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Summary

Coastal environments are vital for ecological stability, human activity, and climate resilience, yet they
are increasingly affected by anthropogenic activities. Particularly, construction machinery such as bull-
dozers plays a critical role in altering the beach environment through beach nourishment purposes
and coastal engineering, but their presence and movement are rarely tracked systematically. This re-
search addresses that gap by developing a method to automatically identify bulldozers and other large
dynamic objects from multiple epochs of permanent terrestrial laser scanning (TLS) point cloud data
using multidimensional feature analysis and supervised machine learning.

This study presents a robust framework for automatically classifying bulldozers and other large dynamic
objects from terrestrial laser scanning (TLS) point clouds, achieving a test accuracy of 92.5% with a
k-Nearest Neighbours (k-NN) classifier. This framework integrates both 3D point cloud descriptors with
2D projection-based features. Starting from raw TLS data, object clusters are extracted and described
using geometric features. For each object, 3D features including linearity, planarity, and verticality are
computed; 2D raster-based descriptors, including footprint spread and height variation, are computed
from XY and XZ plane projections. These features are aggregated to build an object-level dataset.
At the same time, global descriptors of the horizontal and vertical extents are computed to capture
the dimension information. Together, these features are then standardised at the object level to train
supervised classifiers capable of distinguishing four object classes: ’large bulldozer’, ’other bulldozer’,
’tractor-trailer’, and ’other’.

The evaluation reveals that the instance-based k-NN model consistently outperformed a Support Vec-
tor Machine (SVM), which proves less robust to class imbalance and dataset shift due to its reliance
on a fixed global decision boundary. Feature importance analysis confirms that a combination of 3D
descriptors capturing structural complexity (e.g., eigenentropy, omnivariance) and 2D projection fea-
tures quantifying vertical profiles is the most discriminative. The framework’s real-world applicability is
validated on an independently and automatically segmented dataset, where the k-NN model maintains
a high overall accuracy of 90.9%. This validation also highlights the classification performance’s sen-
sitivity to segmentation quality, as incomplete object data from partial occlusion predictably decreases
accuracy

In conclusion, this study establishes a practical and reliable feature-based methodology for monitoring
anthropogenic activity in dynamic coastal zones. Future work should focus on enhancing this frame-
work by expanding the training dataset to improve robustness, implementing adaptive binning for 2D
feature extraction to better handle scale variance, and integrating more advanced segmentation al-
gorithms to enable a fully automated monitoring pipeline. Such improvements will further solidify the
method’s utility for long-term environmental monitoring and data-driven coastal management.
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1
Introduction

The coastal environment is an important system that not only supports the diverse marine ecosystems
but also generates significant economic value for human society. It is also one of the most dynamic
systems on Earth, influenced by various factors such as waves, currents, land subsidence, and tides
((Bosboom & Stive, 2021)). However, in recent years, human activities have become an increasingly
important factor shaping coastal dynamics, particularly on sandy beaches, which account for 31% of
the world’s ice-free shoreline (Luijendijk et al., 2018). Together with the projected sea level rise, the
coastal system is under growing threat (van de Wal et al., 2024).

Among all anthropogenic influences, bulldozers represent a particularly significant force. Bulldozers are
widely used for beach nourishment (Lazarus et al., 2011), artificial dune construction (Magliocca et al.,
2011), cleaning, and maintaining the surface of the beach, especially after storms (Pinardo-Barco et al.,
2023). These operations of bulldozers can profoundly alter the sediment dynamics and interfere with
conventional coastal models (Lazarus and Goldstein, 2019). Despite this, the broader environmental
impacts of bulldozer activities on sandy beaches remain poorly understood. Therefore, the ability to
identify and monitor bulldozers is crucial for effective environmental modelling and sustainable coastal
management.

This study defines large objects as those with dimensions generally exceeding 2 metres in height, width,
and length, which are significantly larger than a human. Within this category, ’bulldozers’ are defined
as vehicles equipped with a large front-mounted blade, a central engine compartment, and wide rear
tracks. The aim is to distinguish ’bulldozers’ from all other large dynamic objects—collectively referred
to as ’other’—that appear on the sandy beach.
Permanent terrestrial laser scanning (TLS) provides a vital means for monitoring such large objects.
Each scan captures millions of 3D points across the investigated area using Light Detection and Rang-
ing (LiDAR) technology. By emitting laser pulses and recording the travel time of its reflection, the
scanner can compute the spatial position of the reflecting point, which represents the surface in the
investigated scene (Kuschnerus, 2024). Depending on the scanner model, additional attributes such
as reflectance, amplitude, and echo can also be recorded. The collection of all these points for a
single epoch forms a point cloud. A permanently installed TLS operates from a fixed position, taking
measurements at regular intervals and can support long-term temporal analysis.

The dataset used in this study consists of eleven months of permanent TLS data from the CoastScan
project (Vos et al., 2017, Vos et al., 2022), recorded across different months between 2019 and 2021.
The data were collected from a permanent laser scanner set up in Noordwijk, the Netherlands. It sam-
ples one kilometre of the coast at hourly intervals. Each scan contains millions of 3D points, with addi-
tional attributes such as intensity, amplitude, deviation, and echo depending on the weather conditions
and scanning resolution.

With the matter concerned and the available data, this study addresses the following research question:
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How can bulldozers be effectively identified from other large objects on sandy beaches using
multiple epochs of point clouds obtained from permanent terrestrial laser scanning?

Derived sub-questions include:

• What are the important features that are effective in characterising and distinguishing bulldozers
from other large objects?

• What are the most feasible algorithms for bulldozer classification?
• To what extent can these methods be applied to different TLS datasets?

To answer these questions, this study applies machine learning techniques to 3D TLS point clouds
collected in a coastal environment. The primary objective is to classify ’bulldozers’—distinguishing them
from ’other’ large objects—based onmultidimensional geometric and spatial features. The performance
and generalisability of the trained classifiers are also examined using datasets captured at different
times. The performance and generalisability of the trained classifiers are also examined using datasets
captured at different times.

The paper is organised as follows. Previous studies on point cloud classification and monitoring bull-
dozers on sandy beaches are introduced in Chapter 2. The proposed methodology is presented in
Chapter 3. Subsequently, Chapter 4 evaluates this method and demonstrates its performance on the
test dataset. Following Chapter 5, which discusses the results of this approach. Finally, Chapter 6
provides the conclusions and recommendations for future work.



2
Background

This chapter first reviews previous studies on point cloud features analysis for machine learning, fol-
lowed by a comparison of these methods in section 2.1. Finally, section 2.2 presents related works on
identifying objects on a sandy beach.

2.1. Point cloud processing
While providing 3D spatial information, point clouds do not contain meaningful semantic information di-
rectly. The irregular, unstructured, and unordered large point cloud dataset introduces great challenges
for the analysis (Kharroubi et al., 2022). Point cloud classification helps to overcome this challenge by
assigning the points in the point cloud with a semantic label, which represents the part or overall prop-
erties of the point cloud. As this study aims to classify point clouds of bulldozers on the sandy beach,
we mainly focus on the previous studies on object-based point cloud classification.

A typical way to approach point cloud classification is through machine learning. The machine learn-
ing algorithms for point clouds can be categorised into supervised and unsupervised learning. For
classification and object detection of point clouds, the supervised learning methods are most often
used(Mirzaei et al., 2022). The supervised learning models are trained on pre-labelled datasets, where
each input is associated with a known output. Through different data representations, the model ex-
tracts features from the data and transforms the low-level information into abstract and higher-level
representations (Voulodimos et al., 2018). There are various types of feature representations of 3D
point clouds for machine training. The four main types are illustrated in Figure 2.1, and they are namely
(H. Zhang et al., 2023):

1. Point cloud-based method: It is the most direct method to represent the 3D data, which is the
collection of measured points drawn in 3D space.

2. Meshmethod: Mesh is the collection of points and edges. The 3D data are represented by mesh
grids, revealing the local relationships between points. Triangular mesh is one of the commonly
used mesh grids.

3. Voxel-basedmethod: fit 3D point clouds into voxels that can approximate the shape of the object.
Each voxel block consists of all related points and is used to train the classifier for each voxel.

4. Multi-view-basedmethod: Represent the data by projecting the 3D image into multiple 2D views.
The 2D features are then fused to classify 3D shapes.

Among these methods, point cloud-based methods and multiview-based methods are more popular
representations of the data. Classifiers trained by features derived from point cloud-based methods
typically perform higher overall accuracy (H. Zhang et al., 2023). However, it is important to choose the
appropriate feature aggregation methods. It transforms discrete point-wise information into concrete
representations of the union and plays a crucial role in the training. Another commonly used method is
the multiview-based methods for their better performance in complex environments, and computational
efficiency (Mirzaei et al., 2022).

3



2.1. Point cloud processing 4

Figure 2.1: Different types of representations of 3D point clouds (H. Zhang et al., 2023)

Based on the aforementioned data representation methods, various supervised classification schemes
such as Support Vector Machines (Hearst et al., 1998) and RandomForests (Breiman, 2001) have been
proposed. Deep learning models are also intensively developed, such as Multi-View Convolutional
Neural Network (Su et al., 2015), Voxnet (Maturana and Scherer, 2015), and Multi-Scale Network
(Wang et al., 2018). In complex environments, such as urban areas and forests, deep learning models
are more popular for their higher accuracy in classifying complex objects. While deep learning models
have shown strong performance in point cloud classification, they typically require vast amounts of
annotated training data and significant computational resources for training. Given the project duration
and available dataset size, a more ’classical’ machine learning approach based on explicit feature
engineering is determined to be the more feasible and rigorous strategy for developing a robust proof-
of-concept.

For supervised machine learning, Weinmann et al., 2013 provides a comprehensive study that uses
3D point cloud features as training datasets. This study focuses on classifying the five objects: wire,
pole, facade, ground, and vegetation. The feature representations for this study are a combination of
point cloud-based methods and multi-view-based methods. Through considering a variety of features,
the method helps to improve processing time, memory consumption, and classification accuracy. The
point cloud-based features are mainly derived from 3D eigenvectors with appropriate neighbourhood
selection. The multi-view-based features are the 2D features obtained by projecting the 3D point cloud
onto the horizontal XY-plane.

Among the four classifiers they studied, Nearest Neighbor(NN), k Nearest Neighbor(k-NN), Naive
Bayesian(NB), and Support Vector Machines(SVM), SVM and k-NN have a higher overall accuracy
with different features used for training, as shown in Figure 2.2. However, both of them show higher
performance with fewer but carefully chosen features based on the analysis of the importance of differ-
ent features.

Figure 2.2: Overall classification accuracies for different classifiers. The number of the features is iteratively increased
according to the ascending global rank of importance based on the previous part of the paper(Weinmann et al., 2013)
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This study builds on the feature extraction strategy outlined in Weinmann et al., 2013, but with key
methodological differences. While Weinmann et al., 2013 relies solely on XY-plane projections that are
suitable for distinguishing poles and façades, this study incorporates both horizontal (XY) and vertical
(XZ) projections. This addition is crucial, as the objects in this dataset, such as bulldozers, have more
complex 3D structures that require richer spatial characterisation. Second, this study introduces global
geometric descriptors, such as vertical and horizontal extent, which were not included in the Weinmann
et al., 2013 pipeline. These enhancements are designed to support classification across more varied
and articulated object types.

2.2. Bulldozer classification on sandy beaches
Similar work on the classification of bulldozers has been carried out using photo data (Barbero-García
et al., 2023). It relies on the YOLO algorithm(You Only Look Once) (Redmon et al., 2016), which is
an object detection algorithm that uses convolutional neural networks. It is well known for its speed
and efficiency as it processes the entire image, predicting the bounding boxes and class probabilities
simultaneously.

The dataset used is mainly from the CoastScan project. Image data are taken as videos by two cameras
next to the permanent laser scanner that is used for this study. The views from the cameras are
illustrated in Figure 2.3. The resolution of the images is 1912x1088 pixels. The methodology includes a
change detection step using Principal Component Analysis (PCA). A total of 605 images of bulldozers
are detected. Next, these detected changed images are input into the YOLOv5s model to train the
classifier. (Barbero-García et al., 2023)

Figure 2.3: CoastScan project video frames for camera 1 (a) and camera 2 (b)(Barbero-García et al., 2023)

The approach achieves high performance, with 0.94 precision and 0.81 recall on the CoastScan dataset.
Furthermore, the number of detected bulldozers correlates strongly (r = 0.88) with TLS-derived height
changes exceeding 30 cm, indicating strong agreement between 2D image-based and 3D LiDAR-
derived observations.

While demonstrating high precision, this image-based detection is inherently sensitive to variable light-
ing, shadows, and atmospheric conditions, which can degrade performance. Furthermore, 2D data
cannot capture the full volumetric and structural complexity of these vehicles. This study addresses
these limitations by using active remote sensing —specifically, 3D point clouds captured via terrestrial
laser scanning (TLS). This approach eliminates dependency on lighting conditions and provides pre-
cise geometric information. Moreover, working directly with 3D spatial data allows for more detailed
structural analysis, including the computation of local and global geometric features. Thus, the pro-
posed method may offer improved robustness and generalisability for object classification in coastal
environments.



3
Methodology

The proposed method for automatic bulldozer recognition consists of three consecutive steps as illus-
trated in Fig. 3.1.

Figure 3.1: Overall workflow of the proposed method. The method starts with TLS point clouds and results in a classifier for
bulldozer detections.
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First, the input raw point clouds are manually inspected for the objects on the beach. Segmentation
is performed to separate the large object points and the ground points. The object points include
bulldozers and other common vehicles such as tractors and excavators. The pre-processing step is
first conducted by manual segmentation to obtain the highest quality of training data.

The potential object point clouds are then assessed through the feature assessment. It first considers
the local neighbourhood of each point. Based on the neighbourhood information, the 3D information
can be computed to analyse the geometric properties. The 2D information is derived by projecting
3D points onto a horizontal and vertical plane. This can help to further characterise bulldozers by
revealing their distinct vertical and horizontal features. These properties are further aggregated to
summarise the properties of the whole segmented point clouds. At the same time, global descriptors,
which are calculated for the whole point clouds, for horizontal and vertical extents, are also derived to
approximate the dimensions of the objects. Together, these point-based information are standardised
for consistency and used for training a machine learning classifier.

The last step is the classification and validation. The object points processed through feature assess-
ment are labelled, and the final trained classifier can then provide semantic information by classifying
each input object point cloud. The resulting classifier can then combine with an automatic segmentation
method that is introduced later in Section to enable a fully automatic bulldozer classification pipeline.

This chapter first introduces the study area and the CoastScan data properties in section 3.1. Then,
each step outlined in the overall workflow, pre-process, feature assessment, and classification, is de-
scribed in section 3.2, 3.3, and 3.4, respectively.

3.1. Data description
The data used in this study are from the CoastScan project. The point clouds are collected using a
Riegl VZ-2000 laser scanner operating at a wavelength of 1550 nm. The scanner is mounted on the
rooftop of the NH Hotel Atlantic in Noordwijk, approximately 38 meters above mean sea level. (Vos
et al., 2020, Vos et al., 2022) The overview of the setup, location, and the view of the laser scanner are
shown in Figure 3.2.

A total of 11 months of TLS point clouds, collected from different months from 2019 to 2021, are used
in this study. All point coordinates are recorded in a local 3D Cartesian coordinate system, where the
X-axis points towards in the scanner’s viewing direction, the Y-axis runs almost parallel to the coastline,
and the Z-axis represents elevation. The visualisation of the XY-axis is also shown in Figure 3.2(a).

Figure 3.2: Overview of the study site: (a) Scanned beach area taken from Google satellite, (b) scanner setup, and (c)
geographic location of Noordwijk.
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To ensure data quality, each point cloud is first segmented to retain only the beach area closest to the
scanner. These regions exhibit high volume point density, ranging between 5 and 40 points per unit
volume, as measured using a spherical kernel with a radius of r = 0.6397 m. This density threshold
ensures sufficient spatial resolution and reduces the impact of occlusion and noise from distant or
sparsely sampled regions. Figure 3.3 illustrates an example of a TLS point cloud segment captured on
22 March 2020 at 08:00:54 after applying this spatial filtering.

Figure 3.3: Example of a TLS point cloud from one epoch taken on 22 March 2020, 08:00:54. The point cloud is colour-coded
by volume point density, defined as the number of points within a spherical neighbourhood of radius r = 0.6397m. Warmer

colours indicate higher densities. The upper region captures the sandy beach, while the lower region includes built structures.

3.2. Pre-processing
The pre-processing aims to extract meaningful point clouds of objects from the raw TLS scans. Each
scan is first manually inspected. By evaluating their spatial structure and amplitude attributes, point
clouds representing large objects are distinguished and segmented from the surrounding ground points.
Since the permanent laser scanner only captures data from a fixed direction, objects positioned farther
from the scanner may be partially occluded by those in front, leading to incomplete representations. To
ensure high-quality data, only point clouds with clear and unobstructed visibility are selected for further
analysis.

The segmented objects include ’bulldozers’ as well as other types of large vehicles, such as trucks,
excavators, and empty trailers. As this study focuses on ’bulldozer’ classification, the segmented point
clouds are initially grouped into two broad categories: ’bulldozer’ and ’others’, based on their 3D geomet-
ric characteristics. ’Bulldozers’ are identified by their distinctive feature, with a protruding front-mounted
blade with adjustable height. An overview of this pre-processing step, together with examples of the
extracted object point clouds, is illustrated in Figure 3.4.

The ’bulldozer’ category is further subdivided into two classes: ’large bulldozer’ and ’other bulldozer’.
The ’large bulldozer’ class includes vehicles with elongated bodies, wider spacing between wheels,
and typically smaller blades compared to those in the ’other bulldozer’ class. A measured object length
exceeding 5.5 metres is used to define a ’large bulldozer’. Figure 3.5 illustrates some example point
clouds of the two types of bulldozers, as well as examples of the real-world images of them.
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Figure 3.4: Overview of the pre-processing workflow. TLS point clouds are manually segmented to isolate individual objects
based on amplitude and spatial structure. Objects with clear visibility are extracted and categorised into bulldozer and other
large machinery. The figure illustrates the segmentation process from the full scene to individual object point clouds. Point

clouds are coloured by amplitudes.
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Figure 3.5: Visual comparison between ’large bulldozer’ and ’other bulldozer’. On the left, example images of two bulldozer
models are shown to illustrate the expected real-world scale and shape differences. On the right, representative segmented

point clouds of ’large bulldozer’ (top row) and ’other bulldozer’ (bottom row) are shown. Point clouds are coloured by
amplitudes.

At the same time, large non-bulldozer objects are subdivided into ’tractor-trailer’ and ’others’. A ’tractor-
trailer’ in this study is defined as a large object composed of a tractor unit and a long, empty trailer as
shown in Figure 3.6(a). This class is distinguished by its elongated shape and frequent occurrence on
the beach. Figure 3.6 presents example point clouds of both the ’tractor-trailer’ and the more hetero-
geneous ’other’ category.

Figure 3.6: Examples of segmented point clouds categorised as non-bulldozer large objects. The top row shows
’tractor-trailer’. The bottom row includes other large objects. These object types are labelled separately for further classification

tasks. Point clouds are coloured by amplitudes.

A total of 127 point clouds are identified and segmented from the dataset, consisting of 6 ’large bull-
dozer’, 42 ’other bulldozer’, 20 ’tractor-trailer’, and 59 ’others’. Due to the limited number of samples in
the ’large bulldozer’ class, data augmentation is performed by mirroring the six point clouds along the
y-axis to improve the balance across classes. Table 3.1 summarises the point statistics and bounding
box dimensions for each category.
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Table 3.1: Mean point count and bounding box dimension ranges for each object category

Category Files Mean Number of Points Dimensions (m)

x y z

Large bulldozer 12 1,201.1 2.64–4.19 5.00–8.23 3.06–3.51
Other bulldozer 42 443.4 1.95–6.61 1.36–4.32 2.81–3.70
Tractor-trailer 20 1,703.3 2.49–12.53 3.35–14.75 3.06–3.51
Others 59 1,251.8 1.67–17.91 1.74–21.46 2.15–6.95

From the table, all objects exceed 2.15 meters in height and 1.36 meters in horizontal length. Point
clouds from large bulldozers generally have greater horizontal and vertical dimensions compared to
those in the ’other bulldozer’ class. Point clouds from the ’tractor-trailer’ category are characterised by
the elongated shape, while objects in the ’other’ category show the widest range of geometric variability.

Among the four categories, ’other bulldozer’ has the lowest mean number of points. This is mainly
due to their smaller physical size and more frequent occurrence at greater distances from the scan-
ner, leading to sparser point data. In contrast, objects under the category of ’tractor-trailer’ and ’other’
objects are typically found closer to the scanner, resulting in denser and more complete point clouds.
The ’large bulldozer’ class, due to both its size and its frequent proximity to the scanner, also shows
relatively high point density. All samples were recorded from various viewing angles, providing a rela-
tively comprehensive 3D representation of each object class. These point clouds are then used for the
subsequent feature assessment stage.

3.3. Feature assessment
This section describes the second stage of the processing workflow, in which descriptive features are
computed from the segmented object point clouds and prepared for the next stage of classification. It
begins with the definition of local neighbourhoods around each point in Section 3.3.1, which serves
as the foundation for feature computation. Then, 3D features are derived in Section 3.3.2. To fur-
ther characterise the objects, 2D features are computed by projecting point clouds onto horizontal and
vertical planes and analysing rasterised bins Section 3.3.3. Statistical aggregation is then applied to
summarise the features at the object level Section 3.3.4, and global object descriptors are computed
Section 3.3.5. Finally, all features are standardised in Section 3.3.6 to ensure compatibility with classi-
fication algorithms in the next section.

3.3.1. Neighbourhood selection
Neighbourhood selection is a critical step in 3D point cloud analysis. It forms the basis for the sub-
sequent feature assessment and directly influences the quality of the feature analysisKasireddy and
Akinci, 2022. Three traditional approaches are commonly used:

1. Spherical neighbours: selects all points that are in a sphere of radius rs centred at point Pi Lee
and Schenk, 2002.

2. Cylindrical neighbours: selects all 3D points whose 2D projections onto the ground plane are
within the circle of radius rc centred at Pi Filin and Pfeifer, 2005.

3. K-nearest neighbours (k-NN): selects the k closest points to Pi based on Euclidean distance
Lalonde et al., 2006.

This study adopts the spherical neighbours approach as it offers a more stable and robust method
for neighbourhood definition, given the characteristics of the dataset. The point cloud density varies
significantly across different datasets due to varying distances from the laser scanner and view angles.
As a result, the spherical neighbourhood method is advantageous in this context for its consistency.
In contrast, cylindrical neighbourhoods are sensitive to irregular vertical sampling and may result in
poorly defined regions in sparsely sampled regions. The k-NN approach, while widely used in uniform
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datasets, may include spatially irrelevant neighbours and irregular point distributions, making it less
suitable for this study.

3.3.2. 3D features
To characterise the local 3D features of each point within the segmented point clouds, eigenvalue-based
features are computed. Spatial distribution of the neighbouring points is analysed through Principal
Component Analysis (PCA) by applying it to the coordinates of a local neighbourhood around each
point.

For each point pi in the point cloud, its neighbourhood Ni is defined by the spherical neighbourhood
method as described in the previous section. Given the spherical search radius rs, all points within this
radius are included for analysis:

Ni =
{
pj ∈ R3

∣∣ ∥pj − pi∥ ≤ rs
}

(3.1)

With the neighbourhood points, the centroid p̄ of the neighbourhood can computed as:

p̄ =
1

N

N∑
j=1

pj (3.2)

where N is the number of points in the neighbourhood.

The coordinates of the neighbourhood points are centralised into

cj = pj − p̄ (3.3)

The covariance matrix C ∈ R3×3, which is also commonly denoted as the structure tensor, is then
calculated as:

C =
1

N

N∑
j=1

cjc
⊤
j (3.4)

This symmetric and positive covariance matrix describes the local spatial geometry of the neighbour-
hood. Then, solving the characteristic equation:

det(C− λI) = 0 (3.5)

The three real, non-negative eigenvalues λ1, λ2, λ3 can be obtained(λ1 ≥ λ2 ≥ λ3). The eigenvectors
e⃗i associated with these eigenvalues can be computed by solving the corresponding linear system:

(C− λiI)e⃗i = 0, i = 1, 2, 3 (3.6)

Then, each eigenvector can be normalised to unit length:

e⃗i ←
e⃗i
∥e⃗i∥

(3.7)

This normalisation ensures that the components of the eigenvectors are dimensionless and consistent
across the dataset. The eigenvectors represent the principal axes of the local point distribution, while
the eigenvalues describe how the points are spread along those directions. The eigenvalues are invari-
ant concerning rotation(Gross and Thoennessen, 2006), and they can be used to directly describe the
3D structure (West et al., 2004) and derive further special geometric properties (Toshev et al., 2010),
revealing the characteristics of the local 3D structure. The definitions of these measures are shown in
Table 3.2.
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Table 3.2: Definitions of eigenvalue-based geometric features

Feature Symbol Definition

Linearity Lλ
λ1 − λ2

λ1

Planarity Pλ
λ2 − λ3

λ1

Sphericity (Scatter) Sλ
λ3

λ1

Omnivariance Oλ
3
√

λ1λ2λ3

Anisotropy Aλ
λ1 − λ3

λ1

Eigenentropy Eλ −
3∑

i=1

λi ln(λi)

Sum of eigenvalues Σλ λ1 + λ2 + λ3

Change of curvature Cλ
λ3

λ1 + λ2 + λ3

The measures of linearity Lλ, planarity Pλ, and sphericity Sλ describe the information of the 1D linear,
2D planar, and 3D spatial structure. Further measures are provided by omnivariance Oλ, anisotropy
Aλ, eigenentropy Eλ, and sum of eigenvalues Σλ. The change of curvature Cλ is also computed (Rusu,
2010).

Moreover, the verticality can also be derived from the structure tensor:

V = 1− |nZ | (3.8)

where nZ is the Z-component of the eigenvector e⃗3, which approximates the local surface normal.
Values of |nZ | ≈ 1 imply a horizontal surface, while |nZ | ≈ 0 indicate vertical structure Demantké et al.,
2012.

3.3.3. 2D features
To further enhance object classification, 2D features are derived to describe structural characteristics
not fully captured by 3D descriptors. Most of the vehicles from the dataset, including bulldozers, track-
ers, and excavators, are structurally complex and highly articulated. As a result, the point-cloud-based
3D features derived from the structure tensor may not be sufficient on their own to accurately distinguish
between object types. Despite differences in scale and components, their overall spatial distribution in
3D can appear similar, making precise classification challenging.

However, 2D horizontal and vertical features offer an alternative view that can describe different ob-
jects better. Bulldozers, in particular, exhibit distinct 2D structural characteristics in terms of vertical
and horizontal views, which can be utilised for classification. Bulldozers have special blades that ex-
tend outward from the main engine body, creating a broad and often symmetric shape in horizontal
projections. At the same time, these blades can be adjusted to different heights, resulting in variability
in the vertical structure and may provide unique information, as illustrated by the examples in 3.5.

To compute 2D features, all object 3D point cloud is projected onto two orthogonal planes:

• A horizontal plane Phor aligned with the XY-plane
• A vertical plane Pver aligned with the XZ-plane

Projecting the point cloud on the horizontal plane allows for analysis of the vertical distribution of points
across the footprint of the object. It can provide valuable information, as many relevant features, such
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as the variable height of bulldozer blades or the elevated arms of excavators, can be reflected clearly
in vertical differences across the object’s base. Segmenting the object footprint into bins in this view en-
ables a detailed assessment of vertical structure, helping distinguish between compact and articulated
shapes.

The projection on the XZ-plane, on the other hand, captures the horizontal structure of the object along
the scanner-facing direction. This choice may seem less intuitive than using the YZ-plane, which would
provide a side view similar to a conventional image. However, projecting onto the XZ-plane is more
meaningful in the context of permanent TLS systems: it aligns with the scanning axis and exploits the
most information-rich dimension, directly reflecting what the scanner sees across time. Binning along
the XZ-plane allows segmentation of objects parallel to the scanner face, preserving critical structural
details that would be flattened or obscured in a YZ projection. Therefore, this orientation offers a better
representation of horizontal complexity.

Figure 3.7 shows the projection process for a representative ’bulldozer’. Amplitude values are colour-
mapped to aid interpretation. Additional examples of projected views for other object classes are pro-
vided in Figures B.3, B.4, and B.5 in Appendix B.

Figure 3.7: Illustration of 2D projection-based feature computation. The central image shows the original 3D point cloud of a
’bulldozer’. The cloud is projected onto the XZ plane (left) and the XY plane (bottom) to derive vertical and horizontal 2D
features, respectively. Each projection is binned with grid sizes of 0.4 m (XZ) and 0.75 m (XY). Colour represents return

amplitude.

Following projection, the 2D points are discretised into square raster grids with a bin size lbin. To
illustrate this, Figures 3.8 and 3.9 show how specific bins in the vertical and horizontal projections
correspond to 3D substructures of the same object.
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Figure 3.8: Vertical bin-based 2D feature computation. A selected bin in the XZ projection (top) is highlighted in red, and the
corresponding points in that raster bin are visualised in 3D (bottom).
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Figure 3.9: Horizontal bin-based 2D feature computation. A red-highlighted bin is shown on the XY projection (right), with its
contained points visualised in the 3D view (left).

Each raster bin with at least three points is analysed independently. For a bin containing N points with
projected coordinates (ai, bi), the centroid is computed by Equation 3.2. The 2D coordinates c2D are
then centralised by subtracting the mean by Equation 3.3.

The 2D covariance matrix C2D ∈ R2×2 is then calculated using Equation 3.4. This matrix describes
the spatial distribution of points in the bin. The eigenvalues λ1,2D ≥ λ2,2D of C2D are then obtained by
solving the characteristic equation same as equation 3.5. The sum of the eigenvalue can be computed
by

∑
λ2D = λ1,2D + λ2,2D, and the eigenvalue ratio can be computed by:

Rλ 2D =
λ2,2D

λ1,2D
(3.9)

A value ofRλ 2D close to zero indicates a linear structure, while a value near one suggests amore planar
spread. For the projection on the horizontal plane, Rλ 2D gives a measure of planarity against linearity
within the bin, while for the projection on the vertical plane, Rλ 2D indicates the vertical structure.

In addition to shape, both horizontal and vertical structural variations are analysed from the projected
bins. For each bin in the XY projection (horizontal plane Phor) and XZ projection (vertical plane Pver),
the maximum value range and the standard deviation of the value are computed by:

• Maximum value range: ∆z = max(h)−min(h)

• Standard deviation: σz = std(h)

where h represents the height values to the projection direction: in Phor, height is z; in Pver, height corre-
sponds to y. These features reflect the spatial variability of the object in both the vertical and horizontal
directions. For example, in the horizontal projection, ∆z and σz describe how much height variation
occurs across the footprint of the object (e.g., bulldozer blade vs. body). In the vertical projection, these
features highlight the vertical distribution of components, such as elevated arms or tracks.

Only bins with three or more points are used in feature computation to ensure statistical stability. These
bin-wise features are later aggregated at the object level as described in the section below.

3.3.4. Data aggregation
After computing 3D and 2D features for each point or each raster bin as described in the previous
sections, the resulting features can then be aggregated at the object level. Since each object consists
of a varying number of points and raster bins, directly using the raw point-wise or bin-wise features
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would lead to inconsistencies and dimensional mismatches across samples. As a result, statistical
aggregation is performed, condensing various point-based features into fixed-size summaries. This
enables robust characterisation, and the object-based representation can then be used as input for
subsequent classification.

Specifically, for each feature, the following statistical descriptors are computed:

• Mean
• Standard deviation
• Minimum value
• Maximum value

These four descriptors help to capture a comprehensive summary of each feature’s distribution across
the object. The mean provides the central tendency, while the standard deviation reflects the spread
and variability of the values. The minimum and maximum values indicate the range.

Together, these aggregated statistics provide a consistent and reliable representation of the object’s
features, regardless of its size or point density. They are applied across both point-based 3D features
and bin-based 2D features.

3.3.5. Global features
While 2D features are computed at the bin level and describe local structural variations, global fea-
tures are derived from the entire object point cloud. These features provide coarse-scale geometric
information that complements the finer, localised features.

In this study, two global geometric features are extracted:

• Global vertical extent∆Z: the height range of the object, defined as the difference between the
maximum and minimum z-coordinates of all points.

• Global horizontal extent ∆X: the length along the scanner-facing direction, defined as the
difference between the maximum and minimum x-coordinates.

These descriptors provide an overall approximation of the object’s vertical and horizontal dimensions.
By capturing coarse geometric proportions, these global features complement the more detailed local
descriptors derived from 3D and 2D analyses.

3.3.6. Standardization
With all features computed and processed into object-based data, they are standardised using z-score
normalisation, which transforms each feature to have zero mean and unit variance, ensuring that fea-
tures with larger numerical ranges do not dominate those with smaller ranges. This is particularly
important for both distance-based methods, such as k-nearest neighbours (k-NN) and margin-based
methods such as support vector machines (SVM), both of which are sensitive to the relative scales of
the input features.

The z-score normalization of a feature value xi is computed as:

zi =
xi − µ

σ
(3.10)

where µ is the mean of the feature values across the training set, and σ is the corresponding standard
deviation. By normalising the features in this way, the following classification process becomes more
stable and effective, allowing the classifiers to better exploit the geometry of the feature space.

3.4. Classification
With all features computed and standardised, the dataset is now prepared for object classification. Each
segmented object is stored in an individual LAS file, and is represented as a single-row feature vector
composed of the following elements:

• Aggregated and standardised 3D structure features



3.4. Classification 18

• Aggregated and standardised 2D features from both XY and XZ projections
• Standardised global geometric descriptors
• Metadata: file name and object label

Before training, feature selection is performed using a group-based methodology where geometrically
related features are treated as cohesive units to maintain semantic meaning during selection. Only
features that demonstrate clear class-separability and can generate optimal results are used for training.
The details of this selection process are presented in the following Chapter 4.2.

Two supervisedmachine learning classifiers are used in this study: k-nearest neighbours (k-NN)(Lalonde
et al., 2006) and support vector machines (SVM)(Hearst et al., 1998). The decision to train these two
specific classifiers is based on the previous study by Weinmann et al., 2013 as introduced in Chapter
2.1. Their results indicated that both SVM and k-NN achieved consistently high classification accuracy
when using carefully selected features, particularly those derived from eigenvalue-based geometry and
2D projections. Thus, this study chose to train the two classifiers in order to compare and obtain the
optimal results.

3.4.1. K-NN
The k-NN classifier selects the k number of nearest samples in the training data for each feature vector
and classifies it according to the majority vote of their class labels. This classifier uses Euclidean
distance in the standardised feature space for neighbour selection, which is expressed as

D(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn − qn)2 (3.11)

where p and q are subjects with n characteristics (Z. Zhang, 2016).

It is a non-parametric method, which does not assume any distribution of the data. This makes it flexible
in capturing complex decision boundaries, which is beneficial for distinguishing the large objects for this
study.

In order to ensure the performance of the k-NN algorithm, it is crucial to carefully determine the value of
k. A large k reduces randomerror impacts, but might ignore smaller but important information. However,
a small k may result in insufficient information to represent the feature, and result in under-fitting.

This study defines the value for k through cross-validation and the elbow analysis. The detail is pre-
sented in the following Chapter.

3.4.2. SVM
The SVM classifier is also used in this study to compare with the k-NN classifier to explore how different
algorithms perform in classifying bulldozers and other large objects on the sandy beach. The SVM
classifies data by finding an optimal hyperplane that maximises the distance between all classes in
their respective dimensional spaces. It is effective in high-dimensional spaces and can have non-linear
decision boundaries by utilising kernel functions (Platt et al., 1999). These advantages make the SVM
an ideal approach to classify the dataset for this study, considering a large number of features are
computed to characterise different types of objects.

There are four commonly used kernels for SVM: Linear, Polynomial, Radial Basis Function (RBF), and
Sigmoid. An illustration of how the different kernels behave for the same test dataset is shown in Figure
3.10. As the object features for this study have very diverse characteristics, this study uses the Radial
Basis Function (RBF) kernel, which allows the model to capture complex relationships between the
aggregated object-level features.

Despite kernels, the performance of the SVMmodel also depends on the tuning of key hyperparameters.
The regularisation parameter C and the kernel coefficient γ are the critical parameters for the RBF
kernel. Both of them control the trade-off between model complexity and generalisation.
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Figure 3.10: Illustrations of the behaviour of different kernels on a simplified binary classification dataset that is not linearly
separable. (Pedregosa et al., 2012)

The regularisation parameter C governs the balance between achieving a low training error and main-
taining a smooth decision boundary. A small value of C allows more slack and encourages a wider
margin, potentially leading to underfitting. Conversely, a large C penalises misclassifications more
heavily and may lead to a narrower margin and overfitting.

The kernel coefficient γ defines the influence of individual data points in the RBF kernel function. A small
γ implies a broad similarity influence, leading to smoother decision boundaries. A large γ limits influence
on nearby points, allowing more flexibility and complex decision regions. However, excessively large
γ can lead to overfitting the training data, especially in noisy environments.

This study determines the values for the regularisation parameter C and the kernel coefficient γ through
cross-validation and the grid search tests. Further details are presented in the next chapter.



4
Experimental Results

This chapter presents the experimental results of the proposed object classification workflow. It begins
by showing the classification performance on the training dataset using the optimally configured model
in Section 4.1. The first section also includes the process of tuning classifier hyperparameters for k-
nearest neighbours (k-NN) and support vector machines (SVM), which are adjusted to achieve the best
classification accuracy.

Next, Section 4.2 focuses on feature analysis. Here, the effectiveness of each computed feature —
including 3D, 2D, and global descriptors—is evaluated to identify the most informative ones. Based on
this analysis, a reduced set of features is selected for classifier training, balancing model performance
and complexity, which are used for the optical classification performance.

Finally, Section 4.3 assesses the generalisability of the trained model to unseen data and explores the
potential for complete automation of the workflow. It evaluates the trained classifier on an independent
validation dataset. Unlike the training data, which are manually segmented, the validation data are
extracted using an automated clustering algorithm.

4.1. Training results
Two supervised classification models are trained using the selected features: a k-nearest neighbours
(k-NN) classifier and a support vector machine (SVM). Both models are trained and evaluated on the
same dataset to enable a direct performance comparison.

The dataset consists of labelled LAS files, each representing a single object instance. The object
classes are: ’large bulldozer’ (label 0), ’other bulldozer’ (label 1), ’tractor-trailer’ (label 2), and ’other’
(label 3). The dataset is split into training and testing subsets using a 7:3 ratio.

k-NN
k-NN is a supervised machine learning algorithm that selects the k nearest samples in the training data
to vote for the class labels. Its detailed mechanics are described in the previous Section 3.4.1. The
final k-NN model achieves an accuracy of 92.5% on the test set. Table 4.1 summarises the classifier
performance on the test dataset. The confusion matrix is shown in Figure B.8 in the Appendix. The
classifier performs strongly across all classes, with perfect precision and recall for the ’large bulldozer’
class, and high scores for ’other bulldozer’ and ’others’. Slightly lower performance for the ’tractor-
trailer’ class may be due to structural similarities with other object types. Nevertheless, macro and
weighted F1-scores indicate balanced classification across classes.

20
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Table 4.1: Classification performance of the final k-NN classifier on the test set

Class Precision Recall F1-score Support

0 (Large bulldozer) 1.000 1.000 1.000 3

1 (Other bulldozer) 1.000 0.923 0.960 13

2 (Tractor-trailer) 0.833 0.833 0.833 6

3 (Others) 0.895 0.944 0.919 18

Overall Accuracy 0.925

Macro Average 0.932 0.925 0.928 40

Weighted Average 0.928 0.925 0.926 40

To tune the model, the optimal value of k is determined using the elbow method. This method analyses
the graph of accuracy against k and helps identify the optimal point for training. As shown in Figure 4.1,
the model achieves its highest accuracy of 92.5% at k = 7, after which performance gradually declines
due to increasing smoothing effects.

Figure 4.1: Elbow method for selecting the optimal number of neighbours (k) in k-NN. Classification accuracy is evaluated
across a range of k values. The highest accuracy is observed at k = 7, marked by the red vertical dashed line.

SVM
Support Vector Machine (SVM) is also a supervised machine learning algorithm. However, unlike k-
NN, which relies on neighbouring votes, the SVM computes a hyperplane that maximises the distance
between all classes.

The final SVM model achieves an overall accuracy of 85.0% on the test set. The confusion matrix
is shown in Figure B.9 in the Appendix. Table 4.2 summarises the class-level performance. SVM
performs well on ’large bulldozer’ and ’tractor-trailer’ categories, but shows slightly lower recall for
’other bulldozer’ (0.769), indicating some misclassification. The overall macro and weighted averages
are sufficient to reflect a reasonable balance.
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Table 4.2: Classification performance of the SVM classifier on the test set

Class Precision Recall F1-score Support

0 (Large bulldozer) 1.000 1.000 1.000 3

1 (Other bulldozer) 0.833 0.769 0.800 13

2 (Tractor-trailer) 1.000 0.833 0.909 6

3 (Other objects) 0.800 0.889 0.842 18

Overall Accuracy 0.850

Macro Average 0.908 0.873 0.888 40

Weighted Average 0.856 0.850 0.850 40

As mentioned in Section 3.4.2, the SVM model is trained using the radial basis function (RBF) kernel,
which is suitable for non-linear separation in complex feature spaces. At the same time, the grid search
approach is performed to help define the optimal value for the regularisation parameter C and the
kernel coefficient γ. Grid search tests combinations of the selected parameter values and evaluates
the resulting performance using cross-validation. This ensures that the selected parameters generalise
well to unseen data. The obtained best-performing parameter set is C = 10.0 and γ = 0.01, which are
then used in the final model evaluation.

4.2. Feature evaluations
Following the methodology introduced in Sections 3.3.2 and 3.3.3, this section evaluates the full set
of 3D and 2D features derived from the pre-processed object-based point clouds. All features are
aggregated and standardised before analysis, enabling consistent comparison across object instances.

Section 4.2.1 presents the results for the point-wise 3D features across the four defined object classes:
’large bulldozer’, ’other bulldozer’, ’tractor-trailer’, and ’other’. Section 4.2.2 then focuses on the evalua-
tion of raster-based 2D features and global descriptors, while Section 4.2.3 evaluates the effectiveness
of the global features. For each feature group, its discriminative ability is analysed. This evaluation
helps in the selection of features for training the classifiers for the optimal output. The most informative
features, along with their final configuration parameters, are analysed systematically and summarised
in Section 4.2.4.

4.2.1. 3D features
The 3D features for each object are computed as described in Section 3.3.2, aggregated and standard-
ised using z-score normalisation to ensure fair comparison and representation for classification.

Figure 4.2 and Figure 4.3 present the standardised mean values of 3D features for the four object
classes: ’large bulldozer’, ’other bulldozer’, ’tractor-trailer’, and ’other’. The top rows show example
point clouds for each category, and the bottom box plots illustrate the distribution of standardised feature
means for all samples in each category.

As shown in Figure 4.2(a), the Linearity (Lλ) feature displays a strong inter-class variation. ’Other
bulldozer’ objects display significantly higher linearity values, suggesting more elongated forms, while
’large bulldozer’ shows lower linearity, reflecting a more compact geometry. ’Tractor-trailer’ objects
show intermediate values.

Planarity (Pλ) in subplot (b) is significantly lower in ’other bulldozer’ samples, suggesting less planar
neighbourhood structure. Omnivariance (Oλ) shown in Figure 4.2 (d) is highest for ’large bulldozers’,
implying greater volumetric spread of neighbourhood points, while ’other bulldozers’ have the lowest
values, indicating denser clustering. However, in subplots Figure 4.2(c) and (e), the Sphericity (Sλ) and
Anisotropy (Aλ) show overlap across different categories, making them insufficient to differentiate all
object classes.
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Figure 4.2: Standardized mean values of 3D geometric features for each object category. The top row shows example
point clouds for each category: Large bulldozer, Other bulldozer, Tractor-trailer, and Others. The box plots below show the
distribution of standardised means for the 3D features: (a) Linearity Lλ, (b) Planarity Pλ, (c) Sphericity Sλ, (d) Omnivariance

Oλ, and (e) Anisotropy Aλ.
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In the continued Figure 4.3, Eigenentropy (Eλ) in subplot (f) reflects neighbourhood orientation com-
plexity. ’Large bulldozers’ and ’other’ objects have higher values, while ’other bulldozers’ show the
lowest, suggesting a simpler local structure. In subplots (g) and (h), the Sum of eigenvalues (Σλ) and
the Change of curvature (Cλ) are relatively uniform for all categories, making them less useful to distin-
guish different types of objects. Finally, Verticality (V ) in subplot (i) exhibits strong separation between
object categories, particularly distinguishing ’tractor-trailer’ objects, which show the highest values due
to their horizontally extended shapes and minimal vertical normal components.

Figure 4.3: Standardized mean values of additional 3D features for each object category (continued). The top row
shows example point clouds for each category. The boxplots below show the distribution of standardised means for: (f)

Eigenentropy Eλ, (g) Sum of eigenvalues Σλ, (h) Change of curvature Cλ, and (i) Verticality V .

To complement the mean statistics, similar plots are also made for the aggregated standard deviation
values in Figure B.1 and B.2 in Appendix B). While the mean values discussed above provide infor-
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mation about the feature central tendencies, the standard deviation plot reflects the feature stability
within each object category, which can help to evaluate the consistency and discriminative power of
the features.

From the standard deviation, Features such as Sphericity (Sλ) and Anisotropy (Aλ), which already
show overlapping means between categories, also exhibit relatively high standard deviations across
most object types, confirming their limited classification utility. At the same time, the Sum of Eigenvalues
(Σλ) and Change of Curvature (Cλ) show broad distributions andminimal inter-class separation, limiting
their discriminative power.

On the other hand, Linearity (Lλ) and Verticality (V ) demonstrate low intra-class variance and high inter-
class separation. This suggests that these features are both distinctive and stable, making them strong
candidates for classification. Linearity, in particular, offers the most consistent and distinctive pattern
across object categories, making it the most favourable 3D feature for classification in this study.

The discriminative power of these 3D geometric features is further validated in Section 4.2.4, where 6
out of 9 3D feature groups are retained in the optimal classification model.

4.2.2. 2D features
In addition to the 3D feature evaluation, 2D features are computed to capture structural characteris-
tics that may be overlooked in 3D eigenvalue analysis. Each object point cloud is projected onto two
orthogonal planes to derive complementary geometric views. The XY-plane projection (horizontal) cap-
tures object footprint characteristics, while the XZ-plane projection (vertical) captures side profiles and
height-related features. These multi-view projections allow for a more holistic characterisation of object
types.

Horizontal projection (XY Plane)
2D features extracted from the horizontal projection are shown in Figure 4.4. These include the first
and second eigenvalues (λ1, λ2), eigenvalue ratio (Rλ), eigenvalue sum (Σλ), vertical range within the
bin (∆z), and vertical standard deviation (σz).
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Figure 4.4: Standardized mean values of 2D horizontal features for each object category. Top: example point clouds for
Large bulldozer, Other bulldozer, Tractor-trailer, and Others. Bottom: box plots showing the mean values for (a) first eigenvalue
λ1, (b) second eigenvalue λ2, (c) eigenvalue ratio Rλ, (d) eigenvalue sum Σλ, (e) vertical range ∆z, and (f) vertical standard

deviation σz , all derived from the XY projection.
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Among these features, the vertical range (∆z) and standard deviation (σz) in subplots (e) and (f) show
significant separation between ’tractor-trailer’ and other categories, particularly distinguishing them
from ’other bulldozer’ and ’other’ objects. These two features capture vertical complexity, and they
demonstrate their ability to differentiate complex and flat objects for the horizontal 2D features. In con-
trast, the first eigenvalue (λ1) in subplot, eigenvalue ratio (Rλ), and eigenvalue sum (Σλ) shown in
subplots (a), (c), and (d) show a mix of distribution, making them less ideal for feature analysis.

To evaluate consistency, the corresponding standard deviations of these features are shown in Ap-
pendix B FigureB.6. Features that are both discriminative and stable across samples, especially ∆z
are especially useful for classification.

Vertical projection
Figure 4.5 presents the standardised mean values of vertical 2D features, extracted from projection
onto the XZ-plane. These include λ1, λ2, Rλ, Σλ, and horizontal analogues of range (∆z) and standard
deviation (σz), capturing variability along the Y-axis.

Several features demonstrate clear inter-class discrimination. The first eigenvalue (λ1) in (a) distin-
guishes ’large bulldozer’ and ’tractor-trailer’ from other types, reflecting their broad vertical extent. The
eigenvalue ratio (Rλ) in (c) shows separation between ’large bulldozer’ and ’other bulldozer’, likely
due to differences in side-profile uniformity. Horizontal range and standard deviation in (e) and (f) are
particularly effective for identifying ’tractor-trailer’ objects.

Similar to the horizontal projection, the standard deviation plots for these vertical features are shown
in Appendix B, Figure B.7. Features such as ∆z and Rλ also demonstrate low variance within certain
categories, suggesting they are both distinctive and reliable for classification.
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Figure 4.5: Standardized mean values of 2D vertical features for each object category. Top: example point clouds for
Large bulldozer, Other bulldozer, Tractor-trailer, and Other objects. Bottom: box plots showing the mean values for (a) λ1, (b)

λ2, (c) eigenvalue ratio Rλ, (d) eigenvalue sum Σλ, (e) horizontal range ∆z, and (f) horizontal standard deviation σz , all
derived from the XZ projection.
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Bin size evaluation
An important consideration in 2D feature extraction is the choice of bin size used for rasterisation.
Smaller bins allow for higher spatial resolution and finer detail, but also increase the likelihood of sparse
bins containing too few points to compute reliable features. In this study, any bin containing fewer than
three points is excluded from feature computation to ensure the reliability of the feature computations.

The bin size used in the previous section is determined through assessing the effect of bin size on
spatial coverage. Figure 4.6 and Figure 4.7 show the percentage of valid bins (those meeting the
minimum point threshold) for different bin sizes in XY and XZ projections, respectively.

Figure 4.6: Percentage of valid horizontal bins (XY projection) for different bin sizes across object categories. The final bin
size used for classification is marked by the black dashed line. Bins with fewer than three points are excluded.

Figure 4.7: Percentage of valid vertical bins (XZ projection) for different bin sizes across object categories. The final bin size
used for classification is marked by the black dashed line. Bins with fewer than three points are excluded.

As shown in the figures, the percentage of valid bins increases with the bin size. However, it is important
to note that an excessively large bin size also reduces the spatial resolution and may smooth out
or generalise the intricate details of the objects. As a result, a balance must be struck between bin
coverage and information retention.
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After evaluating the trade-off and performing comparative analysis on the classification results, a bin
size of 0.75 is selected for the horizontal projection and 0.4 for the vertical projection. These values
provide a good compromise: they yield a high percentage of valid bins across most object classes,
while still retaining meaningful structural variation at a local scale. The use of these bin sizes also
contributed to improving the classification performance during model training, suggesting that they
successfully capture representative and discriminative object features.

While a fixed bin size provided a suitable balance between bin coverage and information retention for
this study, adaptive binning methods can be explored further in future works, where grid resolution
is dynamically adjusted based on local point density or object scale, potentially enhancing feature
resolution for objects of varying sizes and distances from the scanner.

4.2.3. Global descriptor
In addition to local 2D raster features, two global descriptors are computed for each object: the global
vertical extent (∆Z) and the global horizontal extent (∆X). These values represent the full height and
width of the object, respectively. Figure 4.8 presents the standardised distributions of ∆Z and ∆X for
each category.

Figure 4.8: Standardised global extent features for each object category. (a) Vertical extent ∆Z, calculated as the range
of z values in the point cloud. (b) Horizontal extent ∆X, calculated as the range of x values.
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As shown in Figure 4.8(a), the vertical extent ∆Z exhibits a wider distribution for the ’other’ category.
This variability arises from the heterogeneous nature of objects in this group, which includes items with
diverse shapes and structural characteristics. In contrast, the ’large bulldozer’, ’other bulldozer’, and
’tractor-trailer’ categories show more compact and consistent vertical profiles, resulting in smaller and
more tightly clustered ∆Z values.

The horizontal extent ∆X, shown in Figure 4.8(b), is particularly effective at identifying ’tractor-trailer’
objects. Their extended rear trailers and various viewing angles lead to significantly larger horizontal
spans compared to the other categories. While these global features do not capture fine structural de-
tails, they provide rough scale information about object size and proportions, which can also contribute
to object classification.

4.2.4. Key parameters
The key parameters used for feature extraction and rasterisation are derived from the preceding feature
evaluation sections. These settings are selected to ensure a balance between capturing relevant local
geometry and maintaining statistical robustness across object instances. Table 4.3 summarises the
final parameter values used for all subsequent classification experiments.

Table 4.3: Key parameters used for feature extraction and classification

Parameter Setting Value

3D features Spherical neighbourhood radius 0.2 m

2D features
Bin size (XY projection) 0.75 m

Bin size (XZ projection) 0.4 m

Using these parameters, a comprehensive set of 3D geometric, 2D projection-based, and global fea-
tures is extracted. To achieve optimal classification performance as shown in Section 4.1, a structured
feature selection process is employed to identify the most discriminative subsets of these features.

Rather than evaluating each of the 86 individual features independently, features sharing a common
geometric interpretation are grouped together for selection. Each feature group includes the four ag-
gregated descriptors (mean, standard deviation, minimum, and maximum) derived from one feature
type. This grouping ensures that structurally related statistics are retained or removed as a coherent
unit. In total, 23 feature groups are defined:

• 3D geometric features (9 groups): Linearity, Planarity, Sphericity, Omnivariance, Anisotropy,
Eigenentropy, Sum of eigenvalues, Curvature, Verticality

• 2D projection features (12 groups): Six feature types (λ1, λ2, Rλ, Σλ, ∆z, σz) extracted from
both XY and XZ plane projections

• Global descriptors (2 groups): Vertical extent (∆Z) and horizontal extent (∆X)

Two selection strategies are applied using a k-NN classifier with k = 7: forward selection and back-
wards elimination. Results are visualised in Figure 4.9.

Forward Selection: Starting from an empty feature set, forward selection iteratively adds the feature
group that provides the greatest improvement in classification accuracy. This method helps to identify
the most effective feature combination, achieving 90.0% accuracy with only 5 feature groups (20 indi-
vidual features) as shown in Figure 4.9(left). The progression revealed that 3D Eigenentropy (Eλ) is
the most discriminative initial feature, followed by 2D XY plane height variability (σz), 3D Omnivariance
(Oλ), 3D Verticality (Vλ), and 3D Sphericity (Sλ).

Backward Elimination: Beginning with all 23 feature groups, backwards elimination systematically
removed the groups with the least contribution to the classifier’s performance. This approach achieves
the highest accuracy of 92.5% with 18 feature groups as shown in Figure 4.9(middle). This method
reflects the balance between comprehensive feature representation and optimal performance. The
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method eliminates 5 groups: 2D XY second eigenvalue (λ2(XY )), 3D Planarity (Pλ), 2D XY eigenvalue
sum (Σλ(XY )), and 3D Sum (Σλ).

Figure 4.9: Comparison of forward selection and backwards elimination for feature group selection. Left: Forward selection
performance: classification accuracy increases steadily with each added feature group, reaching 90.0% with only 5 groups.
Middle: Backwards elimination performance: highest accuracy of 92.5% is achieved when 5 out of 23 feature groups are

removed. Right: Comparative performance of both methods shows that forward selection yields an efficient 5-group feature
subset with minimal complexity, while backwards elimination retains broader feature coverage and achieves maximum

classification accuracy.

Performance Comparison

As shown in Figure 4.9(right), forward selection has rapid performance convergence with minimal fea-
ture usage. In contrast, backwards elimination provides slightly better accuracy by maintaining a more
comprehensive feature set. This trade-off reflects the balance between efficiency and completeness.

Figure 4.10: Overview of feature importance ranking, with higher scores indicating greater contribution to classification
accuracy. Each bar represents a feature group, coloured by feature type.
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As the backwards elimination has a higher accuracy, further analysis is performed for the optimal back-
wards elimination result, and it provides more insight into the classification performance. Figure 4.10
presents the relative importance of each retained feature group.

The top-ranked features include six 3D descriptors, indicating that the 3D shape remains critical to
object classification. Additionally, 10 2D feature groups from both XY and XZ projections are retained,
highlighting the relevance and importance of both vertical and horizontal information. Global descriptors
(∆Z, ∆X) are also kept, confirming that rough object dimensions help distinguish categories.

Features that are eliminated suggest these properties are less discriminative for bulldozer classification.
This generally aligns with the feature evaluations in the previous section, such as the 3D Planarity(Pλ),
Sum of 3D eigenvectors (Σλ), and Sum of 2D eigenvectors on XY projection (Σλ(XY )).

However, one unexpected instance is 3D Verticality (Vλ). It previously showed high individual discrimi-
native power, but is excluded during backwards elimination, which is likely due to redundancy with XZ
plane features that contain similar structural information in more detailed forms.

Based on this evaluation, the backwards elimination configuration (92.5% accuracy, 18 feature groups,
66 individual features) is selected as the optimal setup. This combination provides high discrimina-
tive power and comprehensive representation. At the same time, the features remain computationally
manageable while providing thorough characterisation.

Table 4.4 lists the final features used in classifier training.
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Table 4.4: Overview of selected features used for training, grouped by type and aggregation strategy (Final selection: 18
feature groups, 66 individual features)

Aggregation Feature Symbol

3D Features (computed using spherical neighborhood) - 6 groups

Mean, Std, Min, Max

Linearity Lλ

Sphericity Sλ

Omnivariance Oλ

Anisotropy Aλ

Eigenentropy Eλ

Change of curvature Cλ

2D Features - XY Plane Projection - 4 groups

Mean, Std, Min, Max

First eigenvalue λ1(XY )

Eigenvalue ratio Rλ(XY )

Local height range ∆z(XY )

Local height standard deviation σz(XY )

2D Features - XZ Plane Projection - 6 groups

Mean, Std, Min, Max

First eigenvalue λ1(XZ)

Second eigenvalue λ2(XZ)

Eigenvalue ratio Rλ(XZ)

Eigenvalue sum Σλ(XZ)

Local height range ∆z(XZ)

Local height standard deviation σz(XZ)

Global Descriptors - 2 groups

None Object height (Z-range) ∆Z

None Object length (X-range) ∆X

4.3. Generalisation
To evaluate the generalizability and automation capability of the proposed classification framework,
the trained classifiers are applied to a new validation dataset. This dataset consists of automatically
segmented point clouds of dynamic objects, acquired using the same terrestrial laser scanner (TLS)
in Noordwijk, the Netherlands. The segmentation is performed using an existing method developed
by Mark, which detects dynamic objects from multitemporal TLS data (Geeraerts, 2025). The result-
ing segments include bulldozers and other large vehicles, which fall under the scope of the classifier
developed in this study.

Initial pre-processing removes small clusters that do not represent significant objects. For this valida-
tion, large objects are defined as those exceeding 2.1 meters in height and containing more than 50
points. The filter in the height dimension ensures that the objects are within the dimensional range of
interest, as analysed and demonstrated in Table 3.1. The limit in point numbers ensures that sufficient
spatial information is captured for classification. The horizontal extent is left unconstrained due to the
variability introduced by different viewing angles.
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The remaining large object segments are processed through the same feature extraction pipeline. After
standardisation, the features are input into the previously trained classifiers to predict object labels.
The parameters used for feature extraction and classifier training are all the same as those used for
the previous workflow.

The validation is conducted on one week of TLS data from the same location in Noordwijk, resulting
in 625 initial clusters, from which 44 valid large object segments are extracted. This evaluation not
only tests the generalizability of the classifiers to unseen data but also demonstrates the potential of
integrating the framework with Mark’s segmentation method to achieve a fully automated detection and
classification workflow.

k-NN
The point cloud segments are classified into four predefined categories using the trained k-NN classifier.
Representative classification outcomes are illustrated in Figure 4.11.

Figure 4.11: Examples of classified point clouds by k-NN classifier with their labels.

Classification performance is assessed via visual inspection, and the results are summarised in Ta-
ble 4.5. The respective confusion matrix is shown in Figure B.10 in the Appendix.



4.3. Generalisation 36

Table 4.5: Validation performance of the k-NN classifier on the validation dataset

Class Precision Recall F1-score Support

0 (Large bulldozer) 0.692 1.000 0.818 9

1 (Other bulldozer) 1.000 1.000 1.000 13

2 (Tractor-trailer) 1.000 1.000 1.000 2

3 (Other objects) 1.000 0.800 0.889 20

Overall Accuracy 0.909

Macro Average 0.923 0.950 0.927 44

Weighted Average 0.937 0.909 0.912 44

The k-NN classifier achieves an overall accuracy of 90.9% on the validation set. It demonstrates ex-
cellent performance on the ’Other bulldozer’ and ’Tractor-trailer’ classes, achieving perfect precision,
recall, and F1-scores. The model also performs well on the ’Other objects’ class, although it exhibits
slightly reduced recall (0.800), indicating a few instances were misclassified. Despite this, the weighted
average metrics remain high, reflecting the classifier’s robustness under real-world conditions with im-
balanced class distributions.

These results confirm that the k-NN model has strong generalisation ability when applied to different
datasets.

SVM
The segmented point clouds are also classified using the trained Support Vector Machine (SVM) clas-
sifier. Representative classification examples for each object class are shown in Figure 4.12. The
classification performance of the SVM model on the validation dataset is summarised in Table 4.6. The
respective confusion matrix is shown in Figure B.11 in the Appendix.

Table 4.6: Validation performance of the SVM classifier on the validation dataset

Class Precision Recall F1-score Support

0 (Large bulldozer) 0.00 0.00 0.00 9

1 (Other bulldozer) 0.733 0.846 0.786 13

2 (Tractor-trailer) 0.00 0.00 0.00 2

3 (Other objects) 0.621 0.900 0.735 20

Overall Accuracy 0.659

Macro Average 0.339 0.437 0.380 44

Weighted Average 0.499 0.659 0.566 44

The SVM classifier achieves an overall accuracy of 65.9% on the external validation set. While it
performsmoderately well on the ’Other bulldozer’ and ’Other objects’ classes, it fails to correctly classify
any instances of the ’Large bulldozer’ or ’Tractor-trailer’ classes. These misclassifications highlight the
model’s sensitivity to class imbalance and reduced generalizability to unseen samples.

Compared to the k-NN classifier, the SVM demonstrates limited robustness on real-world validation
data. Its inability to detect large bulldozers suggests that it may not generalise well to external datasets,
particularly when class distributions differ from the training set.
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Figure 4.12: Examples of classified point clouds by SM classifier with their labels.



5
Discussion

This chapter provides a discussion on the classification framework developed in this study and evalu-
ates the effectiveness of the framework in answering the research questions. First, the data quality is
examined in Section 5.1, introducing different factors that may have affected feature extraction. The
features that are computed are discussed in Section 5.2. Then, the parameters used in this study
are discussed for their tuning techniques in Section 5.3. Next, the classification process is discussed
in Section 5.4. The following Section 5.5 focuses on validation, which is the generalizability of the
classifiers. Finally, Section 5.6 concludes the chapter with a discussion on future work.

5.1. Challenges in Real-World TLS Monitoring
The use of active remote sensing provides a dense and consistent spatio-temporal dataset, allowing
for effective detection and classification of bulldozers and other large vehicles. While the TLS system
is largely unaffected by daylight and general weather conditions, certain environmental and operational
factors can still influence point cloud quality.

During extreme weather conditions, the point cloud quality may be affected. Salt and pepper noises
are present on days with heavy precipitation. However, this noise tends to be sparse and is typically
filtered out during the pre-processing step. As the classification relies on object-level features derived
from dense point clusters, minor noise does not significantly degrade the overall performance.

Data occlusion
However, obstructions within the scan area can have an impact on the data quality. The scan area
includes a building in the central area, and it may partially or completely occlude vehicles working
behind it. Figure 5.1 illustrates such a case, where a bulldozer is partially visible due to occlusion. This
poses challenges for segmentation and feature extraction, and may lead to misclassifications of the
object.

In this study, to ensure training data remains representative and reliable, such obstructed objects are
excluded from classifier training. Their partial point clouds may lack sufficient features to distinguish
object classes and would likely introduce noise and confusion into the model. As a result, the trained
classifiers are primarily designed to classify fully visible instances of large bulldozers, other bulldozers,
and tractor-trailers. In cases where an object is significantly occluded, it is more likely to be classified
as other object, as also observed during validation in Chapter 4.3. However, if the occlusion is minor
and they contain enough geometric information, the classifier may still successfully assign a correct
label.

For the example shown in Figure 5.1, the k-NN classifier classifies it as a ’large bulldozer’, and the
SVM classifier classifies it as ’other’. The difference may be attributed to the different performance of
the two classifiers. However, it can be concluded that the k-NN classifier can still classify the features
of such large bulldozer with limited data. For SVM, the occlusion is considered large, and makes it fail
to assign it to the corresponding label.

38
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Figure 5.1: Example of an obstructed large bulldozer. (a) Point cloud scene showing a partially obstructed large bulldozer
behind a central building. (b) Zoomed-in view of the same scene, highlighting the reduced visibility of the object due to

occlusion. Point clouds are coloured by amplitudes.

This issue of data occlusion is a well-known challenge in TLS surveys. Standard mitigation strategies
involve merging point clouds from multiple scan stations positioned at different vantage points to create
amore complete composite model (Soma et al., 2020, Heidarimozaffar and Varshosaz, 2016). More ad-
vanced methods involve physics-based or learning-based shape completion algorithms to intelligently
fill in missing data, which can be investigated in future studies.

Scanner-object dynamics
In addition, motion artifacts caused by fast-moving vehicles and laser scanning delay may distort the
shape of objects recorded in the point clouds. As the laser scanner takes several seconds to complete
a scan, motion during this period can lead to distortion in the data.

An example is shown in Figure 5.2, where vehicles in motion appear elongated and blurred, especially
as shown in the top view. Such distortions can result in different geometric features being extracted
and reduce classification accuracy. The point clouds coloured by recorded time in Figure 5.2(c) further
illustrate such an effect, where different segments of the object are scanned at different times during its
movement. In this case, the laser scanner took around 20 seconds to record the whole bulldozer. The
relatively long time can result in the laser scanning the same object at different locations, and distorting
the original shape of the object.

It is also important to note that such distortion tends to affect larger vehicles more prominently, including
large bulldozers and tractor-trailers. The effect is especially noticeable when the object is close to the
scanner, where the higher point density amplifies the change in geometric shape due to motion.
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Figure 5.2: Examples of distorted point clouds due to vehicle motion. (a) Front view, (b) top view, and (c) view of point cloud
colored by recorded time show deformation artifacts introduced by fast-moving objects during scanning.

Correcting such motion-induced distortions is still under active research. One possible method is to
use deep learning models, such as 3D convolutional neural networks, trained to recognise and correct
these specific distortion patterns directly from the point cloud data (Goel and Lohani, 2013). In this
study, to maintain reliability during training, significantly distorted point clouds are excluded from the
dataset. Without consistent geometry, these samples can introduce noise and degrade model perfor-
mance. When encountered in testing or validation, such distorted objects are typically classified as
other objects.

However, point clouds exhibiting only mild distortion or partial deformation are still included in both
training and testing. These cases often arise from subtle movements, such as the motion of a bulldozer
blade, an excavator arm, or distant moving objects during scanning. An example is shown in Figure 5.3,
where an excavator arm shows slight curvature in the top view (c), likely due to its arm moving during
the scan. Despite the local deformation, the overall shape remains intact in the front and side views
(a, b), especially for its wheel and main engine. Thus, the object still provides sufficiently informative
features for classification.
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Figure 5.3: Point cloud of a partially distorted excavator. The point cloud is coloured by amplitude and shown from (a) front
view, (b) side view, and (c) top view. Partial deformation of the arm is visible in (c), while the overall shape remains intact.

Dataset size
In total, 127 object-based point clouds are manually segmented and labelled. These are subsequently
split into training and validation sets using a 7:3 ratio. Although both the k-NN and SVM classifiers used
in this study perform well on small datasets and are scalable to larger datasets (Xu et al., 2023), the
effectiveness of such models is heavily dependent on the representativeness of the training data. In
this case, the limited number of samples may not fully capture the inter-class variability due to factors
such as differing viewing angles. Even for the same object type, variations in scanner perspective can
lead to significant differences in spatial distribution and feature expression. As a result, some feature
patterns may be underrepresented, leading to reduced generalisation performance. Additionally, most
training samples are acquired during the spring and summer months. This introduces a seasonal bias,
potentially omitting features specific to other seasons.

Furthermore, class imbalance exists in the dataset: categories such as ’large bulldozer’ and ’tractor-
trailer’ are underrepresented relative to ’other objects’ and ’other bulldozers’. This imbalance likely re-
sults in the poor performance of the SVM classifier in the generalisation dataset in Section 4.3, where
both of these minority classes are completely misclassified. In contrast, the k-NN classifier is less af-
fected by this imbalance, achieving acceptable performance even for underrepresented classes. This
is likely due to k-NN’s instance-based learning nature, allowing it to make decisions based on local
neighbourhood distributions rather than relying on a global separation boundary like SVM. These ob-
servations suggest the need for a more balanced and diverse dataset to improve classifier robustness
and generalizability.

5.2. Feature analysis
A key objective of this study is to evaluate the effectiveness of different features in characterising bull-
dozers and distinguishing them from other objects for classification. This section discusses the per-
formance of 3D geometric, 2D projection-based, and global features in classification, incorporating
both visual distribution comparison in Section 4.2.1 and 4.2.2 and classifier-based feature selection in
Section 4.2.4.

3D features
The 3D descriptors that quantify local shape complexity, particularly Eigenentropy (Eλ), Omnivariance
(Oλ), and Anisotropy (Aλ), are consistently retained in both forward selection and backwards elimina-
tion. Their strong performance might be a result of their ability to capture multi-directional spread and
complexity, which are characteristic of objects like bulldozers that possess structurally diverse compo-
nents (e.g., blades, cabins, tracks). This aligns with the earlier observation that ’large bulldozers’ show
elevated Oλ and Eλ values, reflecting greater spatial variation.

Interestingly, features such as Planarity (Pλ) and Verticality (V ) that appear to be discriminative in
statistical plots are all removed during backwards elimination. This discrepancy suggests that although
these features offer some class separation, their contributions are likely redundant when considered
with other additional more expressive features, likely from 2D projections. For example, the exclusion
of V is consistent with the finding that vertical profile information is effectively captured by projection-
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based features (e.g., λ1 and Rλ in the XZ plane), making V less critical in a joint feature set.

At the same time, Sphericity (Sλ) shows conflicting results: it contributes to improved accuracy during
early forward selection but is removed by backwards elimination. This indicates that Sλ may help
distinguish simpler objects (as seen in the lower variance among ’other’ classes), but becomes less
informative when higher-order descriptors or 2D features are included.

2D features
The 2D projection features, especially from the XZ plane, act as important components in the final
classification model. Features like λ1(XZ), Rλ(XZ), and horizontal range (∆z(XZ)) capture vertical
structure and side profile geometry. This information is particularly effective in identifying elongated
objects like tractor-trailers and differentiating them from other compact bulldozers, which is consistent
with their clear inter-class separation seen in the mean value plots.

From the XY projection, the vertical standard deviation (σz(XY )) and vertical range (∆z(XY )) are the
top few features in forward selection and are also retained in the final model. These features also show
low intra-class variance, indicating high reliability across samples.

Conversely, eigenvalue sum (Σλ) and second eigenvalue (λ2) in the XY plane are removed early, con-
sistent with their broad distributions and poor separation observed in statistical analysis. These features
likely suffer from redundancy with stronger descriptors like eigenvalue ratios or entropy-based features,
which are more robust to noise and variation.

Global features
Both global extent features (∆Z and ∆X) are retained in the optimal backwards elimination result. Al-
though they only provide the coarse dimension information, these features are especially effective in
distinguishing long tractor-trailers from more compact bulldozers. Their simplicity and low computa-
tional cost also make them practical features to be computed.

The combination of distribution-based and classifier-based evaluations reveals that both inter-class
separability and external-class stability are essential for effective features. Features like Linearity (Lλ),
σz(XY), and Rλ(XZ) not only show consistent mean differences across classes but also exhibit low
internal-class variance. This dual quality likely explains their strong classification performance and
consistent retention during selection.

5.3. Parameter configuration
In order to compute the features and conduct classifier training, their respective parameters need to be
carefully determined first.

Feature evaluation
For feature evaluation, the parameters used in this work are given in Table 4.3.

The 3D neighbourhoods are defined by spherical neighbours. This approach ensures that consistent
information can be subtracted despite the changing point cloud density. However, a smaller radius
may fail to capture sufficient information, especially in areas with sparse points, such as the edge of
the vehicles that are not facing towards the laser scanner. Conversely, a larger radius may smooth out
the local variations. As the large objects that are considered in this classification all have sophisticated
geometric features, it is important to select a radius that can adequately capture the important infor-
mation. Through empirical testing, 0.2 m is found to balance local detail and feature stability across
varying point densities.

The 2D bin size controls the resolution for projecting 3D point clouds onto 2D grids. Using a small
bin size can lead to many empty or unrepresentative bins, reducing the reliability of the calculated
statistics. In contrast, a large bin size may aggregate unrelated features and obscure meaningful local
structure. In order to determine optimal values, a bin efficiency analysis is performed to evaluate how
many bins contain enough points for meaningful feature calculation. Based on this analysis, the XY-
plane projection used a bin size of 0.75 m, and the XZ-plane projection used a bin size of 0.4 m. These
values ensured sufficient bin coverage while preserving important structural characteristics. However,
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such an approach still has certain limitations. As the angle that the object is facing the laser scanner
varies, the projection on the vertical XZ axis may not be consistent for the same type of object, given
a static bin size. As a result, future improvements may involve adaptive binning methods based on
object size or density to further improve feature resolution.

Classifier training
For the classifiers, different parameters are used for k-NN and SVM algorithms, and each of them is
determined through various analysis methods in order to produce optimal performance.

The k value in the k-nearest neighbours (k-NN) classifier determines how many nearby samples vote
when assigning a class label. Optimising the k value is critical in enhancing the k-NN model perfor-
mance in classification. A smaller k may result in overfitting and sensitivity to noise, while a larger k
smooths the decision boundary but may overlook local distinctions. To identify the best value, an elbow
method analysis is performed. The elbow analysis is a widely used method to determine the optimal
value of k by testing classification accuracy across a range of k values (Maulana and Roestam, 2024).
The accuracy peaked at k = 7, which is therefore chosen as the optimal setting for this study, providing
a strong balance between robustness and flexibility.

The support vector machine (SVM) classifier used a radial basis function (RBF) kernel due to its ability
to capture non-linear relationships in the feature space. Two critical hyperparameters influence model
performance: the regularisation parameter C and the kernel coefficient γ. The parameter C controls
the trade-off between maximising the margin and minimising classification error. A smaller C allows for
more misclassification to preserve a wider margin, while a larger C forces stricter separation, potentially
causing overfitting. The γ parameter defines the influence of each training sample: a low γ value results
in broader, smoother decision regions and vice versa.

To determine optimal values for C and γ, a grid search is conducted using GridSearchCV, which evalu-
ates combinations of parameter values with cross-validation to identify the best-performing configura-
tion. The search yielded C = 10.0 and γ = 0.01 as the optimal parameters. These values provided a
well-balanced model, although the classification performance still strongly depended on the represen-
tativeness and diversity of the training data.

5.4. Classification
Both classifiers demonstrate certain limitations in classifying objects. The k-NN classifier misclassified
three objects, and the SVM classifier misclassified six. Among these misclassified point clouds, two of
them are consistently misclassified by both classifiers.

The first consistently misclassified object is a bulldozer, as shown in Figure 5.4. It is captured with
a viewing angle almost from the front and exhibits unique geometry with a smaller bulldozer blade
and asymmetric wheel sizes. This type of unique appearance has very limited representation in the
training dataset, and results in both classifiers classifying it as ’other’. This suggests a limitation in
model generalisation when encountering rare or structurally different object types not previously seen
in the training data.
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Figure 5.4: Misclassified other bulldozer example. Point clouds are coloured by amplitudes. Both k-NN and SVM classified it
as ’other’.

Another constantly misclassified case is a tractor-trailer, as shown in Figure 5.5. As seen from the fig-
ure, it is well captured in the scan and structurally intact. Despite this, both classifiers incorrectly label
it as ’other’. Given its clarity and shape, the expectation would be for it to be correctly identified as a
tractor-trailer. The consistent misclassification across models may suggest either a lack of sufficiently
diverse tractor-trailer samples in the training data or subtle feature overlap with the other object cate-
gory. Further investigation into the extracted feature vectors of this object is needed to determine the
underlying cause.

Figure 5.5: Misclassified tractor-trailer. Point clouds are coloured by amplitudes. Both k-NN and SVM classified it as ’other’.

k-NN
Another misclassified object by the k-NN classifier is shown in Figure 5.6. This object likely represents a
detached component from a tractor-trailer, such as a trailer or carriage segment. However, the classifier
assigns it directly to the tractor-trailer category, even though it does not include key structural elements
of a complete tractor-trailer machine.

This misclassification may be attributed to two main reasons. First, the object’s spatial features closely
resemble parts of a tractor-trailer, resulting in feature values that overlap significantly with those in the
tractor-trailer training set. Secondly, due to the nature of the k-NN algorithm, which relies on majority
voting among nearest neighbours, there may be a bias if most neighbouring samples belong to the
tractor-trailer class. This could occur because the tractor-trailer samples in the training set are densely
clustered in feature space, while the other object category includes a diverse set of instances, leading
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to a diluted and less representative distribution.

Figure 5.6: Misclassified other object. Point clouds are coloured by amplitudes. k-NN classified it as a tractor-trailer.

Overall, k-NN performs the classification very well, with an accuracy of 92.5%, achieving perfect classifi-
cation for large bulldozers, and satisfying classification for other bulldozers. It can still be improved with
data that introduces more inter-category variations, so that instances such as those shown in Figure
5.4 and Figure 5.6 can be correctly classified.

SVM
Despite the previously discussed misclassifications of a bulldozer and a tractor-trailer (Figures 5.4
and 5.5), the SVM classifier further mislabels four test samples: two other bulldozers are incorrectly
classified as other objects, and two other objects are misclassified as other bulldozers.

Figures 5.7 and 5.8 show the two bulldozers misclassified as other objects. In Figure 5.7, the misclas-
sification may result from a unique structure at the front blade. This could either be due to a different
blade type or deformation introduced by motion during scanning. Such a change alters the geometry
captured in the point cloud, leading to features that deviate from the typical bulldozer class. As SVM
operates by defining kernel boundaries, this outlier geometry may fall closer to the other object class
in feature space.

Figure 5.7: Misclassified other bulldozer. Point clouds are coloured by amplitudes. SVM classified it as ’other’.

In Figure 5.8, the motion distortion is more pronounced. From Figure 5.8(c), the top view shows signifi-
cant deformation of the bulldozer blade, which likely occurred due to blade movement during scanning.
This deformation changes the spatial distribution of the point cloud, especially affecting features de-
rived from the 2D features. As a result, the SVM classifier incorrectly assigns the object to the other
object category due to the strong deviation from the trained bulldozer features.
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Figure 5.8: Misclassified other bulldozer. Point clouds are coloured by amplitudes. SVM classified it as ’other’.

Figures 5.9 and 5.10 show the two objects misclassified as other bulldozers. More specifically, both
of the misclassified other objects are the working excavators, with their arms extending very far out-
side of the machine itself. This might result in a similar aggregated feature as those of the bulldozers,
as the bulldozers also have blades that extend outside in some perspectives. This geometric similar-
ity could have pushed their feature representations closer to those of the bulldozer class, leading to
misclassification.

Figure 5.9: Misclassified other object. Point clouds are coloured by amplitudes. SVM classified it as ’other’.

Figure 5.10: Misclassified other object. Point clouds are coloured by amplitudes. SVM classified it as ’other’.
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These misclassifications also reflect the limitation of the SVM classifier to classify bulldozers and other
large objects in this study. Unlike instance-based methods such as k-NN, SVM constructs a static
decision boundary in feature space, defined by a kernel function and support vectors from the training
data. Once trained, the SVM model does not adapt dynamically to new or unusual test samples. As a
result, its performance is highly dependent on the representativeness and quality of the training set. If
the training data do not sufficiently cover the variability in object appearances, such as unusual blade
shapes, deformation due to motion, or excavator arm configurations as those demonstrated in the
above, the classifier may generalise poorly and mislabel such cases. This sensitivity suggests the
importance of including diverse and representative examples in the training data when using SVM.

5.5. Generalisation validation
To evaluate the generalizability of the classification workflow, a separate validation dataset collected at
the same location is used. Unlike manually identifying and segmenting objects for the training dataset,
the dataset is pre-processed into clustered object point clouds by the method developed by Geeraerts,
2025. This algorithm represents an early-stage effort to automate the identification of dynamic objects
from multi-temporal terrestrial laser scanning (TLS) data.

The method applies the Cloth Simulation Filter (CSF) (Sabirova et al., 2019) to distinguish ground and
non-ground points. The non-ground points are then compared across consecutive epochs to detect
dynamic objects, which are those that change position over time. It produces a set of object-based
clusters that can be passed directly into the classification workflow developed in this study.

While this approach helps with the full automation of the proposed workflow in this study, it also intro-
duces some limitations. It can fail to identify lower sections of objects, such as the base of the wheels,
as dynamic. Some examples are shown in Figure 5.11. Although all of them are correctly classified by
the k-NN model, the SVM classifier mislabelled them as ’other’, likely due to the missing geometry in
the lower section, and the inherent limitation of the static hyperplane for the SVM classifier.

Figure 5.11: Examples of automatically segmented dynamic objects using the method by Geeraerts, 2025. The red points are
the segmented points, and the blue points represent the occluded points. Despite partial segmentation, the k-NN model

correctly identified all objects into their respective labels, while the SVM model misclassified all as ’other’.

However, the current version of Mark’s segmentation method is still under improvement, such as incor-
porating dynamic thresholds determined by C2C distance(Girardeau-Montaut et al., 2005). Once fully
refined, it can be integrated into the classification framework proposed here to create a fully automated
pipeline from TLS acquisition to object recognition with expected better performance.
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Table 5.1: Classification accuracy comparison between training and validation datasets

Classifier Training Accuracy (%) Validation Accuracy (%)

k-Nearest Neighbours (k-NN) 92.5 90.9

Support Vector Machine (SVM) 85.0 65.9

The performances of both classifiers on the test and validation datasets are summarised in Table 5.1.
Both classifiers experience a performance drop when applied to the generalisation validation dataset,
with the SVM classifier showing a larger drop. This might be due to the greater intra-class data variability
and segmentation limitation present in the automatically clustered dataset.

The k-NN classifier demonstrates better generalisation in this setting. As an instance-based learner,
k-NN does not rely on a fixed decision boundary but adapts to local neighbourhoods in feature space.
This flexibility allows it to accommodate greater variation in input data. In contrast, SVM relies on a
static kernel-defined boundary that may not generalise well to new, unseen patterns, especially when
training data are unevenly distributed.

These results further highlight the importance of training data diversity and coverage. An expanded
and more representative training set would benefit both classifiers: for k-NN, by enriching the local
neighbourhood space for voting; and for SVM, by enabling a more accurate and inclusive decision
boundary.

5.6. Future works
Based on the findings and limitations discussed in this study, the following areas for future improvement
are proposed to enhance the robustness, generalisability, and accuracy of the proposed classification
framework.

Enhancing the size and diversity of the training dataset
More data can be used for training the classifiers. This can help the training dataset to be expanded to
better capture intra-class variability. The dataset used in this study is mainly from 2019 to 2022, and
focuses on the spring and summer seasons. However, the anthropogenic activities and the commonly
occurring large dynamic objects on the sandy beach might change over the season and years. Even
within the category of other bulldozers, for example, they can change by introducing different types
of bulldozers or bulldozers with different types of blades, which may all result in a different feature
space. At the same time, the ”other objects” class encompasses many distinct types, such as cargo
boxes, excavators, and tractor-trailers. Increasing the number and variety of samples—especially those
representing edge cases and rare forms—will improve the classifier’s ability to generalise and reduce
systematic misclassification.

Improving 2D feature extraction through dynamic discretization
The current 2D feature extraction method uses fixed bin sizes for all objects, which may overlook size-
related shape differences. A more effective strategy would involve dynamically adjusting bin sizes,
possibly based on the object’s dimensions in each view. Adaptive binning would allow the raster fea-
tures to better reflect the internal structure of differently sized objects, leading to more discriminative
and scale-aware features.

Improving the segmentation method
The current segmentation method used for validation, while effective for isolating objects, introduces
errors by omitting points in the lower elevation regions. This may confuse the classifier, which has been
trained predominantly on well-segmented and complete point clouds. To address this, the segmentation
method could be improved through the use of cloud-to-cloud (C2C) distance analysis, which can help
detect persistent object boundaries more accurately across scans. These improvements would lead to
more complete and precise object clusters, reducing noise in the feature extraction stage and ultimately
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enhancing classification performance. Furthermore, better segmentation would support a more fully
automated processing pipeline, increasing the applicability and effectiveness of the method.

Part-based segmentation and hybrid object classification
To increase classification granularity and transferability, an alternative approach involves further seg-
menting objects into special subcomponents such as bulldozer blades, trailer beds, excavator arms.
Through using these as units for object classification. By identifying the presence of those parts, the
classifier can better distinguish between hybrid or compound objects, such as an excavator mounted on
a trailer. Currently, such combinations are grouped under ’other’, despite having highly characteristic
substructures. A part-based strategy would allow for more detailed object characterisation and enable
handling of unusual and special cases.

Classifiers such as SVM that could struggle with untrained or rare object instances can also benefit
from this method. It only needs to learn to recognise well-defined, recurring semantic components.
This reduces the need for exhaustive object-level training data and improves model robustness to
novel configurations.

Integrating additional data sources and exploring advanced classifiers
The inclusion of RGB or multispectral imagery together with TLS point clouds could enhance feature
richness and help resolve geometrically ambiguous cases. Additionally, alternative classifiers such as
ensemblemethods (e.g. Random Forests or Gradient Boosted Trees) or deep learningmodels could be
explored, particularly in scenarios where larger annotated datasets become available. These models
may handle more complex patterns that are difficult to capture using low-dimensional feature sets and
simpler classifiers.



6
Conclusion

The purpose of this report is to answer the main research question:

How can bulldozers be effectively identified from other large objects on sandy beaches using multiple
epochs of point clouds obtained from permanent terrestrial laser scanning?

To address this, an automatic method for bulldozers classification is proposed and evaluated. The
method consists of three steps, which are the pre-processing, feature assessment, and classification.
The proposed method is tested on the 3D point clouds of the same sandy beach area. The point
clouds used are generated by a permanent terrestrial laser scanner located near the coast as part of
the CoastScan project. Two different types of bulldozers, tractor-trailers, and other objects are selected
as objects of interest, and the classifier is trained with these four labels.

The study demonstrates that bulldozers can be reliably identified using this proposed method. Using
this method, a k-nearest neighbour (k-NN) classifier achieved a test accuracy of 92.5%, and 90.9%
accuracy on an independent validation set, confirming the viability of this approach for real-world coastal
monitoring.

Three sub-questions guided the investigation:

1. What are the important features that are effective in characterising and distinguishing bulldozers
from other large objects?

The results show that several features derived from 3D shape and 2D projections are both discriminative
and stable. In 3D, features of eigenentropy, omnivariance, and linearity demonstrate their strong ability
for capturing structural complexity and distinguishing different objects. In 2D projections, vertical and
horizontal range and standard deviation are effective for differentiating object types based on footprint
and height distribution. These features have low intra-class variability and high classification utility,
standing out as important features for classification.

2. What are the most feasible algorithms for bulldozer classification?

Two supervised classifiers are evaluated: k-NN and support vector machines (SVM). Both classifiers
are trained using the same feature sets, but k-NN consistently outperform SVM in both accuracy and
generalisation. The instance-based nature of k-NN allows it to adapt to the variability of the data, in-
cluding hybrid and structurally ambiguous objects. In contrast, SVM’s static decision boundaries make
it prone to misclassification, especially for poorly segmented samples. As such, k-NN is recommended
for this classification workflow due to its simplicity, adaptability, and robustness.

3. To what extent can these methods be applied to different TLS datasets?

Generalisation is evaluated using a week-long TLS dataset processed by an automatic dynamic object
segmentation method developed by Geeraerts, 2025. Despite certain limitations in the segmentation
dataset, such as missing lower object sections, k-NN maintains an overall accuracy of 90.9%. This
demonstrates that the classifier can operate under more realistic, automated segmentation settings.
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While SVM performance drops significantly, the process shows the potential for integrating segmenta-
tion and classification into a fully automated pipeline for long-term and more practical coastal monitor-
ing.

While the developed method is effective, several limitations remain. As a result, the following sugges-
tions for future work are proposed:

• Expand the training dataset to improve coverage of rare and hybrid object types, seasonal varia-
tion, and structural diversity.

• Refine 2D feature extraction using adaptive binning based on object size and orientation.
• Improve automatic segmentation using cloud-to-cloud distance analysis to better preserve seg-
mented object point cloud completeness.

• Introduce part-based classification to recognise semantic components (e.g., bulldozer blades,
excavator arms) and improve interpretability, particularly for hybrid machines.

• Explore additional classifiers, such as ensemble models or deep learning approaches, and con-
sider integrating RGB/multispectral data to supplement geometry-based features.

In conclusion, this research demonstrates that bulldozers and other large coastal objects can be ef-
fectively identified using TLS point cloud data by deriving multidimensional features. The proposed
approach achieves high accuracy, generalises well across datasets, and can be applied to larger, auto-
mated monitoring frameworks. With further improvement, it can be applied to contribute to supporting
environmental modelling and long-term sustainable coastal management.



References

Barbero-García, I., Kuschnerus, M., Vos, S., & Lindenbergh, R. (2023). Automatic detection of bulldozer-
induced changes on a sandy beach from video using yolo algorithm. International Journal of
Applied Earth Observation and Geoinformation, 117, 103185. https://doi.org/10.1016/j. jag.
2023.103185

Bosboom, J., & Stive, M. J. (2021). Coastal dynamics. Delft University of Technology.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https : / / doi . org / 10 . 1023 / a :

1010933404324
Demantké, J., Vallet, B., & Paparoditis, N. (2012). Streamed vertical rectangle detection in terrestrial

laser scans for facade database production. ISPRS Annals of Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, I-3, 99–104. https://doi.org/10.5194/isprsannals-I-3-99-
2012

Filin, S., & Pfeifer, N. (2005). Neighborhood systems for airborne laser data. Photogrammetric Engi-
neering Remote Sensing, 71, 743–755. https://doi.org/10.14358/PERS.71.6.743

Geeraerts, M. (2025). Identifying dynamic objects in coastal environments [Bachelor’s Thesis]. Delft
University of Technology.

Girardeau-Montaut, D., Roux, M., Marc, R., & Thibault, G. (2005). Change detection on points cloud
data acquired with a ground laser scanner. International archives of photogrammetry, remote
sensing and spatial information sciences, 36(3), W19.

Goel, S., & Lohani, B. (2013). A motion correction technique for laser scanning of moving objects. IEEE
Geoscience and Remote Sensing Letters, 11, 225–228. https://doi.org/10.1109/LGRS.2013.
2253444

Gross, H., & Thoennessen, U. (2006). Extraction of lines from laser point clouds. Fraunhofer FOM, 36.
Hearst, M., Dumais, S., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE

Intelligent Systems and their Applications, 13(4), 18–28. https://doi.org/10.1109/5254.708428
Heidarimozaffar, M., & Varshosaz, M. (2016). Optimal placement of a terrestrial laser scanner with an

emphasis on reducing occlusions. The Photogrammetric Record, 31, 374–393. https://doi.org/
10.1111/phor.12162

Kasireddy, V., & Akinci, B. (2022). Assessing the impact of 3d point neighborhood size selection on un-
supervised spall classification with 3d bridge point clouds. Advanced Engineering Informatics,
52, 101624.

Kharroubi, A., Poux, F., Ballouch, Z., Hajji, R., & Billen, R. (2022). Three dimensional change detection
using point clouds: A review. Geomatics, 2(4), 457–485. https://doi.org/10.3390/geomatics20
40025

Kuschnerus, M. (2024). Assessing geomorphologic processes with permanent laser scanning. https:
//resolver.tudelft.nl/uuid:31b3d8f8-1c0e-4a02-8089-d18034fa8850

Lalonde, J.-F., Vandapel, N., Huber, D., & Hebert, M. (2006). Natural terrain classification using three-
dimensional ladar data for ground robot mobility. J. Field Robotics, 23, 839–861. https://doi.
org/10.1002/rob.20134

Lazarus, E. D., & Goldstein, E. B. (2019). Is there a bulldozer in your model? Journal of Geophysical
Research: Earth Surface, 124(3), 696–699. https://doi.org/10.1029/2018JF004957

Lazarus, E. D., Mcnamara, D. E., Smith, M., Gopalakrishnan, S., & Murray, A. (2011). Emergent behav-
ior in a coupled economic and coastline model for beach nourishment. Nonlinear Processes in
Geophysics, 18(6), 989–999.

Lee, I., & Schenk, A. (2002). Perceptual organization of 3d surface points. International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences, 34.

Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The
state of the world’s beaches. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-
24630-6

52

https://doi.org/10.1016/j.jag.2023.103185
https://doi.org/10.1016/j.jag.2023.103185
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.5194/isprsannals-I-3-99-2012
https://doi.org/10.5194/isprsannals-I-3-99-2012
https://doi.org/10.14358/PERS.71.6.743
https://doi.org/10.1109/LGRS.2013.2253444
https://doi.org/10.1109/LGRS.2013.2253444
https://doi.org/10.1109/5254.708428
https://doi.org/10.1111/phor.12162
https://doi.org/10.1111/phor.12162
https://doi.org/10.3390/geomatics2040025
https://doi.org/10.3390/geomatics2040025
https://resolver.tudelft.nl/uuid:31b3d8f8-1c0e-4a02-8089-d18034fa8850
https://resolver.tudelft.nl/uuid:31b3d8f8-1c0e-4a02-8089-d18034fa8850
https://doi.org/10.1002/rob.20134
https://doi.org/10.1002/rob.20134
https://doi.org/10.1029/2018JF004957
https://doi.org/10.1038/s41598-018-24630-6
https://doi.org/10.1038/s41598-018-24630-6


References 53

Magliocca, N. R., McNamara, D. E., & Murray, A. B. (2011). Long-term, large-scale morphodynamic ef-
fects of artificial dune construction along a barrier island coastline. Journal of Coastal Research,
27(5), 918–930.

Maturana, D., & Scherer, S. (2015). Voxnet: A 3d convolutional neural network for real-time object
recognition. 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS),
922–928.

Maulana, I., & Roestam, R. (2024). Optimizing knn algorithm using elbow method for predicting voter
participation using fixed voter list data (dpt). Jurnal Sosial Teknologi, 4, 441–451. https://doi.
org/10.59188/jurnalsostech.v4i7.1308

Mirzaei, K., Arashpour, A. P. M., Asadi, E., Masoumi, H., & Bai, Y. (2022). 3d point cloud data processing
with machine learning for construction and infrastructure applications: A comprehensive review.
Advanced Engineering Informatics, 51, 101501. https://doi.org/10.1016/j.aei.2021.101501

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., Duchesnay, E., & Louppe, G. (2012). Scikit-learn: Machine learning in python. Journal of
Machine Learning Research, 12.

Pinardo-Barco, S., Sanromualdo-Collado, A., & García-Romero, L. (2023). Can the long-term effects of
beach cleaning heavy duty machinery on aeolian sedimentary dynamics be detected by mon-
itoring of vehicle tracks? an applied and methodological approach. Journal of Environmental
Management, 325, 116645. https://doi.org/10.1016/j.jenvman.2022.116645

Platt, J., et al. (1999). Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3), 61–74.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object
detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–
788. https://doi.org/10.1109/cvpr.2016.91

Rusu, R. (2010). Semantic 3d object maps for everyday manipulation in human living environments. KI
- Künstliche Intelligenz, 24. https://doi.org/10.1007/s13218-010-0059-6

Sabirova, A., Rassabin, M., Fedorenko, R., & Afanasyev, I. (2019). Ground profile recovery from aerial
3d lidar-based maps. https://doi.org/10.23919/FRUCT.2019.8711928

Soma, M., Pimont, F., Allard, D., Fournier, R., & Dupuy, J.-L. (2020). Mitigating occlusion effects in leaf
area density estimates from terrestrial lidar through a specific kriging method. Remote Sensing
of Environment, 245, 111836. https://doi.org/10.1016/j.rse.2020.111836

Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-view convolutional neural networks
for 3d shape recognition. Proceedings of the IEEE international conference on computer vision,
945–953.

Toshev, A., Mordohai, P., & Taskar, B. (2010). Detecting and Parsing Architecture at City Scale from
Range Data, 398–405. https://doi.org/10.1109/CVPR.2010.5540187

van deWal, R., Melet, A., Bellafiore, D., Camus, P., Ferrarin, C., Oude Essink, G., Haigh, I. D., Lionello,
P., Luijendijk, A., Toimil, A., & et al. (2024). Sea level rise in europe: Impacts and consequences.
State of the Planet, 3-slre1, 1–33. https://doi.org/10.5194/sp-3-slre1-5-2024

Vos, S., Anders, K., Kuschnerus, M., Lindenbergh, R., Höfle, B., Aarninkhof, S., & de Vries, S. (2022). A
high-resolution 4d terrestrial laser scan dataset of the kijkduin beach-dune system, the nether-
lands. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01291-9

Vos, S., Lindenbergh, R., & Vries, S. (2017).Coastscan: Continuousmonitoring of coastal change using
terrestrial laser scanning. https://doi.org/10.5194/isprs-annals-IV-2-W5-317-2019

Vos, S., Spaans, L., Reniers, A., Holman, R., McCall, R., & Vries, S. (2020). Cross-shore intertidal bar
behavior along the dutch coast: Laser measurements and conceptual model. Journal of Marine
Science and Engineering, 8, 864. https://doi.org/10.3390/jmse8110864

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer
vision: A brief review. Computational intelligence and neuroscience, 2018(1), 7068349.

Wang, L., Huang, Y., Shan, J., & He, L. (2018). Msnet: Multi-scale convolutional network for point cloud
classification. Remote Sensing, 10(4), 612.

Weinmann, M., Jutzi, B., & Mallet, C. (2013). Feature relevance assessment for the semantic interpreta-
tion of 3d point cloud data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, II-5/W2, 313–318. https://doi.org/10.5194/isprsannals-ii-5-w2-313-2013

https://doi.org/10.59188/jurnalsostech.v4i7.1308
https://doi.org/10.59188/jurnalsostech.v4i7.1308
https://doi.org/10.1016/j.aei.2021.101501
https://doi.org/10.1016/j.jenvman.2022.116645
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1007/s13218-010-0059-6
https://doi.org/10.23919/FRUCT.2019.8711928
https://doi.org/10.1016/j.rse.2020.111836
https://doi.org/10.1109/CVPR.2010.5540187
https://doi.org/10.5194/sp-3-slre1-5-2024
https://doi.org/10.1038/s41597-022-01291-9
https://doi.org/10.5194/isprs-annals-IV-2-W5-317-2019
https://doi.org/10.3390/jmse8110864
https://doi.org/10.5194/isprsannals-ii-5-w2-313-2013


References 54

West, K., Webb, B., Lersch, J., Pothier, S., Triscari, J., & Iverson, E. (2004). Context-driven automated
target detection in 3d data. Proceedings of SPIE - The International Society for Optical Engi-
neering, 5426. https://doi.org/10.1117/12.542536

Xu, P., Ji, X., Li, M., & Lu, W. (2023). Small data machine learning in materials science. npj Computa-
tional Materials, 9(1). https://doi.org/10.1038/s41524-023-01000-z

Zhang, H., Wang, C., Tian, S., Lu, B., Zhang, L., Ning, X., & Bai, X. (2023). Deep learning-based
3d point cloud classification: A systematic survey and outlook. Displays, 79, 102456. https :
//doi.org/10.1016/j.displa.2023.102456

Zhang, Z. (2016). Introduction tomachine learning: K-nearest neighbors.Annals of Translational Medicine,
4(11), 218–218. https://doi.org/10.21037/atm.2016.03.37

https://doi.org/10.1117/12.542536
https://doi.org/10.1038/s41524-023-01000-z
https://doi.org/10.1016/j.displa.2023.102456
https://doi.org/10.1016/j.displa.2023.102456
https://doi.org/10.21037/atm.2016.03.37


A
Source Code

A.1. 3D feature computation function
1 def 3d_features(points, radius=0.2):
2 pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(points))
3 tree = o3d.geometry.KDTreeFlann(pcd)
4 features = []
5

6 for i in range(len(points)):
7 _, idxs, _ = tree.search_radius_vector_3d(pcd.points[i], radius)
8 if len(idxs) < 3:
9 features.append([np.nan] * 9)
10 continue
11 neighbors = np.asarray(pcd.points)[idxs]
12 centroid = np.mean(neighbors, axis=0)
13 cov = np.cov((neighbors - centroid).T)
14 eigenvalues, eigenvectors = np.linalg.eigh(cov)
15 eigenvalues = np.sort(eigenvalues)[::-1]
16 �1, �2, �3 = eigenvalues
17 �_sum = �1 + �2 + �3
18 eps = 1e-10
19 L = (�1 - �2) / (�1 + eps)
20 P = (�2 - �3) / (�1 + eps)
21 S = �3 / (�1 + eps)
22 O = (�1 * �2 * �3) ** (1 / 3) if �1 * �2 * �3 > 0 else 0
23 A = (�1 - �3) / (�1 + eps)
24 E = -np.sum([l * np.log(l + eps) for l in eigenvalues])
25 Σ = �_sum
26 C = �3 / (�_sum + eps)
27 nZ = eigenvectors[:, 2][2]
28 V = 1 - abs(nZ)
29 features.append([L, P, S, O, A, E, Σ, C, V])
30 return np.array(features)

A.2. 2D feature computation function
1 def compute_2d_features(x, y, z, bin_size=0.6, plane="XY"):
2 if plane == "XY":
3 a, b, height = x, y, z
4 elif plane == "XZ":
5 a, b, height = x, z, y
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6 else:
7 raise ValueError("Plane must be 'XY' or 'XZ'")
8

9 a_bin = np.floor(a / bin_size).astype(int)
10 b_bin = np.floor(b / bin_size).astype(int)
11 bin_keys = list(zip(a_bin, b_bin))
12 bin_data = defaultdict(list)
13

14 for key, h in zip(bin_keys, height):
15 bin_data[key].append(h)
16

17 stats = { "�1": [], "�2": [], "R�": [], "Σ�": [], "Δz": [], "�z": [] }
18

19 for (i, j), heights in bin_data.items():
20 if len(heights) < 3:
21 continue
22 heights = np.array(heights)
23 Δz = np.max(heights) - np.min(heights)
24 �z = np.std(heights)
25 indices = [k for k, (ai, bi) in enumerate(zip(a_bin, b_bin)) if (ai, bi) == (i, j)]
26 coords = np.stack((a[indices], b[indices]), axis=1)
27 mean_coords = np.mean(coords, axis=0)
28 cov = np.cov((coords - mean_coords).T)
29 eigvals = np.linalg.eigvalsh(cov)
30 �1, �2 = sorted(eigvals, reverse=True)
31 R = �2 / �1 if �1 > 0 else np.nan
32 stats["�1"].append(�1)
33 stats["�2"].append(�2)
34 stats["R�"].append(R)
35 stats["Σ�"].append(�1 + �2)
36 stats["Δz"].append(Δz)
37 stats["�z"].append(�z)
38

39 return pd.DataFrame(stats)
40
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Figure B.1: Standardized standard deviation values of 3D geometric features for each object category. The top row
shows example point clouds for each category: Large bulldozer, Small bulldozer, Tractor-trailer, and Others. The box plots

below show the distribution of standardised means for the 3D features: (a) Linearity Lλ, (b) Planarity Pλ, (c) Sphericity Sλ, (d)
Omnivariance Oλ, and (e) Anisotropy Aλ.
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Figure B.2: Standardized standard deviation values of additional 3D features for each object category( continued).
The top row shows example point clouds for each category. The boxplots below show the distribution of standardised means

for: (f) Eigenentropy Eλ, (g) Sum of eigenvalues Σλ, (h) Change of curvature Cλ, and (i) Verticality V .
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Figure B.3: Illustration of 2D projection-based feature computation. The central image shows the original 3D point cloud of a
large bulldozer. The point cloud is projected onto the XZ plane (left) and the XY plane (bottom) to derive vertical and horizontal
2D features, respectively. Each projection is binned using a defined grid size (0.4 for XZ and 0.75 for XY), and amplitude is

colour-coded to reflect signal strength.

Figure B.4: Illustration of 2D projection-based feature computation. The central image shows the original 3D point cloud of a
tractor-trailer. The point cloud is projected onto the XZ plane (left) and the XY plane (bottom) to derive vertical and horizontal
2D features, respectively. Each projection is binned using a defined grid size (0.4 for XZ and 0.75 for XY), and amplitude is

colour-coded to reflect signal strength.
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Figure B.5: Illustration of 2D projection-based feature computation. The central image shows the original 3D point cloud of an
excavator. The point cloud is projected onto the XZ plane (left) and the XY plane (bottom) to derive vertical and horizontal 2D

features, respectively. Each projection is binned using a defined grid size (0.4 for XZ and 0.75 for XY), and amplitude is
colour-coded to reflect signal strength.
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Figure B.6: Standardized standard deviations of 2D horizontal features for each object category. Box plots showing the
standard deviation across bins for: (a) λ1, (b) λ2, (c) Rλ, (d) Σλ, (e) ∆z, and (f) σz , computed from the XY projection.
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Figure B.7: Standardized standard deviations of 2D vertical features for each object category. Box plots showing
intra-object variability for: (a) λ1, (b) λ2, (c) Rλ, (d) Σλ, (e) ∆z, and (f) σz , all from the XZ projection.
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Figure B.8: Confusion matrix for k-NN classifier on test data

Figure B.9: Confusion matrix for SVM classifier on test data
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Figure B.10: Confusion matrix for k-NN classifier on generalisation validation dataset

Figure B.11: Confusion matrix for SVM classifier on generalisation validation dataset
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