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1

Introduction

Seismic waves provide important information about the interior of the Earth on various
scales. This information is used extensively for the exploration of oil and gas, to study the
evolution of the Earth, and to predict earth quakes, for example. More recently, the use of
seismic waves for near-subsurface characterization in the field of geotechnical engineering has
gained increased interest.

In seismic exploration, an image is made of the subsurface structure, which may indicate
possible occurrences of hydrocarbon reservoirs. In a similar way, seismic records in solid Earth
seismology are used to infer the structure of the entire Earth. In essence, those problems are
inverse problems. In inverse problems seismic data are used to infer certain properties of the
medium through which the waves propagate.

Often, the complexity of the seismic wave field does not allow direct interpretation of the
data. For this reason, forward modeling methods are used to understand and predict wave
propagation in the Earth. In forward modeling, the response from a known model is determined
to a known source wave field, using a mathematical model for wave propagation.

In this thesis we discuss both the modeling and inversion of seismic waves that are guided
along the surface of the Earth and are scattered in the vicinity of the source or the receivers.

1.1 Motivation

In seismic exploration, measurements of the elastic wave field are used, measured at the surface
of the Earth, to make inferences about the first few kilometers of the Earth’s crust. The objec-
tive of these methods is to obtain a detailed image of the subsurface in order to locate possible
hydrocarbon-bearing layers. To obtain an image of the target area (in the deeper subsurface)
the information is used contained in body waves that have traveled through the medium to a
reflector and have been reflected back to the surface.

The seismic wave field is excited by a source at (or close to) the surface. Consequently, most
of the energy is converted into surface waves. Surface waves are waves that are guided along the
surface of the Earth. Hence, by definition, these surface waves do not carry information about
the deeper subsurface. Because emphasis is placed on body waves in seismic imaging, surface
waves are considered to be noise. For this reason, (scattered) surface waves have extensively
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2 1.2 Seismic Wave Field Modeling

been studied to identify their properties and formulate schemes to remove them (Regone, 1998;
Blonk and Herman, 1994; Herman and Perkins, 2004).

Another cause of noise in seismic exploration is the near-surface region which is often het-
erogeneous. This heterogeneity causes time shifts and amplitude anomalies in upcoming re-
flection events, potentially diminishing the quality of the final image. If the heterogeneity is
strong enough and close to the surface, surface waves can also be excited when upcoming body
waves impinge on near-surface heterogeneities or nearby topography (Gilbert and Knopoff,
1960; Hudson, 1967; Snieder, 1987; Wagner and Langston, 1992; Aki and Richards, 2002;
Campman et al., 2005). In this case, the scatterer acts as a source and excites secondary sur-
face waves. While the body-to-surface wave scattering mechanism has been well-documented
in global seismology (Bannister et al., 1990; Wagner and Langston, 1992, for example), it has
gone fairly unnoticed in seismic exploration.

In the past decade, new acquisition hardware became available, such that it has become pos-
sible to record the wave field at many more locations (see Figure 1.1). The denser sampling of
the wave field has provided new insights in the seismic wave field and offers greater flexibility
in processing of the data. From studying densely sampled data, it has become clear that scat-
tering close to the receivers causes diffractions that can be tracked along at least a few traces in
the record. Berni and Roever (1989) and Muyzert and Vermeer (2004) show that perturbations
on an intra-array scale can reduce the high-frequency content of the traces after stacking. This
potentially diminishes the maximum obtainable resolution in the final image of the deeper sub-
surface. To get more insight in the nature of the effect of heterogeneity close to the surface, to
help developing methods to correct for it, we have developed a method to model near-receiver
scattering problems described in the present thesis.

While, on the one hand this model allows us to identify the main properties of near-surface
scattering, on the other it can be used as the starting point for an inversion algorithm. Instead
of being noise, the scattered surface waves then provide information about certain properties
of the near subsurface. Applications of inversion of scattered surface waves may be found in
geotechnical engineering, archeology, or water exploration (for instance Kaslilar et al., 2005).

1.2 Seismic Wave Field Modeling

In general, there are several different methods for simulating wave propagation. Carcione
et al. (2002) distinguish three commonly used approaches: direct methods (finite difference
methods, pseudospectral methods, and finite-element methods), integral-equation methods and
ray-tracing methods. Direct methods like finite-difference methods (Robertsson et al., 1994;
Robertsson and Holliger, 1997; Carcione et al., 2002) and finite-element methods (Hughes,
1987; Padovani et al., 1994; Séron et al., 1990) can in principle handle any geometry, by includ-
ing topography for example, but they can also be very expensive computationally. For instance,
in the case of the modeling of small inclusions in shallow layers, as in near-surface scattering,
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Figure 1.1: (a) Part of a single-receiver field record with dense spatial sampling. One can
identify near-receiver scattering, showing up as the diffractions and interference between 125
and 175 m and around 40 m. (b) The same record, but representative for a conventional survey.
This record was created from the one in (a) by summing five neighboring traces (group forming).
Data courtesy of Schlumberger Cambridge Research/WesternGeco.

refining the grid can dramatically increase the computation time, especially in three dimensions.
Asymptotic methods (e.g. Snieder, 1987; Blonk and Herman, 1994; Ernst and Herman, 1998)
are very efficient, but when the scattering takes place close to the source or receivers, these
methods are not accurate because they are based on a high-frequency approximation, which
makes them only applicable for modeling problems in the far field.

Asymptotic methods are generally based on a single scattering approximation, which im-
plies that the scattering objects have to be small compared to the dominant wavelength and that
the contrast should be weak. Clearly, in a complex overburden, these conditions are not always
met, which makes these methods unsuitable for this problem.

Seismic surface waves have been studied extensively in global seismology to explain certain
arrivals in seismic records. They often dominate seismic recordings and can provide informa-
tion about the near-surface structure of the Earth. In exploration seismology, surface waves are
considered to be noise (Regone, 1998; Blonk and Herman, 1994; Herman and Perkins, 2004).
In areas with rough topography (Hudson, 1967; Snieder, 1987; Aki and Richards, 2002) or with
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Figure 1.2: Illustration of two types of near-surface scattering mechanisms. A is a hetero-
geneity far from the source, S, and receiver G; shot-generated surface waves travel along path
a and are scattered at A. This is a form of side-scattered or additive noise. B is a heterogeneity
directly beneath the receiver. Body waves travel along path b and are reflected by deeper layers.
Each reflection recorded by G passes through B and excites (scattered) surface waves.

a strongly heterogeneous shallow subsurface, these shot-generated guided waves can be scat-
tered by near-surface heterogeneity or by surface topography.

In most cases, surface-wave scattering has been studied as a process independent from body
waves. Up to date, surface-wave scattering has usually been studied assuming that the scattered
waves are observed far away from the scattering domain (Snieder, 1987; Blonk and Herman,
1994; Ernst and Herman, 1998). However, when the scattering takes place close to the receiver,
the behavior of the wave field close to the scatterer plays a more important role. It requires more
computational effort to take this behavior into account. In this thesis, we develop a method that
takes into account the near-field behavior of elastic scattering.

Furthermore, we look at the interaction between body waves and Rayleigh waves. This
mechanism has been studied in the context of scattering of teleseismic P -waves that are con-
verted into Rayleigh waves by topographical reliefs as observed in data from a dense array
of seismometers in South Norway (Wagner and Langston, 1992). To explain this phenomenon,
Clouser and Langston (1995) use the T-matrix method for a relatively simple 1D model with top-
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graphical relief, while Hesttholm and Ruud (1998) use a finite difference method with explicit
free-surface boundary conditions. Incorporation of the surface topography is not considered
in this thesis; here we focus on body wave to surface wave scattering by near-surface hetero-
geneities. Combee (1994, 1995) discusses the scattering problem of scalar acoustic waves by
such heterogeneities for a 2D near-surface model. The elliptical form of the scattering domain
allowed him to present analytical solutions. While it is insightful from the point of view of
statics estimation, his study does not include conversion of body waves into surface waves.

1.3 Inversion of (Scattered) Surface Waves

Most current methods for the inversion of surface waves are aimed at inverting dispersion
curves. These methods are based on the dispersive property surface waves propagating in a lay-
ered medium, i.e. different frequencies travel with different phase velocities (Aki and Richards,
2002). One of the inherent assumptions of such analysis is that the waves propagate in a later-
ally homogeneous (flat layered) medium. While this is often a reasonable approximation of the
Earth’s structure (considering the wavelengths involved), at shallower depths, these assumptions
can be violated due to the complexity of the near-surface region. Because of this plane-layer
assumption, dispersion methods are not directed at characterizing local heterogeneities.

More recently, scattered surface waves have been used for imaging near-surface hetero-
geneities. On a global seismic scale, Snieder (1987) formulated a method to image scattered
surface waves. A similar approach was taken by Blonk and Herman (1994). Snieder (1987) and
Blonk and Herman (1994) showed that it is possible to image large surface obstacles far away
from the sources and receivers using scattered surface waves.

Often, one is interested in heterogeneities in the shallow subsurface. To this end, methods
have been developed that exploit certain effects of scattering on the surface wave (in order to
infer the location of underground tunnels, for example). Park et al. (1998) use the fact that
heterogeneities cause a different phase velocity and attenuation in a linear ground roll event to
identify heterogeneities. Leparoux et al. (2000) apply the same type of processing but also try
to bring out the scattered Rayleigh wave, to use it as a direct indicator of the spatial location
of heterogeneity. A method based on wave theory was proposed by Herman et al. (2000) and
extended by Campman et al. (2005) to actually image heterogeneities close to a receiver line
or areal grid, by spatial and temporal deconvolution of scattered surface waves. While seismic
reflection techniques are not designed for shallow imaging, surface waves require less dense
sampling, which makes them potentially more suitable for near-surface characterization. Be-
cause near-surface heterogeneities can be close to the receivers, for these we also need to take
into account the near-field behavior of the elastic Green’s function.
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1.4 Our Approach

1.4.1 Modeling

In this thesis we are interested in the modeling and inversion of surface waves scattered close
to the receivers. In this case, the near-field behavior of the Green’s function has to be taken into
account, making the problem unsuitable for high-frequency asymptotic analysis. In Section 1.2,
we identified two problems associated with conventional methods: accuracy and efficiency.

Although the use of integral equation methods is somewhat more limited than the above
mentioned methods, they are known to be especially efficient and accurate for specific geome-
tries, such as bounded objects in a (laterally) homogeneous embedding (Herman, 1982; De
Hoop, 1995; Muijres and Herman, 2000; Carcione et al., 2002; Van den Berg, 2002).

For this reason, we use an integral-equation formulation in the frequency domain. Using
elastic reciprocity, we derive an integral representation for the scattered field. The integral
representation contains the Green’s function of a layered embedding medium. We derive this
Green’s tensor in the slowness domain. To obtain the wave field in the spatial domain, we sub-
ject the Green’s tensor to an inverse spatial Fourier transformation. To avoid a double spatial
Fourier transformation, we use cylindrical symmetry to express the Green’s function in terms
of one slowness parameter. When the source and receiver locations are close to each other, the
Fourier integral can converge slowly due to the slowly oscillating integrand. This problem is
overcome by subtracting a function with the same asymptotic behavior as the layered medium
Green’s tensor from the slowness domain representation. In this way, the wavenumber range of
integration is drastically reduced. We use the free-space Green’s tensor for this purpose. Be-
cause we formulate our algorithm in the frequency domain, it is well suited for parallelization.

This algorithm serves as the point of departure for our inversion algorithm.

1.4.2 Inversion

Using the forward modeling scheme developed in this thesis, we formulate an inversion algo-
rithm for scattered surface waves. We use a conjugate gradient method to update the contrast
such that it minimizes a cost functional that consists of the actual scattered data and the scattered
data calculated with our forward model. We use this algorithm to study sensitivities and the po-
tential for retrieving actual parameters of the contrasting domain. Furthermore, we compare it
to a similar algorithm which is based on the Born approximation and a seismic data processing
algorithm that uses an approximation to the elastic wavefield.
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1.5 Outline of this Thesis

The first objective of this thesis is to develop an efficient and accurate modeling method for scat-
tering of elastic waves by 3D near-surface heterogeneities close to the observers. The second is
to develop an inversion scheme for determining properties of near-surface heterogeneities in a
given background model using scattered surface waves.
The outline of this thesis can be summarized as follows: The current chapter, Chapter 1, serves
to introduce the subject of near-surface scattering of elastic waves and to motivate our research.

Chapter 2 is concerned with the general concepts of wave propagation and scattering of
elastic waves in a laterally homogeneous embedding in which bounded objects with contrast-
ing elastic properties are present. We derive an integral representation of the wave field using
elastodynamic reciprocity. The integral represention can be expressed as a superposition of the
wave field in the background without heterogeneity (the incident wave field) and a term that
accounts for the presence of the heterogeneity (the scattered wave field). For positions inside
the scattering domain, this leads to a domain integral equation of the second kind, involving the
impulse response (Green’s tensor) of the embedding, a contrast function, and the unknown field
in the domain occupied by the scatterer. The field at any position can be calculated after solving
the domain integral equation numerically using the method of moments.

In Chapter 3, we validate the Green’s tensor for a horizontally layered medium by com-
paring it to that for a homogeneous half space. After validation of the Green’s tensor, some
numerical results illustrating scattering by near-surface heterogeneities are shown. We also val-
idate our results, comparing them to experimental data collected on a laboratory-scale model.

Chapter 4 addresses the non-linear inverse problem for scattered surface waves. It is our
objective to estimate the properties of near-surface heterogeneity, given the scattered field at
the surface. The inversion is based on minimizing an error function consisting of the squared
difference between the actual scattered field and that calculated with the integral representation
developed in Chapter 2. The inverse problem is non-linear because the wave field in the scat-
tering domain depends on the properties of the heterogeneity. We apply the conjugate-gradient
method for estimating the properties of the heterogeneity (contrast function) by iteratively min-
imizing the cost functional.

In Chapter 5, we present numerical results of the inversion algorithm developed in Chapter
4. We address issues relating to the number of frequencies taken into account during the min-
imization and to the depth resolution of the inversion results. We compare the results obtained
with our algorithm with those obtained with algorithms that use approximations to the scattered
elastic wave field. Finally, we present imaging examples using the Born approximation inver-
sion approach.

Finally, in Chapter 6, we give general conclusions concerning the forward modeling method
and the inversion method. This chapter also recommends possible extensions of the inversion
method for large-scale scattering problems.

The appendices in this thesis are mainly related to the theory as presented in Chapter 2 and
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Chapter 4. In Appendix A, the definition of the Fourier transformations is introduced as a start-
ing point for solving the near-surface scattering problem. Appendix B addresses the derivation
of the Green’s tensor for particle displacement uG

ij(x,xs) for a horizontally layered medium
with a source at location xs. In Appendix C we derive the expression of the free-space Green’s
tensor in the slowness domain, which we need to accelerate the computation of the Green’s
tensor. In Appendix D, we show in detail how to calculate the elements of the Green matrix
G

(m,n)
ik , discussed in Chapter 2. Finally, in Appendix E, we derive the adjoint operator, which

is required in the conjugate-gradient scheme.



2

Propagation and Scattering in the
Near Subsurface

2.1 Introduction

Wave propagation in the near subsurface can be described in terms of the particle displacement
and stress in an elastic, three-dimensional, traction-free, layered half space. The particle dis-
placement and stress satisfy the equation of motion and the equation of deformation of a solid.
We consider propagation and scattering of elastic waves in a laterally homogeneous embedding
in which bounded objects with contrasting elastic properties are present.

The wave field is represented as a superposition of the wave field in the embedding (or
background) without heterogeneity (the incident wave field) and a term that accounts for the
presence of the heterogeneity (the scattered wave field). Inside the scattering domain, this leads
to a domain-integral equation of the second kind, involving the Green’s tensor of the embed-
ding, a contrast function and the unknown field in the domain occupied by the scatterer. We
use the method of moments to determine the wave field inside the scattering domain. The wave
field at the surface can then be calculated from the discretized integral representation.

In order to solve the integral equation efficiently, we first derive the slowness-domain Green’s
tensor for a layered half space in terms of Bessel functions (Kennett, 1983, 2001). By carrying
out a slowness transformation, we obtain the space-time domain of the Green’s tensor. We ac-
celerate the convergence of the computation of the Green’s tensor by subtracting a term that can
be integrated analytically from the Green’s tensor. Since the problem is formulated in the fre-
quency domain, it is well suited for straightforward parallelization on a multi-processor system.
A parallel computing approach can reduce the calculation time for solving the integral equation
by distributing the calculation over different CPUs. The implementation was done in a Fortran
program with MPI message passing (Gropp et al., 1994; Pacheco, 1997).

9
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2.2 Geometry of the Problem

We use coordinates x = (x1, x2, x3) ≡ (x, y, z) with respect to the origin O to locate a point in
a stationary reference frame. The unit vectors along the coordinate axes are given by i1, i2, i3.
The subscript notation is used for vectors and tensors. For repeated lower subscripts, the sum-
mation convention is understood, e.g., xiyi = x1y1 +x2y2 +x3y3. Furthermore, ∂i indicates the
partial derivative with respect to the xi-coordinate, where i = {1, 2, 3}. The time of observation
is denoted by t, and the partial derivative with respect to t is denoted by ∂t (no summation).

We consider propagation and scattering of elastic waves in a laterally homogeneous embed-
ding in which bounded objects with contrasting elastic properties are present. The embedding
(background) consists of a stack of L horizontal layers overlying a homogeneous, isotropic,
elastic half-space. It occupies the domain Ω, given by Ω = {x = (x1, x2, x3) ∈ R

3| − ∞ <

x1, x2 < ∞, x3 ≥ 0}. The unit vector i3 is directed vertically downwards. The surface of Ω

is bounded by a traction-free surface (x3 = 0), which is denoted by S. The geometry of the
problem is shown in Figure 2.1. This figure shows a 3D near-surface model with heterogeneity.
The heterogeneity occupies the domain D = {(x1, x2, x3) ∈ R

3|x0
1 ≤ x1 ≤ x0

1 + Wx, x
0
2 ≤

x2 ≤ x0
2 + Wy, 0 ≤ x3 ≤ H, (x0

1, x
0
2) ∈ R

2}, with H the depth and Wx, Wy the length and
width of the scatterer, respectively.

PSfrag replacements

D

Wy

Wx

H

i1

i2

i3

Ω
S

Layer 1
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Layer L

Half-space

Figure 2.1: The geometry of the problem of a 3D near-surface model with an embedded
heterogeneity D in the layered half space.
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2.3 Integral Representation of the Wave Field

We start with the equation of motion and the equation of deformation of the elastic solid. We
assume that the changes in the elastic medium due to wave propagation are small enough for the
medium to behave linearly. We first derive an elastodynamic reciprocity theorem from these lin-
earized equations. The reciprocity theorem interrelates two non-identical elastodynamic states
occupying the same domain. We then choose the actual wave field and the Green’s state for the
first and second states, respectively. The Green’s state is the wave field in the embedding caused
by an impulsive point force. The result of the interrelation between the actual and the Green’s
state is a domain-type integral representation for the particle displacement of the wave field.

2.3.1 Elastodynamic Equations in the Space-Frequency Domain

The basic equations consist of the equation of motion and the equation of deformation of an
elastic solid (Kennett, 1983; De Hoop, 1995; Aki and Richards, 2002). In the time domain,
their linearized form is given by:

∆ijpq ∂jτpq(x, t) − ρ(x) ∂2
t ui(x, t) = −fi(x, t), (2.1)

∆ijpq ∂puq(x, t) − sijpq(x) τpq(x, t) = −hij(x, t). (2.2)

where

uj(x, t) : particle displacement (m),

τij(x, t) : stress tensor (Pa),

ρ(x) : volume density of mass of the elastic solid (kg/m3),

sijpq(x) : compliance tensor of the elastic solid (Pa−1),

fj(x, t) : volume density of the body force (N/m3),

hij(x, t) : volume density of deformation rate (dimensionless).

In equation (2.1), ∆ijpq is the symmetrical unit tensor of rank four, defined as (De Hoop,
1995):

∆ijpq =
1

2
(δipδjq + δiqδjp), (2.3)

with δij the Kronecker delta symbol given by:

δij =

{
1 if i = j,

0 if i 6= j.
(2.4)

These equations are supplemented with the traction-free boundary condition:

njτij(x, t) = fS
i (x, t) x ∈ S (i = 1, 2, 3), (2.5)
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where nj is the unit vector along the normal pointing away from the medium.
The i-th component of the particle velocity is given by

vi(x, t) = ∂tui(x, t) (i = 1, 2, 3). (2.6)

Furthermore, as there are no sources at infinity, the wavefield at large distances from the
sources (fi, fS

i and hij) consists only of waves propagating away from the sources.
Applying the Fourier transformation (given in Appendix A) to equation (2.1)-(2.2), we obtain:

∆ijpq ∂j τ̂pq(x, ω) + ω2ρ(x) ûi(x, ω) = −f̂i(x, ω), (2.7)

∆ijpq ∂pûq(x, ω) − sijpq(x) τ̂pq(x, ω) = −ĥij(x, ω), (2.8)

where ω [rad/s] denotes angular frequency. In these equations, τ̂pq, ûi, f̂i and ĥij are the
frequency-domain counterparts of τpq, ui, fi and hij , respectively.
The stress-free boundary condition in the frequency-domain is given by

nj τ̂ij(x, ω) = f̂S
i (x, ω) (x ∈ S). (2.9)

The particle velocity in the frequency domain is given by

v̂i(x, ω) = −jωûi(x, ω). (2.10)

From now on, we will consider frequency-domain quantities and omit the hat over the field
quantities for convenience.

2.3.2 Reciprocity Theorem

Following Fokkema and Van den Berg (1993) and De Hoop (1995), we employ the Betti-
Rayleigh reciprocity theorem of the convolution type. The domain Ω is bounded by the bound-
ary surface ∂Ω (see Figure 2.2). The reciprocity theorem serves as a starting point for our
derivation of the domain-type integral representation of the wave field in terms of the particle
displacement, generated by a source at position xs and observed at position x. We introduce
two different states inside the domain, referred to as state A and state B. Table 2.1 shows how
each state is characterized by the elastodynamic wave field quantities (τij ,uj), the constitutive
parameters (ρ, sijpq) and the source terms (fi, hij).

Let state A be the state corresponding to the equations

∆ijpq ∂jτ
A
pq(x, ω) + ω2ρA(x) uA

i (x, ω) = −fA
i (x, ω), (2.11)

∆ijpq ∂pu
A
q (x, ω) − sA

ijpq(x) τA
pq(x, ω) = −hA

ij(x, ω), (2.12)

supplemented with the boundary condition

njτ
A
ij (x, ω) = fS,A

i (x, ω) (x ∈ S). (2.13)
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State A State B

Field State τA
ij , uA

i τB
ij , uB

i

Material state ρA, sA
ijpq ρB , sB

ijpq

Source state fA
i , hA

ij fB
i , hB

ij

Boundary condition fS,A
i fS,B

i

Domain Ω

Table 2.1: States A and B of the elastodynamic reciprocity theorem.

Similarly, let state B be the state corresponding to the equations

∆ijpq ∂jτ
B
pq(x, ω) + ω2ρB(x) uB

i (x, ω) = −fB
i (x, ω), (2.14)

∆ijpq ∂pu
B
q (x, ω) − sB

ijpq(x) τB
pq(x, ω) = −hB

ij(x, ω), (2.15)

supplemented with the boundary condition

njτ
B
ij (x, ω) = fS,B

i (x, ω) (x ∈ S). (2.16)

Let ∂i

(
τA
pqu

B
j − τB

pqu
A
j

)
be the local interaction quantity between elastodynamic states A and

B in a solid occupying domain Ω. Using standard rules for spatial differentiation, we can write
the interaction quantity as

∆ijpq∂i

(
τA
pqu

B
j − τB

pqu
A
j

)
= (∆ijpq∂iτ

A
pq)u

B
j + τA

pq(∆ijpq∂iu
B
j )

− (∆ijpq∂iτ
B
pq)u

A
j − τB

pq(∆ijpq∂iu
A
j ). (2.17)

After substituting equations (2.11)-(2.15) into (2.17) and using the symmetry properties of
the stress tensor (τpq = τqp), one obtains:

∂j

(
τA
ij u

B
i − τB

ij uA
i

)
= ω2(ρB − ρA)uA

i uB
i + (sB

ijpq − sA
pqij)τ

A
ij τ

B
pq

− fA
i uB

i + fB
i uA

i + hB
ijτ

A
ij − hA

ijτ
B
ij . (2.18)

This relation is the local form of the reciprocity theorem.
Integrating the above equation over the domain Ω, which is bounded by ∂Ω, and employ-

ing Gauss’s divergence theorem, we obtain the global form of the reciprocity theorem of the
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PSfrag replacements

Ω

S

S∞

nj

i3

Figure 2.2: Configuration of domain Ω for the application of the reciprocity theorem. The
boundary ∂Ω = S ∪ S∞.

convolution type
∫

∂Ω

nj

[
τA
ij u

B
i − τB

ij uA
i

]
dA =

∫

Ω

[
ω2(ρB − ρA)uA

i uB
i + (sB

ijpq − sA
pqij)τ

B
pqτ

A
ij

− fA
i uB

i + fB
i uA

i + hB
ijτ

A
ij − hA

ijτ
B
ij

]
dV, (2.19)

where the normal nj is pointing outward (see Figure 2.2).
The boundary ∂Ω consists of two parts, i.e., the boundary surface S and the boundary of the

semi-sphere S∞ (Figure 2.2). As there are no sources at infinity, the boundary integral over S∞

vanishes at infinity. This is commonly referred to as the radiation condition (see Tan (1975),
for example). On account of the radiation condition, we can replace ∂Ω by S in the boundary
integral of relation (2.19). Substituting the boundary conditions (2.13) and (2.16) into relation
(2.19), we obtain

∫

S

[
fS,A

i uB
i − fS,B

i uA
i

]
dA =

∫

Ω

[
ω2(ρB − ρA)uA

i uB
i + (sB

ijpq − sA
pqij)τ

B
pqτ

A
ij

− fA
i uB

i + fB
i uA

i + hB
ijτ

A
ij − hA

ijτ
B
ij

]
dV, (2.20)

which is also known as the Betty-Rayleigh reciprocity theorem. This theorem is the basis of
our derivation of the domain-integral representation of the wave field.

2.3.3 Domain-Integral Representation of the Wave Field

The reciprocity theorem discussed in the previous section provides a relation between displace-
ments, traction components and body forces for two different states. We now derive the domain-
integral representation of the wave field of the layered elastic half space using the reciprocity
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s
(1)
ijpq
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ijpq
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(3)
ijpq
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(l)
ijpq

Half Space

Ω

i3

nj

Figure 2.3: Configuration of layered embedding medium Ω for the application of the reci-
procity theorem. The density and the compliance tensor of the l-th layer are denoted by
ρe(x) = ρe(z) = ρ(l) and se

ijpq(x) = se
ijpq(z) = s

(l)
ijpq for z(l−1) < z < z(l), respectively.

theorem.
We first consider the embedding (background) consisting of a stack of L horizontal layers

overlying a homogeneous, isotropic, elastic half space as shown in Figure 2.3. For each of these
L layers, propagation of disturbances is governed by the equation of motion and the equation of
deformation given in equations (2.7) and (2.8). By taking hij(x, ω) = 0, we obtain

∆ijpq ∂jτpq(x,xs, ω) + ω2ρe(x) ui(x,xs, ω) = −fi(x,xs, ω), (2.21)

∆ijpq ∂puq(x,xs, ω) − se
ijpq(x) τpq(x,xs, ω) = 0, (2.22)

where xs is the position of the source.
For a horizontally stratified medium, the density and the compliance tensor are written as

(see Figure 2.3):

ρe(x) = ρe(z) = ρ(l) (z(l−1) < z < z(l)), (2.23)

se
ijpq(x) = se

ijpq(z) = s
(l)
ijpq (z(l−1) < z < z(l)). (2.24)

where l indicates the layer index (l = 1, 2, ..., L), and the density and the compliance tensor of
the l-th layer are denoted by ρ(l) and s

(l)
ijpq, respectively.

For isotropic elastic media, the compliance tensor s
(l)
ijpq is expressed in terms of the Lamé
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parameters λ(l) and µ(l) (see Achenbach (1973) and De Hoop (1995)):

s
(l)
ijpq = −

λ(l)

2µ(l)(3λ(l) + 2µ(l))
δijδpq +

1

4µ(l)
(δipδjq + δiqδjp). (2.25)

The stiffness tensor is related to the compliance tensor through:

c
(l)
rsijs

(l)
ijpq = ∆rspq, (2.26)

where ∆rspq is given by equation (2.3). The stiffness can be then expressed as:

c
(l)
rsij = λ(l)δrsδij + µ(l)(δirδjs + δisδjr). (2.27)

Applying the symmetrical unit tensor of rank four given by equation (2.3) to equations
(2.21) and (2.22) and multiplying equation (2.22) with the isotropic stiffness tensor c

(l)
pqij for

each layer, we obtain the equation of motion and a constitutive relation for the stress tensor
(Kennett, 1983). In the frequency domain, these take the form:

∂iτij(x,xs, ω) + ω2ρ(l)(x)uj(x,xs, ω) = −fj(x,xs, ω), z(l−1) < z < z(l)

(2.28)

τij(x,xs, ω) = λ(l)δij∂kuk(x,xs, ω) + µ(l)(∂iuj(x,xs, ω) + ∂jui(x,xs, ω)),

(2.29)

where ρ(l) denotes the density of the l-th layer, while the Lamé parameters of the l-th layer are
denoted by λ(l) and µ(l) (for l = 1, .., L). The summation convention for lower subscripts is
understood.

Pao and Varatharajulu (1976) and Lee and Mal (1995) have derived the integral representa-
tion for elastic scattering in a homogeneous medium in which the scattering objects differ from
the embedding in both Lamé parameters and density. In this thesis, we concentrate on a layered
embedding medium and only consider a density contrast. In this case, we have sijpq = se

ijpq.
The method developed here, however, is also applicable to contrasts in Lamé parameters (mu-
tatis mutandis).

Now, in order to derive a wave field representation from relation (2.19), we choose state A
as the actual wave field (uA

j = uj, τA
ij = τij , ρ) generated by a vertical stress source at location

xs = (xs, ys, zs). These quantities satisfy the equations:

∆ijpq ∂jτpq(x,xs, ω) + ω2ρe(x) ui(x,xs, ω) = −fA
i (x,xs, ω), (2.30)

∆ijpq ∂puq(x,xs, ω) − se
ijpq(x) τpq(x,xs, ω) = 0, (2.31)

where fA
i = (ρ(x) − ρe(x))ω2ui(x,xs, ω), with ρe(x) the density of the embedding layered

medium.
The boundary condition is given by:

njτij(x,xs, ω) = fS
i (x,xs, ω) (x ∈ S), (2.32)
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where

fS
i (x,xs, ω) = W (ω)δi3δ(x − xs)δ(y − ys), (2.33)

and where W (ω) denotes the source waveform. Apart from the boundary source, there are no
volume sources present in state A.

State B represents the Green’s state, which is the wave field in the embedding layered
medium due to an impulsive point source at position xr = (xr, yr, zr). The Green’s wave
field quantities, (uG

ik, τG
ijk) for k = 1, 2, 3, satisfy the equations:

∆ijpq ∂jτ
G
pqk(x,xr, ω) + ω2ρe(x) uG

ik(x,xr, ω) = −fG
ik(x,xr, ω), (2.34)

∆ijpq ∂pu
G
qk(x,xr, ω) − se

ijpq(x) τG
pqk(x,xr, ω) = 0, (2.35)

where

fG
ik(x,xr, ω) =

{
0 (xr ∈ S),

δikδ(x − xr)δ(y − yr)δ(z − zr) (xr ∈ Ω).
(2.36)

The boundary condition is given by:

njτijk(x,xr, ω) = fS,G
ik (x,xr, ω) (x ∈ S), (2.37)

where

fS,G
ik (x,xr, ω) =

{
δikδ(x − xr)δ(y − yr) (xr ∈ S),

0 (xr ∈ Ω).
(2.38)

The properties of the states A and B are summarized in Table 2.2.
Substituting state A and B into the reciprocity theorem (2.20) gives the following relation:

∫

x∈S

[
fS

i (x,xs)uG
ik(x,xr) − fS,G

ik (x,xr)ui(x,xs)
]
dA =

∫

x∈Ω

[
− fA

i (x,xs)

× uG
ik(x,xr) + fG

ik(x,xr)ui(x,xs)
]
dV. (2.39)

In the above equation, for brevity we omit the dependence on ω of the field quantities and the
source.

Substituting the source state and the boundary conditions for state A and B shown in Table
2.2 into the equation (2.39) yields
for xr ∈ S,

∫

x∈S

[
W (ω)δi3δ(x − xs)δ(y − ys)uG

ik(x,xr) − δikδ(x − xr)δ(y − yr)

ui(x,xs)
]
dA =

∫

x∈Ω

[
− (ρ(x) − ρe(x))ω2ui(x,xs)uG

ik(x,xr)
]
dV,

(2.40)
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State A State B

Field State {τij, ui}(x,xs, ω) {τG
ijk, uG

ik}(x,xr, ω)

Material state ρe(x), se
ijpq(x) ρe(x), se

ijpq(x)

Source state fi(x,xs, ω) = fA
i fG

ik(x,xr, ω)

Boundary condition fS
i (x,xs, ω) fS,G

ik (x,xr, ω)

Domain Ω

Table 2.2: The actual state (A) and the Green’s state (B) in the elastodynamic reciprocity
theorem: fA

i = (ρ(x)− ρe(x))ω2ui(x,xs, ω) and fG
ik(x,xr, ω), fS

i (x,xs, ω) and fS,G
ik (x,xr, ω)

are given by equations (2.36), (2.33) and (2.38), respectively.

and for xr ∈ Ω, we have

∫

x∈S

[
W (ω)δi3δ(x − xs)δ(y − ys)uG

ik(x,xr)
]
dA =

∫

x∈Ω

[
− (ρ(x) − ρe(x))ω2ui(x,xs)uG

ik(x,xr) + δikδ(x − xr)ui(x,xs)
]
dV.

(2.41)

Furthermore, by employing the sifting property of the Dirac Delta function (Brigham, 1988)
in the above equations, we arrive at the following integral representation:

uk(x
r,xs) = W (ω)uG

k3(x
r,xs) + ω2

∫

x∈Ω

(ρ(x) − ρe(x))

× uG
ki(x

r,x)ui(x,xs) dV, (xr ∈ Ω ∪ S). (2.42)

Here, we have also used the symmetry relation (De Hoop, 1995):

uG
ik(x

s,xr) = uG
ki(x

r,xs). (2.43)
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From relation (2.42), we obtain the following representation for the wave field generated by a
vertical stress source at position xs and recorded at position x (x ∈ Ω ∪ S):

ui(x,xs) = W (ω)uG
i3(x,xs) + ω2

∫

x′∈Ω

(ρ(x′) − ρe(x′))uG
ik(x,x′)uk(x

′,xs) dV.

(2.44)

Let

uinc
i (x,xs) = W (ω)uG

i3(x,xs), (2.45)

usc
i (x,xs) = ω2

∫

x′∈Ω

(ρ(x′) − ρe(x′))uG
ik(x,x′)uk(x

′,xs) dV. (2.46)

With these definitions, we can write the integral representation (2.44) as:

ui(x,xs) = uinc
i (x,xs) + usc

i (x,xs). (2.47)

The quantity uinc
i is the incident wave field generated by the source in the layered embed-

ding (without heterogeneity). The ith component of the displacement, due to an impulsive point
source pointing in the vertical direction, is denoted by uG

i3. The quantity usc
i (x,xs) is the scat-

tered wave field that accounts for the presence of the heterogeneity D. Since the density contrast
ρ(x′) − ρe(x) vanishes outside D, the integral (2.47) can be restricted to D. Therefore, we get

usc
i (x,xs) = ω2

∫

x′∈D

(ρ(x′) − ρe(x′))uG
ik(x,x′)uk(x

′,xs) dV. (2.48)

Equation (2.48) is a domain-integral representation of the scattered wave field over the con-
trasting (scatterer) domain D ⊂ Ω. The density of the medium occupying the domain D is
denoted by ρ(x′) and ρe(x′) is the density of the embedding. The quantity uG

ik(x,x′) denotes
the Green’s displacement tensor for the embedding medium. The derivation, as well as expres-
sions for uG

ik(x,x), are given in Appendix B.
The domain-type integral representation for the total wave field ui can now be expressed as:

ui(x,xs) = uinc
i (x,xs) + ω2

∫

x′∈D

∆ρ(x′)uG
ik(x,x′)uk(x

′,xs) dV, (2.49)

where the contrast is ∆ρ(x′) = ρ(x′)−ρe(x′) and x, xs ∈ Ω∪S. Equation (2.49) is a Fredholm
equation of the second kind.

From equation (2.49) it follows that, to determine the total wave field outside the scattering
region, we first need to calculate the total wave field inside D. To do so, we take x ∈ D in
equation (2.49), obtaining an integral equation of the second kind for the unknown field uk.

In general, this integral equation can only be solved approximately with the aid of numerical
techniques. One of these techniques is the method of moments (Harrington, 1968; Jarem, 1986;
Rius et al., 1997), which is discussed in the next section.
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2.4 Numerical Solution of the Integral Equation

With the aid of the properties of Dirac delta function, we can rewrite the integral equation (2.49)
(with x ∈ D) in an integral operator form:

Likuk = uinc
i , (2.50)

where uinc
i is the known function, uk is the function to be determined, and Lik is an integral

operator acting on a function uk through the relation

Likuk =

∫

x′∈D

[δikδ(x − x′) − ω2∆ρ(x′)uG
ik(x,x′)]uk(x

′,xs) dV, (2.51)

where δ is the Dirac delta distribution, and δik is the Kronecker delta.
The first step in applying the method of moments is discretization of the unknown field, uk,

in a sequence of expansion functions, u(n) with unknown coefficients {α(n)
k }:

uk ≈ u
(M)
k =

M∑

n=1

α
(n)
k u(n) (k = 1, 2, 3). (2.52)

Because the expansion of the wave field is truncated after M terms, a discretization error is
introduced. Denoting the error between the left- and right-hand side of equation (2.50) by the
residual r

(M)
i , we have

r
(M)
i = Liku

(M)
k − uinc

i . (2.53)

We require the residual to be orthogonal to the test functions, w(m), i.e.,

〈r
(M)
i , w(m)〉 = 0 , (m = 1, 2, ..., M, i = 1, 2, 3), (2.54)

where the inner product is defined as the integration of the product of two integrable functions,
f and g, over the domain D and is given by

〈f, g〉 =

∫

x∈D

f(x)ḡ(x) dx, (2.55)

where the overbar denotes complex conjugate.
After substituting equation (2.53) into equation (2.54) and using the properties of the inner

product, we obtain a system of linear equations for the unknown {α
(n)
k } in the following form:

M∑

n=1

G
(m,n)
ik α

(n)
k = h

(m)
i m = 1, 2, .., M, (2.56)

where

G
(m,n)
ik = 〈Liku

(n), w(m)〉, (2.57)
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and

h
(m)
i = 〈uinc

i , w(m)〉. (2.58)

Now the coefficients {α(n)
k } can be obtained by solving the system (2.56).

In order to calculate the matrix elements G
(m,n)
ik and the vector elements h

(m)
i , we first divide

the scattering domain D into subdomains, D(n), with widths of ∆x, ∆y and ∆z in the x, y and z

directions, respectively:

D(n) =
{

(x, y, z) ∈ R
3 | x(n) −

1

2
∆x < x < x(n) +

1

2
∆x, (2.59)

y(n) −
1

2
∆y < y < y(n) +

1

2
∆y, z

(n) −
1

2
∆z < z < z(n) +

1

2
∆z

}
.

The discretization of the scattering domain D is shown in Figure 2.4.

PSfrag replacements

Y

X

Z

∆y
∆x

∆z

(x(1), y(1), z(1))

x
(M) = (x(M), y(M), z(M))

Figure 2.4: Discretization of the scattering domain D.

In each subdomain D(n), with center points at x(n) (n = 1, 2, ..., M ), we assume the contrast
∆ρ to be piecewise constant:

∆ρ(x) = ∆ρ(n) (x ∈ D(n)). (2.60)

We now define the expansion function u(n) as

u(n)(x) =

{
1 (x, y, z) ∈ D(n),

0 otherwise,
(2.61)
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and the test functions w(m) (m = 1, 2, ..., M ) as

w(m)(x) = δ(x − x(m)). (2.62)

Inserting w(m) from equation (2.62) into equations (2.57) and (2.58) and applying the def-
inition of the inner product, given by equation (2.55), we can express the matrix elements and
the vector elements in the following form:

G
(m,n)
ik = δikδmn − ω2∆ρn

∫

x′∈Dn

uG
ik(x

(m),x′) dx′ dy′ dz′, (2.63)

and

h
(m)
i = Ws(ω)uG

i3(x
(m),xs), (2.64)

for m, n = 1, 2, ..., M .
In equation (2.63), uG

ik(x
(m),x′) is the Green’s tensor of the embedding medium in the space-

frequency domain (i, k = 1, 2, 3).
An explicit expression for the Green’s tensor, ũG

ik, for a layered half-space was derived by
Ditzel et al. (2001) in the slowness-frequency domain using Cartesian slowness coordinates (p1

and p2). Subjecting this slowness-frequency domain Green’s tensor, ũG
ik, to an inverse Fourier

transform (see Appendix A) yields in the space-frequency domain the Green’s tensor:

uG
ik(x

(m),x′) =
ω2

4π2

∫

p1

∫

p2

ũik(p1, p2, z, ω, z′)ejω[p1(x(m)−x′)+p2(y(m)−y′)] dp1 dp2.

(2.65)

Inserting the above equation into equation (2.63), we can numerically compute the integral
over p1 and p2, but the computation time is large due to the double integration over p1 and
p2 (Riyanti and Herman, 2003). We can reduce this to one single integration using rotational
symmetry. By introducing cylindrical coordinates related to (p1, p2), Kennett (1983) derived
the Green’s tensor, ũG

ik, in terms of Bessel functions. This form of the Green’s tensor can be
found in Appendix B. Following Kennett, we can therefore rewrite in the from

G
(m,n)
ik = δikδmn − ω2∆ρn

∫

x′∈Dn

∫ ∞

p=0

ũG
ik(p; z(m); ω; z′)p dp dx′ dy′ dz′, (2.66)

with ũG
ik(p; z(m); ω; z′) given by equations (B.45)-(B.47).

The use of the Green’s tensor in terms of Bessel functions is the first step to accelerate the
computation of the system matrix elements.
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2.5 Acceleration of the Computation of the Green’s Ten-
sor

When the observation and the scatterer points are located close to each other, the integral (2.66)
converges slowly because the integrand can decay slowly in the p-domain (Hisada, 1994). This
could slow down the integration of the Green’s tensor over the p-domain. To avoid this, we
accelerate the computation of the Green’s tensor by subtracting a term with the same behavior
for large p, i.e., with the same asymptotic behavior, but which can be integrated analytically.
We choose the free-space Green’s tensor for this purpose (Zwamborn and Van den Berg, 1997).
The analytical expression for the free-space Green’s tensor is known both in the spatial domain
(Harris, 2001) and slowness domain (Appendix C). By subtracting the free-space Green’s tensor
from the layered half-space Green’s tensor in the slowness domain, the integrand decays more
rapidly to zero. Consequently, the range of the integration can be significantly reduced. Adding
the free-space Green’s tensor in the spatial domain gives the same result as using equation
(2.66).

The Green matrix can then be rewritten as follows:

G
(m,n)
ik = δikδmn

− ω2∆ρn

∫

x′∈Dn

{∫ ∞

p=0

[
ũG

ik(p; z(m); ω; z′) − g̃ik(p; , z(m); ω; z′)
]
p dp

+ gik(x
(m); ω;x′)

}
dx′ dy′ dz′, (2.67)

where gij is the free-space Green’s tensor in the spatial domain given by equations (C.1)-(C.3),
and g̃ij is the free-space Green’s tensor in the slowness domain given by equations (C.4)-(C.9).

To illustrate the acceleration of our method for the numerical computation of the layered
medium Green’s tensor in the p-domain, we consider a layered model that contains a layer
overlying a half space. The properties of the layer and half space are summarized in Table 2.3.

cS (m/s) cP (m/s) ρ (kg/m3) h (m)
Layer 1 1000 3000 1500 400

Half space 3100 6000 3000 ∞

Table 2.3: The parameters of the model.

The thickness of the layer is 400 m. The observation point is located at 10 m depth, while
the source point is located at 10.5 m depth. With this small depth separation, calculating the
elements of the layered Green’s tensor, ũG

ik, with equation (2.66) results in an integrand with
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slowly decreasing amplitude (as observed by Hisada, 1994). This is shown in Figure 2.5(a)-(f)
by the solid line. In the same Figure, we have plotted the free-space Green’s tensor, g̃ik, with
the same material properties as the layer that includes the source. For large p values, these
functions have the same behavior. The dashed line in Figure 2.5(a)-(f) represents the difference
between the Green’s tensor for the layered medium and the free-space Green’s tensor, ũG

ik − g̃ik,
which is referred to as ”difference”. This difference occurs in the p-integral as the integrand
in equation (2.67). The difference goes to zero after a p value of about 3 ms/m and therefore
the p-integration can be reduced to a much smaller value than the one that would be required if
equation (2.66) was used.

After evaluating G
(m,n)
ik (given in Appendix D) and h

(m)
i in equation (2.64), we can solve

the system of linear equations (equation (2.56)), from which we determine the expansion coef-
ficients α

(n)
k . Once we have obtained these coefficients, the total wave field inside the scatterer

follows from the following relation:

uk(x) =

M∑

n=1

α
(n)
k u(n)(x). (2.68)

Finally, we can evaluate the total wave field at any location by evaluating the integral repre-
sentation (2.49) with the aid of the midpoint rule.
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ũG
11

g̃11

difference

p[ms/m]
(a)

PSfrag replacements

0

1

2

-1

-2
-3

x 10−11

2 4 6 8 10

ũG
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ũG

22

g̃22

difference

0

1
2

12

-4

-2

-8

x 10−12

2

4

4 6

8

8 10

ũG
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Figure 2.5: The Green’s tensor elements 11 (a), 12 (b), 13(c), 22(d), 23(e), and 33(f) as
functions of the slowness p for the frequency f = 25 Hz. The difference between the Green’s
tensor of the layered medium, ũG, and the free-space tensor, g̃, is represented by the dashed
line. The free-space Green’s tensor has the same material properties as the layer that includes
the source. The observation point is located at 10 m depth, while the source point is located at
10.5 m depth.
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2.6 Parallel Computing Implementation

We now focus on how to solve the system of linear equations efficiently. We have formulated
the problem in the frequency domain, so that the method is well suited for straightforward
parallelization on a multi-processor system. We can rewrite the system of linear equations for
the unknown coefficients α

(n)
k (2.56) for each frequency as follows:

M∑

n=1

G
(m,n)
ik α

(n)
k = h

(m)
i n = 1, 2, .., M, (2.69)

where G
(m,n)
ik is the Green matrix containing the elements of the Green’s tensor (2.67) and h

(m)
i

is the vector containing the incident wave field (2.64). Directly storing and evaluating the Green
matrix G

(m,n)
ik and solving for the unknown coefficients for all frequencies is very compute in-

tensive if the number of cells is too large. In order to reduce the computation time needed to
solve the equation, we now describe a parallel algorithm to solve this problem.

In the parallel implementation of the program, we supplemented the existing Fortran Code
with MPI (Message-Passing Interface)-routines (Pacheco, 1997). Our algorithm is based on the
master-slave paradigm (Rizk, 2003). If there are P processors and Nfreq frequencies, then each
processor computes the Green’s tensor and the solution of the system’s matrix for np =

Nfreq

P

frequencies. One processor (P0) is the master and Ps, for 0 < s < P, are the slaves. The master
sends the input data to the slaves and receives the solution for np(P − 1) frequencies back from
the slaves. By collecting the results from the slaves, we obtain the solution of the system for all
frequencies.

The following pseudo-code gives an outline of the parallel computing algorithm:

if MASTER then
do s=1,P-1

send the input data to proccesors Ps (slaves)
receive the solution for np frequencies from each slave

end do
compute the Green’s tensor and solve the system for np frequencies
assemble the solution for all frequencies (Nfreq = np.P)

else if SLAVE then
receive the input data from the MASTER
compute the Green’s tensor and solve the system for np frequencies
send the solution of the system to the MASTER

end if
stop
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The configuration of the cluster in this case is given in Figure 2.6.
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Figure 2.6: The configuration used in the parallel version of the program.

In order to illustrate the implementation of the parallel approach, we have calculated the
Green’s tensor in the slowness-frequency domain (given by equation (2.65)) using the same
parameters as given in Table 2.3. The number of frequencies taken into account, is Nfreq =

48. We use 8 AMD Athlon (TM) XP +2600 1.9 G processors. By increasing the number of
processors, we compute the Green’s tensor in the space-frequency domain with the help of the
2D Fast Fourier transform. First, we use P = 1, then P = 2, P = 3, P = 4, P = 6, and P = 8,
respectively. Each processor calculates the Green’s tensor for np =

Nfreq

P
frequencies. Parallel

performance for 1−8 processors is shown in Figure 2.7. One can see from Figure 2.7 that as the
number of processors increases, the computational time decreases linearly with 1/P. However,
for large number of processors (P > 8) linearity is usually not retained due to the increase of
communication time between the nodes.

2.7 Summary and Conclusion

We have discussed a numerical method for solving the domain-integral equation for the wave
field scattered by heterogeneities close to the surface of the Earth. We first expressed the wave
field as a superposition of the incident wave field (without heterogeneity) and the scattered wave
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Figure 2.7: Parallel performance of the calculation of the Green’s tensor in the space-time
domain for 1 − 8 processors. The number of processors is denoted by P.

field that accounts for the presence of the heterogeneity.
For observation points inside the scattering domain, we obtained a domain-integral equation

of the second kind, involving the impulse response (Green’s tensor) of the embedding, a contrast
function and the unknown wave field in the domain occupied by the scatterer. We applied the
method of moments to solve this domain integral equation.

For each frequency, we obtained a system of linear equations for the unknown coefficients
{α

(n)
k } in the following form,

M∑

n=1

G
(m,n)
ik α

(n)
k = h

(m)
i n = 1, 2, .., M, (2.70)

where G
(m,n)
ik is the Green matrix containing the elements of the Green’s tensor (2.66) and h

(m)
i

is the vector containing the incident wave field (2.64). We reduced the time for calculating the
system matrix by considering the Green’s tensor in terms of Bessel functions. We also presented
a method for accelerating the convergence of the computation of the Green’s tensor by subtract-
ing the free-space Green’s tensor when the observation and the scatterer points are located close
to each other.

For each frequency, the coefficients {α(n)
k } can be obtained by solving the system of linear
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equations (2.70). The resulting frequency-domain method can be run very efficiently on a clus-
ter of workstations since each frequency is computed independently. We have made a parallel
implementation of the program, using MPI. This parallel approach not only reduced the com-
putation time; it can also handle larger scattering problems.





3

Numerical Results for the Scattering
Problem and Comparison with
Experimental Data

In this chapter, we present numerical results illustrating scattering by near-surface hetero-
geneities. We calculate the vertical component of the particle velocity at the surface for various
near-surface scattering models. The particle velocity of the wave field can be obtained by solv-
ing the integral equation with the computational method discussed in Chapter 3. In the calcu-
lation of the wave field, the Green’s tensor for a layered half space plays a key role. Therefore,
before we present the numerical results of the wave field for different scattering models, we
first validate the layered half-space Green’s tensor by comparing it to the Green’s tensor for a
homogeneous half space (Blonk and Herman, 1994).

We then consider a relatively simple model, with a horizontal plane-wave source at depth
and a scatterer at the surface. This model allows us to qualitatively compare our results to ex-
perimental data collected at the surface of a similar laboratory scale model. These experimental
data have been collected in collaboration with the PAL (Physical Acoustics Laboratory) at Col-
orado School of Mines, Golden, Colorado.

We also calculate the wave field for larger models in which the scattering domain consists
of a random distribution of scatterers. In these models, we increase the size and the depth of the
scattering domain.

Finally, we show results for the particle velocity of the wave field when the source is located
at the surface. We compare these results to experimental data collected using the same geom-
etry. Because we also roughly know the parameters of the scatterer, this allows us to make a
quantitative comparison. This last section is the point-of-departure for the next chapter where
the data will serve as input for an inverse scattering method for surface waves.

31
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3.1 Validation of the Layered Half-Space Green’s Ten-
sor

In order to validate the layered half-space Green’s displacement tensor derived in Appendix B,
we excite a source at the surface, while the depth of observation is 2.5 m. We consider one
layer overlying a half space with the same properties (the densities, P- and S-wave speeds of
the layers are the same), so that the layered half space reduces to a homogeneous half space.
The homogeneous half space Green’s tensor in the slowness-frequency domain was derived by
Blonk and Herman (1994). The properties of the model are given as follows: ρ = 1800 kg/m3,
cS = 600 m/s, cP = 400 m/s, respectively.

We use a source waveform containing temporal frequencies between 0 Hz and 48 Hz. The
central frequency is 25 Hz. The amplitude spectrum W of the source and its time-domain
waveform are shown in Figure 3.1.
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Figure 3.1: The waveform W in in the frequency domain (a) and the time domain (b).

Using the Fourier transform (given in Appendix A), the space-time domain Green’s tensor
is calculated. We now compare the time-domain counterparts of WuG

ij and WuG,hf
ij (the time-

domain Green’s tensor convolved with the source waveform) where WuG
ij is the space-time

domain Green’s tensor derived in Appendix B, while WuG,hf
ij is the space-time domain Green’s

tensor derived by Blonk and Herman. The results are shown in Figures 3.2(a)-(d).
In these figures, the horizontal distance between the source and the receiver is 5 m. The re-

sults indicate that the solution for each element using the scattering matrix method (as discussed
in Appendix B, equations (B.33)-(B.35)) agrees well with the method of Blonk and Herman.
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Figure 3.2: Comparison between the Green’s tensor as a function of time (s). The solid line
denotes the result for the elements of the Green’s tensor, WuG,hf

ij , derived by Blonk and Herman
(1994); the symbol * represents the result of our Green’s tensor, WuG

ij, based on equation
(B.33)-(B.35).
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3.2 Results for a Simple Model

In order to illustrate the method discussed in the previous chapter, we first consider a relatively
simple model and compute the vertical component of the particle velocity of the wave field
at the surface. We want to investigate in which way scattering by heterogeneities close to the
surface of the Earth affect upcoming reflections. This problem is relevant in exploration seis-
mology where near-receiver scattering can be a cause of poor data quality, which is reflected in
the quality of the final image of the subsurface. Analogously, near-receiver scattering can be a
source of noise in teleseismic receiver-function analysis (Kennett, 2002). To make the situation
realistic, we include a free surface, because we expect that surface waves will be excited when
the incident field (an upcoming reflection event) hits a shallow scatterer.

The model is shown in Figure 3.3, where the scattering domain D is located in the homo-
geneous half-space medium and at a depth of 5 m below the surface. The size of the scattering
domain D is 30 m × 30 m × 30 m.
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Figure 3.3: (a) Cross section of 3D near-surface model with a heterogeneity close to the
surface. The plane-wave source is located at 150 m depth; the receivers R are at the surface; D
is the scatterer domain at a depth of 5 m below the surface. The plane-wave source generates
the upcoming plane compressional wave. (b) Topview of the model.

A horizontal plane-wave source is excited at 150 m depth to simulate an upcoming com-
pressional wave, reflected from the deeper subsurface. Receivers are located at the surface. The
parameters of the model are given as follows: ρe = 1500 kg/m3, cS = 1000 m/s, cP = 3000 m/s,
respectively. The density of the scattering domain (ρD) equals 3500 kg/m3. The waveforms in
the frequency- and the time-domain are given in Figure 3.1. The peak frequency of the source is
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about 25 Hz. The wavelength for the dominant frequency, i.e the shear-wavelength, is λs ≈ 40

m which is also roughly the size of the scatterer.
To investigate the convergence of our method, we first compute the solution of the vertical

component of the particle velocity of the scattered wave field for different discretizations of the
scatterer domain. The receiver position is located in the center of the scatterer domain. The scat-
terer domain is subdivided into equally-sized cells with sides, ∆x = ∆y = ∆z = 15 m ≈ 0.4λs

(8 grid points), ∆x = ∆y = ∆z = 10 m = 0.25λs (27 grid points), ∆x = ∆y = ∆z =

7.5 m ≈ 0.2λs (64 grid points), respectively. The results using 8 grid points, 27 grid points
and 64 grid points are shown in Figure 3.4 by the plus line, the dotted line and the solid line,
respectively. The result for 27 and 64 points almost coincide. Hence, the result has converged
and we choose the cell size 0.25λs in subsequent calculations.
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Figure 3.4: The vertical component of the scattered wave field of the numerical solution of
the integral equation using the method of moments for different discretizations of the scattering
domain. The model is shown in Figure 3.3. The receiver position is taken at position x = 64 m,
y = 64 m and z = 0 above the center of the scattering domain. The result using a cell size of
0.4λs (8 grid points) is given by the plus line. The dotted line denotes the result using a cell size
of 0.25λs (27 grid points). The solid line denotes the result using a cell size of 0.2λs (64 grid
points). The results for 27 and 64 points almost coincide. The result has thus converged and we
choose the cell size 0.25λs.

In Figure 3.5, we display the vertical component of the particle velocity of the incident wave
(in the background medium) as a function of time and receiver position.
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Figure 3.6: The total wave field obtained by solving the integral equation (a) and from experi-
mental data recorded in the Physical Acoustics Lab. (b). The P -wave is denoted by Pw, and the
Rayleigh wave by Rw. We conclude that similar effects are found in both our theoretical result
and the experimental data.
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In Figure 3.6(a), the vertical component of the total wave field is shown as a function of
time and receiver position. In this figure, one can observe a delay in the arrival time of the
P -wave above the anomaly of about 7 ms; this is commonly referred to as the static time shift
(Yilmaz, 1988; Cox, 1999) and is due to the difference in travel time through the embedding
and the scatterer. The time shift calculated using a statics model (Taner et al., 1974) is about 5

ms. From the figure it is clear that this statics model only predicts the observed shifts in the data
in an approximate way (the shift varies above the anomaly). This may be attributed to the fact
that the anomaly has a strong contrast with the background and it is not smooth compared to the
wavelength, so that scattering and diffraction become important. Moreover, one can observe a
scattered Rayleigh wave (labeled with Rw in the figure), excited by the incident P -wave and
scattered by the anomaly. The scatterer acts as a secondary (scattering) source and since it is
close to the surface, most of the scattered energy is converted into a surface (Rayleigh) wave
(Wagner and Langston, 1992).
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Figure 3.7: (a) Side- and (b) Top view of the two-layered model with cavity. All dimensions
are given in mm.

These observations are confirmed by measurements of the wave field at the surface of a
laboratory model (Campman et al., 2005). The geometry of the laboratory model given in Figure
3.7(a). As shown in Figure 3.7(a), the geometry of the laboratory model and our numerical
model given in Figure 3.3(a) are comparable. The cross section of the laboratory model (Figure
3.7(b)) is also similar to the one shown in Figure 3.3(b). However the parameters are different.
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The laboratory model consists of an aluminum block topped by a Lucite layer, in which a hole
was drilled a 2-mm wide and 3-mm deep cavity. The dimensions of the cavity are about one
wavelength. A body wave was generated by a point source at the bottom of a two-layered model
and as it reached the surface it was scattered by the cavity. The wave field was recorded in a
4-cm2 region, at 0.1-mm intervals. To model the scatterer we used a scatterer domain with a
density of ρD = 3500 kg/m3, while the actual scatterer is a cavity filled with air. This choice
of ρ only makes a qualitative comparison possible. For the embedding medium we have used
roughly the parameters of Lucite (see Bodet et al. (2004) for example).

In Figure 3.6(b) we show the first upcoming body wave. Here, the P -wave has a time delay
above the cavity and, like in the modeled data, one can observe a scattered Rayleigh wave
traveling outward from the anomaly. From this figure, it is clear that similar effects are found
in both our theoretical result and the experimental data.

3.3 Results for a Random Scattering Distribution

In the second test, we consider a similar geometry as described above (Figure 3.3), but now
containing a random distribution of scatterers. The densities of the scattering domains are
chosen from a uniform random distribution on the interval between 0 and 4000 kg/m3 (displayed
in Figure 3.8). The size of the scattering domain (D) is 60 × 60 × 60 m3 (i.e. ≈ 1.5λs). The
size of the scattering domain is now two times larger than in the previous example.

The vertical component of the particle velocity of the total wave field is shown in Figure
3.9. In the calculation, the cell size of the discretization of the scatterer domain is about 0.25λs,
and the total amount of grid points equals 216. In this figure, we again observe time shifts
and scattered Rayleigh waves. Now, the Rayleigh waves excited by different scatterers produce
interference patterns, producing a complex coda.

In Figure 3.10 we show the top view of the vertical component of the total wave field at
t = 120 ms and t = 160 ms, respectively, which is about the time it takes for the incident
wave to go through one cycle. From Figure 3.10 it is clear how the wave front is disturbed due
to scattering. Comparing Figures 3.10(a)-(b) we observe that the maximum amplitudes do not
remain in the same spatial positions (of the scatterers) as we would expect without interference.
However, due to constructive and destructive superposition of the scattered waves, the peaks
can occur at different spatial positions, at different times.



Numerical Results for the Scattering Problem and Comparison with Experimental Data 39

X−position[m]

Y
−

po
si

tio
n[

m
]

20 40 60 80 100 120

20

40

60

80

100

120

0

500

1000

1500

2000

2500

3000

3500

Figure 3.8: Top view of the model of D (with size 1.5λs × 1.5λs × 1.5λs).
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Figure 3.9: The vertical particle velocity along two perpendicular lines for the random model
shown in Figure 3.8. We observe complex interference patterns due to the scattered Rayleigh
waves.
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Figure 3.10: Top view of the vertical component of the total wave field for the random model
of Figure 3.9 at t = 120 ms and 160 ms, respectively.
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3.4 Results for a Thin Layer with a Random Scatterer
Distribution

Finally, we consider the same geometry as in the previous case (Figure 3.3), but with a thin
layer containing a random scatterer distribution. The size of the total scattering domain (D)
is about 4λs × 4λs ×

1
4
λs. The topview of the model is shown in Figure 3.11. The scattering

domain is subdivided into equal-sized cells with side lengths, ∆x = ∆y = ∆z = 1
4
λs. Hence,

we have 256 discretization points in the x- and y-directions and 1 point in the z direction, and
the total amount of grid points equals 256.
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Figure 3.11: Top view of the model of D (with size 4λs × 4λs ×
1
4
λs).

Figure 3.12 shows the vertical component of the particle velocity of the total wave field
along two perpendicular lines. In this case, the scattered wave field becomes increasingly com-
plex. At several places (in Figure 3.12(a) around 100 ms and between 140 and 180 m and in
Figure 3.12(b) at 100 ms around 50 m), one can observe strong destructive interference, which
degrades the continuity of the upcoming wave field.

In Figure 3.13(a)-(b) we show again the top view of the vertical component of the total wave
field at t = 160 ms and at t = 200 ms, respectively. Here, interference produces a very compli-
cated wave field. Again, the amplitude peaks shift location as a function of time. Such complex
wave fields are typically observed in land seismic data containing large amounts of near surface
scattering (Herman and Perkins, 2004, for example).
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Figure 3.12: The vertical component of the total wave field along two perpendicular lines
through the center of Figure 3.11.
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Figure 3.13: Top view of the vertical component of the total wave field for the thin layer of
Figure 3.12 at t = 160 ms(a) and t = 200 ms (b), respectively.
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3.5 Results for High-Velocity Contrasts in a Low-Velo-
city Background

While the previous problems are illustrative of karsting in carbonate surface layers in deserts,
for example, another problem in seismic exploration is permafrost. In areas with permafrost,
the background may be unevenly frozen giving rise to high velocity contrasts in a low-velocity
background (Abma, 1994, 2002). In this case, we consider the density of the scattering domain
lower compared to the background medium. In order to see if our method can also handle this
type of problems, we again consider one scatterer close to the surface, but the scatterer now
has a significantly higher velocity than the background. In this case, we consider a size of the
scattering domain D of 30 × 30 × 80 m3. A horizontal plane-wave source is excited at 250 m
depth to simulate an upcoming reflection from the deeper subsurface. Receivers are located at
the surface. The geometry of the model is the same as shown in Figure 3.3. The parameters of
the model are given as follows: ρe = 3500 kg/m3, cS = 1600 m/s, and cP = 3200 m/s. The
density of the scattering domain (ρD) is 700 kg/m3. The Rayleigh wavelength is about 64 m.

Using the same waveform as given in Figure 3.1, we calculate the vertical velocity for the
wave field at the surface. The numerical result for the vertical velocity at the surface is shown
in Figure 3.14. From this figure, we observe a forward time-shift, which we expect from an
analysis with rays (Combee, 1994). This is known as a ’pull-up’ in the exploration industry
(Cox, 1999), and is typically associated with permafrost topography (Abma, 2002). One can
also observe a scattered Rayleigh wave, excited by the incident P -wave and scattered by the
anomaly.
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Figure 3.14: The vertical component of the total wave field for a high-velocity anomaly.
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3.6 Results for a Source at the Surface

So far, we located the source at depth to simulate an upcoming reflection from the deeper
subsurface. We now consider a point source located at the surface which mainly generates
surface waves.

Surface waves play an important role in the seismic method (Snieder, 1986, 1987; Blonk
et al., 1995). By placing the source at the surface, the bulk of the seismic energy is contained in
the surface wave. Now, we mainly have surface-to-surface wave interaction.

3.6.1 Result for Three Scatterers

In this model, the source is excited at position x = 0, y = 0 m at the surface of the model, with
a dominant frequency of about 25 Hz. The vertical velocity of the total wave filed is calculated
at 1 m intervals at the surface of a 120 × 120 m2 area. The embedding medium here consists
of a homogeneous half space. The S-wave velocity of the embedding medium is 1000 m/s, its
P -wave velocity and density (ρe) are 3000 m/s and 1500 kg/m3, respectively. The Rayleigh
wavelength is about 40 m.

We consider three scatterers located 5 m below the surface, namely D1, D2 and D3 (Figure
3.15). The area of the scatterers is 10×10 m2, while the vertical extent is 20 m and the densities
of the scatterers are given by 3500, 3750 and 4000 kg/m3, respectively. A top view of this model
is shown in Figure 3.15. The waveforms in the frequency- and the time-domain are given in
Figure 3.1.
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Figure 3.15: Top view of the model used to calculate the vertical velocity of the wave field.
The density of the scattering domain D is 1500 kg/m3 (equal to the embedding), while the
densities of the scattering domain D1, D2 and D3 are 3500 kg/m3, 3750 kg/m3 and 4000 kg/m3,
respectively.
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In order to calculate the vertical velocity of the wave field, we consider the scattering domain
D containing the three scatterers D1, D2, D3 (displayed in Figure 3.15).

The vertical velocity of the wave field is plotted in Figure 3.16(a)-(c). In these figures, we
show three seismograms of the vertical velocity of the wave field along the lines of A, B, and
C illustrated in Figure 3.15. Figure 3.16(a) corresponds to the line A, while Figures 3.16(b)
and (c) correspond to the lines B and C, respectively. From these figures, a disturbance in the
incident wave field is visible and we observe a small time-delay in the wavefront above the
scatterers. Also, we observe that scattered Rayleigh waves are visible.
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Figure 3.16: The vertical velocity of the wave field along lines A, B and C of Figure 3.15.

Figure 3.17 shows the top view of the incident wave field and the total wave field at t = 0.117,
t = 0.156, 0.195, 0.234 s, respectively. The left-hand side of this figure is the top view of the
incident wave field, while the right-hand side is the topview of the total wave field.
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Figure 3.17: Top view of the incident wave field ((a), (c), (e) and (g)) and the total wave field
((b), (d), (f), and (h)) at t = 0.117 s, t = 0.156 s, t = 0.195 s and t = 0.234 s, respectively.
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3.6.2 Comparison with Laboratory Experiments

Now, we compare the particle velocity of the wave field computed from our method to experi-
mental data collected for the same geometry. Because we roughly know the parameters of the
scatterer, this allows us to make a quantitative comparison.

In the experiment, we have a dominant frequency of 0.6 MHz. The geometry of the model
is similar to the one shown in Figure 3.7(a), but now the anomaly D is located in a homoge-
neous half-space medium and we consider a source at the surface. Scattered surface waves are
excited by a circular scattering object with a diameter of 3 mm and a depth of 4 mm, which is
comparable to the Rayleigh wavelength. Receivers are located at the surface at 0.6 mm inter-
vals. In total we have 51 by 51 receiver positions. The top view of the model is illustrated in
Figure 3.18. The parameters of the background medium are: cs = 3000 m/s, cp = 5700 m/s
and ρe = 2700 kg/m3. The dominant Rayleigh wavelength (λR) is then 5 mm. The density of
the scatterer object, ρ = 7000 kg/m3. The shot position is located at position x = 0, y = 30 mm
at the surface of the model.
In Figure 3.20(a), we plot experimental data recorded from the dataline indicated in Figure 3.18.

30 mm

30 mm

30
 m

m

Data line

Figure 3.18: Topview of the geometry of the aluminium block. The source S is denoted by
the star. The receivers R are located at the surface (denoted by the dashed line). The scatterer
domain D is indicated in black.

In order to compute the wave field using our method, we have to know the source waveform.
To estimate it, we first consider one trace from the experimental data. The spectrum of this
trace is given by WII in Figure 3.19. From this figure, we can create a similar source waveform
assuming it can be approximated by a Ricker wavelet using the same bandwidth. It is illustrated
by WI in Figure 3.19.
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Figure 3.19: The source waveform (denoted by WI) used to calculate the model data, while
WII is the waveform taken from the experimental data.
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Figure 3.20: (a) The total wave field obtained from the experimental data recorded along the
data line shown in Figure 3.18. (b) Our solution of the integral equation. We conclude that
similar effects are found in both our theoretical result and the experimental data.

Using the same properties as used in the experimental data, we compute the vertical velocity
of the total wave field. In Figure 3.20(b), we show the numerical result along the dataline
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(a) (b)

Figure 3.21: Snapshots (time-slices) of the wave field obtained from the experimental data (a)
and our theoretical result (b) at t = 0.014 ms.

indicated in Figure 3.18. Figure 3.21(a)-(b) show the snapshots of the total wave field obtained
from the experimental data and our theoretical result at t = 0.014 ms, respectively.

From Figure 3.20(a)-(b), we conclude that the comparison of the numerical result obtained
using our computational method with experimental data shows good qualitative and quantitative
agreement.

The laboratory data were acquired with a Laser-Doppler vibrometer (van Wijk et al., 2002).
At each data point we record a number of traces that are then stacked to form one output trace.
This operation reduces the amount of noise due to the limited reflectivity of the sample in the
measured traces. In the data shown here, we have stacked the traces only a few times to reduce
the time needed to acquire the data. However, this results in more noisy traces, as is clear from
Figure 3.20(a).



4

The Inverse Problem for Scattered
Surface Waves

4.1 Introduction

Based on the integral representation discussed in Chapter 2 we formulate the inverse problem
for scattered surface waves. It is our objective to estimate the properties of near-surface hetero-
geneity, given the scattered field at the surface. The inversion is based on minimizing an error
function consisting of the squared difference between the actual scattered field and the scattered
field calculated with the integral representation developed in Chapter 2.

We assume that the wave field in the absence of the heterogeneity (the incident wave field
in the background medium) is known. Both the total wave field in the scatterering domain and
the contrast function are unknown. The inverse problem is non-linear because the wave field in
the scattering domain depends on the properties of the heterogeneity.

4.2 Formulation of the Inverse Problem

In order to formulate the inverse problem, we repeat equation (2.47) of the particle displacement
of the total wave field generated by a vertical source at position xs and recorded at points x ∈ S:

ui(x,xs) = uinc
i (x,xs) + usc

i (x,xs), (4.1)

where uinc
i is the particle displacement of the incident wave field generated by the force in

the embedding, layered, half space (without heterogeneity) and usc
i is the particle displacement

of the scattered wave field that accounts for the presence of the heterogeneity. In the above
equation, we have omitted the depedence on ω of the wave field.

The particle displacement of the scattered wave field, usc
i , at location x, is expressed as an

integral representation over the scatterering domain D. It reads (see also equation 2.48)

usc
i (x,xs) = ω2

∫

x′∈D

σ(x′)uG
ik(x,x′)uk(x

′,xs) dV, (4.2)

51
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where σ(x′) is the contrast function, uk is the wave field inside the scattering domain D and
uG

ik(x,x′) is the Green’s tensor for the layered embedding in the spatial domain. The expression
for the Green’s tensor can be found in Appendix B.

In seismic exploration, geophones measure the particle velocity of the wave field. For prac-
tical reasons, we therefore consider the expression of our integral representation in terms of
particle velocity by differentiating the particle displacement of the wave field with respect to
time. In the frequency domain, the i-th particle velocity of the wave field is then given by:

vi(x,xs) = −jωui(x,xs). (4.3)

In this thesis, we only consider the vertical component of the velocity of the scattered wave
field, vsc

3 = vsc. We can then rewrite the integral representation of the vertical velocity of the
scattered wave field, vsc, at position x in the following operator form:

vsc = GSσ, (4.4)

where the operator GS is defined by

{GSσ}(x) = ω2

∫

x′∈D

uG
k (x,x′)vk(x

′,xs)σ(x′) dV, x ∈ S. (4.5)

In order to simplify the notation, we used uG
k (x,x′) = uG

3k(x,x′), representing the third com-
ponent of the wave field generated by a source in the k-direction.

For numerical evaluation of this integral, we approximate it with the aid of the midpoint
rule, yielding:

{GSσ}(x) = ω2dx dy dz
M∑

m=1

3∑

k=1

uG
k (x,x(m))vk(x

(m),xs)σ(x(m)), (4.6)

where x(m) is the center point in the subdomains D(m), for m = 1, 2, 3, ..., M .
Note that the domain S is the domain containing the receivers at the surface, whereas the do-
main D is the domain containing the scattering objects.

In the forward problem discussed in Chapter 2, the contrast function is assumed to be a
known function. In the inverse problem, however, the scattered wave field is known at the lo-
cation of the receivers, while both the contrast function σ and the wave field in the scattering
domain are unknown (as illustrated in Figure 4.1).

The inverse problem is non-linear because the wave field in the scattering domain depends
on the contrast function. Several techniques exist to solve the inverse problem. One of these
methods is the conjugate-gradient method (Polak, 1971; Tarantola, 1984; Kleinman and van den
Berg, 1991; Van den Berg, 2002). In this thesis we apply the conjugate-gradient method (Polak-
Ribière algorithm) for estimating the properties of the heterogeneity (contrast function) by iter-
atively minimizing a cost functional.

First, we introduce definitions of the inner product, norm and the adjoint operator on the
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Figure 4.1: The geometry of the inverse problem for a 3D near-surface model with a heterogeneity D

embedded in a layered half space. The particle velocity vk, for k = 1, 2, 3, and ρ are unknown functions
in the scatterer. The scattered wave field is measured at the receivers S . The symbol F denotes the
source.

domains S and D. The inner product on the domain D is defined through the relation:

〈τ, υ〉D =

∫

x∈D

∫

ω∈W

τ(x, ω) ῡ(x, ω) dω dx, (4.7)

where the overbar denotes complex conjugate, and τ and υ are integrable functions on the
domains D and W . Here, the domain W is the frequency domain.
Similarly, the inner product on the domain S is defined through the relation:

〈τ1, υ1〉S =

∫

x∈S

∫

ω∈W

τ1(x, ω) ῡ1(x, ω) dω dx, (4.8)

where τ1 and υ1 are integrable functions on the domains S and W .
These inner products can be discretized as

〈τ, υ〉D = 2π df dx dy dz
M∑

m=1

∑

f

τ(xm, ω) ῡ(xm, ω), (4.9)

〈τ1, υ1〉S = 2π df dxs dys

∑

r

∑

f

τ1(x
r
H , ω) ῡ1(x

r
H , ω), (4.10)

where ω = 2πf df , with f is the frequency index, df is the frequency interval, xr
H = (xr

1, x
r
2) ∈

S and dxs and dys are the discretization x-and y-intervals of the domain S. The positions at the
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surface are denoted by r.
The norms on D and S follow as

‖τ‖2
D = 〈τ, τ〉D, (4.11)

and

‖τ1‖
2
S = 〈τ1, τ1〉S . (4.12)

In our inversion algorithm we will also need the adjoint counterpart of equation (4.5). The
adjoint operator, G†

D, is defined through the relation

〈E ,GSσ〉S = 〈G†
DE , σ〉D, (4.13)

where the functions E and σ are not in the same vector space. The function E is defined on the
domain S and σ is defined on the domain D.

Substituting the expression of the operator GSσ in equation (4.5) into the left-hand side of
equation (4.13), and interchanging the order of integration, the adjoint operator G† is obtained
in the following form (for a derivation, see Appendix F):

{G†
DE}(x

′) = ω2v̄k(x
′,xs)

∫

x∈S

ūG
k (x,x′) E(x) dx, x′ ∈ D. (4.14)

Since the domain S is at the surface, the above equation can be written as follows:

{G†
DE}(x

′) = ω2v̄k(x
′,xs)

∫

xH∈S

ūG
k (xH ,x′) E(xH) dxH , x′ ∈ D, (4.15)

where xH = (x1, x2).

4.3 Conjugate Gradient Method

The objective of the inversion is to determine the contrast function σ(x′), for x′ ∈ D. Due to
non-linearity, we also need to calculate the particle velocity of the wave field vk for k = 1, 2, 3

in the scattering subdomains D.
Let vd denote the actual scattered field in the space-frequency domain and let vsc denote the
scattered field evaluated from the equation (4.4).
In each iteration j, we define the difference between the actual scattered field, vd, and the
scattered field evaluated from equation (4.4), vsc, as follows:

E (j) = vd − vsc,(j),

= vd − GSσ(j). (4.16)

The norm then follows as:

‖E (j)‖2
S =

∑

f

∑

r

|vd − GSσ(j)|2, (4.17)
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where f denotes the frequency index, r denotes the positions of the receivers.
We introduce the normalized cost functional as

F (j) =
||vd − GSσ(j)||2S

||vd||2S
+ β||σ(j)||2D. (4.18)

The first term in the equation is the normalized error, and the second term for stabilization of
the inversion. The regularization parameter β optimizes the trade-off between the best fit and
the stability of the inversion (Hansen, 1997).
We seek a minimum of the functional (4.18). To do so, we apply the conjugate gradient method
that consists of an algorithm to contruct sequences for the contrast function σ which iteratively
reduce the value of the cost functional defined in equation (4.18).

We construct a sequence {σ(j)}, for j = 0, 1, 2, 3, ... by updating the contrast functions σ(j)

as follows:

σ(0) = 0, (4.19)

σ(j) = σ(j−1) + α(j)w(j) (j ≥ 1), (4.20)

where α(j) is the step size and w(j) is the update direction. This parameter α(j) and update
direction w(j) are chosen such that the residual error E (j), is minimized.

We select the Polak-Ribière update direction w(j) (Polak, 1971; Kleinman and van den Berg,
1991) as follows:

w(1) = g(1), (4.21)

w(j) = g(j) + γ(j)w(j−1) (j ≥ 2), (4.22)

where γ(j) is defined as

γ(j) =
Re < g(j) − g(j−1), g(j) >D

||g(j−1)||2D
, (4.23)

and g(j) is the gradient of the cost functional F (j) with respect to the contrast σ(j).
The gradient g(j) is given by (Kleinman and van den Berg, 1991; Zhdanov, 2002):

g(j) = −
G

†
DE

(j−1) + βσ(j−1)

||vd||2S
, (4.24)

where the operator G
†
DE

(j−1) can be found in equation (4.15). The residual error E (j−1) is given
in equation (4.16).

Once we have obtained the new contrast function σ(j), we can update the wave field v
(j)
k

inside the scattering domain D by solving the integral equation (2.50).
In order to determine the step size α(j), we substitute equation (4.20) into equation (4.18),

upon which minimizing for variation of α(j) leads to

Re〈ε(j−1) − α(j)GSw(j),GSw(j)〉S + β||σ(j)||2

‖ vd ‖2
S

= 0. (4.25)
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From the above relation, we obtain,

α(j) =
〈ε(j−1),GSw(j)〉S

‖GSw(j)‖2
S + β||w(j)||2D

. (4.26)

4.4 Inversion Algorithm

A flow diagram of our inversion method is depicted in Figure 4.2.

In summary, our iterative inversion scheme can be described as follows:

• Input (step 1)

– Compute the scattered wave field vd in the frequency domain by taking the Fourier
transform of the observed time domain data.

– Choose the initial contrast (σ(0) = 0).

• Inversion

– Perform the computation (step 2) of:

∗ the wave field in the scattering domain D.

∗ the scattered wave field vsc at the receivers (at S).

– Evaluate the residual error using equation (4.18).

– Check if ‖vd−GSσ(j)‖2

‖vd‖2 is small enough (step 3); if not:

– Calculate the step size α(j) and direction w(j) with equation (4.26) and (4.21).

– Determine the new contrast, σ(j) = σ(j−1) + α(j)w(j) and go back to step 2.

– If the residual is small enough, the iterative process is terminated and the current
value is accepted as the estimate.

• Output: Contrast estimate.
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Figure 4.2: A flow diagram of the inversion scheme.
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Numerical Results for the Inverse
Problem

The inversion algorithm discussed in the previous chapter is aimed at the reconstruction
of scattering medium parameters from scattered surface waves. In this chapter, we apply the
inversion algorithm to synthetic scattered data computed with the integral-equation method dis-
cussed in Chapter 2. The model used to generate synthetic data contains a scatterer placed at
different depths.

Because the Rayleigh wave attenuates with depth, our main interest is to investigate up to
what depth we can resolve the parameters. As the inversion is time consuming, we restrict our-
selves to considering a small scattering object.

Our inversion scheme is quite general as it takes into account the full elastic wave field and
it does not rely on the Born approximation. This makes it useful for comparing it to schemes
that are based on the Born approximation or that use approximations to the elastic wave field.
Such comparisons are presented at the end of this chapter.

5.1 Results for a Small-Contrast Model

In principle, vertical structure can be inferred from the modal amplitudes of surface waves,
because different modes sample different parts of the subsurface. In global seismology this
property is used to construct upper-mantle shear-velocity structure models (for example Nolet,
1977), while in engineering geophysics this is used to obtain stiffness profiles (Stokoe et al.,
1994; Bodet et al., 2004). In this section, we investigate if we can resolve the depth of a
scatterer near the surface from inversion of scattered surface waves.

5.1.1 Description of the Model

We expect a strong relationship with the number of frequencies that we use in the algorithm and
therefore, we start with a relatively simple test model. This model is shown in Figure 5.1.

The source is excited at position x = 0, y = 0 m at the surface of the model. We have a dom-
inant frequency of 25 Hz. The S- and P -velocities of the embedding medium are 1000 m s−1
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and 3000 m s−1, respectively, and its density is ρ0 = 1500 kg m−3. The dominant Rayleigh
wavelength is 40 m. The top of the scattering domain is located 5 m below the surface. This
domain is divided into three cells at different depths (σ1, σ2, σ3). The volume of each cell is
10×10×10 m3 and the densities are ρe

1 = ρe
2 = 1500 kg m−3 for the first and second scatterers

(no contrast in these domains, σ1 = σ2 = 0) and ρe
3 = 1600 kg m−3 for the third scatterer (i.e.

the contrast function σ3 = 100).

PSfrag replacements R Free surface

D

?S
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10 m

30
m

Halfspace

Figure 5.1: Cross section of 3D near-surface model with heterogeneity in (layered) half space.
The source S is located at the origin. The receivers R are located at the surface. The scattering
domain D is divided into 3 cells at different depths.

The vertical velocity of the scattered wave field is calculated using the integral-equation
method discussed in Chapter 2. Figure 5.2(a) shows the vertical velocity of the total wave field
as a function of time and receiver position. From this figure, we cannot clearly see the scattered
surface wave. This is because the scattered surface wave field is weak compared to the incident
wave. If we substract the incident wave field from the total wave field, we obtain the scattered
wave field. The result of the scattered wave field is displayed in Figure 5.2(b), where we have
scaled the result to show the scattered wave field more clearly.

Using these synthetic data, we determine the properties of the near-surface heterogeneities
with the help of the inversion scheme discussed in Chapter 4.
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Figure 5.2: The vertical velocity of the total wave field (a) and the scattered wave field (b).
Note that the scale of the total wave field is 100 times larger than the scale of scattered wave
field.

5.1.2 Inversion Using a Single Frequency versus Several Frequencies

In the inversion, we consider the same size of scatterer domain used to generate the synthetic
data (illustrated in Figure 5.1). The inversion domain is also divided into 3 grid points. Thus,
we have 3 unknown contrasts (i.e. σ1, σ2, σ3).

Employing our inversion algorithm, we want to estimate the contrast function in each cell.
To do so, we consider inversion with a single frequency (i.e. the dominant frequency) and
several frequencies (5 frequencies) in the inversion scheme.

In order to calculate the residual error between the actual scattered field and the modeled
scattered field (using equation 4.4) in each iteration j, we use the residual error of the following
form (see equation 4.18):

‖r(j)‖2
S =

‖vd − vsc,(j)‖2
S

‖vd‖2
S

+ β‖σj‖2
D, (5.1)

where vd is the actual scattered field, and vsc,(j) = GSσ(j) is the scattered field for the contrast
σ(j) at iteration j. In this example, we choose the regularization parameter β equals 0.

The residual error between the actual data and the modeled data is shown in Figure 5.3(a) as
a function of the number of iterations. We see from this figure that the residual error decreases
for both the single-frequency and several-frequency cases.
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Figure 5.3: (a) The residual rN as a function of the number of iterations for a single frequency
and 5 frequencies. (b)-(d) The estimates of the contrast functions (σ1, σ2 and σ3) as a function
of the number of iterations. Using a single frequency, the estimated values of the contrast do
not approach the correct value although the residual error decreases. We also conclude that
the deeper contrast converges slower.
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The estimated values of the contrast using a single frequency and 5 frequencies as a function
of the number iterations are displayed in Figure 5.3(b)-(d) for σ1, σ2 and σ3, respectively.

If we now look at the estimated values of the contrast for the first estimated contrast σ1 (Fig-
ure 5.3(b)) we get the same result for both the single frequency and several-frequency cases.
However, if we look at the results for σ2 and σ3, we observe that the results differ (Figure 5.3(c)
and (d)). From these figures, we see that if we include 5 frequencies the estimated values con-
verge to the actual values of the contrast in the cells. If we use one frequency, however, the
value in σ2 is overestimated, while the contrast in σ3 is underestimated. This example demon-
strates that with only one frequency we cannot resolve the depth of the scatterer. Including five
frequencies we are able to get a good estimate of the contrast with depth. This is because the
five frequencies sample different parts of the subsurface and, therefore, their combination is
sensitive to the depth of the scatterer.

In Table 5.1, we give the estimated values of the contrast obtained after 20 iterations from
both the single- frequency and five-frequency cases.

Actual value Est. value using 1 freq. Est. value using 5 freqs.
σ1 [kg/m3] 0 −0.124 0.518

σ2 [kg/m3] 0 24.083 3.538

σ3 [kg/m3] 100 17.558 95.352

Table 5.1: Comparison between the actual values and the estimated values of the contrast
function using a single frequency and 5 frequencies.

5.1.3 Effect of Parameterization

Our main aim in the previous examples was to investigate the depth dependence of the estimated
contrasts. Because the inversion procedure is computationaly expensive, we have used the fact
that the spatial location of the scatterer was known. If this location is not known, we need to in-
crease the lateral size of the image domain. In the following test, we increase the image domain
and we shift the grid (to avoid the ”inverse crime” (Colton and Kress, 1998)). The position of
the inversion model is shifted 5 m in the vertical- and horizontal directions. The geometry of
the model is depicted in Figure 5.4. In this figure, the inversion domain is represented by D inv

and the actual domain is denoted by D.
In the inversion, the size of the inversion domain Din is 30 × 10 × 30 m3. The inversion

domain is then subdivided into equal-sized cells, ∆x = ∆y = ∆z = 10 m. The total amount
of grid points is equal to 9 grid cells.
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Figure 5.4: Cross section of 3D near-surface model with heterogeneity in (a layered) half
space. The source S is located at the origin. The receivers R are located at the surface. The
actual scatterer domain D is illustrated by the dotted line (the same domain as in Figure 5.1).
The scatterer domain used in the inversion is given by Dinv with the size of 30 × 10 × 30 m3.

We use a tolerance of the residual error (equation (5.1)) of 0.1 percent. We stop the itera-
tion process when the error is smaller than the tolerance. After 40 iterations, the tolerance is
attained. The results of the estimated values of the contrast function are given in Figure 5.5.
The estimated values converge to the actual values of the contrast for cells with a depth of about
one wavelength. We cannot completely resolve the contrast for the deeper cells. This is most
probably due to the fact that the surface waves decay exponentially with depth and the decay
depends on the Rayleigh wavelength (Aki and Richards, 2002). However, taking into account
that the grid is coarse we obtain a reasonable estimate of the location of the scatterer and a good
estimate of the actual contrast.
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Figure 5.5: The estimated values of the contrast function after 40 iterations. The actual value
of the contrast is 100 kg/m3.

5.2 Results for a Strong-Contrast Model

5.2.1 Description of the Model: Weak Contrast (Case 1) versus Strong Contrast
(Case 2)

In this investigation, we consider a similar geometry as shown Figure 5.1, but now containing
a weak contrast (case 1) and strong contrast (case 2). For weak contrast, the contrast functions
are given by σ1 = σ2 = σ3 = 100 kg m−3 while for the strong contrast, the contrast functions
are given by σ1 = σ2 = σ3 = 2000 kg m−3. The total wave fields for both cases are shown in
Figure 5.6(a)-(b) as a function of time and receiver position. For the strong contrast given in
Figure 5.6(b), we observe that the energy of the scattered Rayleigh waves is comparable to the
incident wave field. After transforming to the frequency domain, the scattered wave fields serve
as the input data in the inversion.

5.2.2 Inversion Using a Single Frequency versus Several Frequencies

In the inversion, it is assumed that the size of the inversion domain is the same as used to
generate the synthetic data (as displayed in Figure 5.1). The inversion domain is also divided
into 3 grid cells (σ1, σ2 and σ3).

The results of the estimated values for different frequencies (for the same residual error,
r = 0.001) are shown in Figure 5.7(a) for the weak contrast and in (b) for the strong contrast.
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Figure 5.6: The measured wave field for weak contrast (a) and for strong contrast (b). For
the stronger contrast, the energy of the scattered Rayleigh waves is comparable to the incident
field.

In Figure 5.7(a), we see that by including 4 frequencies in the inversion scheme, the estimated
values converge to the actual values of the contrast in the cells. Meanwhile, in Figure 5.7(b),
we see that by including 10 frequencies in the inversion scheme, we obtain a good result of the
estimated values in the cells. From these figures, we conclude that the strong contrast needs
more frequencies and this dependence is stronger for the deeper contrasts.

Figure 5.8 shows the residual error between the actual data and the modeled data for the
strong contrast case as a function of the number iterations. In this figure we see that after 11

iterations when the residual error equals 3.10−3, we obtain the contrast value for the deeper cell
to be equal to σ3 = 1102.74. But after 12 iterations, the residual is equal to 1.10−3, the contrast
value jumps to σ3 = 1801.54. This implies that a small decrease of the residual has a large
influence on the deeper σ3.
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Figure 5.7: The results for different frequencies (for the same residual error, r = 0.001). (a)
For weak contrast, and (b) for strong contrast. From this figure, we observe that the strong
contrast needs more frequencies.
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5.2.3 Effect of Parameterization

In the following test, we increase the size of the inversion domain to 50 × 10 × 30 m3, while
the size of the actual scattering domain is 10 × 10 × 30 m3. The configuration of the model
is depicted in Figure 5.9. In this Figure, the inversion domain is represented by Dinv and the
actual domain is denoted by D. In order to estimate the contrast function, we subdivide the
inversion domain Dinv into equal-sized cells, ∆x = ∆y = ∆z = 10 m. The total amount of
grid points is equal to 15 grid cells.

In Figure 5.10, we show the results of the contrast function for the weak contrast (Case 1).
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Figure 5.9: Configuration of the inversion model. The actual scattering domain is denoted by
D and the target scattering domain used in the inversion is denoted by Dinv.

In the calculation, it takes 21 iterations to obtain the residual error of 0.1 %. From the figure,
we see that we can obtain a good estimate of the contrast function at the correct location.

The results of the estimated values of the contrast function for the strong contrast case are
shown in Figure 5.11. In the calculation, we need 115 iterations for obtaining a residual error of
0.1 %. From this figure, we also see that we can obtain a good estimate for the strong contrast
case. The deeper scatterer is hardest to estimate. We conclude that the scatterer should not be
deeper than about one Rayleigh wavelength.
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Figure 5.10: The results of the estimated values for weak contrast after 21 iterations a the
residual error of r = 0.1 %. The correct value of the contrast is 100 kg/m3.
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Figure 5.11: The results of the estimated values for strong contrast (b) after 115 iterations
with the residual error of r = 0.1 %. The correct value of the contrast is 2000 kg/m3.
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5.2.4 Comparing the Results to the Born Approximation and the Effect of Inter-
action Between Different Components

The integral representation of the vertical velocity of the modeled scattered wave field is given
by:

vsc = GSσ, (5.2)

where the operator GS is defined by

{GSσ}(x) = ω2

∫

x′∈D

uG
k (x,x′)vk(x

′,xs)σ(x′) dV, x ∈ S. (5.3)

As mentioned in Chapter 4, the inverse problem is non linear since the wave field in the
scattering domain depends on the properties of the contrast function. In the inversion, an ap-
proach can be used to linearize the representation, for example using the Born approximation
(Snieder, 1986; Kleinman and van den Berg, 1991; Blonk and Herman, 1994; Kaslilar et al.,
2005). Then, the inverse problem becomes a linear inverse problem.

In the Born approximation, it is assumed that the wave field in the scattering domain can
be approximated by the incident wave field in the scattering domain if the contrast function is
small. The integral representation given by equation (4.4) can then be rewritten as follows:

vsc = W (ω)ω2

∫

x′∈D

uG
k (x,x′)vG

k (x′,xs)σ(x′) dV, x ∈ S, (5.4)

where W (ω) is the source wavelet, uG
k is the Green’s tensor of the embedding and vG

k is the
incident wave field replacing the total wave field inside D.

In this way the inversion becomes less time consuming because we do not have to update
the wave field in the scatterer at each iteration.

From equation (5.3), we see that the integral consists of three components of the Green’s
tensor uG

k , three components of the wave field acting on the scattering domain (vk, k = 1, 2, 3)
and the contrast itself.

Another way to make the inversion more efficient is to consider an approximation to the
elastic wave field. To reduce the complexity of this equation one can assume that the vertical
component of the displacement dominates the horizontal ones, and there is no interaction be-
tween the components at the scatterer. In that way, the integral representation consists of only
one term left and it is then written as follows (see Los et al., 2001; Campman et al., 2004a,b):

{GSσ}(x) = ω2

∫

x′∈D

uG
3 (x,x′)vG

3 (x′,xs)σ(x′) dV, x ∈ S. (5.5)

It is only a valid approximation, if the scatterer domain is close to the receivers (see Los
et al., 2001; Campman et al., 2004b).

In order to investigate the performance of the inversion using these approximate solutions ,
we compare the contrasts obtained with our inversion scheme discussed in Chapter 4, to these
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obtained using the Born approximation (equation 5.4) and considering only the vertical compo-
nent of the Born approximation (equation 5.5).

In the inversion, we use the input data as given in Figure 5.6. The inversion domain is also
divided into 3 grid cells (i.e. σ1, σ2 and σ3). Again, we consider the cases of weak and strong
contrast. Employing our inversion scheme, we estimate the contrast values for both cases. We
then compare the estimated results using the Born approximation and considering only the ver-
tical component of the Born approximation.

The results are tabulated in Table 5.2 for weak contrast and Table 5.3 for strong contrast.
We can see from these tables that the estimated value of σ1 (shallowest one) leads to the right
value for all methods. If we consider the next cells (σ2 and σ3), we see that the estimated values
using all components of the Born approximation and our inversion scheme (actual field) are
also close to the actual contrast. But by considering only the vertical component of the Born
approximation, we obtain inaccurate results for σ2 and σ3. This result is consistent with the
results of Campman et al. (2004a,b).

Born Approx. Born approx. only our method Actual value
all components vertical component all components

σ1 [kg/m3] 100.48 96.02 100.05 100.00

σ2 [kg/m3] 99.33 −11.15 99.53 100.00

σ3 [kg/m3] 72.85 562.91 98.92 100.00

Table 5.2: Case 1: Comparison between the estimated values of the contrast function using the
Born approximation, the vertical component of the Born approximation and our full inversion
method.

Born Approx. Born approx. only our method Actual value
all components vertical component all components

σ1 [kg/m3] 2010.24 1926.62 2003.64 2000.00

σ2 [kg/m3] 1999.12 −130.289 2005.58 2000.00

σ3 [kg/m3] 1410.64 10726.07 1801.54 2000.00

Table 5.3: Same as Table 5.2, but now for strong contrast (Case 2).

These cases illustrate that we cannot resolve the depth of the scatterer using only the verti-
cal component of the Born approximation. Moreover, for the large contrast, we conclude that
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accounting for the interaction between all components is more important than the Born approx-
imation.

5.3 Imaging Examples Using the Born Approximation

In the previous section, we showed that reasonably good quantitative inversion results can be
expected from using the Born approximation. Because inversion using this approximation is
less time consuming than the full non-linear inversion, we applied the Born approximation
method to synthetic data to obtain images of near-surface heterogeneities. Examples of applica-
tions are exploration for acquifers or archeological surveys. While we can also employ the full
non-linear inversion to obtain images of the near-surface heterogeneities, the cpu-time needed
becomes prohibitively large for the present example. This is because for each iteration we up-
date both the wave field inside the scatterers and the contrast.

As an example, we consider synthetic data generated from the foward model. The model to
generate the data is the same as the one used in Subsection 3.6.2. We use the Born approxima-
tion for the integral representation (5.4) (discussed by Kaslilar et al., 2005). In the inversion, we
use the same model and geometry as used for the forward model and try to estimate the location
of the scatterer and the actual contrast value. The configuration of the model is depicted in
Figure 5.12.

H Receiver
× Scatterer
� Inversion grid

x[mm]

y[
m

m
]

Figure 5.12: Configuration of the inversion model.
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The image obtained from this computed data is shown in Figure 5.13. The dashed box shows
the actual location of the scatterer. The receiver line is placed along a-b. Figure 5.13(i) is the
top view of the image. The highest contrast, nearly the actual contrast value, is estimated along
the receiver line. The contrast value decreases on both sides of the receiver lines (crossline c-d).
The cross sections along lines a-b (Figure 5.13(ii)) and c-d (Figure 5.13(ii)) show the side view
of the image. The image is blurred on both sides due to the finite resolution of the imaging
method. The images of Figure 5.13 show that we can locate the scatterer accurately and obtain
a fairly accurate estimate of the actual contrast value.

In the next test, we consider a model with two different densities in the vertical direction.
Both layers have a thickness of about λ/4. The shallow and deep layers have density values
of ρ = 4.0 × 10−6 kg/mm3 and ρ = 7.0 × 10−6 kg/mm3, respectively, while other parameters
remain the same as in the first model. The top view of the image for the shallow and deep layer
is shown in Figures 5.14(i) and (ii), respectively. We can locate the scatterer at both depths,
although locating the deeper scatterer becomes more difficult. The estimated contrast values
are approximately the average of both scatterers.
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Figure 5.13: (i) Top view of the image. (ii) Cross sections a-b and c-d. The actual scatterer is
indicated by the dashed line. The correct value of the contrast is 4.3 × 10−6 kg/mm3
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(i)

(ii)

Figure 5.14: (i) Top view shallow layer. (ii) Top view deeper layer. The actual scatterer is
indicated by the dashed line. The correct values of the contrast of the shallow and deep layers
are 1.3 × 10−6 kg/mm3 and 4.3 × 10−6 kg/mm3, respectively.
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Figure 5.15: Cross sections a-b and c-d. The actual scatterer is indicated by the dashed line.
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Conclusion and Discussion

In this thesis, we developed an efficient and accurate modeling method for the near-field
scattering problem by 3D near-surface heterogeneities close to the receivers or sources. The
method is based on a domain-type integral representation. The method is specifically taylored
to model the wave field excited by an incident wave field impinging on inclusions close to the
free surface of a layered embedding. In this case the dominant part of the secondary wave field
consists of surface waves. Our method can handle large scatterers and strong contrasts when
compared to ray/Born methods and also includes multiple scattering. The integral-equation
method thus proves useful for modeling near-surface scattering problems which are relevant to
both the exploration and the global seismology community.

For observation points inside the scattering domain, we obtain a domain integral equation of
the second kind, involving the impulse response (Green’s tensor) of the embedding, a contrast
function and the unknown wave field in the domain occupied by the scatterer. We apply the
method of moments to solve this domain integral equation. By dividing the scattering domain
into a number of cells whose sizes are small enough when compared to the smallest wavelength,
we approximate the unknown wave field by a set of basis functions.

We reduce the time of calculating the system matrix by considering the Green’s tensor in
terms of Bessel functions. We also present a method for accelerating the convergence of the
computation of the Green’s tensor by subtracting the free-space Green’s tensor when the ob-
servation and the scatterer points are located close to each other. We furthermore improve the
efficiency by implementing our method on a cluster of workstations (each frequency is com-
puted independently).

In a number of model studies, we have analyzed the effect of the 3D near-surface hetero-
geneities close to the receivers. In the first models, we consider a horizontal plane-wave source
to simulate an upcoming reflection from the deeper subsurface. From the results, we observe
that the P wave is delayed above the anomaly. We conclude that the dominant effect on the
vertical component is the excitation of Rayleigh waves. We also observe time shifts and in-
terference due to scattered Rayleigh waves. By increasing the size of the scattering domain
and considering a random model, the complexity of the interference patterns due to scattered
Rayleigh waves in the coda following the P wave increases. Interference of these waves can
cause irregularities in the wave front.
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Two comparisons of the numerical results obtained using our modeling method with ex-
perimental data collected in Colorado School Mines (CSM) have also been made. In both
comparisons, we consider a similar geometry for the horizontal plane-wave source and for the
point source located at the surface. We show that both results are in a good qualitative and quan-
titative agreement. We observe in both results that the P wave is delayed above the anomaly.
We also observe time shifts and interference due to scattered Rayleigh waves.

Based on the integral representation, we formulate the inverse problem for scattered surface
waves. It is our objective to estimate the properties of near-surface heterogeneity, given the
scattered field at the surface. The inversion is based on minimizing an error function consisting
of the squared difference between the actual scattered field and the scattered field calculated
with the integral representation. The inversion algorithm is aimed at the reconstruction of scat-
tering medium parameters from scattered surface waves. We apply the inversion algorithm to
synthetic data computed with the integral-equation method. The model used to generate the
synthetic data contains a scatterer placed at different depths. Because the Rayleigh wave at-
tenuates with depth, our main interest is to investigate up to what depth we can resolve the
parameters. As the inversion is time consuming, we restrict ourselves to considering a small
scattering object. We observe that we can obtain a good estimate of the contrast function at the
correct depth upto about a depth of about one Rayleigh wavelength.

The computational complexity of our inversion scheme makes it less suitable for inversion
of data sets from practical experiments. Nonetheless, our limited-sized inversion studies give
insight in the inversion of scattered surface waves. Our inversion scheme is quite general as it
takes into account the full elastic wave field and does not rely on the Born approximation. This
makes it well-suited for comparing schemes that are based on the Born approximation or that
use approximations to the elastic wave field. Such comparisons are also presented.

In the calculation of the integral-equation method, we derive the Green’s tensor elements in
terms of Bessel functions. Having such expressions of the Green’s tensor, another efficient way
to compute the Green’s tensor elements can be achieved by considering radial symmetry of the
Green’s tensor and interpolating the Green’s tensor elements in distance. This method has been
proposed by Kaslilar et al. (2005). Combining this method and our method for calculating the
Green’s tensor, one can obtain a more efficient method for modeling and inversion of scattered
surface waves.

In this thesis, we develop the integral equation method by considering a density contrast
only. However, our method can be extended to contrast in Lamé parameters. By taking into
account the Lamé parameters, we obtain a coupled system of equations based on the integral
representation of the displacement and an integral representation of the stress. These equations
can be solved with a similar computational method as the one we discussed in Chapter 2.
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A

Fourier Transforms

In this Appendix, we first define the Fourier transform with respect to the horizontal vari-
ables x1 and x2. Let f be some complex-valued function of x = (x1, x2, x3). Its spatial Fourier
transform f̃ as a function of the horizontal wavenumbers k1 and k2, is defined by

f̃(k1, k2, x3) =
1

4π2

∫ ∞

−∞

dx1

∫ ∞

−∞

dx2 f(x1, x2, x3)e
−j[k1x1+k2x2], (A.1)

with x3 ≥ 0; k1, k2 ∈ R.
The inverse Fourier transform is given by

f(x1, x2, x3) =

∫ ∞

−∞

dk1

∫ ∞

−∞

dk2 f̃(k1, k2, x3)e
j[k1x1+k2x2], (A.2)

with x3 ≥ 0; x1, x2 ∈ R and j is the imaginary unit.
We now introduce the horizontal slownesses p1, p2 such that

k1 = ωp1, k2 = ωp2, (A.3)

and equation (A.2) can be expressed as

f(x1, x2, x3) = ω2

∫ ∞

−∞

dp1

∫ ∞

−∞

dp2 f̃(p1, p2, x3)e
jω[p1x1+p2x2]. (A.4)

Note the double integration over p1 and p2 in equation (A.4). We can reduce this to one single
integration using rotational symmetry. We transform from Cartesian components (p1, p2) to
polar slowness (p, θ) through the relations

p1 = p cos θ and p2 = p sin θ, (A.5)

where 0 ≤ θ ≤ 2π and p =
√

p2
1 + p2

2.
After this change of variables, the integration over θ in equation (A.4) can be performed analyt-
ically using Bessel functions. Consequently, the double integration in equation (A.4) is reduced
to a single integration over p.
Let g be a real-valued function of t, t ∈ R. The temporal Fourier transform is defined by:

ĝ(ω) =

∫ ∞

t=−∞

dt g(t)ejωt, (A.6)

and the inverse transform can be written as

g(t) =
1

π
Re

{ ∫ ∞

ω=0

dω ĝ(ω)e−jωt
}

. (A.7)
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B

Derivation of the Green’s Tensor for a
Layered Medium

In this appendix, we derive a representation of the displacement vector uj(x,xs) for a hor-
izontally layered medium (see equations (2.28) and (2.29)) with a source at location xs. We
use the representation of the wave field in terms of one slowness and one spatial coordinate,
ũj(p, z), to describe wave propagation in a stratified medium. Once we have a representation
of the displacement in the slowness domain, ũj(p, z), for an arbitrary point source, we can also
obtain the Green’s tensor ũG

ij(p, z), which is the wave field generated by an impulsive point
force. This Green’s tensor uG

ij is used in Chapter 2 in the domain-integral equation.
In order to find an expression for ũG

ij(p, z), we represent the displacement vector in the cylindri-
cal coordinate system and derive two sets of decoupled first-order differential equations, which
can be solved recursively (Kennett, 1983, 2001). The derivation here is partly taken from Ken-
nett (2001) Chapter 2, 3, and 5. Since our derivation is somewhat different and concentrates on
the Green’s tensor, it is included here briefly.

For each layer we have the following set of equations:

∂iτij(x,xs) + ω2ρ(l)uj(x,xs) = −fj(x,xs), (B.1)

τij(x,xs) = λ(l)δij∂kuk(x,xs) + µ(l)(∂iuj(x,xs) + ∂jui(x,xs)), (B.2)

where uj is the displacement. The point force fj can be expressed as ajδ(x − xs), where
δ(x − xs) denotes a three-dimensional unit pulse at position xs and aj is an arbitrary constant
vector. The displacement and the traction are both continuous across planes of discontinuity in
the medium that do not contain the source.

At the surface S, the following boundary condition holds:

niτji(x,xs) = 0 (x ∈ S), (B.3)

where ni is the unit vector along the normal pointing away from the medium.
In order to solve these equations, we use the fact that both layers and interfaces in the

medium under consideration are plane and horizontal. A simple form of these equations (B.1
and B.2) can be found by introducing new elements, which are related to the decoupling be-
tween compressional and vertical shear (P −SV ) waves or to the horizontal shear (SH) waves.
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In the cylindrical coordinates (Hudson, 1969), these elements read:

uV = 1/r
[
∂r(rur) + ∂φuφ

]
, (B.4)

τV z = 1/r
[
∂r(rτrz) + ∂φτφz

]
, (B.5)

uH = 1/r
[
∂r(ruφ) − ∂φur

]
, (B.6)

τHz = 1/r
[
∂r(rτφz) + ∂φτrz

]
, (B.7)

(B.8)

and

fV = 1/r
[
∂r(rfr) + ∂φfφ

]
, (B.9)

fH = 1/r
[
∂r(rfφ) − ∂φfr

]
, (B.10)

(B.11)

where V indicates the P − SV part and H stands for the SH . The vertical components, uz, τzz

and fz, remain unchanged.
In terms of these quantities, we can rearrange the equations in a form where we can isolate

the z derivatives, leading to six coupled equations which separate into two sets.
The first set is:

∂zuz = −
λ(l)

λ(l) + 2µ(l)
uV +

1

λ(l) + 2µ(l)
τzz, (B.12)

∂zuV = −∇2
1uz +

1

µ(l)
τV z, (B.13)

∂zτzz = −fz − ρ(l)ω2uz − τV z, (B.14)

∂zτV z = ρ(l)
[
− ω2 − ν(l)∇2

1

]
uV −

λ

λ(l) + 2µ(l)
∇2

1τzz − fV , (B.15)

where ∇2
1 = r−1∂r(r∂r) + r−2∂φφ and ρ(l)ν(l) = 4µ(l)(λ(l)+µ(l))

λ(l)+2µ(l) .
These equations couple P waves with local wavespeed α(l) to SV shear waves, involving

displacement vertical displacement, with wavespeed β (l).
The second set comprises shear disturbances entirely confined to a horizontal plane (SH)

with the same wavespeed β(l):

∂zuH = −
τHz

µ(l)
, (B.16)

∂zτHz = −ρ(l)ω2uH − µ(l)∇2
1uH − fH . (B.17)

Both sets are valid for the l-th layer, characterized by z(l−1) < z < z(l).
By applying the slowness transform to the above equations with respect to the horizontal

coordinates, we derive two decoupled sets of equations, one for P − SV waves and another for
SH waves. Both sets of equations have the form

∂zb = ωA(l)b − s, (z(l−1) < z < z(l)), (B.18)
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where the superscript l denotes the layer index.
For P − SV waves, the equation reads

∂

∂z




U

V

P

S


 = ω




0 p(1 − 2{β(l)

α(l) }
2) (ρ(l)α(l)2)

−1
0

−p 0 0 (ρ(l)β(l)2)−1

−ρ(l) 0 0 p

0 ρ(l)(v(l)p2 − 1) −p(1 − 2β(l)2

α(l)2
) 0







U

V

P

S




(B.19)

−




0

0

Fz

FV


 ,

where v = 4β(l)2(1 − β(l)2

α(l)2
), and α(l) and β(l) are the compressional and shear-wave speeds,

respectively.
For SH waves, we have the following equation:

∂

∂z

[
W

T

]
= ω

[
0 (ρ(l)β(l)2)

−1

ρ(l)(β(l)2p2 − 1) 0

] [
W

T

]
−

[
0

FH

]
. (B.20)

In the above equations, U , V , W , P , S, T and Fz, FV , FH are scaled variables (Kennett, 1983,
p. 27-29). They are given by

U = ũG
z , V = −ũG

V /(ωp), P = τ̃G
zz/ω,

S = τ̃G
Vz

/(ω2p), Fz = −f̃G
z /ω, W = −ũG

H/(ωp),

T = τ̃G
Hz

/(ω2p), FV = −f̃G
V /(ω2p), FH = −f̃G

H/(ω2p),

(B.21)

where p = k/ω with k is the horizontal wavenumber.
In equations (B.19) and (B.20), the compressional-wave speed, α(n), is given by

α(l) =

√
λ(l) + 2µ(l)

ρ(l)
, (B.22)

and for the shear-wave speed, we have

β(l) =

√
µ(l)

ρ(l)
. (B.23)

In order to take dissipation of the media into account, we assume the wave speeds to be complex:

Re{α(l)} ≥ 0 and Im{α(l)} ≥ 0, (B.24)

and similarly for β(l).
From equations (B.19) and (B.20), we derive the Green’s tensor.
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B.1 Solution of the Differential Equation

In this subsection, the boundary value problem, equations (B.18)-(B.21), together with the
traction-free boundary condition of the surface, is solved by decomposing the wave field into
up- and down-going waves. We use the scattering matrix method (Kennett, 1983) where the
scattering matrix is constructed recursively and contains the transmission and reflection proper-
ties of each interface. We first calculate the scattering matrices of the region above and below
the source. To do so, we decompose the wave field into up-going and down-going waves to
obtain a relation between the waves above and below the source.

Multiplying equation (B.18) by the inverse eigenvector matrix of A(l) yields:

∂zv = jωΛ(l)v. (B.25)

Here v = D(l)−1

b with D(l)−1

the inverse eigenvector matrix of A(l), and Λ(l) is a diagonal
matrix consisting of the eigenvalues of A(l). The matrix D(l)−1

is given by Kennett (1983) p.
48-51. The vector v consists of up-going and down-going waves.

The solution of equation (B.25) can be written as:

v(z) = Q(l)(z, zs)v(zs), with z(l−1) < zs, z < z(l), (B.26)

where Q(l)(z, zs) is the propagator matrix, which depends on the difference between the depths
z and zs.
For P − SV waves, Q(l)(z, zs) is given by

Q(l)(z, zs) = diag(e−jωqα,l(z−zs), e−jωqβ,l(z−zs), ejωqα,l(z−zs), ejωqβ,l(z−zs

), (B.27)

and for SH waves

Q(l)(z, zs) = diag(e−jωqβ,l(z−zs), ejωqβ,l(z−zs)), (B.28)

with z(l−1) < zs, z < z(l), qα,l(z, z
s) =

√
1

α(l)2
− p2 and qβ,l(z, z

s) =
√

1

β(l)2
− p2 are the

vertical slowness for the lth layer. According to the way we have introduced the Fourier trans-
form, both real and imaginary parts of these complex slownesses are positive : Re(qα,l) ≥ 0

and Im(qα,l) ≥ 0, and similarly for qβ,l.
Finally, after computing the wave field at the source level (see Ditzel et al., 2001, Appendix

A.3-A.6, for details), the wave field at the receiver is evaluated by propagating the field from
the source to receiver level. The wave field at the receiver level in terms of U , V , and W is then
obtained by multiplying the wave field vector v with the eigenvector matrix D(l).

The component of the Green’s displacement tensor for the embedding medium in the cylin-
drical coordinates is expressed in the following form:

uG
z (r, φ, z; ω; zs) = ω2

∫ ∞

0

dp p ũG
z (p; z; ω; zs), (B.29)
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uG
r (r, φ, z; ω; zs) = ω2

∫ ∞

0

dp p ũG
r (p; z; ω; zs), (B.30)

uG
φ (r, φ, z; ω; zs) = ω2

∫ ∞

0

dp p ũG
φ (p; z; ω; zs), (B.31)

where ũG
r (p; z; ω; zs), ũG

φ (p; z; ω; zs), ũG
z (p; z; ω; zs) are given by Kennett (1983; p. 34-35,

equations (2.44)-(2.46)).
The above expressions are the solution of the system of equations (B.19) and (B.20) in the
cylindrical coordinate system.

Since the representation of the displacement ũG
j for arbitrary point force fj(x,xs) can be

obtained, we can also find the Green’s tensor ũG
jk, which is generated by an impulse force tensor.

The wave field ũG
j and the Green’s tensor ũG

jk are related in the following way

ũG
j (p; z; ω; zs) = ũG

jk(p; z; ω; zs)ak, (B.32)

with ak the strength of the k-component of the exerted force, fk.
In this way, we have obtained expressions for all nine components of the Green’s tensor ũG

jk.
By means of the inverse slowness transform with respect to the slowness p, we can also find
expressions for the Green’s tensor in cylindrical coordinates:

uG
zk(r, φ, z; ω; zs) = ω2

∫ ∞

0

dp pũG
zk(p; z; ω; zs), (B.33)

uG
rk(r, φ, z; ω; zs) = ω2

∫ ∞

0

dp pũG
rk(p; z; ω; zs), (B.34)

uG
φk(r, φ, z; ω; zs) = ω2

∫ ∞

0

dp pũG
φk(p; z; ω; zs), (B.35)

where

ũG
z3(p; z; ω; zs) = U3(p, z, z

s)J0(ωpr), (B.36)

ũG
z1(p; z; ω; zs) = −U1(p, z, z

s)J1(ωpr) cosφ, (B.37)

ũG
z2(p; z; ω; zs) = −U2(p, z, z

s)J1(ωpr) sinφ, (B.38)

ũG
r1(p; z; ω; zs) =

[
V1(p, z, z

s)
∂J1(ωpr)

∂(ωpr)
+ W1(p, z, z

s)
J1(ωpr)

ωpr

]
cos φ,

(B.39)
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ũG
r2(p, z; ω; zs) =

[
V2(p, z, z

s)
∂J1(ωpr)

∂(ωpr)
+ W2(p, z, z

s)
J1(ωpr)

ωpr

]
sin φ,

(B.40)

ũG
r3(p, z; ω; zs) = −V3(p, z, z

s)J1(ωpr), (B.41)

ũG
φ1(p, z; ω; zs) = −

[
V1(p, z, z

s)
J1(ωpr)

ωpr
− W1(p, z, z

s)
∂J1(ωpr)

∂(ωpr)

]
sin φ,

(B.42)

ũG
φ2(p, z; ω; zs) =

[
V2(p, z, z

s)
J1(ωpr)

ωpr
− W2(p, z, z

s)
∂J1(ωpr)

∂(ωpr)

]
cos φ,

(B.43)

ũG
φ3(p, z; ω; zs) = 0, (B.44)

where r denotes the distance between the receiver and source positions, φ denotes the angle
between the receiver and source positions in the horizontal plane; z and zs are the vertical
coordinates of the receiver and source points, respectively. In the above equations, subscripts 1,
2 and 3 correspond to the solution due to the point sources with vector components (f1, 0, 0),
(0, f2, 0) and (0, 0, f3) in the Cartesian coordinate system, respectively. J0 and J1 are Bessel
functions of orders 0 and 1, respectively (Abramowitz and Stegun, 1968).

The Green’s tensor in the cylindrical coordinate system, given in equations (B.36)-(B.44),
can be transformed to Cartesian coordinates as follows:

ũG
1k(p; z; ω; zs) = ũG

rk(p; z; ω; zs) cos φ − ũG
φk(p; z; ω; zs) sin φ, (B.45)

ũG
2k(p; z; ω; zs) = ũG

rk(p; z; ω; zs) sin φ + ũG
φk(p; z; ω; zs) cosφ, (B.46)

ũG
3k(p; z; ω; zs) = ũG

zk(p; z; ω; zs). (B.47)

Hence, the inverse slowness transform of equations (B.45)-(B.47), which are required in the
computation of the matrix elements G

m,n
ik , can be written as

uG
jk(x; ω;x′) = ω2

∫ ∞

0

dp p ũG
jk(p; z; ω; zs), (B.48)

with j, k = 1, 2, 3. This result is used in equation (2.67).



C

The Expression of the Free-Space
Green’s Tensor in the Spatial and the
Slowness Domain

In equation (2.67), we need the expression of the free-space Green’s tensor in the spatial
and the slowness domain.
The free-space Green’s tensor in the spatial domain is given by (Harris, 2001):

gik(x
(m); ω;x′) =

1

µ
δikGβ +

1

ρω2
∂i∂k

(
Gβ − Gα

)
, (C.1)

with

Gβ =
1

4π|x(m) − x′|
ej ω

β
|x(m)−x

′|, (C.2)

and

Gα =
1

4π|x(m) − x′|
ej ω

α
|x(m)−x

′|, (C.3)

where α and β denote the compressional- and the shear-wave speeds, respectively.
In order to obtain the analytical expression of the Green’s tensor in the slowness domain,

we transform equation (C.1)-(C.3) to the (p, zm) domain. Using the elementary concepts of
slowness transform with respect to derivation and the properties of the Bessel function, we
obtain the elements of the free-space Green’s tensor in the slowness domain as follows:

g̃11(p; z(m); ω; z′) =
1

ωρ

[ 1

β2
GβJ0(ωpr) +

p2

2
(Gα − Gβ)(J0(ωpr)

− J2(ωpr) cos 2φ)
]
, (C.4)

g̃12(p; z(m); ω; z′) = −
p2

ωρ
sin φ cos φ[Gα − Gβ]J2(ωpr), (C.5)

g̃13(p; z(m); ω; z′) =
p

ω2ρ
cos φ[∂zGα − ∂zGβ]J1(ωpr), (C.6)
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g̃23(p; z(m); ω; z′) =
p

ω2ρ
sin φ[∂zGα − ∂zGβ]J1(ωpr), (C.7)

g̃22(p; z(m); ω; z′) =
1

ωρ

[ 1

β2
GβJ0(ωpr) +

p2

2
(Gα − Gβ)[J0(ωpr)

+ J2(ωpr) cos 2φ]
]
, (C.8)

g̃33(p; z(m); ω; z′) =
1

ωρ

[ 1

β2
GβJ0(ωpr) −

1

ω2
(∂2

zGα − ∂2
zGβ)J0(ωpr)

]
,

(C.9)

with

Gα =
jω

4πqα

ejωqα|z(m)−z′|, and Gβ =
jω

4πqβ

ejωqβ |z
(m)−z′|, (C.10)

where z(m) ∈ Dm, z′ ∈ Dn, qα =
√

1
α2 − p2 and qβ =

√
1
β2 − p2. Here, α and β denote the

compressional- and the shear-wave speeds, respectively.
According to the way we have introduced the Fourier and slowness transform, both real and
imaginary parts of these complex slownesses are positive : Re(qα) ≥ 0 and Im(qα) ≥ 0, and
similarly for qβ .



D

Calculation of the Green Matrix

In this appendix, we show in detail how to calculate the elements of the Green matrix G
(m,n)
ik ,

given by equation (2.67). For convenience, we rewrite equation (2.67) in the form

G
(m,n)
ik = I

(m,n)
ik − A

(m,n)
ik + B

(m,n)
ik , (D.1)

where

I
(m,n)
ik = δikδmn, (D.2)

A
(m,n)
ik = ω2∆ρn

∫

x′∈Dn

∫ ∞

0

p (D.3)
[
ũG

ik(p; z(m); ω; z′) − g̃ik(p; z(m); ω; z′)
]
dp dx′ dy′ dz′,

(D.4)

and

B
(m,n)
ik = ω2∆ρn

∫

Dn

gik(x
m; ω;x′) dx′ dy′ dz′. (D.5)

where δik and δmn denote the Kronecker delta.

D.1 Evaluation of the Elements of B
(m,n)
ik

We first consider the last term on the right hand side of equation (D.1), given by equation (D.5).
It reads

B
(m,n)
ik = ω2∆ρn

∫

Dn

gik(x
(m); ω;x′) dx′ dy′ dz′, (D.6)

where gik(x
m; ω;x′) is given by equations (C.1)-(C.3).

We follow the computational approach by Richmond (1965) and Ditzel (2003) for eval-
uating the integral of the two-dimensional free-space Green’s function by approximating the
rectangular cells by a circular one with an equivalent radius that gives the same area as the
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rectangular cells. The closed-form solution of the domain integration of the free-space Green’s
function can be then found analytically.

Zwamborn and Van den Berg (1997) use a similar approach for solving the problem of
electromagnetic scattering by an inhomogeneous three-dimensional dielectric object, in order
to calculate the integral of the three-dimensional free-space Green’s function analytically.

To this end, we substitute the square block by a sphere which occupies a volume of the same
size. The analytical solution of the above integral for the elastic Green’s tensor can be obtained
for each element of the B

(m,n)
ik . It reads

B
(m,n)
ik = ω2∆ρn

[ 1

µ
δikG

I
β +

1

ρω2
(∂i∂kG

I
β − ∂i∂kG

I
α)

]
, (D.7)

where for m 6= n, one obtains

GI
β =

exp(jkβ|x
m|)

jk3
β|x

(m)|

[
sinh(jkβδ) − jkβδ cosh(jkβδ)

]
, (D.8)

∂i∂kG
I
β =

[
sinh(jkβδ) − jkβδ cosh(jkβδ)

]
∂i∂k

exp(jkβ|x
(m)|)

jk3
β|x

(m)|
, (D.9)

and

∂i∂kG
I
α =

[
sinh(jkαδ) − jkαδ cosh(jkαδ)

]
∂i∂k

exp(jkα|x
(m)|)

jk3
α|x

(m)|
. (D.10)

For m = n, we have

GI
β =

(1 − jkβδ) exp(jkβδ) − 1

k2
β

, (D.11)

∂i∂k(G
I
β − GI

α) = δik
4π

3

{
jδ(kβ − kα) + exp(jkβδ)(

jkβδ

2
−

3

2
) (D.12)

− exp(jkαδ)(
jkαδ

2
−

3

2
)
}

,

where kβ = ω
β

, kα = ω
α

, δ = ∆( 3
4π

)1/3 with ∆ = ∆x = ∆y = ∆z.

D.2 Evaluation of the Elements of A
(m,n)
ik

Next, we consider the second term on the right hand side of equation (D.1), given by equation
(D.3). We can interchange the order of integration for the spatial (x′) and p -integrations. The
expression of equation (D.3) then becomes

A
(m,n)
ik = ω2∆ρn

∫ ∞

0

p

∫

x′∈Dn

[
ũG

ik(p; z(m); ω; z′)

− g̃ik(p; z(m); ω; z′)
]
dx′ dy′ dz′ dp, (D.13)
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where ũG
ik(p; z(m); ω; z′) and g̃ik(p; z(m); ω; z′) are found in Appendix B and Appendix C, re-

spectively.
In the next subsection, we first calculate the integration over the z-direction that can be done

analytically.

D.2.1 The Integration of the Green Matrix over the z-Direction.

In this subsection, we evaluate the integration of the Green matrix equation(D.13) over the
z-direction. We can rewrite equation (D.13) as follows:

A
(m,n)
ik = ω2∆ρn

∫ ∞

0

∫

DH

∫ z(n)+

z(n)−

[
ũG

ik(p; z(m); ω; z′)

− g̃ik(p; z(m); ω; z′)
]
p dz′ dx′ dy′ dp, (D.14)

with

DH = {(x, y) ∈ R2 | x(n) −
∆x

2
< x < x(n) +

∆x

2
,

y(n) −
∆y

2
< y < y(n) +

∆y

2
}, (D.15)

and

z(n)+ = z(n) +
∆z

2
, z(n)− = z(n) −

∆z

2
. (D.16)

The expression of ũG
ik(p; z(m); ω; z′) is composed of the propagator matrix and the wave field

at the source position. The propagator matrix only depends on the depth of the source, z ′, and
receiver, z(m).
The free-space Green’s tensor g̃G

ik(p; z(m); ω; z′) as shown in Appendix C is expressed indepen-
dently as the exponential function of z ′ and z(m) and a function containing only the horizontal
variables.

It is straightforward (but tedious) then to evaluate the integral over the z-direction, yielding
the following expression:

A
(m,n)
ik = ω2∆ρn

∫ ∞

0

∫

x
′

H
∈DH

[
UG

ik(p; z(m); ω; z(n))

− Gik(p; z(m); ω; z(n))
]
p dx′ dy′ dp. (D.17)
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The UG
ik functions are given by:

UG
11(p; z(m); ω; z(n)) = AαV1(p, z

(m), z(n)) (D.18)

×
{∂J1(ωpr)

∂(ωpr)
cos2 φ +

J1(ωpr)

ωpr
sin2 φ

}

+ AβW1(p, z
(m), z(n))

×
{J1(ωpr)

ωpr
cos2 φ −

∂J1(ωpr)

∂(ωpr)
sin2 φ)

}
,

UG
12(p; z(m); ω; z(n)) = AαV2(p, z

(m), z(n)) sin φ cos φ
{∂J1(ωpr)

∂(ωpr)
−

J1(ωpr)

ωpr

}

+ AβW2(p, z
(m), z(n)) sin φ cosφ

{J1(ωpr)

ωpr
(D.19)

+
∂J1(ωpr)

∂(ωpr)

}
,

UG
13(p; z(m); ω; z(n)) = −AαV3(p, z

(m), z(n))J1(ωpr) cosφ (D.20)

UG
21(p; z(m); ω; z(n)) = AαV1(p, z

(m), z(n)) sin φ cos φ
{∂J1(ωpr)

∂(ωpr)
−

J1(ωpr)

ωpr

}

+ AβW1(p, z
(m), z(n)) sin φ cosφ

{J1(ωpr)

ωpr
(D.21)

+
∂J1(ωpr)

∂(ωpr)

}
,

UG
22(p; z(m); ω; z(n)) = AαV2(p, z

(m), z(n))
{∂J1(ωpr)

∂(ωpr)
sin2 φ +

J1(ωpr)

ωpr
cos2 φ

}

+ AβW2(p, z
(m), z(n))

{J1(ωpr)

ωpr
sin2 φ (D.22)

−
∂J1(ωpr)

∂(ωpr)
cos2 φ)

}
,

UG
3k(p; z(m); ω; z(n)) = AαũG

3k(p, z
(m), z(n)), (D.23)

with k = 1, 2, 3 and

Aα =
sin(ωqα∆z/2)

ωqα/2
, Aβ =

sin(ωqβ∆z/2)

ωqβ/2
. (D.24)

For z(m) 6= z(n), the Gik functions are given by:

G11(p; z(m); ω; z(n)) =
1

ωρ

( 1

β2
GβJ0(ωpr)

+
p2

2
(Gα − Gβ)(J0(ωpr) − J2(ωpr) cos 2φ)

)
, (D.25)
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G12(p; z(m); ω; z(n)) = −
p2

ωρ
sin φ cosφ(Gα − Gβ)J2(ωpr), (D.26)

G13(p; z(m); ω; z(n)) = sign(z(n), z(m))
jp

ωρ
cos φ(qβGβ − qαGα)J1(ωpr),

(D.27)

G22(p; z(m); ω; z(n)) =
1

ωρ

( 1

β2
GβJ0(ωpr)

+
p2

2
(Gα − Gβ)(J0(ωpr) + J2(ωpr) cos 2φ)

)
, (D.28)

G23(p; z(m); ω; z(n)) = sign(z(n), z(m))
jp

ωρ
sin φ(qβGβ − qαGα)J1(ωpr),

(D.29)

G33(p; z(m); ω; z(n)) =
1

ωρ

( 1

β2
GβJ0(ωpr) + (q2

αGα − q2
βGβ)J0(ωpr)

)
, (D.30)

with

Gα = Aα
jω

4πqα
ejωqα|z(n)−z(m)| , Gβ = Aβ

jω

4πqβ
ejωqβ |z

(n)−z(m)|, (D.31)

In equations (D.27)-(D.29), sign represents the sign-function, defined as

sign(z(n), z(m)) =

{
−1 z(n) < z(m),

1 z(n) > z(m).
(D.32)

For z(m) = z(n), we have the following expression for Gik(p; z(m); ω; z(m)):

G11(p; z(m); ω; z(m)) =
1

ωρ

( 1

β2
CβJ0(ωpr) +

p2

2
(Cα − Cβ)(J0(ωpr)

− J2(ωpr) cos 2φ)
)
, (D.33)

G12(p; z(m); ω; z(m)) = −
p2

ωρ
sin φ cosφ(Cα − Cβ)J2(ωpr), (D.34)

G13(p; z(m); ω; z(m)) =
jp

ωρ
cos φ(qβCβ − qαCα)J1(ωpr), (D.35)

G22(p; z(m); ω; z(m)) =
1

ωρ

( 1

β2
CβJ0(ωpr) +

p2

2
(Cα − Cβ)(J0(ωpr)

+ J2(ωpr) cos 2φ)
)
, (D.36)
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G23(p; z(m); ω; z(m)) =
jp

ωρ
sin φ(qβCβ − qαCα)J1(ωpr), (D.37)

G33(p; z(m); ω; z(m)) =
1

ωρ

( 1

β2
CβJ0(ωpr) + (q2

αCα − q2
βCβ)J0(ωpr)

)
,

(D.38)

where

Cα =
1

2πq2
α

(ejωqα
∆z
2 − 1) and Cβ =

1

2πq2
β

(ejωqβ
∆z
2 − 1). (D.39)

Thus, we arrive at

A
(m,n)
ik = ω2∆ρn (D.40)

×

∫ ∞

0

∫ x+
n

x−
n

∫ y+
n

y−
n

[
UG

ik(p; z(m); ω; z(n)) − Gik(p; z(m); ω; z(n))
]
p dx′ dy′ dp,

where UG
ik(p; z(m); ω; z(n)) and Gik(p; z(m); ω; z(n)) are given by equations (D.18)-(D.39), and

x−
n

= x(n) −
∆x

2
, x+

n
= x(n) +

∆x

2
, (D.41)

y−
n

= y(n) −
∆y

2
, y−

n
= y(n) +

∆y

2
. (D.42)

In Section 2.5, we discussed the acceleration of the convergence of the numerical calculation
of the Green’s tensor. We observed that for small distance between the observation and source
point, the free-space Green’s tensor approaches the actual Green tensor well for large p-values.

Let pmax be the maximum value for non-vanishing values of the difference between the
free-space and the actual Green tensor. Consequently, we can rewrite the expression of (D.40)
as:

A
(m,n)
ik = ω2∆ρn (D.43)

×

∫ pmax

0

∫ x+
n

x−
n

∫ y+
n

y−
n

[
UG

ik(p; z(m); ω; z(n)) − Gik(p; z(m); ω; z(n))
]
p dx′ dy′ dp.

The above integral cannot be performed analytically, but has to be evaluated numerically. To
evaluate the above integral, we distinguish between diagonal and non-diagonal elements.

D.2.2 Evaluation of the Non-Diagonal Elements of A
(m,n)
ik

In order to calculate the non-diagonal elements of A
(m,n)
ik (m 6= n), we apply the midpoint rule.

The interval [0, pmax] in the p-domain is divided by P subintervals with width of ∆p. We then
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obtain the following expression:

A
(m,n)
ik = ω2∆ρn∆x∆y∆p

P∑

l=1

pl

[
UG

ik(pl; z
(m); ω; z(n)) − Gik(pl; z

(m); ω; z(n))
]
,

(D.44)

where UG
ik(pl; z

(m); ω; z(n)) and Gik(pl; z
(m); ω; z(n)) are given by equations (D.18)-(D.30), and

pl is the center of the p-subintervals (for l = 1, 2, ..., P ).

D.2.3 Evaluation of the Diagonal Elements of A
(m,m)
ik

In order to evaluate the diagonal elements of the Green matrix in which m = n, we substitute
m = n into equation (D.5), yielding

A
(m,m)
ik = ω2∆ρm (D.45)

×

∫ ∞

0

∫ x+
m

x−
m

∫ y+
m

y−
m

[
UG

ik(p; z(m); ω; z(m)) − Gik(p; z(m); ω; z(m))
]
p dx dy dp.

We can calculate the integral by approximating the rectangular cells by a circular one with
an equivalent radius that gives the same area as the rectangular cells (Richmond, 1965).
It then reads

A
(m,m)
ik = ω2∆ρm (D.46)

×

∫ ∞

0

p

∫ ro

0

∫ 2π

0

[
UG

ik(p; z(m); ω; z(m)) − Gik(p; z(m); ω; z(m))
]
r dr dφ dp,

with ro =
√

∆x∆y

π
and 0 ≤ φ ≤ 2π.

The inner two integrals can then be determined analytically. It yields

A
(m,m)
ik = ω2∆ρm (D.47)

×

∫ ∞

0

p
[
ŨG

ik(p; z(m); ω; z(m)) − G̃ik(p; z(m); ω; z(m))
]
dp,

where the expression of ŨG
ik(p; z(m); ω; z(m)) is given by

ŨG
11(p; z(m); ω; z(m)) =

π

ω2p2

(
V1(p, z

(m), z(m))
[
ro(J1(ωpro)ωp − 1) + J0(ωpro)

(ro + 1) − 1
]

+ W1(p, z
(m), z(m))

[
1 + J0(ωpro)(1 − ro)

− ro(J1(ωpro)ωp − 1)
])

, (D.48)

ŨG
22(p; z(m); ω; z(m)) =

π

ω2p2

(
V2(p, z

(m), z(m))
[
ro(J1(ωpro)ωp − 1) − J0(ωpro)

(1 − ro) + 1
]

+ W2(p, z
(m), z(m))

[
1 − J0(ωpro)(ro + 1)

− ro(J1(ωpro)ωp − 1)
])

, (D.49)
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ŨG
33(p; z(m); ω; z(m)) =

2πro

ω
J1(ωpro)U3(p, z

(m), z(m)), (D.50)

ŨG
12(p; z(m); ω; z(m)) = ŨG

21(p; z(m); ω; z(m)) = 0, (D.51)

ŨG
13(p; z(m); ω; z(m)) = ŨG

31(p; z(m); ω; z(m)) = 0, (D.52)

ŨG
23(p; z(m); ω; z(m)) = ŨG

32(p; z(m); ω; z(m)) = 0, (D.53)

with V1, V2, W1, W2 and U3 correspond to the solution due to the point force fj, j = 1, 2, 3 in
equation B.1.

The six independent elements of G̃ik(p; z(m); ω; z(m)) are given by

G̃11(p; z(m); ω; z(m)) =
ro

ω2ρβ2
J1(ωpro)(−2Cβ − p2β2(Cα − Cβ)), (D.54)

G̃22(p; z(m); ω; z(m)) =
ro

ω2ρβ2
J1(ωpro)(−2Cβ − p2β2(Cα − Cβ)), (D.55)

G̃33(p; z(m); ω; z(m)) =
2ro

ω4ρβ2
J1(ωpro)(ω

2Cβ + β2ω2(q2
αCα − q2

βCβ)), (D.56)

G̃12(p; z(m); ω; z(m)) = G̃21(p; z(m); ω; z(m)) = 0, (D.57)

G̃13(p; z(m); ω; z(m)) = G̃31(p; z(m); ω; z(m)) = 0, (D.58)

G̃23(p; z(m); ω; z(m)) = G̃32(p; z(m); ω; z(m)) = 0, (D.59)

with

Cα =
1

2q2
α

(ejωqα
∆z
2 − 1) , Cβ =

1

2q2
β

(ejωqβ
∆z
2 − 1), (D.60)

and J0(ωpro), J1(ωpro) are Bessel functions of orders 0 and 1, respectively.
Finally, the results of A

(m,n)
ik and B

(m,n)
ik give us the matrix elements of G

(m,n)
ik given by

equation (2.67). These elements are needed to solve the system in equation (2.56).



E

Derivation of the Adjoint Operator G
†
D

The adjoint operator is defined in equation (4.13). We now show how an expression for the
adjoint operator G

†
D is obtained. From equation (4.13), we write

〈E ,GSσ〉S =

∫

ω∈W

∫

x∈S

E(x)GSσ(x) dx dω, (E.1)

=

∫

ω∈W

∫

x∈S

E(x) ω2

∫

x′∈D

uG
k (x,x′)vk(x′,xs)σ(x′) dx′ dx dω,

=

∫

ω∈W

∫

x∈S

E(x) ω2

∫

x′∈D

uG
k (x,x′)vk(x′,xs)σ(x′) dx′ dx dω,

=

∫

ω∈W

∫

x′∈D

[
ω2v̄k(x

′,xs)

∫

x∈S

E(x)ūG
k (x,x′) dx

]
σ̄(x′) dx′ dω,

= 〈G†
DE , σ〉D, (E.2)

such that G†
DE is found as

{G†
DE}(x

′) = ω2v̄k(x
′,xs)

∫

x∈S

ūG
k (x,x′) E(x) dx, x′ ∈ D. (E.3)
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List of Symbols

Mathematical Model

x = (x1, x2, x3) = (x, y, z) spatial coordinates [m]
H depth of the scatterer [m]
Wx length of the scatterer [m]
Wy width of the scatterer [m]
ui particle displacement [m]
τij stress tensor [Pa]
fi volume force N/m3

sijpq compliance [Pa−1]
vi particle velocity [m/s]
t time [s]
ω angular frequency [rad/s]
ρ mass density [kg/m3]
xs = (xs, ys, zs) source coordinates [m]
xr = (xr, yr, zr) receiver coordinates [m]
x′ = (x′, y′, z′) scatterer coordinates [m]
∆ρ, σ density contrast [kg/m3]
δ(x) Dirac delta function [m−1]
p1, p2 Cartesian slowness coordiantes [s/m]
p =

√
p2

1 + p2
2 Polar slowness coordinate [s/m]

D scattering domain
Ω half space
S free surface
hij deformation rate
δij Kronecker delta
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i1, i2, i3 unit vector
n normal vector
j imaginary unit, j2 = −1

cS compressional wave [m/s]
cP compressional wave [m/s]
cR Rayleigh wave [m/s]
α compressional wave [m/s]
β shear wave [m/s]
λ, µ Lamé parameter [Pa]
λs shear wavelength [m]
h layer thickness [m]
P number of processors
P0 master
Ps slave
D(n) subdomain of D
∆x, ∆y the width of the subdomain D(n)

∆z the length of the subdomain D(n)

superscript l layer index
superscript e embedding medium
superscript G Green’s state
superscript m, n grid point



Summary

Modeling and inversion of scattered surface waves
Christina Dwi RIYANTI

Seismic waves provide important information on the interior of the Earth which can be used
for the exploration of oil and gas or to study the evolution of the Earth, or to predict earth
quakes. In seismic exploration, the objective is to obtain a detailed image or map of the sub-
surface in order to locate possible hydrocarbon-bearing layers, using information contained in
body waves. However, upcoming body waves that have been reflected by deeper layers can
be scattered by 3D near-surface heterogeneities directly beneath the surface. This results in a
complex interference pattern that can seriously distort the continuity of reflectors. This type of
noise is considered one of the factors that diminishes the maximum resolution in seismic im-
ages. New acquisition techniques that make it possible to measure the wave field at significantly
more locations than in conventional seismic surveys have provided new insight in this scattering
process. We present a modeling method for seismic waves that propagate along the surface of
the Earth and have been scattered in the vicinity of the source or the receivers. Using this model
as starting point, we formulate an inversion scheme to estimate properties of scattering objects
close to the surface of the Earth. Therefore, we have two main objectives:

1. to develop an efficient and accurate modeling method for scattering of seismic waves by
3D near-surface heterogeneities close to the receivers or sources;

2. To develop an inversion algorithm to reconstruct scattering-medium parameters from
scattered surface waves.

We have chosen a modeling method based on a domain-type integral representation of the wave
field. The integral representation of the wave field can be expressed as superposition of the
wave field in the background without heterogeneities (the incident wave field) and a term that
accounts for the presence of the heterogeneity (the scattered wave field) consisting of the im-
pulse response (Green’s tensor) of the embedding, a contrast function and the unknown wave
field in the domain occupied by the scatterer. For observation points inside the near-surface het-
erogeneities, we obtain a domain-integral equation of the second kind. We apply the method of
moments to solve this integral equation. To obtain an efficient and accurate method, we use two
techniques: first of all, we accelerate the convergence of the computation of the Green’s tensor
by subtracting the free-space Green’s tensor when the observation and the scatterer points are
located close to each other. Secondly, we implement the method on a cluster of workstations,
where each frequency is computed independently.

From a number of model studies, we conclude that we can accurately model near-surface
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scattering effects, which can seriously distort the wave fronts of upcoming reflections. We ob-
serve a time delay in the wavefront above the scatterers and also scattered Rayleigh waves.
We have compared our modeling method with experimental data collected with similar geome-
tries at the Colorado School Mines (CSM). We found that both results are in a good qualitative
and quantitative agreement. We observed in both results that the P wave is delayed above the
anomaly. We also observed that most of the body wave energy was converted into scattered
Rayleigh waves, causing interference with the body wave.

The final objective of this research was to reconstruct the medium parameters from scat-
tered surface waves. The inversion is based on minimizing an error function consisting of the
squared difference between the actual scattered field and the scattered field calculated with our
method. We have applied our inversion algorithm to several synthetic data sets computed with
the integral-equation method. The model used to generate synthetic data contains a scatterer
placed at different depths. Because the Rayleigh wave attenuates with depth, our main inter-
est is to investigate up to what depth we can resolve the model. We find that we can get a
good estimate of the contrast function up to a depth of about one Rayleigh wavelength. The
computational complexity of our inversion scheme makes it less suitable for inversion of actual
data sets. Nonetheless, the results of our inversion studies can be used to asses the validity of
approximations made in efficient imaging schemes for scattered surface waves.



Samenvatting

Modellering en inversie van verstrooide oppervlaktegolven
Christina Dwi RIYANTI

Seismische golven bevatten belangrijke informatie over de structuur van de Aarde. Deze infor-
matie wordt gebruikt voor de opsporing van olie, om de evolutie vande Aarde te bestuderen of
om aardbevingen te voorspellen. Het doel van seismische exploratie is om met behulp van de
informatie in ‘body’ golven een gedetailleerd beeld van de ondergrond te krijgen om mogelijke
olie of gas reserves te lokaliseren. ‘Body’ golven die door dieper gelegen lagen gereflekteerd
zijn en naar boven lopen kunnen echter verstrooid worden door onregelmatigheden vlakbij het
oppervlak van de Aarde. Dit leidt tot een interferentie patroon dat de continuı̈teit van een re-
flektie ernstig kan aantasten. In het algemeen wordt dit type ruis gezien als een van de redenen
die de resolutie in seismische afbeeldingen beperken. Nieuwe acquisitietechnieken hebben het
mogelijk gemaakt om het golfveld op veel meer plaatsen te meten dan tot nu toe gebruike-
lijk was in seismische exploratie. Deze fijnere bemonstering heeft tot nieuwe inzichten in het
verstrooı̈ngsproces dichtbij het aardoppervlak geleid. We presenteren een modeleringsmethode
voor seismische golven die langs het aardoppervlak propageren en dichtbij de bron of ont-
vangers zijn verstrooid. Met dit model als uitgangspunt, formuleren we een inversiemethode
om eigenschappen van verstrooiingsobjecten in de ondiepe ondergrond te bepalen. Er zijn dus
twee doelen:

1. Een efficiënte en nauwkeurige methode om verstrooing van seismische golven door drie
dimensionale onregelmatigheden dichtbij het oppervlak van de Aarde en dichtbij de bron
of ontvangers uit te rekenen.

2. Een inversiemethode om parameters van een ondiep verstrooiingsobject te bepalen met
behulp van verstrooide oppervlaktegolven.

We hebben voor een modeleringsmethode gekozen die op een domein-integraal representatie
van het golfveld is gebaseerd. Het golfveld kan worden uitgedrukt als de som van het golfveld
in het achtergrondmedium zonder verstrooiers en een term die het verstrooide veld voorstelt. De
integraal- representatie bestaat uit de impulsrespons van het achtregrondmedium (de Greense
tensor), een contrastfunctie en het golfveld in het verstrooiingsobject. Als de observatieposi-
tie zich in de verstrooier bevindt, leidt dit tot een domein-integraal vergelijking van de tweede
soort. Om deze vergelijking op te lossen gebruiken we de momenten methode, waarbij het
golfveld gediscretizeerd wordt. We gebruiken twee technieken om deze methode efficiënter te
maken met behoud van de nauwkeurigheid: ten eerste versnellen we de convergentie van de
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berekening van de Greense tensor door de vrije-ruimte Greense functie van de gelaagde hal-
fruimte Greense tensor af te trekken als de observatiepunten zich in de verstrooiers bevinden.
Ten tweede implementeren we ons programma op een cluster van pc’s. Hiervoor hebben we
onze methode zo ingericht dat we het golfveld per frequentie parallel kunnen uitrekenen.

Uit de bestudering van verschillende voorbeelden concluderen we dat we nauwkeurig de
verstrooiingseffecten van ondiepe onregelmatigheden kunnen modelleren. Uit deze voorbeelden
blijkt ook dat de verstrooiingseffecten de continuı̈teit van de naar boven lopende golf aantast.
Boven de anomalie ontstaat een tijdverschuiving in het golffront en verstrooide oppervlakte
(Rayleigh) golven. We hebben de resultalen verkregen met onze modelleringen, vergeleken
met experimentele data gemeten op de Colorado School of Mines (CSM). Uit deze vergelijking
blijkt dat de gemodelleerde data zowel quantitatief als qualitatief overeenkomen met de data
gemeten in het laboratorium. In zowel de numeriek verkregen data als de gemeten data onder-
scheiden we een vertraging in het (P-) golffront boven de anomalie. Verder stellen we vast dat
een groot deel van de ‘body’ golf energie wordt omgezet in verstrooide (Rayleigh) golven die
op hun beurt weer voor interferentie met het golffront zorgen.

Uiteindelijk is het doel van dit proefschrift om parameters van onregelmatigheden dicht-
bij het oppervlak van de Aarde te bepalen met behulp van verstrooide oppervlaktegolven. We
hebben dit inversie-algorithme op data van verschillende modellen toegepast. In deze modellen
hebben we de verstrooier op verschillende dieptes geplaatst om de gevoeligheid van het algo-
rithme met betrekking tot de diepte van de anomalie te kunnen onderzoeken. Met behulp van
deze tests stellen we vast dat we goede resultaten voor het contrast van de verstrooier krijgen als
deze zich minder diep dan een Rayleigh-golflengte van het aardoppervlak bevindt. Aangezien
ons inversie-algorithme erg veel rekentijd in beslag neemt is het tot nu toe nog niet erg geschikt
voor inversie van velddata. Echter, een toepassing van het algorithme is het testen van verschil-
lende a benaderingen in meer efficiënte inversiemethoden voor verstrooide oppervlakte golven.
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