from economics and business activities to public
administration, from national security to many
scientific research areas) is data storage and analysis.
The required amount of data to process has already
surpassed the capabilities of today’s computation
architectures, which suffer from the limited bandwidth
[1,2,3] (due to memory-access bottlenecks), energy
inefficiency and limited scalability [3,4,5] (due to
CMOS technology).

Computing systems, developed since the introduction
of stored program computers by John von Neumann in
the forties, can be classified based on the location of
the so-called “working set” (defined as the collection of
information referenced by a program during its
execution) into four classes (a) to (d) as shown in
Figure 1. In the early computers (typically before the
80s), the working set was contained in main memory.
Caches were introduced to reduce the gap between the
core (CPU) and the memory speed, and increase the
overall performance; the caches have become the
location of the working set. Today’s many/multi core
(parallel CPUs, GPUs, SIMD-VLIWs, vector
processors) computing systems are still based on von
Neumann (VN) architectures; see Figure 1(c).
Recently, the design of high-performance computing
systems based on data-centric approach (i.e., having
memory closer to the processing units) rather than
conventional computation-centric model is attracting a
lot of attention, although the concept is more than 40
years old [6]; see Figure 1(d).

Several efforts [6,7] have tried to close the gap between
processor and memory speed. However, as the
computation and the storage are kept separately, they
fundamentally use the von Neumann stored-program
computer concept and therefore suffer from a memory
bottleneck, which negatively impacts the performance.
The situation becomes even worse when the size of
data-intensive applications and big-data problems
increases. Clearly, the speed at which data is growing
has already surpassed the capabilities of today’s
computation architectures. Having supercomputers to
solve big-data problems (as it is today for limited
applications) is not affordable due to the cost (hundreds
millions of US$) and power consumption (Megawatts).

Today’s computers are manufactured mainly using
CMOS technology. Such technology is reaching its
inherent physical limits due to down-scaling, and is
suffering from major limitations; high static power,
reduced reliability, reduced performance gain, and
higher production cost due to an increased number of
masks and manufacturing tolerances are just a couple
of examples [3,4,5]. Hence, the need of new device
technology that can be combined with CMOS or even
replace it, are needed to sustain technology scaling.

3. Memristor Based CIM Architecture
To overcome/ mitigate one or more of the
disadvantages of the prior art, recently Computing-In-
Memory (CIM) architecture [8,9] has been introduced;
CIM takes the data-centric computing concept much
further by interweaving the processing units and the
memory in the same physical location and therefore
moving the working set into the core as shown in
Figure 1 (e).

Figure 2 illustrates the concept of CIM
architecture; the storage and computation are integrated
together in a dense crossbar array where memristors are
injected at each crossbar junction (top electrode and
bottom electrode). The communication is realized
within the crossbar and/or with the support of CMOS
block (communication and control); the latter is
responsible for the overall control. Figure 3 shows the
different levels of the control circuits that map an
algorithm on the architecture. Algorithms are
compiled into macro-instructions, each comprises a set
of micro-instructions. Micro-instructions are primitive
operations such as single add/subtract; they are
translated into nano-instructions, which are electrical

95ISBN 978-3-8007-4252-3 © VDE VERLAG GMBH, Berlin, Offenbach

CNNA 2016, August 23-25, 2016, Dresden, Germany

CIM100x: Computation in-Memory Architecture Based on Resistive Devices

Said Hamdioui Mottaqiallah Taouil Hoang Anh Du Nguyen Adib Haron Lei Xie Koen Bertels
Computer Engineering, Delft University of Technology, the Netherlands

S.Hamdioui@tudelft.nl
Phone: +31- 15 278 3643; Fax: +31- 15 278 4898

 Fig.1. Classification of computing systems based on working set location

 Fig. 3. Control Circuits

Fig. 2. CIM Concept

signals (generated by CMOS control part) that
independently control the columns and the rows of the
memristor crossbar tile. A tile is a flexible unit
performing a function (micro or macro-instruction)
determined by the compiler to minimize
communications in memristor crossbar array. The
controller is a state machine which enables and
distributes required functions to each tile at a time.

CIM architecture has huge potentials which go
substantially beyond the current state-of-the-art:

Non program stored based-computer: CIM
interweaves the storage and computing units, which
significantly reduces the memory bottleneck.
Instructions are performed on data by surrounding
computing elements. Therefore, traditional cache
misses are not applicable.
Flattened data-memory: all the traditional memory
hierarchies are combined in a single distributed
memory across the crossbar.
Practically zero leakage: Today’s architectures
heavily rely on SRAM caches. These are required to
have a very fast R/W access, leading to higher
leakage with technology scaling. Hence, the
memristor crossbar architecture solves the leakage
bottleneck, at least in the memory.
Near zero communication: Fully configurable
flattened data-memory enables a communication
optimization between storage and computing units.
Full configurability and flexibility: the crossbar can
be optimized for storage, computation and
communication at each location within the crossbar.
The architecture can be configured statically at
design stage (as an accelerator) or dynamically at
run-time (general purpose). An algorithm (program)
can be compiled into a set of macro-instructions; no

restrictions are put on the size and the functionality
of the macro-instruction.
Explore maximum parallelism: The interweaved
nature of the architecture and the size of the crossbar
enable massive parallelism. The maximum
parallelism of each algorithm (program) is explored
by compiling it into macro-instructions (functions);
these are performed in parallel within the crossbar.

The preliminary results based on simulation for CIM
architecture show that depending on the application, at
least two order of magnitude improvements can be
realised with respect to state-of-the art regarding the
energy-delay product per operations, the computation
efficiency (defined as the number of operations per
required energy), and performance (#operations) per
area [8,9]. The results clearly show an increased
computing energy and area efficiency by orders of
magnitude; this enables the computation of currently
infeasible big data applications, fuelling important
societal change!

References
[1] S. A. McKee, ‘Reflections on the Memory Wall’, CF’04, pp.

162, 2004.
[2] M.V. Wilkes, ‘The Memory Wall and the CMOS End-point’,

SIGARCH Comput. Archit. News, 1995, pp. 4-6.
[3] Horowitz, ‘Computing’s Energy Problem and what we can do

about it’, slides of the keynote at ISSCC 2014
[4] K. Lahiri, A. Raghunathan, ‘Power analysis of system-level

on-chip communication architectures’, CODES + ISSS, pp
236-241, 2014.

[5] S. Hamdioui, et. al, ‘Reliability Challenges of Real-Time
Systems in Forthcoming Technology Nodes’, DATE, pp.
129-134, 2013.

[6] H. Stone, “A logic-in-memory computer,” TC, vol C-19,
1970.

[7] N. Venkateswaran et al., "Memory in Processor: A Novel
Design Paradigm for Supercomputing Architectures," in
MEDEA '03, 2003.

[8] S. Hamdioui, et. al, ‘Memristor Based Computation-in-
Memory Architecture for Data-Intensive Applications’,
DATE, pp. 1718-1725, 2015.

[9] H.A. Du Nguyen, et.al, ‘Computation-In-Memory Based
Parallel Adder’, NANOARCH, pp 57-62, 2015

96

CNNA 2016, August 23-25, 2016, Dresden, Germany

ISBN 978-3-8007-4252-3 © VDE VERLAG GMBH, Berlin, Offenbach

