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a b s t r a c t 

A notable drawback in mixed-size sediment morphodynamic modeling is the fact that the most commonly used mathematical model in this field (i.e., the active layer 
model Hirano, 1971) can be ill-posed under certain circumstances. Under these conditions the model loses its predictive capabilities, as negligible perturbations in 
the initial or boundary conditions produce significant differences in the solution. In this paper we propose a preconditioning method that regularizes the model to 
recover well-posedness by altering the time scale of the sediment mixing processes. We compare results of the regularized model to data from four new laboratory 
experiments conducted under conditions in which the active layer model is ill-posed. The regularized active layer model captures the change of bed elevation and 
surface texture averaged over the passage of several bedforms. Neither the active layer model nor the regularized one account for small scale changes due to individual 
bedforms. 
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. Introduction 

The presence of mixed-size sediment is a key feature of rivers. Sed-
ment sorting patterns develop in the streamwise direction (e.g., the
haracteristic downstream fining profile Sternberg, 1875 ), in the trans-
erse direction (e.g., bend sorting Allen, 1970 ), and in the vertical di-
ection (e.g., bed armoring Parker and Klingeman, 1982 and dune sort-
ng Blom et al., 2003 ). Modeling applications in which the mixed-size
haracter of river morphodynamics is not negligible mandate the use of
 suitable continuity model accounting for mass conservation of each
f the considered sediment size fractions. Hirano (1971) was the first
o develop a mixed-sediment continuity model. He assumed that the
iver bed can be vertically divided into an active top part (the ac-
ive layer), which interacts with the flow, and an inactive substrate.
n the model, sediment transport and friction depend on the texture
f the active layer, whereas the sediment in the substrate only plays
 role if net aggradation creates new substrate sediment or net degra-
ation leads to the entrainment of substrate sediment into the active
ayer. 

Although it has been fruitfully used to represent physical phenomena
elated to mixed-sediment for nearly half a century (see Chavarrías et al.,
018 ), the active layer model suffers from a drawback. Under cer-
ain conditions it becomes ill-posed ( Chavarrías et al., 2018; Ribberink,
987; Stecca et al., 2014 ). A model is ill-posed if a unique solution
oes not exist, or if the solution does not depend continuously on the
nitial and boundary conditions ( Hadamard, 1923 ). If a model is ill-
osed, infinitesimal variations in the initial or boundary conditions
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ield a significant deviation of the solution within an infinitesimal time
 Hadamard, 1923 ). When solving the mathematical model by numeri-
al approximations, perturbations in the initial and boundary conditions
imply arise by truncation errors. This makes an ill-posed model unsuit-
ble in practice. 

The problem of ill-posedness arises from an inaccurate representa-
ion of the physical processes ( Joseph and Saut, 1990 ). For instance,
 two-fluid model for incompressible and inviscid flow in two layers
ith a velocity discontinuity is ill-posed ( von Helmholtz, 1868; Kelvin,
871 ). It is regularized (i.e., becomes well-posed) if viscous effects are
aken into account ( Joseph and Saut, 1990 ). From this perspective, the
referred approach to regularize the active layer model would be the
evelopment of a new model that includes those physical mechanisms
hat are not accounted for by the active layer model. 

There exist alternatives to the active layer that typically aim
o improve the physical description of sediment mixing process.
ibberink (1987) introduced a second layer to account for the mixing
ue to dunes exceptionally larger than the average dune height. Besides
roducing a vertical sorting profile that better reproduces the results
f a laboratory experiment ( Blom, 2008 ), Ribberink’s two-layer model
akes the occurrence of ill-posedness less likely, although it does not

ompletely avoid it ( Sieben, 1994 ). Luu et al. (2006, 2004) proposed a
odel in which the active layer is replaced by the sediment transport

ayer representing the sediment in transport rather than the sediment
t the bed surface. The thickness of the sediment transport layer is esti-
ated with a closure relation such as the one developed by Egashira

nd Ashida (1992) . Although conceptually different, the model by
il 2019 
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uu et al. (2006, 2004) is mathematically equivalent to the active layer
odel, which implies that it can also be ill-posed. 

Blom and Parker (2004) and Blom et al. (2006, 2008) developed a
odel in which both bed elevation and bed grain size distribution are

reated using a vertically continuous formulation ( Parker et al., 2000 ).
his implies that there is no distinction between the active and inac-
ive part of the bed. The model by Blom and coauthors satisfactorily
escribes the vertical stratigraphy due to dunes at laboratory scale, but
t requires a time step too small to be applicable at large scale. More-
ver, its well-posedness has not been studied. Simplifying the contin-
ous framework proposed by Parker et al. (2000) , the vertically con-
inuous model by Viparelli et al. (2017) overcomes the need for a small
ime step. Although applicable at large spatial and temporal scales, their
odel does not solve the problem of ill-posedness ( Chavarrías et al.,
018 ). 

Given the facts that: (a) There is not yet a practically feasible al-
ernative to the active layer model, (b) the active layer model remains
ell-posed over a large range of applications ( Chavarrías et al., 2018 ),
nd (c) it is a computationally cheap model implemented in several soft-
are packages, here our objective is to develop a strategy to avoid ill-
osedness while maintaining the conceptual framework of the active
ayer model. To this end, we develop a regularization strategy that re-
overs well-posedness of the active layer model and we conduct 4 labo-
atory experiments under conditions in which the active layer model is
ll-posed to obtain data to which we compare the results of our regular-
zed model. 

The paper is organized as follows. In Section 2 we review strate-
ies for regularizing ill-posed models. In Section 3 we present the reg-
larization strategy. Section 4 presents the laboratory experiments and
ection 5 focuses on the numerical runs to reproduce the experimen-
al results. In Section 6 we discuss the limitations of the regularization
trategy, as well as other possible modeling strategies. 

. Overview of regularization techniques 

In this section we review techniques used to regularize ill-posed
roblems. Propagation problems are most completely mathematically
epresented by a set of partial differential equations constituting an
nitial value problem. In these problems an initial state changes with
ime subject to conditions at the boundaries of the domain. The matrix-
ector formulation provides a compact expression of the set of equa-
ions (e.g., Courant and Hilbert, 1989; Lyn and Goodwin, 1987; Toro,
001 ): 

𝜕𝐐 

𝜕𝑡 
+ 𝐀 

𝜕𝐐 

𝜕𝑥 
= 𝐒 , (1)

here Q is the vector of dependent variables, A is the system matrix, and
 is the vector of source terms. The velocity at which small waves prop-
gate throughout the domain (i.e., the eigenvalues of matrix A ) must
e real for the problem to be well-posed (e.g., Hadamard, 1923; Ivrii
nd Petkov, 1974; Kabanikhin, 2008; Lax, 1957; 1958; 1980; Mizohata,
961 ). When the eigenvalues are real, the problem is hyperbolic. If the
igenvalues have an imaginary component (the problem being elliptic
r of mixed-type), an initial value problem is ill-posed. 

The two-fluid shallow flow model (i.e., a model of the flow of two
ayers of superimposed fluids at different velocities) is known to be
ll-posed when the difference in flow velocity between the upper and
ower layers exceeds a certain threshold ( Ardron, 1980; Armi, 1986;
awrence, 1990; Long, 1956; Pelanti et al., 2008 ). In general terms ill-
osedness arises in multiphase models (e.g., bubbles in a fluid) ( Harlow
nd Amsden, 1975; Kumbaro and Ndjinga, 2011; Murray, 1965; Stew-
rt, 1979; Stewart and Wendroff, 1984 ). Multiphase models are regu-
arized by accounting for the forces at the interface between the two
uids ( Abgrall and Karni, 2009; Drew et al., 1979; Liska et al., 1995;
yczkowski et al., 1978; Ramshaw and Trapp, 1978; Stewart, 1979;
292 
tuhmiller, 1977; Tiselj and Petelin, 1997; Travis et al., 1976 ). Although
he physics of multiphase problems is better represented when includ-
ng the effects of the interface forces, this approach does not completely
liminate the possibility of the problem being ill-posed. 

Fernández Nieto (2003) , Castro Díaz et al. (2011) , and
arno et al. (2017) introduce an additional term in the momen-
um equations to account for friction between the fluid layers. Their
egularization strategy yields a well-posed model and has a physical
rigin. However, the additional physical term depends on the time step
f the numerical solution, which implies that it cannot be considered a
ully physically-based solution. 

The numerical solution of a mathematically ill-posed model can be
ell-posed ( Chen and Peng, 2006; Chen et al., 2007; Savary and Zech,
007; Spinewine et al., 2011 ) if the numerical solution neglects informa-
ion in the physical equations ( Greco et al., 2008 ). Worded differently,
n such a case the physical equations are ill-posed, but the numerical
quations that we actually solve are well-posed. In particular, when us-
ng the HLL solver (a common approximate Riemann solver proposed
y Harten et al., 1983 , see Toro, 2009 ), one only uses the fastest and
lowest eigenvalues of the system, which implies that the dynamics due
o the intermediate celerities are not resolved. This hides the problem
f ill-posedness rather than solves it. 

In determining the steady (equilibrium) state of a fluid dynamics
roblem, a commonly adopted strategy to achieve fast convergence is
o modify the celerities at which information propagates (i.e., the sys-
em eigenvalues) ( Chorin, 1967; Grabowski and Berger, 1976; Plows,
968; Soh and Berger, 1984 ). For instance, in aerodynamics, the speed
f sound may differ significantly from the air velocity, which causes
 slow convergence to steady state ( Choi and Merkle, 1993; Feng and
erkle, 1990; Godfrey et al., 1993; van Leer et al., 1991 ). Precondition-

ng methods ( Turkel, 1987; 1993; 1999 ) aim at bringing the eigenval-
es of the system closer to each other such that a larger time step is
llowed. 

Analogously, the “bed celerity ” (i.e., the speed of the wave related to
hanges in bed elevation ( Lyn and Altinakar, 2002; Morris and Williams,
996; Stecca et al., 2014; De Vries, 1965 )) is generally slow compared
o the celerities associated with perturbations of the flow. This fact has
ncouraged the use of a “morphodynamic acceleration factor ” in mor-
hodynamic modeling to reduce the computational time ( Latteux, 1995;
esser et al., 2004; Ranasinghe et al., 2011; Roelvink, 2006 ). Mathemat-
cally, as we will show later, the use of a morphodynamic acceleration
actor is equivalent to the application of a particular preconditioning
ethod. 

By altering the celerity at which information propagates, the tran-
ient state of the preconditioned problem is altered with respect to the
riginal problem, but both problems converge to the same steady state
olution if the boundary conditions are steady. A drawback of precondi-
ioning is the fact that, when the problem is subject to unsteady bound-
ry conditions, preconditioning methods modify the steady state, as they
ndirectly modify the timing of the boundary conditions ( Turkel, 1999 ).
or this reason, the boundary conditions of a preconditioned model need
o be adjusted if these vary with time. 

The fact that a preconditioning method alters the transient state was
sed by Zanotti et al. (2007) to regularize the two-fluid model. They
odified the system of equations by introducing two parameters. One
arameter modifies the continuity equation, which affects the imaginary
art of the eigenvalues. Depending on the relations between velocities
nd densities of the two fluids, a specific value of this parameter makes
he imaginary part equal to zero. Apart from modifying the imaginary
omponent, the parameter also modifies the real part of the eigenvalues.
hey introduce a second parameter that affects all equations to recover
he original real part of the eigenvalues. They compare the solution of
he regularized model to analytical solutions and they show that the
egularized two-fluid model is stable. In the next section we will follow
 similar approach to derive a regularization strategy for the active layer
odel. 
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. Regularization strategy for the active layer model 

In this section we propose a strategy for recovering the well-posed
haracter of the system of equations for modeling mixed-sediment
iver morphodynamics. The modified set of equations is presented in
ection 3.1 . In Section 3.2 - we derive the parameters used to recover
he well-posed character of the model considering a simplified case with
wo sediment size fractions and steady flow, which allows us to obtain
nalytical expressions. We then extend the validity to unsteady flow con-
itions ( Section 3.3 ) and to conditions with more than 2 sediment size
ractions ( Section 3.4 ). In Section 3.5 we discuss the implementation of
he strategy. 

.1. Modified system of equations 

We consider one-dimensional hydrostatic flow over a bed composed
f N non-cohesive size fractions. The flow is described by the Saint-
enant (1871) equations. We assume a Chézy-type friction in which

he nondimensional friction coefficient is independent of the flow and
ed parameters. The sediment transport rate is considered to adapt
nstantaneously to changes in the bed shear stress ( Bell and Suther-
and, 1983 ). The mass conservation of the bed sediment is described
y the Exner (1920) equation, and the 𝑁 − 1 active layer equations
 Hirano, 1971 ) account for the conservation of the mass of each grain
ize fraction within a discrete top layer of the bed surface (i.e., the ac-
ive layer). Given the flow, friction, and sediment transport assumptions,
he model cannot represent small-scale processes (i.e., processes at the
cale of bed elevation fluctuations due the stochastic nature of sedi-
ent transport, ripples, dunes, or bed load sheets). In other words, the

ariables represent parameters averaged over a period larger than the
haracteristic time of small-scale bed elevation fluctuations ( Armanini
nd di Silvio, 1988; Blom et al., 2008; Parker et al., 2000; Ribberink,
987; Wong and Parker, 2006 ). We refer to Appendix A for the model
quations and the matrix-vector formulation of the system. 

Analogous to Zanotti et al. (2007) ( Section 2 ), the system of equa-
ions in Equation (1) is modified multiplying the time derivative term
y a diagonal matrix M to regularize the problem: 

 

𝜕𝐐 

𝜕𝑡 
+ 𝐀 

𝜕𝐐 

𝜕𝑥 
= 𝐒 . (2)

Matrix M modifies the transient state only. The preconditioning tech-
ique does not affect the solution of the steady state (i.e., 𝜕 ∕ 𝜕 𝑡 = 0 ). 

The morphodynamic model under unisize conditions was analyzed
y Cordier et al. (2011) . They found that the Saint-Venant-Exner model
s always well-posed assuming a Chézy-type friction. This confirms that
he ill-posed character of the mixed-size sediment model results from the
nappropriate representation of the mixing processes by the active layer
odel ( Chavarrías et al., 2018 ). For this reason, we propose a regulariza-

ion strategy that recovers the well-posed character modifying the celeri-
ies at which mixed sediment processes occur. This is done by means of a
et of parameters 𝛼k [ – ] for 1 ≤ 𝑘 ≤ 𝑁 − 1 that multiply the time deriva-
ive of each active layer equation. Similarly to Zanotti et al. (2007) , we
onsider a parameter 𝛽 [ – ] that can be used to rescale the celerities af-
er being modified by 𝛼k . We stipulate that this parameter 𝛽 affects only
he sediment processes (including the Exner (1920) equation) but not
he flow. 

The modified system of equations must be mass conservative with
espect to the sediment. This implies that 𝛼k cannot be grain size de-
endent (i.e., 𝛼𝑘 = 𝛼 ∀k ) and that the preconditioning technique is only
pplicable when the active layer thickness is constant ( Appendix B ). 

.2. Derivation of the regularization coefficients 

In this section we derive the values of the coefficients 𝛼 and 𝛽 that
nable regularization of the active layer model. We consider a simpli-
ed case with two sediment size fractions under steady flow conditions,
293 
s this allows us to obtain analytical expressions of the regularization
arameters. 

In this case, the dependent variables of the system are the bed eleva-
ion 𝜂 [m] and the volume of fine sediment in the active layer per unit
f bed area, M a1 [ – ] ( Chavarrías et al., 2018 and Appendix A ): 

 s2 = 

[
𝜂, 𝑀 a1 

]⊺. (3)

he system matrix is: 

 s2 = 𝑢 

⎡ ⎢ ⎢ ⎣ 
𝜆b 

𝜆s1 
𝜇1 , 1 

𝜆b 𝛾1 𝜆s1 

⎤ ⎥ ⎥ ⎦ , (4)

here the parameters 𝜆b [−] and 𝜆s1 [−] are the nondimensional ap-
roximated bed and sorting celerities, which (approximately) repre-
ent the celerities at which infinitesimal perturbations in bed level and
rain size distribution of the bed surface propagate through the do-
ain ( Chavarrías et al., 2018; Stecca et al., 2014; De Vries, 1965 and
ppendix A.5 ), and u [m/s] is the mean flow velocity. The parameters

1 [−] and 𝜇1,1 [−] relate the changes in the sediment transport rate
o the properties of the bed ( Appendix A.5 ). Subscript s indicates that
he model is steady and subscript 2 highlights that it accounts for two
ediment size fractions only. 

The preconditioning matrix is: 

 s2 = 𝛽

[ 
1 0 
0 𝛼

] 
. (5)

ote that 𝛽 does not affect the mathematical character of the system,
s it modifies all equations equally. Worded differently, the parameter
changes the magnitude of the eigenvalues but not the type (real or

omplex). We compute the eigenvalues ( 𝜆k for 𝑘 = 1 , 2 ) of the modi-
ed system of equations as the roots of the characteristic polynomial
et ( 𝐌 s2 𝜆 − 𝐀 s2 ) = 0 : 

𝑘 = 

𝑢 

2 𝛽

( 

𝜆b + 

𝜆s1 
𝛼

± 

√
Δ
𝛼

) 

for 𝑘 = 1 , 2 , (6)

here the discriminant Δ is a second degree polynomial on 𝛼 equal to:

= 𝜆2 b 𝛼
2 + 2 𝜆b 𝜆s1 

( 

2 𝛾1 
𝜇1 , 1 

− 1 
) 

𝛼 + 𝜆2 s1 . (7)

We consider a situation which is ill-posed if the regularization strat-
gy is not applied. This implies that when 𝛼 = 1 (the regularization strat-
gy is not applied), Δ< 0 (the eigenvalues are complex). We aim to mod-
fy the system of equations as little as possible in regularizing it. Worded
ifferently, we aim at changing 𝛼 as little as possible from 1. The mini-
um modification is obtained when the discriminant is equal to 0 (i.e.,

he eigenvalues are in the limit for having an imaginary part different
han 0). The threshold values 𝛼c that modify the system of equations as
ittle as possible are found by equating (7) to zero: 

c = 

𝜆s1 
𝜆b 

( 

1 − 2 
𝛾1 
𝜇1 , 1 

± 2 

√ 

𝛾1 
𝜇1 , 1 

( 

𝛾1 
𝜇1 , 1 

− 1 
) 

) 

. (8) 

There are two possible values of 𝛼c that yield real eigenvalues. The
iscriminant ( Eq. (7) ) as a function of 𝛼 is a concave parabola as 𝜆2 b > 0 .
oreover, when 𝛼 = 0 , Δ = 𝜆2 s1 > 0 and when 𝛼 = 1 , Δ< 0. This shows

hat one critical value of parameter 𝛼 is between 0 and 1, and the second
alue is larger than 1 (i.e., 0 < 𝛼c1 < 1 < 𝛼c2 ). 

We compute the value of parameter 𝛽 that, assuming 𝛼 = 𝛼c , recov-
rs the real part that the eigenvalues would have if they had not been
odified using the parameter 𝛼: 

= 

𝜆b + 𝜆s1 ∕ 𝛼c 
𝜆b + 𝜆s1 

. (9) 

In this case, irrespective of the value of 𝛼, the eigenvalues of the
egularized system are equal to: 

𝑘 = 

𝑢 

2 
(
𝜆b + 𝜆s1 

)
for 𝑘 = 1 , 2 . (10)
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Fig. 1. Maximum imaginary part of all the eigenvalues of the reference case 
( Table 1 ) as a function of 𝛼. In this case 𝛼c = 16 . 1 is the smallest value of 𝛼 > 1 
that yields a well-posed model (i.e., all eigenvalues are real). 

Table 1 

Reference values in the comparison of the value of 𝛼c computed analytically and 
numerically. 

u [m/s] h [m] C f [ − ] L a [m] F a1 [ − ] 𝑓 I 1 [ − ] d 1 [m] d 2 [m] 

1 1 0.01 0.20 0 1 0.001 0.005 
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If we do not use 𝛽 to recover the original real part of the eigenvalues
i.e., if 𝛽 = 1 ), the eigenvalues of the regularized system are equal to 

𝑘 = 

𝑢 

2 

( 

𝜆b + 

𝜆s1 
𝛼

) 

for 𝑘 = 1 , 2 . (11)

Parameter 𝛼 can be selected to be larger or smaller than 1 and if
e choose to use 𝛽 (i.e., if 𝛽 ≠1) the eigenvalues are independent of 𝛼.
ummarizing, we find three possible regularization strategies: 

1. 𝛼 ≠1 and 𝛽 ≠1 
2. 𝛼 < 1 and 𝛽 = 1 
3. 𝛼 > 1 and 𝛽 = 1 

In general terms, the approximated sorting celerities are positive,
nd under subcritical flow conditions (i.e, Fr < 1) the approximated bed
elerity is also positive. However, due to hiding in the sediment trans-
ort relation, under conditions in which ill-posedness likely occurs, 𝜆s1 

ay be negative regardless of the Froude number ( Chavarrías et al.,
018 ). In this case, Strategies 1 and 2 do not guarantee that the eigen-
alues 𝜆k > 0. We consider that it is physically unrealistic that morpho-
ynamic information travels in the upstream direction under subcritical
ow conditions. A negative eigenvalue would imply that the boundary
ondition for morphology needs to be imposed at the downstream end
o yield a well-posed model, and this is contradictory to the fact that
he morphodynamic state under subcritical flow conditions depends on
he load coming from upstream ( Blom et al., 2017a; 2016 ). On the other
and, Strategy 3 guarantees that 𝜆k > 0 (Appendix A of the supplemen-
ary material). Thus, we consider that the only possible regularization
trategy is the one in which 𝛼 > 1 and 𝛽 = 1 . 

We need to guarantee that the celerities of the system of equations
odified by the regularization strategy are not physically unrealistic. In
articular, under a sufficiently small Froude number, the modified bed
nd sorting celerities must be significantly smaller than the celerities
f the flow. The regularization technique does not modify the approx-
mated celerity associated with bed elevation changes (i.e., 𝛽 = 1 ) and
ecreases the celerity associated with mixing processes (i.e., 𝛼 > 1, we
ill discuss this point in Section 6.1 ). For this reason, the regularization

echnique does not cause the celerities to be physically unrealistic. 
The regularization strategy is not limited to a particular range of pa-

ameter settings. Yet, when using the value of 𝛼 derived in this section,
he Froude number cannot be in the transcritical region, as in this case
he quasi-steady approximation is not valid ( Cao and Carling, 2002b;
ao et al., 2002; Colombini and Stocchino, 2005; Lyn, 1987; Lyn and
ltinakar, 2002; Sieben, 1999 ). In the following section we consider
nsteady flow, which extends the regularization technique to the trans-
ritical region. 

.3. Validity under unsteady flow conditions 

In this section we extend the validity of the regularization parameter
found for steady flow cases ( Section 3.2 ) to unsteady flow conditions.
294 
When considering unsteady flow conditions, we cannot obtain an an-
lytical expression of 𝛼c for regularizing the system of equations. Nev-
rtheless we can numerically find the smallest value of 𝛼 > 1 for which
he roots of the characteristic polynomial of det ( 𝐌 u 𝜆 − 𝐀 u ) = 0 are real
alues (i.e., the eigenvalues are real), where subscript u indicates that
he model is unsteady. Matrices M u and A u are listed in Appendix A.5 .
his procedure is nonetheless expensive computationally in comparison
ith an algebraic calculation. Fig. 1 shows the maximum imaginary part
f all eigenvalues of a reference ill-posed case ( Table 1 ) considering un-
teady flow for varying 𝛼. The sediment transport rate is computed using
 fractional version of the Engelund and Hansen (1967) sediment trans-
ort relation ( Blom et al., 2017a ). A value 𝛼 > 16.1 yields a well-posed
odel (i.e., all eigenvalues are real). 

To test the validity of the algebraic value of 𝛼c obtained assuming
teady flow we consider the same reference case ( Table 1 ) and we vary
he flow velocity to obtain a range of conditions. In Fig. 2 (a) we present
he value of 𝛼c necessary to obtain a well-posed model computed assum-
ng steady flow ( Eq. (8) ) and numerically considering unsteady flow. We
onclude that for a Froude number below approximately 0.6, there is no
ignificant difference between the values for steady and unsteady flow.
his implies that, for Fr < 0.6, the value of 𝛼c obtained analytically as-
uming steady flow is a good approximation of the actual value. 
Fig. 2. Comparison between ( a ) the steady and unsteady val- 
ues of the regularization parameter 𝛼c , and ( b ) the exact and 
approximate values for a 3 size fractions case. 
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.4. Validity under multiple size fractions conditions 

In a model with more than 2 size fractions, we cannot analytically
btain the value of 𝛼c that regularizes the active layer model. Similar
o the unsteady case, it is possible to numerically obtain the smallest
alue of 𝛼 > 1 that yields real eigenvalues computed as the roots of the
haracteristic polynomial det ( 𝐌 s 𝜆 − 𝐀 s ) = 0 (matrices M s and A s are pre-
ented in Appendix A.5 ). Again, this process is relatively expensive in
omputational terms. In this section we propose a method to obtain an
pproximate value of 𝛼c for such cases and compare it to the exact value
btained numerically. 

Assuming steady flow, a system that models N sediment size frac-
ions has N equations ( Appendix A ). We reduce the system of N equa-
ions to an approximate system of 2 equations following the approach
f Ribberink (1987) . We sum the N active layer equations to obtain one
quation that models the changes of the mean grain size of the bed sur-
ace sediment ( Appendix A.3 ). Subsequently, we apply the same tech-
ique as the one we have used in the case of 2 size fractions to obtain a
ritical value of 𝛼 that guarantees that the approximate model is well-
osed: 

cm = 

𝜆m 
𝜆b 

⎛ ⎜ ⎜ ⎝ 1 − 2 
𝛾m 
𝜇m 

± 2 

√ 

𝛾m 
𝜇m 

( 

𝛾m 
𝜇m 

− 1 
) ⎞ ⎟ ⎟ ⎠ , (12)

here the symbols are the equivalent of the case for two size fractions
n the approximate model ( Appendix A.5 ) 

We consider a case with 3 sediment size fractions, where the fine
nd coarse fractions have characteristic sizes equal to 𝑑 1 = 0 . 001 m and
 3 = 0 . 005 m, respectively. The volume fraction contents of the 3 size
ractions in the active layer are 𝐹 a1 = 0 , 𝐹 a2 = 0 . 9 , and 𝐹 a3 = 0 . 1 . The
ubstrate is fully composed of fine sediment. We vary the medium grain
ize ( d 2 ) to obtain a range of conditions. The remaining parameters are
he same as the ones presented in Table 1 . In Fig. 2 (b) we compare the
xact value of 𝛼c (computed numerically) to the approximated one (com-
uted using Eq. (12) ). The approximated value of 𝛼c follows the same
rend as the exact one. However, the approximated value is both larger
nd smaller than the exact one depending on the sediment conditions.
his implies that the current approximate approach may be insufficient
o regularize the active layer model in the case of more than 2 sediment
ize fractions. 

The approximate system of equations can be ill-posed under degra-
ational conditions into a fine substrate only ( Chavarrías et al., 2018;
ibberink, 1987 ). However, a 3 size fractions case can be ill-posed un-
er degradational conditions into a coarse substrate ( Chavarrías et al.,
018 ), which further limits the applicability of the approximate solution
or the threshold value of 𝛼. 

.5. Implementation 

In this section we describe our approach for numerically solving the
ystem of equations and apply the regularization strategy. 

We have developed the numerical research code Elv to model mixed-
ize sediment river morphodynamics ( Blom et al., 2017a; 2017b ) which
olves the equations for flow, bed elevation, and the bed surface grain
ize distribution in a decoupled manner (i.e., in series and not as a cou-
led system of equations). Thus, our code is not appropriate for solv-
ng transcritical situations ( Lyn, 1987; Lyn and Altinakar, 2002; Sieben,
999 ) or cases with a high sediment concentration ( Cao and Carling,
002a; Morris and Williams, 1996 ). 

The one-dimensional spatial domain is discretized using an equis-
aced grid. All variables are computed at the cell centers and are con-
idered constant in each time step. Here we assume steady flow, which is
epresented by the backwater equation ( Eq. (16) ). This ordinary differ-
ntial equation is integrated using the standard fourth-order finite differ-
nce Runge–Kutta method (RK4). The Exner (1920) equation ( Eq. (17) )
nd active layer equation ( Eq. (19) ) are solved in conservative form us-
295 
ng a first order upwind scheme in combination with forward Euler to
ntegrate in time. We discretize the vertical domain in a finite number
f cells having a certain thickness to account for stratigraphic changes
n the substrate. Our scheme is balanced for the vertical fluxes between
he active layer and the substrate ( Stecca et al., 2016 ). This means that
ass conservation is guaranteed independent of the substrate discretiza-

ion. The time step varies with time and is computed such that the CFL
umber ( Courant et al., 1928 ) is constant and equal to 0.9 ( Toro, 2009;
u, 2007 ). The details of the numerical implementation are described

n Appendix B of the supplementary material. 
When the regularization strategy is applied, we first determine the

athematical character of the model (i.e., well-posed or ill-posed) at
ach node using the approach proposed by Chavarrías et al. (2018) . For
he case of 2 size fractions, this is done evaluating an algebraic equation,
nd for more than 2 size fractions we numerically compute the eigen-
alues of the system matrix. At continuation, for each node we compute
he threshold value 𝛼c that guarantees that the model is well-posed.
gain, this is done evaluating an algebraic expression ( Eq. (8) ) for 2
ize fractions and it is done numerically for more than 2 size fractions
 Section 3.4 ). 

The regularization strategy yields equal eigenvalues (i.e., in a two
ize fractions case 𝜆1 = 𝜆2 , Eq. (11) ). This implies that the problem is
yperbolic but not strictly hyperbolic ( Cordier et al., 2011; Lax, 1980;
oro, 2009 ). In a non-strictly hyperbolic problem, the solution may not
e unique and resonance may occur, which gives rise to strong non-
inear interactions ( Isaacson and Temple, 1992; Liu, 1987 ). In avoiding a
on-strictly hyperbolic-problem, we modify the value of 𝛼c using a small
arameter 𝜖 > 0 [ – ] such that 𝛼∗ = 𝛼c (1 + 𝜖) , where 𝛼∗ [ – ] is the value
sed for updating the bed surface grain size distribution. For the cases
e have studied a value of 𝜖 = 0 . 005 is sufficient to avoid the problems
ssociated with non-strict hyperbolicity. 

Ill-posedness causes short-wave instability ( Chavarrías et al., 2018;
oseph and Saut, 1990 and Section 5.1.2 ) meaning that perturbations
ill grow unstable at rates depending on the inverse of their length. Dif-

usion counteracts these effects by dampening perturbations ( Gray and
ncey, 2011 ). Regularization of the problem can be provided by
umerical diffusion if a first-order (diffusive) method is used. However,
f the underlying problem is ill-posed, cell refinement will be able to
eveal its ill-posed character even if a first-order method is used in its
olution, as we do in this paper. This is because, with decreasing cell size,
he numerical diffusion coefficient of a first-order method will generally
ecrease, while at the same time shorter (more unstable) perturbations
ill be solved. Therefore, an ill-posed problem will show no conver-
ence due to its inherent instability when the mesh is progressively re-
ned, regardless of the low-order method in use. 

We observe such a behavior in Section 5.1.2 where we show that
ur low-order numerical scheme suffices to capture the consequences
f ill-posedness by revealing instability and non-converging character
n simulations conducted within the ill-posed range. It is likely that,
ith a higher-order (non-diffusive) method, these features would have
ecome apparent even at lower mesh resolution due to absence of spuri-
us diffusion dampening perturbations. However, it must be considered
hat our upwind scheme is characterized by small numerical diffusion
oefficient, and that Stecca et al. (2016) and Siviglia et al. (2017) have
hown that a first-order upwind scheme with a fine grid resolution is
ufficient to capture the main features of mixed-size sediment morpho-
ynamic simulations such as the ones we conduct. 

. Laboratory experiments 

In this section we describe the laboratory experiments conducted
nder conditions in which the active layer model ( Hirano, 1971 ) is ill-
osed in order to obtain a data set to which we can compare the results
f the proposed regularization strategy. We describe the experimental
lan, materials, and measurements in Section 4.1 . In Section 4.2 we
resent the experimental results. 
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Table 2 

Length ( L p ) and position (initial x p0 and final x pf coordinates) 
of the patch of fine sediment below the coarse bed surface. 

Experiment L p [m] x p0 [m] x pf [m] 

I1 0.50 4.70 5.20 
I2 1.00 4.49 5.49 
I3 2.00 4.47 6.47 
I4 4.00 4.47 8.47 

Table 3 

Experimental conditions, where q denotes water discharge per unit width, s 0 
initial bed slope, q b0 sediment feed rate per unit width, h flow depth, u mean 
flow velocity, and Fr is the Froude number. 

q [m 

2 /s] s 0 [ − ] q b0 [m 

2 /s] h [m] u [m/s] Fr [ − ] 

0.150 3.50 × 10 −3 7.86 × 10 −6 0.187 0.799 0.59 
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.1. Experimental plan and measurements 

We conducted 4 laboratory experiments (I1, I2, I3, and I4). The ex-
eriments reproduced degradational conditions into a fine substrate,
hich are conditions prone to be ill-posed ( Chavarrías et al., 2018; Rib-
erink, 1987; Stecca et al., 2014 ). The experiments were conducted in
 14 m long, 0.40 m wide, and 0.45 m high tilting flume in the Water
aboratory of the Faculty of Civil Engineering and Geosciences of Delft
niversity of Technology. At the upstream end, a turbulence dissipation
evice was installed (item (a) in Fig. 3 ). An inclined plane was placed
ownstream from the turbulence dissipation device (item (b) in Fig. 3 )
o allow for an alluvial bed (item (c) in Fig. 3 ). The structure was cov-
red with glued sediment such that friction was similar to the one of the
lluvial bed. Its elevation could be adjusted. 

We consider a reference system with coordinate origin at the bottom
f the flume at the downstream end of the metal structure. The z -axis
s parallel to gravity and pointing up. The x -axis follows the streamwise
irection of the flume, being positive in the direction of the flow. The
 -axis is perpendicular to the other two axes forming a right handed
rthonormal basis. 

We used two sediment size fractions (fine and coarse) with charac-
eristic grain sizes (computed as the arithmetic mean in 𝜙 scale) equal to
.1 mm and 5.5 mm. The standard deviation of the two size fractions is
.1 mm and 1.2 mm, respectively. The bed surface was initially flat, with
 constant slope, and composed of coarse sediment only. Below a 0.03 m
hick layer of coarse sediment, we installed a patch of fine sediment of
arying length L p [m] ( Fig. 3 and Table 2 ). We imposed a constant wa-
er discharge and a constant sediment feed rate of the coarse fraction
nly, which was in equilibrium with the initial condition ( Table 3 and
ppendix C of the supplementary material). The sediment was intro-
uced using a feeder placed on top of the flume (item (d) in Fig. 3 ). The
ownstream water level was lowered at a rate of 0.01 m/h during 8 h
y adjusting a sharp-crested weir at 𝑥 = 12 . 60 m (item (g) in Fig. 3 ). The
owering of the water level led to bed degradation and entrainment of
he fine sediment in the patch. We have tested that in these conditions
he active layer model is ill-posed regardless of the active layer thickness
nd sediment transport relation. 

Sediment was collected in a sand trap (item (e) in Fig. 3 ) at the down-
tream end of the flume ( 𝑥 = 12 . 10 m). The sediment was pumped from
he sand trap (item (f) in Fig. 3 ) into a tank positioned on a weight bal-
nce next to the flume. This system allowed us to continuously measure
he sediment transport rate. The water inflow was measured using an
ig. 3. Sketch of the flume set-up: ( a ) Turbulence dissipator, ( b ) metal plate with glu
eir, ( h ) laser sensors for water and bed surface elevation, and ( i ) camera for measu

296 
ltrasonic flow meter and the downstream water level using a position
ensor. We obtained profiles of the water and bed elevation using laser
ensors that were fixed to a carriage (item (h) in Fig. 3 ). A camera was
ounted on the carriage to measure the grain size distribution of the bed

urface using the technique developed by Orrú et al. (2016a,b) (item (i)
n Fig. 3 ). To this end, the coarse sediment was painted red and the fine
ediment blue. Our experimental set-up allowed us to measure either a
rofile of bed and water surface elevation or the bed surface grain size
istribution at a certain location with time. 

For the modeling of the laboratory experiments ( Section 5 ), it is im-
ortant to obtain turbulent flow conditions of a relatively deep flow
i.e., flow cannot be affected by individual grains), where sediment is
redominantly transported as bed load. The concentration of sediment
eeds to be so small that we can assume clear water. These conditions
ere satisfied (Appendix C of the supplementary material). 

.2. Results 

All experiments were governed by the same conditions before the
ne sediment in the patch was entrained. We observed the superposition
f bedforms of two different length scales ( Fig. 4 ). Secondary bedforms
pproximately 0.5 m long and 0.01 m high were superimposed on pri-
ary longer bedforms of the order of 3 m and twice as high. The primary
ed sediment, ( c ) alluvial bed, ( d ) feeder, ( e ) sand trap, ( f ) sediment pump, ( g ) 
ring the bed surface grain size distribution. 
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Fig. 4. Measured bed elevation before fine sediment of the patches is entrained showing the superposition of bedforms of two different length scales (Experiment I4 
at 1:51 h). 
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Fig. 5. Sketch of the cyclic entrainment of substrate sediment: ( a ) Bedforms 
formed out of coarse sediments only, ( b ) fine sediment from the patch is en- 
trained in the trough of a bedform, ( c ) a degradational wave forms and travels 
downstream, ( d ) coarse sediment from upstream fills the pit left by the degra- 
dational wave. 
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edforms are interpreted as incipient gravel dunes ( Carling, 1999; Car-
ing et al., 2005 ). The characteristics of these features remained steady
s the bed degraded. The steadiness of the features’ characteristics is
onfirmed in a preparatory experimental run without a patch of fine
ediment (Appendix C of the supplementary material). 

After approximately 2 h the bed had degraded up to a point at which
he trough of a long bedform was lower than the top part of the patch
 Fig. 5 (a)). At that moment fine sediment was exposed, entrained, and
ransported. The larger mobility of the fine sediment created a down-
tream moving degradational wave ( Fig. 5 (b)). As erosion proceeded,
he shear stress was reduced (due to the increased flow depth), which
educed the degradation rate. Meanwhile, the subsequent bedform ad-
anced and started to fill the degradational pit with coarse sediment
 Fig. 5 (c)). Overall, the passage of bedforms induced entrainment of
ne sediment and subsequent coarsening of the top part of the substrate.
ince the degradational wave increased in depth in downstream direc-
ion, also the thickness of the coarse top layer increased in downstream
irection ( Fig. 5 (d)). 

The substrate coarsening mechanism created an irregular interface
etween coarse and fine sediment compared to the initial situation
here the interface was parallel to the bed surface. As a consequence,

he entrainment of fine sediment became a pseudo-random process in
pace and time. Degradational waves formed at those locations where
ne sediment was closest to the bed surface. Yet, most of the waves grew

or only a limited length, as, due to the irregular interface, at some point
he sediment present at the trough was coarse rather than fine. Some-
imes the interface was sufficiently parallel to the bed surface and a
arge degradational wave formed. This is seen in the content of coarse
ediment at the bed surface of the patch ( Fig. 6 (a), (c), (e) and (g))
nd in the bed elevation ( Fig. 7 ). One or two small degradational waves
ormed after the passage of a large degradational wave, characterized
y the fact that the bed surface is composed of mainly fine sediment
nd the trough of a bedform reaches elevations significantly lower than
verage. 

A longer patch allowed for the development of longer (in space and
ime) and deeper erosional waves ( Figs. 6 and 7 ). Yet, the decrease in
egradation rate as the wave advanced acted as a saturation mechanism
imiting the height of the wave. Thus, the probability of lower bed el-
vation at the patch zone was not significantly larger for an increasing
atch length ( Fig. 8 ). After the patch, where the substrate was composed
f coarse sediment only, wave height decreased and the bed elevation
rofile tended to the one upstream of the patch ( Fig. 7 ). Yet, the pres-
nce of fine sediment downstream of the patch slightly increased the
eight of the bedforms with respect to the bedforms upstream of the
atch ( Fig. 8 (a) and (c)). Bedforms downstream of the patch were char-
cterized by a coarse front and fine tail, and were approximately 2 grain
izes of the coarse sediment high. These characteristics may indicate the
resence of bedload sheets ( Dietrich et al., 1989; Recking et al., 2009;
hiting et al., 1988 ) or bedforms in a transitional phase to small dunes.

he domain downstream from the patch was not long enough to pre-
297 
isely conclude on the type of bedforms. The changes in volume frac-
ion content of coarse sediment at the bed surface were less pronounced
ownstream of the patch compared to at the patch ( Fig. 6 (b), (d), (f)
nd (h)). This is because fine sediment entrained at the patch dispersed
n the downstream direction. 
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Fig. 6. Measured surface fraction content of coarse sediment as a function of time for various lengths of the patch L p : At the center of the patch ( a,c,e,g ), and at the 
downstream end ( b,d,f,h ). Note that the streamwise location of the center of the patch varies for each experiment while the downstream position is the same for all 
cases ( 𝑥 = 9 . 15 m). 
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. Numerical modeling 

In this section we apply the regularization strategy in modeling the
aboratory experiments conducted under conditions in which the active
ayer model is ill-posed ( Section 5.1 ). In Section 5.2 we compare the re-
ults of the regularized active layer model to the results of the two-layer
odel developed by Ribberink (1987) by applying them to a thought ex-
eriment under conditions in which the active layer model is ill-posed. 

.1. Modeling of our laboratory experiments 

In Section 5.1.1 we calibrate the numerical model. In Section
.1.2 we conduct a convergence test to show the consequences of ill-
osedness and the benefits of the regularization strategy. In Section
.1.3 we apply the numerical model to the laboratory experiments de-
cribed in the previous section. In Section 5.1.4 we test the regulariza-
ion strategy assuming three sediment size fractions. 

.1.1. Calibration 

Modeling the laboratory experiments requires values for the active
ayer thickness and the friction coefficient, and the choice of a sediment
ransport relation. To this end we use the results of a set of prepara-
ory experiments (Appendix C of the supplementary material). To chose
 sediment transport relation, we run two experiments conducted un-
er equilibrium conditions, while feeding the fine and the coarse sed-
ment size fractions. The sediment transport relation by Ashida and
ichiue (1971) reproduces our results reasonably well (Appendix D

f the supplementary material). To obtain the skin friction coefficient
 C fb ) for computing the sediment transport rate (Appendix A.4 ) we cor-
ect the total measured friction coefficient C for side wall friction with
f 

298 
he method developed by Johnson (1942) (see Guo, 2015 ). We obtain
he values 𝐶 f = 0 . 0104 and 𝐶 fb = 0 . 0084 . Bedform drag was negligible
uring the initial phase as bedforms were low. When fine sediment was
ntrained, bedforms grew and bedform drag may have played a role. It is
ot reasonable to model this additional friction using standard relations
e.g. Engelund and Hansen, 1967; Haque and Mahmood, 1983; Wright
nd Parker, 2004 ), as these relations provide a bedform-averaged fric-
ion coefficient, while in our case large bedforms were isolated in space
nd time. We decide to use a constant friction coefficient and we think
hat the most sensible approach is to neglect bedform drag. 

A reasonable value for the active layer thickness is 0.01 m, which
orresponds to the distance below the mean bed elevation with a proba-
ility of entrainment below approximately 5% ( Blom, 2008; Ribberink,
987 ). This value is also in accordance with 1–3 times D 90 as pro-
osed by, for instance, Hirano (1971) ; Hoey and Ferguson (1994) , and
eminara et al. (1996) . 

In one preparatory experiment under equilibrium conditions, we fed
oarse sediment only and, from some point, we started feeding tracer
ediment (i.e., sediment of a different color). Modeling the propagation
f the front of tracer sediment, we confirm that 0.01 m is a reasonable
alue for the active layer thickness (Appendix D of the supplementary
aterial). 

.1.2. Convergence test 

First we aim to show the consequences of ill-posedness. To this
nd, we simulate conditions similar to the ones of the experiments
sing the active layer model. In the experiments, degradation into a
oarse substrate (i.e., under well-posed conditions) occurred for ap-
roximately 2 h, as the patch of fine sediment was placed 3 cm be-
ow the initial bed surface. In order to obtain ill-posed conditions at
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Fig. 7. Detrended bed elevation as a function of time in Experiment ( a ) I1, ( b ) I2, ( c ) I3, and ( d ) I4. The dashed black lines indicate the boundaries of the patch. 
The bed elevation is detrended subtracting the bed slope of each profile individually, obtained fitting a first degree polynomial. 
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Fig. 8. Probability density of detrended bed elevation: ( a ) Up- 
stream of the patch, ( b ) at the patch, ( c ) and downstream of 
the patch. 
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he start of the simulations, the patch of fine sediment is placed right
elow the active layer. In this manner, 300 s simulations suffice for
ur purpose. Moreover, the patch extends over a distance of 8 m (from
 = 1 m to 𝑥 = 9 m) to maximize the domain over which the model is
ll-posed. 
ig. 9. Bed elevation at 𝑡 = 300 s predicted using the ( a ) active layer model ( Hirano,
esults computed using a different cell size (ranging from 0.1 m down to 2.44 ×10 −5 

he error at a certain time using a particular cell size (see Equation (13) ) when using
anels ( b ) and ( d ) only one line is visible, as it overlaps all other lines. 

300 
We conduct 13 simulations using cell sizes ranging from 0.1 m down
o 2.44 ×10 −5 m. The results do not converge and continue to change as
he grid is refined ( Fig. 9 (a)). We compute the error as a function of the
ell size to quantify the (lack of) convergence. As there is no analytical
olution to which we can compare the results of the numerical runs,
 1971 ) and ( b ) regularized active layer model. Each of the 13 lines presents the 
m, where darker colors represent smaller cell sizes). Panels ( c ) and ( d ) present 
 the active layer model and the regularized active layer model, respectively. In 
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e compute the error between the results of two successive simulations
 and 𝑠 + 1 ( Love and Rider, 2013; Roy, 2005 ). To this end, first we
nterpolate the bed elevation results of all simulations using the smallest
ell size. The interpolation, rather than linear, takes into consideration
hat each value is constant inside a cell. Second, we compute the error
s the norm 1 of the difference between bed elevations of two successive
imulations at a certain time t : 

rror 𝑡 𝑠 = 

1 
𝐿𝑁 x 

𝑁 x ∑
𝑟 =1 

|||𝜂𝑡 𝑟 𝑠 − 𝜂𝑡 𝑟 𝑠 +1 
|||, (13)

here N x denotes the number of cells of the simulation with the smallest
ell size, and L [m] the domain length. Fig. 9 (c) shows the error as a func-
ion of the cell size for several times. If the cell size is large (for instance,
arger than 0.01 m), for short simulation times (for instance, shorten
han 10 s), the results seem to converge. Yet, using the same cell size,
he results do not converge if one considers a longer simulation time.
imilarly, considering a simulation time equal to 10 s, the results do not
onverge when the cell size is smaller than 0.002 m. This behavior is
haracteristic of ill-posed simulations. The growth rate of perturbations
ncreases with decreasing cell size. For this reason, the consequences
f ill-posedness arise earlier for smaller cell sizes. Given a certain cell
ize, if the simulation is short enough, perturbations do not have time to
row and the solution seems to converge. For a fixed time, simulations
eem to converge after the error grows (for instance, for 𝑡 = 120 s, sim-
lations seem to converge for cell sizes between 0.001 m and 0.01 m).
his is due to the fact that, at the given time, perturbations have al-
eady grown significantly and have coarsened the bed material causing
he simulation to be well-posed. A further decrease of the cell size or an
nalysis at a different time shows that the active layer model does not
onverge. 

We repeat the same simulations applying the regularization strat-
gy. The initial value of the parameter that recovers the well-posed
haracter of the system is 𝛼c = 11 . 6 . In this case the solution does not
how oscillations ( Fig. 9 (b)). Moreover, the solution converges for a de-
reasing cell size independently from the time at which convergence is
ested ( Fig. 9 (d)). This supports the fact that the regularized model is
ell-posed, contrary to the active layer model. The rate at which the

olution converges confirms that the numerical scheme is first-order ac-
urate ( Section 3.5 ). 

.1.3. Two sediment size fractions 

We reproduce all laboratory experiments using a cell size equal to
.05 m. The regularized model shows spatial or temporal oscillations
n none of the cases ( Fig. 10 ). For all cases the bed elevation decreases
moothly in the streamwise direction ( Fig. 10 (b), (f), (j) and (n)). This
ontrasts with the measured temporal change of bed elevation, which
resents bedforms and the formation of degradational waves at the up-
tream end of the patch ( Fig. 10 (a), (e), (i) and (m)). The measured
ncrease in wave height at the patch ( Fig. 10 (a), (e), (i) and (m)) and
ection 4.2 ) is not captured. The effect of the patch is observed in the
odel results in the fact that degradation occurs faster for a long patch

 Fig. 10 ) than for a short one ( Fig. 10 (b)). 
The continuous and smooth predicted entrainment of substrate sed-

ment yields an almost steady volume fraction content of sediment in
he active layer both at the patch ( Fig. 10 (c), (g), (k) and (o)) and at the
ownstream end ( Fig. 10 (d), (h), (l) and (p)). The measured data shows,
n the other hand, a variable volume fraction content at the bed surface.
he model correctly captures the mean value and nicely reproduces that
 longer patch causes an increase in the amount of fine sediment at
he bed surface. The fact that the model does not capture bedforms is
ot surprising, as the mechanisms necessary for bedform formation are
ot present in the model. For instance, the fact that the flow model is
ased on the hydrostatic pressure assumption prevents modelling pro-
esses such as flow separation. The possibility of capturing the forma-
ion of the degradational waves at the patch is also discarded, as from
he analysis of well-posedness we see that the regularized model does
301 
ot show any instability mechanism that could induce wave growth.
or this reason, the model results represent values averaged over the
assage of several bedforms and degradational waves. We choose not
o filter the measured bed elevation data, as given the characteristics of
he bedforms, it would introduce a large amount of spurious information
e.g., the degradational wave would start at the wrong location) and we
ould lose a significant amount of data at the beginning and end of the
omain. 

Overall the regularized model yields a reasonable approximation of
he mean temporal change of the measured data. The degradational
rend is captured and the surface grain size distribution approximates
he average measured values. The substrate is not unrealistically altered
s there are no oscillations in the solution. 

.1.4. Three sediment size fractions 

To test the regularization strategy for multiple grain sizes, we model
xperiment I4 ( Table 2 ) using 3 different grain sizes by applying the
xact solution to obtain the regularization parameter. The fine size frac-
ion remains the same and the previous coarse size fraction is repre-
ented in this case by two characteristic grain sizes equal to 4.895 mm
nd 5.895 mm. For an initial volume fraction content at the bed sur-
ace of the medium size sediment equal to 0.375, the initial bed slope
s the same as when using two characteristic sizes and the sum of the
ediment transport rate of the medium and coarse fractions when using
hree sizes is equal to the sediment transport rate of the coarse frac-
ion when using two sizes. In this manner the simulation accounting for
hree sediment fractions is comparable to the one accounting for two size
ractions. 

In Fig. 11 we compare the bed elevation and mean grain size of the
ed surface sediment predicted by the regularized model using 2 and 3
ediment size fractions. The evolution of the bed elevation shows only a
eak dependence on the number of size fractions used to discretize the

ediment mixture. The model with 3 size fractions presents a mild coars-
ning (0.2% increase in mean grain size) with time before sediment from
he patch is entrained (after 2 h). This coarsening is not visible when us-
ng 2 size fractions, because in this case, during the initial state, the bed
urface sediment consists of one single grain size only. We conclude that
he regularization technique is applicable for a general case with more
han 2 size fractions. 

.2. Comparison between Ribberink ’s (1987) two-layer model and the 

egularized model 

To our knowledge there is no other laboratory data set apart from the
ne presented in Section 4 to which we can apply the regularized active
ayer model to test its performance. This is because either the condi-
ions that other researchers have studied yield a well-posed active layer
odel (e.g. Ashida and Michiue, 1971 ) or the active layer model is ill-
osed but the active layer thickness varies with time due to dune growth
 Blom et al., 2003 ). The latter case is a situation that the regularization
trategy cannot deal with ( Section 3.1 ). However, Ribberink (1987) ap-
lies his two-layer model to a thought experiment under conditions in
hich the active layer model is ill-posed. In this section we apply the

egularized active layer model to his thought experiment and compare
t to the two-layer model. 

Ribberink (1987) conducted a laboratory experiment with mixed-
ize sediment, which was dominated by aggradation after a period of
egradation (Experiment E8-E9). The initial bed was characterized by a
niform slope, composed of a bimodal mixture (a coarse and fine frac-
ion), and well mixed both in the streamwise and vertical direction. The
ediment supply was initially in equilibrium. A temporal increase of
he proportion of the coarse fraction in the sediment supply perturbed
he equilibrium condition and induced the downstream propagation of
 coarsening wave. The downstream migration of the coarsening front
aused a preceding and temporary bed degradation as a result of the
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Fig. 10. Comparison between measured data and regularized model results: Experiment I1 ( a - d ), Experiment I2 ( e - h ), Experiment I3 ( i - l ), and Experiment I4 ( m - p ). 
The first and second columns show the measured and predicted bed elevation with time, respectively. The vertical dashed lines indicate the position of the patch of 
fine sediment. The third and fourth columns present the surface fraction content of coarse sediment at the center of the patch of fine sediment and at the downstream 

end of the flume, respectively. 
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ifference in sediment mobility between the coarse sediment forming
he wedge and the fine sediment downstream of the front of the wedge.
ventually, the bed aggraded and was characterized by a larger slope
han the initial one, so as to allow for the transport of the coarser fed
ediment under equilibrium conditions. 

During the short degradational part of the experiment, the bed sur-
ace was coarser than the substrate (i.e., conditions in which the active
ayer model is prone to be ill-posed Chavarrías et al., 2018; Ribberink,
987; Stecca et al., 2014 ). However, while reproducing the experiment
302 
umerically, Ribberink (1987) found that the active layer model was
ell-posed. Subsequently, Ribberink (1987) applied his two-layer model

o a thought experiment that was equal to E8-E9 except for the fact that
he substrate sediment was finer than in the flume experiment such that
he active layer model is ill-posed. A numerical simulation of the thought
xperiment using the active layer model showed oscillations that even-
ually made the code crash ( Ribberink, 1987 ). The thought experiment
as reproduced well by a numerical code implementing Ribberink ’s

1987) two-layer model. 
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Fig. 11. Bed elevation ( a ) and mean grain size at the bed surface ( b ) as a func- 
tion of time predicted in Experiment I4 using the regularized active layer model 
using 2 and 3 sediment sizes. 
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Fig. 12. Bed elevation ( a ) and mean grain size of the bed surface sediment 
( b ) with time predicted for the thought experiment based on Experiment E8- 
E9 conducted by Ribberink (1987) using Ribberink’s two-layer model and the 
regularized active layer model. The results of the two-layer model are extracted 
from Fig. 7.9 of Ribberink (1987) . 
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Here we run a numerical simulation of the thought experiment us-
ng our regularized active layer model and compare it to the results
f Ribberink ’s (1987) two-layer model reported in Fig. 7.9 of
ibberink (1987) . Simulation details can be found in Appendix C . 

Fig. 12 presents the time series of bed elevation and mean grain size
f the bed surface sediment at a location 20 m downstream from the
nlet. During the first 20 h the effects of the coarsening of the fed sedi-
ent are not felt 20 m downstream from the inlet. While the regularized

ctive layer model predicts a constant bed elevation and grain size dis-
ribution of the bed surface sediment during this period of time, the
wo-layer model predicts a fining of the bed surface ( Fig. 12 (b)). This
s due to the fact that the initial grain size distribution of the exchange
ayer is not in equilibrium with the one at the active layer and causes a
ertical flux of sediment. However, the bed elevation remains constant
s predicted by both models ( Fig. 12 (a)). 

The aggradational phase is preceded by a degradational wave, which
s much more pronounced in the regularized active layer model than
n the two-layer model. This is because in the regularized active layer
odel degradation causes entrainment of the fine substrate sediment,
hereas in the two-layer model the exchange layer acts as a buffer

hat slows down the process. The coarsening of the bed surface be-
ween approximately 25 h and 40 h as predicted by both models is
ery similar. While after 40 h the regularized active layer model pre-
icts a constant grain size distribution of the bed surface sediment,
he two-layer model predicts an asymptotic adaptation toward equi-
ibrium conditions. This effect is again caused by the exchange layer
hat coarsens slowly compared to the active layer on top of it, as it
ccounts for the effects of occasionally large bedforms. The equilib-
ium state differs between the two models. We believe that this is due
o the fact that we do not know exactly what values were used by
ibberink (1987) for the constants in the sediment transport relation
 Appendix C ). 

The regularized active layer model captures the dynamics predicted
y the two-layer model of Ribberink (1987) . The advantage of the two-
ayer model is that it accounts for a source of vertical mixing that the
egularized active layer model does not take into consideration (i.e., the
ixing due to occasionally large bedforms). On the other hand, the two-

ayer model may become ill-posed ( Sieben, 1994 ) while the regularized
ctive layer model is always well-posed. 
303 
. Discussion 

In this section we discuss the physical interpretation of the regular-
zation strategy ( Section 6.1 ), as well as possible extensions and further
evelopment ( Section 6.2 ). 

.1. Physical interpretation of the regularization strategy 

The ill-posed solution predicted by the active layer model is charac-
erized by oscillations that temporarily fine the bed surface and coarsen
he substrate. This behavior is also observed in our laboratory experi-
ents ( Figs. 6 and 7 ). One may be tempted to conclude that the active

ayer model, although being mathematically ill-posed, provides reason-
ble results. This argument is wrong for two reasons. The first reason
s that the numerical solution does not converge for a decreasing mesh
ize. The solution keeps changing and oscillations become larger when
he cell size is reduced ( Chavarrías et al., 2018; Joseph and Saut, 1990 ).
uch a solution cannot be representative of physical phenomena. Sec-
nd, the physical processes responsible for the small scale variability in
ed elevation (i.e., ripples, bedload sheets) are not accounted for by the
ctive layer model ( Section 3.1 ). Any resemblance of the model results
ith bed elevation fluctuations due to small scale bedforms is therefore

oincidence. 
The frequently used morphodynamic factor ( Φ𝜂) ( Latteux, 1995;

anasinghe et al., 2011; Roelvink, 2006 ) is a particular case of a pre-
onditioning matrix with parameters 𝛽 = 1∕Φ𝜂 and 𝛼𝑘 = 1 ∀k . The pro-
osed regularization strategy can be considered as the use of a morpho-
ynamic factor not only for the changes in bed elevation ( 𝜂) but also
or the changes in grain size distribution of the bed surface ( M a k ). The
sorting morphodynamic factor ” ( Φs k ) is then defined as Φs 𝑘 = 1∕( 𝛼𝑘 𝛽) .
e have seen that the only applicable regularization strategy is that in
hich 𝛼𝑘 = 𝛼 > 1 ∀k and 𝛽 = 1 , which is equivalent to saying that the

egularization strategy is based on a “sorting morphodynamic factor ”
 < Φs < 1. This implies that the mixing or sorting processes associated
ith changes in grain size distribution of the bed surface sediment are

lowed down with respect to the celerity predicted by the active layer
odel. 
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The effect of applying the regularization strategy is a slowdown of
he sediment mixing processes in the model computations. This effect is
imilar to the effect of a (temporary) increase of the active layer thick-
ess. From a physical perspective this slowdown of mixing processes
ay be associated with a (temporary) increase of the range of elevations

overed by the bed level fluctuations ( Blom et al., 2008 ). The slowdown
f mixing processes resulting from applying the regularization strategy
mplies that the regularized active layer model can be applied to a wider
ange of physical problems (i.e., also those characterized by a fairly
mall time scale of mixing) than the active layer model. 

.2. Alternatives to the regularization strategy 

Our regularization strategy is applied locally and temporally.
orded differently, only when and where the model is ill-posed, we up-

ate the grain size distribution of the bed surface sediment using the pa-
ameter 𝛼c . Moreover, 𝛼c depends only on the conditions at the location
nder consideration (note that the preconditioning matrix is diagonal).
his is the simplest strategy but one could decide to avoid discontinu-

ties in the value of 𝛼c throughout the domain by coupling neighboring
odes. 

Carraro et al. (2018) propose a technique to decrease the computa-
ional cost of morphodynamic simulations. As in our case, their strategy
an be seen as a preconditioning technique. They consider unisize sedi-
ent conditions and modify not only the Exner (1920) equation but also

he continuity equation. Here we modify the active layer equation but
ot the flow equations or the Exner (1920) equation. A combination of
oth strategies could yield a technique that both decreases the cost of
umerical simulations and guarantees that the model is well-posed. 

We have focused on restoring the hyperbolic character of the system
f equations and to this end we based our study on the linear solution
i.e., short waves). This focus suffices here, as short waves are most sen-
itive to ill-posedness ( Joseph and Saut, 1990 ). However, the regular-
zation strategy modifies the celerity and growth rate not only of short
aves but also of long ones. For this reason, we suggest to further study
ow long waves are affected and whether the results of the regulariza-
ion strategy are physically realistic based on a similar analysis to that
f Lanzoni et al. (2006) . 

We have assumed a constant active layer thickness to avoid the
dded complexity due to a cumbersome closure relation linking the pre-
onditioning parameters to the change in time of the active layer thick-
ess. It may be possible to extend our regularization strategy to situa-
ions in which the active layer thickness changes with time (e.g., due to
une growth) by providing such a closure relation. On the other hand, it
s reasonable that the regularization strategy requires a constant active
ayer thickness given the fact that mathematically the strategy has the
ame effect as an increase in the active layer thickness (i.e., a decrease
n the celerity of the mixing processes). 

We have concluded that the regularization strategy needs to slow-
own the mixing processes (i.e., 𝛼c > 1) to guarantee that the eigenval-
es are always positive regardless of the value of the sorting celerity

s1 . However, if the sorting celerity is guaranteed to be positive (e.g.,
ecause hiding is negligible), the acceleration of the mixing processes
lso yields positive eigenvalues and a well-posed model. There may be
ases in which the latter strategy yields more realistic results. Moreover,
e have chosen to guarantee that the regularized eigenvalues are pos-

tive reasoning that morphodynamic information travels in the down-
tream direction under subcritical conditions ( Lanzoni et al., 2006; Lyn
nd Altinakar, 2002; Stecca et al., 2014; Suzuki, 1976 ). This statement
s partially contradictory to recent studies that consider sediment trans-
ort as a stochastic process ( Ancey and Heyman, 2014; Furbish et al.,
012 ). The stochastic nature of sediment transport yields an advection-
iffusion equation that models the amount of moving particles per unit
f bed area. The diffusive character implies that information also travels
n the upstream direction. For this reason, a regularization strategy in
304 
hich information travels in the upstream direction may be physically
ealistic under certain circumstances. 

For a case with more than two sediment size fractions ( Section 3.4 ),
he approximate value of the parameter 𝛼c is not (completely) satis-
actory as well-posedness is not guaranteed. We have observed in our
ests that ill-posedness occurs when (at least) two eigenvalues of the bed
nd sorting eigenvalues are similar with respect to the other bed and
orting eigenvalues. For a case considering two sediment size fractions
his is referred in literature as the “crossing of eigenvalues ” ( Sieben,
997; Stecca et al., 2014 ). Worded differently, the difference between
wo eigenvalues must be large enough for the model to be well-posed. A
egularization strategy based on guaranteeing a minimum distance be-
ween eigenvalues could yield an inexpensive solution for the case with
ore than two sediment size fractions. 

. Conclusions 

We have developed a preconditioning method for regularizing the
ctive layer model ( Hirano, 1971 ) used in modeling mixed-sediment
iver morphodynamics. Our method recovers the well-posed character
f the system of equations by means of one parameter that modifies the
elerity of the mixing processes. Physically this means that the mixing
rocesses are slowed down or the time scale of the mixing processes is
ncreased. 

We conduct 4 laboratory experiments under conditions in which the
ctive layer model is ill-posed and we compare the observations to the
redictions of the regularized active layer model. The regularized active
ayer model captures the mean behavior observed in the experiments
ssociated with changes averaged over the passage of several bedforms.
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ppendix A. Model equations 

In this section we present the system of equations for model-
ng mixed-sediment river morphodynamics. In Section A.1 we present
he flow equations. In Section A.2 we present the active layer
odel ( Hirano, 1971 ). A simplified active layer model is presented

n Section A.3 . In Section A.4 we show the closure relations. In
ection A.5 we present the system of equations in matrix-vector for-
ulation. 

.1. Flow equations 

We consider a one-dimensional mixture of water and sediment flow-
ng over a mobile bed. A set of partial differential equations that ac-
ounts for the interactions between sediment and water is found by ap-
lying mass and momentum conservation principles for the mixture of
ediment and water (e.g., Garegnani et al., 2011; Greco et al., 2012 ).
he complete system of equations reduces to the Saint–Venant–Exner
odel (i.e., clear water approximation) under low sediment concen-

rations ( 𝑐 = 𝑞 b ∕ 𝑞 < 0 . 006 , where q b [m 

2 /s] and q [m 

2 /s] are the sedi-
ent transport rate and flow discharge per unit width, respectively e.g.,

https://doi.org/10.13039/501100004725
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aregnani et al., 2011; Garegnani et al., 2013 ). In the remaining we will
ssume that the clear water approximation is valid. 

The flow is modeled using the Saint-Venant (1871) equations: 

𝜕ℎ 

𝜕𝑡 
+ 

𝜕𝑞 

𝜕𝑥 
= 0 , (14)

𝜕𝑞 

𝜕𝑡 
+ 

𝜕 ( 𝑞 2 ∕ ℎ + 𝑔ℎ 2 ∕2) 
𝜕𝑥 

+ 𝑔 ℎ 
𝜕 𝜂

𝜕 𝑥 
= − 𝑔 ℎ𝑆 f , (15)

here t [s] denotes the time coordinate, x [m] the streamwise coordi-
ate, h [m] the flow depth, g [m/s 2 ] the acceleration due to gravity, 𝜂
m] the bed elevation, and S f [ – ] the friction slope. 

The flow equations can be further simplified assuming steady flow.
nder this condition the conservation of water mass and momentum

educe to a spatially constant discharge, and the backwater equation: 

𝜕ℎ 

𝜕𝑥 
= 

−1 
1 − Fr 2 

𝜕𝜂

𝜕𝑥 
− 

𝑆 f 

1 − Fr 2 
, (16)

here Fr = 𝑞 ∕ 
√
𝑔 ℎ 3 is the Froude number. 

.2. Active layer model 

To model changes in bed elevation we assume that the sediment
ransport rate adapts instantaneously to changes in bed shear stress. Spa-
ial and/or temporal adaptation to capacity load ( Bell and Sutherland,
983; Phillips and Sutherland, 1989; 1990 ) is not considered. Neglecting
echanisms such as subsidence and uplift ( Paola and Voller, 2005 ), and

ssuming a constant bed porosity, we obtain the Exner (1920) equation:

𝜕𝜂

𝜕𝑡 
+ 

𝜕𝑞 b 
𝜕𝑥 

= 0 , (17)

here for simplicity the sediment transport rate includes the pores. 
The sediment phase is composed of a mixture of N non-cohesive sed-

ment size fractions. Each fraction is characterized by a grain size d k 
m] where k is an index identifying a size fraction. The total sediment
ransport rate per unit width is the sum of the sediment transport rate
f size fraction k, q b k [m 

2 /s]: 

 b = 

𝑁 ∑
𝑘 =1 

𝑞 b 𝑘 . (18)

The conservation of the volume of sediment of size fraction k in the
ctive layer per unit of bed area ( 𝑀 a 𝑘 = 𝐹 a 𝑘 𝐿 a [m]) is expressed math-
matically as ( Hirano, 1971 ): 

𝜕𝑀 a 𝑘 
𝜕𝑡 

+ 𝑓 I 
𝑘 

𝜕( 𝜂 − 𝐿 a ) 
𝜕𝑡 

+ 

𝜕𝑞 b 𝑘 
𝜕𝑥 

= 0 for 1 ≤ 𝑘 ≤ 𝑁 − 1 , (19)

here F a k ∈ [0, 1] [ – ] is the volume fraction content of size fraction k
n the active layer, 𝑓 I 

𝑘 
∈ [0, 1] [ – ] is the volume fraction content of size

raction k at the interface between the active layer and the substrate,
nd L a [m] is the active layer thickness. By definition, 

𝑁 

 =1 
𝐹 a 𝑘 = 1 , 

𝑁 ∑
𝑘 =1 

𝑓 I 
𝑘 
= 1 . (20)

From the first constrain in Eq. (20) one obtains the change of the
olume of sediment in the active layer of the N th grain size with time. 

The system is complete with an equation for the conservation of
ass in the substrate. Yet, this equation is linearly dependent on the
xner (1920) and Hirano (1971) equations which implies that it does
ot play a role in the mathematical character of the system ( Chavarrías
t al., 2018; Stecca et al., 2014 ). 

.3. Simplified Active Layer Model 

To simplify the system of equations we replace the 𝑁 − 1 equations
hat account for the change in bed surface volume fraction content of
he N fractions by one equation that models the average grain size fol-
owing the approach of Ribberink (1987) . We multiply each regularized
305 
ctive layer equation by its characteristic grain size and we add all the
quations: 

𝜕𝐷 ma 
𝜕𝑡 

− 

𝐷 

I 
m 

𝐿 a 

𝜕𝑞 b 
𝜕𝑥 

+ 

1 
𝐿 a 

𝑁 ∑
𝑘 =1 

𝑑 𝑘 
𝜕𝑞 b 𝑘 
𝜕𝑥 

= 0 , (21)

here 𝐷 ma = 

∑𝑁 

𝑘 =1 𝑑 𝑘 𝐹 a 𝑘 [m] is the mean grain size of the sediment in

he active layer and 𝐷 

I 
m = 

∑𝑁 

𝑘 =1 𝑑 𝑘 𝑓 
I 
𝑘 

[m] is the mean grain size of the
ediment at the interface between the active layer and the substrate. The
ean grain size is computed arithmetically as it is a necessary step to

btain an approximate equation. Yet, we consider that the mean grain
ize is better approximated assuming the grain size distribution to be
ogarithmically distributed. 

We write the sediment transport rate q b k as a function of the flow
epth h and the mean grain size of the sediment in the active layer D ma 

uch that: 

𝜕𝑞 b 𝑘 
𝜕𝑥 

= 

𝜕𝑞 b 𝑘 
𝜕ℎ 

𝜕ℎ 

𝜕𝑥 
+ 

𝜕𝑞 b 𝑘 
𝜕𝐷 ma 

𝜕𝐷 ma 
𝜕𝑥 

. (22)

e use that: 

 ma = 

𝑁 ∑
𝑘 =1 

𝑑 𝑘 𝐹 a 𝑘 = 𝑑 𝑁 

+ 

1 
𝐿 a 

𝑁−1 ∑
𝑘 =1 

𝑀 a 𝑘 
(
𝑑 𝑘 − 𝑑 𝑁 

)
, (23)

here we have used the constrain that 
∑𝑁 

𝑘 =1 𝐹 a 𝑘 = 1 . Thus, 

𝜕𝑞 b 𝑘 
𝜕𝐷 ma 

= 

𝑁−1 ∑
𝑙=1 

𝜕𝑞 b 𝑘 
𝜕𝑀 a 𝑙 

𝜕𝑀 a 𝑙 
𝜕𝐷 ma 

= 𝐿 a 

𝑁−1 ∑
𝑙=1 

1 
𝑑 𝑙 − 𝑑 𝑁 

𝜕𝑞 b 𝑘 
𝜕𝑀 a 𝑙 

, (24)

here we have used that: 

𝜕𝑀 a 𝑙 
𝜕𝐷 ma 

= 

𝐿 a 
𝑑 𝑙 − 𝑑 𝑁 

. (25) 

We substitute the backwater equation ( Eq. 16 ) in the
xner (1920) equation ( Eq. 17 ) and the equation of the mean grain size
 Eq. 21 ) to obtain the final set of equations: 

𝜕𝜂

𝜕𝑡 
− 

1 
1 − Fr 2 

𝜕𝑞 b 
𝜕ℎ 

𝜕𝜂

𝜕𝑥 
+ 

𝜕𝑞 b 
𝜕𝐷 ma 

𝜕𝐷 ma 
𝜕𝑥 

= 

1 
1 − Fr 2 

𝜕𝑞 b 
𝜕ℎ 

𝑆 f , (26)

𝜕𝐷 ma 
𝜕𝑡 

+ 

1 
𝐿 a 

1 
1 − Fr 2 

[ 
𝐷 

I 
m 
𝜕𝑞 b 
𝜕ℎ 

− 

𝑁 ∑
𝑘 =1 

𝑑 𝑘 
𝜕𝑞 b 𝑘 
𝜕ℎ 

] 
𝜕𝜂

𝜕𝑥 

− 

1 
𝐿 a 

[ 
𝐷 

I 
m 

𝜕𝑞 b 
𝜕𝐷 ma 

− 

𝑁 ∑
𝑘 =1 

𝑑 𝑘 
𝜕𝑞 b 𝑘 
𝜕𝐷 ma 

] 
𝜕𝐷 ma 
𝜕𝑥 

 

−1 
𝐿 a 
(
1 − Fr 2 

)[ 𝐷 

I 
m 
𝜕𝑞 b 
𝜕ℎ 

− 

𝑁 ∑
𝑘 =1 

𝑑 𝑘 
𝜕𝑞 b 𝑘 
𝜕ℎ 

] 
𝑆 f . (27) 

.4. Closure relations 

To close the system of equations we provide closure relations for
he friction term, the sediment transport rate, and the flux between the
ctive layer and the substrate. 

We adopt the following Chézy closure relation for the friction term:

 f = 

𝐶 f 𝑢 
2 

𝑔ℎ 
, (28)

here C f [ – ] is a nondimensional friction coefficient that we assume to
e constant (i.e., independent of the flow or bed properties), and 𝑢 = 𝑞∕ ℎ
m/s] is the mean flow velocity. 

The sediment transport rate of size fraction k per unit width
s assumed to be the product of a nondimensional sediment trans-
ort rate ( 𝑞 ∗ b 𝑘 [−] ) and the bed surface fraction content. The latter
e assume equal to the active layer volume fraction content. The

instein (1950) parameter ( 
√ 

𝑔𝑅𝑑 3 
𝑘 
) scales the nondimensional quan-

ity such that: 

 b 𝑘 = 𝐹 a 𝑘 

√ 

𝑔𝑅𝑑 3 
𝑘 
( 1 − 𝑝 ) 𝑞 ∗ b 𝑘 , (29)
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S
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𝐀⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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C

𝐐  

𝐀

𝐒  
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(

𝜆  

𝜆  

w  

𝜓  

𝛾  

𝑐  

𝜒  

𝜇  

𝑑  
here 𝑅 = 𝜌s ∕ 𝜌w − 1 [ – ] is the submerged specific gravity, 𝜌s = 2650
g/m 

3 the sediment density, and 𝜌w = 1000 kg/m 

3 the water density.
he sediment transport rate q b k includes the volume of pores. The nondi-
ensional sediment transport rate is assumed to be a function of the
ondimensional bed shear stress, 𝜃k ( Shields, 1936 ): 

𝑘 = 

𝐶 fb 𝑢 
2 

𝑔𝑅𝑑 𝑘 
, (30)

here C fb [ – ] is the skin friction coefficient. 
The nondimensional sediment transport rate is computed using a

ediment transport relation such as the one proposed by Ashida and
ichiue (1971) : 

 

∗ 
b 𝑘 = 17 

(
𝜃𝑘 − 𝜉𝑘 𝜃c 

)(√
𝜃𝑘 − 

√
𝜉𝑘 𝜃c 

)
. (31)

The parameter 𝜉k [ – ] is the hiding function: 

𝑘 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 . 843 
( 

𝑑 𝑘 

𝐷 m 

) −1 
for 

𝑑 𝑘 

𝐷 m 
≤ 0 . 4 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
log 10 (19) 

log 10 
( 

19 
𝑑 𝑘 

𝐷 m 

) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

2 

for 
𝑑 𝑘 

𝐷 m 
> 0 . 4 

, (32)

here D m 

is a characteristic mean grain size of the sediment mixture.
shida and Michiue (1971) propose 𝜃c = 0 . 05 . 

Under degradational conditions we assume that the volume fraction
ontent of sediment at the interface between the active layer and the
ubstrate is equal to the sediment in the top part of the substrate. Under
ggradational conditions the sediment in the active layer is assumed to
e transferred to the substrate ( Hirano, 1971 ): 

 

I 
𝑘 
= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑓 s 𝑘 ( 𝑧 = 𝜂 − 𝐿 a ) if 

𝜕 
(
𝜂 − 𝐿 a 

)
𝜕𝑡 

< 0 

𝐹 a 𝑘 if 
𝜕 
(
𝜂 − 𝐿 a 

)
𝜕𝑡 

> 0 

. (33)

Other formulations include those of Hoey and Ferguson (1994) . 

.5. Matrix formulation 

In this section we present the matrix-vector form ( Eq. (1) ) of the
ctive layer model in combination with the unsteady flow equations
 Stecca et al., 2014 ) and assuming steady flow ( Chavarrías et al., 2018 )
s well as the simplified morphodynamic model. 

The vector of dependent variables ( Q u ), system matrix ( A u ),
nd vector of source terms ( S u ) of the fully unsteady system is
tecca et al. (2014) : 

 u = 

⎡ ⎢ ⎢ ⎢ ⎣ ℎ, 𝑞, 𝜂, [ 𝑀 a 𝑘 ] 
⏟⏟⏟
𝑁−1 

⎤ ⎥ ⎥ ⎥ ⎦ 
⊺

, (34)

 u = 

 

 

 

 

 

 

 

 

 

 

 

 

0 1 0 𝟘 

𝑔ℎ − 

( 𝑞 

ℎ 

)
2 2 𝑞 

ℎ 
𝑔ℎ 𝟘 

𝜕𝑞 b 
𝜕ℎ 

𝜕𝑞 b 
𝜕𝑞 

0 
[ 

𝜕𝑞 b 
𝜕𝑀 a 𝑙 

] 
− − − − − − −− − − − − − − − − − − − − − − − − − − − − − 

[ 
𝜕𝑞 b 𝑘 
𝜕ℎ 

−𝑓 I 
𝑘 

𝜕𝑞 b 
𝜕ℎ 

] 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

1 

[ 
𝜕𝑞 b 𝑘 
𝜕𝑞 

−𝑓 I 
𝑘 

𝜕𝑞 b 
𝜕𝑞 

] 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

1 

𝟘 
⏟⏟⏟

1 

[ 
𝜕𝑞 b 𝑘 
𝜕𝑀 a 𝑙 

−𝑓 I 
𝑘 

𝜕𝑞 b 
𝜕𝑀 a 𝑙 

] 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑁−1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

} 

1 } 

1 } 

1 } 

𝑁 − 1 

, 

(35)
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 u = 

⎡ ⎢ ⎢ ⎢ ⎣ 0 , − 𝑔ℎ𝑆 f , 0 , 𝟘 
⏟⏟⏟
𝑁−1 

⎤ ⎥ ⎥ ⎥ ⎦ 
⊺

. (36)

The preconditioning matrix is in this case: 

 u = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 
0 1 0 𝟘 
0 0 𝛽

− − − − − − − − − − − − − − − − − − 

𝛽𝛼1 
𝟘 ⋱ 

𝛽𝛼𝑁−1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (37)

Assuming steady flow, the vector of dependent variables ( Q s ),
ystem matrix ( A s ), and vector of source term ( S s ) are equal to
havarrías et al. (2018) : 

 s = 

⎡ ⎢ ⎢ ⎢ ⎣ 𝜂, [ 𝑀 a 𝑘 ] 
⏟⏟⏟
𝑁−1 

⎤ ⎥ ⎥ ⎥ ⎦ 
⊺

, (38)

 s = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− 

1 
1 − Fr 2 

𝜕𝑞 b 
𝜕ℎ 

[ 
𝜕𝑞 b 
𝜕𝑀 a 𝑙 

] 
− − − − − − − − − − − − − − − − − − − − − − − −− 

[ 
− 

1 
1 − Fr 2 

( 

𝜕𝑞 b 𝑘 
𝜕ℎ 

− 𝑓 I 
𝑘 

𝜕𝑞 b 
𝜕ℎ 

) ] 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1 

[ 
𝜕𝑞 b 𝑘 
𝜕𝑀 a 𝑙 

− 𝑓 I 
𝑘 

𝜕𝑞 b 
𝜕𝑀 a 𝑙 

] 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑁−1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

} 

1 } 

𝑁 − 1 

, 

(39) 

 s = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑆 f 

1 − Fr 2 
𝜕𝑞 b 
𝜕ℎ 

, 

[ 
𝑆 f 

1 − Fr 2 

( 

𝜕𝑞 b 𝑘 
𝜕ℎ 

− 𝑓 I 
𝑘 

𝜕𝑞 b 
𝜕ℎ 

) ] 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑁−1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

⊺

. (40)

The preconditioning matrix assuming steady flow is: 

 s = 𝛽

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 𝟘 
− − − − − − − − − − − −− 

𝛼1 
𝟘 ⋱ 

𝛼𝑁−1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (41)

The nondimensional approximated bed and sorting celerities are
 Chavarrías et al., 2018; De Vries, 1965 ): 

b = 

𝜓 

1 − Fr 2 
, (42)

s1 = 𝜒1 𝜇1 , 1 , (43)

here the parameters are ( Chavarrías et al., 2018; Stecca et al., 2014 ):

 = 

𝜕𝑞 b 
𝜕𝑞 

, (44)

𝑘 = 𝑐 𝑘 − 𝑓 I 
𝑘 
, (45)

 𝑘 = 

1 
𝜓 

𝜕𝑞 b 𝑘 
𝜕𝑞 

, (46)

𝑙 = 

1 
𝑢 

𝜕𝑞 b 
𝜕𝑀 a 𝑙 

, (47)

𝑙,𝑘 = 𝑑 𝑙,𝑘 − 𝑓 I 
𝑘 
, (48)

 𝑙,𝑘 = 

1 
𝑢𝜒

𝜕𝑞 b 𝑘 
𝜕𝑀 

. (49)

𝑙 a 𝑙 
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In the simplified morphodynamic model ( Section A.3 ), the vector
f dependent variables ( Q m 

), system matrix ( A m 

), and vector of source
erm ( S m 

) are: 

 m = 

[
𝜂, 𝐷 ma 

]⊺, (50)

 m = 𝑢 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 
− 1 
1 − Fr 2 

𝜕𝑞 b 
𝜕ℎ 

𝜕𝑞 b 
𝜕𝐷 ma 

1 
𝐿 a 

1 
1 − Fr 2 

( 

𝐷 

I 
m 
𝜕𝑞 b 
𝜕ℎ 

− 
𝑁 ∑
𝑘 =1 

𝑑 𝑘 
𝜕𝑞 b 𝑘 
𝜕ℎ 

) 

− 1 
𝐿 a 

( 

𝐷 

I 
m 

𝜕𝑞 b 
𝜕𝐷 ma 

− 
𝑁 ∑
𝑘 =1 

𝑑 𝑘 
𝜕𝑞 b 𝑘 
𝜕𝐷 ma 

) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 

(51) 

 m = 

𝑆 f 

1 − Fr 2 

[ 
𝜕𝑞 b 
𝜕ℎ 

, 
−1 
𝐿 a 

( 

𝐷 

I 
m 
𝜕𝑞 b 
𝜕ℎ 

− 

𝑁 ∑
𝑘 =1 

𝑑 𝑘 
𝜕𝑞 b 𝑘 
𝜕ℎ 

) ] ⊺
. (52)

The preconditioning matrix is: 

 m = 𝛽

[ 
1 0 
0 𝛼

] 
. (53)

The parameters are: 

m = 𝜒m 𝜇m , (54)

m = 𝑐 m − 𝑓 I m , (55)

 m = 

1 
𝜓𝐿 a 

𝑁 ∑
𝑘 =1 

𝑑 𝑘 
𝜕𝑞 b 𝑘 
𝜕𝑞 

, (56)

 

I 
m = 

𝐷 

I 
m 

𝐿 a 
, (57)

m = 

1 
𝑢 

𝜕𝑞 b 
𝜕𝐷 ma 

, (58)

m = 𝑑 m − 𝑓 I m , (59)

 m = 

1 
𝑢𝜒m 𝐿 a 

𝑁 ∑
𝑘 =1 

𝑑 𝑘 
𝜕𝑞 b 𝑘 
𝜕𝐷 ma 

. (60)

ppendix B. Mass conservation of the modified system 

Mass conservation of the modified system of equations ( Section 3.1 )
s guaranteed if the sum of the N modified active layer equations is equal
o the modified ( Exner, 1920 ) equation. As we already substituted the
xner (1920) equation in the active layer equation, the addition of the
 modified active layer equations must yield an identity: 

𝑁 

 =1 
𝛽𝛼𝑘 

𝜕𝑀 a 𝑘 
𝜕𝑡 

+ 

𝑁 ∑
𝑘 =1 

𝑓 I 
𝑘 
𝛽
𝜕 
(
𝜂 − 𝐿 a 

)
𝜕𝑡 

+ 

𝑁 ∑
𝑘 =1 

𝜕𝑞 b 𝑘 
𝜕𝑥 

= 0 ⇒

𝜕𝐿 a 
𝜕𝑡 

( 

𝑁 ∑
𝑘 =1 

𝛼𝑘 𝐹 a 𝑘 − 1 

) 

+ 𝛽𝐿 a 

𝑁 ∑
𝑘 =1 

( 

𝛼𝑘 
𝜕𝐹 a 𝑘 
𝜕𝑡 

) 

= 0 . 

(61) 

To allow for morphodynamic changes the parameter 𝛽 must be dif-
erent than 0. This yields a multiplicity of cumbersome closure relations
or 𝛼k relating the temporal change of the active layer thickness to those
f the volume fraction contents at the bed surface. We choose to simplify
he problem assuming that 𝛼𝑘 = 𝛼 ∀k so that we obtain: 

𝜕𝐿 a 
𝜕𝑡 

( 𝛼 − 1 ) = 0 . (62)

Given that 𝛼 ≠1 to recover the well-posedness of the system of equa-
ion, the active layer thickness must be constant to conserve mass in the
odified system of equations. 
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ppendix C. Parameters of the numerical simulation of the 

hought experiment 

In this section we provide the details of our numerical simulation
f the thought experiment conducted by Ribberink (1987) . The thought
xperiment is based on the laboratory Experiment E8-E9 conducted by
ibberink (1987) . The only difference is that in the thought experiment

he substrate is finer than in the laboratory experiment. 
The domain is 30 m long and it is discretized into 0.01 m long cells.

he simulation time is 120 h. The total and skin friction coefficient are
qual to 0.0117. The sediment mixture is composed of two sediment
izes equal to 0.78 mm and 1.29 mm. The flow discharge per unit width
s constant and equal to 0.0803 m 

2 /s. The downstream water level is
onstant and such that initially the bed is in equilibrium. The upstream
ediment load is initially equal to 5.64 ×10 −6 m 

2 /s and it is composed
f 50% of the fine fraction. During the first 30 h the fraction of fine
ediment linearly decreases to 0. The total amount of sediment decreases
o 95% of the initial value. The active layer thickness is equal to 0.02 m.
he initial volume fraction content of fine sediment in the substrate is
.6. 

It is not fully clear to the authors which sediment transport relation
nd which parameters Ribberink (1987) used in the simulation of the
hought experiment using the two-layer model. We have inferred that
e used the relation developed by Meyer-Peter and Müller (1948) with
he hiding function by Egiazaroff (1965) with the calibrated parameters
 = 15 . 85 , 𝐵 = 1 . 5 , and 𝜃c = 0 . 0307 . The mean grain size is computed
rithmetically. We calibrate the ripple factor (a constant multiplying
he Shields (1936) stress) such that the bed slope and volume fraction
ontent of fine sediment are as close as possible to the reported val-
es. We obtain that for a ripple factor equal to 0.3169 the bed slope
s 1.65 ×10 −3 (the same as Ribberink (1987) reported) and the volume
raction content of fine sediment in the active layer is equal to 0.409
 Ribberink, 1987 reported a value equal to 0.43). 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.advwatres.2019.04.001 . 
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