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A B S T R A C T

This paper introduces a machine learning approach for optimizing propellers. The method aims to improve
the computational cost of optimization by reducing the number of evaluations required to find solutions.
This is achieved by directing the search towards design clusters with good performance, i.e. high propulsive
efficiency and low cavitation. Three types of clusters are expected. The first cluster constitutes designs with
performance of interest, i.e. high efficiency and low cavitation. The second cluster constitutes designs with
performance not of interest, i.e. low efficiency and high cavitation. The third cluster constitutes designs whose
performance cannot be estimated with the Boundary Element Methods (BEM) that we use in this study. In
simple cases with single objective optimization to maximize efficiency, these clusters can be identified a-priori
with unsupervised classifiers provided that orthogonally independent parameters are used as demonstrated
in this paper. For multi-objective constrained optimization, to maximize efficiency and minimize cavitation,
for example, supervised classifiers may be required to learn the clusters. Classical design variables such as
chordlength, pitch, skew, rake, thickness distribution and camber of hydrofoils cannot be used to identify
these clusters because of multicollinearity. Thus, a new orthogonal parametric model is proposed where the
parameters are directly derived from the propeller blade mesh. As the blade surface mesh is used as boundary
conditions to solve the governing equations, the orthogonal parameters are expected to have a stronger
correlation with performance predictions of BEM or Computational Fluid Dynamics (CFD) than classical
design variables. We demonstrate that design clusters with good performance can be identified with few BEM
evaluations. Furthermore, the method synergizes explainable supervised and unsupervised learning to advice
search algorithms and quickly guide them to lucrative regions in the design space. However, reducing the cost
of optimization results in a trade-off with completeness of the search; this is also investigated in this paper.
The method is demonstrated on a simple fully wetted flow case of the benchmark Wageningen B-4 70 propeller
with P/D=1.0, as the geometry and open-water curves are readily accessible allowing back of the envelope
verification and validation of our results.
1. Introduction

The maritime industry has embraced its responsibilities towards
the environment and is making active efforts to reduce Green House
Gas (GHG) emissions. The International Maritime Organization (IMO)
aims to achieve a 50% reduction in GHG emissions by 2050 compared
to 2008 levels (IMO, 2019). Realizing this goal requires significantly
improving the propulsive efficiency, in addition to improving thermo-
dynamic efficiency, transitioning to cleaner fuels, and adopting better
propulsion architectures. For modern vessels, propulsive efficiency is
typically between 29%–35% (Theotokatos and Tzelepis, 2015). Im-
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proving the hydrodynamic efficiency of propellers is an important area
of focus as it plays a critical role in determining the total propulsive
efficiency. Optimizing propellers to improve efficiency and cavitation
behaviour is computationally expensive even in the preliminary design
phase. This is especially the case for clean-slate designs which do not
use legacy propeller series. Traditional preliminary design of propellers
involves two steps (Vesting, 2015): In the first step, systematic open-
water studies of legacy propeller series are performed to identify the
main design parameters. In the second step, a Design and Optimization
(D&O) problem is solved to numerically determine specific design
parameters. Currently, the maritime industry is transitioning to shape
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Nomenclature

𝑓∗ Posterior mean prediction for input 𝑥∗
𝜖 Independent and identically distributed

noise
𝜂 Open-water efficiency, 𝐽 .𝐾𝑡∕2𝜋𝐾𝑞
𝛾 Skew angle in radians
𝜆 Rake angle in radians
V Posterior variance prediction
 (𝜇, 𝜎2) Normal distribution
R𝑐𝑎𝑟𝑡 A Cartesian frame of reference
R𝑐𝑦𝑙 A cylindrical frame of reference
R𝑜𝑟𝑡ℎ A reference frame defined by orthogonal

vectors
𝐟 Latent function values,

𝐟 = (𝑓 (𝑥1),… , 𝑓 (𝑥𝑁 ))𝑇

𝜙(�⃗�) Feature map of input �⃗�
𝜌∞ Free-stream density
𝛴 Diagonal matrix of singular values
𝜎2𝑛 Noise Variance
E[X] Expectation of any matrix 𝑋
K 𝑛 × 𝑛 Gram matrix
k∗ The vector K(𝑋, 𝑥∗)
R[X,X] Correlation coefficient matrix

of any matrix 𝑋
𝜃 Pitch angle in radians
𝜇, 𝜇∗ The mean vector for rows of 𝑀 and 𝑀∗

𝑝 A point on a B-Spline surface
𝑟𝑖 Vector from origin to the mid-chord loca-

tion
𝑠 A design vector of classical design variables
�⃗� The design vector of orthogonal parameters
𝐶𝑓 Skin Friction Coefficient
𝐷 Propeller diameter
𝑓 Real valued function 𝑓 (𝑥) ∶ R𝑁 → R
𝑓𝑜𝑏𝑗 Real valued objective function

𝑓𝑜𝑏𝑗 (𝑥) ∶ R𝑛 → R
𝑔 A real valued constraint function

𝑔(𝑥) ∶ R𝑛 → R
𝐽 Advance ratio, 𝑣∞∕𝜔𝐷
𝑘′ Number of orthonormal parameters
𝑘(𝑥, 𝑥∗) Kernel function evaluation at inputs 𝑥 and

𝑥∗
𝐾𝑞 Torque Coefficient, 𝑀𝑥∕𝜌∞𝑣2𝑟𝑒𝑓𝐿

3
𝑟𝑒𝑓

𝐾𝑡 Thrust Coefficient, 𝑇 ∕𝜌∞𝑣2𝑟𝑒𝑓𝐿
2
𝑟𝑒𝑓

𝑀 Data Matrix of all propeller geometries in
R𝑁 ′×𝑘

𝑐𝑦𝑙
𝑀∗ Parameter matrix for B-Spline discretization
𝑀𝑥 Torque
𝑁 Number of propellers in universal set
𝑁𝑖,𝑝(𝑡) A 3rd order 𝑝th degree basis function
𝑝𝑎𝑡𝑚 Absolute atmospheric pressure
𝑆 The sample matrix of classical design vari-

ables
𝑠(�⃗�) The Silhouette Score of a vector �⃗�
𝑠𝑖 The 𝑖th classical design variable in 𝑠
𝑇 Thrust
𝑡 Knots of the B-Spline surface
𝑇0 Target Thrust
𝑈 Left singular vector matrix
2

i

𝑢, 𝑣 B-Spline surface parameters
𝑉 Right singular vector matrix
𝑣∞ Open-Water Speed
𝑣𝑐𝑎𝑣 Cavitation inception speed
𝑣𝑠ℎ𝑖𝑝 Ship speed
𝑋 The parameter matrix
𝑥∗ A new query vector
𝑥𝑖 The 𝑖th orthogonal parameter in �⃗�
𝑦 A real valued range
𝑦𝑐 Performance label for designs
k Dimensionality

adaptive propellers (Liu and Young, 2009) and also aims for hydroa-
coustic optimization (Brizzolara and Gaggero, 2009). Designers may
need to start from fresh propeller geometries whose open water curves
are not available. Consequently, methods to numerically determine
design parameters, i.e. D&O are starting to become the first step in
preliminary design. Therefore, it is very important to the improve the
reliability of D&O and also reduce its computational cost.

Optimization methods primarily focus on improving efficiency and
cavitation behaviour. In addition to efficiency and cavitation objectives,
propeller optimization must also account for constraints on hull excita-
tion (Bosschers, 2009), cavitation erosion (van Terwisga et al., 2007),
ship speed, thrust, and strength. Typically, the lower computational
cost of Boundary Element Methods (BEM) motivates their use in the
preliminary design phase to predict the efficiency and cavitation be-
haviour of a blade geometry. To generate the blade geometry, most
methods rely on (a) classical design variables — pitch, diameter, hy-
drofoil camber, thickness distribution, skew and rake (Arapakopoulos
et al., 2019; Esmailian et al., 2017), (b) control points of splines or
coefficients of equations that define propeller families (Vesting et al.,
2013; Gaggero et al., 2017; Bertetta et al., 2012) and, (c) free-form
control points (Garg et al., 2017). Preliminary design methods typi-
cally use classical design variables as their values also communicate
design specifications. However, classical design variables do not always
lead to a good formulation of the optimization problem. An optimiza-
tion problem is well formulated if design variables can be considered
orthogonally independent. In the case of classical design variables,
changing a single design variable perturbs multiple nodes on the mesh.
Since, the surface is often defined with splines, the translation in mesh
nodes is strongly correlated and also predictable. Furthermore, in most
cases, multiple classical design variables tend to change the same mesh
nodes. This results in multicollinearity, i.e. two or more variables being
strongly correlated (Allen, 1997). Thus, it is difficult to isolate the
impact of individual design variables on objectives and constraints.

Consider the objective

max𝑓 = 𝜂
(

�⃗�(𝑠)
)

, (1)

where the blade geometry is defined by classical design variables 𝑠, 𝜂 is
he hydrodynamic efficiency and �⃗� is the generated mesh for a blade
eometry (see Eq. (8)). The optimization problem is well formulated if

𝑠 can be considered orthogonally independent. The Jacobian of 𝑓 by
hain rule is

𝐟 = 𝐽1 ⋅ 𝐽2 =
[ 𝜕𝑓
𝜕𝑚0

⋯ 𝜕𝑓
𝜕𝑚𝑞

]

⋅

⎡

⎢

⎢

⎢

⎣

𝜕𝑚0
𝜕𝑠0

⋯ 𝜕𝑚0
𝜕𝑠𝑟

⋮ ⋱ ⋮
𝜕𝑚𝑞
𝜕𝑠0

⋯
𝜕𝑚𝑞
𝜕𝑠𝑟

⎤

⎥

⎥

⎥

⎦

, (2)

where 𝐽1 is the Jacobian of 𝑓 with respect to the mesh �⃗� ∈ R𝑞 and 𝐽2 is
he Jacobian of the mesh with respect to the design vector 𝑠 ∈ R𝑟. 𝑠 can
e considered orthogonally independent if 𝐽2 is an orthonormal matrix,
.e. 𝜕�⃗�∕𝜕𝑠 ⋅ 𝜕�⃗�∕𝜕𝑠 = 0. Because changing a single classical variable
𝑖 𝑗
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perturbs multiple nodes of the mesh and multiple classical design
variables tend to change the same mesh nodes, 𝜕�⃗�∕𝜕𝑠𝑖 ⋅ 𝜕�⃗�∕𝜕𝑠𝑗 ≠ 0.
Thus, 𝑠 cannot be considered orthogonally independent. This is also the
case for other objectives/constraints such as suction side cavity volume
(𝑉𝑐𝑎𝑣,𝑏), pressure side cavity volume (𝑉𝑐𝑎𝑣,𝑓 ) and tip-vortex cavity radius
for a propeller blade. Hence, the relation between 𝜂, 𝑉𝑐𝑎𝑣,𝑏, 𝑉𝑐𝑎𝑣,𝑓 , 𝑟𝑐 and
classical design variables is obscured.

Often, in the preliminary design phases, the use of Boundary Ele-
ment Method (BEM) results in relatively low computational cost but
comes with high uncertainties (Vaz et al., 2015). Thus, the relation
between objectives, constraints and mesh (𝐽1 in Eq. (2)) is also obscured
to an extent. Hence, optimization problems depending on classical
design variables and BEM may require more evaluations than necessary
to identify lucrative regions in the design space. This is irrespective of
whether a gradient descent or gradient free search algorithm is used.

In this paper, we propose to reduce the computational cost of
optimization by (a) addressing the challenge of multicollinearity which
affects 𝐽2 in Eq. (2), with a set of orthogonal parameters �⃗� such that
𝜕�⃗�∕𝜕𝑥𝑖 ⋅ 𝜕�⃗�∕𝜕𝑥𝑗 = 0 and, (b) applying explainable machine learning
to model the uncertainties in predictions made by BEM, which affects
𝐽1 (Eq. (2)) in the preliminary design phase.

The orthogonal parameters are derived from Singular Value De-
composition (SVD) of a data matrix populated with variations of the
blade geometry. There are two comparable applications of SVD. The
first is for the symbolic reformulation of design and optimization
problems (Sarkar et al., 2009) and the second is for the dimension re-
duction in single- and multi-disciplinary hull form optimizations (Diez
et al., 2016). In both cases, relatively small data sets with large di-
mensionality are reduced to very few dimensions. In Sarkar et al.
(2009), optimization problems are even clustered based on symbolic
similarities.

BEM typically tends to predict similar performance, i.e. efficiency
and cavitation behaviour, for comparable blade geometries. Thus, three
clusters are expected during design and optimization. The first cluster
constitutes of designs with performance of interest, i.e. high efficiency
and low cavitation. The second cluster constitutes of designs with
performance not of interest, i.e. low efficiency and high cavitation.
The third cluster consists of designs whose performance cannot be
estimated accurately due to limitations of the BEM used in this study.
We consider the latter two clusters as designs not of interest. Thus,
designs of interest are assigned the label 𝑦𝑐 = 1 and designs not of
interest are assigned the label 𝑦𝑐 = 0. With the use of the proposed
orthogonal parameters, it is expected that these clusters are discernable
as the relation between hydrodynamic efficiency (𝜂), 𝑉𝑐𝑎𝑣,𝑏, 𝑉𝑐𝑎𝑣,𝑓 and
𝑟𝑐 are not obscured. In simple cases with single objective optimization,
these clusters can be identified a-priori with unsupervised classifiers
as demonstrated in this paper. Thus, fewer evaluations are required
to identify lucrative regions in the design space. For multi-objective
constrained optimization, supervised classifiers are required to learn
the clusters and focus search in lucrative regions. The multi-objective
constrained optimization with supervised classifiers is demonstrated in
a separate publication (Doijode et al., 2022). Both papers use explain-
able classifiers (Abedjan et al., 2019) as they provide insight into why
a prediction is made.

The resulting optimization method – Dynamic Optimization – is
elaborated in Section 2. We call it Dynamic Optimization (DO) because
the parameters are derived from the blade meshes that become bound-
ary conditions for the equations governing the dynamics of the flow.
Sections 2.1–2.5 detail the building blocks of the method. Section 3
details the demonstration setup and modelling of uncertainty. Section 4
presents the results on reliability and performance of the orthogo-
nal parameters, supervised and unsupervised classifiers. The trade-offs
between efficiency, completeness and optimality for Dynamic Opti-
mization is demonstrated in Section 4.3. The conclusions are provided
in Section 5.
3

Fig. 1. Dynamic Optimization workflow.

2. Dynamic Optimization

Dynamic Optimization is a constraint respecting design method,
where search agents are advised by classifiers. The workflow is de-
scribed in Fig. 1 and the implementation of DO is detailed in Algorithm
1. In the figure each element of the method is labelled. At the start,
objectives, constraints and design variables are specified (Block 1–2,
Fig. 1). Then a search/sampling strategy based on systematic, ran-
dom or pseudo-random sampling or another search agent is chosen
(Block 3). Based on the sampling, the geometry is generated (Block 4,
Fig. 1). After modelling, a set of orthogonal parameters (�⃗�∗) that define
the design are computed. These orthogonal parameters are projections
of the propeller mesh �⃗�∗ in a 𝑘′ dimensional hyperspace (R ).
𝑜𝑟𝑡ℎ𝑜
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Algorithm 1 Dynamic Optimization — Single Objective
Input: 𝑓1, 𝑔1, 𝑔2, ..., 𝑔𝑚, 𝜆,𝑁, 𝜎2

Output:𝜂𝑚𝑎𝑥, 𝑠𝑠𝑜𝑙
1: procedure Dynamic Optimization - Single Objective
2: 𝑆,𝑋 ← ∅
3: 𝜂𝑚𝑎𝑥 ← 0
4: 𝑆 ← SEARCH(*params)
5: for 𝑖 ← (0 → 𝑁) do
6: 𝑠 ← 𝑆𝑖
7: Generate geometry and mesh (�⃗�∗) for 𝑠
8: �⃗�∗ ← PROJECTION(R𝑜𝑟𝑡ℎ𝑜, 𝑘′, �⃗�∗) ⊳ See Algorithm 4
9: 𝑋 ← 𝑋 ∪ �⃗�∗

10: 𝑋 ← NORMALIZE(𝑋)
11: 𝐶0, 𝐶1 ← 𝐺𝐸𝑇 _𝐶𝐿𝑈𝑆𝑇𝐸𝑅𝑆(𝑋, 𝜆) ⊳ See Algorithm 2, 𝜆 ∈ (0, 100.0]
12: 𝐶𝑓𝑖𝑟𝑠𝑡, 𝐶𝑠𝑒𝑐𝑜𝑛𝑑 , 𝜂𝑚𝑎𝑥, 𝑠𝑠𝑜𝑙 ← 𝐵𝐸𝑆𝑇 _𝐶𝐿𝑈𝑆𝑇𝐸𝑅(𝐶0, 𝐶1) ⊳ See Algorithm 3
13: #At this point 𝜆∕100 ×𝑁 designs have been evaluated and the better cluster is known.
14: 𝑋𝑛𝑏 ← {𝑥𝑖|𝑖 ∈ 𝐶0 ∪ 𝐶1}
15: GNB ← GAUSSIAN-NB(𝑋𝑛𝑏, 𝑦𝑐 ) ⊳ 𝑦𝑐 = 1 for 𝐶𝑓𝑖𝑟𝑠𝑡 and 𝑦𝑐 = 1 for 𝐶𝑠𝑒𝑐𝑜𝑛𝑑
16: 𝑋′ ← 𝑋 −𝑋𝑛𝑏
17: if 𝑆′ ≠ ∅ then
18: for 𝑖 ← (0 → 𝑙𝑒𝑛(𝑋′)) do
19: if GNB(𝑥𝑖) == 1 then
20: 𝜂 ∗← EVAL(𝑠𝑖) ⊳ BEM or CFD.
21: if 𝜂 ∗> 𝜂𝑚𝑎𝑥 then
22: 𝜂𝑚𝑎𝑥, 𝑠𝑠𝑜𝑙 ← 𝜂 ∗, 𝑠𝑖
23: else
24: Pass ⊳ Skipped an evaluation and reduced cost of optimization.
25: return 𝜂𝑚𝑎𝑥, 𝑠𝑠𝑜𝑙
Algorithm 2 Clustering Algorithm
Input: 𝑋, 𝜆
Output:𝐿0, 𝐿1

1: procedure GET_CLUSTERS
2: 𝑢𝑛𝑠𝑢𝑝_𝑐𝑙𝑓 ← GaussianMixture(n_clusters=2, initialization=kmeans)
3: unsup_clf.train(X)
4: 𝑦𝑐,𝑢𝑛𝑠𝑢𝑝 ← 𝑢𝑛𝑠𝑢𝑝_𝑐𝑙𝑓 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋)
5: 𝑙1, 𝑙2 ← ∅
6: for 𝑖 ← (0 → 𝑙𝑒𝑛(𝑋)) do
7: if 𝑦𝑐,𝑢𝑛𝑠𝑢𝑝 == 0 then
8: 𝑙1 ← 𝑙1 ∪ 𝑖
9: else

10: 𝑙2 ← 𝑙2 ∪ 𝑖
11: 𝐿0 ← RandomChoiseWithoutReplacement(𝑙1, 𝑖𝑛𝑡(𝑙𝑒𝑛(𝑙1) ∗ 𝜆∕100)) ⊳ Getting Indices between 0 and N
12: 𝐿1 ← RandomChoiseWithoutReplacement(𝑙2, 𝑖𝑛𝑡(𝑙𝑒𝑛(𝑙2) ∗ 𝜆∕100))
13: return 𝐿0, 𝐿1
l
n
e
𝜆
t
s
e
t
o

2

r
m

Section 2.4 details the derivation of orthogonal parameters. These
parameters are defined to address the limitations of traditional para-
metric models. In the first step, based on the normalized orthogonal
parameters (𝑋), the unsupervised classifier finds two clusters (𝐶0, 𝐶1)

ithin which features are comparable (Block 6a, Fig. 1). It is also
ossible to increase the number of clusters; the number of clusters
an be determined by the number of objectives, constraints and also
he expected variance in the propeller geometry. Next, the designer
eeds to specify the percentage of designs (𝜆) to sample from each
ach cluster 𝐶𝑖 for which the detailed analysis is performed with BEM
r CFD (Block 7a, Fig. 1). The results of analysis indicates the cluster
ith best designs (𝐶𝑓𝑖𝑟𝑠𝑡). 𝐶𝑓𝑖𝑟𝑠𝑡 contains the solution (𝑠𝑠𝑜𝑙) with the

best efficiency (𝜂𝑚𝑎𝑥). At this point 𝜆 percentage of designs have been
evaluated and the best design is known. All the evaluated designs 𝑋𝑛𝑏
nd corresponding cluster labels 𝑦𝑐 are used to train the supervised
xplainable Naive-Bayes classifiers (𝐺𝑁𝐵, Algorithm 1:L15 and Block
4

b, Fig. 1). Based on learnt labels, the classifiers guide search agents to 𝑇
ucrative clusters in the design space while passing on designs that are
ot in the better cluster (Block 8, Fig. 1). False positives are caught with
valuations. The effect of false negatives can be controlled by increasing
. Thus, the trade-off with completeness of optimization is controlled by
he designer via the parameter 𝜆. Finally, if all convergence criteria are
atisfied, the design method reports the optimum else it is proposed to
xplore new regions of the design space. The subsequent sections detail
he critical blocks of DO. For the method to be successful, the reliability
f Blocks 5, 6a and 6b (emphasized in Fig. 1) are of critical importance.

.1. Objective, constraints and design variables

Propeller design and optimization is a complex problem which
equires numerous considerations. One of the primary objectives is to
aximize efficiency (𝜂). The problem is constrained by target thrust

0 at a specified ship speed (𝑣𝑠ℎ𝑖𝑝). Other constraints to consider are
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Algorithm 3 Best Cluster
Input: 𝐶0, 𝐶1
Output:𝐶_𝑓𝑖𝑟𝑠𝑡, 𝐶_𝑠𝑒𝑐𝑜𝑛𝑑, 𝜂𝑚𝑎𝑥, 𝑠𝑠𝑜𝑙

1: procedure BEST_CLUSTER
2: 𝜂0, 𝜂1 ← 0⃗𝑙𝑒𝑛(𝐶0), 0⃗𝑙𝑒𝑛(𝐶1)
3: 𝜂𝑚𝑎𝑥 ← 0.0
4: 𝜂𝑡𝑟, 𝑆𝑡𝑟 ← ∅
5: for 𝑖 ← 𝜂0,0....𝜂0,𝑙𝑒𝑛(𝐶0) do
6: 𝜂0,𝑖 ← EVAL(𝑠𝑖)
7: 𝜂𝑡𝑟 ← 𝜂𝑡𝑟 ∪ 𝜂0,𝑖
8: 𝑆𝑡𝑟 ← 𝑆𝑡𝑟 ∪ 𝑠𝑖
9: for 𝑖 ← 𝜂1,0....𝜂1,𝑙𝑒𝑛(𝐶1) do

10: 𝜂1,𝑖 ← EVAL(𝑠𝑖)
11: 𝜂𝑡𝑟 ← 𝜂𝑡𝑟 ∪ 𝜂1,𝑖
12: 𝑆𝑡𝑟 ← 𝑆𝑡𝑟 ∪ 𝑠𝑖
13: �̄�∗,V[𝜂 ∗] ← GPR(𝑋 = 𝑆𝑡𝑟, 𝑦 = 𝜂𝑡𝑟, 𝑣𝑎𝑟 = 𝜎2) ⊳ See Eqs. (28a)–(28b)
14: if max �̄� in 𝐶0 then
15: 𝐶_𝑓𝑖𝑟𝑠𝑡, 𝐶_𝑠𝑒𝑐𝑜𝑛𝑑 ← 𝐶0, 𝐶1
16: else
17: 𝐶_𝑓𝑖𝑟𝑠𝑡, 𝐶_𝑠𝑒𝑐𝑜𝑛𝑑 ← 𝐶1, 𝐶0
18: 𝜂𝑚𝑎𝑥 ← max 𝜂𝑡𝑟
19: return 𝐶_𝑓𝑖𝑟𝑠𝑡, 𝐶_𝑠𝑒𝑐𝑜𝑛𝑑, 𝜂𝑚𝑎𝑥, 𝑠𝑠𝑜𝑙 ⊳ 𝑠𝑠𝑜𝑙 corresponds to design with maximum efficiency.
Fig. 2. Hydrofoil cross-sections and their locations.

cavitation, noise, hull induced pressure fluctuations and structural
integrity.

In this demonstration, the single objective is to maximize the open-
water hydrodynamic efficiency (𝜂) of a Wageningen B4-70 propeller
blade. Our starting geometry is a blade with P/D = 1.0. The propeller
is modelled with 10 hydrofoil cross-sections as illustrated in Fig. 2.
The constraints are (a) target thrust 𝑇0 = 27 kN and (b) constant
𝑣𝑠ℎ𝑖𝑝 = 1.72 m s−1. From the B4-70 series charts, we can find that
B4-70 P/D = 0.8 is a better starting point for the chosen operating
point. However, we choose our baseline to be B4-70 P/D = 1.0 which
is further away from a known local optimum or known optimal search
direction. This increases the chances of finding new search directions.
In our optimization, the thrust is maintained by modifying the rotation
rate of the propeller. The geometry is varied by modifying the pitch
distribution, hence, the mean pitch also changes, see Fig. 3. Therefore,
the pitch distribution is not restricted to that of the Wageningen B4
series. The baseline performance is listed in Table 3.

There are four primary reasons for defining a simplified optimiza-
tion problem. Firstly, the simplicity of the problem enables a clear
demonstration and better testing of each component of DO. In or-
der to be applied to realistic problems (Part-II), DO must first work
5

Fig. 3. (a) 𝑟𝑖 and, (b) schematic illustrating pitch modification.

for simple propeller optimization problems. Secondly, the open-water
curves of the propeller are thoroughly investigated and also publicly
available (Barnitsas et al., 1981). Thus, the results of the current
optimization can be quickly verified and validated with existing open-
water curves. Thirdly, the geometry has been published and is readily
available without knowledge embargo. Finally, the analysis tool PRO-
CAL (Vaz and Bosschers, 2006) has been validated for the open-water
fully wetted flow case of this propeller.
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Classical design variables such as diameter (𝐷), pitch distribution
and camber correlate with 𝜂. A larger propeller tends to be more
fficient and the upper-bound for diameter is often determined by hull-
ntegration, tip-speed, hull induced pressure fluctuation and cavitation
onstraints. At the maximum possible diameter, it is possible to improve
fficiency by modifying the pitch distribution. Cavitation behaviour
s improved by modifying camber. As the primary objective of the
emonstration case is efficiency, the aim is to find the optimal pitch
istribution.

To modify the blade pitch, we use the parameter 𝜃. Fig. 3(b)
llustrates the change in geometry when 𝜃 is varied. 𝜃 is modified from

the 4th–10th cross-sections i.e. mid section to blade tip. The target
cross-section is rotated by 𝛥𝜃 about the 𝑟𝑖. 𝑟�⃗� is the vector parallel to
𝑧-axis which points to the midpoint of the LE-TE line as illustrated in
Fig. 3(a). Pitch is expected to be sensitive to 𝛥𝜃. An increase in 𝜃 results
in a higher pitch exposing the blade to higher inflow angles thus also
higher loading. Note that 𝛥𝜃 < 0 implies that the cross-section was
depitched. Otherwise the cross-section’s pitch either stayed the same
or it increased. While 𝜃 may influence skew (𝛾) and rake (𝜏), they are
not expected to be very sensitive to 𝜃.

2.2. Halton sampling

To demonstrate the existence of clusters, the Halton sequence (Hal-
ton, 1960) is used to generate samples. The sequence is chosen as it is a
systematic, repeatable and quasi random sampling method. A possible
strategy to improve hydrodynamic efficiency is to reduce rotational
losses by off-loading the blade (Schuiling and van Terwisga, 2016).
Thus, pitches from the 4th–10th cross-sections are chosen as design
variables. They are perturbed from the baseline design by 𝛥𝜃𝑝,𝑖 =
0.150.

Within the stated bounds, 200 points are sampled with the Halton
equence to generate the sample data matrix

=
⎡

⎢

⎢

⎣

𝛥𝜃1,4 ⋯ 𝛥𝜃1,10
⋮

𝛥𝜃𝑁,4 ⋯ 𝛥𝜃𝑁,10

⎤

⎥

⎥

⎦

. (3)

The sequence is characterized by low-discrepancy and low-
ispersion compared to random sampling methods when 𝑘 < 10, where
is dimensionality of the sampling space (LaValle, 2006). The modified
eometries are constructed with B-Splines as detailed in the following
ection.

.3. Geometry

The blade geometry is defined by a single B-Spline surface
Prautzsch et al., 2002) defined as

𝑝(𝑢, 𝑣) =
𝑚
∑

𝑖=0

𝑛
∑

𝑗=0
𝑁𝑖,𝑑1 (𝑢)𝑁𝑗,𝑑2 (𝑣)𝑃𝑖,𝑗 , (4)

here 𝑢, 𝑣 ∈ [0.0, 1.0] are knots in the 𝑢 and 𝑣 directions; 𝑃𝑖,𝑗 is the
ontrol point of the 𝑖th row and 𝑗th column; 𝑚 + 1 and 𝑛 + 1 are the
umber of rows and columns the control points are organized in; 𝑑1, 𝑑2
re the degree of the B-Spline in 𝑢 and 𝑣 directions respectively and;
𝑖,𝑑1 and 𝑁𝑗,𝑑2 are the basis function in 𝑢 and 𝑣 directions respectively.
he surface is fitted to hydrofoil cross-sections in Cartesian coordinates
t different radial locations. In our case 𝑑1 = 3 as the spline is closed
n 𝑢 direction and 𝑑2 = 8 to find an optimal fit for a hydrofoil with
amber and thickness distribution with fewer control points. The basis
unctions (𝑁(𝑡)) for each directions are defined as

𝑖,0(𝑡) =

{

1; 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1
0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(5)

𝑖,𝑑 =
𝑡 − 𝑡𝑖

𝑡𝑖+𝑑 − 𝑡𝑖
𝑁𝑖,𝑑−1(𝑡) +

𝑡𝑖+𝑑+1 − 𝑡
𝑡𝑖+𝑑+1 − 𝑡𝑖+1

𝑁𝑖+1,𝑑−1(𝑡). (6)

where 𝑡 is the knot value and 𝑑 is the degree of the spline. Based on
6

the geometry, the orthogonal parameters are derived.
2.4. Orthogonal parametric model

The primary objective of the proposed parametric model is to
alleviate the limitations of classical design variables. Thus, the para-
metric model must (a) accurately quantify geometric variations, (b)
yield orthogonally independent parameters, i.e. 𝜕�⃗�

𝜕𝑥𝑖
⋅ 𝜕�⃗�

𝜕𝑥𝑗
= 0 and,

(c) be generalized for all possible geometries. To satisfy the above
requirements, the parameterization is based on the coordinates of the
blades’ surface mesh such that all possible variations of all possible
families are represented and the relation between geometry and design
objectives is not obscured. The orthogonal parameters 𝑥𝑖 ∈ �⃗� of the
roposed parametric model are derived by projecting the surface mesh
f propellers in an orthonormal hyperspace R𝑜𝑟𝑡ℎ to ensure that the
arameters are orthogonally independent. Defining R𝑜𝑟𝑡ℎ involves four
teps.

The first step is to ensure that the mesh used for the analysis of
ach design is comparable. Thus, the surface mesh is generated by
niformly discretizing the B-Spline surface in the B-Spline parametric
pace, i.e. along the 𝑢 and 𝑣 directions of the spline surface. The mesh
∗ consisting of discrete nodes in the B-Spline parametric space is

efined in Eq. (7), where 𝑚 is the number of nodes on the hydrofoil
ross-section and 𝑛 is the number of cross-sections along the diameter.
hus, the mesh for the 𝑖th propeller �⃗�𝑖 ∈ R𝑘

𝑐𝑎𝑟𝑡 with dimensionality
= 3 × 𝑚 × 𝑛 is

∗
𝑚×𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(0.0, 0.0) ⋯
(

0.0,
(𝑗 − 1)
(𝑛 − 1)

)

⋯ (0.0, 1.0)

⋮ ⋱ ⋮
(

(𝑖 − 1)
(𝑚 − 1)

, 0.0
) (

(𝑖 − 1)
(𝑚 − 1)

,
(𝑗 − 1)
(𝑛 − 1)

)

⋮

⋮ ⋱ ⋮
(1.0, 0.0) ⋯ ⋯ ⋯ (1.0, 1.0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(7)

⃗ 𝑖 = {𝑝(𝑚∗
𝑖𝑗 )|𝑚

∗
𝑖𝑗 ∈ 𝑀∗

𝑚×𝑛}. (8)

The second step is to build the data matrix 𝑀 by stacking meshes of
ll 𝑁 sampled propellers and then transforming them into cylindrical
oordinates:

̃ =
⎡

⎢

⎢

⎣

�⃗�1
⋮

�⃗�𝑁

⎤

⎥

⎥

⎦

, (9)

𝑀 = 𝑇 (�̃�), 𝑇 ∶ R𝑁×𝑘
𝑐𝑎𝑟𝑡 → R𝑁×𝑘

𝑐𝑦𝑙 . (10)

his pre-processing step of stacking and transforming the meshes into
ylindrical coordinates reduces the variance in 𝑀(∶,𝑖)∀𝑖 ∈ {0, 3, 6...} as

cross-sections are defined at a constant radius from the propeller axis.
Thus, variance in form and shape of the blade is emphasized in the data
matrix.

The third step is to define the origin of R𝑜𝑟𝑡ℎ. The origin is chosen to
be the mean

⃗ =
∑𝑁

𝑖=1 �⃗�𝑖

𝑁
, (11)

of all 𝑁 propeller meshes, leading to the translated data matrix

𝑀 ′ =
⎡

⎢

⎢

⎣

�⃗�1 − 𝜇
⋮

�⃗�𝑁 − 𝜇

⎤

⎥

⎥

⎦

. (12)

The fourth step is to factorize 𝑀 ′ using thin SVD (Van Loan and
Golub, 1996), that is,

𝑀 ′ = 𝑈 ⋅ 𝛴 ⋅ 𝑉 ′ . (13)
𝑘×𝑁 𝑘×𝑁 𝑁×𝑁 𝑁×𝑁



Applied Ocean Research 124 (2022) 103178P.S. Doijode et al.

r
v

R

R

n
a

𝑀

w
f
u
T

𝑦

w
i
c
k

𝑘

a
a
L

m

This yields the left singular vectors 𝑈 , the singular values 𝛴 and the
ight singular vectors V. The product of the 𝑘′ left and 𝑘′ right singular
ectors yields the orthonormal reference frame

𝑜𝑟𝑡ℎ = 𝑈𝑘×𝑘′ ⋅ 𝑉
′
𝑘′×𝑘′ . (14)

𝑜𝑟𝑡ℎ is defined by 𝑘′ orthonormal vectors and any surface mesh �⃗� can
ow be projected in R𝑜𝑟𝑡ℎ. Thus the surface mesh can be represented
s

⃗ =
𝑘′
∑

𝑖=0
𝑀𝑐𝑜𝑠(𝑥𝑖)R̂𝑜𝑟𝑡ℎ∶,𝑖 (15)

here 𝑀 = |�⃗�|, R̂𝑜𝑟𝑡ℎ∶,𝑖 is the 𝑖th unit basis vector of the reference
rame R𝑜𝑟𝑡ℎ and 𝑥𝑖 is the projection angle of the mesh on the 𝑖th
nit basis vector. Thus, the orthogonal parameters we propose are 𝑥𝑖.
he orthogonal parameters can be represented by �⃗� ∈ R𝑘′ . Note that

𝜕�⃗�
𝜕𝑥𝑖

⋅ 𝜕�⃗�
𝜕𝑥𝑗

= 0 for all values of 𝑘′.
The procedure to project the mesh in R𝑜𝑟𝑡ℎ𝑜 and compute the orthog-

onal parameters is detailed in Algorithm 4. This algorithm then yields
the Parameter Matrix (𝑋) with values for each vector �⃗�. As 𝑘′ ≪ 𝑘, it
is possible to significantly reduce the number of parameters while not
obscuring the relation between the geometry and the mesh, thus also
the solution. Hence, it is ensured that this parameterization also opens
doors for dimension reduction.

One limitation of the proposed parametric model is that perturb-
ing orthogonal parameters results in non-conformal projections in the
orthonormal spaces. These projection are non-conformal because they
may not result in smooth splines which are required for propeller blade
geometries. Thus, models similar to conformal deformation proposed
for Free Form Deformation (FFD) (Peri, 2012) need to be formulated
for orthogonal parameters as well. Another possibility is to establish
a one-to-one map between orthogonal parameters and classical design
variables to allow for conformal modifications of the geometry. In
the current demonstration, we use classical design variables to modify
the geometry and orthogonal parameters as features for classifiers and
regressors.

Algorithm 4 Subspace Projection
procedure Projection

𝑀𝑁×𝑘 ← Data matrix of designs to analyze
Compute R𝑜𝑟𝑡ℎ𝑜
R ← R𝑜𝑟𝑡ℎ𝑜
𝑋 ← 0𝑁,𝑘′+1
for 𝑖 = 1 to 𝑁 do

for 𝑗 = 1 to 𝑁 ′ do

𝑋𝑖,𝑗 ← 𝑐𝑜𝑠−1
(

𝑀𝑖,∶⋅R∶,𝑗
|𝑀𝑖,∶||R∶,𝑗 |

)

return 𝑋𝑁,𝑘′+1

2.5. Classifiers

Both supervised and unsupervised classifiers are employed. Explain-
able machine learning models are opted for because they provide
insights into why certain predictions are made. The goal of the unsuper-
vised classifier is to identify existing clusters in the design space with
comparable geometries and the goal of supervised classifiers is to learn
which cluster of geometries are lucrative. Once trained, the supervised
classifiers can guide search algorithms towards more lucrative regions
in the design space thus reducing the number of required evalua-
tions. In this paper, implementations of supervised and unsupervised
classifiers in SciKit-Learn (Pedregosa et al., 2011) are used.

The classifiers use orthogonal parameters (𝑋) as features given that
they capture geometric variance reliably. In principle, the orthogonal
parametric model is expected to satisfy the i.i.d assumption; thus,
7

classifiers based on both generative models 𝑝(𝑋|𝑦𝑐 ) and discriminate a
models 𝑝(𝑦𝑐 |𝑋) are applicable. In the following sections, we provide a
concise description of the classifiers. For more details, the readers are
advised to read the references in the respective subsections.

2.5.1. Unsupervised classifier
In the zero-th design iteration, since the number of clusters is pre-

determined and clusters are expected to differ in shape and share
boundaries, Gaussian Mixture Models (GMM) with full covariance ma-
trices (Bishop, 2006) is employed. The GMM classifier predicts class
labels 𝑦𝑐 as

𝑦𝑐 = argmax𝑗 𝜋𝑗𝑝(�⃗�𝑖|𝜇𝑗 , 𝜎2𝑗 ), (16)

where 𝑗 maximizes the probability of �⃗�𝑖 occurring. In Eq. (16), 𝜋𝑗 =
𝑛𝑗∕𝑁 is the ratio of the number of designs in the 𝑗th cluster (𝑛𝑗 ) to
the total number of designs 𝑁 , thus it is also the cluster probability.
The means 𝜇𝑗 and variance 𝜎2𝑗 for the 𝑗th cluster are found using the
Expectation–Maximization algorithm with a Euclidean distance based
K-Means centroid initialization.

2.5.2. Supervised classifiers
Naive-Bayes (NB) with kernel approximations of Support Vector

Classifiers (SVC) (Chang and Lin, 2011) and Gaussian Process Classi-
fiers (GPC) (Rasmussen and Williams, 2006) are compared. The classi-
fiers are as follows:

Naive-Bayes
The Naive-Bayes classifier predicts labels as

𝑦𝑐 = argmax𝑗 𝜋𝑗𝑝(�⃗�𝑖|𝜇𝑗 , 𝜎2𝑗 ), (17)

where 𝑗 maximizes the probability of �⃗�𝑖 occurring. In Eq. (17), the
probability (𝑝)s of �⃗�𝑖 occurring given the mean and variance 𝜇𝑗 , 𝜎2𝑗 for
the 𝑗th cluster is

𝑝(�⃗�𝑖|𝜇𝑗 , 𝜎2𝑗 ) =
𝑘′
∏

𝑑=1

1
√

2𝜋𝜎2𝑗,𝑑
.exp

(

−
|𝑥𝑖,𝑑 − 𝜇𝑗,𝑑 |

2

2𝜎2𝑗,𝑑

)

. (18)

𝑘′ is the number of orthogonal parameters, 𝑥𝑖,𝑑 is the 𝑑th parameter in
�⃗�𝑖, 𝜇𝑗,𝑑 and 𝜎2𝑗,𝑑 are the mean and variance of 𝑋∶,𝑑 .

Support vector classifier
The decision function for SVC predicts the label 𝑦𝑐 as

𝑐 = 𝑠𝑔𝑛

( 𝑁
∑

𝑛=1
𝑦𝑖𝛼𝑖k∗ + 𝜌

)

, (19)

here 𝑦𝑖𝛼𝑖 are the dual coefficients, k∗ is the correlation vector and 𝜌
s the intercept. For our comparison study, the 𝑖th components of the
orrelation vector are computed with the Radial Basis Function (RBF)
ernel,

𝑖(𝑥𝑖, 𝑥∗) = exp(−|𝑥𝑖 − 𝑥∗|
2). (20)

Multi-label classifications are implemented with an one-against-one
pproach (Knerr et al., 1990). In Eq. (19), the dual coefficients (𝑦𝑖𝛼𝑖)
re solutions to the dual problem of SVCs primal problem (Chang and
in, 2011). The dual problem defined as

in𝛼
1
2
𝛼𝑇𝑄𝛼 − 1𝑇 𝛼, (21a)

subject to 𝑦𝑇 𝛼 = 0; 0 ≤ 𝛼𝑖 ≤ 𝐶; (21b)

where 𝐶 > 0 is the upper bound, 𝑄𝑖𝑗 = 𝑦𝑖𝑦𝑗𝜙(𝑥𝑖)𝜙(𝑥𝑗 ) and 𝜙(𝑥𝑖), 𝜙(𝑥𝑗 )
re the feature map of input 𝑥 , 𝑥 .
𝑖 𝑗
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𝜋

Gaussian Process Classifier
The Gaussian Process Classifier (GPC) is based on the Laplace

approximation method described by (Rasmussen and Williams, 2006).
The posterior prediction (�̄�∗) for a query 𝑥∗ is

̄∗ = ∫ 𝜎(𝑓∗)𝑝(𝑓∗|𝑋, 𝑦, 𝑥∗)𝑑𝑓∗. (22)

Multi-label predictions can be made with both one-against-one and
one-against-rest approaches.

In Eq. (22), the first term, 𝜎(𝑓∗) = 𝜎(𝑓 (�⃗�∗)) = 𝜎(𝑥𝑇𝑤). GPC places a
GP prior with a RBF kernel, Eq. (20), on a latent function 𝑓 (�⃗�) = 𝑥𝑇𝑤.
The range of 𝑓 (�⃗�) is (−∞,+∞). Mapping the range to [0, 1] allows it
to be interpreted as probability of labels in soft classification between
two classes 𝑦𝑐 ∈ {0, 1}. Thus the range of 𝑓 (�⃗�) is squashed through the
logistic link function

𝜎(𝑓 (�⃗�)) = 1
1 + 𝑒𝑥𝑝(−𝑓 (�⃗�))

, (23)

that maps the domain (−∞,+∞) onto [0, 1].
In Eq. (22), the second term 𝑝(𝑓∗|𝑋, 𝑦, 𝑥∗) can be approximated with

the Laplace approximation method. The term can be expanded as

𝑝(𝑓∗|𝑋, 𝑦, 𝑥∗) = ∫ 𝑝(𝑓∗|𝑋, 𝑥∗, 𝐟 )𝑝(𝐟 |𝑋, 𝑦)𝑑𝐟 , (24)

where 𝑝(𝐟 |𝑋, 𝑦) = 𝑝(𝑦|𝐟 )𝑝(𝐟 |𝑋)∕𝑝(𝐲|𝑋). In the Laplace approximation
method, a Gaussian approximation 𝑞(𝐟 |𝑋, 𝑦) to the posterior of the
latent function 𝑝(𝐟 |𝑋, 𝑦) is utilized. The Gaussian approximation is
obtained by doing a second order Taylor expansion of log(𝑝(𝐟 |𝑋, 𝑦))
around the maximum of the posterior as defined below:

𝑞(𝐟 |𝑋, 𝑦) =  (𝐟 |𝐟 , 𝐴−1) ≈ 𝑒𝑥𝑝(−1
2
(𝐟 − 𝐟 )𝑇𝐴(𝐟 − 𝐟 )), (25)

where 𝐟 = argmax𝐟𝑝(𝐟 |𝑋, 𝑦) and 𝐴 = −∇∇𝑙𝑜𝑔𝑝(𝐟 |𝑋, 𝑦|(𝐟 = 𝐟 )) is the
Hessian of the negative log posterior at the point.

2.5.3. Classification labels (𝑦𝑐 )
Designs of interest are labelled 𝑦𝑐 = 1 and designs not of interest

are labelled 𝑦𝑐 = 0. 𝑦𝑐 is determined as

𝑦𝑐 =

{

0 �̄�∗(𝑠, 𝑇0) ∈ [𝜂𝑚𝑖𝑛, 𝜂𝑚𝑖𝑛 + 𝛿]
1 �̄�∗(𝑠, 𝑇0) ∈ [𝜂𝑚𝑖𝑛 + 𝛿, 𝜂𝑚𝑎𝑥].

(26)

Note that the labels are based on posterior efficiency prediction
�̄�∗ and a parameter 𝛿 = (𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛)(2∕3), where 𝜂𝑚𝑎𝑥, 𝜂𝑚𝑖𝑛 are the
maximum and minimum efficiencies of all designs in the samples. 𝑦𝑐 =
1 indicates a lucrative cluster where search is to be focused.

2.5.4. Uncertainty in early design
The posterior efficiency prediction �̄�∗ is made by modelling the

uncertainties in BEM predictions (Vaz et al., 2015). Typically, uncer-
tainties are addressed in the detailed design stage. Those resulting
from geometry and operational parameters are dealt with Robust De-
sign methods (Park et al., 2006), where the primary objective is to
reduce the parameter dependent variance in performance. Uncertain-
ties resulting from modelling and discretization errors are dealt with
higher-fidelity Computational Fluid Dynamics (CFD). However, delayed
consideration of uncertainties results in lower marginal gains in per-
formance. Thus, there is a need to account for uncertainties already
in preliminary stages of design. For this purpose, Gaussian Process
Regression is employed as detailed in this sub-section.

There are two primary sources of uncertainty. The first is the use
of BEM for which performance predictions could have uncertainties as
high as 15% (Vaz et al., 2015). The second is uncertainties resulting
from regression itself. Both uncertainties are accounted for in a linear
regression model with Gaussian noise as described by (Rasmussen and
Williams, 2006):

𝑦 = 𝑓 (𝑠) + 𝜖, (27a)
8

Fig. 4. Wageningen B4-70 propeller.

Table 1
Operational parameters.

Parameter Units Value

Open-Water Speed (𝑣∞) m s−1 [0.18–3.6]
Free-stream density (𝜌∞) kg m−3 1025
Absolute atmospheric pressure (𝑝𝑎𝑡𝑚) Pa 102 500
Propeller rotation speed (𝜔) rev s−1 15

𝑓 (𝑠) = 𝜙(𝑠)𝑇𝑤, (27b)

𝜖 ∼ 𝑁(0, 𝜎2𝑛 ). (27c)

Eq. (27a) describes the response 𝑦 with noise 𝜖. Note that 𝜖 models
both analysis and regression uncertainties. The function 𝑓 (𝑠) ∶ R𝑁 → R
is assumed to be linear as described in Eq. (27b). The inputs 𝑠 ∈ R𝑁

are projected onto feature spaces by the function 𝜙. The vector space
of the feature vector is the feature space. The noise 𝜖 is assumed to be
an i.i.d Gaussian distribution with 𝜇 = 0 and variance 𝜎2𝑛 as described
in Eq. (27c) is used. The posterior prediction of mean and variance are

𝑓∗ = 𝐤𝑇∗ (𝐾 + 𝜎2𝑛𝐼)
−1𝐲, (28a)

V[𝑓∗] = 𝑘(𝑠∗, 𝑠∗) − 𝐤𝑇∗ (𝐾 + 𝜎2𝑛𝐼)
−1𝐤∗. (28b)

In Eqs. (28a)–(28b), 𝐾 is the Gram matrix and 𝐤∗ is the correlation
vector. In this study, the components of the correlation vector and Gram
matrix are computed with an RBF kernel, see Eq. (20).

3. Demonstration setup

As a benchmark case, the Wageningen B4-70 propeller with P/D =
1.0 is chosen. The geometry and mesh is illustrated in Fig. 4.

PROCAL is validated for the operating parameters listed in Table 1.
The validation results are illustrated in Fig. 5. The experimental data
(Exp.) in Fig. 5 is bundled and shipped with PROCAL. It can be observed
that the PROCAL efficiency predictions match well with experimental
observations up-to 𝐽 ≈ 0.9 and thereafter uncertainties increase. In this
demonstration, the hub is not modelled. However, PROCAL predictions
for hydrodynamic efficiency are comparable to experimental obser-
vations. This could be because of weak blade-hub interactions. One
limitation of the current approach is that root cavitation is not captured
during the optimization and if blade-hub interactions are strong the
uncertainties in performance predictions could also be higher.
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Fig. 5. PROCAL validation and Gaussian Process Regression results of open-water curve
with modelled uncertainties.

Fig. 6. Silhouette Scores for 2 parameter combinations with 𝑘′ ∈ [2, 15].

In the current setup, the resulting uncertainties in performance
prediction are accounted for with the GPR estimator. The posterior
efficiency prediction (�̄�∗) (-) and confidence interval is estimated with
the Gaussian Process Regression (GPR) model defined in Eqs. (28a)–
(28b). The variance is estimated to be 20% of the response 𝜂. This
yields a 95% confidence interval that encapsulates predictions, experi-
mental observations as well as uncertainties resulting from regression.
For the GPR estimator, the mean prediction (-) would coincide with
the experimental observations if the variance is assumed to be 0%.
However, assuming a variance of 0% implies that PROCAL predictions
do not differ from experimental observations, which is not the case.
For varied geometries and operational conditions the residuals of the
panel method can be different. Thus, the variance expected can be
different from the estimated 20% in this demonstration. For the sake of
simplicity, we assume the expected variance to be a constant. However,
the trends in variance w.r.t geometries, operational conditions and
residuals of numerical methods, if available, can also be considered in
the GPR estimator during training (Block 7b in Fig. 1). This could lead
to better cluster predictions made by the supervised classifier (Block
6b in Fig. 1). Better cluster predictions could reduce the number of
iterations required to convergence.

4. Results

For DO to be successful, orthogonal parametric model (Block 5) and
classifiers (Block 6a–6b in Fig. 1) need to be effective and reliable.
The orthogonal parametric model is deemed reliable if it (a) is able to
identify spatially discernible clusters and, (b) preserves the geometric
9

correlations. The unsupervised classifiers are deemed reliable when
they identify existing clusters. The supervised classifiers are deemed
reliable if they direct search to lucrative clusters while continuously
learning. The following sections report the results of reliability tests
for the critical blocks and DO itself.

4.1. Orthogonal parametric model reliability

In this section, the results of the tests on reliability of the orthog-
onal parametric model are discussed. The ability of the orthogonal
parametric model to yield spatially discernible clusters are determined
with silhouette scores. The silhouette score (Rousseeuw, 1987) indicates
whether there are spatially separated clusters in the data. The score for
a design �⃗�𝑖 is defined as

𝑆(�⃗�𝑖) =
𝑏(�⃗�𝑖) − 𝑎(�⃗�𝑖)

𝑚𝑎𝑥{𝑎(�⃗�𝑖), 𝑏(�⃗�𝑖)}
, (29a)

𝑎(�⃗�𝑖) =
1

|𝐶𝑖| − 1
∑

𝑗∈𝐶𝑖 ,𝑖≠𝑗
𝑑(𝑖, 𝑗), (29b)

𝑏(�⃗�𝑖) = min𝑙≠𝑖
1

|𝐶𝑙|

∑

𝑗∈𝐶𝑙

𝑑(𝑖, 𝑗), (29c)

where 𝑎(�⃗�𝑖) is the average dissimilarity of �⃗�𝑖 with all other designs in
the same cluster and 𝑏(�⃗�𝑖) is the minimum value of average dissim-
ilarity with another cluster. This results in 𝑆(�⃗�𝑖) ∈ [−1, 1], with −1
indicating wrong labels, 0 indicating similarities between designs from
different clusters thus, no clearly discernible clusters, and 1 indicating
clearly distinguished clusters. Discerning clusters in a high-dimensional
hyperspace is challenging. However, if clusters do exists, they would be
discernible in combinations of any two parameters, 𝑠𝑖, 𝑠𝑗 ∈ 𝑠 or 𝑥𝑖, 𝑥𝑗 ∈
�⃗�. Thus, silhouette scores are calculated for all possible combinations of
two parameters in 𝑠 and �⃗�.

The maximum score of all possible parameter pairs is a good indica-
tor of performance and is plotted in Fig. 6. The orthogonal parameters
tend to perform significantly better than classical design variables with
4 times higher silhouette scores. It is also observed from Fig. 6 that the
score does not improve anymore for 𝑘′ > 11. This indicates that most
of the variance is captured in the first 10 orthonormal vectors defining
R𝑜𝑟𝑡ℎ. Thus, representing the designs in higher dimensions does not
yield more distinguished clusters.

Fig. 7 illustrates the clusters generated by classical and orthogonal
parameters for thrust requirement 𝑇0 = 27 kN. Note that 𝑠(1) = 𝛥𝜃4,
thus in Fig. 7(a), 𝑠(3), 𝑠(5) represent normalized 𝛥𝜃 for the 7th and 9th
cross-section respectively. For classical design variables, it is observed
in Fig. 7(a) that there are no clearly distinguishable design clusters.
However, it is observed in Fig. 7(b) that orthogonal parameters result in
marginally overlapped clusters with one of the two containing lucrative
designs.

4.2. Classifier performance

In this section, the results of reliability tests for the classifiers (Block
6a–6b) are presented and discussed. The ability of the unsupervised
classifier – Gaussian Mixture Model Classifier – to identify existing
clusters with orthogonal parameters and classical design parameters
is tested. Thereafter, the supervised classifiers’ reliability in predicting
whether a design is efficient or otherwise is tested with precision scores.

4.2.1. Gaussian Mixture Model (GMM)
The GMM classifier is used in the zero-th design iteration when

no performance information is available yet. The classifier’s ability to
generalize depends strongly on the presence of discernible clusters.
Testing the classifier’s reliability via validation studies is not possible
in principle as the ground truth is not known. Thus, the reliability is
often implied from the posterior silhouette scores.
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Fig. 7. Best spatial clustering parameter combinations at 𝑇0 = 27 kN for (a) Classical design variables 𝛥𝜃7 and 𝛥𝜃9, 𝑠({𝛥𝜃7 , 𝛥𝜃9}) = 0.1007. (b) Orthogonal design parameters 𝑥4 , 𝑥5
when 𝑘′ = 13, 𝑠({𝑥4 , 𝑥5}) = 0.4206.
Fig. 8. GMM classifiers confidence ellipsoides for (a) Classical design variables {𝛥𝜃7 , 𝛥𝜃9} and (b) Orthogonal parameters {𝑥4 , 𝑥5}, when 𝑘′ = 13.
Fig. 9. Mean precision scores for stratified 10 fold cross validation studies of supervised
classifiers.

From the silhouette scores (Fig. 6), it is observed that certain pa-
rameter combinations have high silhouette scores. Thus, for parameter
combinations with high scores, confidence ellipsoids of the trained un-
supervised GMM classifier are plotted in Figs. 8(a)–8(b) . It is observed
that for classical parameters, the confidence ellipsoids of the classifier
significantly overlap. This is clear indication that a-priori clustering of
designs is not possible with classical parameters. On the contrary, there
10
is no overlap in the confidence ellipsoids of orthogonal parameters
indicating that a-priori clustering of designs is possible.

4.2.2. Supervised classifiers
The reliability of the NB classifier, SVC and GPC is evaluated with

precision scores. The labels (𝑦𝑐) for the training and testing samples are
detailed in Section 2.5.3. The precision score for a classifier

𝐴 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
, (30)

is the ratio of true positive (tp) predictions to the sum of true positive
and false positive (fp) predictions. This scoring is a reliable indicator
when the number of members in each class for the testing set are
disproportionate. Precision scores, 𝐴 > 0.5 indicate that the classifier
predictions had more true positives than false positives. The machine
learning models used in DO aim to maximize true positives and the
optimization method is designed to catch false positives thus improving
reliability. Weighted average precision scores for all class labels are
determined with 10 fold stratified cross validation studies. This reduces
the risk of missing false negatives.

Fig. 9 illustrates the results of the cross validation study for the
classifiers. The plots show the mean cross-validation precision score for
predicting 𝑦𝑐 = 0, i.e. for an inefficient design. It is observed that all
classifiers have 𝑝 > 0.5. Thus, true positive predictions are more likely
than false positive predictions.

It is observed that precision scores for classifiers using orthogo-
nal parameters are typically higher than those using classical design
variables. However, SVC with orthogonal parameters tends to perform
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Fig. 10. Comparison of the optimum and baseline (a) geometry overlaid with the baseline Wageningen B4-70 P/D = 1.0 blade (green), (b) percentage change in pitch distributions
of optimum, baseline and B4-70 P/D = 0.8 blade (c) delta skew distribution for baseline and optimum, (d) delta rake distribution for baseline and optimum.

Fig. 11. Super-velocities (a) baseline and, (b) optimum.
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Fig. 12. Open water curves of optimum in Halton samples and baseline design. The
markers are the point of operation for 𝑣𝑠ℎ𝑖𝑝 = 1.72 m s−1 , 𝑇𝑜 = 27 kN.

Table 2
Optimum in Halton samples — parameters.

Optimum (rad)

𝛥𝜃𝑝,4 −0.0409
𝛥𝜃𝑝,5 −0.0577
𝛥𝜃𝑝,6 −0.0794
𝛥𝜃𝑝,7 −0.0868
𝛥𝜃𝑝,8 −0.0978
𝛥𝜃𝑝,9 −0.1086
𝛥𝜃𝑝,10 −0.1113

better than SVC with classical parameter only for 5 < 𝑘′ < 11. This
could be because the RBF kernel for SVC tends to be a good feature map
for classical design variables in the current demonstration case. Among
the classifiers, NB has the highest precision score with 𝑝 = 0.9433
for 𝑘′ = 8 when using orthogonal parameters. For 6 ≤ 𝑘′ ≤ 11, all
classifiers using orthogonal parameters outperform their counterparts
that use classical design variables. For the domain 𝑘′ > 11, it is
inferred from silhouette scores that there is no additional geometric
information, however, the dimensionality of the problem increases.
This adversely affects classifier performance. Nonetheless, it is observed
that NB with orthogonal parameters is the most reliable classifier for
the identification of in-efficient designs. The reliability of NB with or-
thogonal parameters for multi-objective constrained optimization with
supervised classifiers is demonstrated in a separate publication (Doijode
et al., 2022)

The precision scores indicate that orthogonal parameters are better
able to capture geometric variations and not obscure the relation
between geometry, mesh and predicted performance. This addresses the
first problem of multicollinearity. Furthermore, it enables more training
and deploying more reliable machine learning models.

4.3. Dynamic optimization performance

To test the effectiveness of orthogonal parameters in identifying
clusters of designs, it is run 50 times on the same Halton sample set.
The goal of the test is to quantify possible gains of using orthogonal
parameters versus classical design variables. The tests are run for two
setups. In Setup 1, GMM in DO uses classical design variables for a-priori
cluster identification and in Setup 2, it uses orthogonal parameters. In
both setups, the supervised classifier is chosen to be the Naive-Bayes
classifier due its high reliability. The following sections describe the
optimum and the results of the test.

4.3.1. Optimum
The optimal solution in the Halton samples is shown in Fig. 10(a).

The design parameters are listed in Table 2. Note that 𝛥𝜃 < 0.0, this
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𝑝,𝑖
implies that the blade pitch has been reduced from the 4th–10th cross-
section. 𝛥𝜃 is also the magnitude of depitching in radians. Thus, the
optimum is found by depitching the blade.

The performance details are listed in Table 3. It is observed that
the optimum delivers the target thrust of 27 kN for the specified
𝑣𝑠ℎ𝑖𝑝 = 1.72 m s−1 with higher efficiency than the baseline. The gains in
efficiency are possible when axial, rotational and viscous losses are re-
duced (Schuiling and van Terwisga, 2016). Figs. 10(a)–10(d) compares
the optimum to the baseline. The optimum’s pitch distribution is also
compared with a Wageningen B4-70 P/D = 0.8 blade as its efficiency at
the operating point is better than the baseline. Furthermore, its open-
water efficiency curve is closest to that of the optimum in the B4-70
series as shown in Fig. 12.

Fig. 10(b) shows that the pitch for the optimum is reduced at the
mid-section and tip compared to the baseline. However, the pitch for
the optimum at the root is higher than the Wageningen B4-70 P/D =
0.8 blade and similar at the tip. Due to the depitching, a reduction in
rotational losses is expected. In order to generate the required thrust,
the depitched propeller operates at a slightly higher rotation rate. As
illustrated in Figs. 11(a)–11(b), despite the slightly higher rotation rate,
the depitching results in lower super-velocities at the blade tip. This is
particularly visible at the leading edge. The term super-velocity is used
in aerospace design for regions where the flow is accelerated to higher
velocities than incoming flow or moving geometries. Consequently, the
skin friction is also lower reducing viscous losses. The resulting open-
water curves and the operating point for the propellers are shown in
Fig. 12.

Figs. 10(c)–10(d) show that skew and rake distribution for both
propeller are very close. The differences are expected to result from
the (a) B-Spline curve fit to the coordinates and, (b) surface lofting
operation through the various fit curves. By having stricter convergence
criteria for the B-Spline fit and lofting, it may be possible to reduce the
difference even further.

Note, as indicated in Section 3, the results can quickly be verified
and validated by using open-water curves of the Wageningen B4-70
propeller, which are readily available (Barnitsas et al., 1981). The
baseline geometry corresponds to the Wageningen B4-70 propeller with
P/D = 1.0. Thus, at the operating point propellers with a P/D <
1.0 can be found to be more efficient. Similarly, DO finds a better
propeller by reducing the effective P/D of the baseline geometry. We
recognize that the optimum in the sample set may not be the global
optimum and that it is possible to choose a better starting P/D for
the current operating point. Nonetheless, this is not expected to affect
the comparison between orthogonal parameters and classical design
variables.

4.3.2. DO Performance results
Fig. 13 illustrates the results for the design and optimization case

with both classical and orthogonal design parameters. The 𝑥-axis shows
the percentage of representative designs selected by the unsupervised
classifier from each design cluster. The bars represent the ratio of the
number of required iterations to the number of samples 𝑁 = 200. The
number at the head of each bar indicates the percentage of times the
optimum design reported in Section 4.3.1 is found. The line indicates
the mean performance increase of found solutions compared to the
baseline design in percentage points.

It is observed that DO always finds designs that have an effi-
ciency greater than the baseline Wageningen B4-70 propeller for both
classical and orthogonal design variables within the Halton samples.
DO performs better with orthogonal parameters. It tends to find the
optimum design more often than its classical counterpart. Furthermore
by evaluating under 30% (𝜆 = 20%) of the samples, solutions with
an increase in efficiency of 3 percentage points are found. When
(𝜆 > 30%), DO with orthogonal parameters finds the optimum in the

Halton samples with a probability of 100%. On the other hand, DO with
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Fig. 13. Dynamic Optimization performance results for (a) Classical design variables — Setup 1 and (b) Orthogonal parameters — Setup 2. 𝜆 = (𝑠𝑖∕𝑠)∕100.0.
Table 3
Optimum in Halton samples — performance.

Units Wageningen B4-70, P/D = 1.0 Wageningen B4-70, P/D = 0.8 Optimum

𝐽 – 0.4035 0.3353 0.3553
𝑛 rps 1.9800 2.3910 2.2500
𝐾𝑡 – 0.3133 0.2374 0.2439
𝐾𝑞 – 0.0493 0.0308 0.0315
𝑇 (eq. constraint) kN 27.0000 27.0000 27.0000
𝜂 (objective) – 40.77% 41.18% 43.74%
classical counterparts needs more than 50% of representative designs
to be selected in order to find the optimum with 100% probability.

Fig. 13 also contains information regarding convergence of DO.
After 𝜆 is specified, the designs to evaluate from each cluster are
determined at random. This makes DO for single objective optimization
stochastic. Therefore, the optimization is repeated 50 times for each
specified 𝜆. From Fig. 13 it can be inferred that the number of itera-
tions to convergence depends on 𝜆. Low values of 𝜆 result in quicker
convergence, however, the probability of missing the lucrative cluster
increases. For sufficiently high values of 𝜆 the number of iterations
to convergence increases and the probability of finding the lucrative
cluster and design also increases.

The results indicate that DO with orthogonal parameters is able
to identify design clusters and also able to guide search to lucrative
clusters more efficiently than when using classical design variables.
This is expected to be an outcome of orthogonal parameters addressing
the problem of multicollinearity. Furthermore, the orthogonal param-
eters enable more reliable machine learning models to be trained and
deployed.

5. Conclusion

A new design and optimization method – Dynamic Optimization –
is proposed that synergizes supervised and unsupervised learning for
the efficient design and optimization of propellers. Compared to clas-
sical design variables, Dynamic Optimization (DO) with orthogonal
parameters is more efficient in identifying lucrative clusters. This gain
in efficiency is attributed to the reliability of its two core compo-
nents: (a) an orthogonal parametric model and (b) classifiers. The
orthogonal parameters are demonstrated to address the challenge of
multicollinearity thus preserving the correlation between parameters,
mesh and performance. They also enable more reliable classifiers to
be trained and deployed. Reliable and explainable classifiers are able
to guide search algorithms to lucrative regions in the design space
with fewer design evaluations thus reducing the computational cost of
optimization. However, it is noted that improving efficiency of design
and optimization is accompanied by a trade-off with completeness
13
and optimality of search as demonstrated on a D&O problem of the
benchmark Wageningen B4-70 propeller. Nonetheless, for the current
thrust and ship speed constrained open-water efficiency objective, DO
finds designs that have a higher efficiency than the Wageningen B4-
70 propeller at a much lower cost than Halton sampling. Furthermore,
the results can be quickly verified and validated with the open-water
curves of Wageningen B4-70 propeller. As a next step, the method
is to be demonstrated on cavitating propellers in a wake-field as a
representative design problem in the second part of this series.
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