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Sensor structural feedback and propellant sloshing have an adverse affect on the stability of conventional
launch vehicles. Additionally, vehicle flight loads increase due to structural vibrations. However, in the
conceptual design phase of a conventional launch vehicle, it is computationally expensive and undesirable
to model the aeroelastic effects on its controllability, stability, and flight performance. Therefore, this paper
focusses on the assumed-modes method of analysing aeroelastic effects on a slender-bodied conventional
launch vehicle. The general model consists of the structural stiffness and mass properties, discretised over
the length of the launcher; flight mechanics, which are simplified to only the pitch-plane equations; and
engine swivel, acting as a control (thrust and moment) actuator. The structural representation and flight
dynamics are combined in a state-space model with a simple PD controller to evaluate the stability and
control of the system, without attempting to optimize for performance. The response to a step-command,
with and without turbulence, is examined and compared for rigid, flexible modes, and flexible modes with
sloshing effects. Flexible modes and sloshing effects have a destabilising influence, which, if coupled with
non-optimal feedback signals, may result in excessive flight loads.

I. Introduction

Over time several specific examples of control
problems occurring during flight tests of fighter air-
craft have become apparent (Schwanz and Cerra,
1984). In each case, the cause of the problem could
be characterised as inadequate modelling or other in-
appropriate treatment of the aero-elastic effects on
the vehicle dynamics and/or the flight-control design.
However, such problems are not restricted to just
aircraft. Especially long and slender bodies such as
(small) conventional launch systems may suffer from
an unwanted coupling between the rigid body and its
flexible modes. Therefore, this coupling should be
analysed in detail, so it can be neglected if shown to
be insignificant.

The stability of aeroelastic bodies such as mis-
siles and launchers has been studied since the 1960s
(Geissler, 1970; Lester and Collins, 1964; Meirovitch
and Wesley, 1967) and invariably focussed on the in-
teraction between rigid and flexible modes and the
response to wind gust and turbulence, or the impact
of aeroelasticity on control system stability margins,
e.g., the work done by Orr (2010). Even though the
models for the flight dynamics are non-linear and de-
rived with a Lagrangian approach, the analysis mod-
els are often linearised, see, for instance, Capri et

al. (2006) and Orr et al. (2009). However, in some
cases, the non-linear model is used to study the elas-
tic dynamic effects on the trajectory (Li et al., 2015).
Aerodynamics models used vary from engineering
methods, such as slender-body theory (ESDU, 1990),
to linear quasi-steady piston theory (Noorian et al,
2016), or processed data from CFD analyses (Capri
et al., 2006; Li et al., 2015). In many studies, though,
details in vehicle and model data are not published,
which make it hard to reproduce the analysis results.

The coupling effects between the rigid body and its
flexible modes should not only be studied in the de-
tailed design phase, but preferably at an early stage,
such that information about stability and controlla-
bility can be fed into the structural-design process,
and vice versa, information about aeroelasticity can
be used in the analysis of flight performance, and
the design and analysis of the control system. In the
conceptual design phase, one wants to refrain from
detailed finite element or CFD modelling, especially
when many of the design choices on shape, layout and
sub-systems have not yet been made. Therefore, the
objective of this paper is to set up simplified models
and an associated methodology to gain insight into
the effect of aeroelasticity on launch vehicle stability,
controllability, and controller performance.
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Since large flexible structures are best modelled
as distributed parameter systems, their motion is de-
scribed by a system of coupled ordinary and partial
differential equations, of which the latter are diffi-
cult to deal with both analytically and computation-
ally. Therefore, approximate finite-dimensional equa-
tions of motion are usually used (Craig, 1981; Junk-
ins and Kim, 1993). One of these methods is the
assumed-modes method, where the deflection of con-
tinuous elastic structures is modelled by a finite series
of space-dependent functions that are multiplied by
specified time-dependent amplitude functions.

Therefore, in this paper, the assumed-modes
method is applied to the conceptual design of a small
launcher. The launcher is treated as a flexible beam
with lumped masses to account for the subsystems
and the fuel. A simplified mass-spring system is taken
to model the mechanical aspects of fuel sloshing.
The development of the simulation model will be dis-
cussed in detail, and the resulting model is analysed
to establish the relevant bending modes. A multi-
disciplinary design approach integrating the models
for trajectory, the structure, aerodynamics and con-
trol system is then employed to study the behaviour
of a controlled, flexible launch vehicle in response to
atmospheric turbulence.

Section 2 briefly reviews the assumed-modes
method. Next, in Section 3, the structural design of
the launcher is discussed, and how the modal shapes
of the vehicle can be determined is summarised.
Section 4 introduces the flight-dynamics model and
shows how the external forces can be combined with
the discrete structural model. As one needs a lin-
earised system to do the control-system design and
analysis, Section 5 provides an overview of the state-
space model. The results of the analysis are given
in Section 6, whereas Section 7 concludes this paper
with some recommendations.

II. Background

To generate an N -degree-of-freedom approximate
differential equation model for a continuous system,
the displacement of the continuous system is ex-
panded as a linear combination of N prescribed shape
functions. In other words, the deformation u(x, t) is
approximated by

u(x, t) =

N∑
i=1

φi(x)ηi(t) [1]

where x is the spatial coordinate, t is the time, φi(x)
is the ith assumed mode shape, ηi(t) is the ith gen-

eralised coordinate and N is the number of terms or
modes that are included in the approximation.

To find expressions for the mode shapes, one can
start by deriving the bending equation of motion for
an undamped structure by applying the Principle of
Virtual Work for a dynamic loading to a series of
second-order elements, a so-called lumped-mass sys-
tem. In matrix form, the equations of motion of such
an (undamped) system is easily derived to be (Craig,
1981):

Mü + Ku = F [2]

with M being the mass matrix, K the stiffness ma-
trix, u the vector with displacements and F the forc-
ing function. The homogeneous solution to Eq. [2]
describing the free oscillations, also called the in-
vacuo oscillations, can be written as

ui(x, t) = Ui(x)ejωt [3]

with Ui being the ith displacement amplitude, ω the
circular frequency of the oscillation, and j a complex
variable being defined by j2 = -1.

Solving for the N eigenfrequencies, Eq. [3] is sub-
stituted into Eq. [2] with F = 0, yielding:

(−ω2M + K)U = 0 [4]

The non-trivial solution is found by solving the eigen-
value problem

| − ω2M + K| = 0 [5]

The corresponding eigenvectors can be selected as the
shape functions φi(x), since they are usually the suit-
able space-dependent functions that satisfy not only
all boundary conditions, but also the rigorous spatial
differential equations.

Since the equations of motion Eq. [2] are coupled
through the mass and the stiffness matrices, they can
only be solved simultaneously. However, diagonalis-
ing M and K would simplify the solution, since each
equation could then be solved independently. With
the modal matrix Φ, consisting of the modal column
vectors φi, then Eq. [1] can be written as

u(x, t) = Φ(x)η(t) [6]

Substituting the above equation into Eq. [2] and pre-
multiplying each of the terms with ΦT yields

ΦTMΦ η̈ + ΦTKΦη = ΦTF [7]

Since the modal vectors are orthogonal the matrix
multiplication with the mass and stiffness results in
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diagonal matrices such that the equations are decou-
pled, i.e.,

M̃η̈ + K̃η = Q [8]

where M̃ is the modal mass matrix, K̃ is the modal
stiffness matrix, and Q = ΦTF is the modal force
vector. Finally, by using Rayleigh’s Quotient, defined
as (Craig, 1981)

ω2 =
K̃

M̃
[9]

The (decoupled) bending equations for an undamped
system can be written as

η̈ + ω2η = M̃−1Q [10]

In the case there is (structural) damping, e.g., due
to internal friction in the material or at joints between
components, Eq. [2] changes to

Mü + Cu̇ + Ku = F [11]

where C is the damping matrix. It is common prac-
tice to assume that the structural damping is propor-
tional to the so-called critical damping, which can be
modelled as a fraction ζs. Following this approxima-
tion, Eq. [10] changes to

η̈ + 2ζsωη̇ + ω2η = M̃−1Q [12]

which is a decoupled system of differential equations.
It is often assumed that there is zero damping in the
structural analysis, i.e., the natural modes may be
computed for an undamped system (Geissler, 1970).
However, when the response of the system is studied,
e.g., during control-system design, structural damp-
ing should be included in the model since it will have
a noticeable effect on the results. Therefore, one can
also write the damped deformation, indicated by the
subscript d, as:

ud(x, t) =

N∑
i=1

φi(x)ηi(t) [13]

To conclude the mathematical model, the rotation
ϕd(x, t) of (an element of) the structure is given by:

ϕd(x, t) = −
N∑
i=0

σi(x)ηi(t) [14]

with σi(x) = −dφi(x)
dx .

III. Structural Design

Modelling a flexible structure in the feasibility
phase of the design should be as simple as possible
while still including a sufficient level of detail, which
results in structural characteristics of the vehicle that
will give a reasonable approximation of the final vehi-
cle. It is common practice to use a beam analogy for
modelling a conventional launcher. Geissler (1970)
states that it is sufficient to use about 40 nodes to
derive the first four bending modes with reasonable
accuracy. The shape functions can be defined by the
nodal displacement eigenvectors, which means that
they have also a dimension of about 40, albeit with six
components per entry (three translations and three
rotations). Looking at the bending motion in the
pitch plane only, one only requires two components,
i.e., the translation in the Z-direction (inducing a
change in (local) angle of attack) and a (pitch) ro-
tation about the Y -axis. The other four degrees of
freedom are constrained.

The launcher will be modelled as a beam with
lumped masses that represent the launcher’s subsys-
tems, such that the in-vacuo eigenfrequencies can be
approximated. The two-stage PacAstro launcher for
small payloads up to 350 kg has been selected for its
availability of some geometrical and structural data∗.
The PacAstro is divided into a number of sections,
such as aft skirt, LOX tanks, etc., see Table 1 for an
overview of dimensions and associated masses. Each
of these sections is, in fact, a monocoque structure
with wall thickness t; although, here simple beam el-
ements are used in the model. These beam elements
represent the same cross-sectional area and inertia
properties. The modelling of the fuel and oxidiser
tanks when they are not completely full is divided
into two parts. It is assumed that all fuel (or oxi-
diser) is at the lower part of the tank, such that the
tank can actually be modelled as two separate tanks,
i.e., one empty and one full. Table 2 lists the applied
materials. Note that for a section k, the first node is
equal to the last node of section k − 1, whereas the
last node is equal to the first node of section k + 1.
The total number of nodes is 43.

The remainder of this paper examines at the sta-
bility of the PacAstro at the point of maximum dy-
namic pressure. From a trajectory analysis, this point

∗PacAstro was a US transportation service company,
formed in 1990, to provide low-cost transportation of small
satellites to Low Earth Orbit for approximately $5 million per
launch using proven technology (Fleeter et al., 1992). Unfor-
tunately, the launcher never came to operation despite several
engine tests and three launch contracts, due to the lack of de-
velopment funding. The company ceased to be in 1997.
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Table 1: Simplified dimensional model of PacAstro

x dx t m
section (m) (m) (mm) (kg)

aft skirt 1 0.000 2.824 0.687 30.5
engine 1 2.200 - - 360.0
fuel tank 1 2.824 3.446 2.64 226.2
intertank 1 6.270 2.110 3.10 102.7
LOX tank 1 8.380 6.220 3.46 535.3
interstage 14.600 3.310 2.59 134.6
fuel tank 2 17.910 0.389 1.65 16.0
intertank 2 18.299 1.570 2.24 55.2
LOX tank 2 19.869 1.090 1.79 48.6
forward skirt 2 20.959 1.010 1.60 25.4
fairing cylinder 21.969 1.000 1.46 22.7
fairing frustrum 22.969 2.800 1.23 53.5
payload 22.969 - - 225.0
frustrum end 25.769 - -

Table 2: Material types and properties

nr material σyield E ρ
(MPa) (N/m2) (kg/m3)

1 Al 7075 T6 441 7.24·1010 2740
2 Al 2024 T4 290 7.38·1010 2710
3 Ti 6Al 4V 986 1.13·1011 4430

has been identified to occur at t = 63 s. For this
condition, the remaining fuel for the first stage is
mf,1 = 3,614.7 kg, with the assumed free surface lo-
cated at xf,1 = 3.69 m (measured from the base of
the launcher). The free surface of the oxidiser is lo-
cated at xo,1 = 9.94 m, with an equivalent mass of
8,675.1 kg. Similarly, for the second stage, the free
surface is located at xf,2 = 18.1 m (mf,2 = 1,830 kg)
for the fuel, and at xo,2 = 20.41 m (mo,2 = 4,369 kg)
for the oxidiser. It is noted that the stiffness proper-
ties of the fuel and oxidiser can be lowered compared
to their respective tank values to account for slosh-
ing; although this may not the best way to take the
effect into account.

For the time point under consideration, the to-
tal mass of the launcher as described above is
m = 20,762 kg, with a centre of mass location of
xcm = 12.09 m, and a pitch-moment of inertia of
Iyy = 8.024·105 kgm2. In Fig. 1, the mass and stiff-
ness properties of the modelled launcher are shown
as a function of the axial location. Calculating (with
NASTRAN) the normalised bending modes for this
configuration gives the first four modes as shown in
Fig. 2. In Table 3, the variation with time of the first
two modes is listed.

If the fuel and oxidiser can move freely, they will af-
fect the eigenmodes of the elastic vehicles. Modelling
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Fig. 1: Discretised launcher model (t = 63 s)

(a) First mode, ω1 = 42.4 rad/s (f1 = 6.75 Hz)

(b) Second mode, ω2 = 126.7 rad/s (f2 = 20.16 Hz)

(c) Third mode, ω3 = 281.6 rad/s (f3 = 44.81 Hz)

(d) Fourth mode, ω4 = 408.7 rad/s (f4 = 65.04 Hz)

Fig. 2: First four normalised bending modes of the
PacAstro (t = 63 s)

Table 3: Structural natural frequencies along trajec-
tory

time 1st mode 2nd mode
(s) (rad/s) (rad/s)
35 37.6 (5.98 Hz) 122.4 (19.48 Hz)
63 42.4 (6.75 Hz) 126.7 (20.17 Hz)
126 77.9 (12.40 Hz) 167.2 (26.61 Hz)
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Table 4: Eigenfrequencies at t = 63 s

no sloshing sloshing
structural ωi ωi

mode (rad/s) (rad/s)
1 – 7.0
2 – 7.5
3 42.4 45.7
4 126.7 127.6
5 281.6 329.4
6 408.7 426.0

sloshing is not a trivial matter, and one can find a
lot of literature on theoretical and practical aspects
on the subject, e.g., that by U.S. Army (1969) and
Ibrahim (2005). A simple approach may be to model
the moving liquid as one or more (damped) mass-
spring systems (Ebrahimian, 2014), damped pendu-
lum(s) (Nichkawde et al., 2004), or extract data from
a detailed CFD analysis (Yang and Peugeot, 2014).
However, finding the proper stiffness and damping
parameters depends a great deal on the liquid prop-
erties, as well as the shape of the tanks, the filling
grade and the internal structure of the tanks, e.g.,
whether there are damping baffles present or not.

In light of the simplified modelling and still being
able to take any effect of sloshing into account, one
can lower the stiffness of those portions of the beam
model that include the fuel and oxidiser, albeit only
in partially filled tanks. In Table 4, the eigenfrequen-
cies of the first four bending modes and two sloshing
modes (two tanks) are listed. The sloshing modes
approach rigid-body modes, and the bending modes
are hardly affected by the sloshing, i.e., the modes
are well separated.

The engine of the first stage can be swivelled, and
as such can act as a control actuator: the engine does
not only produce a thrust force, but also a moment.
It is common to consider the nozzle motion to be
instantaneous in rigid-body simulations. Swivelling
will thus have no effect on the eigenmotion of the
(rigid) system. However, when a flexible launch sys-
tem is studied, this assumption may be invalid, and
one has to make sure that the natural frequency of
the engine is well separated from (at least) the first
bending mode. Therefore, the engine is considered
to be an electro-hydraulic servo system that can be
approximated by a third-order system, of which the
Laplace form is given by (Rolland Collette, 1967):(

s3 + 2ζeωes
2 + ω2

es+Keω
2
e

)
εT = Keω

2
eεT,c [15]

where the load torque feedback terms have been ne-
glected; these terms include all inertia-load torques
due to the accelerations of the rigid and flexible
modes, but are small compared to the remaining
terms. In Eq. [15], ωe and ζe are the natural fre-
quency and damping of the engine dynamics. The
gain Ke is an amplification factor that improves the
response (time), but does have a tendency to lower
the natural frequency of the engine modes. The two
thrust-elevation angles εT and εT,c are the actual and
commanded value, respectively. Equation [15] will
be converted into state-space form in Section 5 and
linked with the flight model.

IV. Flight Model

The current paper focusses on the pitch-plane mo-
tion of a launcher at a particular point in its tra-
jectory, i.e., at t = 63 s. Next, one must link the
(flexible) structural model with the flight-dynamics
model, and establish a relation between the deformed
structure and the external forces and moments. In
Fig. 3, the geometry of the deformed launcher has
been depicted. For the sake of the analysis we as-
sume a non-rotating flat Earth, where the launcher
has a velocity V = u0 = 493.07 m/s and a pitch angle
θ0 = 61.7◦ with respect to the inertial plane. The re-
lated external forces acting upon the system are the
thrust, T , the normal force, N , and the weight, W .
The thrust orientation is defined by the swivel angle
εT , and the magnitude of N is defined by the angle
of attack α at a given Mach number, M = 1.85. In
general, the normal deformation with respect to the
undeformed elastic axis is indicated by ud(x, t), and
the corresponding rotation is defined by ϕ(x, t).

The current study will focus on the pitch-plane
motion and explores only small deviations from the

Fig. 3: Flexible vehicle definitions

IAC–16–C2.3.14.x35230 Page 5 of 15



67th International Astronautical Congress, Guadalajara, Mexico. Copyright c© 2016 by E. Mooij and D.I. Gransden. All
rights reserved.

vertical trajectory. The rigid-body equations of mo-
tion are obtained by linearising the non-linear equa-
tions of motion as given by (Etkin and Reid, 1996):

∆u̇ =
∆XB

m
− gd cos θ0∆θ

∆ẇ = ∆qu0 +
∆ZB
m
− gd sin θ0∆θ

∆q̇ =
∆My

Iyy

[16]

Furthermore, because the angle of attack can replace
the (small) vertical velocity through the relation

∆α =
∆w

u0
⇒ ∆α̇ =

∆ẇ

u0
[17]

one obtains for the pitch-plane equations, for a single
trajectory point (constant position and velocity) and
dropping the ∆-notation:

α̇ = q +
ZB
mu0

− gd sin θ0θ

u0
[18]

q̇ =
My

Iyy
[19]

with the (rigid-body) force and moment given by (see
Fig. 3)

ZB = FA,z + FT,z = −N + T sin εT [20]

My = MA,y +MT,z =M+ LeT sin εT [21]

where M is the aerodynamic pitch moment, and the
thrust-moment arm Le = xcm − xe. Here, xcm and
xe are the axial locations of the centre of mass and
engine (thrust point), respectively. The flight-point
under consideration is at Le = 9.8034 m.

In the above setup, the engine dynamics are un-
coupled from the rigid-body equations. However, the
effects resulting from the movement of the engine
(swivelling) can have a considerable effect upon the
dynamics of the total vehicle, this dynamic mode has
to be coupled with the equations derived so far. This
can easily be done by introducing the forces and mo-
ments the engine exerts on the vehicle. Due to the
angular acceleration of the engine around its gimbal
point, a force on the gimbal point (xg = 2.2 m) in the
direction of a positive εT is introduced. A reaction
force is then applied on the vehicle. For small thrust
angles, this force may be approximated by

Fze = me∆Lcm,eε̈T [22]

where me is the mass of the engine and ∆Lcm,e is the
distance from gimbal point to centre of mass of the

engine. This force also contributes to a pitch moment.
The moment due to engine swivelling further includes
an external torque applied to the engine by the servo
actuator, Me,servo = Ieε̈T , with Ie being the engine
moment of inertia. Combined, the total moment that
originates from engine swivelling is then given by:

Mye = (Leme∆Lcm,e + Ie) ε̈T [23]

Including the loads given by Eqs. [22] and [23] will
also account for the possible occurrence of the tail-
wags-dog. This effect occurs when the inertia force re-
sulting from gimballing the engine cancels the lateral
component of the thrust due to the deflection of the
engine. For this study, the following representative
data have been used: me = 225 kg, Ie = 300 kg m2

and ∆Lcm,e = 0.7 m.
The behaviour of a flexible vehicle, where the

structure will also deform due to the forces and mo-
ments as discussed previously, requires one to incor-
porate the bending equations of motion and introduce
the relevant coupling terms in the model. The system
of equations is derived earlier, Eq. [12], so now the
focus is on the coupling with the external loads.

For the short-period symmetric motion that is the
topic of interest, the quasi-steady rigid-body aero-
dynamic force and moment depend primarily on the
normal velocity, w, and the pitch rate, q = θ̇ (Lester
and Collins, 1964; Nielsen, 1960). The dependence
on higher powers of the angle of attack and possi-
bly other quantities is very small, so they can be
ignored for this kind of study (Seifert and Brown,
1961). Therefore, for a single point in the trajectory
(constant Mach number) the normal force and pitch
moment are given as f(α, q). The dependency on q
is easily understood. A pitch rate originates from the
fact that the launcher follows a curved flight path.
The pitch rate induces a normal-velocity distribution
along the vehicle, which results in an increase of lo-
cal angle of attack (when multiplied with the distance
from the centre of mass, the point of rotation). Addi-
tionally, the situation is further complicated, due to
the deformation of the launcher, such that the angle
between the X-axis and the disturbed velocity vector
varies along the vehicle. This results in an additional
dependency on the generalised coordinates and their
time derivatives.

The rigid-body aerodynamic model is based on a
blunted-cone forebody with cylindrical extension and
no boat-tailing. The method applied is one based on
slender-body theory and described by ESDU (1990).
In essence, it assumes that both the normal-force
and the pitching-moment curve of such configura-
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tions can be evaluated as the sum of three compo-
nents. The major contribution comes from the (in-
viscid) flow over the forebody and generates a load-
ing that may also extend onto the cylindrical part.
The second and third components originate from the
development of a viscous boundary layer (fully tur-
bulent) along the length of the body. The boundary
layer represents a displacement thickness that modi-
fies the flow. The other boundary-layer contribution
arises from the frictional force acting over the surface
of the body. Numerical details about each of these
three components for Mach numbers up to M∞ = 5
and different ratios of length-to-diameter, as well as
a range of Reynolds numbers, is provided by ESDU
(1990).

For slender bodies of revolution with a cone-
shaped forebody and cylindrical afterbody, the dis-
tribution on the forebody constitutes the larger part
of the total normal force. Lester and Collins (1964)
assume a linear lift build-up over the forebody and
an exponential decay over the afterbody. This dis-
tribution is validated by various experiments, see,
for instance, the book by Nielsen (1960), and will
qualitatively closely resemble the actual normal-force
distribution on a small launch vehicle. To calculate
CNα(x), it is assumed that C∗Nα and C∗mα are avail-
able for the flight condition under consideration, cal-
culated with the algorithm provided by ESDU (1990).
The distributed load should of course lead to the same
total slope coefficient. This can be achieved with:

C∗Nα = c1

Lb∫
0

c
x
Lb
2 dx+ c1

c2
Ln

Ltot∫
Lb

(Ltot − x)dx [24]

dref · C∗mα = c1

Lb∫
0

c
x
Lb
2 (x− Lb)dx

+c1
c2
Ln

Ltot∫
Lb

(Ltot − x)(x− Lb)dx

[25]

where the total vehicle length, Ltot, is the sum of
the body length, Lb, and nose length, Ln, so Ltot =
Lb +Ln, and dref is a reference length (typically the
vehicle diameter). The first part on the right-hand
side of Eqs. [24] and [25] represent the exponential
decay of the afterbody, whereas the second part gives
the linear increase of the nose-region of the vehicle.
The coefficients c1 and c2, defining the magnitude of
the distribution, can be determined iteratively. For
M = 1.85, it was found that C∗Nα = 3.7954 and
C∗mα = 29.303 rad−1, which yielded c1 = 4.6·10−3
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and c2 = 13.622. As an example, the corresponding
distributed normal load is shown in Fig. 4.

If, for a location xj , the local coefficients are given

by CjNα and Cjmα , then, with n axial stations, it fol-
lows for the rigid-body coefficients:

CNα =

n∑
j=0

CjNα Cmα =

n∑
j=0

Cjmα [26]

CNq = − 1

u0

n∑
j=0

CjNα ·∆xcm,j

Cmq = − 1

u0

n∑
j=0

Cjmα ·∆xcm,j

[27]

where ∆xcm,j = xj − xcm.
Summarising, and considering the perturbations

around an otherwise nominal state, the normal (aero-
dynamic) force can thus be written as:

FA,z = q̄Sref

Ltot∫
0

∂CN
∂α

(x)α(x)dx

− q̄Sref
q

u0

Ltot∫
0

∂CN
∂α

α(x)(xcm − x)dx

+

N∑
i=1

∂FZ,A
∂ηi

ηi +

N∑
i=1

∂FZ,A
∂η̇i

η̇i

[28]

where q̄ = 1
2ρu

2
0 is the dynamic pressure and Sref is

the reference area (Sref = 2.63 m2). The dependence
of the aerodynamic force on the generalised coordi-
nates has an effect similar to the rigid-body angle of
attack. The velocity of ηi has an effect similar to the
rigid-body pitch rate.

The individual partials and integral terms can all
be written as aerodynamic coefficients (Lester and
Collins, 1964). When defining C ′Nα = ∂CN

∂α (x), with
the prime indicating a geometric dependency, then:

CNα =

Ltot∫
0

C ′Nαdx [29]
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CNq = − 1

u0

Ltot∫
0

C ′Nα(x− xcm)dx [30]

CNηi =

Ltot∫
0

C ′Nα σi(x)dx [31]

CNη̇i = − 1

u0

Ltot∫
0

C ′Nα φi(x)dx [32]

with σi and φi being the (position-dependent) val-
ues of the eigenvector of the ith (bending) mode, i.e.,
the rotation and translation component, respectively.
The moment coefficients Cmα , Cmq , Cmηi and Cmη̇i
have the same form, only the integrand is multiplied
with x− xcm, which represents the aerodynamic mo-
ment arm as a function of x.

The total force and moment are thus written as:

FA,z = −
(
CNαα+ CNqq

+

N∑
i=1

CNηi ηi +

N∑
i=1

CNη̇i η̇i

)
q̄Sref

[33]

MA,y =

(
Cmαα+ Cmqq

+

N∑
i=1

Cmηi ηi +

N∑
i=1

Cmη̇i η̇i

)
q̄Srefdref

[34]

with the reference length, dref , assumed to be 1 m.
As can be seen in Fig. 3, the deflection of the

launcher will rotate the engine such that the thrust
direction changes. This has, of course, an impact
on the contribution to ZB and My. The additional
thrust contribution is:

∆FT,z = −T
N∑
i=1

ηiσi(xe) [35]

where σj(xe) is the rotational component of the eigen-
vector of mode j at the engine location. Similarly, the
additional thrust moment is

∆MT,y = −LeT
N∑
i=1

ηiσi(xe)− T
N∑
i=1

ηiφi(xe) [36]

The first component follows from the force contribu-
tion, Eq. [35], whereas the second component origi-
nates from the (translational) elastic deflection.

In summary, for a flexible body the force, ZB , con-
sists of the components given by Eqs. [20], [22], [33]

and [35], whereas the moment, My, is defined by Eqs.
[21], [23], [34] and [36]. Finally, the gravitational load
must be distributed over the axial stations and its
effect included in the bending equations [12]†. The
change in shape affects each bending mode differ-
ently; the contribution to the generalised force for
bending mode i is simply:

Fg,i = −gd sin θ0

Ltot∫
0

φi(x)m(x)dx [37]

V. State-Space Model

The mathematical model that has been set up
must lead to a state-space model for the error dy-
namics that can be used for the stability and control
analysis. The task at hand is relatively simple, as
the models in the previous sections are linear models,
i.e., the rigid-body states are small deviations around
the nominal trajectory or the control-system design
point, the engine dynamics hold for small swivel an-
gles, and the bending equations are, as defined, linear.

In its general form, the system equation of the
state-space model for the error dynamics is given by

ẋ = Ax + Bu [38]

with A and B being the the system and control ma-
trix, respectively. Due to the different groups of state
variables, it is sensible to decompose these matrices to
keep track of where the coefficients have come from.
Three indices suffice to distinguish these groups, i.e.,

1. R for the rigid-body states α, θ and q;

2. E for the engine states ε̈T , ε̇T and εT . These
states originate from the assumption that the
engine is modelled as an electro-hydraulic servo
system, represented by a third-order transfer
function;

3. F for the flexible-body states η̇i and ηi for mode
i. The total number of states in this group de-
pends on how many bending modes N are taken
into account. In case sloshing is considered,
modes with a lower frequency are introduced,
which means that more bending modes may have
an effect on the motion.

A =

ARR ARE ARF

AER AEE AEF

AFR AFE AFF

 [39]

†When one would derive the bending equations of motion
starting with the Lagrange equation, the contribution of grav-
ity would be included in the potential energy.
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B =

BR

BE

BF

 [40]

The state vector, x, is thus given by

xT = (α θ q ε̈T ε̇T εT η̇1 η1 ... η̇N ηN )
T

The only control is the commanded swivel angle, so
u = εT,c.

In the definition of A, AER = AEF = 0. The
non-zero matrices are defined as follows:

ARR =

−
CNα q̄Sref

mu0
− gd sin θ0

u0

CNq q̄Sref
mu0

+ 1

0 0 1
Cmα q̄Sref

Iyy
0

Cmq q̄Sref
Iyy


[41]

ARE =

 me∆Le
mu0

0 T
mu0

0 0 0
meLe∆Le+Ie

Iyy
0 LeT

Iyy

 [42]

ARF =

aα,η̇1 aα,η1 . . . aα,η̇N aα,ηN
0 0 ... 0 0

aq,η̇1 aq,η1 ... aq,η̇N aq,ηN

 [43]

with, for i = 1, ..., N :

aα,η̇i = −CNη̇i q̄Sref

aα,ηi = −
CNηi q̄Sref − Tσi(xe)

mu0

aq,η̇i =
Cq,ηi q̄Srefdref

Iyy

aq,ηi =
Cmηi q̄Srefdref − LeTσi(xe)− Tφi(xe)

Iyy

AEE =

−2ζeωe −ω2
e −Keω

2
e

1 0 0
0 1 0

 [44]

For the current study, Ke = 15, ωe = 50 rad/s,
ζe = 0.7. As mentioned before, selecting Ke > 1
will lower the eigenfrequency of the engine dynamics,
as is shown in the next section.

Each bending motion depends on the generalised
force for that specific motion. This generalised force
is found by multiplying all the external loads with
the eigenvector of that mode. The external loads are
again a function of the bending motion and the po-
sition along the vehicle. Note that the subscripts i

and j below both indicate a flexible mode, up to the
maximum of N .

AFR =


aη̇1,α aη̇1,θ aη̇1,q

0 0 0
...

...
...

aη̇N ,α aη̇N ,θ aη̇N ,q
0 0 0

 [45]

with

aη̇i,α = −q̄Sref

Ltot∫
0

C ′Nαφi(x)dx [46]

aη̇i,θ = −gd sin θ0

Ltot∫
0

φi(x)m(x)dx [47]

aη̇i,q = − q̄Sref
u0

Ltot∫
0

(x− xcm)C ′Nαφi(x)dx [48]

AFE =


aη̇1,ε̈T 0 aη̇1,εT

0 0 0
...

...
...

aη̇N ,ε̈T 0 aη̇N ,εT
0 0 0

 [49]

with

aη̇i,ε̈T = me∆Lcm,eφi(xe) + Ieσi(xe)

aη̇i,εT = Tφi(xe)

AFF =


aη̇1,η̇1 aη̇1,η1 . . . aη̇1,η̇N aη̇1,ηN
aη1,η̇1 aη1,η1 . . . aη1,η̇N aη1,ηN

...
...

...
...

...
aη̇N ,η̇1 aη̇N ,η1 . . . aη̇N ,η̇N aη̇N ,ηN
aηN ,η̇1 aηN ,η1 . . . aηN ,η̇N aηN ,ηN


[50]

with, for i 6= j:

aη̇i,η̇j = − q̄Sref
u0

Ltot∫
0

φi(x)C ′Nαφj(x)dx

aη̇i,ηj = −q̄Sref

Ltot∫
0

φi(x)C ′Nασj(x)dx−Tφi(xe)σj(xe)

aηi,η̇j = aηi,ηj = 0

and for i = j

aη̇i,η̇i = aη̇i,η̇i − 2ζiω
2
i
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aη̇i,ηi = aη̇i,ηi − ω2
i

aηi,η̇i = 1

aηi,ηi = 0

Note: the structural damping ζi has not been deter-
mined according to any design. Vibration tests show
that the structural damping is at most a few per-
cent of the critical damping. Therefore, a structural
damping of ζi = ζs = 0.015 is used in this study,
which is a spacecraft industry standard (Foist et al.,
2004).

Lastly, to complete the model description, the
components of B are necessary:

BR = BF = 0 [51]

and

BE =

Keω
2
e

0
0

 [52]

VI. Results

Stability and Control Analysis

As a measure of the stability of the launch vehicle,
the gain and phase margin of the system can be in-
vestigated. The gain margin is the factor by which
the overall system gain can be increased before insta-
bility occurs. Both the rigid body control mode and
gain stabilised bending modes require a gain margin
of about 6dB. The phase margin is the additional
phase lag that the vehicle can tolerate without be-
coming unstable. The rigid-body control mode re-
quires a phase margin of 30◦ and phase-stabilised
bending modes should have a margin of 40◦ (Seifert
and Brown, 1961).

The stability and control analysis will be treated
in several steps. To begin, the eigenvalues of the rigid
body (ARR) are all real, of which two are unstable:
λ1 = -2.1288, λ2 = 1.9811, and λ3 = 0.0175. The
two larger eigenvalues are associated with the rigid-
body rotation around the centre of mass, and with an
unstable mode the need for a control system is obvi-
ous. The small, unstable mode is associated with a
drift of the flight path in response to wind. This drift
is quite small in comparison with the other unstable
mode, so it will not cause any serious problems. Fig-
ure 5 shows the eigenvalues of the complete system,
including engine dynamics and bending modes.

To stabilise the rigid body a simple PD controller
is implemented, as the goal of this study is not to
design the best control system possible. According

real part
-30 -25 -20 -15 -10 -5 0 5

im
ag

in
ar

y 
pa

rt

-500

-400

-300

-200

-100

0

100

200

300

400

500
rigid body
engine
flexible body

Fig. 5: Uncoupled, open-loop eigenvalues at t = 63 s.

to Geissler (1970), the maximum value of the nat-
ural frequency (of the controlled rigid body motion)
should be less than one-fifth of the first bending-mode
frequency, to keep the rigid and elastic modes sepa-
rated. Moreover, Jerger and Merrill (1960) provides
a rule of thumb to establish a lower bound. It thus
follows that the closed-loop rigid-body requirement
is 3 rad/s ≤ ωr ≤ 8 rad/s, with a damping factor of
ζ ≈ 0.7. Of course, the maximum natural frequency
also depends on the physics of the system. The en-
gine deflection angle as well as vehicle attitude and
engine deflection rates should at all times remain be-
neath their limit values. By inspecting comparable
launchers, it is established that a maximum engine
deflection angle −6◦ ≤ εT,max ≤ 6◦, a maximum en-
gine deflection rate of −100◦/s ≤ ε̇T,max ≤ 100◦/s,
and a maximum pitch rate of −10◦/s ≤ q ≤ 10◦/s.

From a root-locus analysis one finds that it is pos-
sible to stabilise the system for proportional-gain val-
ues larger than Kp = 1.86 (derivative gain Kd = 0).
This proportional controller results in a slow re-
sponse, which is also very oscillatory. The conclusion
is that a non-zero Kd is required for a proper re-
sponse. Further analysis shows that selecting Kp = 4
and Kd = 1.2 s yields a satisfactory response, with
ωr,cl = 4.7 rad/s and ζr,cl = 0.83, the latter of which is
a bit larger than required, but this should not pose a
problem. The unstable drift mode has also stabilised,
with λ3,cl = -0.097.

When the servo dynamics are included in the anal-
ysis, three more poles are introduced (Fig. 5), where
the periodic eigenvalues are due to the engine iner-
tia, i.e., the earlier mentioned tail-wags-dog. Despite
the specification of ωe = 50 rad/s, the inclusion of
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a non-unity torque feedback gain Ke, the natural
frequency of the engine dynamics is only ω′e = 36.3
rad/s (with ζe = 0.57). Adding the engine dynam-
ics leads to an increase of the closed-loop rigid-body
mode frequency to ωr,cl = 9.4 rad/s with a damp-
ing of ζr,cl = 0.73. As ωr,cl is too large now, Kp

can be reduced to compensate for this. A further
analysis leads to Kp = 2.8 and Kd = 0.9 s, with
natural frequencies of ωr,cl = 4.9 rad/s (rigid body)
and ωe,cl 37.1 rad/s (engine), with damping factors
ζcl = 0.75 and ζe = 0.64. As can be seen the engine
has recovered some of its damping. The aperiodic
rigid-body drift has become a bit more stable, with
λ3,cl = -0.108.

In terms of gain and phase margins, the phase
margin, Pm, for θ is infinite, whereas the gain mar-
gin, Gm, is 20.1 dB (at ω = 9.52 rad/s), which has
dropped down from infinity when just the rigid body
was considered. This gain margin still guarantees suf-
ficient stability. In Fig. 6, the Bode plots of α, θ and
εT are shown. It can be seen that the frequency re-
sponse of α and θ are almost identical. This can also
be seen from the transient responses to a step func-
tion (not shown here). For input signals, i.e., εT,c,
with a frequency above 6 rad/s the dynamic gain de-
creases. The dip around 50 rad/s is due to the tail-
wags-dog eigenvalue pair, which limits the amplitude
at this frequency. The bandwidth of εT is somewhat
larger and its response is less damped (gain margin of
13.2 dB at ω = 22.9 rad/s, phase margin is 91.1◦, at
ω = 8.94 rad/s), resulting in a small resonance peak
at its natural frequency. Therefore, the stability and
response of the rigid launcher with servo dynamics is
acceptable.
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Fig. 6: Bode plot of attitude and engine angles

The effects of adding a single bending mode to
the system are briefly examined, initially without
structural damping (ζs = 0), and then with the
standard value of ζs = 0.015. In both situations
the controlled system parameters of Kp = 2.8 and
Kd = 0.9 s are used. Adding the bending mode with-
out structural damping leads to an additional pole
pair (ωf1 = 42.2 rad/s), which is unstable, albeit
marginally (ζf1 = −6.63·10−4). It appears that there
is no way of stabilising this mode for any value of Kp

and Kd. With structural damping, the mode does
become stable, with ζf1 = 1.44 · 10−2 ≈ ζs. The
bending mode (either damped or undamped) has a
small effect on the rigid-body mode, its natural fre-
quency slightly increases from ωr,cl = 4.9 rad/s to
5.1 rad/s. The damping increases from 0.75 to 0.76.
The eigenmodes of the engine are hardly affected.

Now, include the higher bending modes, listed in
Table 4: for four bending modes, there are, of course,
four extra zero-pole pairs. All four are unstable, with
damping factors of ζf1 = −6.50·10−4, ζf2 = −1.50·
10−3, ζf3 = −3.73 ·10−4, and ζf4 = −5.84 ·10−4.
It is obvious that the second bending mode is the
most unstable. Adding structural damping changes
the damping factors to ζf1 = 1.44·10−2, ζf2 = 1.35·
10−2, ζf3 = 1.46·10−2, and ζf4 = 1.44·10−2, values
close to the actual value of ζs.

The Bode plot for the elastic system is shown in
Fig. 7, and shows that the elastic mode may pose a
problem. It is clear that it will be amplified, while
controlling an error in the pitch angle (by using
the engine swivel angle), even at low frequencies.
However, it should be noted that if the deformations
remain small, the problems may remain limited.
At its natural frequency, the bending mode spikes.
In terms of gain and phase margins, the system
has changed as follows. For α and θ, Gm and Pm
have not changed. For the engine, though, the
changes are significant: Gm = 9.91 dB (was 13.2 dB)
at ω = 0.527 (22.9) rad/s, Pm = -84.1◦ (91.1◦),
at ω = 3.51 (8.94) rad/s. As the frequencies are
low, this may interfere with the control. For the
bending mode the gain and phase margins are
Gm = -5.6 dB at ω = 0.53 rad/s and Pm = 71.7◦ at
ω = 0.064 rad/s. In the second part of this section
we will look at the transient response, and how these
gain and phase margins affect the controllability.
This will be done for the structurally damped system.

Response Analysis

To study the transient response the perturbation con-
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Fig. 7: Bode plot of attitude and engine angles, and
first generalised coordinate

trol due to an offset in pitch angle of 1◦ is analysed.
This is done for two conditions, one without wind and
one with turbulence that affects the angle of attack.
The turbulence is modelled with Dryden spectral den-
sities, as a white noise passing through a linear, ratio-
nal filter (DoD, 1980; Justus et al., 1990). Parameters
used are a scale length at medium/high altitudes of
Lw = 1100 m, a gust intensity of σw = 1.73 m/s, and a
probability of exceedance of high-altitude intensity of
10−3 (moderate conditions). The model is evaluated
for an altitude of h0 = 11 km and u0 = 493.07 m/s,
and will, in this case, produce a noisy wind compo-
nent in the Z-direction, ∆w. As before, this can be
converted to an equivalent angle-of-attack perturba-
tion of ∆αt = ∆w

u0
. This perturbation is added as a

forcing function to the state-space model, by creat-
ing a second input and extending the input matrix B
with a copy of the first column of A (the one asso-
ciated with α). As such, the system will respond to
∆αt as it would to α.

Currently, it is desired only to illustrate the effect
of modelling issues on the performance of a reason-
ably stable, closed-loop rigid-body launcher. Having
said this, Fig. 8 shows the rigid-body response to a
2◦-step in θ. The response is somewhat sluggish, and
could, of course, be improved by increasing the gains.
The response is stable, for both cases; however, the
effect of encountering turbulence is visible. It is noted
that perfect knowledge about the feedback states, θ
and q, is assumed. The latter, in this case, is the
rotation around the centre of mass, implying that a
possible gyro would be located there. Later on, the
effect of moving the gyro to a more logical location is
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Fig. 8: Rigid-body response to a step-command of
θc = 2◦, moderate turbulence

considered.

For the next response analysis, the engine dynam-
ics and the bending modes are included. Just adding
the engine dynamics does not change the response of
the system shown in Fig. 8, at least not noticeably.
The engine dynamics are fast enough to track εT,c,
although there is a small delay when the step is ap-
plied. However, the rigid-body response is decoupled
from the engine response. The same actually applies
when the bending modes are added. They are well
separated from the rigid-body modes and are thus
decoupled for this step response. Even for a severe
turbulence (Lw = 1100 m and σw = 6.0 m/s), the sys-
tem remains stable. This response is shown in Fig. 9:
despite the angle-of-attack induced oscillations, the
closed-loop system is well-behaved.

Adding the two slosh modes (Table 4) does not
influence the transient response much, although an
oscillation in the commanded swivel angle is intro-
duced (Fig. 10) that also shows as an oscillation
in the pitch angle, albeit the presence of turbulence
seems to diminish this oscillation. It should be anal-
ysed in more detail how this oscillation affects the
structure, in terms of loads and stresses, as well as
the servo mechanism actuating the engine. Figure
11 shows the required actuation moments, which are
calculated according to Me = Ieε̈T . A spike is obvi-
ously observed when the step command is executed,
which by itself should be checked for its feasibility.
However, the noisy swivelling requires attention as
the actuating moment is not negligible.

Concerning the deformation of the body, one may
look at the deformation induced by each of the four
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Fig. 9: Flexible-body response to a step-command of
θc = 2◦, severe turbulence
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Fig. 10: Flexible-body response to a step-command
of θc = 2◦, severe turbulence, with sloshing

time (sec)
0 5 10 15 20 25 30

se
rv

o 
m

om
en

ts
 (

N
m

)

-3000

-2000

-1000

0

1000

Fig. 11: Required engine actuation moments
(θc = 2◦, severe turbulence, with sloshing)

flexible modes, Eq. [13]; the sloshing modes behave
more or less like rigid-body modes and do not cause

much deformation. The maximum deformation oc-
curs at t = 1.2 s when the largest control effort takes
place. In Fig. 12, this deformation is shown. The
maximum difference is around 8 mm. It remains to
be analysed what kind of stress this introduces in the
structure.
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Fig. 12: Maximum deformation of the launcher at
t = 1.2 s (θc = 2◦, severe turbulence, with slosh-
ing)

So far it is assumed that the measurements of θ and
q are ideal and known for the location of the centre of
mass, and are not affected by the deformation of the
launcher. In reality, the gyros also measure the de-
formation of the structure at the attachment point of
the sensors. Usually, the gyros are placed at the for-
ward end of the second stage, just below the payload
adapter. For the PacAstro, this means that the gy-
ros are placed at xgyro = 21.5 m, so 9.5 m above the
current centre-of-mass location (xcm = 12.0 m). The
gyro measurements, θ̃ and q̃, are a combination of the
rigid-body parameters and the angular displacement
of the gyro’s location due to flexibility:

θ̃ = θr +

N∑
i=1

σi(xgyro)ηi [53]

q̃ = qr +

N∑
i=1

σi(xgyro)η̇i [54]

These are the signals that are fed back to the con-
troller. The simulations will be done without turbu-
lence and with moderate turbulence.

In Fig. 13, the response curves are shown for the
flexible launcher without sloshing. In principle, the
pitch-angle response looks to be convergent to 2◦,
but if one looks at the swivel angle he sees that it
is oscillating severely, irrespective of turbulence be-
ing present. It is only due to the fast servo dynamics
that the controller remains stable, being effectively a
rapid bang-bang controller. Of course, the actual ac-
tuation power is not taken into account here, nor are
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the vibrations and the structural loads it will induce.
It is safe to conclude that the launcher cannot sustain
this and will most likely break up. The measurements
of the gyros are shown in Fig. 14. They confirm that
the vibrations at the location of the gyros are severe.
Note that, for comparison, the rigid-body equivalents
are plotted as well.
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Fig. 13: Flexible-body response with gyro measure-
ments (θc = 2◦, moderate turbulence)
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Fig. 14: Gyro measurements (θc = 2◦, moderate tur-
bulence)

To complete the analysis, the result for the
launcher with the sloshing modes is also included.
It follows that the results are even worse than before.
The plots are shown in Figs. 15 and 16. The con-
troller is no longer capable of stabilizing the vehicle
and the pitch angle diverges.

Therefore, it can be concluded that sensor place-
ment and measurement filtering is important, but
only in combination with a robust controller. If the
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Fig. 15: Flexible-body response with gyro measure-
ments (θc = 2◦, moderate turbulence, sloshing)
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Fig. 16: Gyro measurements (θc = 2◦, moderate tur-
bulence, sloshing)

sensor placement of a well-controlled system has no
effect on its controllability, then sensor placement
does not warrant any further study.

VII. Conclusions

The bending modes and natural frequencies of
the flexible launcher have been determined in NAS-
TRAN. When sloshing is included, the eigenfrequen-
cies of the flexible modes tend to slightly increase,
but the appearance of low-frequency sloshing modes
approach rigid-body-like modes. A root-locus anal-
ysis at one design point shows potential instability
of the rigid body modes, but a non-zero propor-
tional and derivative gain can stabilise the system.
Including the bending modes has a destabilising ef-
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fect on the system, however, it can be compensated
with industry-standard structural damping. The re-
sponse due to turbulence, swivel-engine control in-
puts, sloshing, and gyro placement are also simulated
for 2◦ step-commands. The step response of a flexi-
ble launcher without sloshing seems to be convergent,
regardless of the turbulence, but a closer look at the
engine swivel angle shows that it is effectively at the
limit of control, and including sloshing worsens the
situation and the pitch angle diverges.

This research focussed on the point during the
flight of maximum dynamic pressure, which occurs
at t = 63 s. Although this is considered to be the
worst-case control point in the path, ideally the entire
flight path stability and control should be considered,
focussing on the effects of continuously reducing the
fuel and oxidiser volume over the duration of flight.
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