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2 1. INTRODUCTION

1.1 MICROMECHANICS

MECHANICS is one of the most intensively studied fields in physics and classi-
cal mechanics is a first-year course every physics student takes. The field is

very broad, as everything around us is in motion, for example: a kid on a swing, the
moon, quantum mechanics. In this Thesis, I focus on classical mechanics, where
a rigid body deforms under the influence of a force. For the rigid body, I consider
a simple geometric shape, a beam either clamped on two sides to a solid support
(clamped-clamped) or just on one side (cantilever). The beam is allowed to deform
and deflect under the influence of the force.

Following the trend to downscale electronic devices, mechanical devices are
also entering the micro- and even nanometer regime [1]. To read out the motion
of a mechanical device, for example a beam, it has to be coupled to an electronic
circuit. These systems are the so-called micro-electromechanical systems (MEMS)
and they find commercial application in accelerometers, gyroscopes, mass sens-
ing, pressure sensing, band-pass filters and scanning probe microscopy. Down-
scaling these devices reduces cost and lowers energy consumption. The ultimate
limit for downscaling is reached in nano-electromechanical devices (NEMS) con-
sisting of carbon nanotubes or graphene sheets [2–4].

Figure 1.1 gives four examples of NEMS applications. One of these applications
is mass sensing. In Fig. 1.1(a) a scanning electron micrograph (SEM) of clamped-
clamped resonator beams is shown [5]. The material underneath the beams is
completely etched away providing access from the bottom. With an inkjet printer,
different polymers can be used to coat the backside of these beams. In this way
they are functionalized, meaning that it has become sensitive to a certain sub-
stance. When the substance adheres to the polymer surface, effectively the added
mass or change in stress results in a change in resonance frequency. This change
in mass is measured as a change in resonance frequency of the beam. Resonance-
based sensing is widely applied and recently has achieved the single-proton reso-
lution [8]. The resonance frequency of the beam is mathematically described as:
f0 =

√
k/m0, where k is the spring constant and m0 is the mass of the resonator.

The change in resonance frequency is related to the change in mass (assuming
there is no change in the spring constant): ∆ f =−( f0/2m0)∆m [9]. When the mass
and resonance frequency of the resonator are known, the added mass can be cal-
culated. By downscaling the beam, smaller masses can be detected as the prefactor
f0/m0 increases. Starting with a smaller resonator mass allows smaller masses to
be detected. Using carbon nanotubes as resonators, masses down to a yoctogram
10−24g can be detected [8, 10, 11].

Another application of MEMS is in electrical circuits, where a mechanical os-
cillator is used as a clock [12]. Nowadays, most clocks in consumer electronics are
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FIGURE 1.1: Scanning electron micrographs (SEMs) of four examples, where MEMS are used in appli-
cations. (a) Chip with an array of clamped-clamped beams with an integrated piezo-actuator used for
gas sensing [5]. (b) Mechanical frequency filter consisting of 128 radial mode disks [6]. (c) Part of an
accelerometer with a suspended proof mass connected via springs [7]. (d) AFM cantilever with a tip to
scan surfaces.

made from quartz crystal oscillators, which are very stable and have high qual-
ity factors. A disadvantage of these crystals is that they are fairly big and with
the continuous downscaling of electronics are relatively taking up more and more
space. Moreover, quartz crystals cannot be integrated into CMOS. Since micro-
processors need an appropriate time-keeping component a separate quartz crys-
tal needs to be provided. One option to solve this problem is the use of MEMS as
clocks [13]. However, until now the high phase noise noise of MEMS oscillators
prohibits this. MEMS can also be used as analogue frequency filters [Fig. 1.1(b)],
bit-storage (volatile and non-volatile) [14–16], idler frequency generation (sum or
difference of two other frequencies) [17] and for logical operations [18]. This opens
prospects for mechanical information processing, e.g. in situations where the de-
vice is operated in harsh conditions where electronics stop working due to dopant
diffusion. For example by using silicon carbide MEMS higher operating tempera-
ture can be achieved [19].

Other practical applications involving MEMS are found in accelerometers and
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gyroscopes [7, 20]. Figure 1.1(c) shows a part of such an accelerometer, where
a proof mass is connected to a rigid wall via springs. The MEMS accelerometer
measures the acceleration of a suspended proof mass by monitoring the capaci-
tance between the proof mass and a rigid electrode. Using clever designs, the ac-
celerometer can be sensitive to accelerations along three axes [21]. These MEMS
accelerometers are found in, for example, airbag sensors and smart-phones 1.

The final application of MEMS I will discuss, is the Atomic Force Microscope
(AFM). The AFM was invented by Binnig, Quate and Gerber in 1986 and is nowa-
days standard equipment in any nano-science laboratory [22]. The AFM is pri-
marily used for surface imaging and force spectroscopy. The AFM consists of a
mechanical element, a cantilever with a sharp tip at the end, see Fig. 1.1(d), and
an optical detector to read out the cantilever displacement. For imaging, the tip
is scanned across the surface and the displacement of the cantilever is measured.
This displacement is a measure for the force between the tip and the sample. The
AFM can be used in contact mode and in tapping mode. In contact mode the can-
tilever tip is in contact with the sample surface and the static displacement of the
cantilever is measured. In tapping mode, the cantilever is weakly driven near its
resonance frequency and the change in resonance frequency due to the force be-
tween the tip and sample is detected. Both methods can be used to image the sur-
face topology of a sample. The AFM can also be used for force spectroscopy where
the cantilever is pressed into the sample and a force-distance curve is measured,
which for example can be used to measure the bending rigidity of graphene [23].

MEMS are used over a wide range of applications, each benefiting from the
mechanics at the micro- and nanometer size. With technology progressing, it will
be possible to integrate NEMS in our daily-used electronics. Whether it is as an
electronic nose which can smell the smallest amount of drugs, or gyroscopes for
consumer electronics, NEMS and MEMS will continue to contribute to technolog-
ical innovations.

1.2 NONLINEAR DYNAMICS
Nonlinear behavior is typically avoided in MEMS applications as engineers in gen-
eral prefer linear input-output relations that are easy to predict and control. How-
ever, in small-scale mechanics nonlinear behavior is omnipresent and enables
new applications that cannot be achieved with linear systems. Nonlinearity en-
ables new applications such as sensitive force measurements [? ], stabilization
of frequency and phase [24], storage and modification of digital information [16].
Moreover, nonlinearity gives ultimately limits the damping and couples the modes [25,

1See for example http://invensense.com/mems/handhelds.html

http://invensense.com/mems/handhelds.html
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FIGURE 1.2: Examples of nonlinearities in mechanics. (a) A pendulum swinging under the influence of
gravity. (b) A mass connected with two springs to two walls.

26], which can be used for new detector schemes that are potentially quantum lim-
ited. In order to understand these mechanisms, some knowledge about nonlinear
dynamics is required.

Nonlinear dynamics is an interdisciplinary research field based on nonlinear
differential or difference equations [27, 28]. There are many examples of nonlinear
dynamics in mechanical systems [29]. One of the most illustrative is a pendulum,
shown in Fig. 1.2(a). The pendulum with a mass m and length L moves under the
influence of gravity. Its motion can be described by one coordinate, the angle with
the vertical, θ. The equation of motion can be written as

d2θ

dt 2 + g

L
sin(θ) = 0, (1.1)

where the local gravitational constant is g . This is a nonlinear differential equation,
as the restoring force is nonlinear in the angle θ. The sine can be expanded around
θ = 0 using sin(θ) = θ− 1

6θ
3 + . . .. Inserting this into the equation of motion gives

d2θ

dt 2 + g

L
θ− g

6L
θ3 = 0. (1.2)

The first two terms in this equation are linear in θ and the last term is the nonlinear
part. For small amplitudes, the nonlinear terms can safely be ignored and the lin-
ear equation describes the motion of the pendulum. The linear equation results in
a harmonic oscillations around θ = 0. For large angles, the restoring force becomes
smaller which is reflected by a cubic term in θ with a negative sign. The problem of
the nonlinear pendulum can also be solved exactly. The angular frequency of the
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pendulum now depends on the amplitude of the motion: at high amplitudes, the
swinging frequency is smaller.

100 200 300

-1.0

0.0

1.0

(a) (b)

t (s) x (m)

-1.0 0.0 1.0

x
 (

m
)

v
 (

m
/s

)

-1.0

0.0

1.0

x x

FIGURE 1.3: Simulation of the mass-spring system, with parameters m = 1kg, k = 0.6 N/m, d =−1.0 m,
L = 1.0 m, F = 0.25 N, b = 0.1 kg/s andΩ= 1.1 rad−1 Hz. (a) Position of the mass versus time. (b) Phase
plot of the motion. The attractors are marked by a x.

Another example resembling the nonlinearities occurring in the dynamics of
beams is a mass clamped to two walls via two identical springs as in Fig. 1.2(b). The
potential energy of the mass is V (x) = k(

p
L2 +x2 − (L −d))2, where k is the spring

constant, L is the un-stretched length of a spring and d the amount of stretching
(d > 0) or compression (d < 0) of the spring when the mass is aligned horizontally
with the springs. From the potential, the equation of motion can be derived using
an approximation for the square root:

m
d2x

dt 2 +2kd
x

L
+k(L−d)

x3

L3 +γdx

dt
= F sin(Ωt ). (1.3)

A term is added to account for the damping of the system (damping rate γ) and an
external driving force can be applied to the mass-spring system (drive force F at
frequencyΩ). If the springs are compressed when the springs are aligned along the
horizontal, i.e. d < 0, the mass has two options: to move to a stable position above
or underneath the horizontal. This phenomenon is called Euler-buckling [15, 30,
31] and a widely used large-scale example is the compression of a plastic teaspoon.
At a critical pressure the teaspoon will buckle. The critical pressure at which this
buckling occurs is called a bifurcation point. Before the critical point there is one
stable solution, and after this point there are three solutions: two stable (x =±1m)
and one unstable (x = 0m) solution. Equation 1.3 can be solved numerically in the
bistable regime (b < dcr < 0) and the result is shown in Fig. 1.3. We plot the distance
from the horizontal x as a function of time and observe two stable amplitudes at
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x = 1 and -1. There are switches between these amplitudes (Fig. 1.3(a)). If we plot
the phase-diagram, the position and velocity on the axis we obtain Fig. 1.3(b). The
stable points, where the mass is oscillating around are called the attractors of the
system, indicated in Fig. 1.3(b) by the two crosses.

1.3 THESIS OUTLINE
This thesis deals with the nonlinear dynamics of clamped-clamped and single-
clamped microbeams, which are elementary mechanical structures that form the
building blocks of many top-down and bottom-up fabricated NEMS. The beams
are fabricated from silicon or silicon nitride and their motion is detected using
optical deflection, magnetomotive and piezo-electric readout schemes. Chapter
2 presents the basic framework of nonlinear mechanics. We start with a descrip-
tion of the linear regime and proceed towards a description of modal interactions
via the nonlinearity in clamped-clamped beams. The following chapters consist
of published and submitted journal articles. The nonlinear dynamics of a can-
tilever is described in Chapter 3, showing mechanical stiffening and bifurcation.
An example application is the implementation of a mechanical bit. In the bistable
regime, noise can be used to switch from one stable amplitude to the other. In
Chapter 4, this noise-induced switching in a microcantilever is discussed. Besides
changing the oscillation of the mode itself, the oscillation of other modes is also
affected. Such modal interactions are theoretically and experimentally studied in
Chapter 5 for the clamped-clamped beam and in Chapter 6 for the cantilever. Al-
though the nonlinearity has a different origin for the two cases, the resulting dy-
namic behavior is very similar. A consequence of the mode coupling is the ability
to tune the Q factor of a microcantilever using two mechanical modes. A higher
mode is used as a pump mode to tune the Q factor of the probe mode as is shown
in Chapter 7. Finally, the interaction between a parametrically excited mode and
a directly-driven mode of a clamped-clamped beam is investigated in Chapter 8.
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2
NONLINEAR MECHANICS AND

MODAL INTERACTIONS

The influence of nonlinear terms in the equation of motion of a clamped-clamped
beam or cantilever is presented. We consider a micromechanical beam and start
with a description of its linear behavior. Then, the nonlinearity is introduced in the
equation of motion and a method is presented, which solves the nonlinear differ-
ential equations. We show how the nonlinearity couples the vibrational modes in a
clamped-clamped micromechanical beam.

11



{{2

12 2. NONLINEAR MECHANICS AND MODAL INTERACTIONS

2.1 INTRODUCTION

RESEARCHERS have been studying mechanics for a long time. It dates back to
the ancient Greek with Aristotle and his Mechanica, describing the principles

behind a lever and scale. Much later in 1687, Sir Isaac Newton wrote his Prin-
cipia Mathematica, discussing gravity and the foundation of mechanics. So if the
physics and its corresponding mathematical framework are known for decades,
why would one still want to study the mechanics of a system as simple as a beam
supported at one or both ends? To answer this question, I will first introduce two
recent developments in science: the downscaling of mechanics into the nano-
and micrometer regime and the interest in solving (coupled) nonlinear differen-
tial equations.

With the rise of silicon-based fabrication techniques for designing on-chip elec-
trical circuits, ’mechanical circuits’ have now also made the step towards the micro-
and even nanometer scale. Micro- and nanomechanical systems (MEMS and NEMS)
are used in on-chip sensor schemes as mass or force sensors. For example, MEMS
are used to detect small masses or concentration down to single atom resolution [1–
4]. Also, atomic force microscopes rely on microcantilevers, which transduce forces
at the atomic scale to a measurable signal [5].

In mathematics, nonlinear dynamics have been studied extensively, since ex-
citing phenomena like bifurcations, period doubling and chaotic behavior arise
from the equations. In many cases, the analytic solution is not available. With the
recent increase in computing power, solving the corresponding nonlinear differ-
ential equations numerically is now possible in a reasonable time span. However,
examples of physical model systems which can be described with these equations
are not numerous. One system is a mechanical system, where the dynamics is
limited by a nonlinearity. The motion of small-scale mechanics occurs at short
timescales and this allows detailed experimental studies of the nonlinear mechan-
ics, Surprisingly, in basic structures, like cantilever and clamped-clamped beams,
the nonlinearity is not well-studied. However, interesting dynamics can be ob-
served in the nonlinear regime [6, 7]. Moreover, their easy fabrication makes them
excellent model systems.

In this Chapter, we give an overview of the combination of nonlinear dynamics
and nonlinear interactions in single-clamped beams (cantilevers) and clamped-
clamped beams. Starting with the linear description of these systems, the equa-
tions of motion will be extended with the nonlinear terms. Finally, we will add the
nonlinear interactions between the different modes and conclude with an outlook
of the research field.
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FIGURE 2.1: (a) Cantilever geometry, where a beam is clamped at one side, with dimensions length (L),
width (w) and height (h) and displacement u. (b) Clamped-clamped geometry.

2.2 LINEAR BEHAVIOR
We start the description of the linear behavior of cantilevers and clamped-clamped
beams by considering the flexural modes of a beam. Schematics of the cantilever
and clamped-clamped geometry and its coordinate system is given in Fig. 2.1(a)
and 2.1(b). For a beam with length L, width w and height h, the dynamic behavior
is described by the dynamic Euler-Bernoulli equation 1:

D
∂4ũ(x, t )

∂x4 +ρwh
∂2ũ(x, t )

∂t 2 = q(x, t ), (2.1)

where D denotes the bending rigidity, t is the time, ρ the density of the beam, and
q is the distributed load. The bending rigidity can be written as D = E Iy , where E
is the Young’s modulus of the material and Iy is the second moment of inertia and
for a rectangular beam is given by Iy = wh3/12.

Equation 2.1 can be simplified by applying the Galerkin procedure, where we
write the solution in the form ũ(x, t ) = ξi (x)u(t ). Here u(t ) is the time-dependent
part, and ξi (x) is the shape of mode i , with orthonormalization

∫ L
0 ξiξ j dx = δi j .

We assume that the load q is homogeneous over the beam length, q(x, t ) = q(t )
and that the beam is oscillating with the frequency ω. If q = 0, the spatial part of
the solutions of Eq. 2.1 is then written as

d4ξ(x)

dx4 =β4ξ(x), (2.2)

where β4 = ρwhω2

D . Equation 2.2 can be solved if the boundary conditions for the
beam are known. For the cantilever, the boundary conditions are given by: ξ(0) =
ξ′(0) = ξ′′(L) = ξ′′′(L) = 0, where the primes denote differentiation to x. For the

1A derivation of the Euler-Bernoulli equation for beams can be found in Ref. [8]
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clamped-clamped geometry, the boundary conditions are given by ξ(0) = ξ′(0) =
ξ(L) = ξ′(L) = 0. The solution of Eq. 2.2 for the two geometries is given by

cos(βL)cosh(βL) =
{ −1 cantilever

+1 clamped-clamped beam
(2.3)

For the cantilever, the values of β corresponding to the first three modes are given
by: βi L = 1.875, 4.694 and 7.855. For the clamped-clamped beam, these are βi L
= 0, 4.730, 7.853 and 10.996 for mode i = 1,2 and 3. With these values, the mode
shapes of the beam can be calculated. The first mode of the cantilever and clamped-
clamped beam are sketched in Fig. 2.1.

Considering only one mode, its dynamic behavior is described by the time-
dependent part of Eq. 2.1 (multiplied by the length L):

m
d2u(t )

dt 2 +γdu(t )

dt
+ku = F, (2.4)

where we added a term with γu̇(t ), which accounts for the damping of the beam

motion. The spring constant is given by k =β4 Ewh3L
12 and the mass is m. The beam

is driven by a force F . For the force, we will consider two experimental situations,
one where the mechanical beam is driven by thermal noise and an other where the
beam is driven by a harmonic force. We note that Eq. 2.4 has the form of a damped
driven harmonic oscillator and the motion of the beam can be described by a par-
ticle in a quadratic potential. When the particle is displaced from the equilibrium
position, the spring constant (the bending rigidity) will exert a force towards the
equilibrium position. This is illustrated in Fig. 2.2(a). Depending on the damping,
the particle will oscillate in the well or the motion will be damped out.

The spectral density of the thermal driving force is given by

SF (ω) = 4kB Tmγ, (2.5)

where kB is Boltzmann’s constant and T is the temperature. ω0 is the resonance
frequency given by

p
k/m, and the quality factor is Q = mω0/γ. The quality fac-

tor or Q factor of a mechanical system is high if there is little damping. From the
fluctuation-dissipation theory, it follows that the amount of kinetic and potential
energy is provided by the thermal energy and is given by

1

2
kB T = 1

2
k〈x〉2 = 1

2
m〈v〉2. (2.6)

The dynamics of a cantilever with a Q factor of 50 driven by a thermal noise at room
temperature (T = 300 K), can be simulated by integrating Eq. 2.4 with a stochastic
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FIGURE 2.2: (a) The cantilever motion described by the motion of a particle in a harmonic potential.
(b) Simulated time trace of a silicon nitride cantilever (E = 250 GPa, ρ = 3100 kg m−3) displacement u
with dimensions L × w× h = 40 × 8 × 0.2 µm3. (c) Phase-space representation of the cantilever motion.
(d) Fast Fourier Transform of the displacement (circles) with a Lorentzian fit (solid line), showing the
resonance peak.

force (Fig. 2.2). A 4th-order Runge-Kutta integration method with fixed time-steps
is used. The first mode of the cantilever resonator with dimensions mentioned
in the caption of Fig. 2.2 is simulated for 0.5 ms. Figure 2.2(b) shows a time trace
of the resonator displacement, showing a oscillation with an amplitude changing
over time. It is convenient to represent the motion in a plot with position and ve-
locity on the axes. In Fig. 2.2(c) this phase-space representation of the time trace is
given, showing a circular trajectories in phase space around (0,0). The resonator is
oscillating around its equilibrium position, but has never zero velocity at zero dis-
placement. Finally, Fig. 2.2(d) shows the Fast Fourier Transform (FFT) of 100 sim-
ulated time traces (circles). The peak in the spectrum at 181 kHz corresponds to
the resonance frequency of the fundamental cantilever mode and the peak shape
can be fitted with a Lorentzian function. This becomes apparent when Eq. 2.4 is
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solved in the frequency domain (with a harmonic driving force F = F0 cos(ωt )):

|U (ω)| = F0

m

1√
(ω2

0 −ω2)2 +ω2
0ω

2/Q2
, (2.7)

which for high Q factors (Q À 1), results in a Lorentzian line shape. By integration
of the PSD over the resonator band, the energy is obtained. In this case this is the
thermal energy.

140       160        180        200        220

|A
|

f (kHz)

0

0.5

1

140     160       180      200      220

f (kHz)

φ
 (

π
 r
a
d

) 

(a) (b)

FIGURE 2.3: Simulated driven frequency responses of the same cantilever as in Fig. 2.2. (a) Amplitude
and (b) phase response of the resonator.

When an periodic force is exerted on the resonator (F = F0 cos(ωt )), the beam
can be driven on resonance. Now, the resonator has a fixed phase with respect to
the one of the driving frequency [U = |U |cos(ωt −φ)]. The amplitude-frequency
relation is the same as Eq. 2.7, and the phase-frequency relation is given by

φ(ω) = tan−1
(

ω0ω

Q(ω2
0 −ω2)

)
. (2.8)

The amplitude and phase of the same cantilever as in Fig. 2.2 are given in Fig. 2.3.
The amplitude response shows the resonance peak and the phase shifts over π
radians when crossing the resonance.

2.3 ORIGIN OF THE NONLINEARITY
From Eq. 2.7 it follows that the amplitude of the displacement increases linearly
with the force. For small applied forces this is an accurate description, but for
larger forces, unphysical displacements which are larger than the beam length can
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occur. A larger restoring force is necessary to describe the beam motion at large
amplitudes. The harmonic oscillator potential can be extended with higher pow-
ers in the displacement: V (u) =∑

n Cnun with constants Cn . The odd powers with
displacement however result in a symmetry-breaking potential: the potential is
different depending on which side of the equilibrium the beam is. In many cases
this is unphysical and in this Thesis we neglect these terms. The next even power
with displacement in the harmonic potential is u4, which results in a u3 term in
the equation of motion. This is known as the Duffing nonlinearity and it turns out
that this term is non-negligible for large displacements and is used to describe the
nonlinear dynamics of beam motion. The origin of this nonlinear behavior de-
pends on the boundary conditions and is thus different for a clamped-clamped
beam compared to that for a cantilever. In this Thesis, we focus on the nonlinear-
ity arising from the mechanics. Nonlinearities arising from electrostatics, single
electron tunneling are discussed in Ref. [9] We will thoroughly discuss the origin
of the Duffing nonlinearity in the clamped-clamped beam, and mention how non-
linearity affects the cantilever dynamics.

          
    

   L
 + ΔL

L

x

z u(x)

FIGURE 2.4: Schematic of a clamped-clamped beam which is extended with an extra length ∆L.

For large displacements of a clamped-clamped beam with length L, the beam
extends by a small amount ∆L, as can be seen in Fig. 2.4. The extension leads to
tensioning in the beam and the spring constant is depending on the amplitude
k(u) = k0 +k3u3. This spring constant is then used in the equation of motion. To
calculate k3 for a clamped-clamped beam, we start by writing the total length of
the beam as [10]:

L+∆L =
∫ L

0

√
1+

(
∂ũ(x)

∂x

)2

. (2.9)

The square root can be Taylor-expanded and the extra length is

∆L = 1

2

∫ L

0

(
∂ũ(x)

∂x

)2

dx. (2.10)

The lengthening of the beam induces tension in the beam. This tension (stress
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force) related to this extra length is written as

T = Ewh

2L

∫ L

0

(
∂ũ(x)

∂x

)2

dx. (2.11)

Incorporating this force in the equation of motion gives a nonlinear differential
equation

D
∂4ũ(x, t )

∂x4 +ρwh
∂2ũ(x, t )

∂t 2 −
(

Ewh

2L

∫ L

0

(
∂ũ(x)

∂x

)2

dx

)
∂2ũ(x, t )

∂x2 = q(x, t ). (2.12)

From this equation, the tension term can already be identified as a Duffing nonlin-
earity since it has a ũ3 dependence. Equation 2.12 can be evaluated by first eval-
uating the homogeneous part of the differential equation, which is Eq. 2.2. This
equation gives the linear mode shapes and resonance frequencies for mode i of
the oscillation. Focussing on one resonance mode, ũ(x, t ) = ξi (x)u(t ), the time-
dependent part of Eq. 2.12 can be written as [9]

d2u

dt 2 + ωi

Q

du

dt
+ω2

i u + I 2
i E

2L4ρ
u3 = ci

q

ρwh
cos(Ωt ), (2.13)

where the value of the integral Ii = L
∫ L

0
d2ξi
dx2 ξi dx for the first three modes is 12.3,

46.1 and 98.9 respectively. ci = 1
L

∫ L
0 ξi dx is 0.83, 0 and 0.36 for the first three

modes, and ωi = β2
i

L2

√
D

ρwh is the resonance frequency. Note that
∫ L

0 ξiξ j dx = Lδi j .

In Eq. 2.13, the well-known Duffing equation can be recognized, which also de-
scribes the current-phase relation in Josephson junctions. The equation is written
in the frequency domain by inserting u = aeiΩt :

Ω2a −ω2
i a + i

ωiΩ

Q
a + I 2

i E

2L4ρ
a3 = ci

qi

ρA
. (2.14)

This equation needs to be solved self-consistently. The amplitude and phase re-
sponse of the displacement can be calculated from Eq. 2.14 and can be found in
e.g. Ref. [6]. Considering the first mode of a clamped-clamped beam with dimen-
sions mentioned in the caption of Fig. 2.2, the frequency responses are calculated
for different values of the drive strength q in Fig. 2.5, where the amplitude response
is plotted in (a). For low drive strengths, the damped driven harmonic oscillator re-
sponse is found (light gray), but for higher drive strengths the response tilts to the
right and deviates from the Lorentzian line shape. Beyond a critical amplitude and
for a certain frequency span, equation 2.14 has three solutions: two stable ones (at



2.3. ORIGIN OF THE NONLINEARITY 19

{{2|a
| 

(n
m

)

φ
 (
π
 r

a
d

)

0

0.2

0.4

0.6

0.8

   1
(b)

1.14                1.18               1.22 1.14                1.18               1.22 

f (MHz) f (MHz)

   0

   10

   20

   30

   40

   50
(a)

FIGURE 2.5: (a) Amplitude response of the Duffing equation for a clamped-clamped beam with prop-
erties mentioned in the caption of Fig. 2.2 for drive strengths 50 (light gray), 100, 200 and 300 (black)
µN/m. (b) Phase responses for the same drive strengths q . Dotted lines indicate the unstable solutions.

-50                0                50

X (nm)

-50

0

50

-50                0                50

-50

0

50

X (nm)

Y
 (

n
m

)

Y
 (

n
m

)

(a) (b)

L

H
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resonator is released at the initial conditions (X ,Y ). (b) Color scale indicates the time it takes for the
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a high and low amplitude) and one unstable solution [dashed line in Fig. 2.5(a)].
The critical amplitude at which this bistability occurs is ac = 2h

33/4
1p
Q

for a beam

with rectangular cross section.
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In the bistable region, two stable amplitudes (fixed points in phase space) exist.
They are called ’attractors’ as the beam oscillates around these points, an if there is
damping, the system will converge to one of them. One way to solve the Eq. 2.13 is
by separating the time scales. We write the position in the form u(x, t ) = A(T )eiωt+
c.c., where c.c. is the complex conjugate and A(T ) = [X (T )+ i Y (T )]eiωσ/t . Here,
T is the time-scale for the slow moving amplitude, and σ= 2Q(Ω/ω−1) [11]. The
Duffing equation in terms of X and Y is

dX

dt
=−ωX

2
+ ωσY

2
− 3

2

αQ

ω
(X 2 +Y 2)Y , (2.15)

dY

dt
=−ωY

2
+ ωσX

2
+ 3

2

αQ

ω
(X 2 +Y 2)X − ηqQ

4ω
, (2.16)

where α = I 2
1 E

2L4ρ
and η = c1

ρA . Figure 2.6 shows the basins of attraction, where the

clamped-clamped beam described in Fig. 2.5 are driven in the bistable region. For
all possible initial conditions of the resonator in phase space, the final amplitude of
the resonator is plotted in Fig. 2.6(a). In this plot, H indicates the high amplitude
final state and L the low amplitude final state. This plot predicts the stationary
solution at t → ∞ for a range of initial conditions. Figure 2.6(b) plots the time
it takes for the resonator to move to one each of these states. If the resonators
is prepared on the edge between the two basins, the force will be zero, and the
resonator will not move. This boundary is called the separatrix and it represents
the unstable stationary points. In practice, fluctuations will cause the resonator to
wander away from these metastable points, this results in a fuzzy separatrix.

For cantilevers, the nonlinearity of the beam’s motion is similar to the clamped-
clamped beam resonator, but it contains some extra nonlinear terms. A derivation
of the equation can be found in Ref. [12] and in Chapter 3. The dimensionless
equation is given by

ä +ω2a +ηȧ +40.44δa3 +4.60δ(aȧ2 +a2ä) =−0.78lΩ2 cos(Ωt ), (2.17)

where δ = (h/L)2 and l the driving strength. The fourth term is recognized as a
Duffing term and the fifth term represents other nonlinear terms, specific for a
cantilever. The nonlinearity arises from the geometry and inertia. For large dis-
placements, the cantilever effectively becomes shorter: this results in the term cu-
bic in a (fourth term in Eq. 2.17). The fifth term represents nonlinear inertial effects
in the cantilever.

2.4 MODAL INTERACTIONS
Thus far, we only considered one resonance mode of a cantilever or clamped-
clamped beam resonator. A mechanical resonator has many degrees of freedom,
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FIGURE 2.7: Nonlinear interactions between the first and third mode of the clamped-clamped beam
with properties as in the caption of Fig. 2.2. The third mode is driven in the linear regime at 100 µN/m
and the first mode is driven in the nonlinear regime with 700 µN/m. Amplitude (a) and phase (b)
response of the third mode (forward sweep) is shown when the first mode is swept from low to high
through its nonlinear resonance. The nonlinear response is reflected in the shift in resonance frequency
of the third mode.

all of them are provided with at least the thermal energy. In general, such struc-
tures are analyzed by assuming the modes are independent and provide an or-
thogonal basis to describe the motion of the rigid body. However, in this Thesis it is
shown that the nonlinearity couples these modes, this coupling is called the non-
linear modal interaction. The coupling originates from the tension in the beam.
Intuitively, one can explain the modal interactions by the tension in the beam. The
tension from one mode is also experienced by the other modes, and it tunes their
resonance frequencies. Mathematically, we write the dimensionless tension in a
clamped-clamped beam as

T (t ) = τ

2

∞∑
i , j=0

ui (t )u j (t )Ii j , (2.18)

where the integral Ii j =
∫ 1

0
dξi
dx

dξ j

dx dx and τ = h2 A/Iy = 12 for a rectangular beam.
The dimensionless displacement u is written as the sum of all modes: u =∑

i |ai |ξi cos(ωi t ).
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This is inserted in Eq. 2.18 to obtain the equation of motion of mode i :∑
i 6= j>0

{(
ω2

0,i −ω2
i + iωiω0,i /Qi + τ

4
|ai |2I 2

i i

+ τ

4

(
|a j |2Ii i I j j +|a j |2I 2

i j

))
ai −

∫ 1

0
Fac,iξi dx

}
= 0. (2.19)

A more detailed discussion of this equation and its consequences can be found
in Chapter 5. From this equation, it follows that all flexural modes in a clamped-
clamped beam are coupled. Focussing on only two flexural modes, the coupled
equations are obtained:{

ω2
0,1 −ω2

1 + iω1ω0,1/Q1 + τ

4

(
|a1|2I 2

11

+|a2|2I22I11 +|a2|2I 2
12

)}
a1 =

∫ 1

0
Fac,1ξ1dx, (2.20){

ω2
0,2 −ω2

2 + iω2ω0,2/Q2 + τ

4

(
|a2|2I 2

22

+|a1|2I11I22 +|a1|2I 2
12

)}
a2 =

∫ 1

0
Fac,2ξ2dx. (2.21)

These two equations can be solved self-consistently. In these equations, there are
four variables: the drive frequencies and drive strengths of the two modes. As an
example, the equations are worked out for the first and third mode of a clamped-
clamped beam. When we consider a homogeneous force along the beam, the even
modes are not excited, since the integral on the right hand side of Eqs. 2.20 van-
ishes. For the third mode, β2

3 = 120.9. Figure 7.2(a) shows the amplitude of the fre-
quency response of the third mode, when the first mode is driven strongly in the
nonlinear regime. The resonance frequency of the third mode increases, when the
first mode is vibrating strongly. This strong vibration of the first mode causes an ex-
tra tension in the beam, which makes the beam stiffer and therefore also increases
the resonance frequency of the third mode (and all other modes in the beam). In
this way, the nonlinear frequency response of the first mode is reflected in the res-
onance frequency of the third mode. For small amplitudes, it can be shown that
there is a quadratic dependence of the resonance frequency of one mode on the
amplitude of another mode. The phase response, shown in Fig. 7.2(b), also shows
the shift in resonance frequency.

For a cantilever, the equations for the nonlinear coupling are a bit more elab-
orate to analytically work out. The full derivation is given in the Appendix A. The
principle and consequences of the modal interactions is however similar to the
clamped-clamped beam case. However, there is also a coupling between the flex-
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ural and torsional modes. An experimental investigation of the nonlinear coupling
in cantilevers is discussed in Chapter 6.

2.5 CONCLUSION
Micromechanical resonators provide simple systems in which nonlinear terms in
the equation of motion can not be neglected. In general, a force term cubic in the
displacement is sufficient to predict the system dynamics. The Duffing equation
applies to these systems in the large-vibration regime. It is also shown that the
nonlinearity couples the different modes in the beams.
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3
NONLINEAR DYNAMICS IN A

CANTILEVER

We investigate the nonlinear dynamics of microcantilevers. We demonstrate me-
chanical stiffening of the frequency response at large amplitudes, originating from
the geometric nonlinearity. At strong driving the cantilever amplitude is bistable.
We map the bistable regime as a function of drive frequency and amplitude, and
suggest several applications for the bistable microcantilever, of which a mechanical
memory is demonstrated.

Parts of this chapter have been published in Appl. Phys. Lett. 97 193107 (2010) [1]
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3.1 INTRODUCTION

MICROCANTILEVERS are widely applied as transducers in sensitive instrumen-
tation [2, 3], with scanning probe microscopy as a clear example. Typically,

the cantilever is operated in the linear regime, i.e., it is driven by a harmonic force
at moderate strength, and its response is modulated by the parameter to be mea-
sured. In clamped-clamped mechanical resonators, additional applications have
been proposed based on nonlinear behavior. Nonlinearity in clamped-clamped
beams is due to the extension of the beam, which results in frequency pulling
and bistability at strong driving, and can be described by a Duffing equation [4].
Applications which employ this bistability are, e.g., elementary mechanical com-
puting functions [5, 6]. Since a cantilever beam is clamped only at one side, it
can have a nonzero displacement without extending. One would therefore not ex-
pect a Duffing-like behavior for a cantilever beam. Nonlinear effects of a different
origin have been observed in scanning probe microscopy, due to interactions be-
tween the cantilever and its environment. Tip-sample interactions either weaken
or stiffen the cantilever response, depending on the strength of the softening Van
der Waals forces and electrostatic interactions and the hardening short range inter-
actions [7, 8]. Weakening also occurs when the cantilever is driven by an electro-
static force [9]. Besides nonlinear interactions with the environment, theoretical
studies predict intrinsic nonlinear behavior of cantilever beams [9–12], but to our
knowledge a detailed experimental analysis thereof has not been reported [12, 13].

In this Chapter, we report a detailed experimental analysis on the nonlinear
mechanics of microcantilevers. It is shown that a hardening geometric nonlinear-
ity dominates over softening nonlinear inertia, which effectively leads to a stiffen-
ing frequency response for the fundamental mode. At large amplitudes, the me-
chanical stiffening results in frequency pulling and ultimately in intrinsic bistabil-
ity of the cantilever. We study the bistability in detail by measuring the cantilever
response as a function of the frequency and amplitude, and compare the experi-
mental observations with theory. A good agreement is found. We suggest several
applications for the bistable cantilever, and as an example we demonstrate that bit
operations can be implemented in the bistable cantilever.

3.2 MECHANICAL FREQUENCY STIFFENING
Experiments are performed on thin cantilevers with a rectangular cross section, w
× h, fabricated from low-pressure chemical vapor deposited silicon nitride using
electron beam lithography and an isotropic reactive ion etching release process.
Figure 3.1(a) shows a scanning electron micrograph of a fabricated cantilever. The
cantilever is mounted on a piezoactuator and placed in a vacuum chamber at a
pressure of ∼10−4 mbar. At this pressure, the cantilever operates in the intrinsic
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damping regime. An optical deflection technique is deployed to detect the dis-
placement of the driven cantilever, and the frequency response is measured using
a network analyzer, see Fig. 3.1(b).

|A|

FIGURE 3.1: (a) Scanning electron micrograph of a silicon nitride cantilever; (b) experimental setup;
(c) response lines for several drive voltages (forward frequency sweeps). A damped driven harmonic
oscillator fit is shown for the weakly driven cantilever. The line at f = 94.5 kHz represents a response
line along the (decreasing) drive strength axis. The arrows indicate the switching direction.

Figure 3.1 (c) shows frequency response lines for a weakly and strongly driven
cantilever with length L = 40 µm and w × h = 8 µm × 200 nm. For weak driv-
ing the response fits a damped driven harmonic oscillator, with f0 = 94.35 kHz
and Q ≈ 3000. Figure 3.1(c) also shows the response when driven at increasing
strength: the resonance peak shifts to a higher value and the response becomes
bistable. It resembles the response of a clamped-clamped beam driven in the non-
linear regime. A more detailed measurement is presented in Figs. 3.2(a) and 3.2(b).
Here the magnitude of the resonator response, |A|, is depicted (color scale) as a
function of the drive frequency and strength. The frequency is swept forward (i.e.
from a low to a high frequency, FW) and backward (BW), and after each frequency
response measurement the drive strength is increased. Parameters which result
in a hysteretic (HY) response are visualized by subtracting forward and backward
traces, as shown in Fig. 3.2(c).

The theory of nonlinear oscillations of a cantilever beam due to geometric non-
linearity has been developed in Ref. [10]. Using the extended Hamilton principle
the equation of motion for the displacement ũ has been derived

D[ũ′′′′+ [ũ′(ũ′ũ′′)′]′]+ρwh ¨̃u + η̃ ˙̃u + 1

2
ρwh

(
ũ′

∫ s

L

∂2

∂t̃ 2

∫ s1

0
(ũ′)2d s2d s1

)′ = F̃ . (3.1)

The dots and primes denote differentiation to time t̃ and the arc length s of the
cantilever respectively, and D is the bending rigidity, ρ the density, and η̃ is the
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FIGURE 3.2: Frequency pulling and bistability in a cantilever, measurement (left) and calculation by
solving Eq. 3.3 (right). The drive frequency is swept from a low to a high value [(a) and (d)] and vice
versa [(b) and (e)]. Panels (c) and (f) show the bistable regime, obtained by subtracting the forward
from the backward response. As the piezoelectric coupling parameter is not known, the y-axis in the
calculations has been scaled to match the experimental values. The color scales (blue to yellow) indi-
cates the amplitude of the motion normalized to the drive strength.

damping parameter. The piezo actuator generates a displacement U = d33V cos(Ω̃t ),
where V is the drive voltage and d33 the piezoelectric coefficient. The resulting
load on the cantilever equals F̃ = Üρwh =−Ω̃2ρwhd33V cos(Ω̃t ). Equation 3.1 is
transformed to a dimensionless form by substituting u = ũ/h, x = s/L, l = d33V /h,
η = η′L4/(Dτ) and δ = h/L. The time t̃ and drive frequency Ω̃ are normalized us-
ing τ = L2

√
ρwh/D . Applying the Galerkin procedure [9, 14] for the first mode

[u = a(t )ξ(x)] gives

ä +ω2a +ηȧ +40.44δa3 +4.60δ(aȧ2 +a2ä) =−0.78lΩ2 cos(Ωt ). (3.2)
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Here, a is the normalized coordinate, and ω is the dimensionless resonance fre-
quency; for the first mode ω = 3.52. The cubic term in a represents the harden-
ing geometric nonlinearity, and the fifth term represents a nonlinear inertia which
softens the frequency response [9]. The values 40.44, 4.60 and 0.78 are obtained by
integrating the linear mode shapes, ξ(x) 1. Equation 3.2 can be evaluated using the
method of averaging or the method of multiple scales [11] and the amplitude, A,
can be implicitly written as

A = lΩ2√
6.57[15.16δA2 −ωΩ+ω2(1−1.15δA2)]2 +1.64η2ω2

. (3.3)

This equation can be solved self-consistently to obtain the resonator amplitude,
which is normalized by the drive strength l to obtain the frequency response. Us-
ing the experimentally obtained linear resonance frequency, Q factor and the di-
mensions as input parameters, the frequency responses are calculated as a func-
tion of the drive strength. Figures 3.2(d) and 3.2(e) show the simulated stable so-
lutions, which correspond to the resonator response to a the forward and back-
ward frequency sweep. The model captures the observed behavior well, where the
piezoelectric coupling parameter is the only free parameter. Both the calculations
and the experiments indicate that the geometric nonlinearity dominates over the
inertial nonlinearity. Analyzing Eq. 3.3 in detail shows that the nonlinearity de-
pends on the mode shape, ξ(x), and the aspect ratio, δ. For the fundamental mode,
the intrinsic nonlinearity in cantilevers always leads to stiffening of the response 2.

3.3 BIT OPERATIONS
The intrinsic mechanical bistability allows cantilever applications similar to the
ones implemented in clamped-clamped resonators. As an example, we demon-
strate mechanical bit operations in a cantilever with dimensions L × w × h =
30 µm × 8 µm × 150 nm, with a linear resonance frequency f0 = 193.49 kHz and
Q ≈ 5800 in vacuum. For this cantilever, a measurement of the hysteretic regime
is shown in Fig. 3.3 3. Bit operations can be performed by modulating the drive
frequency or the drive strength –or a combination thereof– across the hysteretic

1The integrals involving the modeshapes and their derivatives are evaluated as follows:∫ 1
0 ξ(x)(ξ(x)′(ξ(x)′ξ(x)′′)′)′dx = 40.44,

∫ 1
0 ξ(x)dx = 0.78 and

∫ 1
0 ξ(x)(ξ′(x)

∫ x
0

∫ x1
1 ξ′(x2)2dx2dx1)′d x =

4.60.
2For the lowest flexural modes, the prefactors in Eq. (2) are 40.44066, 13418.09, 264384.7, and 19166632

for the geometry, 4.596772, 144.7255, 999.9000, and 3951.323 for the nonlinear inertia, and 0.782992,
0.433936, 0.254430, and 0.181627 for the force. The dimensionless frequencies are 3.516015, 22.03449,
61.69721, and 120.9019.

3A different piezo actuator is used in this experiment.
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regime. This principle is indicated by the arrows in Fig. 3.3(a). The drive strength
is modulated by varying the voltage on the piezo at a fixed frequency, as shown in
Fig. 3.3(b). A backwards sweep in the drive strength follows the high-amplitude
solution, similar to a forwards sweep in drive frequency. This intuitively becomes
clear in Fig. 3.1(c), where the transition from a high to a low amplitude occurs dur-
ing a backward sweep in the drive strength, as is indicated by the red line. During a
forward sweep in the drive strength the resonator follows the low-amplitude stable
branch, as with a backward sweep in frequency.

To implement the bit, the cantilever is driven in the bistable regime at f =193.50
kHz and Vpiezo = 10 mV. To set and reset the cantilever bit, the drive voltage is mod-
ulated by 2 mV around the operating point, as indicated by the arrows in Fig. 3.3(b).
Starting at low amplitude, "0" in Fig. 3.3(c), a high-amplitude "1" is written by tem-
porary increasing the drive voltage to 12 mV. The cantilever switches to a high vi-
brational amplitude and remains in this state after the drive voltage is set back to
the operating point. Next, the drive strength is lowered to 8 mV which resets the
cantilever to a low amplitude oscillation, corresponding to "0".

3.4 DISCUSSION AND CONCLUSION
Bistability of cantilever beams can be used for various purposes besides the me-
chanical memory application described here. For example, the hysteretic frequency
response facilitates the readout of cantilever arrays in dissipative environments by
employing the scheme described earlier [15]. Bistability may also open the way to
use a cantilever as its own bifurcation amplifier [16–19] in for example scanning
probe microscopy, thereby enhancing the sensitivity to external stimuli. Finally,
we note that despite scaling with the aspect ratio, δ, the bistable regime is also ac-
cessible for single-clamped nanoscale resonators such as carbon nanotubes [20].

In conclusion, we investigated the nonlinear oscillations of microcantilever
beams. Mechanical stiffening is observed which results in frequency pulling and
bistability. The experiments are in excellent agreement with calculated nonlinear
response. Several applications for the bistable cantilever are suggested, of which a
mechanical memory is demonstrated.
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FIGURE 3.3: (a) Hysteretic regime for a 30 µm × 8 µm × 150 nm cantilever. (b) Drive strength sweep at
fixed frequency, and indication of the modulation to implement the bit. (c) Mechanical memory in a
bistable cantilever beam: drive strength (lower panel) and cantilever response (upper panel).
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4
STOCHASTIC SWITCHING

The cantilever is a prototype of a highly compliant mechanical system and plays
an instrumental role in nanotechnology, enabling surface microscopy [1, 2], and
ultrasensitive force[3, 4] and mass measurements[5, 6]. Here, we report fluctuation-
induced transitions between two stable states of a strongly driven microcantilever.
Geometric nonlinearity gives rise to an amplitude-dependent resonance frequency
and bifurcation occurs beyond a critical point. The cantilever response to weak
parametric modulations is amplified by white noise, resulting in an optimum signal-
to-noise ratio at finite noise intensity. These findings suggest new detection schemes
for cantilever-based instrumentation, where the detection of weak signals is medi-
ated by the noisy environment. For ultrafloppy cantilevers with nanometer-scale
dimensions operating at room temperature, a new transduction paradigm emerges
that is based on probability distributions and mimics nature.
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4.1 INTRODUCTION

ATOMIC force microscopy cantilevers enable imaging and modification of sur-
faces at the atomic level [1], imaging of electron and nuclear spins [2, 4], and

measurement of the unfolding dynamics of single molecules [7]. Cantilevers are
also used in solid-state nanofabrication [8, 9] and to dispense liquid volumes at
the attoliter scale [10, 11]. Microcantilever-based sensors are promoted as a plat-
form for multiplexed label-free detection of (bio) chemical species, by specific ad-
sorption or individual weighing [3, 5, 6, 12–14]. These applications rely on mea-
surement of the static deflections of the cantilever, or the changes in its response
to weak periodic driving.

We study the dynamics of a microcantilever in the large-amplitude limit. The
cantilever moves in a dynamic double-well landscape, where vibration states with
a low- and a high-amplitude are stable. We show that the presence of noise leads
to parametric excitation which enables transitions between the states. A rise and
decay of the switching rate is observed when the noise intensity is increased. Close
to the onset of spontaneous switching, the sensitivity of the cantilever to a weak
excitation is enhanced, and the Signal-to-Noise Ratio (SNR) maximizes at finite
noise intensity. This process is referred to as stochastic resonance, and has been
reported in biological, physical, and information systems [15].

4.2 EXPERIMENT
Thin cantilevers with a rectangular cross section are fabricated by standard nanofab-
rication techniques, comprising low-pressure chemical vapor deposition of silicon
nitride, patterning by electron beam lithography, and reactive ion etching. Fig-
ure 4.1(a) shows the device, with dimensions length × width × height (L × w × h)=
40 × 8 × 0.1 µ m3. The cantilever is driven by applying stochastic and harmonic
voltages to a piezo actuator, at a pressure of ∼ 10−5 mbar. Its motion is detected by
an optical deflection technique and network and spectrum analysis of the photo-
diode currents is implemented in a digital signal processor. Figure 4.1(b) shows the
experimental setup. The power spectral density (PSD) of the cantilever displace-
ment near the fundamental resonance frequency, f0 = 88.9 kHz, is measured when
Gaussian distributed white noise is applied with a spectral amplitude, NV , varying
between 0 and 1.4 · 10−3 V/

p
Hz. The effective temperature of the fundamental

mode is determined as a function of the applied noise voltage by integrating the
PSD of the mechanical displacements (see Sec. 4.5.2). For NV > 10−4 V/

p
Hz the

applied noise exceeds the thermomechanical fluctuations. As expected, the en-
ergy of the mode is then proportional to the squared noise voltage; the calibrated
effective temperature of the fundamental mode equals Teff = [4.8·1011 V−2sK] · N 2

V .
The nonlinear dynamics of the cantilever driven by a force f at frequency Ω is
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FIGURE 4.1: Setup and thermometry of a noise driven cantilever. (a) Diagram of measurement circuit.
The cantilever is driven by stochastic and harmonic voltages generated in the Digital Signal Processor
(DSP) and applied to the piezoelectric crystal. Its motion is detected optically. Details on the fabrication
and the setup are provided in Supplementary Section 1. At strong driving, two distinct states are stable
which correspond to a low (L) and a high (H) vibrational amplitude. (b) Inset: Colorized scanning elec-
tron micrograph of a silicon nitride cantilever (scale bar 20µm). Measured energy Em = ∫

ω Sxx(ω′)dω′
as a function of the applied noise NV. When NV < 2.5 ·10−5 V/

p
Hz the energy equals the thermome-

chanical noise. Increasing NV yields the quadratic dependence between effective mode temperature
and the applied noise voltage according to Teff = [4.8 ·1011V−2sK] ·N2

V.

governed by

ä +ηȧ +ω2a +40.44δa3 +4.60δ(aȧ2 +a2ä) =−0.78 f Ω2 cos(Ωt ), (4.1)

where a is the scaled displacement, ω is the dimensionless resonance frequency
(ω = 3.52) and δ the aspect ratio (h/L)2. The fourth and fifth term represent ge-
ometric and inertial nonlinearities of the cantilever, causing the resonance fre-
quency to increase with the vibration amplitude, as is discussed in more detail
in Sec. 4.6. Note that in contrast to doubly-clamped beams, where the nonlin-
earity originates from the displacement-induced tension, a cantilever is clamped
on one side and therefore it can displace without extending. This makes the can-
tilever highly susceptible to thermal fluctuations. At a critical amplitude and fre-
quency, acr and fcr respectively, a bifurcation occurs [16]. Two stable states co-
exist beyond this point, represented by motion at a low and a high vibrational am-
plitude [16–18]. A full map of the parameters that result in a bistable response is
given in Sec. 4.6. The drive force fluctuations at finite temperature induce switch-
ing, which can be viewed as fluctuation-induced transitions between the attractors
in the dynamic double-well[19, 20].
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FIGURE 4.2: Stochastic switching of microcantilever motion. (a) Dynamics of the noise-driven micro-
cantilever represented in the complex plane. The cantilever moves from the high to the low-amplitude
attractor while increasing the noise power; the corresponding effective temperatures are indicated (up-
per left to lower right panel). Incoherent transitions occur at intermediate noise levels on the central
row. (b) Time domain representation and probability densities (P) of the resonator amplitude response
(|H |) for selected panels from each row. The shape of the dynamic double-well is sketched in the inset.
The central panel represents the symmetric system.
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4.3 NOISE-INDUCED SWITCHING

To study the noise-enabled transitions in the dynamic double-well, we prepare
the cantilever in the high state and artificially increase its temperature by apply-
ing voltage noise to the piezo. Figure 4.2(a) shows the real and the imaginary part
of the motion for nine different noise powers, which are expressed in the effective
temperature of the fundamental mode. The cantilever is driven at an amplitude
ad = 2.18acr and a frequency fd = 1.00066 fcr . For Teff < 41 · 106 K the cantilever
resides in the high-amplitude state (upper left panel): no switching is observed
within the measurement time (120 s). When the noise intensity is raised, in the
subsequent panels, the cantilever occasionally crosses the barrier. At Teff = 45 ·106

K, the central panel, the high- and the low-amplitude state are equally probable,
and switching occurs through a narrow region in phase space [21]. The switching
decays upon further increasing the noise intensity, and at Teff = 52 ·106 K the can-
tilever settles at the low-amplitude state. Figure 4.2(b) shows time traces (left) and
histograms (right) of the amplitude response, clearly demonstrating the discrete
states of low- and high-amplitude motion, and the transitions between them. The
responses correspond to the first, central and the last panel in Fig. 4.2(a).

The transition rates and residence times are plotted in Fig. 4.3. The switching
rate, shown in panel (a), rises according to Kramers law [22] upon increasing the
noise intensity and maximizes to Γmax = 1.5 s−1 at Teff = 44.9 ·106 K. In contrast to
the saturation of the transition rate as is the case for a static double-well, a decay
in the transition rate is observed upon increasing the noise level. Apparently, the
applied noise presents an additional driving force which shifts the critical driving
force acr to a lower value and makes transitions to the low-amplitude state more
probable when the noise is increased. This parametric change becomes evident
when the cantilever response to forward and backward frequency sweeps is mea-
sured at a low and a high noise intensity. Comparing the responses shown in Figure
3c, two effects are visible: applying noise reduces the hysteresis, as is expected for
a double-well energy potential, and as observed in dynamically bistable doubly-
clamped beams as well [23]. In addition, the hysteretic regime shifts to a lower
frequency and amplitude. This causes the system prepared in a dynamic double-
well in the presence of weak fluctuations, as indicated by a white dot in Figure 3c,
to become monostable when the noise intensity is increased (see Sec. 4.6). The
change in the dynamic double-well parameters due to noise is confirmed by mea-
surements on a different device, discussed in Sec. 4.7. The present experiment
indicates that, in contrast to a static double-well energy landscape, the stochas-
tic switching between stable states in the dynamic double-well occurs in a limited
regime of noise powers.

Noise-enabled measurements, similar to the ones demonstrated in doubly-
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FIGURE 4.3: Transition rates and residence times. (a) Transition rate, Γ, as a function of temperature.
(b) Residence time, τ, in the states of high-amplitude (H) and low-amplitude (L) motion. (c) Bistable
frequency response lines of the cantilever measured at a low (upper curves) and a high (lower curves)
temperature. The insets show the corresponding linear responses. Increasing the temperature affects
the double-well: the initially bistable system, marked by the white circle, is monostable at a high noise
intensity.
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FIGURE 4.4: Noise-enhanced measurement of sub-threshold cantilever excitations. Inset: Top row
shows the excitation signal in time (left) and frequency (right) domain. The cantilever response at in-
creasing noise intensity is shown in panels A-D. Main figure: Signal-to-Noise ratio (SNR) as a function
of the effective temperature (dotted line: SNR=1).
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clamped beams [23–27] are now implemented in cantilevers, which are omnipresent
in nanoscience instrumentation. The sensitivity of these instruments is ultimately
limited by the thermomechanical fluctuations of the cantilever, and here we demon-
strate a scheme that exploits such fluctuations. To demonstrate noise-enabled de-
tection in a cantilever, the cantilever is prepared in a bistable state by driving it at
ad = 1.5113 acr and fd = 1.0013 fcr . The double-well is then parametrically per-
turbed by a weak and slow sinusoidal amplitude modulation (amplitude 40 mV,
period 10 s) of the periodic excitation signal on the piezo. This perturbation mim-
ics, for instance, a small force to be detected by the cantilever-based instrument.
Figure 4.4 (inset) shows the excitation voltage in the time and frequency domains
(upper panels). Panels A-D show the response for four different noise intensities
close to the regime where spontaneous switching occurs; the noise intensity in-
creases from panel A to D. In panel A, the cantilever vibrates in the high state: the
modulation of the double-well is too weak to cross the barrier, and only an inci-
dental escape to the low-amplitude state is observed. In panel B, occasional tran-
sitions occur, weakly locked to the modulation signal. In C the transitions are syn-
chronized to the modulation. Here, the amplification of the cantilever response
by the noise is maximized. Further increasing the temperature shifts the double-
well and directs the cantilever to the low state (D). A fast Fourier transform of the
detected signals (Fig. 4.4 (inset), right column) clearly reveals the synchronization
observed in panel C: the cantilever response peaks at the excitation frequency. The
Signal-to-Noise Ratio (SNR) is calculated as [15]

SNR = 2 · lim
∆ω→0

∫ ω+∆ω

ω−∆ω
S(ω′)dω′/N 2

V (Ω) = S(Ω)

N (Ω)
, (4.2)

where S(Ω) is the height of the power spectrum peak at the modulation frequency
Ω and N (Ω) is the spectral background. Figure 4.4 shows the SNR as a function
of the temperature. A peak is observed at effective temperatures between 33 ·106

K and 35 · 106 K, where the random fluctuations induce coherence between the
cantilever motion and the subthreshold excitation. In this experiment the SNR
improves by a factor of 4 at the optimum noise level.

4.4 DISCUSSION AND CONCLUSION
The experiments described in this work are carried out at relatively high effective
temperatures, obtained by artificially heating the mechanical system. In contrast
to doubly-clamped structures such as silicon nitride strings, the amplitude of a
cantilever is not restricted by the displacement-induced tension, and this makes
large thermomechanical amplitudes possible. The limited dynamic range of NEMS
resonators is a widely recognized disadvantage, and methods to enhance it are ac-
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tively studied [18, 28, 29]. As the susceptibility of cantilever structures further in-
creases upon scaling down the dimensions, in ultrathin cantilevers the thermal
fluctuations will be strong enough to quench the regime of linear motion, leading
to a dynamic range approaching zero and intrinsic bistability at room temperature.
Clearly, mechanical devices in this regime require new operating paradigms, which
involve probabilities and switching rates rather than the deterministic input-output
relations of linear and weakly non-linear transducers. The present work demon-
strates characteristic aspects of this new class of mechanical systems. At low tem-
peratures, the Wigner function gives important information if the bistable can-
tilever is in the quantum regime [30].
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FIGURE 4.5: Experimental details. (a) Cantilever fabrication process. (b) Schematic of the optical de-
flection setup.

4.5 SUPPLEMENTARY INFORMATION

4.5.1 EXPERIMENTAL DETAILS

Cantilevers are fabricated according to the process shown in Fig. 4.5(a). An 100nm
thick layer of Low-Pressure Chemical Vapour Deposited silicon nitride [31, 32] is
deposited on a silicon (1 0 0) wafer. A layer of photoresist is spin-coated (HPR, 0.5
µm), followed by HSQ electron-beam resist (Fox-12, 200 nm). Cantilevers are pat-
terned in the HSQ layer using an electron beam pattern generator (Leica 5000+).
The HPR is then anisotropically etched in a reactive ion etcher (LH Z400) using a
low-pressure O2 plasma (20 sccm, 0.3 µbar, 40 W). Subsequently the SiN is etched
in a O2/CHF3 plasma (2.5 sccm, 50 sccm, 10 µbar) at 50 W, while the HPR serves as
an etch mask. The cantilevers are released by under-etching the silicon substrate
in an SF6/O2 inductively coupled plasma (Alcatel AMS100).

The cantilever motion is detected using the optical deflection technique shown
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in Fig. 4.5(b). The collimated output of a diode laser passes a shutter (S), an iso-
lator, a polarizer (P) and a Polarizing Beam Splitter (PBS), and is directed by the
Dichroic Mirror (DM) through a microscope objective (NA=0.6, 50×, focal distance
11 mm) on the cantilever, which is placed on top of a piezo-electric crystal (C) in a
vacuum chamber. The reflection is collected on a split-cell Photo Diode (PD).

Figure 4.6(a) shows the Power Spectral Density (PSD) of the detected voltage
when the cantilever is driven by Gaussian distributed white noise. The effective
temperature is determined by integrating the PSD over the frequency band of the
fundamental mode. Figure 4.6(b) shows network analyzer measurements of the
cantilever response driven by a periodic voltage. Clear signatures of a nonlinear
response are observed at half the critical drive acr , and hysteresis and bistability
occur when a > acr .

4.5.2 CANTILEVER MECHANICS

(a) (b)

FIGURE 4.6: (a) Power Spectral Density (PSD) of the displacement noise of the 40µm cantilever driven
by broadband Gaussian white noise with a spectral amplitude equal to NV. The solid lines are the
Lorentzian fits from which the effective temperature is calculated. (b) Linear and nonlinear frequency
responses of the cantilever driven by a sinusoidal voltage at indicated drive strengths. The arrows indi-
cate the sweep direction. The critical driving amplitude acr marks the onset of hysteresis.

The theory of nonlinear oscillations of a cantilever beam due to geometric non-
linearity has been developed in Ref. [17]. Using the extended Hamilton principle
the equation of motion for the displacement ũ is written as:

D[ũ′′′′+ [ũ′(ũ′ũ′′)′]′]+ρwh ¨̃u + η̃ ˙̃u + 1

2
ρwh

(
ũ′

∫ s

L

∂2

∂t̃ 2

∫ s1

0
(ũ′)2d s2d s1

)′ = F̃ . (4.3)

The dots and primes denote differentiation to time t̃ and the arc length s of the
cantilever respectively; D is the bending rigidity, ρ the density, and η̃ is the damp-
ing parameter. The piezo actuator generates a displacement U = d33V cos(Ω̃t ),
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where V is the drive voltage and d33 the piezoelectric coefficient. The resulting
force on the cantilever equals F̃ = Üρwh =−Ω̃2ρwhd33V cos(Ω̃t ). Equation 4.3 is
transformed to a dimensionless form by substituting u = ũ/h, x = s/L, l = d33V /h,
η = η′L4/(Dτ) and δ = (h/L)2. The time t̃ and drive frequency Ω̃ are scaled using
τ= L2

√
ρwh/D . Applying the Galerkin procedure for the first mode (u = a(t )ξ(x))

gives

ä +ω2a +ηȧ +40.44δa3 +4.60δ(aȧ2 +a2ä) =−0.78 f Ω2 cos(Ωt ) (4.4)

Here,ω is the dimensionless resonance frequency; for the first modeω= 3.52. The
cubic term in a represents the hardening geometric nonlinearity, and the quadratic
term in a represents a nonlinear inertia which softens the frequency response [16,
18]. The nonlinearity is determined by the squared aspect ratioδ. The values 40.44,
4.60 and 0.78 are obtained by integrating the linear mode shapes, ξ(x):∫ 1

0
ξ(x)(ξ(x)′(ξ(x)′ξ(x)′′)′)′dx = 40.44,∫ 1

0
ξ(x)dx = 0.78,∫ 1

0
ξ(x)(ξ′(x)

∫ x

0

∫ x1

1
ξ′(x2)2dx2dx1)′dx = 4.60. (4.5)

To solve equation 4.4, the fast timescale (1/Ω) is separated from the slow timescale
(Q/Ω). The displacement is written as a(t ) = u1(t )cos(Ωt )+u2(t )sin(Ωt ) and in-

FIGURE 4.7: Basins of attraction of a cantilever, calculated by numerically solving equations (4,5). (a)
If the cantilever is prepared with initial conditions in the red area, the motion evolves to the high-
amplitude state. Initial conditions in the blue area evolve to the low-amplitude state. The attractors
are located at (u1,u2) equals (-1.05, 1.05) and (-4.22, 4.87). (b) Traveling time (scaled by Q/ω) to the
attractor. Time increases from blue to red; red marks the separatrix.
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serted in equation 4.4. All terms moving faster than 1/Ω are neglected. Collecting
terms with cos(Ωt ) and sin(Ωt ) gives two equations of u1 and u2:

u̇1 = 1

2

[ −ω
Q u1 + ω2

Ω u2 +
( 30.33δ

Ω +1.15δΩ
)
(u3

2 +u2
1u2)

1+2.30δ(u2
1 +u2

2)
−Ωu2

]
, (4.6)

u̇2 = 1

2

[ −ω
Q u2 − ω2

Ω u1 +
( 30.33δ

Ω −1.15δΩ
)
(u3

1 +u1u2
2)−0.78lΩ

1+2.30δ(u2
1 +u2

2)
+Ωu1

]
. (4.7)

Similar to the nonlinearity from the displacement-induced tension in doubly-clamped
beams, the geometric nonlinearity in a cantilever can lead to a bistable frequency
response [16, 33]. At sufficiently strong driving two attractors emerge: depending
on the initial conditions the resonator evolves to a state of high or a state of a low-
amplitude. Figure 4.7 shows the steady state as a function of the initial conditions
(a), and the time it takes to evolve to that state (b). Here, the cantilever is driven at
a = 2.0acr and f = 1.1 fcr .

4.6 QUENCHING OF THE HYSTERETIC REGIME
The nonlinear equations of motion of the cantilever yield a multi-valued response
for a regime of drive strengths and frequencies [16]. For the experimental device,
this regime is visualized by measuring frequency response curves at a range of
drive strengths, combined in Figure S4 for sweeps at increasing (a) and decreas-
ing (b) frequency. Panel (c) shows the superimposed image, and marks the drive
conditions that result in a bistable response. Repeating the experiment at a high
effective temperature quenches the hysteretic regime as is shown in Fig. 4.8(d)-(f).
Quenching of the hysteresis has been observed before in doubly-clamped nanome-
chanical resonators at effective temperatures on the order of 1010 K [23]. For the
floppy cantilever devices in our experiment the hysteresis vanishes at tempera-
tures that are lower by three orders of magnitude. For high noise powers we ob-
serve, in addition, a shift of the hysteretic regime. This indicates a noise-induced
change to the double-well parameters, and suggests that the noise has a multi-
plicative character [34]. We note that a monostable state in the high noise limit was
also observed in magnetomotive-driven doubly-clamped nanomechanical resonators [24].

4.7 MEASUREMENTS ON A DIFFERENT DEVICE
We conducted experiments on a second device with dimensions L × w × h = 26
× 8 × 0.07 µ m3 in order to corroborate the results. For this device the resonance
frequency and Q factor are f0 = 143.6 kHz, Q0=1537, and the effective temperature
obtained by noise thermometry, cf. Fig 4.1(a), is given by Teff=[2.7 · 1011 V−2sK ] ·
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FIGURE 4.8: Maps of the parameter regime for a bistable response, taken at two noise intensities in-
dicated as effective temperatures. Cantilever susceptibility (response magnitude normalized to the
drive force) during forward (a) and reverse (b) frequency sweeps (horizontal, fast axis) for increasing
drive strength (vertical, slow axis), taken at Teff = 300 K. (c) shows the parameter map that leads to a
bistable amplitude and is obtained by superimposing (a) and (b). Bifurcation occurs at the critical driv-
ing voltage acr = 1.555 V and frequency fcr = 88.925 kHz. (d-f) The same measurement at an effective
temperature Teff = 48×106 K, showing quenching of the hysteresis and a shift of the bistable regime.

N 2
V . The device is driven in the bistable regime at a = 1.34acr and f = 1.00016 fcr ,

closer to the critical point than in the experiment described in the main text. As a
result, the hysteretic regime is smaller, and noise-induced switching is observed at
noise powers that are lower by two orders of magnitude. Figure 4.9(a) shows time
traces and histograms of the cantilever response at three noise intensities, indi-
cated by effective temperatures. For low noise levels, Teff < 105 K, the cantilever
vibrates in the low-amplitude state and no switching is observed within the time
of the experiment (180 s). When the noise intensity is increased, switching oc-
curs and at Teff = 27.1 ·104 K the states equally populated. As with the experiment
in the main text, further increasing the noise level induces parametric changes to
the double-well. At high noise levels the high state becomes more probable, as
schematically represented in the insets.

Figure 4.9(b) shows the evolution of the histograms when the applied noise
level is increased: in the high-noise limit the low-amplitude state that was ini-
tially stable, vanishes. In this case the fluctuations are strong enough to access
the unstable state, as is indicated by the schematized double-wells inset in the his-
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FIGURE 4.9: (a) Stochastic switching of a cantilever with dimensions L × w × h = 26 × 8 × 0.07 µm3.
(b) Stacked histograms for a range of noise intensities (colorscale: P(|H|)). The transition from the low
to the high-amplitude attractor suggests a qualitative change in the symmetry of the dynamic double-
well. (c) The switching rate follows Kramers law for diffusion-driven escape.

tograms. As a result, the switching rate does not peak in this parameter regime, but
continues to follow Kramers law [22] as is shown in Fig. 4.9(c), and which resem-
bles the initial part of the curve in Fig. 4.3(a) in the main text.

Such behavior is predicted for a dynamic double-well [19], and was observed in
doubly-clamped nanomechanical resonators and parametric oscillators [21, 23].
We conclude that in the limit of low noise, Kramers law effectively describes the
stochastic switching of cantilever motion, and the switching rate is given by Γ =
Γ0e−T0/Teff , with Γ0 = 39 s−1 and T0 = 4.6 · 105K in the present experiment.
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5
MODAL INTERACTIONS IN

CLAMPED-CLAMPED

RESONATORS

A theoretical and experimental investigation is presented on the intermodal cou-
pling between the flexural vibration modes of a single clamped-clamped beam. Non-
linear coupling allows an arbitrary flexural mode to be used as a self-detector for the
amplitude of another mode, presenting a method to measure the energy stored in a
specific resonance mode. At strong driving forces, experiments demonstrate com-
plex nonlinear dynamics of the coupled modes. The observed complex dynamics are
quantitatively captured by a model based on coupling of the modes via the beam
extension; the same mechanism is responsible for the well-known Duffing nonlin-
earity in clamped-clamped beams.

Parts of this chapter have been published in Phys. Rev. Lett. 105, 117205 (2010) [1].
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5.1 INTRODUCTION

AN important topic in nanomechanics is the motion detection of mechanical
resonators. Several schemes have been proposed to attain sensitivities near

the quantum limit of mechanical motion [2], whereas application-driven research
is focussed on on-chip detection [3] and readout of resonator arrays [4]. Central in
any detection scheme is the coupling of a mechanical resonator to another system,
which transduces the motion into a measurable quantity. Examples of sensitive
detectors include a single-electron transistor [5], a microwave cavity [6], or an op-
tical interferometer [7]. A second mechanical resonator can also be used to detect
the motion of the resonator [8, 9]. Such a system of coupled resonators has been
proposed as a quantum nondemolition detection scheme, in which one resonator
is in a quantum state [10]. Coupling between different mechanical resonators is of-
ten present in large-scale integrated arrays due to electrostatic [8] and mechanical
interaction [9]. Coupling between individual resonators can also lead to complex
behavior [11].

In this Chapter, we study the coupling between vibrational modes in a single
beam resonator. We demonstrate that flexural modes are coupled by the displacement-
induced tension in the beam. Using this coupling, the displacement of any mode
can be detected by measuring the response of another mode, making otherwise
undetectable modes visible. We present a general theoretical framework based on
the Euler-Bernoulli equation extended with displacement-induced tension. The
model quantitatively describes the complex dynamic behavior observed in the
regime where two modes are simultaneously driven nonlinear. The coupling mech-
anism plays an prominent role in the dynamics of carbon nanotube resonators and
resonators under high tension, and should be taken into account when describing
such systems accurately.

5.2 MEASURING MODAL INTERACTIONS
Experiments are performed on a single-crystalline silicon beam with dimensions L
× w × h = 1000 × 35 × 6 µm3 fabricated by patterning a silicon-on-insulator wafer
and subsequent wet etching. The resonator is placed in a magnetic field of B = 2.1
T and a magnetomotive technique [4, 12] is used to detect the mechanical motion
of the beam at room temperature and atmospheric pressure [see Fig. 5.1(a)]. The
beam is driven at multiple frequencies by sending alternating currents through a
conductive aluminum path, evaporated on top of the resonator. The motion of the
beam in the magnetic field generates an electromotive force, which is balanced
using a Wheatstone bridge, amplified, and then digitized. The frequency response
(amplitude and phase) of the resonator at the two drive frequencies is calculated
using a digital signal processor.
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FIGURE 5.1: (a) Setup, with a colored scanning electron micrograph of the resonator beam. DSP is
the digital signal processor, R is used to balance the bridge and set to 22 Ω and A is the amplifier. (b)
Frequency responses of the third mode (amplitude |A3|) for different drive amplitudes of the first mode
|A1| on resonance. The drive current of mode 3 is I3 = 1.5 mA. Inset: beam shapes of the first (solid)
and third mode (dashed) for increasing amplitude of the first mode. (c) Resonance frequency of mode
3 ( fR,3) as a function of drive amplitude of |A1|: measurements (black squares) and model (red line).
For small drive currents a quadratic dependence is observed (dashed blue line). Inset: schematic of the
resonator showing the beam shape of the first (blue) and third (red) mode. (d) On a different device,
the resonance frequency of the first mode is used to detect the second mode. Inset: beam shape of the
first (blue) and second (red) mode. The error bars are within data markers.

Measurements are conducted on the first and third flexural mode of the beam.
In Fig. 5.1(b) the frequency response of the third mode is shown for three differ-
ent drive amplitudes of the first mode. The resonance frequency of the third mode
increases when the amplitude of the first mode |A1| becomes larger. At the same
time the amplitude decreases slightly. The resonance frequency fR,3, obtained by
fitting a damped driven harmonic oscillator response, is plotted as a function of
the drive amplitude of the first mode in Fig. 5.1(c). For small amplitudes |A1|, a
quadratic dependence of fR,3 on |A1| is found [dashed line in Fig. 5.1(c)]. A qual-
itative picture explaining the mode coupling is presented in Figure 5.1(b). When
driving the third mode on resonance, the tension in the beam increases as the am-
plitude of the first mode increases. This results in a higher frequency and a lower
amplitude of the third mode.

Using the magnetomotive measurement scheme it is not possible to detect the
even resonance modes. However, by exploiting the coupling to detectable odd
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modes, their motion is observable. We have detected the motion of the second
mode by measuring its influence on the first mode. To drive the second mode, the
sample (different device, h = 10 µm) is mounted on a piezo actuator and excited
at frequencies around the second resonance mode. Off-resonance, no frequency
shift of the first mode is observed. When driven at fR,2, fR,1 shifts to a higher value
[Fig. 5.1(d)]. The response of the second mode is obtained by measuring the shift
in fR,1, whereas a magnetomotive measurement around the same frequency shows
no signature of the second mode. For weak piezo driving the frequency shift is pro-
portional to |A2|2 and a squared damped driven harmonic oscillator function fits
the data well with f2 = 287 kHz and Q = 250.

5.3 THEORY OF MODAL INTERACTIONS
In order to quantify the coupling between the flexural modes of the beam, an an-
alytical model is developed. First, the equations are derived for the general sit-
uation with modes coupled; then we focus on the experimental situation, where
only two modes are considered. The Euler-Bernoulli equation including tension
T [13–15] is used as starting point. To simplify the notation, the displacement u
is scaled with the beam thickness h, and the coordinate x with the beam length L.
A displacement of the beam causes an elongation and increases the tension. The
dimensionless tension T = L2T /D (D is the bending rigidity) is given by

T = T0 + τ

2

∫ 1

0

(∂u

∂x

)2
dx. (5.1)

T0 is the residual tension in the beam and τ= h2 A/Iy , with Iy the second moment
of inertia and A the cross-section. For a rectangular beam τ equals 12 [16]. The
displacement u and dimensionless force F = L4F/Dh can be split into a dc and an
ac part i.e., u = udc +uac and F = Fdc +Fac. This yields a well-known equation for
the static displacement [13–15] and an equation for the ac motion:

üac +ηu̇ac +L [uac]− (T −Tdc)u′′
ac − (T −T −Tac)u′′

dc = Fac. (5.2)

Here, Tdc is the residual tension plus the tension from the dc displacement and T
is the time-averaged tension, which also contains terms proportional to u2

ac. For
small ac displacements T ≈ Tdc. Tac contains all terms that are linear in uac. The
operator L [u] is defined as [15]

L [u] = u′′′′−Tdcu′′−Tac[u]u′′
dc. (5.3)

The first three terms on the left side of Eq. 5.2 determine the linear response of the
system. The nonlinearity is introduced with u2

ac and u3
ac, which occur in the last

two terms.
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The resonance frequency for infinitesimal small amplitudesω2
0,i and the corre-

sponding shape ξi (x) of mode i are the eigenvalues and orthonormal eigenfunc-
tions of L respectively. The ac displacement is expanded in terms of the mode
shapes as uac = ∑∞

i=1 ui (t )ξi (x). The dc displacement is defined as udc ≡ u0ξ0(x)

and
∫ 1

0 ξ
′
i (x)ξ′j (x)dx is denoted as Ii j . The value of the integral Ii j depends only

on the shapes of mode i and j and and can be calculated numerically. Using this
notation the tension T is

T (t ) = T0 + τ

2

∞∑
i , j=0

ui (t )u j (t )Ii j , (5.4)

so that Tdc = T0 + τ
2 u2

0 I00 and Tac = 1
2τu0

∑∞
n=1 un In0. For nonzero amplitudes un

the tension increases, tuning the resonance frequencies ωR,i away from ω0,i . The
effect of the resonance frequency on its own motion results in a Duffing equation
(i.e., the resonance frequency increases with its own amplitude). Based on the
same concept, the tuning of the resonance frequency due to the motion of other
modes can be envisaged and this coupling is the central theme of this work.

The displacement of a beam, which is driven at frequencies ωi is written as

u(x, t ) =∑
i
|ai |ξi (x)cos(ωi t +∠ai ), (5.5)

where the ai = Ai /h are the complex amplitudes of the mode at ωi . Substituting
Eq. 5.5 into Eq. 5.4 gives an expression for the total tension. The two tension terms
in the ac equation are given by

T −Tdc =
τ

2

∑
i>0

(1

2
|ai |2Ii i + u0

2
ai e iωi t I0i +c.c.

)
+ (T −T −Tac) (5.6)

T −T −Tac = τ

4

∑
i 6= j>0

(1

2
a2

i e i 2ωi t Ii i +ai a∗
j e i (ωi−ω j )t Ii j +ai a j e i (ωi+ω j )t Ii j +c.c.

)
.

Here, c.c. stands for the complex conjugate of the term before c.c. in parenthe-
ses. The expressions for the tension, Eq. 5.6, are substituted in the equation of
motion, Eq. 5.2. The time-averaged equation for the amplitude of mode i driven
at frequency ωi , is then given by∑

i 6= j>0

{(
ω2

0,i −ω2
i + iωiω0,i /Qi + τ

4
|ai |2I 2

i i

+ τ

4

(
|a j |2Ii i I j j +|a j |2I 2

i j

))
ai −

∫ 1

0
Facξi dx

}
= 0, (5.7)
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where Fac = L4Fac/Dh is the dimensionless ac force.So far, the analysis is valid for
any flexural resonator. We now focus on the experimental situation where, unlike
in buckled beams [14] and string-like resonators [17], the residual tension does not
play a significant role, T0 = 0. Moreover, the static displacement u0 = 0, which may
not be the case for carbon nanotube resonators [18], where a gate voltage induces
a static displacement. We finally assume that the resonances are resolvable: |ωR,i −
ωR, j |ÀωR,i /Qi +ωR, j /Q j for i 6= j . The homogeneous force per unit length on the
beam is Fac = B I , where I is the current through the resonator.

To compare the model with the data in Fig. 5.1(c), we first extract the experi-
mental values of the parameters. The resonance frequencies for the first and third
mode are f1 = 48.2 kHz and f3 = 273.4 kHz, close to the predicted values of 46.1
and 249 kHz for a beam-like resonator. Their Q factors are Q1 = 41 and Q3 = 172.
The values of Ii j determine the coupling strength: I11 = 12.3, I33 = 98.9 and I13 =
I31 =−9.7. The average displacement of the modes per unit deflection,

∫ 1
0 ξi (x)d x,

are 0.83 and 0.36 for mode 1 and 3 respectively. The model is solved numerically
by calculating the amplitudes of the two modes self-consistently for the experi-
mental conditions and without any free parameters. The calculated resonance fre-
quency of the third mode as a function of the amplitude of the first mode is shown
in Fig. 5.1(c). Excellent agreement is found between the observed frequency shift
and the prediction by the model. For large amplitudes, the resonance frequency
scales with |A1|2/3, indicating that the beam is in the strong bending regime [13].
For small |A1|, the tuning is quadratic and the third mode can be used to detect the
amplitude of the first mode with a sensitivity of 0.18 Hz nm−2, which is determined
from the quadratic curve in Fig. 5.1(c).

5.4 COMPLEX NONLINEAR DYNAMICS
To further test the consistency of our model, we study the complex dynamics of
the coupled modes. When driving both modes nonlinear, interesting features are
observed. In Fig. 5.2(a) the amplitude of the nonlinear first mode is plotted ver-
sus the driving frequencies f1 and f3. Simultaneously, the amplitude of the third
mode is recorded [Fig. 5.2(b)]. The two modes interact with each other as the non-
linear line shape of one mode is reflected in the response of the other mode. Also
a frequency response with two peaks, which is clearly different from a Duffing line
shape, is observed as illustrated more clearly in Figs. 5.2(e) and 5.2(f). The two
peaks arise from the bistable first mode, where two values for the amplitude are
possible. These two amplitudes correspond to two values of the tension, which
leads to two resonance frequencies of the third mode and to two peaks in its fre-
quency response. The simulation with the parameters as stated above, reproduces
all observed features in the amplitude of both modes [Figs. 5.2c) and 5.2(d)]. This
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FIGURE 5.2: Frequency-frequency response of the simultaneously driven and detected first and third
mode. The drive frequency of the third mode is swept, while driving the first mode at a fixed frequency.
After each sweep the frequency of the first mode is increased. The amplitudes |A1| (a) and |A3| (b) are
recorded. The driving currents are I1 = 0.8 mA and I3 = 7.0 mA. Red indicates a high amplitude and
blue corresponds to a low-amplitude response. Simulations are shown in (c) and (d). The frequency
response is plotted for the amplitude of mode 1 (e) and mode 3 (f) at f1 = 48 kHz.

indicates that the model captures the coupling mechanism in detail 1.

5.5 DYNAMIC RANGE
An example of how the coupling between the modes can be used in practice is
the increase in dynamic range of the mechanical resonator. In small-scale res-

1The measured responses show a small deviation from the simulated responses due to crosstalk in the
measurement equipment.
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FIGURE 5.3: (a) Frequency-frequency plot for the forward sweep of the third mode. Red indicates a high
amplitude and blue corresponds to a low amplitude. On resonance of the first mode, the third mode is
linear and off-resonance it is nonlinear. (b) Forward (black lines) and back (red lines) below resonance,
on resonance and above resonance, with f1 = 45,52 and 55 kHz respectively. Driving currents are I1 = 2
mA and I3 = 8 mA. (c) Result of the simulation with parameters extracted from the experiment. (d)
Simulated responses for the situation in (b).

onators the dynamic range is limited by the nonlinear response at strong driving
amplitudes, which is disadvantageous for many applications [19, 20]. Our analy-
sis and experiments show that there is a way to extend the dynamic range of one
mode by driving another mode on resonance at high amplitudes. Figures 5.3(a)
and 5.3(c) show the frequency response of the third mode when the frequency of
the first mode is swept across its nonlinear resonance. Away from fR,1 the third
mode shows a Duffing-like response as illustrated in the top and bottom panel of
Figs. 5.3(b) and 5.3(d). However, when driving the first mode on resonance (middle
panel) the third mode displays a hysteresis-free response. Effectively, the nonlin-
earity constant in the Duffing equation is decreased, which can be understood as
follows: when the third mode enters its resonance, its amplitude increases and the
increased tension tunes the resonance frequency of the first mode up. The ampli-
tude of the first mode then drops, reducing the tension and lowering the resonance
frequency of the third mode. This feedback mechanism reduces the cubic stiffness
of the third mode and makes the third mode linear, thereby increasing the dynamic
range.
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5.6 DISCUSSION AND CONCLUSION

The presented model applies to any clamped-clamped geometry, ranging from
suspended bridges to carbon nanotubes. For nanomechanical devices with high
aspect ratios, the flexural rigidity can be neglected and the restoring force orig-
inates from the axial rigidity. The energy of the resonator is stored in the beam
elongation which couples directly to the ac tension. This increases the coupling
between the resonance modes and makes the detection mechanism well-suited
for nanowires and nanotubes. Furthermore in nanomechanical devices, signifi-
cant residual tension (T0) may be present in the beam. Only the numerical values
Ii j change in that case. For a resonator with high T0, the off-diagonal elements
Ii j = 0 and for mode 1 and 3, I11 is 9.9 and I33 is 88.8. Thus, for a string-like res-
onator the coupling term in Equation 5.7 remains within the same order of mag-
nitude as in the beam resonator used in the experiment. To quantify the effect of
modal interactions in a nanomechanical resonator with tension, we consider the
suspended carbon nanotube with a high-quality factor from Ref. [21]. Taken the
parameters listed in that paper, we calculate the sensitivity of the third mode to
the amplitude of the first mode. We find a value of 1 MHz nm−2, which is more
than six orders of magnitude larger than the value found from the dashed line in
Fig. 5.1(c).

In conclusion, we have measured the coupling between flexural modes of a
clamped-clamped beam resonator by simultaneously driving the beam at multi-
ple frequencies. We observe nonlinear interaction between the modes in the lin-
ear regime, and complex dynamics at large driving amplitudes. When describing
the motion of a mechanical resonator, it is necessary to include this interaction,
since this mechanism divides the available energy over the modes, and plays a
role in the energy dissipation in the resonator. A theoretical model is developed,
which couples arbitrary flexural modes via the tension. The model is in excellent
agreement with the measurements and quantitatively captures the observed com-
plex dynamics. The nonlinear coupling can be used to detect resonance modes
that would otherwise be inaccessible by the experiment, to tune the nonlinearity
constant, and to increase the dynamic range of micro- and nanomechanical res-
onators.

REFERENCES

[1] H. J. R. Westra, M. Poot, H. S. J. van der Zant, and W. J. Venstra, Nonlin-
ear modal interactions in clamped-clamped mechanical resonators, Phys. Rev.
Lett. 105, 117205 (2010).

http://dx.doi.org/10.1103/PhysRevLett.105.117205
http://dx.doi.org/10.1103/PhysRevLett.105.117205


{{5

62 REFERENCES

[2] K. C. Schwab and M. L. Roukes, Putting mechanics into quantum mechanics,
Phys. Today 58, 36 (2005).

[3] M. Li, H. X. Tang, and M. L. Roukes, Ultra-sensitive NEMS-based cantilevers
for sensing, scanned probe and very high-frequency applications, Nature Nan-
otech. 2, 114 (2007).

[4] W. J. Venstra and H. S. J. van der Zant, Efficient readout of micromechanical
resonator arrays in ambient conditions, Appl. Phys. Lett. 93, 234106 (2008).

[5] M. LaHaye, O. Buu, B. Camarota, and K. Schwab, Approaching the quantum
limit of a nanomechanical resonator, Science 304, 74 (2004).

[6] C. A. Regal, J. D. Teufel, and K. W. Lehnert, Measuring nanomechanical motion
with a microwave cavity interferometer, Nature Phys. 4, 555 (2008).

[7] T. Kippenberg and K. Vahala, Cavity optomechanics: back-action at the
mesoscale, Science 321, 1172 (2008).

[8] E. Buks and M. L. Roukes, Electrically tunable collective response in a coupled
micromechanical array, J. of Microelectromech. Syst. 11, 802 (2002).

[9] R. B. Karabalin, M. C. Cross, and M. L. Roukes, Nonlinear dynamics and chaos
in two coupled nanomechanical resonators, Phys. Rev. B 79, 165309 (2009).

[10] D. Santamore, A. Doherty, and M. Cross, Quantum nondemolition measure-
ment of Fock states of mesoscopic mechanical oscillators, Phys. Rev. B 70,
144301 (2004).

[11] R. Lifshitz and M. C. Cross, Response of parametrically driven nonlinear cou-
pled oscillators with application to micromechanical and nanomechanical
resonator arrays, Phys. Rev. B 67, 134302 (2003).

[12] B. Yurke, D. Greywall, A. Pargellis, and P. Busch, Theory of amplifier-noise
evasion in oscillator employing a nonlinear resonator, Phys. Rev. A 51, 4211
(1995).

[13] S. Sapmaz, Y. M. Blanter, L. Gurevich, and H. S. J. .van der Zant, Carbon nan-
otubes as nanoelectromechanical systems, Phys. Rev. B 67, 235414 (2003).

[14] A. H. Nayfeh, W. Kreider, and T. Anderson, Investigation of natural frequencies
and mode shapes of buckled beams, AIAA J. 33, 1122 (1995).

[15] M. Poot, B. Witkamp, M. A. Otte, and H. S. J. van der Zant, Modelling sus-
pended carbon nanotube resonators, Phys. Stat. Sol. B 244, 4252 (2007).

http://dx.doi.org/10.1063/1.2012461
http://dx.doi.org/10.1038/nnano.2006.208
http://dx.doi.org/10.1038/nnano.2006.208
http://dx.doi.org/10.1063/1.3042097
http://dx.doi.org/10.1063/1.3042097
http://sub3.isiknowledge.com/error/Error?PathInfo=%252F&Domain=isiknowledge.com&TimerValue=30000&Src=SIDCheck&Params=DestApp%253DWOS%2526DestParams%253D%25253Faction%25253Dretrieve%252526mode%25253DFullRecord%252526product%25253DWOS%252526UT%25253D000220567900038%252526customersID%25253Dmekentosj%2526DestFail%253Dhttp%25253A%25252F%25252Faccess.isiproducts.com%25252Fcustom_images%25252Fwok_failed_auth.html%2526SrcApp%253DPapers%2526SrcAuth%253Dmekentosj&ErrorCode=Server.sessionExpired&RouterURL=http%253A%252F%252Fwww.isiknowledge.com%252F&Error=No+matches+returned+for+SessionID
http://sub3.isiknowledge.com/error/Error?PathInfo=%252F&Domain=isiknowledge.com&TimerValue=30000&Src=SIDCheck&Params=DestApp%253DWOS%2526DestParams%253D%25253Faction%25253Dretrieve%252526mode%25253DFullRecord%252526product%25253DWOS%252526UT%25253D000220567900038%252526customersID%25253Dmekentosj%2526DestFail%253Dhttp%25253A%25252F%25252Faccess.isiproducts.com%25252Fcustom_images%25252Fwok_failed_auth.html%2526SrcApp%253DPapers%2526SrcAuth%253Dmekentosj&ErrorCode=Server.sessionExpired&RouterURL=http%253A%252F%252Fwww.isiknowledge.com%252F&Error=No+matches+returned+for+SessionID
http://dx.doi.org/10.1038/nphys974
http://dx.doi.org/10.1038/nphys974
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1109/JMEMS.2002.805056
http://dx.doi.org/10.1109/JMEMS.2002.805056
http://dx.doi.org/10.1103/PhysRevB.79.165309
http://dx.doi.org/10.1103/PhysRevB.79.165309
http://dx.doi.org/10.1103/PhysRevB.70.144301
http://dx.doi.org/10.1103/PhysRevB.70.144301
http://dx.doi.org/10.1103/PhysRevB.67.134302
http://dx.doi.org/10.1103/PhysRevB.67.134302
http://dx.doi.org/10.1103/PhysRevB.67.134302
http://dx.doi.org/doi:0.1103/PhysRevA.51.4211
http://dx.doi.org/doi:0.1103/PhysRevA.51.4211
http://dx.doi.org/10.1103/PhysRevB.67.235414
http://dx.doi.org/10.1103/PhysRevB.67.235414
http://dx.doi.org/10.2514/3.12669
http://dx.doi.org/10.2514/3.12669
http://dx.doi.org/10.1002/pssb.200776130
http://dx.doi.org/10.1002/pssb.200776130


REFERENCES 63

{{5

[16] A. N. Cleland, Foundations of nanomechanics: from solid-state theory to de-
vice applications. (Springer, 2003).

[17] S. S. Verbridge, H. G. Craighead, and J. M. Parpia, A megahertz nanomechani-
cal resonator with room temperature quality factor over a million, Appl. Phys.
Lett. 92, 013112 (2008).

[18] V. Sazonova, Y. Yaish, Handel, Üstünel, D. Roundy, T. A. Arias, and P. L.
Mceuen, A tunable carbon nanotube electromechanical oscillator, Nature 431,
284 (2004).

[19] A. Kraus, A. Erbe, R. Blick, G. Corso, and K. Richter, Parametric frequency tun-
ing of phase-locked nanoelectromechanical resonators, Appl. Phys. Lett. 79,
3521 (2001).

[20] H. Postma, I. Kozinsky, A. Husain, and M. Roukes, Dynamic range of
nanotube- and nanowire-based electromechanical systems, Appl. Phys. Lett.
86, 223105 (2005).

[21] A. K. Hüttel, G. A. Steele, B. Witkamp, M. Poot, L. P. Kouwenhoven, and H. S. J.
van der Zant, Carbon Nanotubes as Ultrahigh Quality Factor Mechanical Res-
onators, Nano Lett. 9, 2547 (2009).

http://dx.doi.org/10.1063/1.2822406
http://dx.doi.org/10.1063/1.2822406
http://dx.doi.org/doi:10.1038/nature02905
http://dx.doi.org/10.1063/1.1412431
http://dx.doi.org/10.1063/1.1412431
http://dx.doi.org/10.1063/1.1929098
http://dx.doi.org/10.1063/1.1929098
http://dx.doi.org/10.1021/nl900612h
http://dx.doi.org/10.1021/nl900612h




6
CANTILEVER

FLEXURAL-TORSIONAL MODAL

INTERACTIONS

The nonlinear interactions between flexural and torsional modes of a microcan-
tilever are experimentally studied. The coupling is demonstrated by measuring the
frequency response of one mode, which is sensitive to the motion of another reso-
nance mode. The flexural-flexural, torsional-torsional and flexural-torsional modes
are coupled due to nonlinearities, which affect the dynamics at high vibration am-
plitudes and cause the resonance frequency of one mode to depend on the amplitude
of the other modes. We also investigate the nonlinear dynamics of torsional modes,
which cause a frequency stiffening of the response. By simultaneously driving an-
other torsional mode in the nonlinear regime, the nonlinear response is tuned from
stiffening to weakening. By balancing the positive and negative cubic nonlinearities
a linear response is obtained for the strongly driven system. The nonlinear modal
interactions play an important role in the dynamics of multi-mode scanning probe
microscopes.

Parts of this chapter have been published in Ultramicroscopy 120, 41–47 (2012) [1].
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6.1 INTRODUCTION
The Atomic Force Microscope (AFM) [2] is a crucial instrument in studying nanoscale
objects. Various operation schemes are employed, which include the use of dif-
ferent cantilever geometries, higher modes or the torsional mode for imaging [3–
6]. The nonlinear tip-sample interactions determine the dynamics in tapping-
mode AFM and have been studied in detail [7, 8]. Besides this extrinsic nonlin-
earity, the intrinsic mechanical nonlinearities determine the dynamics of ultra-
flexible microcantilevers at high amplitudes, as shown in a recent study [9]. These
nonlinearities result in an amplitude-dependent resonance frequency and couple
the vibration modes. In clamped-clamped beams, the nonlinear coupling is pro-
vided by the displacement-induced tension [10, 11]. For cantilever beams it was
shown that the coupling between the modes can be used to modify the resonance
linewidth [12]. In a multi-mode AFM [13, 14], these modal interactions are of im-
portance, since the resonance frequency of one mode depends on the amplitude
of the other modes.

In this Chapter, we experimentally demonstrate the intrinsic mechanical cou-
pling between the flexural and torsional modes of a microcantilever. The reso-
nance frequency of one mode depends on the amplitude of the other modes. The
flexural modes are coupled via the geometric and inertial nonlinearities. The tor-
sional modes exhibit frequency stiffening at high amplitudes, which originates
from torsion warping [15]. Interestingly, the nonlinearity constant of one torsional
mode changes sign when another torsional mode is driven at high amplitudes. Fi-
nally, the coupling between the torsional and flexural modes is studied.

6.2 EXPERIMENT
Microcantilevers are fabricated by photolithographic patterning of a thin low-pressure
chemical vapor deposited silicon nitride (SiN) film. Subsequent reactive ion etch-
ing transfers the pattern to the SiN layer, and the cantilevers are released using a
wet potassium hydroxide etch, resulting in a undercut-free cantilever. The dimen-
sions are length × width × height (L × w ×h) = 42× 8× 0.07 µm3. These floppy
cantilevers allow high amplitudes and thus facilitate the study of nonlinearities.
The cantilever is mounted onto a piezo actuator, which is used to excite the can-
tilever. The cantilevers are placed in vacuum (pressure < 10−5 mbar) to eliminate
air-damping and to enable large vibration amplitudes, where nonlinear terms in
the equation of motion dominate the dynamics. The cantilever motion is detected
using a home-made optical deflection setup which resemblances the detection
scheme frequently used in scanning probe microscopes. The flexural and torsional
vibration modes are detected with a sensitivity of ± 1 pm/

p
Hz [16]. A schematic

of the measurement setup is shown in Fig. 1(a). The cantilever displacement sig-
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nal is measured using either a network (NA) or spectrum analyzer (SA). To drive a
second mode, a separate RF source is used.

SA /NA

RF 
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photodiode laser

piezo
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FIGURE 6.1: Measurement setup. (a) Optical deflection setup showing the laser beam, which reflects
from the cantilever surface. The spot of the reflected laser beam is modulated in time by a frequency
corresponding to the cantilever motion. The cantilever is mounted onto a piezo actuator in vacuum.
Network (NA) and spectrum analysis (SA) is performed on the signal from the two-segment photodiode.
(b) Frequency responses of the first and second flexural (top panels) and torsional (bottom panels)
modes. Inset are the calculated mode shapes from Euler-Bernoulli beam theory.

First, the flexural vibrations are characterized by measuring the cantilever fre-
quency response at different resonance modes. The first flexural mode shown in
Fig. 1(b) occurs at 54.8 kHz with a Q-factor of 3000. The resonance frequency of
the second mode is 347 kHz (Q = 3900), which is 6.33 times higher than the first
resonance mode, in agreement with the calculated ratio fR,F 2/ fR,F 1 = 6.27, follow-
ing from Euler-Bernoulli beam theory. Not shown is the third flexural mode at
974.9 kHz, with fR,F 3/ fR,F 1 = 17.8, near the expected ratio of 17.6. This indicates
that in the linear regime the cantilever beam is described by the Euler-Bernoulli
beam theory. Throughout the manuscript, the subscripts F i and T i indicate the
frequency span around the i th flexural (F ) or torsional (T ) resonance mode. The
subscript R refers to the resonance frequency of that particular mode.

The torsional modes are characterized by rotating the cantilever over 90 de-
grees in the setup; the two-segment photodiode is then sensitive to vibrations cor-
responding to torsional resonance modes [16]. The frequency response of the first
two torsional modes is shown in Fig. 1(b). From theory, the ratio between the low-
est two resonance frequencies of the torsional modes is 3, which is close to the
measured ratio of fR,T 2/ fR,T 1 = 1638kHz/535.4kHz = 3.06. The Q-factors of the
first and second torsional mode are 4300 and 3200 respectively.
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At high drive amplitudes, the flexural and torsional modes become nonlin-
ear. The nonlinearity of the flexural modes in a cantilever beam was theoretically
studied by Crespo da Silva in 1978 [17, 18]. To include the torsional nonlinearity,
the equations of motion are extended (Appendix A). For the flexural and torsional
modes, the nonlinearity causes a Duffing-like frequency stiffening when the mode
is strongly driven [19, 20] leading to a bistable vibration amplitude. This bifurca-
tion is observed in all modes studied in this paper. These nonlinearities are re-
sponsible for the coupling between the flexural-flexural, torsional-torsional and
flexural-torsional modes.

6.3 MODAL INTERACTIONS IN A MICROCANTILEVER
We now experimentally demonstrate the coupling between the modes of a micro-
cantilever. We use a two-frequency drive signal to excite two resonance modes of
the cantilever simultaneously while we measure the motion of one mode. First,
we focus on the interactions between the flexural modes. Then we turn our at-
tention to the torsional modes, starting with the amplitude-dependent resonance
frequency of the torsional vibrations, followed by the demonstration of the cou-
pling between the lowest two torsional modes. Finally, the interactions between
flexural and torsional modes are discussed.

6.3.1 FLEXURAL-FLEXURAL MODE INTERACTION
To investigate the interactions between the two lowest flexural modes, the thermal
motion of the first mode is measured with a spectrum analyzer, while the RF source
strongly drives the second mode. The thermal noise spectra of the first mode as a
function of the drive frequency of the second mode are shown in Fig. 6.2(a). The
color scale represents the power spectral density of the displacement around the
resonance frequency of the first mode. A shift of the resonance peak of the first
mode is observed as the drive signal at fF 2 approaches the nonlinear resonance of
the second mode. The resonance frequency of the first mode for each drive fre-
quency of the second mode is obtained by fitting the damped-driven harmonic
oscillator (DDHO) response. In Fig. 6.2(b), this resonance frequency of the first
mode is plotted versus the drive frequency of the second mode. The nonlinear
response of the second mode is reflected in the resonance frequency of the first
mode where the resonance frequency first increases and then jumps down after
the second mode has reached its maximum amplitude, indicated by the arrow. At
the maximum amplitude of the second mode, the resonance frequency of the first
mode is shifted by several times its linewidth. This experiment shows that the cou-
pling between the flexural modes can introduce significant resonance frequency
shifts when multiple modes are excited simultaneously. Moreover, by measuring
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the shift in resonance frequency of the first mode the motion of the second mode
can be detected. For comparison, the nonlinear response of the direct-driven sec-
ond mode is shown in the inset of Fig. 6.2(b).
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FIGURE 6.2: Flexural-flexural mode interactions. (a) Frequency spectra of the thermal motion of the
first flexural mode ( fF 1), when the second mode is driven through its resonance frequency. Color scale
represents the power spectral density of the displacement noise of the first mode. As the peak width
remains constant, there is no significant change in the Q-factor. The motion of the second mode tunes
the resonance frequency of the first mode. (b) The resonance frequency of the first mode fR,F 1 ver-
sus the drive frequency of the second flexural mode. The nonlinear response of the second mode is
reflected in the resonance frequency of the first mode. Inset: the direct measurement of the nonlinear
second mode.

6.3.2 TORSIONAL-TORSIONAL MODE INTERACTION
Before turning to the interactions between the torsional vibration modes, we first
measure the frequency response of a single torsional mode as a function of the
drive strength. Although torsional modes are extensively used in AFMs [3, 21], their
nonlinear behavior has not been investigated in detail. To investigate the nonlin-
earity, we strongly drive the torsional mode. In contrast to the flexural-flexural
interactions, where the nonlinearity arises from geometric and inertial effects, in
torsional modes, the nonlinearity originates from torsion warping and inertial mo-
ments [15]. In Appendix A we discuss the equations of motion including the non-
linearities involved. The amplitude of the first torsional mode with varying drive
power is shown in Fig. 6.3(a), with selected frequency responses of the first tor-
sional mode plotted in Fig. 6.3(b). At low driving power, the resonance line shape
is a DDHO response, and the cantilever is oscillating in the linear regime. When
the power is increased, the frequency response leans towards higher frequencies
and the amplitude bifurcates. Close to this critical amplitude (0 dbm) the slope
of the frequency response approaches infinity, which may be used to enhance the
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sensitivity in torsional mode AFM. A frequency stiffening is observed for the first
and second torsional mode.
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FIGURE 6.3: Nonlinear torsional mode. (a) Frequency responses of the first torsional mode, when the
drive amplitude is increased. Beyond a power of 5 dBm, the response is bistable. Color scale indicates
the amplitude normalized to the drive voltage. (b) Resonator amplitude traces at 5 selected drive pow-
ers. The nonlinear frequency response is visible at high drive powers. The frequency is swept from low
to high.

Similar to the flexural-flexural modal interactions discussed in the previous
section, the coupling between the first and second torsional modes is studied: we
measure the thermal noise of the first mode while the drive power of the second
torsional mode is varied. The resonance frequencies, obtained from DDHO fits
to the thermal noise spectra of the first mode, are shown in Fig. 6.4(a). The res-
onance frequency increases with 500 Hz, while increasing the driving strength of
the second mode to 10 dBm. We now perform a similar experiment as the one as
shown in Fig. 6.2(b). Thus, the first torsional mode is used to detect the nonlinear
vibrations of the second torsional mode. Fig. 6.4(b)) shows the nonlinear response,
resembling the behavior of the first mode shown in Fig. 6.3(b).

Interesting behavior is observed when both torsional modes are driven in the
nonlinear regime. In contrast to measurements in the previous section, the first
mode is now also driven in the nonlinear regime. Fig. 6.5(a) shows the nonlinear
frequency response of the first torsional mode, while stepping the drive frequency
of the second torsional mode through its resonance. Fig. 6.5(b) shows individual
traces, which reveal interesting behavior; in the lowest panel (i), there is no influ-
ence of the second mode and frequency stiffening of the first mode is observed
cf. Fig. 6.3(b). When the amplitude of the second mode starts to increase as it ap-
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FIGURE 6.4: Torsional-torsional mode interactions. (a) The resonance frequency of the first torsional
mode, when the drive power at the second torsional mode on resonance is varied. The resonance
frequency of mode 1, fR,T 1, increases with the drive power of the second mode, pT 2. (b) The nonlinear
response of the second mode is measured by using the first mode as a detector.

proaches its resonance, the response of mode 1 becomes more linear (panel ii).
Here, the frequency stiffening and weakening nonlinearities are balanced yielding
a linear response. At high amplitude of the second mode, frequency weakening of
mode 1 (panel iii) is observed. When the amplitude of the second mode drops, fre-
quency stiffening is restored (panel iv). This measurement not only demonstrates
the coupling between the torsional modes, but also that the sign of the nonlinear-
ity constant of a torsional mode depends on the amplitude of the motion of the
other modes. By simultaneous driving another mode, the torsional frequency re-
sponse can be tuned from a stiffening to a weakening characteristic.

6.3.3 FLEXURAL-TORSIONAL MODE INTERACTION
The coupling between the first flexural and first torsional mode is now studied ex-
perimentally. Fig. 6.6(a) shows the resonance frequency of the first torsional mode
as a function of drive power of the first flexural mode. The resonance frequency
increases with 100 Hz when the power in the flexural mode is increased to 10 dBm.
Detection of the nonlinear flexural mode by measuring the resonance frequency of
the torsional mode is shown in Fig. 6.6(b). The nonlinear interactions when both
modes are driven in the nonlinear regime are shown in Fig. 6.6(c) and (d). The in-
teraction is clearly visible in the frequency-frequency plots, where one frequency
is swept and the frequency of the RF source is stepped across the nonlinear reso-
nances of both modes.
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FIGURE 6.5: Tuning the torsional nonlinearity via modal interactions. (a) Frequency responses of the
nonlinear first torsional mode, while the frequency of the second mode is swept through its nonlinear
resonance. The frequency stiffening of the torsional mode changes into weakening when the second
mode oscillates with high amplitudes. When the amplitude of the second mode jumps down, again
frequency stiffening is observed. (b) Traces from (a) taken at the indicated frequencies. In panel (ii) the
response is close to a linear one, due to balancing of the stiffening and weakening nonlinearities.

6.4 DISCUSSION AND CONCLUSION

In summary, we demonstrated the coupling between the flexural and torsional vi-
bration modes in a microcantilever. This coupling is due to nonlinearities, which
also give rise to a amplitude-dependent resonance frequency. The interactions
between the different flexural modes, between different torsional modes and be-
tween the flexural and torsional modes are demonstrated in detailed experiments.
We also demonstrate the nonlinear frequency stiffening of torsional modes driven
at high amplitudes.

Several applications are proposed for the modal interactions. A specific reso-
nance mode can be shifted to a higher frequency by simultaneously driving an-
other mode. For strongly driven modes, the cubic spring constant (nonlinearity)
can be modified from positive to negative, tuning the response from stiffening to
weakening. By balancing two excitation strengths, a nonlinear response can be
tuned to a linear one. By modal interactions, one mode can be used to detect the
motion of another mode of the same cantilever. Besides these applications, the
modal interactions have consequences for multi-mode schemes, such as the scan-
ning probe microscopy and mass sensors based on microcantilevers [14, 22–24].
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FIGURE 6.6: Flexural-torsional interaction. (a) Resonance frequency shift of the first torsional mode,
when the drive power of the first flexural mode is increased. The resonance frequencies are obtained
from thermal noise spectra. (b) The nonlinear resonance response of the first flexural mode reflected
in the resonance frequency of the torsional mode (from thermal noise spectra). (c) and (d) Nonlinear
dynamics when the flexural as the torsional mode are both excited in the nonlinear regime.
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7
Q FACTOR CONTROL BY

SIDEBAND EXCITATION

We demonstrate the coupling between the fundamental and second flexural modes
of a microcantilever. A mechanical analogue of cavity-optomechanics is then em-
ployed, where the mechanical cavity is formed by the second vibrational mode of the
same cantilever, coupled to the fundamental mode via the geometric nonlinearity.
By exciting the cantilever at the sum and difference frequencies between fundamen-
tal and second flexural mode, the thermal motion of the fundamental mode of the
cantilever is damped and amplified. This concept makes it possible to enhance or
suppress the Q factor over a wide range.

Parts of this chapter have been published in Appl. Phys. Lett. 99, 151904 (2011) [1].
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7.1 INTRODUCTION

CANTILEVERS have numerous scientific and technological applications and are
used in various instruments. In sensing applications, the sensitivity is related

to the Q factor, and this has motivated researchers to increase the Q factor of me-
chanical resonators, in particular, in dissipative environments. Among the tech-
niques that have been employed are applying residual stress [2], parametric pump-
ing [3], self-oscillation by internal [4] and external [5] feedback mechanisms. When
increasing the Q factor in these ways, energy is pumped into the mechanical mode
and the resonator heats up. The opposite effect leads to cooling of the resonator
and attenuation of its motion [6]. By pumping energy out of the mechanical res-
onator into a high quality-factor optical or microwave cavity, several groups have
shown reduction of the effective temperature of the vibrational mode from room
temperature to millikelvin temperatures [7–15]. Such cooling schemes are now
employed to bring down the mode temperature to below the an average phonon
occupation number of one, providing a promising route to study the quantum be-
havior of a mechanical resonator [16–18].

In analogy to cavity optomechanics, where an optical or a microwave cavity is
used to extract energy from the resonator, we employ a mechanical cavity to damp
the mechanical mode. Here, the fundamental flexural mode of the cantilever is the
mode of interest, and the mechanical cavity is formed by the second flexural mode
of the same cantilever, which is geometrically coupled to the fundamental mode.
In this paper, we demonstrate the presence of this coupling by strongly driving
the cantilever on resonance, while monitoring its broadband frequency spectrum.
Sidebands appear in the spectrum, which are located at the sum and difference
frequencies of fundamental and second mode of the cantilever. Driving the can-
tilever at these sidebands results in positive or negative additional damping, which
is demonstrated in this Chapter.

7.2 FABRICATION AND CHARACTERIZATION
Cantilevers are fabricated from low pressure chemical vapor deposited silicon ni-
tride by electron beam lithography and isotropic reactive ion etching in a O2/CHF3

plasma [19]. The dimensions are length × width × height = 39 µm × 8 µm × 70 nm.
An optical deflection technique, similar to the one employed in atomic force mi-
croscopy, is used to detect the cantilever motion. Figures 7.1(a) and 7.1(b) show the
cantilever and the setup. The cantilever is mounted on a piezo crystal and placed
in a vacuum chamber at a pressure of ∼ 10−5 mbar. Two spectrum analyzers are
used to simultaneously measure the thermal motion of the fundamental (i = 1)
and second (i = 2) flexural mode. Figure 7.1(b) shows the power spectra without
driving the piezo. The resonance frequencies and Q factors are determined by fit-
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FIGURE 7.1: (a) Scanning electron micrograph of the silicon nitride cantilever. (b) Diagram of the mea-
surement circuit showing photodiode (D), laser (L), piezo (P) and the spectrum analyzers to measure
the fundamental (SA 1) and the second (SA 2) flexural mode. The thermal noise spectra are shown at
the fundamental (i = 1) and second (i = 2) flexural mode of the cantilever.

ting Lorentzian functions (solid lines), and we find f1 = 63.2 kHz and f2 = 385.4 kHz
and f3 = 1.068 MHz (not shown). The ratio’s f2/ f1 = 6.1 and f3/ f1 = 16.9 are close
to the expected modal frequencies α21 =6.3 and α31 = 17.5 representing the spec-
trum of a homogeneous cantilevered Euler-Bernoulli beam. For the fundamental
and second resonance modes, the corresponding Q factors are Q1 = 5184 and Q2

= 3922. The frequency difference, f2 − f1 = 322 kHz, exceeds the bandwidth of the
modes, f1/Q1 = 12 Hz and f2/Q2 = 98 Hz, by four orders of magnitude.
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To demonstrate the coupling between the fundamental and second flexural
modes of the cantilever, we drive the cantilever on resonance, while measuring
its broadband spectrum. Figure 7.2(a) shows this spectrum as a function of the
drive strength. When the amplitude of the second mode increases, mechanical
sidebands become visible in the spectrum. These sidebands occur at f2 ± f1,
and clearly indicate the presence of mechanical coupling between the two modes.
Traces for weak and strong driving are extracted from 7.2(a) in Fig. 7.2(b), to show
the shape and relative amplitudes of the sidebands. As the spacing between the
sidebands is much larger than the linewidth of the mode, we operate in the re-
solved sideband regime [7].

FIGURE 7.2: (a) Noise spectrum while driving the second flexural at increasing amplitudes. At strong
driving, sidebands emerge in the spectra at the sum and difference frequencies of the fundamental and
second flexural mode. Color scale represents the power spectral density. (b) The cross-sections of panel
(a) at weak (bottom) and strong (top) driving show the shape and intensity of the sidebands.

The mechanism that couples the vibrational modes in a cantilever can be qual-
itatively understood as follows. A nonzero amplitude of one flexural mode of the
cantilever changes the shape of the cantilever [20]. This geometric change has
a small but measurable effect on the resonance frequency of all the other vibra-
tional modes. The effect of the cantilever amplitude on its own resonance fre-
quency was recently analyzed in detail [21]; for the first few modes any nonzero
amplitude stiffens the frequency response, and this gives rise to frequency pulling.
Recently, we also presented a detailed study on the coupling mechanism between
the vibrational modes in clamped-clamped resonators [22]. Here, the coupling be-
tween the modes is fully described by the displacement-induced tension. A similar
analysis can be carried out for the coupling between vibration modes of a can-
tilever beam. The only difference is that in the inextensional cantilever the modes
are coupled by the geometric nonlinearity, whereas for the (extensional) clamped-
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FIGURE 7.3: (a) Damping and amplification of the fundamental mode by pumping the sidebands of
the second flexural mode. The sum and difference frequencies are indicated by the arrows. By exciting
the cantilever on the red sideband the fundamental mode is suppressed, and its motion is amplified by
exciting on the blue sideband. (b) Noise spectra of the fundamental mode (left) and the cavity mode
(right). The black curves represent the thermal noise spectra without excitation. The red curves are
obtained by pumping the red sideband, resulting in positive damping of the cantilever. The blue curves
are measured while pumping the blue sideband, which results in negative damping (amplification). (c)
The Q factor of the fundamental mode as a function of pump power on the red sideband (closed dots).
For each power a control experiment is carried out without excitation, indicated by the open circles.
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clamped resonator the modes are coupled by the displacement-induced tension.
For a cantilever, the modal amplitudes ui are calculated by solving the (dimen-
sionless) coupled equations [23]

üi +ηi u̇i +ω2
i ui +

n∑
j=1

n∑
k=1

n∑
l=1

(
αi j kl u j uk ul +βi j kl u j (uk ul )̈

)
= fi cos(Ωi t ), (7.1)

where ηi represents a damping constant,ωi the resonance frequency,Ωi the drive
frequency and fi the excitation strength of mode i . The dots and primes denote
derivative to time and coordinate, s, respectively. The coupling coefficients αi j kl

and βi j kl are calculated by integrating the cantilever modeshapes ξi as follows:

αi j kl =
∫ 1

0
ξi {ξ′j (ξ′kξ

′′
l )′}′ds (7.2)

βi j kl =
∫ 1

0
ξi

(
ξ′j

∫ s

1

∫ s2

0
ξ′kξ

′
l ds1ds2

)′
ds. (7.3)

Taking only the fundamental and the second mode into consideration, Eq. 7.1
yields two coupled nonlinear differential equations with constant coefficients, which
can be solved numerically.

7.3 Q FACTOR CONTROL
The coupling between the vibrational modes can be used to transfer energy by
employing a process similar to sideband cooling in cavity-optomechanics, where
the cavity is used extract energy from the mechanical mode. The mechanical res-
onator is embedded in an optical [7–11] or microwave cavity [12–14]. In analogy to
those experiments and given the presence of the mechanical mode-coupling, the
damping of one mechanical mode by another mode of the same resonator can be
envisioned. Using the coupling mechanism described in the previous section, any
change in the position of the mode under consideration (the fundamental flexural
mode in the experiments that follow) changes the stiffness of the mode that acts
as the cavity (the second flexural mode). The energy change in the cavity mode
is retarded by the cavity relaxation time, equal to ∼ Q2/ f2 for our mechanical cav-
ity. Due to the delayed response of the cavity mode, a force is exerted by the cav-
ity mode on the fundamental mode. This velocity-proportional force can either
amplify or attenuate the motion of the fundamental mode [24]. In case of red-
detuned driving, the damping force on the fundamental mode is increased. When
the driving is blue-detuned, the motion of both the cavity mode and the funda-
mental mode is amplified. The schemes are illustrated in Fig. 7.3(a), where the two
Lorentzian shaped curves represent the two flexural modes of the cantilever, and
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the driving frequencies corresponding to blue and red detuning are indicated by
the arrows. The damping rate is maximized by driving at the sum and difference
frequencies, and is increased by decreasing the linewidth of the cavity mode.

The effect of sideband excitation on the damping of the cantilever is demon-
strated by measuring the thermal noise spectra of the fundamental and second
flexural resonance modes, while driving the piezo sinusoidally at their sum and
difference frequencies. Figure 7.3(b) shows the spectrum without driving (indi-
cated by the black open circles). When the cantilever is driven at the blue-detuned
sideband, its amplitude increases as shown by the blue curve. The blue and red
curves in the power spectral density plots of Fig. 7.3(b) correspond to driving at
the blue and red-detuned sidebands of the cavity mode shown in Fig. 7.3(a). By
fitting Lorentzian functions to the data, we obtain the temperature and the Q fac-
tors of the fundamental mode while driving the sidebands. When the cantilever is
driven at the red sideband, the Q factor of the fundamental mode decreases from
4599 to 1421. No changes in the temperature of the mode are observed, which indi-
cates that the energy extracted via the modal interactions leaks back into the mode
via other transport mechanisms, which are absent in e.g. optomechanical cooling
schemes. When driving at the blue sideband, the Q factor increases to 5849. For
the cavity mode, by red-detuned driving the Q factor decreases from 2776 to 2108,
while for blue-detuned driving it increases to 3185. Here we do observe a change
in temperature, by a factor of 3.6 for the red and 6.3 for the blue-detuned driving.

By increasing the drive strength at the red-detuned sideband the amplitude of
the cantilever motion is further attenuated, as is shown in Fig. 7.3(c). Here, the
Q factor of the fundamental mode is shown as a function of the applied driving
power at f2 − f1. A 20-fold reduction of the Q factor is achieved compared to the
Q factor without driving the sideband. This clearly demonstrates that driving at
the mechanical sidebands can be used to modify the damping characteristics of
a micromechanical resonator to great extent. This scheme can be used to modify
the Q factor in cantilever-based instrumentation, where we note that the changes
in damping obtained in these experiments are of the same order as the viscous
damping in air, so that stronger excitation is needed to obtain a significant change
in the damping.

7.4 CONCLUSION
In conclusion, we demonstrate the coupling between the flexural modes of a mi-
crocantilever. This coupling is marked by mechanical sidebands in the frequency
spectrum, which are located at the sum and difference frequencies. Driving the
cantilever at these mechanical sidebands results in additional damping of the res-
onator, which can be either negative or positive in sign. This is demonstrated
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for the fundamental and the second flexural mode. Furthermore, using a second
mode of the same resonator as a cavity provides a means to cooling experiments
based on modal interactions. In present sideband-cooling experiments, coupling
a mechanical resonator to an optical or microwave cavity can pose significant ex-
perimental challenges. The coupling described in this work is present by nature,
and its strength can be tuned by engineering stress and geometry. More explic-
itly, in carbon nanotube resonators with extremely high Q factors [25] at low tem-
peratures, coupling between the vibrational modes as described in Ref. [22] may
provide a route to cool mechanical modes to the quantum ground state.
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8
INTERACTION BETWEEN A

DIRECTLY- AND

PARAMETRICALLY-DRIVEN MODE

The interactions between parametrically- and directly-driven vibration modes of a
clamped-clamped beam resonator are studied. An integrated piezoelectric trans-
ducer is used for direct and parametric excitation. First, the parametric ampliÞca-
tion and oscillation of a single mode are analyzed by the power and phase depen-
dence below and above the threshold for parametric oscillation. Then, the motion
of a parametrically-driven mode is detected by the induced change in resonance fre-
quency in another mode of the same resonator. The resonance frequency shift is the
result of the nonlinear coupling between the modes by the displacement-induced
tension in the beam. These nonlinear modal interactions result in the quadratic re-
lation between the resonance frequency of one mode and the amplitude of another
mode. The amplitude of a parametrically-oscillating mode depends on the square
root of the pump frequency. Combining these dependencies yields a linear relation
between the resonance frequency of the directly-driven mode and the frequency of
the parametrically-oscillating mode.

Parts of this chapter have been published in Phys. Rev. B 84, 134305 (2011) [1].
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8.1 INTRODUCTION

PARAMETRIC amplification and oscillations occur when in a resonant system,
one of the system parameters (e.g. spring constant, effective mass) is mod-

ulated. The principle is used in low-noise electronic amplifiers [2, 3] and to in-
crease the broadband gain in fiber optics [4–6]. In mechanical resonators, para-
metric oscillations are typically obtained by modulation of the spring constant [7–
10]. Applications of parametric resonances in nano- and micro electromechan-
ics [11] (NEMS and MEMS) include quality (Q-)factor enhancement [12, 13] and
bit storage and bit flips using the bistable phase in a parametric oscillator [14,
15]. Parametric amplification can also be used for noise-squeezing in a coupled
qubit-resonator system [16] and was recently observed in carbon nanotube res-
onators [17].

Another interesting phenomenon in NEMS is the interaction between differ-
ent vibration modes. Motivated by the trend towards large scale integration of res-
onators, researchers study the interactions between several resonators [18]. Re-
cently, nonlinear modal interactions between two flexural modes in a clamped-
clamped beam resonator [19–21] and a cantilever [22] have been reported: it has
been shown that the resonance frequency of one mode depends quadratically on
the amplitude of another mode.

Here, we explore the modal interactions between a directly and a parametri-
cally driven mode, yielding a linear dependence of the resonance frequency of the
directly driven mode on the pump frequency of the parametrically driven mode. In
Sec. 8.2, the experimental conditions are provided. The following section reports
on a detailed analysis of the piezoelectrical parametric amplification of a single
mode. Section 8.4 discusses the modal interactions between a directly driven and
a parametrically pumped mode, and this is the central result of this work.

8.2 DEVICE DETAILS
The resonators are clamped-clamped beams fabricated from 500 nm thick low-
stress silicon nitride (SiN). A stack of platinum (Pt), aluminum nitride (AlN) and
Pt (100-400-100 nm thick) is sputtered on top, to form an integrated piezoelectric
transducer. Figure 8.1(a) shows a scanning electron micrograph of the device, the
white arrow indicates the transducer. The resonators are freely suspended by a
through-the-wafer etch. Two lengths are used: L = 500 and 750 µm. The width
of both resonators is 45 µm. Details of the fabrication procedure are described in
Ref. [23]. An ac voltage on the piezo produces a force on the resonator and at the
same time modulates its spring constant. Both the force and the spring constant
depend linearly on the voltage. The voltage on the piezo, Vout, is composed of two
frequencies, one to directly excite the resonator and one to parametrically pump
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it, i.e. Vout = Vdirect cos(Ωt )+Vpump cos(2Ωt +φ), where Ω is the drive frequency
and φ the phase difference between the two voltages.
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FIGURE 8.1: Measurement setup. (a) False-colored scanning electron micrograph of a SiN beam with
the piezo actuator (white arrow) on top (scale bar is 20 µm). (b) An optical deflection setup is used to
detect motion in air and vacuum. The piezo-active AlN layer is depicted in red. The piezo actuator
and photo diode are connected to a digital signal processor. (c,d) Typical frequency responses of the
first (c) and second (d) mode (amplitude A) in vacuum. The inset in (c) shows the frequency response
in air, of the resonator with length 750 µm, with a resonance frequency of 98 kHz. The response of a
damped-driven harmonic oscillator is fitted through the responses to obtain Q factors and resonance
frequencies.

The motion of the resonator is measured using an optical deflection setup, as
depicted in Fig. 8.1(b). Frequency spectrum and network analyzer measurements
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are implemented in a digital signal processor. Measurements are conducted in
vacuum at a pressure of 10−4 mbar and at atmospheric pressure. For direct driving,
the frequency responses at the first mode and second mode in vacuum are shown
in Fig. 8.1(c) and 8.1(d), with Q1 = 6500 and Q2 = 19600 1.

(a)

(b)
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FIGURE 8.2: Characterization of the parametric amplification in air. (a) The Q factor enhancement is
proportional to the parametric pump voltage. (b) Measured gain-phase relation; the blue line repre-
sents Eq. 2, with fit parameter kp /kt = 0.26.

8.3 PARAMETRIC AMPLIFICATION OF A SINGLE MODE
The time-dependent part of the equation of motion of the piezoelectric resonator
including parametric modulation of the spring constant is described by

mü + mωR

Q
u̇ + [mω2

R +kp sin(2Ωt +φ)]u +αu3 = F cos(Ωt ). (8.1)

1During the experiments, the drift of the resonance frequency is within 3 %.
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Here, u(t ) is the amplitude of the mode, m is the effective mass and F the di-
rect drive force, and ωR is the resonance frequency. The dots denote taking the
derivative to time. The spring constant is modulated at twice the drive frequency
Ωwith modulation strength kp . α accounts for the Duffing nonlinearity withα> 0
for clamped-clamped beams [24]. The parametric gain G is defined by the ratio
between the amplitude of the motion with and without parametric drive, and can
be calculated from Eq. 8.1 [25, 26]:

G(φ) =
√

cos2(φ/2)

(1+kp /kt )2 + sin2(φ/2)

(1−kp /kt )2 . (8.2)

This equation holds for small amplitude vibrations, where the nonlinearity can be
neglected. Depending on φ, the motion is amplified (G > 1) or attenuated (G < 1).
Above the threshold parametric pump, kp > kt with kt = 2mω2

R/Q , the resonator
is parametrically oscillating.

Parametric behavior is demonstrated for a resonator with length 750 µm vi-
brating in air, with fR,1 = 98 kHz and Q1 = 58 [frequency response in the inset of
Fig 8.1c]. To amplify the motion, the resonator is driven parametrically at 2 fR,1

with φ = −0.75π. Figure 2(a) shows the Q factor of the resonator as a function
of the parametric pump voltage. The Q factor increases by a factor of 1.7 when
the parametric pump is 10 V. Furthermore, the phase dependence of the gain at
10 V parametric pump is plotted in Fig. 8.2(b). The gain varies periodically with
the phase difference with a period of 2π. The minimum gain is smaller than one,
indicating destructive interference by an out-of-phase parametric signal. Eq. 8.2
fits the measured data well with kp = 0.26kt . In these experiments the paramet-
ric driving is below the parametric threshold kt . A further increase of the pump
voltage is not possible as this would damage the piezo-stack. To study parametric
oscillation, further experiments are conducted in vacuum. Here the Q factor im-
proves by two orders of magnitude [Fig. 8.1(c)], enabling post-threshold driving.

Figure 8.3 summarizes the measurements of the parametric oscillations per-
formed in vacuum. A 500µm long resonator is used, for which the frequency re-
sponse is plotted in Fig. 8.1(c). Frequency spectra are measured for three para-
metric pump voltages in Fig. 8.3(a). At 80 mV no sign of oscillation is observed
(lower panel), and the onset of parametric oscillation is found around 85 mV as
shown in the middle panel. A further increase of the pump voltage (upper panel)
results in a larger oscillation amplitude. Here, the nonlinear term in Eq. 8.1 re-
sults in an amplitude-dependent resonance frequency. Figure 8.3(b) shows net-
work analyzer measurements of the resonator amplitude (color scale) as a func-
tion of the pump voltage. The resonator is driven directly and parametrically with
φ = −0.65π. A direct drive signal, weak enough to operate the resonator in the
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FIGURE 8.3: Parametric oscillations of the first flexural mode in vacuum. (a) Frequency spectra at three
pump voltages, the parametric oscillation becomes visible when Vpump > 85 mV. (b) Parametric tongue,
showing frequency responses when the resonator is driven directly (Vdirect = 5 mV) and parametrically
past the instability threshold. Color indicates the amplitude of oscillation. (c) The hysteresis between
the forward (red) and reverse sweep (green) when driving parametrically (Vpump = 95 mV). The blue
dashed line shows the square root dependence of the amplitude (A) on the frequency f . (d) The phase
dependence of the parametric oscillations at Vpump = 95 mV. The color indicates the amplitude of
oscillation.

linear regime when Vpump = 0, is applied to initiate the motion. The motion of
the weakly driven resonator is coherently amplified by the parametric excitation
and the amplitude increases with Vpump. The observed frequency stiffening is ex-
pected for a cubic spring constant α > 0. The oscillation sustains over a few kHz
when the frequency is swept forward. The amplitude shows a hysteretic response
when the frequency is swept back, see Fig. 8.3(c). The amplitude of the oscilla-
tion depends on the square root of the frequency (dashed blue line) [25]. To study
the relation between the parametric oscillation amplitude and the phase φ, the
resonator is parametrically excited above the threshold. Figure 8.3(d) shows the
amplitude of the oscillation when the direct drive and frequency is swept while
varying the phase difference. Depending on the phase between the direct initiator
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drive and the parametric excitation, constructive or destructive interference oc-
curs which results in amplification or attenuation of the motion induced by the
initiator signal. The maximum parametric amplification is found at a phase dif-
ference of −π and π. The experiments described above clearly demonstrate the
parametric behavior.

8.4 COUPLING BETWEEN PARAMETRIC AND DIRECT DRIVEN

MODES
We now investigate the interactions between the different vibrational modes of

the same mechanical resonator, when one of the modes is parametrically oscil-
lating. This requires to monitor the response of one mode while another mode is
parametrically excited. In particular, the modal interactions between the first and
second mode are considered. First, we study the effect of the parametric oscil-
lations of the first mode, characterized in the previous section, on the resonance
frequency of the second mode. Figure 8.4(a) shows frequency responses of the
second mode, when the first mode is parametrically pumped around its resonance
frequency. The first mode is only parametrically pumped and no direct drive at the
resonance frequency is applied. Below the resonance frequency of the first mode,
no change in resonance frequency of the second mode is observed. Pumping at
twice the resonance frequency, the first mode starts to oscillate parametrically.
This oscillation induces a significant shift in resonance frequency of the second
mode. By parametrically exciting the first mode, the resonance frequency of the
second mode is tuned over more than 200 times the resonator linewidth. There is
a linear relation of fR,2 on fpump,1 with sensitivity fR,2/ fpump,1 = 1.4 Hz/Hz.

The change in resonance frequency is explained as follows: the oscillation of
the first mode increases the tension in the beam. This tension tunes the reso-
nance frequency of the second mode to a higher value. A linear dependence be-
tween the two frequencies is expected, as in clamped-clamped beams the reso-
nance frequency of one mode depends quadratically on the amplitude of the other
mode [19], i.e. fR,i ∼ |A j |2 for modes i and j . The amplitude of the parametric os-

cillation depends on the square root of the pump frequency |A j | ∼
√

fpump,j [25],

as experimentally verified in Fig. 8.3(c). Combining these two dependencies, one
expects fR,i ∼ fpump, j . This linear dependence is clearly observed in the measure-
ments, see Fig. 8.4(a).

We have also studied the influence of the parametrically excited second mode
on the resonance frequency of the first mode, i.e., the first mode is now probing the
second mode, which is parametrically oscillating. Again, a linear dependence of
the resonance frequency on the parametric pump frequency is found, as is shown



{{8

94 8. INTERACTION BETWEEN A DIRECTLY- AND PARAMETRICALLY-DRIVEN MODE

308 310 312

fpump,1 (kHz)

580

582

584

f 2
(k

H
z)

1.16 1.165 1.17

fpump,2 (MHz)

154

154.4

154.8

155.2

f 1
(k

H
z)

(a)

(b)

1     2

2     1

FIGURE 8.4: Interactions between a directly and parametrically driven mode. (a) Frequency responses
of the second mode while varying pump frequency of the first mode. Color scale indicates the ampli-
tude of the second mode. The linear dependence of fR,1 on fpump,2 is observed as explained in the text.
(b) Reversed experiment; frequency responses of the first mode for varying the pump frequency of the
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in Fig. 8.4(b). In this case, the sensitivity fR,1/ fpump,2 = 79 mHz/Hz. As the pump
frequency fpump,2 is increased above 1.165 MHz the parametric oscillation disap-
pears, and the resonance frequency of the first mode jumps back to its original
value. At this point, the nonlinearity causes the oscillation of the second mode to
jump to the low amplitude state, which is reflected by the sharp transition of the
resonance frequency of the first mode. The large difference in sensitivity with the
reversed experiment in Fig. 8.4(a) indicates that parametric pumping of the second
mode is less effective to change the resonance frequency of the first mode than
vice versa. This can be understood since the first mode has the largest oscillation
amplitude and can provide the largest tension in the beam.

8.5 CONCLUSION
The interactions between a directly and a parametrically oscillating mode of the
same mechanical resonator are studied. The parametric amplification and oscilla-
tions of a clamped-clamped resonator with an integrated piezoelectric transducer
are investigated in detail. The dependence of the oscillation amplitude on pump
frequency and phase difference are in agreement with theory. In this work, we
demonstrate that the parametric oscillation of one mode induces a change in the
resonance frequency of the other vibrational modes. This frequency change is pro-
portional to the pump frequency, as is shown for the first and second mode. The
sensitivity of the resonance shift of the second mode on the pump frequency of
the first mode is found to be 1.4 Hz/Hz. When the experiment is reversed, i.e. the
oscillating second mode is detected by a shift in resonance frequency of the first
mode, the sensitivity is 79 mHz/Hz.
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A
THEORY OF CANTILEVER MODAL

INTERACTIONS

In this appendix the nonlinear equations of motion of the modes in a cantilever are
described. We start with the general equations of motion, which include the cou-
pling between the torsional and flexural modes. Then, we consider flexural modes
along one axis. We conclude with the equation of motion of two coupled flexural
modes, relevant to the experiment in Chapter 6. We start with the equations de-
rived by Crespo da Silva [1, 2], who described the motion in two flexural directions
v and w and the torsional angle θ:
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Here, the subscripts s and t denote differentiating to position and time respec-
tively. ξ, η and ζ represent the principal axes of the beam’s cross section. γ and Qθ

represents the damping, Dη,ζ are the flexural stiffnesses of the beam and Dξ is the
torsional stiffness. The moments of inertia are given by η,ζ,ξ. The driving force is
q with driving frequencyΩ.

Now, we consider only vibrations in one direction, so the Eq. A.2 and all terms
with w in Eqs. A.1 and A.3 are disregarded. For the torsional mode, the nonlinear
effect of torsion warping is taken into account [3], where we assume that the ends
of the beam are axially immovable. The coupled differential equations (in non-
dimensional form, notation from Ref. [4]) are now given by
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βy andβθ are the ratios between two stiffnesses (βy = Dζ/Dη andβθ = Dξ/Dη) and
A is the cross sectional area. The torsion nonlinearity is written as βz = 3

2L3 E In .
The torsion constant It , the warping constant CS and the time-dependent tensile
axial load Ñ are given by
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Here, S is the solid angle and φP
S is the primary warping function. A more detailed

description of the nonlinearity in the torsional mode is found in Ref. [3].
To demonstrate the origin of the nonlinear interactions observed in the main

text, we now simplify the coupled equations Eq. A.4 and A.5 by applying the Galerkin
procedure. The solutions are then written as a linear combination of the linear
mode shapes of the cantilever with coefficients, which correspond to the time-
dependent vibration, v = ∑

i F v
i (s)vi (t ) and θ = ∑

i F θ
i θi (t ), where i represents the

mode number. The mode shapes of the flexural and torsional modes of the can-
tilever will be discussed. Introducing the operator L , the linear part of Eq. A.2 is
written as

L [F v ] =βy
∂4F v

∂t 4 + ζω
2F v =ω2F v (A.7)

The resonance frequency is denoted asω. The eigenfunctions can be calculated to-
gether with the boundary conditions for a single-clamped cantilever F v (0) = F v

s =
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F v
s s(1) = F v

sss = 0 as

F = [cosh(k1s)−cos(k2s)−K (sinh(k1s)−k1/k2 sin(k2s)],

K = k2
1 cosh(k1)+k2

2 cos(k2)

k1
1 sinh(k1)+k1k2 sin(k2)

, (A.8)

The values of k1,2 are given by

k1,2 =

√√√√√∓ ζω
2
B

2βy
+

√√√√(
ζω

2
B

2βy

)2

+ ω2
B

βy
. (A.9)

The values of k1 and k2 depend on the mode number i and can be calculated via
the generating function

k4
1 +k4

2 +2k2
1k2

2 cosh(k1)cos(k2)+k1k2(k2 −k1)2 sinh(k1)si n(k2) = 0 (A.10)

The dimensional resonance frequency of the flexural mode is given by

ωB ,i = κi (h/L2)
√

Dζ/ ζ, (A.11)

where κi is 1.875, 4.695 and 7.855 for i = 1, 2 and 3. The beam shape of the first two
flexural modes are shown in the inset of Fig. 6.1.

The torsional mode shapes can be calculated by considering the operator M

with eigenvalues ωT

M [G] = βξ

ξ

∂2F θ

∂t 2 =ω2
T G , (A.12)

and the corresponding boundary conditions of F θ(0) = F θ
s (1) = 0. Inserting the

boundary conditions in Eq. A.12, gives the equation for the torsional mode shapes:
G = sin[(2i − 1)π/2s]. The resonance frequency of the torsion mode is given by
ωT = (2i −1)(π/2)

√
βξ/ ξ.

The Galerkin procedure is applied to Eq. A.4 and A.5: i.e. the solutions are writ-
ten as a linear combination of the eigenmodes. We assume that the flexural mode
is only excited around the resonance frequency, accumulating in the equations

v i
t t +γv v i

t +ω2
F v i =∑

j

∑
k

∑
l

(
v j

[
α1,i j klθ

kθl +α2,i j kl vk v l +α3,i j kl (vk v l )t t

])
+ f i cos(Ωt ),

θi
t t +γθ+ω2

T θ
i =∑

j

∑
k

∑
l

(
θ j

[
α4,i j kl vk v l +α5,i j klθ

kθl
])

. (A.13)
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i j kl α1 α2 α3 α4 α5

1111 3.2134406 40.440663 4.5967725 14.719963 -0.019637282
2222 317.75980 13418.093 144.72550 45.800677 -12.216122
1211 -25.807810 -102.31961 -3.5959704 -2.1072118 -0.055456733
1121 5.1993367 65.862059 -3.5959704 -45.970529 -0.055456733
1122 10.839314 172.73779 25.174152 74.665735 -1.4684083
1221 -20.397232 228.01790 6.1173662 22.425710 -0.15672902
1212 -20.397232 2083.8457 6.1173662 22.425710 -1.4684083
2111 -25.807803 -102.31961 -3.5959704 -2.1072118 -0.057760141
2211 395.65715 172.73767 25.174152 11.080629 -0.16315647
2121 -20.397243 228.01790 6.1173661 22.425710 -0.16315647
2112 -20.397243 2083.8456 6.1173661 22.425710 -1.52915110

TABLE A.1: The values of the integrals in the coefficients α for the interactions between the first and
second flexural and torsional modes.

The above equations show that the nonlinearity is the origin of the modal interac-
tions. Note that for j = k = l , the nonlinear equation describing one mode of the
cantilever is found. A quadratic coupling is present between two different vibra-
tional modes (for example k = l ) also follows directly from the cubic nonlineari-
ties. This quadratic coupling is clearly observed in the experiments. In Eq. A.13,
the terms linear in θ are assumed to only modify the resonance frequencyωT . The
coupling (Galerkin) coefficients α are given by the following equations:

α1,i j kl =−(1−βy )
∫ 1

0
F i (F j

ssGkG l )ss ds,

α2,i j kl =−βy

∫ 1

0
F i [F j

s (F k
s F l

ss )s ]s ds,

α3,i j kl =−1

2

∫ 1

0
F i

(
F j

s

∫ s′′

1

∫ s′

0
F k

s F l
s dsds′

)
s′′

ds′′,

α4,i j kl =
−(1−βy )

ξ

∫ 1

0
G i G j (F k F l )ss ds,

α5,i j kl =βz

∫ 1

0
G i (G j

s Gk
s )G l

ss ds. (A.14)

Considering the interactions only between the lowest two modes of the torsional
and the flexural mode, the values of the integrals in the coefficients α are given in
Table A.1.
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To give an example, we work out Eq. A.13 for the fundamental and second flexural
mode of a cantilever. We denote the amplitudes with v1 = a and v2 = b) and the
coupled equations are given by

at t +γ1at +ω2
F a =α2,1111a3 +α2,1222b3 + (α2,1112 +α2,1121 +α2,1211)a2b

+ (α2,1212 +α2,1221 +α2,1122)b2a +α3,11112a(a2)t t +α3,12222b(b2)t t

+ (α3,1112 +α3,1121)a(ab)t t + (α3,1221 +α3,1212)b(ab)t t +α3,1211b(a2)t t

+α3,1122a(b2)t t + f1 cos(Ωt ), (A.15)

bt t +γ2bt +ω2
F b =α2,2111a3 +α2,2222b3 + (α2,2112 +α2,2121 +α2,2211)a2b

+ (α2,2212 +α2,2221 +α2,2122)b2a +α3,21112a(a2)t t +α3,22222b(b2)t t

+ (α3,2112 +α3,2121)a(ab)t t + (α3,2221 +α3,2212)b(ab)t t +α3,2211b(a2)t t

+α3,2122a(b2)t t + f2 cos(Ωt ). (A.16)

REFERENCES
[1] M. R. M. Crespo da Silva and C. C. Glynn, Nonlinear Flexural-Flexural-

Torsional Dynamics of Inextensional Beams. I. Equations of motion, J. Struct.
Mech. 6, 437 (1978).

[2] M. R. M. Crespo da Silva and C. C. Glynn, Nonlinear Flexural-Flexural-
Torsional Dynamics of Inextensional Beams. II. Forced Motions, J. Struct. Mech.
6, 449 (1978).

[3] E. Sapountzakis and V. Tsipiras, Nonlinear nonuniform torsional vibrations of
bars by the boundary element method, Journal of Sound and Vibration 329,
1853 (2010), ISSN 0022-460X.

[4] M. R. M. Crespo da Silva, Nonlinear flexural-flexural-torsional interactions in
beams including the effect of torsional dynamics. II: Combination resonance,
Nonlinear Dynamics 5, 161 (1994).

http://dx.doi.org/10.1080/03601217808907348
http://dx.doi.org/10.1080/03601217808907348
http://dx.doi.org/10.1080/03601217808907349
http://dx.doi.org/10.1080/03601217808907349
http://dx.doi.org/10.1016/j.jsv.2009.11.035
http://dx.doi.org/10.1016/j.jsv.2009.11.035
http://dx.doi.org/10.1007/BF00045674
http://dx.doi.org/10.1007/BF00045674


SUMMARY

In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a
micromechanical point of view. Single and doubly clamped beams are used as
model systems where nonlinearity plays an important role. The nonlinearity also
gives rise to rich dynamic behavior with phenomena like bifurcations, stochastic
switching and amplitude-dependent resonance frequencies.

The theoretical background of micromechanical systems involving the rele-
vant nonlinearities for beams clamped on one (cantilever) or two sides (clamped-
clamped beam) are discussed in chapter 2. First, the linear response of a mechan-
ical resonator is discussed. Then, the linear equations are extended with nonlin-
ear terms accounting for geometric and inertial effects. Specifically, the origin of
the Duffing nonlinearity in the equation of motion of a clamped-clamped beam is
shown. It is shown that the nonlinearity couples the flexural vibration modes of a
beam.

Microcantilevers are widely used in mass sensing and force microscopy. At
small resonance amplitudes, cantilever motion is described by a harmonic oscil-
lator model, while at high amplitudes, the motions is limited by nonlinearities. In
chapter 3, the intrinsic mechanical nonlinearity in microcantilevers is studied. It
is shown that although the origin is different, the nonlinearity resembles a Duffing
nonlinearity resulting in hysteresis and bistable amplitudes. This bistability is then
used to implement a mechanical memory.

The bistability of microcantilevers can also be used to study the switching char-
acteristics when noise is applied. Chapter 4 shows the experimental implementa-
tion of this stochastic switching of microcantilever motion. It is shown that upon
increasing the noise intensity, the switching rate rises exponentially as expected
from Kramer’s law. However, at higher noise intensities, the switching rate satu-
rates and eventually even decreases, which suggests that the noise influences the
dynamical parameters of the system.

In chapter 5, we investigate in detail the coupling between the flexural vibra-
tion modes of a clamped-clamped beam. The coupling arises from the displacement-
induced tension. A theoretical model based on the nonlinearity is developed, which
is experimentally verified by driving two modes of the beam at high amplitudes
and reading out their motion at the two frequencies. The experiments show that
the resonance frequency of one flexural mode depends on the amplitude of an-
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other flexural mode and the theory is in excellent agreement with the experiments.
The nonlinearity not only couples the flexural modes in a clamped-clamped

beam, but we show in chapter 6 that also the cantilever modes are coupled. Here,
the mechanism causing the nonlinearity is different, as there is no displacement-
induced tension. The microcantilever is driven using a piezo actuator and its mo-
tion is read out using an optical setup. At high vibration amplitudes, the resonance
frequency of one mode depends on the amplitude of the other modes. The tor-
sional modes also show nonlinear behavior as evidenced by a frequency stiffening
of the response.

The modal interactions in a microcantilever can also be used in a all-mechanical
analogue of a cavity-optomechanics, where one mode is used as a cavity mode,
which influences the probe mode. In chapter 7, we show that by exciting at the
sum and difference frequencies of the two modes, the Q factor of the probe mode
could be suppressed over a wide range.

In chapter 8, the interaction between a directly- and parameterically-driven
resonance mode is studied. Parametric driving means that the spring constant
of the beams is modulated at twice the resonance frequency. Clamped-clamped
beams with an integrated piezo-actuator on top, designed for applications as gas
sensors, are used in the experiments. First, the parametric amplification and os-
cillation of the beam is studied, then the motion of a parametrically-driven mode
is detected by a change in resonance frequency of the directly-driven mode. There
is a linear dependence of the oscillation frequency of the parametrically-driven
mode and the resonance frequency of the directly-driven mode. A potential appli-
cation as a linear frequency converter is suggested.



SAMENVATTING

In dit proefschrift worden niet-lineaire dynamica en niet-lineaire interacties be-
studeerd vanaf een micro-mechanisch standpunt. Enkel en dubbel ingeklemde
balken worden gebruikt als model systemen waar de niet-lineariteit een belang-
rijke rol speelt. De niet-lineariteit leidt tot rijk dynamisch gedrag met fenome-
nen zoals vertakkingen, stochastische schakelingen en amplitude-afhankelijke re-
sonantie frequenties.

De theoretische achtergrond van micromechanische systemen met betrekking
tot de relevante niet-lineariteiten voor eenzijdig (cantilever) en tweezijdig inge-
klemde balken wordt gegeven in hoofdstuk 2. Eerst wordt de lineaire respons van
een mechanische resonator bediscussieerd. Daarna worden de lineaire vergelij-
kingen uitgebreid niet-lineaire termen die rekening houden met geometrische en
inertiële effecten. Meer specifiek wordt de oorsprong van de Duffing niet-lineariteit
in de bewegingsvergelijking van een dubbel ingeklemde balk aangetoond. Er wordt
aangetoond dat de niet-lineariteit de buig-trillingsmodi van een balk koppelt met
elkaar.

Microcantilevers worden breed gebruikt in massa sensoren en kracht micro-
scopie. Bij kleine resonantie amplitudes wordt de cantilever beweging beschreven
door een harmonische oscillator, terwijl bij hoge amplitudes de beweging word
beperkt door niet-lineariteiten. In hoofdstuk 3 wordt de intrinsieke mechanische
niet-lineariteit in microcantilevers bestudeerd. Er wordt aangetoond dat, hoewel
de oorsprong anders is, de niet-lineariteit lijkt op een een Duffing niet-lineariteit
wat resulteert in hysterese en bistabiele amplitudes. De bistabiliteit wordt dan ge-
bruikt om een mechanisch geheugen te implementeren.

De bistabiliteit van microcantilevers kan ook gebruikt worden om de schakel
karakteristieken te bestuderen als er ruis wordt aangeboden. Hoofdstuk 4 laat
de experimentele implementatie van dit stochastische schakelen van de beweging
van een microcantilever zien. Er wordt aangetoond dat als de ruis intensiteit wordt
opgeschroefd, de schakelsnelheid exponentieel toeneemt zoals verwacht wordt
volgens de wet van Kramer. Echter, voor hogere intensiteiten verzadigd de scha-
kelsnelheid en neemt uiteindelijk af. Dit suggereert dat de ruis de dynamische
parameters van het systeem beïnvloedt.

In hoofdstuk 5 laten we in detail de koppeling tussen de buig-trillingsmodi van
een dubbel-ingeklemde balk zien. De koppeling komt voort uit de uitwijking geïn-
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duceerde spanning. Een theoretisch model gebaseerd op de niet-lineariteit is ont-
wikkeld, welke experimenteel geverifieerd is door twee modi van de balk op hoge
amplitudes aan te drijven en hun beweging uit te lezen op meerdere frequenties.
De experimenten laten zien dat de resonantie frequentie van een buig-modus af-
hangt van de amplitude van een andere buig-modus en de theorie komt zeer goed
overeen met de experimenten.

De niet-lineariteit koppelt niet alleen de buig-modi in een dubbel-ingeklemde
balk, maar we laten in hoofdstuk 6 zien dat de niet-lineariteit ook de cantilever
modi koppelt. Hier is het mechanisme dat de niet-lineariteit koppelt anders, om-
dat er geen uitwijking-geïnduceerde spanning is. De microcantilever wordt aange-
dreven met een piezo-actuator en de beweging wordt uitgelezen met behulp van
een optische opstelling. Bij hoge trillings-amplitudes hangt de resonantie frequen-
tie af van de amplitude van een ander modus. De torsie modi laten ook niet-lineair
gedrag zien wat blijkt uit een frequentie verstijving van de response.

De interactie tussen de modi in een microcantilever kan ook gebruikt worden
in een mechanische analoog van cavity-optomechanica. waar een modus gebruikt
wordt als een cavity modus welke de onderzoeks-modus beïnvloedt. In hoofdstuk
7 laten we zien door op de som en verschil frequenties van de twee modi aan te
drijven, de Q factor van de onderzoeks-modus over een groot gebied onderdrukt
kan worden.

In het laatste hoofdstuk 8 bestuderen we de interactie tussen een direct een een
parametrisch aangedreven resonantie modus. Parametrisch aandrijven betekent
dat de veerconstante van de balk wordt gemoduleerd met twee keer de resonantie
frequentie. Dubbel-ingeklemde balken met een geïntegreerde piezo-actuator bo-
venop worden gebruikt in de experimenten. Deze zijn ontworpen voor toepassin-
gen als gas-sensoren. Eerst wordt de parametrische versterking en oscillatie van de
balk bestudeerd. Daarna is de beweging van de parameterisch aangedreven mo-
dus gedetecteerd door een verandering in de resonantie frequentie van de direct
aangedreven modus. Er is een lineaire afhankelijkheid van de oscillatie frequen-
tie van de parametrisch aangedreven modus en de resonantie frequentie van de
direct aangedreven modus. Als toepassing wordt een lineaire frequentie omzetter
voorgesteld.
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