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Executive Summary
This thesis estimates the economic effects of temperature, precipitation, and relative sea level rise
(SLR) on regional economic growth in Europe from 1900 to 2015. A central starting point is the
model developed by Burke, Hsiang, et al. (2015) (BHM), which provided the first global evidence that
aggregate economic growth responds non-linearly to temperature, with growth peaking at an annual
average temperature of 13◦C and declining sharply at higher temperatures. Rising temperatures can
reduce productivity and agricultural yields, especially in warmer regions (Somanathan et al., 2021).
Shifts in precipitation patterns can cause longer dry periods or heavier rainfall, increasing the risk of
floods and stressing water systems and infrastructure (Kotz et al., 2022; Malhi et al., 2021). SLR
increases the risk of flooding and loss of land in low–lying coastal areas (Cortés Arbués et al., 2024;
Chatzivasileiadis et al., 2023). This thesis addresses key gaps in the climate econometric literature by
re–analysing and extending the BHM model with a regional dataset and additional climate variables
for over a century. In doing so, it moves beyond theory–based models by relying on observed historical
data to estimate the economic effects of climate variables with greater spatial and temporal detail.

This research uses a quantitative approach, applying an econometric model to regional (NUTS–2 level)
climate from the Climatic Research Unit, University of East Anglia (n.d.) and economic data by Rosés
et al. (2021). This thesis performs a re-analysis and extension, as posted by Clemens (2017), of the
model by BHM to examine whether its findings remain valid. It tests the stability of the concave
relationship between temperature and economic growth while also including precipitation and SLR to
capture the combined effects of multiple climate variables.

The results from this research support the overall concave shape of the relation between temperature
and economic growth. Meaning that even over a longer time frame, at the regional level, and with the
inclusion of an additional climate variable, temperature and economic growth are linked in a non–linear
way, with growth peaking at an optimal temperature of 11.8 ◦C. Temperature has the strongest effect
on economic growth among the climate variables included in the model. Precipitation does not show a
statistically significant effect on its own, but it is jointly significant when included with other climate
variables. SLR has a smaller (compared to temperature) but statistically significant impact, suggesting
that it plays a meaningful role alongside temperature in shaping economic outcomes.

However, the estimated coefficients for temperature in this research are approximately six times larger
than those in the model by BHM, indicating stronger temperature sensitivity at the regional level.
The sensitivity analysis further shows that these coefficients are not stable, particularly across different
benchmark years, suggesting that the estimated turning point is shaped by historical context and should
not be interpreted as a fixed economic threshold.

Future research should build on this work by using micro-level climate and economic data to examine
the effects of seasonal variation, heatwaves, extreme rainfall, and other short-term events (Kotz et al.,
2024; Somanathan et al., 2021). This could be combined with models that include adaptation processes
or delayed responses to climate change (Mérel et al., 2021). The use of only twelve benchmark years
in this study limits the ability to identify such short-run effects. Increasing temporal resolution would
improve understanding of both short-term shocks and long-term structural patterns.

It will also be essential to better understand how climate variables interact. Temperature is a known
driver of both precipitation and SLR, through its influence on atmospheric moisture and ice melt (Malhi
et al., 2021). These dependencies should be explicitly modelled in future studies to avoid misattributing
indirect effects or underestimating compound risks (Kotz et al., 2022). Finally, moving beyond the
reduced-form approach by BHM would allow for more flexible models that capture causal mechanisms
and account for the possibility of multiple optima, thresholds, or plateaus that a fixed quadratic form
may overlook. These steps are essential to ensure that econometric models can support meaningful and
context-specific design of climate policies.

i



Acknowledgements

This thesis has been both an academic and personal process. I chose this topic because I found it
interesting, and it sparked my curiosity. Climate and its connection to society is something I care
about. Many people of my generation worry about how future climate impacts will shape our lives.
I wanted to explore whether this concern could be made more concrete through the use of data and
models, and whether I could do this. This brought me into a field I was not familiar with, and at first,
I struggled. Over time, I learned how to work through unfamiliar material and started to enjoy the
process. Therefore, this thesis has taught me, next to technical knowledge, also much more.

I am grateful for my friends, family and fellow students who have always stood by my side on this
journey. They encouraged me to really internalise this last eventful period of my study. I treasure
their trust in me, which gave me the space to grow, to take ownership of my goals, and to complete
something I had committed to.

I want to thank my thesis committee. First and foremost, Dr. Theodorus Chatzivasileiadis, thank you
for the guidance and support you have given me throughout this project. I appreciate how sincerely
you wanted to help me move forward whilst I ventured into unknown territory. Because of this, I was
able to explore and find my way through this process. To Prof. Dr. Tatiana Filatova and Dr. Enno
Schröder, thank you for your thoughtful feedback and rigorous comments on my work. Your suggestions
helped me strengthen not only the content but also the structure of this thesis. This project, and the
guidance you all have given me throughout, has taught me more than I could have anticipated. I will
carry these teachings with me as I begin a new chapter of my life.

I also want to thank the TU Delft, specifically the EPA programme and its teaching staff, for offering a
stimulating academic environment over the past two years. The programme challenged me to approach
complex societal problems from different angles and gave me the tools to do so.

Finally, I want to acknowledge the work of Burke, Hsiang, et al. (2015), Rosés et al. (2021), and Climatic
Research Unit, University of East Anglia (n.d.). Without their research, this thesis could not have been
written.

Sterre Maingay
Delft, July 2025

ii



Contents

Executive Summary i

Acknowledgements ii

Nomenclature ix

1 Introduction 1
1.1 Modelling the climate-economy relationship . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The EPA relevance of this research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Main and sub research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical Background 6
2.1 The climate-economy relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Evolution of the field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Channels of climate impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Temperature and economic outcome . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Precipitation and economic outcome . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 SLR and economic outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 A regional analysis on an extended time series . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Summary of knowledge gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Climate-Economy Model 13
3.1 Derivation of the empirical regression model . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Production as a function of average temperature . . . . . . . . . . . . . . . . . . 14
3.1.2 Piecewise linear response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Model foundation and growth transformation . . . . . . . . . . . . . . . . . . . . 15

3.2 Reduced form regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Panel data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Temperature-growth relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Non-linear effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Explanatory variables and dependent variable . . . . . . . . . . . . . . . . . . . . 19

3.4 Insight from the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Relevance of the BHM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Data preparation 21
4.1 Data Sources and preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Economic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Climate data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Exploration of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Control variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Results 34
5.1 Subquestion 1: Re-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Annual temperature-growth relationship . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Robustness of the annual temperature-growth relationship over 115 years . . . . 37

5.2 Subquestion 2: Re-analysis and extension . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.1 Extending the model with SLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Compound effects of SLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iii



Contents iv

6 Sensitivity Analysis 44
6.1 Subquestion 3: Robustness and sensitivity to spatial and temporal exclusions . . . . . . 44

6.1.1 Jackknife visualisation and interpretation . . . . . . . . . . . . . . . . . . . . . . 44
6.1.2 Insights from the jackknife analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Regression with temperature only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Discussion 54
7.1 Robustness of the BHM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Sensitivity to historical and spatial context . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3 Inclusion of precipitation and SLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.4 Breakdown per sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.5 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.6 Policy implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Conclusions 59
8.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Econometric models for policy design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 Limitations and future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

References 62

A Appendix A - Data 65
A.1 Economic and climate data description and visualisation . . . . . . . . . . . . . . . . . . 65

A.1.1 Tables before processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.1.2 Histograms before processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.1.3 Regional GDP per capita and growth rate (for 170 regions) . . . . . . . . . . . . 67
A.1.4 Rolling means temperature and precipitation . . . . . . . . . . . . . . . . . . . . 69
A.1.5 SLR data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.1.6 Interpolation SLR data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.1.7 Scatter plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.2 pairwise correlation including squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B Appendix B - Model 77
B.1 Context - BHM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.2 Research motivation - modelling approach . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.3 Methods, data and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.4.1 Economic data - Roses Wolf V6 dataset . . . . . . . . . . . . . . . . . . . . . . . 78
B.4.2 Climatic data - CRU high-resolution gridded dataset . . . . . . . . . . . . . . . . 78

B.5 Principal mathematical formulas from BHM . . . . . . . . . . . . . . . . . . . . . . . . . 78
B.6 Principal mathematical formulas from Mérel et al. (2021) . . . . . . . . . . . . . . . . . 84
B.7 Exploring regional heterogeneity in climate sensitivity and adaptation across Europe . . 87
B.8 Regional heterogeneity in climate sensitivity and adaptation in the model by Mérel et al.

(2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

C Appendix C - Results 90
C.1 Main table from the work by BHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C.1.1 of regression coefficients: BHM global model vs. European panel replication (this
thesis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C.2 Subquestion 1: Annual temperature and precipitation . . . . . . . . . . . . . . . . . . . 91
C.3 Subquestion 2: Adding sea level rise to temperature and precipitation . . . . . . . . . . 93
C.4 Subquestion 3: Robustness and temperature-only specification . . . . . . . . . . . . . . 95

C.4.1 Jackknife robustness checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

D Appendix D - Re-analysis and Extension of the BHM Model with Climate Variables 98
D.1 Constructing Rolling Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
D.2 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
D.3 Regression annualised Log-Growth from benchmark GDP . . . . . . . . . . . . . . . . . 99

D.3.1 Empirical strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
D.3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



Contents v

D.3.3 Coefficient estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
D.3.4 Year FE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
D.3.5 Temperature Optimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
D.3.6 Non-Annualised Growth Model Results . . . . . . . . . . . . . . . . . . . . . . . 102

D.4 Climate temporal and spatial jackknife analysis (non-annualised) . . . . . . . . . . . . . 103
D.4.1 annual temperature instead of climate means . . . . . . . . . . . . . . . . . . . . 105



List of Figures

4.1 Count of GDP observations per benchmark year . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Evolution of GDP per capita over time by (NUTS–2) region . . . . . . . . . . . . . . . . 22
4.3 Average of GDP per capita over time by (NUTS–2) region . . . . . . . . . . . . . . . . . 23
4.4 Evolution of GDP per capita growth over time by (NUTS–2) region . . . . . . . . . . . 24
4.5 Average GDP per capita growth over time across all (NUTS–2) regions . . . . . . . . . . 24
4.6 Average 30-year rolling mean temperature across 170 regions . . . . . . . . . . . . . . . 25
4.7 Annual average temperature over time across 170 regions . . . . . . . . . . . . . . . . . 26
4.8 Average annual temperature over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.9 Average 30-year rolling mean precipitation across 170 regions . . . . . . . . . . . . . . . 27
4.10 Annual average precipitation over time across 170 regions . . . . . . . . . . . . . . . . . 27
4.11 Average annual precipitation over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.12 Evolution all regions with SLR data after interpolation . . . . . . . . . . . . . . . . . . . 29
4.13 Average over all regions with SLR data after interpolation . . . . . . . . . . . . . . . . . 30
4.14 Lower triangle of the pairwise correlation matrix between GDP per capita growth and

climate variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.15 Scatter plots for benchmark years GDP growth and average annual temperature squared 32
4.16 Scatter plots for benchmark years GDP growth and the difference in SLR for coastal

regions only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Average annual temperature in 2015 of the 170 regions analysed . . . . . . . . . . . . . . 35
5.2 Annual average temperature and growth with 90% confidence band and distributions of

temperature observation, precipitation observations, population and GDP . . . . . . . . 36
5.3 Estimated difference in SLR in 2015 by NUTS 2 region. Red regions experience positive

SLR, while blue regions experience negative SLR. White, inland regions experience zero
SLR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Estimated temperature–growth relationship of temperature, precipitation and SLR on
GDP per capita growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Estimated temperature–growth relationship of temperature, precipitation and SLR on
GDP per capita growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Estimated temperature–growth relationship of temperature, precipitation and SLR on
GDP per capita growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Spatial jackknife estimates of the temperature-growth curve. Each coloured line shows
the result when omitting one NUTS-2 region. The dashed black line represents the
full-sample estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Spatial jackknife estimates of the temperature-growth curve. Each coloured line shows
the result when omitting one country. The dashed black line represents the full-sample
estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Temporal jackknife estimates of the temperature-growth curve. Each coloured line shows
the result when omitting one benchmark year. The dashed black line represents the
full-sample estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 Estimated temperature-growth relationship with dashed lines showing average tempera-
tures of benchmark years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5 Estimated non-linear relationship between temperature and GDP per capita growth. Op-
timum temperature estimated at 13.9 ◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.1 Histograms roses and wolf data no prep . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.2 Evolution of GDP per capita over time by (NUTS-2) region . . . . . . . . . . . . . . . . 67
A.3 Average GDP per capita over time across 170 regions . . . . . . . . . . . . . . . . . . . . 67

vi



List of Figures vii

A.4 Evolution of GDP per capita growth over time by (NUTS-2) region . . . . . . . . . . . . 68
A.5 Average GDP per capita growth over time across 170 regions . . . . . . . . . . . . . . . 68
A.6 Average all regions (246) rolling mean for temperature . . . . . . . . . . . . . . . . . . . 69
A.7 Average 30-year rolling mean temperature across 170 regions . . . . . . . . . . . . . . . 69
A.8 Average all regions (246) rolling mean for precip . . . . . . . . . . . . . . . . . . . . . . 69
A.9 Average 30-year rolling mean precipitation across 170 regions . . . . . . . . . . . . . . . 70
A.10 All regions with SLR data no prep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.11 Average over all regions with SLR data no prep . . . . . . . . . . . . . . . . . . . . . . . 71
A.12 Evolution 170 regions with SLR data after interpolation . . . . . . . . . . . . . . . . . . 72
A.13 Average across 170 regions with SLR data after interpolation . . . . . . . . . . . . . . . 72
A.14 Average over all regions with SLR data (coastal) after interpolation . . . . . . . . . . . . 73
A.15 Average over all regions with SLR (coastal) data after interpolation . . . . . . . . . . . . 73
A.16 Average over coastal regions with SLR data . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.17 Scatter plots for benchmark years GDP growth and the difference in SLR squared . . . 74
A.18 scatter on benchmark years climate temp . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.19 scatter on benchmark years climate temp squared . . . . . . . . . . . . . . . . . . . . . . 75
A.20 Lower triangle of the pairwise correlation matrix between GDP per capita growth and

climate variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.1 Pairwise linear fit between annual temperature and GDP per capita. The kink is esti-
mated at 11.35 ◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.2 Pairwise linear fit between climate mean temperature and GDP per capita. The kink is
estimated at 10.44 ◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

D.1 Lower triangle of the pairwise correlation matrix between GDP per capita growth and
climate variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

D.2 Estimated long-run temperature optimum of 29.6 ◦C (blue dot) . . . . . . . . . . . . . . 101
D.3 Concave growth curve with 90% confidence band and distributions of temperature, pop-

ulation and GDP per capita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
D.4 Spatial jackknife curves of the estimated climate-growth relationship. Each line repre-

sents the predicted change in log GDP as a function of 30-year average temperature,
estimated by omitting one region at a time. The dashed black line is the estimate using
the full sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

D.5 Temporal jackknife estimates of the temperature-growth relationship. Each line shows
the predicted change in log GDP as a function of 30-year average temperature, estimated
by omitting one year at a time. All years except 1910 are omitted once. The dashed
black line shows the full-sample estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

D.6 Spatial Jack-Knife: drop influential regions . . . . . . . . . . . . . . . . . . . . . . . . . 106
D.7 Temporal Jack-Knife: drop influential years . . . . . . . . . . . . . . . . . . . . . . . . . 106



List of Tables

5.1 Estimated coefficients from OLS regression . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Estimated coefficients for temperature, precipitation, and Sea level rise (clustered SE) . 39

6.1 Spatial jackknife results for climate coefficients . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Optimal temperature after excluding influential NUTS regions . . . . . . . . . . . . . . 46
6.3 Country jackknife summary statistics for climate coefficients . . . . . . . . . . . . . . . . 46
6.4 Optimal temperature after excluding influential countries . . . . . . . . . . . . . . . . . 47
6.5 Temporal jackknife results for climate coefficients . . . . . . . . . . . . . . . . . . . . . . 48
6.6 Optimal temperature after excluding influential years . . . . . . . . . . . . . . . . . . . . 50
6.7 Estimated coefficients for temperature effects (clustered SE) . . . . . . . . . . . . . . . . 52

A.1 Descriptive Statistics (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Descriptive Statistics (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.3 Descriptive Statistics of SLR Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.4 Missing values per variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.5 Remaining missing values after spatial and temporal interpolation . . . . . . . . . . . . 71
A.6 NUTS regions with remaining missing values . . . . . . . . . . . . . . . . . . . . . . . . 71
A.7 Years with missing values per NUTS region . . . . . . . . . . . . . . . . . . . . . . . . . 72

C.1 Regression estimates: main specification and robustness (1–5) . . . . . . . . . . . . . . . 90
C.2 Regression estimates: robustness specifications (6–11) . . . . . . . . . . . . . . . . . . . 91
C.3 Comparison of regression coefficients: BHM global model vs. European panel replication 91
C.4 OLS regression summary (clustered standard errors) . . . . . . . . . . . . . . . . . . . . 92
C.5 Estimated coefficients from OLS regression . . . . . . . . . . . . . . . . . . . . . . . . . 92
C.6 Joint significance test for temperature and precipitation terms . . . . . . . . . . . . . . . 92
C.7 Estimated year fixed effects from OLS regression . . . . . . . . . . . . . . . . . . . . . . 93
C.8 Diagnostic statistics for temperature and precipitation model . . . . . . . . . . . . . . . 93
C.9 OLS regression summary with temperature, precipitation, and sea level rise . . . . . . . 94
C.10 Estimated coefficients for temperature, precipitation, and sea level rise (clustered SE) . 94
C.11 Joint significance test for temperature, precipitation, and SLR terms . . . . . . . . . . . 94
C.12 Regression diagnostic statistics (temperature, precipitation, and sea level rise model) . . 95
C.13 Estimated year fixed effects (temperature, precipitation, and sea level rise model) . . . . 95
C.14 OLS regression summary with clustered standard errors . . . . . . . . . . . . . . . . . . 96
C.15 Estimated coefficients for temperature effects (clustered SE) . . . . . . . . . . . . . . . . 96
C.16 Regression diagnostic statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
C.17 Estimated year fixed effects (reference year omitted) . . . . . . . . . . . . . . . . . . . . 97
C.18 Spatial jackknife results for climate coefficients . . . . . . . . . . . . . . . . . . . . . . . 97
C.19 Temporal jackknife results for climate coefficients . . . . . . . . . . . . . . . . . . . . . . 97
C.20 Country jackknife summary statistics for climate coefficients . . . . . . . . . . . . . . . . 97

D.1 OLS regression GDP growth annualised summary statistics . . . . . . . . . . . . . . . . 100
D.2 Estimated coefficients for climate variables in regression GDP growth annualised . . . . 100
D.3 Estimated year fixed effects GDP growth annualised (baseline omitted) . . . . . . . . . 100
D.4 OLS regression summary statistics (non-annualised growth) . . . . . . . . . . . . . . . . 102
D.5 Estimated coefficients for climate variables (non-annualised model) . . . . . . . . . . . . 102
D.6 Year fixed effects in non-annualised GDP growth model (baseline omitted) . . . . . . . . 102
D.7 Jackknife summary of climate coefficient estimates . . . . . . . . . . . . . . . . . . . . . 103
D.8 Jackknife summary of climate coefficient estimates . . . . . . . . . . . . . . . . . . . . . 105

viii



Nomenclature

Abbreviations

Abbreviation Definition
SLR Sea Level Rise
BHM Burke et al., 2015
FE Fixed Effects
GDP Gross Domestic Product
EPA Engineering and Policy Analysis

ix



1
Introduction

A growing body of evidence shows that climate change can influence the functioning of modern human
societies (Burke, Hsiang, et al., 2015). Yet, this relationship between climate and economy is complex
and difficult to comprehend, let alone study and model (Tol, 2021). Changes in temperature, precipi-
tation, and sea level rise (SLR) have the potential to shape economic outcomes, both separately and
combined (Cortés Arbués et al., 2024; Chang et al., 2023). Temperature, precipitation, and SLR are
among the main variables through which climate change affects the economy (Somanathan et al., 2021;
Chen et al., 2019). Changes in these variables can influence how and where economic activity takes
place, with consequences for economic growth (Tol, 2018). The paper by Burke, Hsiang, et al. (2015)
(hereafter referred to as BHM) provided the first global evidence that aggregate economic growth re-
sponds non-linearly to temperature, with growth peaking at an annual average temperature of 13◦C
and declining sharply at higher temperatures. Their empirical model marked a shift away from theory–
based integrated assessment models by estimating climate impacts directly from historical economic
data. Integrated assessment models had until then relied on stylised (meaning simplified) damage func-
tions that were structured based on economic theory and calibrated using rough estimates or expert
judgment, rather than empirical data (Burke, Hsiang, et al., 2015). These models often involved strong
assumptions and simplifications, and were acknowledged to have substantial limitations. Early research
on temperature–GDP relationships, for instance, had little empirical basis for its response functions
and empirical validation of these functions had remained scarce (Chang et al., 2023).

This research builds upon the work done by BHM and significantly extends the time frame of analysis
from 1960–2010 (in the analysis by BHM) to 1900–2015, enabling a deeper investigation into long-run
patterns of climate–growth effects over a century. By applying the model to regional–level data across
Europe, this study provides new empirical insight into a spatial and temporal context that had not yet
been covered at this scale. The use of a regional panel allows for the identification of local economic
responses that are can be masked in national aggregates (Rosés et al., 2021). The analysis also includes
SLR as an additional climate variable, which expands the model beyond the focus of the model by
BHM on temperature and precipitation. This makes the results more comprehensive in describing
the mechanisms through which climate conditions influence economic performance (Kotz et al., 2024).
Ultimately, this long-run, regional analysis enhances the understanding of the effects of temperature,
precipitation and SLR on economic growth in Europe over the past century, using observed historical
data.

One of the symptoms of climate change is the rise in temperature (Burke, Hsiang, et al., 2015). Higher
temperatures can reduce productivity among workers, called heat stress, which affects all sectors of an
economy (Carleton et al., 2016). Higher temperatures can reduce agricultural output due to changes in
growing conditions, leading to unsuccessful harvests. It can also reduce industrial output due to heat
stress on machinery and industrial capital, lowering capital productivity (Zhang et al., 2018). Kalkuhl
et al. (2020) find that an increase in mean global temperature of 3.5◦C by 2100 could reduce total global
output by 7% to 14%. BHM analysed the economic effects of temperature over the period 1980 to 2010.
They estimate that, under a scenario of unmitigated warming with a projected global temperature
increase of 3.7 ◦C by 2100, average global incomes could decline by more than 20%. BHM state that
this would result in a 23% reduction in global GDP by 2100 compared to a scenario without further
warming. Kahn et al. (2021) project that a continuous increase in temperature of 0.004◦C per year
would lead to a 7.22% decline in global GDP by 2100. They further estimate that if the temperature
rise is limited to 0.001◦C per year, in line with the Paris Agreement, the resulting GDP loss would be
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much smaller, only 1.07%. These findings show that projected economic outcomes depend on different
scenarios of temperature increases. While the estimates of the different studies differ in magnitude,
they consistently show that increases in temperature lead to with long–term losses in global economic
output.

Another symptom of climate change is the change in precipitation patterns (Kotz et al., 2022; Malhi
et al., 2021). Precipitation includes all forms of water that fall from the sky, such as rain, snow, or
hail. The most damages to the economy come from extreme rainfall situations, such as both too little
rain (droughts) and too much (floods), which are most damaging to the economy (Kotz et al., 2022).
Such extreme rainfall situations reduce agricultural outputs and put pressure on infrastructure (Kotz
et al., 2022; Malhi et al., 2021). It is important to note that only recently, in studies using data with a
higher spatial resolution (firm-level data over national aggregate data) and smaller time frames (daily
precipitation over annual precipitation), researchers have found significant impacts of precipitation on
economic outcomes (Kotz et al., 2022). Historically, most macroeconomic research into the effects of
annual averages of precipitation on a national scale did not find a significant impact of precipitation
on economic growth (Burke, Hsiang, et al., 2015; Chen et al., 2019; Dell et al., 2012). Precipitation–
related damages are smaller than those caused by temperature increases but remain important, with an
estimated global cost of around 1.2 trillion USD by 2049 (Kotz et al., 2024). This damage estimation
arises from three components: total annual precipitation, the number of wet days, and extreme daily
rainfall. Total annual precipitation contributes a change of around 0.01 percentage points, the number
of wet days adds about 0.34 percentage points (0.07 to 0.90), and extreme daily rainfall contributes
around 0.36 percentage points (0.13 to 0.65) to the reduction in economic growth. This shows that not
only the timing and intensity of rainfall events, but also the frequency of wet days, are better estimates
for estimating economic damages than total annual precipitation.

Next to the economic damages caused by precipitation alone, temperature and precipitation often have
a natural negative correlation, changes in one can be linked to changes in the other (Burke and Emerick,
2016; Blanc et al., 2017). Fro example, drier years tend to be hotter, and hotter years tend to be drier
(Blanc et al., 2017). Therefore, if a model only includes temperature, it can wrongly attribute the effect
of both temperature and precipitation to temperature alone (Blanc et al., 2017). In such a model, this
can lead to inaccurate parameter estimates, which in turn will overestimate the damage of temperature
on the economy (Blanc et al., 2017).

Lastly, the third symptom of climate change that will be discussed in this research is SLR (Nováková
et al., 2018). Due to SLR, the water levels around the world’s coasts are rising (Nicholls et al., 2021). As
a result, the frequency of flooding is expected to double within this century, with floods that currently
occur once every 100 years projected to happen as often as once every 10 years by 2100, primarily
due to SLR (Kirezci et al., 2020). This is important since SLR is a climate-driven symptom which
causes, mostly through flooding, direct damages to physical capital stocks, with these impacts leading
to significant economic consequences at regional and sectoral levels (Cortés Arbués et al., 2024). Cortés
Arbués et al. (2024) compared a scenario with SLR impacts (direct and indirect) to a baseline scenario
with no SLR impact and found a total loss of 1.26% of GDP for the whole of Europe and the United
Kingdom, equalling a total of 872 billion Euro by 2100. This loss is felt much more in coastal regions,
which could lose up to 6.3% and 20.8% of regional GDP by 2100. These losses are calculated relative to
a scenario in which regional economies grow at a constant annual exogenous growth rate of 2%. This
finding underscores the uneven distribution of SLR risks to regional economic growth between coastal
and non–coastal regions in Europe and the United Kingdom (Cortés Arbués et al., 2024). Recent work
by Chatzivasileiadis et al. (2023) shows that, historically, SLR has caused a cumulative GDP loss of 4.7%
in European coastal regions. This will have a long–term impact on annual GDP growth ranging from
−0.02% to 0.04% per year (Chatzivasileiadis et al., 2023). Chatzivasileiadis et al. (2023) mention that in
previous research by the OECD (2019), global coastal flood damage could amount to approximately 4%
of global GDP, or around USD 50 trillion by 2100. This damage estimate is from a higher–end scenario
in which SLR is 1.3m and compared to a scenario without further SLR. The paper by Aral et al. (2016)
states that SLR is positively correlated with temperature over time. The estimated SLR by 2100 in
their study ranges from 60 to 132 centimetres, depending on different scenarios, with corresponding
global surface temperature increases between approximately 1.8◦C and 4.5◦C. These projections reflect
a strong but delayed effect of an increase in temperature on SLR. Compared to temperature, the damage
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from SLR is smaller in terms of the reduction in economic output, but more concentrated in specific
coastal regions (Chatzivasileiadis et al., 2023; Cortés Arbués et al., 2024). Overall, these findings show
that SLR can cause serious economic damage, especially in coastal areas.

1.1. Modelling the climate-economy relationship
In recent years, researchers in the field of climate econometrics have developed statistical methods to
examine how climate influences economic performance (Burke, Hsiang, et al., 2015). These methods are
used to make climate econometric models. To use these model and meaningfully interpret the outputs,
researchers make a distinction between weather, which describes short-term conditions, and climate,
which refers to long-term patterns of these conditions (Blanc et al., 2017). Weather events (such as
a heatwave or heavy rainfall) can be seen as specific instances within the broader climate distribution
(Blanc et al., 2017). While economic agents (such as farms, firms, institutions, governments, and
individuals) cannot plan around the variability of weather, they can and do adapt to climate, which
forms the basis for long-term decisions (Mérel et al., 2021). However, adaptation is often slow and takes
place over longer periods (Mérel et al., 2021). Temperature, precipitation, and SLR are among the main
variables through which climate change affects the economy (Burke, Hsiang, et al., 2015; Somanathan
et al., 2021; Chen et al., 2019). Changes in these variables can influence how and where economic
activity takes place, with consequences for economic growth (Tol, 2018).

Existing studies have provided insights into the relationship between temperature, precipitation, SLR
and economic performance (Dell et al., 2012; Cortés Arbués et al., 2024). However, the study by BHM
and other studies alike typically focus on shorter periods of 50 years (Burke, Hsiang, et al., 2015; Dell
et al., 2012). These studies also mostly use country-level data and annual averages of climate and
economic variables (Kotz et al., 2022; Burke, Hsiang, et al., 2015). This limits the ability of the climate
econometric models to capture causal relationships (Uhlig, 2012; Burke and Emerick, 2016; Mérel et
al., 2021). Because climate is a long-term process, short datasets cannot detect these slow shifts and
may instead pick up effects driven by weather fluctuations. Economic agents can adapt to persistent
changes in climate but not to variable weather, so adaptation may appear over the long–run even when
it is invisible in the outcomes of short–term models. Modelling the relation between climate and the
economy on the country–level causes the differences between regions to be aggregated, revealing an
oversimplified relationship (Rosés et al., 2021; Kotz et al., 2022). Modelling this relation at the regional
level provides a more detailed view of where and how climate affects economic performance (Kotz et al.,
2022).

The explored literature tends to isolate temperature, without accounting for the combined effects of other
environmental variables on the economy, like precipitation and/or SLR. This is problematic because it
may lead to inaccurate estimates of climate change impacts, particularly in settings where temperature,
precipitation and SLR all influence the economy (Kotz et al., 2022). As Hsiang (2016) point out,
capturing such interactions requires careful attention to both spatial and temporal variation, so to where
and when. These dimensions are essential to identifying the mechanisms through which temperature,
precipitation and SLR influence economic outcomes (Hsiang, 2016).

1.2. Research approach
This research aims to contribute to the understanding of how long-term shifts in climate conditions
influence economic outcomes across time and space. Existing work has shown that temperature, pre-
cipitation, and SLR can affect economic outcomes, but besides the fact that most of this literature is
based on relatively short periods and/or national averages, it often focuses on an isolated climate fac-
tor, such as temperature (Kotz et al., 2022). As a result, patterns such as variation across regions may
go undetected or be inaccurate or incomplete (Rosés et al., 2021; Chatzivasileiadis et al., 2023). But
also, variations in temperature tend to be highly correlated with variations in other climate variables
(Blanc et al., 2017). If an econometric model soley investigates the effect of temperature on economic
outcomes, it will wrongfully attribute the effect of the other climate variables to temperature (Blanc
et al., 2017). To reduce such bias, this research, in line with the work by BHM, controls for unobserved
regional differences using region–specific fixed effects (FE). Year FE capture sudden global events such
as economic crises or wars. Flexible region–specific time trends control for the slow changes in regional
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growth patterns, such as shifts in population, demography or policy. These trends allow growth rates to
evolve over time in a non-linear way and help to avoid wrongly attributing long–run economic changes
to climate variables.

To address this, first, this research will examine whether the estimated relationship between climate
and economic growth, as posted by BHM, holds when extended to a period of 115 years, drawing on
the regional historical GDP dataset developed by Rosés et al. (2021) and climate data by the Climatic
Research Unit, University of East Anglia (n.d.). This dataset allows for long-run analysis of economic
growth at the regional (NUTS-2) level. To this end, the statistical model by BHM is used to see if
the estimated relationship between temperature and economic outcomes holds when extending the time
frame from 1960–2010, to 1900–2015. Second, this research investigates how the relationship between
climate and economic growth varies across regions, as national averages can mask important regional
differences and if, estimating the original model by BHM with regional data changes the temperature
and economic growth relationship, as opposed to national–level data.

This research will combine temperature, precipitation, and SLR rather than looking at them in isolation.
Including an additional climate variable, SLR, is important because climate variables often interact, and
their compound effects may be different from their effects in isolation (Kotz et al., 2022). Given the
complexity of these relationships, it is important to assess whether the empirical results are sensitive to
modelling choices. If these compound effects are not captured, estimates of climate impacts risk being
biased or misleading, which can cause misinformed and ineffective action against climate change, as
well as misinterpretation of the scale and distribution of climate-related damages (Blanc et al., 2017;
Mérel et al., 2021).

To this end, a re-analysis and an extension of the original model by BHM will be carried out, following
the approach outlined by Clemens (2017). This is done to test how the findings respond to changes
in model specification, dataset composition, and the inclusion of SLR. The model developed by BHM
will serve as the analytical baseline. Testing its performance within an extended historical and regional
framework helps to determine whether its conclusions hold under alternative assumptions.

1.3. The EPA relevance of this research
The relevance of this research to the master’s program Engineering and Policy Analysis (EPA) lies
in its alignment with addressing climate change, a global challenge and one of the 17 United Nations
Sustainable Development Goals (SDGs), particularly SDG 13: Climate Action (United Nations, n.d.).
Climate change is a wicked problem characterised by complex interdependencies to other variables,
uncertainty, and the involvement of multiple stakeholders on all levels of society (Incropera, 2015). This
research focuses on the intersection of climate and economy, using econometric methods, specifically a
panel data regression model that combines regional economic data from the Rosés et al. (2021) dataset
and the climatic dataset from the Climatic Research Unit Climatic Research Unit, University of East
Anglia (n.d.). This model will explore how long-term climate variables influence economic outcomes
across multiple regions in Europe. As Hsiang (2016) notes, climate policy requires a clear understanding
of the full economic burden of climate change. Empirically estimated relationships, such as those in this
research, can inform projections of future climate change damages. While methodological challenges
remain, empirical climate-economy research offers valuable input for policy design. Therefore, this study
aligns with EPAs emphasis on evidence-based policymaking by combining analytical tools with real–
world policy relevance to create insights into the economic consequences of climate variables by analysing
models. Furthermore, this research adopts a systems-thinking approach by integrating econometric
models and socio-economic analysis. This is relevant for policy since it addresses the broader societal
challenges, such as the uneven exposure to climate risks across time and space, which complicates efforts
to understand long-term impacts but could inform effective regional action (Burke, Hsiang, et al., 2015;
Mérel et al., 2021; Andersen et al., 2016; Dell et al., 2008; Rosés et al., 2021).
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1.4. Main and sub research questions
From the literature review, discussed in Chapter 2, it is clear that estimating the economic impacts
of climate change in Europe requires a regional economic analysis based on an extended time frame,
including the variable SLR. This has led to the formulation of the following main research question:

To what extent are the estimated economic impacts of climate, identified in the model by BHM, robust?

To answer this main research question, three subquestions need to be answered first:

1. How robust is the model by BHM when extending the time frame to 115 years?
2. What are the compound effects of temperature, precipitation, and SLR on economic outcomes,

and to what extent do these compounding effects alter the climate-economy relationship identified
in the model by BHM?

3. Is the estimated climate effect of the model by BHM robust when tested for sensitivity to spatial
and temporal exclusions?

Each of these subquestions addresses a knowledge gap as identified in Chapter 2.

1.5. Thesis structure
Chapter 2 provides the theoretical background. In this Chapter, the econometric literature is discussed,
focusing on the relationship between temperature, precipitation and SLR and economic outcomes. Chap-
ter 3 presents the climate-economy model by BHM. In this Chapter, the model by BHM will be explained
and how the model captures the relationship between temperature and economic growth. Chapter 4,
describes the data preparation process. In this Chapter, the data sources, the steps taken to clean and
structure the data, and how the data are prepared for analysis using the climate-economy model are
outlined. Chapter 5 presents the results of the analysis. In this Chapter, the estimated relationship
between climate variables and economic performance and discusses the main findings, and gives an-
swers to the first and second subquestion. Chapter 6 answers the third subquestion. In this Chapter, a
spatial and temporal sensitivity analysis is carried out. Chapter 7 provides a discussion of the results.
In this Chapter, the findings are discussed in relation to existing literature, and the limitations of this
study are considered. Chapter 8 provides the conclusion of this study. In this Chapter, the main find-
ings and reflecting on their implications for understanding the economic impacts of climate change are
summarised.

Several appendices are at the end of this thesis as supporting material. Appendix A contains additional
details on data cleaning and preparation. Appendix B offers technical details of the climate-economy
model by BHM. Appendix C presents further details of the results. Appendix D shows the outcomes
of using a 30-year rolling mean for temperature and precipitation in the climate-economy model.



2
Theoretical Background

Climate change is no longer a distant possibility but a measurable and accelerating global fact (Dell
et al., 2008; Malhi et al., 2021; Rahimi et al., 2020). Average temperatures have increased, precipitation
patterns have become less predictable, and sea levels continue to rise (Duchenne-Moutien et al., 2021).
These developments are largely linked to human activity and are placing pressure on the economy
(Magnan et al., 2021). Climate change is expected to come with substantial economic costs, particularly
through its effects on productivity, agriculture, infrastructure, and eventually economic growth (Burke,
Hsiang, et al., 2015; Tol, 2018). Understanding how temperature, precipitation, and SLR affect the
economy is essential for assessing the impact of climate change. Without understanding how climate
relates to the economy, it becomes difficult to anticipate climate damages, and how adaptation might
mitigate these effects (Hsiang, 2016; Newell et al., 2021).

To understand how climate variables damage the economy, and how much the economic damage will
be, an important distinction needs to be made. This is the distinction between climate and weather.
Climate refers to the long-term patterns of these climate variables as opposed to weather, which describes
short-term events (Blanc et al., 2017). Climate provides therefore the context in which economic agents
make strategic decisions (Mérel et al., 2021). By contrast, weather consists of the day-to-day variations
and individual events that are inherently unpredictable (Blanc et al., 2017). As Blanc et al. (2017)
explains, each weather event is just one realisation drawn from the broader climate distribution. Since
economic agents can, therefore, only adjust to climate, adaptation can only be a response to climate
and not to transient weather fluctuations (Mérel et al., 2021; Blanc et al., 2017). A farmer will not
change to a different farming method after one year of drought (Kolstad et al., 2020). For this, the
investment is too big. The farmer will change the method only after prolonged drought (Kolstad et al.,
2020).

Understanding the distinction between weather and climate is fundamental for formulating effective
policy to address the impacts of climate change (Burke and Emerick, 2016). Effective policy depends
not only on recognising the economic risks posed by a changing climate but also on quantifying those
risks in ways that guide targeted responses. Without the clear distinction between climate and weather,
projecting the future economic impacts of climate change becomes problematic (Chang et al., 2023;
Hsiang, 2016). This research focuses on the relation between annual temperature, precipitation, and
SLR and economic outcomes in benchmark years. Unlike temperature and precipitation, SLR is not
measured annually. Instead, it reflects the difference in relative SLR between 1900 and the selected
benchmark year. Because of this, the results of this study will reflect the impact of a combination of
weather and climate events on regional GDP growth, in line with the work by BHM. BHM assume
that their model implicitly assumes adaptation, meaning that the results reflect a combination of the
impacts of weather variability and the longer-term climate conditions to which economies have already
adapted.

2.1. The climate-economy relationship
But how does climate affect the economy? This question seeks not only to understand why economies
evolve differently and how present economies manage climate change, but also how they might respond
to future climatic changes and what the impact of this would be (Hsiang, 2016). But this link between
climate and the economy is complex and influenced by multiple channels, including exposure, adaptive
capacity, and institutional context (Hsiang, 2016). Yet, it is of great importance since climate change
may alter the course of economic development (Burke, Hsiang, et al., 2015; Hsiang, 2016; Tol, 2018).
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Given this potential, quantifying this relationship is of great importance for informing policy design
(Kolstad et al., 2020; Chang et al., 2023; Kotz et al., 2024). A clearer understanding of how climate
change impacts economic growth helps to evaluate the trade-offs between the costs of mitigating and
the benefits of avoiding climate-related damages (Kotz et al., 2024; Chang et al., 2023).

But how can this link between climate and the economy be quantified? One field that tries to answer
this question is the field of climate econometrics (Hsiang, 2016). Climate econometrics focuses on how
climate change impacts economic outcomes by means of statistical models that use historical climate
and economic data (Kolstad et al., 2020; Chang et al., 2023). These models often rely on panel data
methods, which allow researchers to study the same areas over time and control for differences between
areas that do not change, such as soil quality, institutional settings, or infrastructure, but also general
trends over time experienced by all locations such as global recessions and wars (Kolstad et al., 2020;
Chang et al., 2023). This approach allows for more valid identification of causal effects, as it controls for
location-specific characteristics and global time trends (Kolstad et al., 2020). These models often include
non-linear relationships, meaning they can capture the complex relationships between climate variables
and economic activity (Burke, Hsiang, et al., 2015; Blanc et al., 2017; Mérel et al., 2021). Climate
econometrics is a growing field of research (Chang et al., 2023). Econometric models are common
practice in quantifying the relationship between climate and economy (Dell et al., 2014; Hsiang, 2016).
These models help isolate the effects of climate from other variables that also affect the economy, but
are not related to climate (Chang et al., 2023; Kotz et al., 2024). This is making it possible to detect
patterns across time and space (Chang et al., 2023). In doing so, climate econometric models provide
empirical evidence that can inform effective action and the design of future climate policies (Chen et al.,
2019; Chang et al., 2023).

2.2. Evolution of the field
The field of climate economics has evolved rapidly over the past two decades, moving from theoretical
models to data-driven ones (Hsiang, 2016). Early contributions focused on estimating the long-term
economic costs of climate change through integrated assessment models (Stern, 2008), while more
recent work has used historical weather and climate data to identify the effects on economic outcomes
(Dell et al., 2012; Dell et al., 2014; Hsiang, 2016). The growing availability of high-resolution climate
and economic data has made it possible to analyse observed relationships rather than relying only
on projections or assumptions (Carleton et al., 2016; Burke, Hsiang, et al., 2015; Blanc et al., 2017).
This has led to better informed insights about how specific climate variables, such as temperature and
precipitation, affect growth and productivity across different contexts (Kotz et al., 2022). Two empirical
strategies, cross-sectional and panel data models, are most often used. Cross-sectional analysis involves
comparing different units of observation at a single point in time. A recognised weakness of cross-
sectional analysis is that these models cannot include unobserved factors correlated with climate (these
are factors that do not change over time, such as institutions and soil quality), which can cause omitted
variable bias (Blanc et al., 2017; Carleton et al., 2016). Cross-sectional models are also static, which
can lead to them over- or underestimating the damages of climate change (Chang et al., 2023; Kolstad
et al., 2020).

That is why an increasing number of studies use panel data, which consist of repeated observations for
the same units over time (Chang et al., 2023). This structure allows researchers to track changes within
each unit and to control for unobserved characteristics that do not vary over time, also called fixed
effects (FE). Panel data models, especially those that include FE, are widely applied to estimate the
impact of climate and other environmental factors on economic outcomes (Mérel et al., 2021). Despite
this progress, several challenges remain. One challenge is that establishing causality is difficult, as
climate and economic conditions may be influenced by shared underlying factors (Dell et al., 2014;
Kolstad et al., 2020). Another challenge is adaptation. Over time, economic agents adapt to changing
climate conditions, which can make the effects of climate harder to observe (Mérel et al., 2021). In
addition, weather shocks can obscure shifts in climate, so it is important to separate year-to-year
weather anomalies from long-term trends (Blanc et al., 2017). Therefore, empirical research into the
effects of climate change must distinguish between weather shocks and climate shifts to avoid inaccurate
estimates of long-run damages (Carleton et al., 2016). Finally, many studies are limited by the quality
of available data. Gaps in coverage, missing years, or data only at the national level can make it harder
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to study the effects of climate on the economy (Rosés et al., 2021; Kotz et al., 2022).

This chapter will now turn to look at the channels through which temperature, precipitation and SLR
shape economic outcomes, as well as their compounding effects over a period of 115 years. The dataset
by the Climatic Research Unit, University of East Anglia (n.d.) and by Rosés et al. (2021) can supply this
extended time series at the regional, NUTS-2 level, for 170 European regions. Rosés et al. (2021) note
that using only national averages of climatic and economic variables for Europe can conceal substantial
within–country differences, sometimes larger than those between countries. Because of this statement,
the importance of a regional analysis is investigated. To this end, an influential climate-econometric
model, the model by BHM, is re-analysed and extended following the notation of Clemens (2017). This
re-analysis and extension are designed to address the three research questions, each corresponding to a
specific gap in the existing literature.

2.3. Channels of climate impact
An increasing number of studies show that climate variables such as temperature, precipitation, and
SLR influence the economy through complex channels (Duchenne-Moutien et al., 2021). This section
examines the channels through which each of these variables affects economic output.

2.3.1. Temperature and economic outcome
The earlier work by Dell et al. (2008) and Dell et al. (2009) contributed to establishing the link be-
tween temperature and economic growth. Building upon this work, BHM show a non-linear relationship
between temperature and economic outcomes, where productivity increases up to a temperature thresh-
old, globally around 13◦C, before declining at higher temperatures (Burke, Hsiang, et al., 2015). BHM
found that this pattern appears to be consistent across countries and sectors, including both agricultural
and non-agricultural industries, and has remained stable since 1960. Though low-income, heat-exposed
areas are disproportionately affected due to weaker infrastructure and limited adaptive capacity, such
as limited resources (Acevedo et al., 2020; Xia et al., 2018; Burke, Hsiang, et al., 2015). The capacity
to implement large–scale protective infrastructure, such as dikes against SLR, is directly linked to a
country’s GDP and wealth (Hinkel et al., 2014). These findings suggest that these areas face higher
vulnerability to climate change. Importantly, the observed reductions in economic output come from
lower growth rates rather than just temporary declines in output levels (Burke, Hsiang, et al., 2015).
The channels through which higher temperatures reduce economic outcomes include reduced labour pro-
ductivity due to heat stress and lower efficiency in sectors sensitive to temperature, especially in areas
with limited access to cooling or adaptation measures (Acevedo et al., 2020; Xia et al., 2018). After the
threshold temperature is reached (as mentioned defined by BHM at 13◦C), output losses range from
2-3% per 1◦C increase in heat-sensitive sectors like manufacturing and agriculture (Somanathan et al.,
2021; Burke, Hsiang, et al., 2015). Heat exposure also leads to health impacts that reduce working time
and long-term productivity. Furthermore, temperature increases can have delayed effects (Kahn et al.,
2021). This means that high temperatures in one year may reduce output in subsequent years (Xia
et al., 2018; Chen et al., 2019). Although some adaptation to temperature is possible, such as shifts
in working hours, land- and technology-use, these responses are often slow and uneven across areas
(Mérel et al., 2021). But temperature is not the only climate variable that shapes economic outcomes;
precipitation also influences economies (Tol, 2021).

2.3.2. Precipitation and economic outcome
Precipitation is another climate variable examined to understand through which channels it affects
economic outcomes. Recent research shows that changes in precipitation patterns, including both total
rainfall and its distribution across time, influence economic growth (Kotz et al., 2022). While moderate
rainfall variability can be absorbed without any disruption, both too much and too little precipitation
tend to reduce economic output (Kotz et al., 2022). This relationship is non-linear and highly context-
dependent (Kotz et al., 2022; Khan et al., 2022). For instance, increased rainfall can enhance agricultural
output in some low-income countries, particularly where irrigation is limited. Precipitation shocks can
also indirectly affect economic output through changes in land use (Malhi et al., 2021). In response to
persistent drought, farmers may expand cultivated land to offset productivity losses, leading to long-
term changes in land productivity and environmental degradation (Zaveri et al., 2020; Malhi et al.,
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2021). In more industrial settings, changes in precipitation can interrupt production cycles, degrade
inputs, and limit labour efficiency. Additionally, Malhi et al. (2021) stress that precipitation extremes,
such as heavy rainfall or droughts, are expected to intensify in the near future due to climate change,
with area-specific effects on water availability, soil erosion, and crop productivity. These changes are
particularly harmful to agriculture in developing countries, where the capacity to adapt is limited and
the dependence on rain is great (Khan et al., 2022). The recent findings by BHM state that precipitation
has a non-linear impact on economic growth. Their analysis includes a control variable for precipitation
since changes in local annual temperatures tend to be correlated with changes in precipitation (Burke
and Emerick, 2016). BHM reveal that economic growth is influenced by annual average rainfall, though
the effect is weaker and less consistent than that of temperature. Importantly, their model accounts for
precipitation as a non-linear (quadratic) term, capturing the possibility that both very low and very
high levels of rainfall may impact growth. While temperature emerges as the climatic driver of economic
performance, variations in rainfall still have measurable effects, particularly in regions dependent on
agriculture or vulnerable to flooding (Cortés Arbués et al., 2024; Kotz et al., 2022). In that sense,
precipitation can be used as an indicator for flooding since heavy precipitation is often linked to river
floods and water–related damages (Kotz et al., 2022).

2.3.3. SLR and economic outcome
SLR represents a slow but important dimension of climate change, particularly for coastal regions
(Chatzivasileiadis et al., 2023). As sea levels continue to rise, the risk of coastal flooding, land loss, and
damage to infrastructure grows (Chatzivasileiadis et al., 2023). Unlike temperature and precipitation,
which affect a wide range of areas more immediately, the effects of SLR are slower to develop but can be
hard felt in specific locations (Nováková et al., 2018). Nováková et al. (2018) note that most empirical
work has focused on temperature and precipitation, with limited direct evidence on the economic effects
of SLR. Empirical studies on the relationship between SLR and economic growth remain varied. The
retrospective study by Nováková et al. (2018), focused on the historical effects of SLR in the United
States, reported no stable or statistically significant impact on economic growth. The authors propose
that the effects of SLR may be relatively limited in advanced economies such as the United States, in
contrast to potentially greater impacts in less developed regions. However, examining this hypothe-
sis remains difficult, largely because of constraints in the availability and quality of comparable data
(Nováková et al., 2018). From a methodological perspective, assessing the impact of SLR on overall
economic output is difficult, as historical variation in SLR has been relatively modest. Nonetheless,
several studies caution that excluding SLR from broader estimates of climate-related economic dam-
ages may lead to an underestimation of costs, especially in lower-income and coastal countries, where
vulnerability is often greater (Kotz et al., 2024). Both the paper by Tol (2018) and Tol (2021) note
that current models often do not capture the full range of potential damages of SLR that lie outside
the current range of historical data. In his paper, he specifically states that unprecedented SLR is
an example of such an event. This indicates that even extensive historical data may be insufficient to
reliably project the full scale of future damages for phenomena like SLR, precisely because the projected
future changes are different from anything observed historically. It is important to look at SLR over
a long time series because of its inherent nature to develop over centuries and its cumulative impacts.
This long-term perspective is also needed to inform policy design and suitable adaptation strategies
(Kirezci et al., 2020; Cortés Arbués et al., 2024).

A study by Hinkel et al. (2014) shows that, without investment in coastal protection, SLR could lead to
direct global annual flood costs amounting to over 5% of GDP by the end of the century. Their findings
also indicate that even relatively modest rises in sea level, when combined with growing populations
and industries in coastal areas, would increase the number of people and value of property and industry
at risk. A related study by Kirezci et al. (2020) shows that the exposure of land, population, and
economic output to coastal flooding is expected to increase throughout the century. Rahimi et al.
(2020) researches the compounding effects of SLR and heavy coastal precipitation. Their study finds
that when these factors occur together, they can overwhelm existing flood protection infrastructure and
increase the damage from flooding. Such compound events have the potential to disrupt infrastructure,
which may in turn increase economic vulnerability and reduce economic growth in affected regions. A
more recent study by Chatzivasileiadis et al. (2023) found empirical evidence from European regions
that shows that SLR has already reduced regional GDP growth in coastal regions in the period from
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1900 to 2020. This study found that SLR increases the risk of coastal flooding and land loss, which
creates economic damages and constrains economic activity in these areas. As Rahimi et al. (2020)
state that SLR in combination with heavy precipitation can have compounding effects. The work by
Khan et al. (2022) does not isolate the specific economic contribution of SLR from temperature and
precipitation. Instead, they created a natural disaster variable that is used to analyse the effects of mean
temperature, precipitation, sunshine duration, and mean sea level pressure on GDP. The results show
that the natural disaster variable, which includes SLR, has a significant negative effect on economic
growth.

Thus, a clear gap in the existing literature is the absence of studies that examine the compounding
effect of temperature, precipitation, and SLR on macroeconomic outcomes such as GDP growth. While
temperature and precipitation are often analysed together, and SLR is typically studied in isolation,
mainly in relation to coastal damage. There is little evidence of models that capture their potential
compounding effects. Given suggestions in the literature that SLR, particularly when combined with
heavy rainfall, may amplify economic impacts, it is important to investigate whether such compounding
effects influence aggregate economic performance.

2.4. A regional analysis on an extended time series
Recognising that climate represents the distribution of individual weather events on which economic
agents base strategic choices, researchers seek to understand how these longer-term climatic patterns
affect economic outcomes over time (Mérel et al., 2021; Hsiang, 2016). A central question in the field
of climate economics is how quickly economic agents adjust to changes in their environment (Burke
and Emerick, 2016; Mérel et al., 2021). Adaptation refers to actions or investments undertaken to
reduce the influence of climate change (Hsiang, 2016). Economic agents make adaptations based on
climate normals. Climate normals are defined as average weather conditions observed over a standard
period of around 30 years, as defined by the World Meteorological Organisation (Burke, Hsiang, et
al., 2015). To understand how these longer-term climatic patterns affect economic activity over time
requires extended time series data that capture sufficient variation in climate over time (Chang et al.,
2023). It is important to understand how economies respond to climate change over time, especially
when considering how adaptation may meaningfully reduce future climate damages. Many studies on
the effects of climate change use short-term changes in weather to estimate economic impacts. These
studies can provide useful information, but they do not show how economies respond to long-term
climate trends. If economic agents adapt slowly to new climate conditions, short-term responses may
give a misleading picture (Kolstad et al., 2020). For instance, behavioural adjustments, infrastructure
investment, or shifts in production methods often take time and may only be observable over longer
periods. As a result, damage estimates based only on short time frames might either overstate or
understate the eventual impact of long-term climate change damages. Simply extrapolating short-run
effects into the future may overestimate the long-term consequences of climate change if meaningful
adaptation takes place over time (Chang et al., 2023). Burke and Emerick (2016) show the importance
of understanding climate change by examining the effects of long-term exposure to temperature and
precipitation changes on U.S. agricultural productivity. Their findings suggest that exposure to extreme
heat reduces crop yields, particularly for corn and soy, and that these effects remain, even over a 20-
year period. They also reveal how repeated heat extremes can slow growth rates and lead to larger
cumulative losses than one extreme weather shocks suggest. Distinguishing between temporary level
effects (a single bad harvest due to a hot year) and lasting growth effects (lower yields from that year
on) is only possible when data span many years (Chang et al., 2023; Burke, Hsiang, et al., 2015). The
paper by Dell et al. (2009) shows that if adaptation is meaningful, it can reduce climate change damages
of temperature shocks by 50%. Dell et al. (2009) discovered this after they compared a cross-sectional
and panel data model. In this way, they compared a model that examines variation across many units
at a single point in time to a model that follows the same units over several periods. By using extended
time series to study the relationship between climate variables and economic outcomes, the potential
effects of adaptation could be better understood.

The literature also notes the importance of carrying out analyses at the regional level (Khan et al.,
2022; Kotz et al., 2024). Examining the relationship between climatic and economic variables at the
regional, NUTS-2 level offers several advantages, particularly to capture regional heterogeneity in both
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exposure and adaptation to climate variability (Rosés et al., 2021). Regional level data allows for the
investigation of place-specific adaptation, which is influenced by local governance, infrastructure, and
sectoral composition (Kalkuhl et al., 2020; Rosés et al., 2021). This spatial resolution is especially im-
portant in Europe, where climate exposure, economic structure, and institutional capacity vary greatly
across regions (Rosés et al., 2021). The paper by Rosés et al. (2021) explains that Europe is funda-
mentally different from large countries with relatively centralised economies such as the United States
because it consists of a mosaic of small, historically distinct national economies, each with its own insti-
tutions, economic structures, and development trajectories. They therefore argue that treating Europe
as a collection of national units often obscures substantial within-country (regional) variation, which is
sometimes larger than the differences observed across countries (Rosés et al., 2021).

But here is a gap in the climate econometrics literature that lies in the limited use of long-term, multi-
regional analyses at the NUTS-2 level (Kalkuhl et al., 2020; Cortés Arbués et al., 2024; Diffenbaugh
et al., 2019). Most existing studies focus on short-term impacts and/or country-specific data, providing
valuable but incomplete insights into the economic consequences of climate change (Kotz et al., 2024).
As BHM emphasise, the relationship between climate and economic output is highly non-linear, implying
that both moderate and extreme climatic changes must be studied over longer horizons to understand
the trajectory of economic impacts. Without extended time series, it is difficult to assess how economies
cope with or adapt to or fail to adapt to long-term climate changes. The absence of long-term analyses
also slows down the ability to account for the cumulative effects of climatic variables like temperature,
precipitation and SLR on economic outcomes, which unfold over decades, influencing adaptive capacities,
technological advancements, and policy responses (Chang et al., 2023; Kahn et al., 2021; Mérel et al.,
2021). As Stern (2008) points out, climate change is a cumulative phenomenon with long lags between
climate change causes and the visible effects on the economy. Furthermore, economic sensitivity to
climate is not static. It evolves over time as economies undergo structural transformations such as
industrialisation, urbanisation, and sectoral shifts (Chang et al., 2023). These shifts can vary greatly
over space, and thus the literature underscores the need for detailed regional disaggregation (Khan
et al., 2022). Capturing these dynamics requires extended time series with sufficient historical depth
and detailed regional data.

2.5. Summary of knowledge gaps
So altogether, based on the climate econometric literature, three research gaps could be identified.
Firstly, many studies rely on datasets covering only a relatively short period of time (Diffenbaugh et al.,
2019; Kalkuhl et al., 2020; Cortés Arbués et al., 2024). Without time series covering a longer period
of time, it is difficult to assess how economies cope with long–term climate changes (Chang et al.,
2023; Kahn et al., 2021; Mérel et al., 2021). Secondly, most studies rely on single–country or one–
region–specific data to estimate damage variations (Cortés Arbués et al., 2024). But climate impacts
are highly heterogeneous, varying across geographic, economic, and institutional contexts. Using data
at the regional, NUTS-2, level is necessary to capture regional heterogeneity, which can vary greatly
across regions, especially in Europe (Rosés et al., 2021). Lastly, the compounding effects of tempera-
ture, precipitation and SLR are rarely studied together. Although temperature and rainfall are often
analysed together, SLR is not included (Chang et al., 2023). This gap is especially important for regions
vulnerable to frequent or overlapping climate risks.

This research aims to contribute to closing these gaps by evaluating the sensitivity of the model by
BHM by conducting a robustness test, as posted by Clemens (2017). A robustness test can have
two alternative forms depending on the usage of the same or different data compared to the original
study and/or altering the model specification. For this research, the model specification by BHM will be
altered, and different data will be used as input. This means that this thesis performs both a re–analysis
and an extension test (Clemens, 2017). Note that rebuilding and altering the model specification of the
original model does not mean that the original model is being replicated. A replication test, according
to Clemens (2017), is a test that evaluates whether an original studys findings can be independently
reproduced using the same methodology, so without altering the programming code of the original study.
A replication test ensures that the statistical analysis yields the same results as the original study by
either reanalysing the same dataset or resampling from the same population. Since this is not the
intention of this research, identical results are not expected from the robustness test as they did in the
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original study by BHM. This research examines whether the estimated relationships from the original
study by BHM are robust to modifications to model specification and data. Reanalysis and extension
tests can provide useful insights into the stability and potential generalisability of the findings (Clemens,
2017). Through a reanalysis and extension of the model by BHM, applied to climatic and economic data
from 170 NUTS-2 regions in Europe between 1900 and 2015 provided by the Climatic Research Unit,
University of East Anglia (n.d.) and Rosés et al. (2021) datasets, this study investigates whether the
climate-related economic effects identified in the original work persist across different regional contexts
and over an extended time frame. If the results are in line with the original findings, this would increase
the confidence in the robustness of the estimated relationships. Large differences could suggest that
responses to climate shocks are context-specific, indicating that the conclusions of the original studies
may not be directly transferable to other geographic and temporal contexts (Clemens, 2017).

The identification of the knowledge gaps in the existing climate econometrics literature, as well as the
formulation of the intention of this research, has led to the formulation of the main research question
and sub-questions as mentioned in Chapter 1, see section 1.4.



3
The Climate-Economy Model

The model developed by BHM investigates how temperature influences economic productivity at the
global level, by aggregating country–level data. It focuses on estimating the effect of annual average
temperature on the growth rate of GDP per capita. Rather than modelling separate economic mecha-
nisms such as crop yields or labour productivity, the model uses a reduced-form approach to capture the
aggregate effect of temperature fluctuations. The starting point of this model is that the relationship
between temperature and economic growth is non-linear, meaning that both cold and hot extremes may
reduce productivity, while moderate temperatures are more favourable. This approach helps to align
previous findings in the literature, where micro–level data (such as firm-level or plant-level data) showed
strong temperature effects, while macro-level studies reported limited or linear impacts. By applying a
unified framework to global panel data, the model by BHM identifies a consistent, concave relationship
between annual temperature and economic output, with peak productivity occurring at approximately
13 ◦C globally.

The objective of the model by BHM is to use a panel dataset to estimate a global non-linear relation-
ship between annual average temperature and per–capita economic growth. The model tests whether
temperature has a statistically significant influence on growth after controlling for time-invariant coun-
try characteristics, global shocks, and country-specific time trends. By specifying a flexible quadratic
functional form, as will be shown in Equation 3.9, the model identifies whether this relationship is
concave, indicating an optimal temperature beyond which additional warming reduces growth. Instead
of assuming that each additional degree of warming has the same impact everywhere, the model al-
lows the marginal effect to vary depending on the starting temperature level, which, in their model, is
country–specific. This design makes it possible to detect threshold effects and to estimate how growth
responses differ between countries with colder or warmer baseline climates. In doing so, the model pro-
vides insight into which countries may benefit from moderate warming and which are more vulnerable
to heat–related economic losses.

This chapter provides a detailed overview of the BHM model. It outlines the theoretical motivation,
data structure, estimation strategy, and main empirical results. The aim is to clarify how the model
links variation in climate variables to economic growth and why it serves as a suitable reference for the
empirical strategy developed in this thesis. The following sections explain the production logic, in section
3.1, the regression structure in subsection 3.2, and insights into fitted temperature-growth relationship
in section 3.4, providing a foundation for applying a similar approach to the regional European data
introduced in the next Chapter, Chapter 4.

3.1. Derivation of the empirical regression model
The framework of the model by BHM begins by focusing on a small part of the economy at a given
location and moment. This approach typically uses a mathematical model to describe how output is
generated. A common tool for this is a Cobb-Douglas production function (Tol, 2021), as applied in the
original model by BHM. Consider a small economic unit, like a farm, a factory, or a small region, located
at a specific place ℓ during a certain time t and operating within a particular industry i (Burke, Hsiang,
et al., 2015). Total output Yiℓt of the economy is often modelled as a function of its productive resources
(such as labour and capital) and the environmental conditions (such as temperature and precipitation)
it experiences and given by the following Equation 3.1 in industry i, location ℓ and time t:
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Here AK
i (T ) and AL

i (T ) are the productivities of capital and labour that depend on instantaneous
temperature T . Kiℓt and Liℓt are the quantities of capital and labour employed at location ℓ. pi is the
price of a unit of output in industry i. In a competitive market, firms choose capital and labour so
that the ratio Kiℓt/Liℓt = α/(1 − α), in this way the function has constant returns to scale. Because
of the constant returns to scale, any proportional change in both inputs leads to the same proportional
change in output. For example, doubling capital and labour together doubles output, and halving both
cuts output in half. To simplify notation and bundle prices with production, BHM then define:

Uiℓt = pi K
α
iℓt L

1−α
iℓt ,

Which represents the monetary value of total resources allocated to industry i at location ℓ at time t.
Substituting into Equation 3.1 and using K/L = α/(1 − α), the Equation 3.1 of total output simplifies
to:
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This is the unitlevel productivity function and describes how temperature directly influences produc-
tivity at the unit-level. Under constant returns to scale, all temperature effects on capital and labour
combine into this single function fi(T ). Equation 3.2 shows that instantaneous temperature affects out-
put through fi(T ), while Uiℓt captures the monetary value of the total resources allocated to production
at location ℓ. Together, they allow temperature-driven productivity changes to be isolated from input
levels, providing a clear link between temperature and economic output.

3.1.1. Production as a function of average temperature
Aggregating micro-level outputs over all locations ℓ and time t within a year τ , and summing across all
industries i, yields:

YLτ =
∑

i

∫
t∈τ
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Uiℓt dℓ dt

BHM define the annual average temperature in country L during year τ as TLτ . Let gi(T −TLτ ) denote
the distribution of instantaneous temperature (temperature at a specific moment) deviations around
TLτ . Under the assumptions that industries and locations contribute additively (the output produced
by each industry at each location simply adds up to the total output of a country), each distribution
gi(·) retains its shape (shifting only with its mean), and capital and labour do not relocate quickly in
response to temperature changes, total output can be written as:
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Here fi(T ) represents the unit (micro–level) productivity response to temperature T , and gi

(
T−TLτ

)
is

the probability of experiencing temperature T when the mean is TLτ . gi

(
T − TLτ

)
gives the likelihood

of observing temperature T in a year when the average temperature is TLτ . The integral aggregates
micro-level productivity over all T , and the summation over i aggregates across all industries.

3.1.2. Piecewise linear response
At the micro–level, each small production unit in industry i responds to changes in temperature. Fol-
lowing BHM, the productivity function of these units, denoted as fi(T ), is assumed to follow a piecewise
linear relationship with temperature:

fi(T ) =

{
c1 + b1T, T < T̃

c2 + b2T, T ≥ T̃
(3.4)

Here, T is the instantaneous temperature, T̃ is the temperature at which productivity peaks, b1 and
b2 are the slopes of the productivity response below and above T̃ , and c1 and c2 are intercepts chosen
such that the function is continuous at T̃ . This implies that c1 + b1T̃ = c2 + b2T̃ .
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BHM then go on to consider a full year with an average temperature T . Throughout this year, each
production unit experiences a range of temperatures. The function gi(T − T ) represents the fraction
of time that units in industry i spend at temperature T , relative to the annual average temperature
T . This distribution shows how exposure to different temperatures is spread over time and space.
Assuming that this distribution is symmetric around T , the change in output per unit of productive
input in response to a small change in the annual average temperature is given by:

∂

∂T

(
Yi/Mi

)
= b1 mi1(T ) + b2 mi2(T ) (3.5)

In this Equation 3.5, Yi is the total output of industry i, Mi is the total quantity of productive resources
(combining capital and labour), and Yi

Mi
represents output per unit of productive input. The terms

mi1(T ) and mi2(T ) are the shares of time that units spend below and above the threshold temperature
T̃ , respectively. By definition, these weights sum to one: mi1 + mi2 = 1. If most time is spent at
temperatures below T̃ , then mi1 is large and the positive slope b1 dominates the response, so an increase
in T raises output. Opposite to this, if most time is spent above T̃ , then mi2 is large and the negative
slope b2 dominates, which points towards a reduction in output. The turning point temperature T ∗, at
which the two effects balance and productivity peaks, will then satisfy:

b1 mi1(T ∗) + b2 mi2(T ∗) = 0

This relationship creates a concave shape between average temperature and productivity per unit of
input. Although the individual productivity function fi(T ) has a kink at T̃ , the aggregation across time
and units (described by the distribution gi(T − T )) smooths this effect. As a result, the macro-level
productivity function Yi

Mi
is continuous and differentiable, even though the micro–level response is not.

This smoothing becomes more pronounced when the distribution gi(T −T ) is wider, either due to more
variation in climate conditions or longer observational periods.

While the piecewise linear model is not directly used in later stages of the analysis by BHM, it serves as a
conceptual foundation to justify the non-linear relationship between temperature and output observed
at the macro-level. The functions fi(T ) and gi(·) describe how individual production units respond
to temperature. However, these underlying mechanisms cannot be observed directly in macroeconomic
datasets. Therefore, the authors move away from this micro–level structure and instead adopt a reduced-
form empirical approach grounded in the Solow growth model, which will be discussed in the following
section 3.2. The sharp kink in the micro–level productivity function motivates the use of a flexible
functional form in the estimation, but the specific piecewise structure is not used further in the analysis.
Rather than modelling the distribution of exposure or micro–level heterogeneity explicitly, the authors
estimate how average annual temperature influences GDP growth, allowing the data to reveal the
aggregate effects of climate variation.

3.1.3. Model foundation and growth transformation
BHM estimate a direct and observable relationship between GDP per capita growth and average tem-
perature, using a Solow-style framework, a standard economic model where output depends on capital,
labour, and productivity. In this framework, total output in period t can be written as:

Yt = ψ
(
T t

)
γMt (3.6)

In this Equation 3.6, ψ(T t) captures the effect of average temperature on productivity. The parameter
γ is a constant which represents structural factors such as technology and efficiency that do not vary
with temperature. Mt represents the capital stock in year t, which are machines, infrastructure, and
other physical equipment used in production.

BHM let capital evolve over time using to the standard law of motion:

∆Mt = s Yt − δMt

Here, s is the savings rate, the part of output that is invested in new capital and δ is the depreciation rate,
representing the share of capital that loses its value each year or is no longer in use. Capital increases
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when investment is higher then depreciation and decreases otherwise. Substituting this expression into
Equation 3.6, output in period t can be expressed in terms of last period’s capital and temperature as:

Yt = ψ
(
T t

)
γ

(
Mt−1 + sψ

(
T t−1

)
γMt−1 − δMt−1

)
(3.7)

This reformulation shows how temperature in both the current year, T t, and the previous year, T t−1,
influences output through two channels: a direct impact on productivity, via ψ(T t), and an indirect
effect on capital accumulation, as past productivity determines the savings and investment that shape
next years capital stock. While this form is not estimated directly in the model by BHM, it provides
economic intuition for the reduced-form approach used for the main regression model. It clarifies how
short-term fluctuations in temperature may have persistent effects on output. In the empirical approach
by BHM, observed temperature variations are linked to output growth, without explicitly estimating
each structural component of the production process.

An important econometric challenge is that output levels typically follow a unit root process, meaning
their average and variability can drift over time. If one were to regress the output level Yt on temperature,
any long-run trend in income would tend to coincide with climate patterns by chance. Such a coincidence
creates a spurious correlation: two variables that both trend can appear linked even when there is no
real effect. To avoid this, BHM take the natural logarithm of output and then apply first differencing.
This produces:

∆ ln(Yt) = ln(Yt) − ln(Yt−1)

This transformation measures the year-on-year growth rate of GDP per capita. It has two advantages.
First, it isolates short-run changes in output, helping to identify how annual deviations in temperature
influence economic growth rather than long-run income levels. Second, it removes trending behaviour
in GDP, which differs systematically across countries, and avoids picking up non-causal associations
driven by these trends. The result is a variable, ∆ ln Yit, that is (approximately) stationary, allowing
the model to isolate the impact of temperature variability on economic growth.

3.2. Reduced form regression model
Using this transformed variable as the dependent variable from the previous subsection (3.1.3), BHM
estimate the following reduced-form panel regression model:

∆ ln Yi,t = h
(
Ti,t

)
+ λ1 Pi,t + λ2 P

2
i,t + µi + νt + θi1 t + θi2 t

2 + εi,t (3.8)

This regression model links the annual growth rate of real GDP per capita, ∆ ln Yi,t, to climate and
control variables, while using panel data. The term h(Ti,t) captures the potentially non-linear effect of
annual average temperature on economic growth, and is specified as:

h
(
Ti,t

)
= β1Ti,t + β2T

2
i,t (3.9)

The choice for this quadratic functional form is grounded in the micro–economic framework developed
by BHM and outlined in Section 3.1. In that framework, productivity at the unit level responds to
temperature in a piecewise linear manner (see Equation 3.4). When this response is aggregated over
time, locations, and industries, the result is a smooth, concave relationship between average tempera-
ture and output per unit of input, as described in Equation 3.5. Although the piecewise form is not
estimated directly, it motivates the use of a more flexible and continuous specification at the macro-
level. The quadratic approximation in Equation 3.9 captures the empirical pattern observed in the
data: economic performance improves with rising temperatures up to a certain point, after which fur-
ther warming reduces growth. This concave shape is consistent with both theoretical expectations
and empirical regularities, making the quadratic approximation a clear and practical way to capture
non-linear climategrowth relationships in the reduced-form model BHM.

In Equation 3.8, i denotes a country and t a year. The dependent variable, ∆ ln Yi,t, represents the
annual growth rate of real GDP per capita. Temperature Ti,t, measured in ◦C, enters through the non-
linear function h(·). Precipitation Pi,t, measured in millimetres, enters both linearly and quadratically
to account for potential non-linear effects. Country FE µi control for time-invariant differences across
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countries, such as geography or institutions, while year FE νt capture global shocks common to all
countries in a given year, such as financial crises or commodity price fluctuations. To control for
gradual structural changes within countries, the model includes country-specific time trends, both
linear and quadratic (θi1t+ θi2t

2), which may reflect factors like demographic change or evolving policy
environments. The error term εi,t captures unexplained variation in growth. A cluster-robust variance
estimator is used, allowing εi,t to be serially correlated within countries over time, while assuming
independence across countries. This ensures consistent inference even in the presence of within-country
autocorrelation. Estimation details are further discussed in Subsection 3.2.2.

3.2.1. Panel data
The research strategy of the model by BHM relies on panel data, which is widely used in climate
econometrics to examine the complex relationship between climate variables and economic outcomes
(Kolstad et al., 2020). Panel data combines cross-sectional and time-series dimensions by tracking the
same observational units, such as countries or regions, over multiple years (Blanc et al., 2017; Chang
et al., 2023; Mérel et al., 2021). This leads to a higher number of observations and therefore makes
it possible for researchers to account for both differences across units and changes within them over
time, which makes statistical estimates more precise (Baltagi et al., 2011; Blanc et al., 2017; Chang
et al., 2023; Kotz et al., 2024). Panel data improves the estimation efficiency because it increases the
variation in the data since it combines observations between units with observations over time (Baltagi
et al., 2011). Because of this, the number of degrees of freedom is increased since N × T observations
(where N is the number of units and T the number of periods) (Blanc et al., 2017). Because of this,
the precision of parameter estimates is increased. Instead of capturing a static observation of a unit
at one moment in time, it enables researchers to analyse how economic outcomes evolve in response
to changing climate conditions within a specific unit, while also comparing these effects across units.
Because panel data allows for evolution over time, it increases the statistical precision and supports
more robust results of the model at hand (Baltagi et al., 2011).

To quantify relationships between variables using panel data, regression models are used. These models
generate statistical estimates, which are numerical values that represent how an outcome, such as
GDP growth, changes when a predictor, such as temperature, varies by one unit, holding other factors
constant. Through the model, these estimates are derived from the data by minimising the difference
between the models predictions and actual outcomes (Chang et al., 2023). The models coefficients
provide insight into the strength and direction of relationships between climate variables and economic
growth (Kotz et al., 2022).

A strength of a panel data regression model is its ability to control for unobserved factors that do
not vary over time, such as geography, historical and geopolitical factors, institutions, or soil quality
(Chang et al., 2023; Kotz et al., 2024; Blanc et al., 2017). These unchanging characteristics, known as
unobserved time-invariant heterogeneity, may influence both climate conditions and economic growth.
If these are not included, it can introduce omitted variable bias, leading to incorrect estimates of the
true climateeconomy relationship (Blanc et al., 2017). To prevent omitted variable bias, BHM include
FE in their model. Omitted variable bias can occur when an unobserved factor both influences the
dependent variable and correlates with one or more explanatory variables. In such cases, the model
may wrongly attribute part of the omitted variable effect to the included variables, which in turn leads
to wrong inference about the true climateeconomy relationship. FE control for such unobserved, time-
invariant differences between geographic units. By controlling for this, FE help to isolate the effect of
climate variation on economic growth (Blanc et al., 2017). In this way, panel data regression models
using FE have an advantage over cross-sectional models. By using variation over time within each unit,
regressions using panel data with FE are able to control for a wider range of relevant factors, both
observed and unobserved, that could influence economic outcomes (Kolstad et al., 2020).

3.2.2. Model estimation
BHM estimate their model using Ordinary Least Squares (OLS), a standard method in regression
analysis. OLS estimates the relationship between variables by finding the coefficients that minimise
the sum of squared differences between the observed values of the dependent variable and the values
predicted by the model (Baltagi et al., 2011).
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For OLS estimates to be reliable, certain assumptions about the error term (the unexplained part of the
outcome) need to hold. One assumption of those is that the variance of the error term has to remain
constant across all observations. This assumption is called homoscedasticity (Baltagi et al., 2011). If
the variance varies, it is called heteroscedasticity. This violation of homoscedasticity can be due to
measurement errors, missing variables, or randomness in the data, and can lead to unreliable standard
errors and misleading results. A second assumption is that errors across observations should not be
related to each other. This assumption is called no serial correlation (Baltagi et al., 2011). In the case
of panel data, this means that the error in one year should not systematically affect the error in the
next. However, in panel data regression models such as the one used by BHM, observations are grouped
by country and repeated over time. This often results in error terms being correlated within each group,
in this case per country, and therefore having unequal variances, violating both assumptions above.

To address this issue and ensure valid results, BHM apply a cluster-robust variance estimator. This
method allows for arbitrary patterns of heteroscedasticity and autocorrelation within each cluster (which
is by country in the BHM model), while assuming independence across countries (Baltagi et al., 2011).
This improves the accuracy of standard errors, confidence intervals, and statistical tests in the presence
of clustered data (Bester et al., 2011). Although the regression coefficients are still estimated using
OLS, the corrected standard errors make the results more valid and suitable for panel data analysis.
If there is no cluster-robust variance estimator used, the standard errors of the model will be smaller,
while they are in reality larger. This can lead to overstated statistical significance of the estimated
coefficients, meaning that they may appear more precise or reliable than they actually are. This will
make the model less valid.

The model estimated by BHM is a reduced-form regression model (given by Equation 3.8). This means
it directly links observed economic outcomes to climate variables, without explicitly modelling the
underlying mechanisms. The advantage of this approach is that it captures the combined effect of all
causal channels, whether known or unknown, without requiring detailed assumptions about the structure
of the economy or the behaviour of economic agents (Kolstad et al., 2020). However, this simplicity has a
cost. Because the model does not explicitly model all the individual mechanisms, it cannot identify how
or why climate affects economic growth. In addition, reduced-form estimates are typically valid only
within the historical range of the data. If future climate conditions differ substantially, such as through
extreme temperature shifts or unprecedented SLR, the model may not predict outcomes accurately. In
this sense, reduced-form models provide a useful summary of past relationships, but their predictive
power outside observed conditions is limited (Carleton et al., 2016; Kotz et al., 2022).

3.3. Temperature-growth relationship
The main aim of the model by BHM is to investigate whether temperature variation affects economic
growth, and if this relationship is non-linear. Using the findings of earlier micro–level studies, the authors
note that modest warming can increase productivity in colder areas, while more extreme warming can
reduce it. The model aims to explore whether similar threshold effects exist at the global level, and if
so, to identify the temperature range in which economic performance peaks before declining on each
side.

3.3.1. Non-linear effect
A non-linear relationship means that the effect on economic growth of a 1 ◦C temperature increase is not
the same across all temperature levels. Thus, the economic response to a rise in temperature depends
on the initial temperature of a country. The results of BHM suggest that GDP growth is highest,
globally, at an average annual temperature of approximately 13 ◦C. This relationship is captured using
a quadratic temperature term in the model (Equation 3.9).

To identify the temperature at which growth peaks, BHM take the derivative of the impact function,
Equation 3.9 with respect to temperature:

∂h

∂T
= 0 ⇐⇒ T = T ∗

This derivative measures how GDP per capita growth responds to a change in temperature. The
turning point, T ∗, occurs when this derivative equals zero. This is the temperature at which the effect
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of temperature on GDP per capita growth changes direction. If the estimated relationship is concave
(the quadratic coefficient is negative), T ∗ represents a maximum and growth declines beyond this point.
If the relationship is convex (the quadratic coefficient is positive), T ∗ marks a minimum, and growth
increases with further warming. BHM observe a concave relation between temperature and economic
growth, making the derivative of the impact function T ∗ a maximum.

3.3.2. Explanatory variables and dependent variable
The main explanatory variables in the model are temperature and precipitation, even though precipita-
tion is included to control for temperature. This is a common practice since precipitation can confound
the effects of temperature (Burke, Hsiang, et al., 2015). This arises since temperature and precipitation
tend to correlate over time (Burke, Hsiang, et al., 2015; Blanc et al., 2017). In the model by BHM
temperature Tit is defined as the annual average temperature for country i in year t, measured in ◦C. To
calculate the annual average temperature, BHM use 0.5◦ gridded monthly temperature data weighted
by the population. Each grid cell, denoted by Ci, covers approximately 50 by 50 kilometres near the
equator. The population-weighted average temperature is given by:

Ti,t =
∑

c∈Ci
POPc Tc,t∑

c∈Ci
POPc

Using population weights ensures that the calculated temperature reflects the climate conditions expe-
rienced by most people and the areas of greatest economic activity (Hsiang, 2016; Burke, Hsiang, et al.,
2015). Precipitation Pit, measured in millimetres and is also population–weighted.

To isolate the true effects of temperature and precipitation, the model, as mentioned in Equation 3.8
also includes several control terms. Country FE µi account for time-invariant characteristics such as
geography or institutional context, while year FE νt control for global shocks affecting all countries in
a given year. The regression also includes country-specific linear and quadratic time trends, θi1t+ θi2t

2,
which capture slow-moving changes within countries that are unrelated to climate, such as demographic
shifts.

The dependent variable is the annual growth rate of real GDP per capita, calculated as the first difference
of its natural logarithm. By differencing the log of GDP per capita, the model captures short-term
fluctuations in growth. This has an advantage since it allows for making comparisons across countries
regardless of their initial level of GDP (Burke, Hsiang, et al., 2015). But this transformation is also
necessary for valid inference, especially when working with time series or panel data that may contain
unit roots, as mentioned in subsection 3.2 (Burke, Hsiang, et al., 2015).

As discussed in Chapter 2, a central debate in climate econometrics is whether temperature affects the
level of economic output or its growth rate. Earlier models often assumed level effects, which means
that they assumed that damages did not accumulate over time. In contrast, BHM focus on growth
effects, assuming that damages from climate shocks can persist and compound.
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3.4. Insight from the model
The regression results from the model by BHM are the estimated coefficients β̂1 and β̂2, which define
the global temperature–growth response function ĥ(T ). This function describes how a 1◦C change in
annual average temperature affects GDP growth, depending on the starting temperature level. When
the fitted function ĥ(T ) is plotted across the observed temperature range in the panel data, it forms a
concave curve. Using ĥ(T ), the marginal effect of additional warming on GDP growth can be computed
for each country, based on its historical average temperature. The hat notation means that these are
sample–based estimates, not the true underlying values. While the estimates provide a best-fit summary
of observed data, they remain approximations and should be interpreted with this in mind.

The key empirical finding of BHM is the concave shape of the temperature-growth relationship. In their
benchmark model, the fitted function is:

ĥ(T ) = 0.0178T − 0.0007T 2,

which implies a turning point at:

T̂ ∗ = − β̂1

2 β̂2
≈ 13◦C.

For temperatures below the threshold of (T < 13◦C), the marginal effect is positive, indicating that
moderate warming can increase economic growth. But for temperatures above this threshold (T >
13◦C), an increase in temperature reduces growth. Thus BHM conclude that colder countries, such
as many in Europe and North America, may experience small positive effects from moderate warming,
while countries in warmer climates, especially in tropical regions, are projected to suffer stronger negative
impacts from further temperature increases.

3.5. Relevance of the BHM model
Understanding the structure and logic of the model by BHM is important for this research, as it provides
the theoretical and empirical foundation for estimating climate–economy relationships using historical
data. The model introduced a novel reduced–form approach that identifies a concave relationship
between annual temperature and GDP per capita growth, using global panel data. This thesis re–
analyses and extends the BHM model to test its robustness with a longer time series and an additional
climate variable at the regional–level in Europe.

In the following chapter, the model will be applied using alternative data sources. Specifically, the
Rosés et al. (2021) V6 dataset will be used to obtain historical GDP per capita figures at the regional
(NUTS-2) level in Europe. Climate variables, temperature, precipitation, and SLR, will be incorporated
to estimate how past climatic variation is related to long-run economic growth across European regions.
The methodological choices made by BHM, including the use of panel data, and FE, serve as a blueprint
for constructing the extended empirical framework of this study.



4
Data preparation

This chapter provides an overview of the datasets used to answer the central research question: How
have temperature, precipitation, and SLR, affected regional GDP per–capita growth in Europe between
1900 and 2015? The chapter describes the source, structure, and transformation of the data prior to
regression analysis. It begins by introducing the main data sources and preparation steps in section 4.1.
In this section, the inclusion and exclusion criteria applied to construct a balanced panel of regions are
discussed. In Subsection 4.2.1 the exploratory data analysis will be discussed and lastly in Subsection
4.3 the control variables used in this research.

4.1. Data Sources and preparation
The empirical analysis is based on a panel dataset of European NUTS-2 regions, covering the period
from 1900 to 2015. NUTS–2 regions are defined under the European Unions Nomenclature of Territorial
Units for Statistics and represent sub–national administrative areas (regions). The dataset consists of
benchmark-year GDP, population, and climate observations for 170 regions across 16 countries. The
climate variables in this panel dataset include averages of annual temperature and precipitation, as well
as the difference in relative SLR since 1900.

To ensure data consistency and validity, the data is restricted based on the following inclusion criteria.
First, regions must have at least 12 benchmark-year GDP observations between 1900 and 2015 to allow
for the computation of per capita growth. Second, annual average temperature and precipitation values
must be available for each benchmark year that has a regional GDP observation. Third, population
data must be available for benchmark years in which regional GDP is available, as it is used to construct
per capita GDP. Since the regional GDP and population data are complete for the benchmark years,
no regions needed to be excluded for this reason. Temperature and precipitation data are also available
for all benchmark years, except for two of the 173 regions, which were excluded due to missing values.
One additional region, Flevoland (NL23), was excluded because it only has five benchmark–year GDP
observations. Since all other regions have 12 observations, Flevoland was dropped. After these exclu-
sions, the final dataset contains 170 regions. Finally, no exclusion is imposed based on SLR coverage,
but a thorough interpolation was needed. After interpolation, 82 coastal regions and 88 non–coastal
regions having 12 SLR observations for benchmark years were established.

4.1.1. Economic data
This research uses the V6 dataset by Rosés et al. (2021), which provides the GDP estimates available for
twelve benchmark years within this time frame, with each year containing one observation per region.
These benchmark years are visualised in Figure 4.1.

21
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Figure 4.1: Count of GDP observations per benchmark year

The main variable of interest is regional GDP, expressed in 2011 international dollars and adjusted for
purchasing power parity. This adjustment ensures that a dollar of output represents a similar volume
of goods and services in every region, allowing for meaningful comparisons across space and time.
Additional variables include annual population (in thousands) and land area (in square kilometres).
Because GDP is not recorded annually but only for certain benchmark years, there are long intervals
between some observations. Filling in these gaps through interpolation would risk introducing bias.
Therefore, only the recorded values from the benchmark years are used. When GDP values are available
for two consecutive benchmark years, the growth rate is calculated directly from these observations.

To prepare the data, regional GDP is first expressed in per capita terms by dividing total output by
the regional population in each given benchmark year. This provides a measure of average economic
output per person. Figure 4.2 illustrates how GDP per capita has changed across regions between 1900
and 2015. The early part of the century shows modest growth, with a stronger rise beginning after
1950. According to Rosés et al. (2021), this increase in GDP per–capita can be linked to post-war
reconstruction or economic integration. The 1950s and 1960s marked a period of strong convergence in
Europe, driven by industrial expansion, structural transformation, and improved infrastructure. Over
time, differences between regions have become much larger than they were, especially from the 1960s
onwards.

Figure 4.2: Evolution of GDP per capita over time by (NUTS–2) region

To complement the regional trajectories shown in Figure 4.2, Figure 4.3 presents the average GDP per
capita across all NUTS–2 regions over time. This figure shows the broader trend of economic growth
throughout the twentieth century in the 170 regions of Europe, with a more pronounced increase after
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the Second World War. The steady upward path after 1950 reflects the combined effect of economic
recovery and technological progress across Europe, as described by Rosés et al. (2021). This average
growth pattern underscores the long-run increase of regional incomes.

Figure 4.3: Average of GDP per capita over time by (NUTS–2) region

Following the approach by BHM, the main dependent variable in the model is defined as the change in
the natural logarithm of GDP per capita between two consecutive benchmark years. Observations that
lack sufficient information to calculate this value are excluded, so the sample begins in 1910. After this
step, the dataset becomes a balanced panel of 170 regions, covering the period from 1910 to 2015. It is
now ready to be merged with the climate data from Climatic Research Unit, University of East Anglia
(n.d.) for the analysis described in Chapter 3.

Figure 4.4 displays the annual GDP per capita growth for each region from 1910 to 2015. Most regions
show small but positive growth rates, typically between 0.1 and 0.25. A strong decline is visible around
1920, which coincides with the economic aftermath of the First World War. A notable recovery follows
in the 1950s and 1960s, with many regions experiencing growth rates above 0.5. The oil crises of the
1970s and 1980s appear as a marked slowdown. Growth picks up again from the late 1990s into the
early 2000s, followed by a downturn after the global financial crisis of 2008 (Rosés et al., 2021). Figure
4.4 also shows the considerable volatility of regional growth over time. Fluctuations are particularly
strong during periods of global or continental shocks such as wars, depressions, and financial crises.
According to Rosés et al. (2021), this volatility reflects both the sensitivity of regional economies to
macroeconomic conditions and structural differences in how they respond to these kinds of shocks. Such
heterogeneity underlines the importance of examining regional dynamics over time rather than relying
solely on national aggregates.
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Figure 4.4: Evolution of GDP per capita growth over time by (NUTS–2) region

Figure 4.5 presents the average growth rate across all NUTS–2 regions. In the early decades of the
twentieth century, growth remained modest, reaching close to zero around the time of the first world
war. During the 1930s, average growth started to recover and increased sharply after 1950, peaking in
the 1960s. This expansion slowed through the 1970s and 1980s, before another period of faster growth
began around the 2000s. Following the 2008 crisis, growth declined again, falling to approximately 0.07
by 2015. The pattern reflects a strong post-war boom and a lack of sustained recovery in the aftermath
of recent economic shocks (Rosés et al., 2021). It is important to note that the y–axis in Figure 4.5
represents the GDP per–capita growth in benchmark years. This means that the growth rates reflect
the growth rates between those benchmark years, not annual growth rates as in the paper by BHM.

Figure 4.5: Average GDP per capita growth over time across all (NUTS–2) regions

4.1.2. Climate data
The climate data comes from the Climatic Research Unit, University of East Anglia (n.d.) dataset
maintained by the University of East Anglia (Climatic Research Unit, University of East Anglia, n.d.).
This dataset provides gridded annual observations for temperature and precipitation at a resolution of
0.5◦ × 0.5◦, meaning each cell covers roughly 50 km × 50 km near the equator, with slightly smaller
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dimensions at higher latitudes. For this research, the CRU temperature and precipitation values have
already been aggregated to NUTS-2 regions using these 0.5◦ × 0.5◦ grid cells. The temporal coverage
begins in 1900 and extends through 2021. Since the Rosés et al. (2021) only provides regional GDP
data up to 2015 the climatic data is cut at this year. Also, for two of the 173 regions, there was
no temperature and precipitation data available, which resulted in the dropping of these two regions.
Leaving 171 remaining regions. One region, Flevoland (NL23), only had 5 observations since the land
was reclaimed from the sea during the 20th century after which the province itself was only officially
established in 1986 (Rosés et al., 2021). Since all the other regions do have 12 observations, Flevoland
was dropped from the dataset. Leaving 170 remaining regions. The main climate variables used in the
analysis are the mean annual temperature in ◦C for each region, and the mean annual precipitation in
millimetres. In addition, annual relative sealevel data (in millimetres) are obtained from the Permanent
Service for Mean Sea Level Revised Local Reference dataset for each coastal region (Holgate et al.,
2013).

Temperature
Figure 4.6 shows the evolution of the average 30-year temperature across all regions from 1900 to 2015.
The construction of this rolling mean is explained in Appendix D, subsection D.1. During the first half
of the twentieth century, a steady rise in temperature is observed, increasing from approximately 8.3◦C
in 1900 to just under 9.0◦C by 1960. This warming trend then slows, with a slight decline between 1960
and 1980, often referred to as the mid-20th century cooling (Malhi et al., 2021; Dell et al., 2008). From
1980 onward, however, the trend shifts, more sharply than before, upward, reaching nearly 9.8◦C by
2015. This recent acceleration is consistent with global patterns linked to anthropogenic climate change
(Kahn et al., 2021; Malhi et al., 2021; Stern, 2008).

Figure 4.6: Average 30-year rolling mean temperature across 170 regions

Figure 4.7 shows the annual average temperature for each NUTS–2 region in europe from 1900 to 2015.
Each coloured line represents one region, showing both the within-region trend and the differences
between regions across the full period. There is a clear upward trend, reflecting long-term warming
consistent with climate studies (Twardosz et al., 2021). A notable feature is a sharp dip around the
year 2010. This dip is unexpected and not supported by the literature, as temperatures in Europe and
globally continued to rise during this period (Twardosz et al., 2021). because the dip is visible across
many regions at the same time, it is likely caused by a structural break or coverage difference in the
panel data. Since this pattern is present in many regions, no corrections are made. Figure 4.6 shows
the rolling average temperature over thirty years for the same period. This method smooths short-term
fluctuations while preserving long-term trends. the rolling average shows a consistent increase without
the sharp dip near 2010. This supports the interpretation that the dip seen in figure 4.7 is not a climate
signal but a data artefact related to panel structure or regional coverage in the year 2010.
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Figure 4.7: Annual average temperature over time across 170 regions

Taking the average over the 170 regions gives Figure 4.8. The figure shows an upward trend in tempera-
ture, which aligns with the expected long-term warming pattern (Twardosz et al., 2021). The sharp dip
around the year 2010, followed by a strong increase towards 2015, which was also visible in Figure 4.7,
is also visible here. The overall pattern confirms the long-term warming in Europe, with the average
temperature increasing from about 8.3 ◦c in the early 1900s to over 10 ◦c by 2015.

Figure 4.8: Average annual temperature over time

Compared to Figure 4.7 and Figure 4.8, Figure 4.6 presents a clearer view of long-term temperature
trends by using a 30-year rolling mean. While the annual and regional figures show substantial year-to-
year variability and a sharp dip around 2010, the rolling mean smooths these fluctuations and confirms
a steady upward trend. The figure shows an increase from about 8.3 ◦C in 1900 to nearly 9.8 ◦C by 2015,
with a brief plateau between 1960 and 1980, consistent with the mid-20th century cooling described
in the literature (Malhi et al., 2021; Dell et al., 2008). This recent acceleration after 1980 aligns with
global warming patterns linked to anthropogenic climate change (Kahn et al., 2021; Malhi et al., 2021;
Stern, 2008). The absence of a sharp dip around 2010 in the rolling mean supports the interpretation
that the dip seen in the annual figures is likely a data artefact related to panel structure or coverage in
that year rather than a climate signal.

Precipitation
Figure 4.9 illustrates the development of average 30-year precipitation from 1900 to 2015. Between
1900 and 1935, precipitation levels increased from about 645 mm to over 670 mm. A decline followed in
the 1940s, dropping to around 662 mm by 1950. From that point onwards, precipitation has increased,
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with only small fluctuations. After 1980, levels remained relatively stable until a sharp rise occurred
after 2000, peaking near 687 mm around 2010. A slight drop is observed in the final data point for 2015.
Overall, the long-term trend points to a moderate increase in precipitation across the 170 regions across
the observed period. The literature offers some support for a long-term increase in global precipitation
between 1900 and 2015 but does not confirm the specific fluctuations or numerical values described for
Europe. While studies such as Malhi et al. (2021) note a modest positive trend over the full period,
others, like Dell et al. (2009), report a decline in precipitation from the 1950s onward, suggesting more
complex or regionally variable dynamics. Overall, while the literature offers some support for a long-
term increase in global precipitation between 1900 and 2015, studies focusing on Europe reveal more
nuanced trends with significant seasonal and decade-long variability (Pauling et al., 2006).

Figure 4.9: Average 30-year rolling mean precipitation across 170 regions

Figure 4.10 shows the average annual precipitation for each NUTS–2 region in Europe from 1900 to
2015. Each coloured line represents one region, showing differences in both the level and the variation
of precipitation across regions. the figure shows a high variation between regions, with some regions
having average precipitation below 400 mm per year while others exceed 1400 mm per year. Many
regions experience a sharp peak around the year 1960 and a smaller peak around the year 2010, which
is seen across many regions.

Figure 4.10: Annual average precipitation over time across 170 regions

The average annual precipitation is given by Figure 4.11. Compared to Figure 4.10, the pattern in
Figure 4.11 is smoother and shows the average across all regions instead of individual lines. The sharp
peak around 1960 and the smaller peak around 2010 remain visible, indicating that these features are
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present in many regions and affect the overall average. However, the figure does not show a clear
increasing or decreasing trend over the period, suggesting that while temperature shows a systematic
increase over time, precipitation remains highly variable without a clear directional change.

Figure 4.11: Average annual precipitation over time

Compared to Figure 4.10 and Figure 4.11, Figure 4.9 presents a clearer view of long-term trends by
using a 30-year rolling mean. While the annual and regional figures show strong variability and sharp
peaks around 1960 and 2010, the rolling mean smooths these fluctuations. It shows a slow increase in
average precipitation from about 645 mm in 1900 to nearly 687 mm around 2010, followed by a slight
decline. This suggests a moderate upward trend in precipitation over the period while confirming that
year-to-year and decade-to-decade variation remains high. The rolling figure thus aligns with literature
indicating a modest long-term increase in precipitation (Malhi et al., 2021).

SLR data preparation
The SLR series for each region is prepared in several steps. First, for the initial years 1900 and 1910,
missing values are synchronised within each region. For all regions with more than one observed value in
the full time series, if either 1900 or 1910 is missing but the other is available, the missing entry is filled
by copying the observed value, depending on which value is observed. Second, for any remaining missing
values, linear interpolation is applied within each region, but only for gaps of up to two consecutive
years. For each missing year t with observed values at t− 2 and t+ 2, the gap is filled as:

SLRi,t = SLRi,t−2 + SLRi,t+2

2
.

Longer gaps are left unfilled and addressed through spatial interpolation. Each NUTS–2 region i is
matched to its six nearest neighbouring regions using the shapefile provided by Rosés et al. (2021)
containing the geometry of all regions. For any missing year t, the value is replaced by the average of
observed values in those neighbours:

SLRi,t = 1
Ni

∑
j∈N (i)

SLRj,t,

Where N (i) denotes the set of neighbouring regions with valid observations in year t, and Ni ≤ 6 is
the number of available neighbours. After these steps, each coastal region has a complete SLR series
starting from 1900. Letting ti,0 = 1900 denote the first year of observation, the cumulative change in
sea level relative to 1900 is defined as:

∆SLRi,t = SLRi,t − SLRi, 1900 for t ≥ 1900.

For regions with no single observed SLR value, all entries are set to SLRi,t = 0, resulting in a cumulative
change of ∆SLRi,t = 0 for all t.
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Figure 4.12 shows the evolution of relative SLR across 82 coastal regions over the period 1900 to 2015.
Each line represents the trajectory of one region. Although the absolute levels differ considerably,
several broad patterns can be observed. At the beginning of the observed period, sea level changes
vary widely across regions. Some regions exhibit early increases, while others remain stable or decline.
Between the 1940s and 1960s, the sea level of all the regions came closer together, by either increasing,
decreasing or no SLR. This could reflect measurement inconsistencies, vertical land movement, or local
subsidence (Holgate et al., 2013). From the 1970s onward, regional trajectories became more stable or
began to rise more consistently. After 1990, most regions exhibit a moderate upward trend, indicating
an acceleration in relative SLR in recent times. Despite regional variation, the synchronisation of trends
in this later period aligns with broader global patterns of SLR (Holgate et al., 2013).

Figure 4.12: Evolution all regions with SLR data after interpolation

Figure 4.13 shows the average relative SLR across all regions after interpolation, measured from 1900 to
2020. The series begins just below 6990 mm in 1900 and displays a gradual increase in the early decades,
reaching around 7000 mm by 1925. A noticeable drop occurs in the 1930s, followed by a sharp rise that
peaks near 7010 mm in 1950. From that point, the average declines again during the 1960s and reaches
its lowest point around 6970 mm in the early 1970s. Starting in the 1980s, a more consistent upward
trend emerges, with small fluctuations around 2000, and a marked acceleration in the final two decades.
By 2020, the average SLR surpasses 7017 mm, its highest level in the entire period. Overall, the figure
shows a long-term rising trend in SLR across regions, especially after 1990, despite earlier periods of
fluctuation. This pattern aligns with broader global trends of accelerating SLR due to climate change.
The temporary mid-century decline may reflect short-term climate variability, limited data coverage,
and changes in ocean heat content or land movements, as discussed Holgate et al. (2013).
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Figure 4.13: Average over all regions with SLR data after interpolation

Figure 4.13 shows the change in relative SLR across 82 coastal regions between 1900 and 2020, measured
as the difference from the 1900 baseline. The Figure 4.13 also shows that the SLR changes vary
considerably across regions. Most regions have experienced a SLR of about 150,mm by 2020, while
some regions have seen a decrease. These differences reflect local factors such as land uplift, subsidence,
and ocean dynamics (Nováková et al., 2018; Holgate et al., 2013). What is also striking is that most
regions have experienced a relatively stable SLR until 1950, after which the SLR experienced by regions
started to diverge more. Also, a few regions show continued declines, which is likely due to post-glacial
isostatic adjustment. Post-glacial isostatic adjustment is a long-term geological process involving the
vertical movement of Earth’s crust in response to the past loading and unloading of ice sheets during
the last Ice Age (Holgate et al., 2013). As the massive ice sheets melted, the land beneath them, which
had been depressed, began to slowly uplift (Holgate et al., 2013). This vertical land movement directly
affects relative SLR, which is the local height of the sea relative to the land, as measured by tide gauges
(Holgate et al., 2013).

To check if the highest and lowest values are realistic, the three regions with the lowest and highest SLR
values in 2020 were examined. The largest decreases occur in northern Sweden and Finland, where land
is shifting upward (Holgate et al., 2013). This is consistent with the literature (Chatzivasileiadis et al.,
2023). The highest increases are observed in West Flanders (Belgium), Nord (France), and Yorkshire
(UK), areas known for significant relative SLR. These findings also aligns with findings by Nicholls et al.
(2021), who show that relative SLR is not only driven by climate–induced SLR but is also strongly
shaped by subsidence. Particularly in populated delta regions and urban coastal areas, human-induced
subsidence, caused by groundwater extraction and infrastructure load, can lead to local relative SLR
rates up to four times the global average. Although such rapid subsidence is more prominent in Asian
megacities, also in Europe, a large proportion of the population and economic activity are concentrated
in coastal areas that face uneven exposure and vulnerability to SLR (Cortés Arbués et al., 2024; Nicholls
et al., 2021).

4.2. Exploration of variables
The variables used in the regression T i,t, P i,t, and SLRi,t are included both as linear terms and in
squared form to allow for potential non-linear effects. With all variables now defined for each region
and year between 1900 and 2015, the climate panel is ready to be merged with the Rosés et al. (2021)
GDP dataset and used in the extended specification of the BHM model. Each observation in the dataset
is indexed by a NUTS–2 region identifier i and a year t. The Rosés et al. (2021) V6 dataset applies the
2010 version of the NUTS–2 classification, which remains consistent over the full time span from 1900
to 2015. This results in 170 unique region codes that serve as stable spatial identifiers. The temporal
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structure is defined by a set of benchmark years for which GDP is reported. Since the dependent
variable is calculated as the first difference of the logarithm of per-capita GDP, the initial year (1900)
cannot generate a growth value and is excluded from the regression sample. The final panel is balanced
and covers all regions for each available benchmark period.

4.2.1. Exploratory data analysis
Prior to model estimation, an Exploratory Data Analysis (EDA) is undertaken to understand the
characteristics of the data and detect any inconsistencies. First, descriptive statistics (mean, standard
deviation, minimum and maximum) are calculated for the dependent and exploratory variables. Per-
capita GDP growth ∆ ln GDPpci,t, temperature T i,t, precipitation P i,t, and the difference in SLR
∆SLRi,t, as well as their squared terms. These tables can be found in Appendix A A. This step ensures
that the variables fall within expected ranges and highlights any data quality issues. Second, pairwise
correlations are computed between GDP growth and each climate variable and its square. Scatterplots
are generated to visualise these relationships and assess possible non-linearities or multicollinearity.
Multicollinearity refers to a situation in regression analysis where two or more independent variables
are highly correlated, making it difficult to isolate the individual effect of each variable. This can inflate
standard errors and reduce the reliability of coefficient estimates.

Figure 4.14 presents the correlation matrix of the variables used in the analysis, without their squared
forms. Temperature and precipitation have a moderate negative correlation of −0.279, suggesting that
higher temperatures tend to be associated with lower levels of precipitation. Temperature and SLR
differences (dif_slr) show a moderate positive correlation of 0.370, indicating that higher temperatures
are generally associated with higher SLR values. Precipitation and SLR are weakly positively correlated,
with a coefficient of 0.038. The correlation between temperature and GDP per capita growth is weakly
negative at −0.061. Precipitation and GDP per capita growth have a weak positive correlation of 0.076.
Finally, SLR and GDP per capita growth are weakly negatively correlated, with a coefficient of −0.028.
These low correlation values with GDP per capita growth suggest that none of the climate variables
have a strong direct linear relationship with economic growth. This supports their inclusion in the
regression model without concern for multicollinearity. The pairwise correlation matrix with inclusion
of the squared terms, Figure A.20, is in Appendix A. Since high correlations between those variables are
expected by definition. Including these can give a misleading impression of multicollinearity between
explanatory variables when, in reality, such correlations are structural and not problematic for model
identification if included deliberately for functional form (testing non-linearity).

Figure 4.14: Lower triangle of the pairwise correlation matrix between GDP per capita growth and climate variables



4.2. Exploration of variables 32

Figure 4.15 shows scatter plots of GDP per capita growth against the squared annual average temper-
ature for the benchmark years. Each panel represents one year, allowing patterns over time to be seen.
The plots show high variation, with no strong or consistent relationship between temperature squared
and GDP growth across the years. Some years, such as 1938 and 1950, show a slight negative pattern,
while others, such as 1970 and 1980, suggest a weak positive association. Overall, the figure confirms
that while temperature may affect economic growth in complex ways, the direct relationship is not clear
and varies across time, supporting the need for econometric analysis to capture potential non-linear and
interacting effects.

Figure 4.15: Scatter plots for benchmark years GDP growth and average annual temperature squared

Figure 4.16 shows scatter plots of GDP per capita growth against changes in SLR (dif_slr) for coastal
regions across the benchmark years. Each panel represents a benchmark year, making it possible to
see patterns over time. In the scatter plots for the years 2000 to 2015, the cloud of points appears to
slope downward. This suggests that in these years, regions with higher values of SLR change tend to
have lower GDP per capita growth rates. In other words, there is a weak negative association between
SLR and economic growth during this period in the dataset. This could indicate that higher relative
SLR may begin to have negative impacts on economic performance, for example, through increased
flooding, higher protection costs, or disruption of coastal activities. However, the spread of the points
shows high variation, and this pattern alone does not prove a causal relationship, underlining the need
for econometric analysis to test whether this association holds when controlling for other factors.
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Figure 4.16: Scatter plots for benchmark years GDP growth and the difference in SLR for coastal regions only

4.3. Control variables
The data preparation steps outlined in this chapter ensure a consistent and balanced panel of European
NUTS–2 regions, suitable for analysing the long-run effects of climate variables on economic growth.
By carefully selecting regions with reliable GDP, population, and climate observations, the resulting
dataset captures both temporal dynamics and spatial variation over the period 19002015. To isolate
the effects of temperature, precipitation, and SLR on GDP per capita growth, the regression model
includes several control variables. First, regional FE account for time-invariant characteristics, such
as soil quality, geographic location, and institutional history, which might otherwise confound the
analysis. Second, annual precipitation is added to control for short-term variability in water availability,
which can impact agriculture and other sectors independently of longer-term climate trends. Third,
country-specific linear and quadratic time trends are introduced to absorb gradual changes at the
national level, such as demographic transitions, that may influence growth over time (Burke, Hsiang,
et al., 2015). Finally, year FE control for global or continent-wide shockssuch as wars, economic
crises, or technological advancesthat affect all regions in a given year. Together, these controls ensure
that the estimated coefficients on the climate variables reflect region-specific responses, net of broader
confounding influences (Burke, Hsiang, et al., 2015).

The next Chapter 5 presents the regression results, applying a reduced-form panel OLS model to the
data constructed in this chapter. This analysis aims to estimate the long-run economic impacts of
climate variation across European regions over the past century.



5
Results

This Chapter, together with Chapter 6, addresses the central research question: To what extent are the
estimated economic impacts of climate, identified in the model by BHM, robust? Subquestion 1 and 2
guide the structure of this Chapter. Subquestion 1 examines whether the concave relationship between
temperature and GDP per capita growth remains stable when extending the time frame by 65 years,
from 1960-2010 to 1900-2015, using regional data of Europe instead of national level data of the whole
world which excludes the the influence of earlier structural shifts such as industrialisation, world wars
and post-war recovery (Rosés et al., 2021). By adding 65 more years of economic and climate data,
this study assesses whether that concave pattern holds once long-run historical events are included.
Subquestion 2 investigates whether an additional climate variable, SLR, alters the temperature-growth
relationship as estimated in subquestion 1 or provides further explanatory value.

In the next Chapter 6, subquestion 3 will be discussed. Subquestion 3 will examine what effect cer-
tain regions, countries and/or time periods have on the results using a jackknife analysis. To better
understand the sole explanatory power of temperature, a regression, using only temperature, will be
conducted as well in Chapter 6.

The structure of this chapter is structured around two regression models. For the first subquestion, the
model by BHM is extended with the dataset by Rosés et al. (2021) and the dataset by the Climatic
Research Unit, University of East Anglia (n.d.). This model will serve as a baseline model to which the
output of the models discussed in subquestions 2 and 3 will be compared. For the second subquestion,
the model by BHM re-analysed and extended. Therefore, SLR is added to the baseline model to assess
whether compound climate effects yield additional insight into regional economic outcomes. Each step
is evaluated using model fit statistics, coefficient estimates, and diagnostic tests.

5.1. Subquestion 1: Re-analysis
This section investigates, through a re–analysis, whether the non-linear temperature-GDP relationship
identified by BHM remains robust when using an extended time series and a different spatial scale
and resolution. Rather than examining the whole world as done by BHM, this research focuses on
170 NUTS–2 regions in Europe. This finer spatial scale reveals how temperature affects growth in a
generally cooler climate. Because European temperatures cluster below the global mean, most regions
occupy the rising part of the temperature-growth curve. Thus, it is possible to explore how an increase
in temperature influences growth in colder climate zones. This setup provides the basis for addressing
subquestion 1: How robust is the model by BHM when extending the time frame to 115 years?

To get an understanding of the distribution of the average annual temperature, figure 5.1 highlights the
northsouth temperature progression in Europe. Southern Europe, including Spain, Italy and Greece,
shows the highest average temperatures, with many regions above 15 ◦C. Central Europe, including
France and Germany, shows moderate temperatures around 10 to 15 ◦C. Northern Europe, including
Scandinavia and the Baltic states, shows lower temperatures, often below 5 ◦C. This spatial pattern
reflects Europe’s climate distribution, where temperature decreases with increasing latitude.

34
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Figure 5.1: Average annual temperature in 2015 of the 170 regions analysed

5.1.1. Annual temperature-growth relationship
This section estimates the relationship between annual temperature, precipitation and GDP per capita
growth in benchmark years. The following regression model, discussed in Chapter 3, Equation 3.8, is
used on the regional level. Below, in table C.5, the four estimated coefficients from this regression are
shown. The overall regression results are shown in Table C.4 in Appendix C. The model has an R2 of
0.516, meaning that around 52% of the variation in GDP per capita growth is explained by the included
variables. The adjusted R2 is 0.329, which accounts for the number of explanatory terms and shows
that a substantial part of the variation is still captured after correcting for model complexity. These
values indicate that the model has moderate explanatory power and reinforce the relevance of including
climate variables to understand regional economic growth.

Table 5.1: Estimated coefficients from OLS regression

Variable Coef. Std. Err. t P>|t| [0.025 0.975]
temperature 0.0737 0.018 4.066 0.000 0.038 0.109
temperature_sq -0.0031 0.001 -2.805 0.005 -0.005 -0.001
precipitation -0.0003 0.000 -1.483 0.138 -0.001 0.000092
precipitation_sq 7.235e-08 9.08e-08 0.797 0.425 -1.06e-07 2.5e-07

As can be seen from table C.5, the coefficient of annual mean temperature is positive (β̂1 = 0.0737,
p < 0.001), while the squared term is negative (β̂2 = −0.0031, p = 0.005), indicating a statistically
significant concave relationship between temperature and economic growth. The estimated turning
point is calculated as:

T ∗ = − β̂1

2β̂2
= − 0.0737

2 × (−0.0031)
≈ 11.8 ◦C (5.1)

This is close to the optimum of 13.0 ◦C found by BHM, suggesting strong consistency. Figure 5.2
visualises the quadratic function h(T ) = β̂1T + β̂2T

2, showing the strength and direction of the effect
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average temperature has on GDP per capita growth. The precipitation terms are not statistically
significant at conventional levels. The linear coefficient is small and negative (λ̂1 = −0.0003, p = 0.133),
while the squared term is close to zero (λ̂2 = 7.444 × 10−8, p = 0.413). Even though the precipitation
terms are not significant the joint significance test shows that the group of climate variables included
in this model together have a statistically significant effect on economic growth. Table C.6 in Appendix
C shows a F-statistic of 4.49 with a p-value of 0.0018, which indicates that the likelihood of observing
such a result if these variables had no effect is very low. This suggests that variation in temperature
and precipitation, including their non-linear effects, contributes meaningfully to explaining changes
in economic growth across regions. Therefore, including these variables in the regression model is
empirically justified.

Figure 5.2: Annual average temperature and growth with 90% confidence band and distributions of temperature
observation, precipitation observations, population and GDP

As can be seen from Figure 5.2, most observations are concentrated between 5 ◦C and 15 ◦C, suggesting
that a large share of economic activity and population falls near the estimated optimum. The curve
flattens near the peak and declines more sharply at higher temperatures. This indicates that warmer
regions may be more vulnerable to temperature increases. Three representative regions are marked for
reference: Pohjois- ja Itä-Suomi (FI1D) in Finland lies on the left-hand side of the curve, suggesting
potential gains in regional GDP growth if moderate warming occurs. Alsace (FR42) in France is close
to the peak, where current temperature conditions are close to optimal, according to this model. In
contrast, Algarve (PT15) in Portugal lies beyond the turning point, indicating that the current average
annual temperature is already decreasing regional GDP growth and that further warming may reduce
growth even further in this already warmer region. These examples aim to illustrate how regional
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positioning on the temperature-growth curve can shape expected climate impacts. Figure 5.2 also
shows four histograms. The first histogram shows that most temperature observations fall between 5
and 15 ◦C. The second panel presents precipitation-weighted temperature bins, indicating that total
precipitation clusters within the same range as temperature. This suggests that temperature and
precipitation conditions commonly align within the range where economic growth is highest. This raises
the possibility that moving away from this climate range, due to changes in temperature or precipitation,
could increase negative effects on regional economic growth. The third panel shows population-weighted
observations, confirming that a large share of the population is exposed to temperatures near the
estimated optimum. The fourth panel reveals that most GDP is also generated in this range. Together,
these distributions underline that both climatic exposure and economic activity are concentrated near
the temperature range where the model predicts the highest growth.

5.1.2. Robustness of the annual temperature-growth relationship over 115 years
The model developed by BHM estimates a non–linear relationship between temperature and economic
growth, with a statistically significant positive linear temperature coefficient of 0.0127 and a negative
squared term of −0.0005 (see column 1 of their Extended Data Table 1). Applying a comparable FE
panel model to regional data in Europe over an extended time period (1900–2015), this study finds a
similar concave relationship, but with substantially larger effect sizes: the linear temperature coefficient
is 0.0737, and the squared term is −0.0031, as shown in Table C.5. These coefficients are roughly six
times larger in absolute terms than those estimated by BHM. This suggests that regional economic
output in Europe may be more sensitive to temperature variation than global averages imply. But also
the greater variation at the regional level compared to the national level could help explain the larger
estimated coefficients in this study are much larger than those of BHM. While the precipitation effects
differ in sign and significance, the core temperature–growth relationship remains intact. A full overview
of the coefficient comparison is presented in Table C.3 in Appendix C. The regression estimated in this
section confirms a statistically significant concave effect of annual temperature on economic growth,
with an estimated optimum of 11.8 ◦C. This relationship remains robust when extending the original
time frame of BHM from roughly 50 years to 115 years. The similarity in shape, turning point, and
significance, despite differences in magnitude, indicates that the model’s findings are not sensitive to a
time period extension or spatial context. Therefore, in response to Subquestion 1, the estimates of BHM
are robust and hold over a much longer historical period and another spatial context, strengthening the
claim that temperature has a non-linear and economically meaningful effect on growth.

According to Clemens (2017), differences in estimated coefficients across studies should not be inter-
preted as failed replications, especially when the underlying structure of the model is preserved. In this
case, the observed differences are consistent with expectations given the more restricted geographical
scope, longer historical horizon, and cooler average climate in the European panel. That the same non-
linear functional form emerges in both settings supports the structural robustness of the BHM model,
while highlighting regional variation in the sensitivity of economic growth to temperature.

To further assess the robustness of the estimated parameters, a jackknife analysis is performed in the
next chapter (Chapter 6). By systematically re–estimating the model while excluding one region, one
country, or one benchmark year at a time, this method evaluates the stability of the coefficient estimates.
This method shows whether certain years or locations have a strong influence on the size or shape of the
estimated effect. While the similarity in the functional form already indicates a degree of robustness, the
jackknife analysis provides a more detailed assessment. If the coefficients change a lot when some years
or regions are left out, it may mean that the model depends too much on those specific observations
or on shifts in the data over time. The jackknife analysis, therefore, looks beyond just the curve and
gives a broader view of how stable the model is. The outcomes of the jackknife analysis are discussed
in Chapter 6, Section 6.1.

5.2. Subquestion 2: Re-analysis and extension
This section investigates, through a re-analysis and extension of the model by BHM, if there are com-
pound effects of temperature, precipitation and SLR on economic outcomes. But also, to what extent
these compounding effects alter the climate-economy relationship identified in the model by BHM?
Therefore, this section evaluates how the inclusion of an additional climate variable affects the esti-
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mated temperature–growth relationship.

Figure 5.3 displays the spatial variation in the difference in SLR exposure across European NUTS 2
regions in 2015. The values represent the difference in average SLR compared to the baseline year 1900,
capturing over a century of SLR. Regions shaded in red experienced an increase in SLR relative to 1900.
In the dataset used in this study there are, in the benchmark year 2015, 57 regions experiencing an
increase in SLR. The 25 regions in blue saw a decrease in SLR in 2015. Negative SLR can occur in
regions where the land rises faster than the sea. This happens due to natural processes such as glacial
rebound or tectonic uplift (Chatzivasileiadis et al., 2023). White regions indicate no recorded difference
in SLR over this period. This is because they are non-coastal and thus not experiencing SLR directly.
Figure 5.3 highlights clear geographic patterns: northern Europe, particularly Finland and parts of
Sweden, shows relatively low or even negative differences, whereas northwestern and coastal regions of
Western Europe experienced some of the largest increases. This spatial variation in SLR change is used
as input for estimating the potential economic relevance of SLR in later parts of the analysis.

Figure 5.3: Estimated difference in SLR in 2015 by NUTS 2 region. Red regions experience positive SLR, while blue
regions experience negative SLR. White, inland regions experience zero SLR.

5.2.1. Extending the model with SLR
This step extends the model by incorporating SLR in addition to temperature and precipitation. This
step tests whether compound climate effects further influence the climate–growth relationship beyond
those already captured by temperature and precipitation alone, as done in the section above (section
5.1).

Table C.10 shows that the temperature coefficients remain consistent with those estimated in Section 5.1.
The linear term is positive (β̂1 = 0.0727, p < 0.001), and the squared term is negative (β̂2 = −0.0030,
p = 0.014). Compared to the optimum found in the first regression in section 5.1 and visualised in
5.2 at (T ∗ ≈ 11.8 ◦C), the estimated turning point in this model is similar to this regression, with
SLR included, with an optimum at (T ∗ ≈ 12.0 ◦C), suggesting that the inclusion of SLR does not
substantially shift the optimal temperature for growth.
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Table 5.2: Estimated coefficients for temperature, precipitation, and Sea level rise (clustered SE)

Variable coef std err z P>|z| [0.025 0.975]
Temperature 0.0727 0.021 3.547 0.000 0.033 0.113
Temperature2 −0.0030 0.001 −2.455 0.014 −0.005 −0.001
Precipitation −0.0003 0.000 −1.532 0.126 −0.001 8.24 × 10−5

Precipitation2 8.16 × 10−8 9.03 × 10−8 0.904 0.366 −9.53 × 10−8 2.58 × 10−7

Sea level rise −0.0007 0.000 −2.326 0.020 −0.001 −0.000
Sea level rise2 −1.199 × 10−6 6.96 × 10−7 −1.723 0.085 −2.56 × 10−6 1.65 × 10−7

As can be seen from Table C.10 precipitation terms remain statistically insignificant, with only a small
change in their magnitude, supporting the conclusion that precipitation does not have a strong direct
influence on growth in this dataset. In contrast, the the additional variable, SLR, provides additional
explanatory content: the linear effect is negative and statistically significant (−0.0007, p = 0.020),
while the squared term is very small but negative and only marginally significant (−1.199 × 10−6,
p = 0.085), suggesting a non-linear and increasingly negative effect of SLR at higher exposures. The
joint significance test, in Table C.11 in Appendix C, returns an F -statistic of 5.08 with a p-value of
8.07 × 10−5. This result indicates strong evidence that these climate variables jointly contribute to
explaining variation in economic growth. The low p-value suggests that it is highly unlikely to observe
such a result if none of the variables had an effect. Compared to the earlier test on only temperature and
precipitation (Table C.6 in Appendix C), which yielded an F -statistic of 4.49 and a p-value of 0.0018,
the inclusion of SLR leads to a slightly higher F -statistic and a more significant result. This indicates
that adding SLR to the regression improves the overall explanatory power of the model. This implies
additive effects, meaning that the estimated impact of each climate variable (temperature, precipitation,
and SLR) is evaluated independently of the others. There are no interaction terms included, so the
total effect on economic growth is the sum of the individual contributions of each variable.

The models explanatory strength is further confirmed by an R2 of 0.518 and an adjusted R2 of 0.330
(Table C.9 in Appendix C), indicating that about one-third of the variation in economic growth is
explained after adjusting for the number of predictors. This represents a slight improvement compared
to the model without SLR, which achieved an R2 of 0.516 and an adjusted R2 of 0.329. While the
difference in model fit is modest, the statistical significance and sign of the SLR coefficients suggest
that its inclusion is empirically relevant. Therefore, including temperature, precipitation, and SLR
together is justified and strengthens the models ability to capture the economic effects of climate.

Figure 5.4 shows the estimated non-linear relationship between temperature and GDP per capita growth,
now controlling for precipitation and SLR. The concave shape remains visible, with a peak at 12.0 ◦C,
slightly higher than the estimated optimum in the model without SLR (11.8 ◦C). This implies that
when the model separates the effect of SLR from temperature, the estimated tolerance to temperature
increases a bit. The four histograms beneath the curve provide additional context. Their interpretation
remains the same as in Section 5.1.
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Figure 5.4: Estimated temperature–growth relationship of temperature, precipitation and SLR on GDP per capita
growth.

The first subplot in Figure 5.5 (below) shows the estimated effect of annual average temperature on GDP
per capita growth. This visualises the non-linear, quadratic temperature-growth relationship found in
the model, aligning with the concave shape found by BHM.
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Figure 5.5: Estimated temperature–growth relationship of temperature, precipitation and SLR on GDP per capita
growth.

The second subplot in figure 5.5 (above) shows the estimated effect of precipitation on GDP per capita
growth. The relationship is nearly linear across the observed range, indicating that higher levels of
precipitation are linked to lower growth rates in this dataset. But this plot needs to be interpreted which
caution since the estimated coefficient for precipitation is −0.0003 and is not statistically significant
at the 10% level (p = 0.126), while the coefficient for the squared term is positive 8.16 × 10−8 but
not significant at all (p = 0.366). This means that the curve plotted in the second subplot does not
exhibit a statistically significant non-linear relationship between precipitation and growth, consistent
with the shape of the figure, which shows a smooth, downward-sloping curve without a clear turning
point. Although the squared and linear precipitation terms are not individually significant, the joint
significance test indicates that precipitation still contributes explanatory power when included. This
suggests that while the effect of precipitation on its own may be modest or diffuse, it plays a role in
shaping economic outcomes when considered alongside other climate variables. As shown in Chapter 6,
Section 6.2, the regression using only temperature as an explanatory variable results in a much higher
estimated optimum. This highlights the importance of including precipitation in the analysis, as it
helps prevent overestimating the effect of temperature on economic growth.
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The third subplot in Figure 5.5 shows the estimated effect of the difference in SLR since 1900 on GDP
per capita growth. The relationship is non-linear and concave, with an identified optimum around
−286 mm. This implies that regions which experienced a relative fall in SLR since 1900 tend to
exhibit higher regional GDP growth rates. Growth rates initially rise with increasing SLR, but decline
beyond the estimated optimum, indicating that higher relative SLR negatively impacts economic growth.
While the overall magnitude of SLR on regional growth is smaller than the temperature effect, the
direction and curvature are consistent with the literature, which finds that SLR increase economic risks
(Chatzivasileiadis et al., 2023).

In addition, Figure 5.6 shows the estimated relationship between SLR and GDP per capita growth
across European regions. The black line represents the predicted growth effect, which is calculated as a
quadratic function of relative sea-level rise following the approach in BHM and Kotz et al. (2024). The
blue shaded area shows the 90 % confidence interval around the estimate.

Figure 5.6: Estimated temperature–growth relationship of temperature, precipitation and SLR on GDP per capita
growth.

Three regions are included in the figure to illustrate how different parts of the curve reflect real-world
conditions. Övre Norrland (SE33) in northern Sweden has a relative SLR of approximately −408 mm
and lies on the far left of the curve, where growth is relatively high. Andalucía (ES61) in southern Spain
is located near the centre, with a value close to 12 mm, while West-Vlaanderen (BE25) in Belgium has a
relative SLR of about 360 mm, positioning it on the right side of the curve, where the predicted growth
effect declines. The lower panels of the figure show how observations of relative SLR are distributed
across regions, weighted by SLR, population, and GDP. Most regions fall between 0 and 200 mm,
suggesting that a significant share of economic activity and population is exposed to SLR.

5.2.2. Compound effects of SLR

Overall, the findings support the robustness of the non-linear temperature effect, while showing that
precipitation lacks a clear threshold beyond which economic impacts become significant. In contrast,
SLR has a statistically significant but smaller effect. The model reaffirms the central role of temperature
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in shaping long–term economic outcomes. The concave relationship remains stable across model speci-
fications, now also confirmed when controlling for precipitation and SLR. SLR emerges as a secondary
but directionally consistent factor. Although its overall magnitude is smaller, the concave pattern and
statistical significance of SLR suggest that long-term exposure to SLR is associated with declining
economic performance.

These findings directly answer Subquestion 2, which asked whether the relationship identified by BHM
holds when considering additional climate variables. The results show that the non-linear temperature-
growth relationship is not only preserved but strengthened when extended to a broader specification.
The inclusion of precipitation and SLR does not fundamentally alter the curve, but it does improve
the models credibility. While the inclusion of SLR leads to only a marginal increase in the model’s
explanatory power, as reflected in a minimal change in the R2, its coefficients are statistically signifi-
cant and directionally consistent with the expectation that higher SLR imposes economic costs. This
suggests that, although SLR explains only a small portion of the overall variation in regional growth, it
captures a relevant dimension of climate-related pressure. The limited contribution to the R2 highlights
that temperature remains the dominant driver, but the significance of SLR coefficients indicates that
its economic impact, though more subtle, is detectable in the long-run growth data.



6
Sensitivity Analysis

In addition to Chapter 5, multiple sensitivity analyses are performed for the second subquestion to
assess the stability of the estimated relationship across time and space. The jackknife method is used to
sequentially exclude one region, one country and one benchmark year from the regression to test whether
the results depend on any specific subset of the data. These procedures help ensure that findings are
not driven by spatial outliers or by benchmark years in the historical data. Lastly, the baseline model,
as conducted for subquestion 1 in the Chapter 5, Section 5.1, is re-run, but instead with temperature
and precipitation as exploratory variables, only temperature is included. This last model is conducted
to see the sensitivity of the estimated temperature effect when precipitation is excluded, and whether
temperature alone captures some of the variation otherwise attributed to precipitation.

6.1. Subquestion 3: Robustness and sensitivity to spatial and tem-
poral exclusions

This section outlines the results of multiple jackknife analyses to test the robustness of the temperature-
growth relationship proposed by BHM, with a focus on subnational, national and temporal variation.
Within countries, differences in topography, infrastructure, and adaptive capacity can lead to different
responses to climatic variables and could, therefore, lead to a different impact on economic growth
(Rosés et al., 2021). To examine how these differences affect the results, three complementary jackknife
analyses are conducted. Each analysis reruns the model multiple times, excluding one region, one coun-
try or one year at a time, to assess how sensitive the estimated climategrowth relationship is to specific
locations or time periods (Kahn et al., 2021).

First, a spatial regional–level jackknife is performed by sequentially removing each NUTS-2 region
from the estimation. This procedure will highlight the influence of individual regions on the overall
temperature-growth curve. Given that climate exposure varies across regions, this approach reveals
whether the overall non-linear shape is disproportionately influenced by any particular region. A second
spatial country–level jackknife is thereafter conducted by sequentially removing each country from the
estimation to see the influence of one country on the overall temperature-growth curve. Since a single
region may have only a limited effect, this country-level jackknife helps to assess whether national
patterns or country–specific characteristics are driving the observed relationship. Lastly, a temporal
jackknife removes one benchmark year at a time to test whether the results are robust across historical
periods.

6.1.1. Jackknife visualisation and interpretation
To visualise these robustness checks, Figures 6.1, 6.2 and 6.3 plot the estimated temperature-growth
curves from the spatial and temporal jackknife procedures, using the observed range of annual temper-
atures in the dataset.

Spatial jackknife (regional-level)
Table C.18 presents the results of the spatial jackknife analysis. The table shows the average value
of each coefficient across all runs (Mean), the variation across those runs (Std. dev.), and the results
of a simple statistical test to check if the average is meaningfully different from zero (t-stat and p-
value). The t-statistic is calculated by dividing the mean by its standard deviation. It shows how many
times the average estimate is larger than the variation across the runs. A higher t-value means that
the estimate is more precisely measured. In this table, all variables show very large t-statistics and
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p-values close to zero, meaning that the effects are statistically significant. The temperature coefficient
is positive (0.0738), and the squared term is negative (−0.00313), confirming a concave relationship
between temperature and economic growth. The small standard deviations and high t-statistics show
that this non-linear pattern is very stable across regions. The precipitation coefficients are much smaller
in size but also highly significant. This may seem surprising, as precipitation is not significant in the
main regression model as mentioned in Chapter 5, Section 5.1. However, the jackknife test reflects
consistency rather than exploratory power of the variables. The small standard deviations indicate that
the precipitation terms change very when a single region is excluded, which leads to large t-statistics
even if their size is small. This suggests that while precipitation does not have a strong effect on
economic growth in the baseline regression model, its estimated role in the model is stable and not
dependent on a few influential regions.

Table 6.1: Spatial jackknife results for climate coefficients

Variable Mean Std. dev. t-stat p-value
Temperature 0.0738 0.0013 58.64 0.000
Temperature2 -0.00313 0.000077 -40.76 0.000
Precipitation -0.00029 0.000013 -22.28 0.000
Precipitation2 0.0000000745 0.0000000062 11.97 0.000

Figure 6.1 presents the results of the spatial regional–level jackknife, showing the robustness of the
estimated temperature-growth relationship when omitting each of the five most influential regions in
turn. The characteristic concave shape of the temperature-growth curve remains consistent across all
specifications, indicating that the non-linear relationship is not driven by any single region. Slight
upward deviations are visible when omitting SE33 (light blue) and F1D (orange), while smaller shifts
appear when excluding NO02 (red), NO05 (purple), and ITG1 (green). These differences are most
apparent at the higher end of the temperature distribution, where the curves diverge modestly above
12◦C.

Figure 6.1: Spatial jackknife estimates of the temperature-growth curve. Each coloured line shows the result when
omitting one NUTS-2 region. The dashed black line represents the full-sample estimate.

The similarity of the curves in Figure 6.1 across the observed temperature range demonstrates the
robustness of the estimated non-linear temperature-growth relationship to the exclusion of individual
influential regions. Table 6.2 presents the estimated optimal temperatures when excluding each of
the five most influential NUTS regions from the sample. The results demonstrate that the estimated
optimum clusters closely around the baseline optimum, as mentioned in Chapter 5 Section 5.1 of 11.8◦C.
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Table 6.2: Optimal temperature after excluding influential NUTS regions

Region Optimal Temperature (◦C) Difference from 11.8 (◦C)
NO02 11.38 -0.42
FI1D 11.42 -0.38
NO05 11.42 -0.38
SE33 11.47 -0.33
ITG1 12.44 +0.64

Excluding NO02, FI1D, NO05, and SE33 shifts the estimated optimum downward by 0.33 to 0.42◦C,
indicating that omitting these colder northern regions shifts the optimum towards an even cooler tem-
perature. In contrast, excluding ITG1, a warmer southern region, increases the estimated optimum
by 0.64◦C. This shift reflects the influence of ITG1 on the upper end of the temperature distribution.
But this shift needs to be interpreted with caution since there are fewer regions that occupy higher
temperature ranges in Europe. It could mean that the optimal temperature estimate is more sensitive
to the inclusion or exclusion of warmer regions due to the smaller number of observations in this part
of the distribution, while the lower end is anchored by many regions with cooler climates, causing the
optimum to shift downward when colder regions are excluded.

These findings align with the overall, full sample, curve observed in Figure 6.1, where curves diverge
modestly above 11.8◦C depending on which region is excluded. This narrow range suggests that the
identified concave relationship and its estimated optimum are not completely driven by any single
influential region. However, before drawing strong conclusions about robustness, it is important to
consider that the sample includes 170 regions. As a result, the exclusion of a single region may have
only a limited influence on the overall curve. At the same time, the fact that there are still visible
deviations suggests that the estimates are not fully stable and may be sensitive even to the removal of
just one region. This highlights the importance of cautious interpretation and the need to complement
the regional jackknife with a country jackknife analysis.

Spatial jackknife (country-level)
Table C.20 shows the results of the country–level spatial jackknife analysis. This checks whether the
estimated climate effects are heavily influenced by any single country. The estimated temperature coef-
ficients remain, regarding the regional–level jackknife analysis, statistically significant, with a positive
linear term (mean = 0.0739) and a negative squared term (mean = −0.0031), indicating a concave
relationship between temperature and economic growth. However, compared to the regional–level jack-
knife, the standard deviations are larger and the t-statistics are notably lower. This suggests more
variation in the estimated coefficients when excluding entire countries. The precipitation terms are also
statistically significant, but their standard deviations are higher than in the regional analysis. These
results imply that the estimated effects of climate variables are more sensitive at the county–level than
at the regional–level. While the direction and significance of the effects remain stable, the country–level
jackknife shows greater variability and lower precision in the estimates. This is expected, as excluding
one country removes more data from the model than excluding a single region, making the results more
sensitive to country–level omissions.

Table 6.3: Country jackknife summary statistics for climate coefficients

Variable Mean Std. Dev. t-statistic p-value
Temperature 0.0739 0.0089 8.33 0.0000
Temperature2 -0.0031 0.0006 -5.26 0.0000
Precipitation -0.0003 0.0001 -4.19 0.0000
Precipitation2 7.23e-08 2.16e-08 3.35 0.0008

Figure 6.2 shows the jackknife estimates of the temperature-growth curve, where each line represents
the fitted quadratic relationship when one of the five most influential countries is excluded from the
regression. The black dashed line shows the full-sample estimate. The other lines illustrate how the
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shape and peak of the curve change when leaving out Spain (ES, blue), the United Kingdom (UK,
orange), Sweden (SE, green), Norway (NO, red), or Italy (IT, purple).

Excluding Spain or the United Kingdom causes the curve to shift rightward, increasing the estimated
optimal temperature to around 13.6 ◦C and 13.9 ◦C, respectively. In contrast, excluding Norway sig-
nificantly lowers the optimum to 9.5 ◦C, suggesting that this country’s observations pull the curve
upward in the warmer range. Excluding Sweden or Italy produces more moderate shifts. These results
suggest that although the overall concave shape remains visible, both the steepness of the curve and
the estimated turning point vary depending on which country is excluded. This indicates that the
temperature-growth relationship is sensitive to national contributions.

Figure 6.2: Spatial jackknife estimates of the temperature-growth curve. Each coloured line shows the result when
omitting one country. The dashed black line represents the full-sample estimate.

Table 6.4 summarises the optimal temperature estimates for each specification and shows the deviation
from the full-sample value:

Table 6.4: Optimal temperature after excluding influential countries

Region Optimal Temperature (◦C) Difference from 11.8 (◦C)
Omit ES 13.6 +1.8
Omit UK 13.9 +2.1
Omit SE 11.2 −0.6
Omit NO 9.5 −2.3
Omit IT 14.2 +2.4

The regional and country–level jackknife results reveal both common patterns and notable differences.
In both cases, the concave temperature–growth relationship remains visible, indicating that the overall
shape is not driven by a single location. However, excluding an entire country has a much stronger
influence on the estimated optimum than omitting one region. Regional exclusions shift the optimum
by less than ±0.6◦C, while country-level exclusions lead to changes of up to +2.4◦C or −2.3◦C. This
suggests that national data, especially from countries with broader temperature ranges, can affect the
position and steepness of the curve. Beyond the curve itself, the jackknife results also provide insight
into the stability of the estimated coefficients. Although the functional form remains similar, the size
of the coefficients changes more when a full country is excluded than when a region is left out. While
no single country dominates the results, the precision of the estimates varies with the sample. These
findings suggest that the concave relationship is robust, but the estimated coefficients are not fully
stable across different country samples.
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While the spatial jackknife analyses focus on variation across regions and countries, it is also important
to test whether the estimated climate effects are stable over time. The temporal jackknife allows for an
assessment of how sensitive the results are to specific benchmark years and is discussed in the following
subsection (6.1.1).

Temporal jackknife
Table C.19 reports the results of the temporal jackknife analysis, where the model is re-estimated while
omitting one benchmark year at a time. The temperature coefficients remain statistically significant and
continue to show a concave relationship, with a positive linear term (mean = 0.0762) and a negative
squared term (mean = −0.00320). Compared to the regional–level jackknife (Table C.18), the stan-
dard deviations are noticeably larger, but only moderately higher than in the country–level jackknife
(Table C.20). This results in lower t-statistics, though the estimates remain statistically significant.
The precipitation term is significant, but the squared term is not, with a p-value above conventional
threshold (p = 0.312). This suggests that the evidence for a non-linear precipitation effect is weaker
over time than across space. Compared to the regional–level jackknife, which shows high stability and
strong significance for all coefficients, and the country-level jackknife, which shows moderate variation,
the temporal jackknife reveals greater sensitivity of the model to specific years. This implies that
benchmark–year–specific events may influence the magnitude and precision of the estimated climate
effects more than regional or national exclusions do.

Table 6.5: Temporal jackknife results for climate coefficients

Variable Mean Std. dev. t-stat p-value
Temperature 0.0762 0.0330 2.31 0.021
Temperature2 -0.00320 0.00146 -2.19 0.028
Precipitation -0.00029 0.00014 -2.10 0.036
Precipitation2 0.0000000722 0.0000000714 1.01 0.312

Figure 6.3 presents the results of the temporal jackknife. Each line shows the estimated temperature-
growth curve when one year is excluded from the sample. The dashed black line represents the full-
sample estimate. This analysis tests how sensitive the model is to the influence of individual years.
Figure 6.3 shows that the concave shape of the temperature-growth curve remains visible across almost
all specifications, but the height and steepness of the curve vary considerably depending on the year
omitted. Excluding the year 1938 (pink) has the largest effect. The curve becomes flatter and even
turns negative beyond approximately 7◦C, suggesting that this year strongly pulls the curve upward
in the full sample. Since this study relies on benchmark data, it is not possible to explore in detail
what drives the strong influence of 1938. However, this year falls just before the outbreak of the Second
World War. This may have introduced irregularities in economic growth or climate sensitivity that
make 1938 stand out. Still, without more detailed temporal data, the exact reason for its outsized
influence remains unclear. In contrast, excluding the year 2010 (dark blue) produces the steepest and
highest curve. The peak is higher and occurs earlier, with a stronger drop after the turning point.
This suggests that 2010 lowers the estimated temperature effect when included in the full sample. One
possible explanation is the aftermath of the 2008 financial crisis, which may have depressed growth
rates in 2010 across multiple regions. Excluding the year 1925 (orange) results in a nearly flat curve,
indicating that this year contributes substantially to the concavity of the full-sample estimate. A similar
effect is seen when excluding 1950 (green), where the curvature also largely disappears, and the curve
becomes almost linear. These cases show that some years have a stabilising effect on the turning point
and overall shape of the relationship. The exclusion of 1910 (purple) and 1990 (light green) leads to
moderate upward shifts, with a slightly less steep curve and higher peak. This suggests that these years
moderate the estimated growth effect of temperature when included. In contrast, omitting 1960 (light
blue), 1970 (brown), 1980 (grey), 2000 (cyan), and 2015 (red) results in curves with similar curvature to
the full sample, but they lie consistently lower across the temperature range. This suggests that these
years influence the overall level of the relationship more than its shape.
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Figure 6.3: Temporal jackknife estimates of the temperature-growth curve. Each coloured line shows the result when
omitting one benchmark year. The dashed black line represents the full-sample estimate.

The results of the temporal jackknife reveal that while the concave shape of the temperature-growth
relationship remains broadly consistent, the estimated coefficients are not stable. Figure 6.3 shows that
omitting individual years can substantially alter the height and steepness of the curve. These deviations
indicate that certain years, such as 1938 and 2010, exert disproportionate influence on the estimated
temperature effect. This sensitivity is reflected in the standard deviation of the temperature coefficient,
which increases from approximately 0.0013 in the spatial regional–level jackknife, given in Table C.18 to
over 0.0033 in the temporal one, given in Table C.19, a difference of more than 2.5 times. Similarly, the
standard deviation of the squared temperature coefficient is almost twenty times larger. This means that
the estimated shape of the temperature-growth curve is highly dependent on the inclusion of specific
years.

The temporal jackknife shows that the concave shape of the temperature-growth curve is not preserved
in all specifications. While many of the curves retain the general non-linear form, others, such as
those excluding 1925 (orange) and 1950 (green), appear almost linear across the observed temperature
range. This suggests that certain benchmark years play a key role in shaping the curvature of the
full-sample estimate. Moreover, the large variation in curve height and steepness across years points
to substantial sensitivity in the estimated coefficients. The standard deviations of the temperature and
squared temperature coefficients are considerably larger than in the spatial jackknife, confirming that
the model is more sensitive to temporal variation. These findings highlight that while a non-linear
relationship emerges in many cases, the estimated parameters do not appear to be stable, and specific
benchmark years may strongly influence the result. It does make one wonder, since one benchmark
year can make such an impact, if the estimated optimum is valid. This underscores the impact of the
model and the data choices, which call into question the relevance and universality of a single estimated
optimal temperature (Newell et al., 2021). Importantly, these differences cannot be explained by average
growth shocks in those years alone, as the model already includes year FE. These control for the mean
shift in growth that may result from broad historical events such as wars or recessions. The observed
variation, therefore, reflects how individual years influence the shape of the estimated relationship
between temperature and economic growth, rather than the overall level of growth.

Table 6.6 presents the estimated optimal temperature after sequentially omitting each benchmark year
from the sample. Deviations from this benchmark are shown in the third column.
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Table 6.6: Optimal temperature after excluding influential years

Year Optimal Temperature (◦C) Difference from 11.8 (◦C)
1910 17.66 +5.86
1925 27.33 +15.53
1938 2.68 -9.12
1950 23.58 +11.78
1960 9.04 -2.76
1970 11.09 -0.71
1980 10.28 -1.52
1990 14.45 +2.65
2010 11.85 +0.05
2015 10.11 -1.69

The results show that the estimated optimum is highly sensitive to the exclusion of certain benchmark
years. Removing 1925 or 1950 results in extreme shifts, increasing the optimum to 27.33 ◦C and 23.58 ◦C,
respectively. These years correspond to pre- and post-war periods, indicating that the model heavily
relies on their inclusion to define the concave shape of the curve. In contrast, omitting 1938 dramatically
lowers the estimated optimum to 2.68 ◦C, further highlighting the central role of this benchmark years in
shaping the temperature-growth relationship. More moderate shifts are observed when omitting years
like 1960, 1970, 1980, and 2015, with changes in the estimated optimum of less than ±3◦C. Notably,
the exclusion of 2010 results in only a marginal increase in the optimum to 11.85◦C, suggesting that
this year aligns closely with the full-sample estimate. Overall, these findings confirm that while the
concave relationship often reappears, the estimated turning point is not stable. The strong dependence
on a few historical years points to a structural fragility in the models coefficients.

Table 6.6 summarises the estimated optimal temperature for GDP per capita growth after excluding
each benchmark year from the regression. The baseline optimum, based on the full sample, is 11.8 ◦C.
The results show that omitting certain years leads to large shifts in the estimated peak, while others
have little impact. The greatest changes occur when early benchmark years are excluded. Omitting
1925 and 1950 raises the estimated optimum to 27.3 ◦C and 23.6 ◦C, respectively. These years anchor
the lower part of the temperature distribution, with relatively uniform GDP levels throughout Europe.
Figure 4.2 (in Chapter 4) shows how GDP per capita increased along a consistent trajectory up to
1950, after which growth patterns began to diverge more strongly across regions. Removing these
early anchor years shifts the weight of the regression toward post-war decades, when GDP growth was
higher and more divergent across Europe. Excluding 1938 lowers the estimated optimum to 2.7 ◦C.
This benchmark year appears to stabilise the central part of the temperature distribution before the
economic disruption of the Second World War.

For post-war years such as 1960, 1970, 1980, and 2000, the effect of exclusion on the estimated optimal
temperature is relatively small. The concave shape remains visible and the estimated peak changes
only slightly. Excluding more recent years like 2010 and 2015 also results in minimal changes in terms
of optimal temperature, suggesting that the modern economic period has less influence on the overall
temperature optimum.

Figure 6.4 shows a close–up of the estimated temperature–growth curve from the baseline model, with
dashed lines indicating the average temperature of each benchmark year. The benchmark years are
spread across the temperature range without a clear pattern. For example, 1980 is the coldest year in
the sample, but it has little effect when excluded. In contrast, 1925 and 1950 are closer to the centre but
lead to large shifts in the estimated optimum. This suggests that a years influence is not determined by
its temperature alone. It likely reflects other factors in the data, such as changes in economic conditions
or variation in regional growth. Figure 6.4 shows that the position of a year within the temperature
distribution does not seem explain its effect, underlining the models sensitivity to specific historical
years.
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Figure 6.4: Estimated temperature-growth relationship with dashed lines showing average temperatures of benchmark
years

In summary, the estimated optimal temperature is not constant across time. While the concave pattern
re-emerges in most cases, the location of the turning point depends on which benchmark years are
included. This underlines the importance of a long historical time span to capture a wide range of
economic and climatic conditions and to avoid over-reliance on any specific period. Moreover, the
strong shifts in the estimated optimum suggest that the growth–maximising temperature is not stable
over time, but depends on the broader economic context of each era.

6.1.2. Insights from the jackknife analysis
The jackknife analysis confirms the robustness of the estimated non-linear relationship between temper-
ature and GDP per capita growth. The spatial jackknife at the regional level shows that the concave
shape of the temperature–growth curve is preserved across all specifications when individual NUTS-2
regions are excluded. The estimated mean coefficient for temperature is 0.0738, and for temperature
squared, −0.00313, both statistically significant with very low standard deviations and p-values below
0.001. These results, presented in Table C.18, indicate that the curves shape and magnitude are not
dependent on any single region. The spatial jackknife at the country level in Table C.20 confirms
this robustness on a broader national scale. The coefficients remain stable and significant: 0.0739 for
temperature and −0.0031 for temperature squared, with t-statistics of 8.33 and −5.26, respectively.
Precipitation and its squared term also remain statistically significant across all country-level exclu-
sions, suggesting that no single country drives the core climate–growth results either. In contrast, the
temporal jackknife has a more pronounced outcome. As shown in Table C.19, the estimated coeffi-
cients are more sensitive to the exclusion of specific years. The coefficient for temperature varies more
strongly, with a higher standard deviation of 0.0330, compared to 0.0013 in the spatial analysis. Its
t-statistic drops to 2.31, still significant, but indicating more uncertainty. The squared temperature
term, although still significant at the 5% level, has a p-value of 0.028. The squared precipitation term,
however, becomes statistically insignificant, with a p-value of 0.312, suggesting that higher-order effects
may be less robust over time than across space.

These temporal patterns point to the influence of economic history on the climate—growth relationship.
There are significant changes in curvature and turning points when benchmark years like 1938 or 2010
are excluded. This raises the question of how much of the observable temperature–growth relationship
reflects underlying climatic processes and how much is shaped or amplified by historical shocks. Given
that European regions cluster on the ascending part of the temperature–growth curve, modest warming
may coincide with higher growth. However, this association becomes blurred when large-scale structural
disruptions such as post-war recovery, oil crises, or financial crisis happen. These shocks affect the
economic baseline against which temperature effects are estimated. The concave shape remains broadly
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visible, but the estimated coefficients are not universal; they shift depending on which year is excluded.
This shows that the full-sample estimate is not a single stable function, but the result of combining
multiple, historically contingent growth paths.

To conclude, the spatial and country-level jackknife results support the robustness of the climate–growth
relationship across regions. However, the temporal jackknife reveals that this relationship is sensitive
to the historical time period covered. While the concave relationship proposed by BHM is supported in
structure, its precise curvature and optimum vary with time. In response to Subquestion 2, this suggests
that the temperature effect on economic growth is both shaped by climatic variation and moderated by
broader historical context. Expanding the number of benchmark years in long-run datasets is necessary
to reduce this temporal sensitivity and better isolate the climatic signal from economic noise.

6.2. Regression with temperature only
An alternative version, including only temperature as exploratory variable, of the model by BHM is
carried out as an additional sensitivity analysis to determine how much of the variation in GDP growth
can be accounted for by average annual temperature alone. This makes it possible to assess the stability
of the non-linear temperature–growth relationship under the current panel dataset and offers a standard
by which to see how the predicted relationship’s shape and amplitude change when precipitation and
SLR are included.

Table C.15 in reports the estimated coefficients for the temperature variables. The coefficient on linear
temperature is positive and significant (β̂1 = 0.0572, p < 0.001), while the squared term is negative
and significant at the 5% level (β̂2 = −0.0021, p = 0.041), confirming an concave shaped relationship
between temperature and growth. This curvature is consistent with the original findings of BHM and
suggests that moderate warming may support growth in colder regions, but harm hotter ones. Year FE
are also included and are displayed in Table C.17 in Appendix C.

Table 6.7: Estimated coefficients for temperature effects (clustered SE)

Variable coef std err z P>|z| [0.025 0.975]
Temperature 0.0572 0.016 3.594 0.000 0.026 0.088
Temperature2 −0.0021 0.001 −2.040 0.041 −0.004 −8.04 × 10−5

The estimated non-linear relationship between GDP per capita growth and the annual average tem-
perature is shown in Figure 6.5. The fitted coefficients from the regression shown in Table C.15 are
used to generate the curve. The concave shape confirms that the marginal influence of temperature
becomes negative after a certain point. The predicted optimum temperature for economic growth, or
the turning point, is around 13.9 ◦C. The anticipated growth rate is maximised at this temperature.
This is marginally higher than the optimal temperature estimate of BHM.
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Figure 6.5: Estimated non-linear relationship between temperature and GDP per capita growth. Optimum temperature
estimated at 13.9 ◦C.

Figure 6.5 shows the 90% confidence interval around the estimated curve and overlaying the distribu-
tion of temperature exposure across the sample. Because there are fewer data at higher temperatures,
statistical uncertainty rises, as seen by the shaded region. Three histograms, number of temperature ob-
servations, population, and GDP, show how temperature values are distributed throughout the dataset
beneath the curve. These verify that most of data points, population, and GDP mass are concentrated
between 5 ◦C and 15 ◦C, where the fit is most dependable.
Taken together, the figures visualise the statistical findings in Tables C.15 and C.14. The concave
relationship, which has a distinct peak in the middle of the observed temperature range, is not only
significant but also economically meaningful. This provides a benchmark for comparing the shape and
stability of the curve when introducing additional climate variables.

When only temperature is included in the regression, the predicted optimal annual average temperature
for economic growth is 13.9 ◦C. When precipitation is included, this value drops to 11.8 ◦C, and when
SLR is added, it slightly rises to 12 ◦C. The decrease from 13.9 ◦C to 11.8 ◦C suggests that the precipi-
tation effect was partially accounted for by the original temperature coefficient. When precipitation is
taken into account, the model can calculate its contribution independently, which lowers the proportion
of variance that was previously attributable to temperature alone and moves the predicted optimum
downward. The calculated optimal temperature is not significantly altered by the addition of SLR. This
is because, unlike precipitation, which typically has a negative correlation with temperature, where hot-
ter years tend to be drier, SLR affects economic growth in a much slower manner. Because of this,
SLR adds another influence channel, but it does not as significantly confound the temperature–growth
relationship as precipitation does.



7
Discussion

Using historical data from 170 European NUTS-2 areas from 1900 to 2015, this chapter discusses the
empirical results from the re-analysed and extended BHM model. The first point of discussion is the
robustness of the BHM model, in section 7.1. The second point of discussion is the insights from the
sensitivity analyses, in section 7.2. The third point of discussion, discusses the inclusion of precipitation
and SLR and their dependence on temperature, in section 7.3. The fourth point of discussion, considers
the potential of an analysis which breaks GDP down per sector, in section 7.4. The fifth point of
discussion, discusses the importance of adaptation in interpreting long-term estimates, in section 7.5.
The final point of discussion, reflects on the broader policy implications of the findings, highlighting the
importance of careful use of climate-economy estimates in policy design, in section 7.6.

7.1. Robustness of the BHM model
The study by BHM introduced a global model showing a concave temperature–growth relationship,
peaking at approximately 13 ◦C. Applying this model to the dataset by Rosés et al. (2021) confirms
that this concave relation also appears across European regions over a longer time frame. The estimated
optimum in this research lies around 11.8 ◦C, indicating that the concave shape is preserved across both
spatial and temporal expansions.

Yet this robustness appears structural rather than statistical. Small adjustments to the dataset, includ-
ing the exclusion of a country or benchmark year, cause significant changes to the shape of the curve
and the estimated optimum. Barker (2024) strongly criticised BHM for cherry–picking data and failing
to account for sampling uncertainty. BHM estimate their model over the full period 1960–2010, with
particular focus on 1980–2010 due to better data quality in those years. To test the stability of their
estimated temperature–growth relationship, they divide the sample into two subperiods: 1960–1989
and 1990–2010. After doing so, they report that the results from both subperiods are nearly identi-
cal, which they interpret as evidence that the relationship is stable over time and not sensitive to the
specific time frame. However, this claim is challenged by Barker (2024), who shows that shifting the
cut–off year slightly (from 1990 to 1989 or 1991) can cause the results to lose statistical significance.
This undermines the argument that the estimated relationship is stable and suggests that the results
are more sensitive to sample choices than claimed by BHM. This thesis similarly finds that removing
benchmark years like 1925 or 1938 shifts the optimum by more than 10 ◦C. These findings challenge
the idea that a stable, generalisable optimum exists.

Also, in this research, the confidence band (in the Figure 5.2, Figure 5.4 and Figure 5.6 in Chapter 5)
does not reflect the actual sensitivity of the curve: it is narrow at the colder temperatures and widens
toward warmer temperatures, even though most observations lie near the middle of the temperature
range. This shape is counterintuitive and suggests that the confidence band is shaped more by the
programming code of the model than by the underlying sensitivity of the curve. In panel data models
with FE and non–linear terms, standard errors are not easily translated into confidence bands for
predicted values. FE absorb much of the variation in the climate variables, and non–linear terms cause
uncertainty to vary across the curve (Blanc et al., 2017). Clustering standard errors by region helps
address statistical dependence, but does not provide a straightforward way to display uncertainty across
the full temperature range.
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7.2. Sensitivity to historical and spatial context
The temporal structure of this study differs from BHM, who used annual growth rates. In this study,
GDP per capita growth is calculated between twelve benchmark years, with uneven intervals. According
to Baltagi et al. (2011), irregular spacing introduces biases and complicates identification of relationships
in the data. But dividing growth by interval length could disguise historical shocks. This reflects a
broader issue: how the panel data structure affects estimated climate responses. Climate evolves in a
more gradual fashion over decades, while GDP reacts quickly to business cycles, wars, and financial
crises (Dell et al., 2014; Kolstad et al., 2020). This difference in timescale complicates the task of
identifying climate effects on economic outcomes. Standard panel models often rely on year-to-year
weather variation, which may capture short–term shocks but not long-run responses (Dell et al., 2009;
Mérel et al., 2021). As a result, these models risk overstating damages if they cannot account for
adaptation (Mérel et al., 2021).

These structural concerns become even more visible when testing the robustness of the model through
jackknife analyses. While the regional–level jackknife shows limited deviation in the estimated coeffi-
cients, the spatial country- and temporal benchmark year-level analyses tell a different story. Excluding
certain countries shifts the estimated optimum by up to +2.4 ◦C, and removing individual benchmark–
years can shift it as far as +15.5 ◦C or as low as −9.1 ◦C. This large range undermines the idea that
there is a single, stable temperature optimum for economic growth.

The temporal jackknife shows that the estimated curvature of the temperature effect is highly dependent
on a few benchmark years, particularly 1925, 1938, and 1950. This is despite the inclusion of year FE,
which already control for mean growth shocks. These findings suggest that the model’s shape and
optimum temperature are not purely a result of climatic factors but are shaped by specific historical
moments in European economic development. The high sensitivity to benchmark years raises questions
about the reliability of the concave shape as a universal economic law. It implies that the temperature–
growth relationship is contingent on data availability and historical context, rather than reflecting a fixed
or universal climatic mechanism. The fact that results change drastically depending on the exclusion of
one benchmark–year indicates that the temperature–growth relationship is likely contingent, not causal.

7.3. Inclusion of precipitation and SLR
Adding precipitation and SLR modifies the estimated temperature effect. The optimum falls from
13.9 ◦C to 11.8 ◦C when precipitation is added, and rises to 12.0 ◦C when SLR is included. This supports
the view that temperature absorbs the effects of other climate variables when they are omitted. Including
these variables reveals their role and improves the attribution of impacts. Yet precipitation did not have
a significant impact in this study, consistent with Dell et al. (2012), Tol (2021), and Khan et al. (2022),
who also found weak or unstable effects. By contrast, SLR showed a small but meaningful influence.
Other work supports this. Cortés Arbués et al. (2024) estimate up to 20% GDP losses in European
coastal regions by 2100 under high-end SLR scenarios. However, Nováková et al. (2018) emphasise that
SLR is a slow process, with long lags before impacts are measurable in economic data. This underlines
the need for long time series and caution in interpretation.

Furthermore, precipitation and SLR are not independent of temperature. Rising temperatures increase
evaporation and atmospheric moisture (Malhi et al., 2021), which in turn shape precipitation patterns.
Temperature–driven ocean expansion and ice melt are the main causes of global SLR (Khan et al.,
2022). If these climate factors cause economic damage but are themselves driven by temperature, then
omitting or misattributing their effects risks biasing the estimated role of temperature. This interde-
pendence complicates identification. FE reduce some bias, but unobserved time–varying confounders
may still remain. As Dell et al. (2012) argue, without valid instruments or a model that explicitly re-
flects the causal chain between temperature and related variables, it is difficult to isolate temperatures
independent impact. These issues highlight the need to model temperature as the central driver in a
more structured way. Empirical work confirms that omitting key weather variables such as precipitation
and SLR can distort temperature coefficients (Chen et al., 2019). But there are also other key climate
variables, such as solar radiation, humidity, and wind speed, which influence economic outcomes and,
if not included, can lead to biased results (Blanc et al., 2017).
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7.4. Breakdown per sector
Sectoral vulnerability to climate change is well–documented in the more recent literature. The agricul-
tural and coastal industrial sector are more exposed than the service sector, which is partially shielded
(Tol, 2018; Kotz et al., 2022). Including sector–level data helps identify where losses occur and where
adaptation is needed. Although BHM report that their concave response holds across sectors, more
recent studies find sectoral variation. Zhang et al. (2018), Chen et al. (2019), and Kotz et al. (2022)
highlight different climate sensitivities across economic activities. For example, labour–intensive indus-
tries may suffer productivity declines under extreme heat, while coastal infrastructure faces increased
risks from SLR (Chatzivasileiadis et al., 2023).

This study could not conduct a sectoral breakdown due to data limitations. GDP data by sector
were unavailable, and employment shares are not an accurate substitute. Yet Rosés et al. (2021) and
Koodziejczak (2020) confirm that services dominate the European economy. Thus, results may primarily
reflect the climate response of this sector. While sectoral breakdown is not required to estimate the
aggregate temperature effect, it would provide insights into heterogeneity and support more tailored
policy responses (Cortés Arbués et al., 2024).

7.5. Adaptation
Economic responses to temperature are shaped not only by immediate weather shocks but also by
long–term behavioural and structural adjustments. Adaptation, including investments in irrigation,
infrastructure, working hours, or early warning systems, can reduce vulnerability to climate impacts
(Burke and Emerick, 2016; Blanc et al., 2017; Mérel et al., 2021). Ignoring these processes risks
overstating damages or misinterpreting observed relationships (Kolstad et al., 2020; Tol, 2021; Kahn et
al., 2021). The BHM model does not explicitly model adaptation. Instead, it assumes that adaptation
is embedded in the historical temperature–growth relationship. Because the model identifies a stable
concave shape across countries and over time, it implicitly includes past adaptive responses (Burke,
Hsiang, et al., 2015). However, this embedded approach limits understanding of how future adaptation
might change vulnerability, especially if future warming patterns or adaptive capacities differ from the
past.

Mérel et al. (2021) propose a more precise approach to measuring adaptation by introducing a climate
penalty term into the standard panel regression framework. This penalty term captures the squared
deviation between current weather and the long–term average climate, defined as a 20–year rolling
average of past weather. The idea is that economic agents make long–run decisions based past climate.
When weather deviates from this expected norm, economic outcomes may suffer. Mérel et al. (2021)
apply their model to the same country-level dataset used by BHM and do not find statistically significant
evidence of adaptation. However, applying the same approach to regional crop yield data in the United
States and France, Mérel et al. (2021) do find clear signs of adaptation. For instance, the estimated
losses in US corn yields from a warming fall from 27% to 16% when adaptation is accounted for. This
demonstrates that the capacity to adapt varies by context, and that national–level models may obscure
such variation.

Mérel et al. (2021) show that standard panel models, such as those used by BHM, combine short–
and long–term effects, which can lead to overstated estimates of long–run damages if adaptation is not
properly accounted for. This ties into a broader debate in climate econometrics: whether temperature
affects long–run growth rates or only the level of output in the short run. BHM assume the former.
They argue that even small annual losses accumulate over time, because lower productivity reduces
investment and technological progress, which slows down economic growth. In contrast, Newell et
al. (2021) find little evidence for persistent growth effects. They argue that temperature shocks reduce
output temporarily, but that economies recover, suggesting smaller long–term damages. The distinction
matters. Growth effects imply lasting divergence, while level effects suggest short–term disruptions.
BHM include lagged temperature terms by adding the average annual temperature of up to ten previous
years as separate variables in their regression model. This approach tests whether temperature in earlier
years continues to influence economic growth in later years. However, as more lagged years are added,
the estimated effects become statistically less precise. Newell et al. (2021) interpret this increasing
uncertainty as evidence against persistent growth effects. Recent studies suggest that both short–run
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and long–run effects exist, depending on the specific time frame, scope, and modelling approach (Chen
et al., 2019; Dell et al., 2012; Kotz et al., 2024). Future research should focus on identifying when
short–run shocks translate into long–term economic damages.

These findings strengthen the case for using regional rather than national data. National averages
obscure within–country differences in climate exposure and adaptation (Rosés et al., 2021). Adaptation
is typically implemented at subnational levels, where local conditions shape both risks and responses
(Cortés Arbués et al., 2024). Regional data, such as the NUTS–2 level used in this study, are better
suited to capture how adaptation varies across space. Within–country variation also improves the
identification of short–run versus long–run effects (Mérel et al., 2021). This highlights a key limitation
of the BHM approach: national averages can overlook critical differences in adaptation and exposure
that shape climate damages.

This thesis does not apply the climate penalty term from the Mérel et al. (2021) model, because
the dataset by Rosés et al. (2021) provides annual climate data but only includes economic growth
observations for twelve benchmark years between 1900 and 2015. This means there are large gaps
between economic observations, making it difficult to link short-term deviations in weather to economic
outcomes. Adaptation to changing climate conditions may already have occurred within those long
intervals, so the influence of weather shocks from 5 to 15 years earlier cannot be properly tracked. As
a result, it is not possible to construct a meaningful penalty term based on rolling deviations between
annual weather and long-term climate expectations. Still, understanding adaptation remains essential.
As global warming accelerates, the distribution and effectiveness of adaptive capacity will strongly shape
future outcomes. Yet quantifying adaptation is difficult. Lesnikowski et al. (2017) argue that without
metrics for adaptation outcomes, it is hard to evaluate whether policies work. Nonetheless, research
must keep addressing this gap. Without it, models risk drifting away from the mechanisms they aim to
explain.

7.6. Policy implications
This discussion underscores that econometric models of climate impacts, including the extended and
re–analysed BHM model, provide important insights but must be interpreted with caution. The full
sample results confirm the presence of a concave temperature-growth relationship, but the estimated
optimum temperature is highly sensitive to the composition of the dataset. This numerical fragility,
revealed through both spatial and temporal jackknife analyses, challenges the notion of a universal
economic threshold. While the shape of the curve appears mostly robust across space and time, its
precise parameters are not. This distinction is essential for policymakers. Structural robustness does
not imply predictive certainty. The inclusion of precipitation and SLR improves the attribution of
damages and reveals the broader climate system’s interdependence. However, these variables are often
driven by temperature, and failing to model their causal dependencies risks underestimating systemic
effects. Explicitly modelling temperature as a driver of related climate variables is essential to capture
indirect pathways of impact. Policies that focus solely on direct temperature damages may overlook
compound risks from other climate variables related to temperature.

The debate about whether climate change affects growth rates or only output levels carries major
implications for policy design. If damages affect growth, even small effects accumulate into large future
losses. If damages affect only levels, the short-run costs are real, but recovery is possible. Policymakers
often rely on economic damage estimates to support emission targets or investment in adaptation. But
as Pindyck (2017) warns, estimates based on empirical climateeconomy relationships may give a false
sense of precision. Hsiang (2016) argue that such models can guide scenario analysis but must be paired
with transparent assumptions. The results in this thesis confirm that small changes in sample structure
can produce very different policy implications. Policymakers should therefore treat these models as
exploratory tools rather than predictive instruments.

Also, the functional form of the model assumes a global concave relationship between temperature and
growth. While intuitive and easy to estimate, this choice is restrictive. Studies such as Newell et al.
(2021) and Barker (2024) question whether a quadratic curve accurately captures complex climate-
economy dynamics. Different, more flexible functional forms, could reveal non-linearities, plateaus, or
multiple optima that the current form conceals.
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The results suggest that while the BHM model captures a robust statistical pattern, its exact parameters
are highly context–sensitive. The observed concavity is preserved in the full sample, but the estimated
coefficients and turning points are unstable. This makes the model structurally robust but numerically
fragile. For researchers and policymakers relying on these estimates to predict economic damages from
warming, this distinction is crucial. A small change in sample or specification can lead to vastly different
policy implications. Therefore, the model by BHM should be interpreted as a framework for identifying
patterns, not for defining precise thresholds. Its application to longer time frames and higher spatial
resolution reveals both the strengths and the limits of reduced-form econometric approaches to climate
impacts.

The jackknife analysis for both the 30–year climate means and the annual temperature model shows
that the estimated non-linear temperature-growth relationship is robust across regions, with only minor
variation when individual NUTS regions are excluded. In both specifications, the spatial standard
deviations of the temperature and precipitation coefficients are very small, confirming that no single
region drives the overall results. However, key differences emerge when comparing temporal sensitivity.
The model based on climate means exhibits greater variability in the linear temperature term when
individual years are omitted (σ = 1.80 × 10−1), while the annual temperature model displays a lower,
though still notable, temporal standard deviation (σ = 2.95 × 10−3). Despite the smaller scale of
coefficients in the annual model, both versions demonstrate that certain years exert stronger influence
than others, especially mid-century benchmarks like 1950. Moreover, although the figures for both
models use an identical x-axis range from 0◦C to 35◦C, the actual temperature observations in the
data do not exceed approximately 18◦C. As a result, the right-hand side of each graph extrapolates
beyond the available data, and confidence intervals widen accordingly. This artificial extension of the
domain, while useful for visual consistency, underscores the need for caution in interpreting the tails
of the estimated temperature-growth curves. In sum, both specifications support a concave long-run
temperature effect on economic growth, but the curvature and sensitivity to individual years vary
depending on the temporal resolution of the temperature input.



8
Conclusions

This chapter concludes the summary of the findings of this thesis in Section 8.1. The implications of
climate econometric models for policy design are concluded on in Section 8.2. The limitations and
directions of future research are outlined in Section 8.3.

8.1. Summary of findings
This thesis examined the robustness of the non-linear relationship between temperature and economic
growth proposed by BHM by extending both the temporal and spatial scope of the original model.
Using a regional panel dataset covering 170 European NUTS-2 regions from 1900 to 2015, the analysis
tested whether the concave shape and turning point of the temperature-growth curve persist when an
additional climate variable is included and when sensitivity to different regions, countries and benchmark
years is evaluated.

First, re-estimating the non-linear relationship between temperature and economic growth over the
extended dataset confirms that the concave functional form identified by BHM is structurally robust.
The estimated turning point lies at 11.8 ◦C, close to the 13.0 ◦C global estimate of the original model by
BHM. However, the estimated coefficients are approximately six times larger, suggesting that regional–
level variation within Europe may capture stronger climate sensitivities than global, national–level data.
This indicates that aggregation can dampen the observed temperature effect and supports the use of
regionally disaggregated data.

Second, the inclusion of SLR does not fundamentally change the concave shape but shifts the estimated
turning point. The temperature–only regression estimates an optimum at 13.9 ◦C, which drops to
11.8 ◦C when precipitation is included, and slightly rises to 12.0 ◦C with SLR. This shift confirms that
part of the temperature effect may be absorbing the influence of other, not included, variables. While
precipitation remains statistically insignificant on its own, it is jointly significant when included with
other climate variables. SLR has a small but statistically significant concave effect, consistent with
findings that it damages growth through physical capital losses in coastal areas (Cortés Arbués et al.,
2024). These results highlight the importance of accounting for multiple and interdependent climate
channels.

Third, sensitivity analyses reveal strong structural differences between spatial and temporal variation.
The regional–level jackknife shows that the estimated temperature-growth curve is highly robust to
the exclusion of individual regions. Estimated turning points remain within a narrow band, approxi-
mately ±0.6 ◦C around the baseline estimate. When entire countries are excluded, however, the results
become less stable. The country–level jackknife reveals that omitting certain countries shifts the esti-
mated optimum by up to +2.4 ◦C. Still, the concave shape persists across all country–level subsamples,
supporting the structural robustness of the relationship. However, the temporal jackknife results show
much greater instability. Removing specific benchmark years, particularly 1925, 1938, or 1950, produces
significant shifts in the estimated optimum temperature, up to +15.5 ◦C higher or −9.1 ◦C lower than
the estimated optimum of 11.8 ◦C. This reveals that the estimated relationship is not a universal func-
tion, but rather a collection of temporally distinct curves shaped by both climate and macroeconomic
conditions. The full–sample estimate is therefore not a stable optimum, but a historical average of
multiple context–dependent relationships.
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8.2. Econometric models for policy design
This thesis confirms that the temperature-growth relationship is sensitive to regional and temporal
conditions, suggesting that policy should not rely on a single global damage estimate. Instead, regionally
tailored estimates are needed to assess vulnerability, prioritise adaptation, and design more accurate
cost–benefit analyses of climate policy. Econometric models offer a key tool for this purpose by providing
empirical estimates of climate effects that can be directly integrated into policy frameworks (Baltagi et
al., 2011). They support policy design by revealing how temperature and related variables affect growth
trajectories across space and time. When used to estimate marginal effects, evaluate persistence, and
simulate policy scenarios, these models can improve Integrated Assessment Models, whose damage
functions have historically lacked empirical foundations. Econometric models might provide evidence
that helps clarify whether small changes in climate conditions may lead to large cumulative economic
damages. This distinction is critical for setting mitigation targets and justifying early investment in
adaptation.

8.3. Limitations and future research
This thesis has shown that the estimated relationships of the original study by BHM are robust to
modifications to model specification and data. Reanalysis and extension tests have provided insights
into the stability and potential generalisability of the findings. Through a re–analysis and extension
of the model by BHM, applied to climatic and economic data from 170 NUTS–2 regions in Europe
between 1900 and 2015 provided by the Climatic Research Unit, University of East Anglia (n.d.) and
Rosés et al. (2021) datasets, this thesis has investigated whether the climate–related economic effects
identified in the original work hold across different regional contexts and over an extended time frame.
However, several limitations affect the interpretation of the results and provide directions for future
work.

A first limitation concerns the use of benchmark year growth. While this method allows long-term
economic data to be matched with historical climate conditions, it makes the model sensitive to the
choice of years. These shifts indicate that the results reflect a mix of climatic and historical effects.
Benchmark year models are useful for detecting long-run patterns, but they do not isolate short–run
shocks. Future work should compare results across models using benchmark year growth and annual
data to test how stable the estimated effects are over different time structures.

A second limitation relates to variable inclusion. The estimated temperature effect changes when precip-
itation and SLR are added to the model. The linear term increases from 0.0572 in the temperature–only
model (Table C.15) to 0.0737 when precipitation is included (Table C.5), but slightly decreases again to
0.0727 with the addition of SLR (Table C.10). This pattern suggests that temperature partly reflects
the influence of these omitted variables, and that including them helps isolate their effect on economic
growth. However, precipitation and SLR are not independent of temperature. Their inclusion improves
attribution, but also introduces identification problems. Precipitation is difficult to model due to high
variability and weak effects in models that use annual averages. SLR moves slowly and affects specific lo-
cations. The interdependence of climate variables requires more advanced modelling strategies. Future
studies should treat temperature as a driver of other variables and consider system–based approaches
that reflect causal relations.

A third limitation is the lack of sector–level detail. Because GDP data by sector are not available at
the NUTS–2 level over this full time span, the results mostly reflect average effects across the service–
dominated European economy (Rosés et al., 2021). This hides differences between sectors with higher
exposure, such as agriculture and coastal infrastructure. Studies using sectoral output, crop yields,
or firm-level productivity could offer more precise and informative insight into how different activities
respond to climate risks. This would improve the relevance of climate damage estimates for adaptation
planning. Adaptation is not modelled directly in this thesis, which is in line with the model by BHM.
Although long time series can reflect past adjustments, the results do not distinguish between damages
avoided through adaptation and those that occurred despite it. Future work should try to include
measures of adaptation directly, for example by using climate penalty terms or comparing regions with
different capacities to adapt. This would allow researchers to test whether adaptation has occurred and
where it is most effective.
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This study used the dataset by Rosés et al. (2021), which provides detailed regional variation across
170 European NUTS–2 regions. However, the analysis focused on the aggregate relationship between
temperature and economic growth, as captured by the concave curve. As a result, the regional hetero-
geneity present in the data was not fully explored. Future studies could follow the approach of Cortés
Arbués et al. (2024) by zooming in on specific regions to examine where climate change has caused the
strongest disruptions. This approach could help policymakers understand regional damage hotspots
and plan investments to promote climate adaptation, even exploring scenarios of drastic relocation of
capital and labour.

Finally, the shape of the estimated curve follows a fixed quadratic form. While this is common in the
literature, it may hide more complex dynamics. Future research should test alternative functional forms
to allow for multiple optima, thresholds, or plateau effects. This could reveal whether the concave shape
truly holds, or whether the response varies in different parts of the temperature distribution. Testing
functional forms is important when using these models to inform climate damage functions or policy
thresholds.

In summary, this study shows that climate affects regional growth in a non–linear way, but that the
strength and shape of this effect depend on model and data structure, included variables, and historical
context. Future research should aim to separate short– and long–run effects, capture adaptation explic-
itly, and improve spatial and temporal resolution. These improvements are necessary to develop robust,
transparent, and context–sensitive climate-economy estimates that can guide effective decision–making
(Cortés Arbués et al., 2024; Baltagi et al., 2011).
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Appendix A - Data

A.1. Economic and climate data description and visualisation
xxxx

A.1.1. Tables before processing
The main output variable is regional GDP measured in 2011 international dollars, adjusted for purchas-
ing power parity. This means that one dollar of output buys roughly the same amount of goods and
services in every region. Additional variables include annual population (in thousands), land area (in
square kilometres) and the employment in agriculture, industry and services (in percentage).

Table A.1: Descriptive Statistics (part 1)

count mean std min 5% 25% 50% 75% 95% max skew kurtosis

year 29766.0 1960.9917 34.9434 1900.0000 1907.0000 1931.0000 1961.0000 1991.0000 2015.0000 2021.0000 -0.0014 -1.1982
temperature 29766.0 9.2904 3.2626 -3.3171 3.3975 7.6285 9.2217 11.0333 15.0651 20.2222 -0.1710 0.7681
temp_max 29766.0 13.4258 3.5880 1.0818 6.7562 11.5111 13.3667 15.6530 19.3964 24.0865 -0.2480 0.3996
precipitation 29766.0 641.9627 204.6717 93.7083 386.0955 503.7450 603.3263 736.4878 1055.6521 1815.7264 1.0981 1.7248

Table A.2: Descriptive Statistics (part 2)

count mean std min 5% 25% 50% 75% 95% max skew kurtosis

gdp_1990 2046.0 21892.2762 36382.7394 44.3411 789.9337 3623.9108 9760.2065 25190.6133 81316.6973 444883.2500 5.1231 39.3345
gdp_2011 2046.0 35574.2528 60963.7541 42.5413 1110.0423 4864.0178 14396.3184 41627.9092 137768.1484 791723.4375 4.9521 37.5107
population 2046.0 1831.4582 1788.3697 20.0608 273.1268 705.1220 1268.1855 2339.4982 5140.1263 15011.6660 2.5345 9.0848
emp_agrishare 2036.0 0.2257 0.2168 0.0003 0.0121 0.0439 0.1348 0.3830 0.6493 0.8994 0.9024 -0.3664
emp_indshare 2036.0 0.3165 0.1177 0.0508 0.1441 0.2276 0.3023 0.3929 0.5292 0.7323 0.4397 -0.2338
emp_servshare 2036.0 0.4579 0.2074 0.0499 0.1619 0.2758 0.4362 0.6431 0.7856 0.9263 0.1621 -1.1822
area 2052.0 19614.5258 25739.3625 419.2000 1784.0000 5291.1001 10831.8398 23863.6504 70273.0000 203197.0000 3.7346 18.8972

Number of unique NUTS regions: 246
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A.1.2. Histograms before processing

Figure A.1: Histograms roses and wolf data no prep
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A.1.3. Regional GDP per capita and growth rate (for 170 regions)

Figure A.2: Evolution of GDP per capita over time by (NUTS-2) region

Figure A.3: Average GDP per capita over time across 170 regions
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Figure A.4: Evolution of GDP per capita growth over time by (NUTS-2) region

Figure A.5: Average GDP per capita growth over time across 170 regions
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A.1.4. Rolling means temperature and precipitation

Figure A.6: Average all regions (246) rolling mean for temperature

Figure A.7: Average 30-year rolling mean temperature across 170 regions

Figure A.8: Average all regions (246) rolling mean for precip
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Figure A.9: Average 30-year rolling mean precipitation across 170 regions

A.1.5. SLR data preparation
SLR data before preperation

Table A.3: Descriptive Statistics of SLR Variables

count mean std min 5% 25% 50% 75% 95% max skew kurtosis

year 2249.0 1966.7692 38.6771 1900.0000 1900.0000 1938.0000 1970.0000 2000.0000 2020.0 2020.0 -0.2489 -1.1921
AverageRSLR 757.0 7002.6667 101.2444 6624.3999 6835.3354 6960.2998 7004.7998 7049.3335 7146.0 7460.0 0.2990 3.5855
MaxRSLR 757.0 7069.5020 111.1896 6655.0000 6894.8000 7012.0000 7070.0000 7128.0000 7220.6 7612.0 0.5054 3.1682

Regions with 1 observation in AverageRSLR: 82
Regions with 1 observation in MaxRSLR: 82

Figure A.10: All regions with SLR data no prep
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Figure A.11: Average over all regions with SLR data no prep

A.1.6. Interpolation SLR data

Table A.4: Missing values per variable

Variable Number of missing values
nuts 0
geometry 0
year 0
AverageRSLR 150
MaxRSLR 150

spatial and temporal interpolation

Table A.5: Remaining missing values after spatial and temporal interpolation

Variable Missing values
nuts 0
geometry 0
year 0
AverageRSLR 5
MaxRSLR 5

Table A.6: NUTS regions with remaining missing values

NUTS Missing count
ES12 1
ES13 1
ES21 1
FR23 1
FR61 1
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Table A.7: Years with missing values per NUTS region

NUTS Year
ES13 1900
ES12 1900
FR23 1900
FR61 1900
ES21 1900

The procedure identifies regions where only one year of sea level data is missing. If this missing year is
1900 and data for 1910 is available, the value for 1900 is filled using the value from 1910. The script
then reports which regions have been updated and displays the new values for 1900. As a result, no
missing values remain in the dataset. The final classification still includes 82 coastal regions, defined as
those with any non-zero sea level values, and 88 non-coastal regions, where all sea level values remain
zero. This gives 170 regions in total.

Visualisation SLR

Figure A.12: Evolution 170 regions with SLR data after interpolation

Figure A.13: Average across 170 regions with SLR data after interpolation
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Difference in SLR

Figure A.14: Average over all regions with SLR data (coastal) after interpolation

Since 1900 for all regions is zero it does not make sense and is removed. Note, the colours of the lines
are random in each plot.

Figure A.15: Average over all regions with SLR (coastal) data after interpolation

Average SLR of coastal regions over time
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Figure A.16: Average over coastal regions with SLR data

A.1.7. Scatter plots
Figure A.17 presents a series of scatterplots showing the relationship between the squared change in
relative sea level rise (dif_slr_sq) and GDP per capita growth across all benchmark years from 1910
to 2015. Each subplot corresponds to a specific year and visualises the cross-sectional distribution of
NUTS-2 regions. Across all years, the relationship between dif_slr_sq and economic growth appears
weak and largely unstructured. Most observations are tightly clustered near the origin on the x-axis,
reflecting that squared SLR changes are small for the majority of regions. A small number of regions,
particularly in more recent years, show much larger values of dif_slr_sq (exceeding 5 × 105), indicating
relative SLR changes likely caused by strong subsidence or uplift.

Despite these larger values, there is no clear visual indication of a consistent relationship between
squared sea-level rise and GDP growth. This suggests that, on its own, the intensity of relative sea-
level change does not systematically relate to regional economic performance. However, the increasing
dispersion of values over time hints at growing heterogeneity in regional sea-level experiences.

Figure A.17: Scatter plots for benchmark years GDP growth and the difference in SLR squared

Scatterplots for all exploratory variables used in the analysis (both in linear and squared form), can be
found in Appendix A.
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Figure A.18: scatter on benchmark years climate temp

Figure A.19: scatter on benchmark years climate temp squared
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A.2. pairwise correlation including squares

Figure A.20: Lower triangle of the pairwise correlation matrix between GDP per capita growth and climate variables



B
Appendix B - Model

B.1. Context - BHM model
This section describes the theoretical and empirical foundation of the BHM model. The model starts
from a Cobb–Douglas production function where temperature influences the productivity of labour
and capital (Burke, Hsiang, et al., 2015). Temperature enters the model through productivity terms
that respond to climate conditions. When this framework is aggregated from individual production
units to countries or regions, it leads to a smooth and concave relationship between temperature and
economic output. The aggregation assumes that the shape of the temperature exposure distribution
remains stable across time. As a result, changes in the annual average temperature reflect changes in
productivity. This leads to the expectation that economic output increases with temperature up to an
optimum level and then declines.

B.2. Research motivation - modelling approach
This research applies the BHM model to a different empirical setting to test whether the concave
temperature–growth relationship is robust. The model is estimated for 170 NUTS–2 regions in Europe
between 1900 and 2015. This allows for a long-run perspective and analysis at a finer spatial scale than
in the original study (Rosés et al., 2021). To assess whether including more climate risks affects the
main results, SLR is added as an additional variable. This makes it possible to consider potential risks
from coastal flooding (Kirezci et al., 2020; Kotz et al., 2022).

Initially, a second model by Mérel et al. (2021) was considered. This model includes a penalty term for
deviations from long-run climate norms to examine the role of adaptation. The idea was to implement
both models and compare their findings. However, the Mérel et al. (2021) model was ultimately not
included in the empirical analysis. The reason for this is that the adaptation penalty term proved
difficult to interpret over the full historical period, and the primary focus of this thesis remained on
long-run structural climate risks. Still, the approach by Mérel et al. (2021) is briefly discussed to reflect
its conceptual relevance to the broader research design.

B.3. Methods, data and limitations
In order to do a successful robustness analysis, this section describes the methods, data sources, and
limitations of two climate–econometric models: BHM and Mérel et al. (2021). As Clemens (2017)
clarifies, a robustness test differs from replication in that it does not seek to reproduce identical results,
but rather to assess the sensitivity of a model’s conclusions under altered conditions. In line with this
distinction, the BHM model is re–estimated using revised code and applied to an alternative dataset
comprising 170 NUTS–2 regions in Europe over the period 1900–2015, thereby combining elements of
reanalysis and extension testing. This thesis aims to determine whether the relationships identified
in the original study, specifically the global concave effect of temperature on economic output (Burke,
Hsiang, et al., 2015), are comparable when applied to a different regional and temporal context. The
Mérel et al. (2021) model is discussed as a relevant alternative but is not implemented.

The BHM model, titled ’Global Non–Linear Effect of Temperature on Economic Production’, employs a
global panel dataset covering 166 countries over a time frame of 50 years, using econometric techniques
to identify the relationship between temperature fluctuations and economic performance. The model
accounts for long–run adaptation and non–linearity in economic responses to climate change.
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The model by Mérel et al. (2021), titled ’Climate Econometrics: Can the Panel Approach Account
for Long–Run Adaptation?’, proposes an alternative way to estimate adaptation by including a climate
penalty term. It relies on a fixed–effects panel regression with long-run climate norms and their deviation
as explanatory variables. The model uses data from 12 regions in the United States and 21 in France,
subdivided into 88 departments at the NUTS–3 level, over a 60-year period.

B.4. Data
This study utilises two datasets to examine the relationship between climate change and economic
performance at the regional level: the Roses and Wolf V6 regional GDP dataset (Rosés et al., 2021)
and high–resolution climatic data from the Climatic Research Unit (CRU) at the University of East
Anglia (Climatic Research Unit, University of East Anglia, n.d.). These two datasets are merged at the
NUTS–2 level.

B.4.1. Economic data - Roses Wolf V6 dataset

The Roses Wolf V6 dataset provides long–term regional GDP estimates across 16 European countries,
covering 170 regions from 1900 to 2015. This dataset follows the NUTS–2 classification (as of 2010)
and offers a detailed reconstruction of economic activity using historical national accounts, employment
structures, and sectoral productivity estimates (Rosés et al., 2021).

Variables in the Roses Wolf V6 dataset

The variables in the dataset are as follows: country, indicating the sovereign state to which the region
belongs based on current international borders; NUTS codes, the statistical classification code assigned
to each region under the Nomenclature of Territorial Units for Statistics (NUTS) system used for
regional economic analysis in Europe; region, specifying the name of each region; regional GDP (1990
PPP), which is regional GDP adjusted for purchasing power parity in 1990 international dollars; regional
GDP (2011 PPP), which is regional GDP adjusted for PPP in 2011 international dollars; area (km2),
indicating the total land area of each region in square kilometres; population (1000s), which reports the
population of each region measured in thousands; employment share in agriculture, the percentage of
the regional workforce employed in the agricultural sector; employment share in industry, the percentage
of the workforce employed in the industrial sector; and employment share in services, the percentage of
the workforce employed in the services sector.

B.4.2. Climatic data - CRU high-resolution gridded dataset

The CRU high–resolution gridded dataset uses monthly temperature and precipitation data from the
CRU TS (time–series) dataset provided by the Climatic Research Unit at the University of East Anglia.
The CRU dataset offers gridded climate data at a 0.5ř 0.5ř spatial resolution, covering global climate
observations from 1901 to the present.

The variables used in this research are: the variable pre, which represents mean precipitation, and tmp,
which represents mean temperature.

B.5. Principal mathematical formulas from BHM
1. Macro–level output as a function of average temperature

The original study by BHM presents a macroeconomic production function (Equation 1 in the main
paper and Equation 7 in the supplementary materials) that links a countrys total output to its annual
average temperature. This expression is derived by summing production over all industries, locations,
and times, and rewriting it in terms of average temperature. For country L in year τ , output is defined
as:

YLτ (TLτ ) =
∑

i

∫ +∞

−∞
fi(T ) gi(T − TLτ ) dT, (B.1)
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Where YLτ is total output, TLτ is the countrys average temperature, fi(T ) is the temperature–dependent
productivity of a micro–level unit in industry i, and gi(T − TLτ ) is the distribution of temperature
exposure relative to the mean. This integral aggregates all micro–level responses to derive total output.
The relationship implies that national output is a smooth concave function of annual temperature,
reflecting underlying non–linear temperature sensitivities.

BHM assume that output contributions from industries and locations are additive, and that the shape
of the distribution gi(·) is stationary over time, shifting only with the mean. Capital and labour are
assumed not to relocate in response to short–term temperature changes, making TLτ a sufficient statistic
for that years exposure.

The same logic applies to regional analysis. For a subnational region R, the expression becomes:

YRτ (TRτ ) =
∑

i

∫ +∞

−∞
fi(T ) g(R)

i (T − TRτ ) dT (B.2)

Where TRτ is the regions annual average temperature, and g(R)
i is the region–specific exposure distribu-

tion. The meaning is similar: regional output depends on how often different temperatures occur and
how each temperature affects productivity. Regions tend to have narrower distributions than countries,
so their aggregate response may reflect fi(T ) more directly.

Since micro–level data are not available, only the relationship between regional output YRτ and average
temperature TRτ is estimated. The function fi(T ) remains theoretical. Regions are treated as econom-
ically independent, even though in reality there may be spillovers through trade or migration. This
simplification allows each region to be analysed as a small open economy.

Micro-level productivity
The original study by BHM assumes a highly non–linear response of output to instantaneous temper-
ature. A simplified form of this response, shown in their supplementary materials as equation 8, is a
piecewise linear function with a turning point T̃ where productivity is maximised:

fi(T ) =

{
c1 + b1T, if T < T̃ ,

c2 + b2T, if T ≥ T̃ ,
(B.3)

Continuity at T̃ is enforced by c1+b1T̃ = c2+b2T̃ , with slopes b1 > 0 and b2 < 0. In addition, |b2| > |b1|,
meaning the decline after the threshold is steeper than the increase below it. This formulation captures
the idea that output improves with temperature in colder conditions but decreases more sharply once
it gets too hot. It implies a well–defined optimum beyond which productivity drops quickly.

This micro–level function fi(T ) forms the basis of the macro model. When aggregated over the dis-
tribution of daily temperatures, as in equation B.1, it produces a smooth concave annual relationship
between average temperature and output. This is a key component in deriving macro–level climate
impacts from micro–level physiological or economic responses.

Empirical support for this non–linear shape is provided in Figure B.1 and Figure B.2. These show fitted
pairwise linear regressions that approximate the shape of fi(T ). Figure B.1 plots annual temperature
against GDP per capita. It identifies a turning point at approximately 11.35 ◦C, where output peaks
before declining more sharply.
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Figure B.1: Pairwise linear fit between annual temperature and GDP per capita. The kink is estimated at 11.35 ◦C.

Figure B.2 repeats this analysis using a rolling average climate temperature. This represents longer–
term climatic exposure. The turning point in this case occurs slightly earlier, at 10.44 ◦C. Both figures
confirm that output first rises with temperature, reaches a maximum, and then declines.

Figure B.2: Pairwise linear fit between climate mean temperature and GDP per capita. The kink is estimated at
10.44 ◦C.

While the piecewise linear form in equation B.3 is a simplification, it remains analytically useful and
consistent with the observed data. BHM assume one dominant threshold T̃ and apply the same rela-
tionship across all micro units within each industry i. Capital and labour do not reallocate in response
to short–term weather changes, and each unit directly experiences the effects of fi(T ). This isolates the
instantaneous effect of temperature on productivity.

The same micro–level shape is assumed to hold within each region. Although actual thresholds or
slopes might differ across regions, the analysis follows BHM in keeping a common structure and esti-
mating aggregate effects. In principle, each region R could have its own function f

(R)
i (T ), reflecting

local adaptation. However, the model assumes a general form to assess whether average productivity
outcomes vary with local conditions. The key assumption remains that each unit responds non–linearly
to temperature, and that this response does not adjust over short time frames.
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Non-linear aggregate response and optimal temperature

After integrating the micro–level function over the full temperature distribution, national output YLτ

becomes a smooth concave function of the annual average temperature TLτ . BHM derive an expression
for the marginal effect of a small change in average temperature on output per unit of productive mass.
Using the piecewise linear micro function fi(T ), the marginal effect is written as:

∂

∂TLτ

(
Yi

Mi

)
= b1mi1(TLτ ) + b2mi2(TLτ ), (B.4)

where Mi is the total mass of productive units in industry i, and mi1 and mi2 are the shares of time
that units in industry i spend below and above the threshold temperature T̃ , respectively. By definition,
mi2 = 1 −mi1.

The coefficients b1 and b2 reflect how productivity responds to temperature in the cooler and hotter
parts of the year. If most temperatures fall below T̃ , so mi1 is large, the marginal effect of warming is
likely positive. If the climate is already warm, and mi2 dominates, the marginal effect is likely negative.
In a moderate climate where mi1 and mi2 are balanced, the net effect of a small temperature change is
close to zero.

This expression helps explain why the overall temperature–output relationship is non–linear. It shows
that the marginal effect depends on the countrys climate profile through mi1 and mi2. If b1 and
b2 are fixed across all locations, then variation in marginal effects across countries or regions must
come from differences in their average temperature. This supports the idea that hotter areas are
more vulnerable to warming than cooler areas, not because of income differences, but because of the
temperature distribution they experience.

The interpretation relies on two assumptions. First, the shape of the exposure distribution gi(T − T )
does not change except for a horizontal shift. This means changes in average temperature shift the
distribution left or right, without altering its variance or skewness. Second, the slopes b1 and b2
are constant within each segment. These assumptions simplify the model and make the integration
analytically tractable.

The optimum temperature T̄ ∗ is the level of T where the marginal effect becomes zero. Setting the
derivative in equation B.4 equal to zero gives the condition:

b1m1(T̄ ∗) + b2m2(T̄ ∗) = 0. (B.5)

This point defines the turning point of the concave function. At this temperature, the positive and
negative effects of temperature exposure balance each other out.

A similar relationship holds at the regional level. Letting R represent a region, the marginal effect of
regional temperature on regional output is:

∂

∂TRτ

(
YR

MR

)
= b1m

(R)
1 (TRτ ) + b2m

(R)
2 (TRτ ), (B.6)

where MR is total productive mass in region R, and m(R)
1 and m(R)

2 are region–specific exposure shares.
This structure allows the model to be applied to smaller geographic units, using the same underlying
assumptions and logic as at the national level.

temporary and lasting effects on economic growth

BHM investigate whether temperature shocks affect only the level of output or also influence its long–
term growth path. To explore this, they use a simplified Solow–style growth model in their supple-
mentary materials. When changes in the capital stock are modest from year to year, output can be
approximated as linear in the stock of productive units M , with the slope depending on temperature
through the function ψ(T ).

The total output at time t is given by:
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Yt = ψ(T t)γMt (B.7)
where γ is a constant and ψ(T t) captures how productivity changes with average temperature.

Capital accumulation is governed by:

dMt

dt
= sYt − δMt, (B.8)

where s is the savings rate and δ is the depreciation rate. A fraction s of current output is reinvested,
while a fraction δ of capital depreciates. If temperature is abnormally high in year t, then ψ(T t) is
low, leading to reduced output and therefore less investment. This reduces the capital available in the
following year.

Combining these two expressions, the output in period t can be written in terms of the previous period’s
capital stock Mt−1 and past temperature:

Yt = ψ(T t)γ
(
Mt−1 + sψ(T t−1)γMt−1 − δMt−1

)
(B.9)

This equation shows that temperature in period t− 1 affects output in period t through its influence on
capital accumulation. A heat shock reduces productivity and savings, which lowers future capital and
thus future output.

These dynamics imply that temperature affects both the level and the growth of output. In the short
run, ψ(T t) directly affects Yt. In the longer run, that effect carries over through capital investment. If
lost output is not fully compensated by higher savings, then even a temporary shock leads to a lasting
gap in capital and output. The economy may not return to its previous path immediately.

In their main paper, BHM find that temperature affects GDP per capita growth, not just output levels.
This raises the question: is this a persistent effect, or just a reflection of short–term fluctuations? The
Solow–style model supports the idea that part of the effect is lasting. If shocks were fully temporary,
then using GDP growth (the first difference of log output) would show no effect. But the findings
indicate otherwise. This suggests that temperature shocks are partly persistent.

Whether the same mechanism holds for regions is a more complex question. In the dataset from Rosés
et al. (2021), regions are not closed economies. Capital and labour can move between regions, and
central governments can provide support. For example, a poor harvest in one region might be offset by
national transfers or outside investment. This weakens the persistence of local shocks.

Still, equation B.9 can be applied to regional output YR and capital MR if one assumes regions behave
like small open economies. A heat shock that lowers output in region R would reduce investment and
capital in the next year. However, outside capital might also flow in if profit opportunities exist. The
model does not account for this, so applying it to regions involves an extra assumption: that regional
capital accumulation responds mainly to local output, with limited outside influence.

Empirical panel regression model
To estimate the relationship between temperature and economic performance, BHM apply a panel
regression using country–level data from 1960 to 2010. The outcome variable is the annual growth rate
of GDP per capita, approximated by the first difference in the natural logarithm of GDP per capita.
The main regression model is written as:

∆ ln Yi,t = h(Ti,t) + λ1Pi,t + λ2P
2
i,t + µi + νt + θi1t+ θi2t

2 + εi,t, (B.10)
where i refers to countries and t to years. The function h(Ti,t) captures the effect of annual temperature.
In the baseline model, it is specified as a quadratic:

h(Ti,t) = β1Ti,t + β2T
2
i,t, (B.11)

which allows for a concave response of economic growth to temperature. The term Pi,t denotes annual
precipitation, which is included as a control variable. Like temperature, it enters the model as a
quadratic term, with coefficients λ1 and λ2.
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The term µi represents country fixed effects. These control for all time–invariant characteristics of each
country, such as average income, political institutions, or geographic conditions. The year fixed effects
νt account for global shocks or trends that affect all countries in a given year, such as financial crises
or commodity price shifts.

Country–specific linear and quadratic time trends are included as θi1t + θi2t
2. These capture long–

run shifts in national growth patterns, for example due to technological change, structural reforms, or
convergence processes. The term εi,t is the idiosyncratic error. Standard errors are clustered by country
to correct for serial correlation in residuals over time.

This empirical model provides a flexible structure to estimate non–linear effects of temperature, while
accounting for country heterogeneity, time trends, and global shocks. It allows the marginal effect of
temperature to vary with baseline climate conditions and controls for potential confounding factors
through fixed effects and time trends.

Interpretation of the empirical specification

This model estimates how deviations in annual temperature influence economic growth within each
country. The fixed effects and time trends ensure that the temperature effect h(Ti,t) is identified from
short–term fluctuations around each countrys long–run growth path. In other words, the model asks
whether a country grows faster or slower than usual in years that are warmer or colder than its historical
average.

The function h(T ) is quadratic, which means that the estimated relationship between temperature and
growth is concave. The coefficient β1 reflects the initial slope of the response at moderate temperatures,
while a significantly negative β2 indicates diminishing returns and potential losses at high temperatures.
The curve implied by this form identifies a specific temperature at which growth is maximised, and
beyond which it declines.

This regression is the central empirical tool used by BHM to quantify the non–linear effect of temperature
on output growth. It translates the theoretical framework into an econometric model that can be
estimated using historical data. The results, especially the estimated h(T ), provide evidence for the
concave shape and allow for projections under future warming scenarios. The use of country fixed effects
µi and year fixed effects νt ensures that the estimated temperature effect is based on within–country
variation over time. This avoids confounding due to cross–country differences, such as the tendency
for cooler countries to be richer. Similarly, country–specific time trends θi1t+ θi2t

2 control for gradual
structural changes, such as institutional reform or long–term development. The estimation relies on
the assumption that, conditional on the included controls, temperature deviations are exogenous with
respect to economic growth. This means that there are no omitted variables that simultaneously
influence both temperature and output. The inclusion of year fixed effects controls for global shocks,
while country–specific trends address slow–moving unobserved factors. This setup provides a strong
identification strategy, though it assumes that countries do not fully adapt to unusual temperatures in
the short run. Short–term responses such as emergency policy, migration, or increased energy use are
treated as part of the economic outcome. BHM argue that there is little evidence for full adaptation in
the historical sample, so treating temperature variation as unanticipated is reasonable. They also test
alternative specifications using flexible functional forms, such as splines or higher–order polynomials,
and find similar patterns. This supports the use of a quadratic form for h(T ). Finally, it is assumed
that the effect of temperature in year t appears primarily in year ts growth. BHM later test this by
including lagged temperature values and find some evidence for persistent impacts. This suggests that
temperature shocks may not only affect current output but also carry over into future periods.

To apply the panel regression model to a regional dataset, the same structure as equation B.10 is used,
but with NUTS–2 regions as the observational units. Let r denote region and t denote year. The
model now includes region fixed effects αr to control for time–invariant differences across regions, such
as baseline income levels, geography, or climate. The terms ϕr1 and ϕr2 are region–specific linear and
quadratic time trends, capturing gradual changes in regional growth trajectories. Year fixed effects γt

are also included to account for shocks common to all regions in a given year.
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The interpretation remains similar: the model relates deviations in a regions economic growth to devia-
tions in annual temperature. By including region fixed effects αr, the regression isolates within–region
variation and removes long–run differences between regions, such as those between northern and south-
ern parts of Europe. The region–specific time trends account for slow–moving developments, including
industrial change, migration, or convergence. The key identifying assumption is that, once fixed effects,
trends, and precipitation controls are included, remaining temperature variation within each region is
uncorrelated with other omitted determinants of growth. This is more plausible when the dataset in-
cludes many regions and many years. However, spatial correlation in temperature shocks can still bias
standard errors. A heatwave or cold spell might affect multiple neighbouring regions at once. To ac-
count for this, inference should be based on standard errors clustered at a higher level, such as countries
or climate zones.

Estimating the model at the regional level offers a useful test of robustness. If the concave relationship
between temperature and growth found at the country level is a general feature of economic systems,
then similar patterns should emerge across regions. If instead the results differ, this may point to
factors such as national policy, labour mobility, or inter–regional trade modifying the economic impact
of climate. The model structure allows for such a comparison, helping to understand whether the
temperature–growth link holds across different spatial scales.

B.6. Principal mathematical formulas from Mérel et al. (2021)
1. Model with long–run adaptation

In their framework, Mérel et al. (2021) model the relationship between regional economic performance
and annual climate by allowing for non–linear effects and deviations from long–run climatic norms. For
region i in year t, the model is defined as:

yit = αi + β1xit + β2x
2
it + β3(xit − µi)2 + εit (B.12)

The dependent variable yit is the natural logarithm of GDP per capita. The variable xit refers to
the annual average of a weather indicator, such as temperature or precipitation. The term µi is the
long–run average climate for region i, and it captures the conditions to which the region is assumed to
have adapted. The fixed effect αi accounts for time–invariant regional characteristics. The parameters
β1 and β2 allow for a concave effect of weather on output, and β3 captures whether output is reduced
in years when weather deviates from the expected local climate.

The deviation term (xit − µi)2 implies that weather shocks can reduce output when they move away
from historical norms. The parameter β3 is expected to be less than or equal to zero. If β3 = 0, there is
no penalty for deviations and agents are fully adapted. If β3 < 0, output falls when conditions depart
from long–term averages, indicating incomplete adaptation. The error term εit is assumed to be strictly
exogenous, such that E[εit | αi, µi, xi1, . . . , xiT ] = 0.

This model distinguishes between short–term and long–term responses. When xit = µi, the deviation
term drops out and the expression simplifies to the long–run relationship:

yLR
it = αi + β1µi + β2µ

2
i

which defines the output level under full adaptation to the local climate. When actual weather differs
from µi, output may decline due to the penalty from the deviation term. In this way, the model captures
how agents adjust to their long–term climate but remain exposed to temporary anomalies.

To estimate this model using the dataset by Rosés et al. (2021), the dependent variable is constructed
as the log of regional GDP per capita. The weather variable xit can be temperature or precipitation.
The climate mean µi is calculated as a rolling 20–year average of past values. For early years with
limited data (19001919), all available prior observations are used. The squared deviation (xit − µi)2 is
included to estimate β3. A significantly negative estimate for β3 indicates that output is lower when
weather deviates from the local climate.
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Region fixed effects αi are included to control for unobserved time–invariant heterogeneity. Identifica-
tion of parameters comes from interannual variation in weather. While equation B.12 is shown for a
single climate variable, it can be extended to multiple variables. For instance, both temperature and
precipitation can be included with separate quadratic and deviation terms to estimate joint adaptation
responses.
2. Fixed–effects panel model without adaptation

Many empirical studies on the economic effects of climate use a panel regression without explicitly
modelling adaptation. This so–called naïve approach relates annual weather to economic outcomes using
region fixed effects, while assuming that the effect of weather is the same for all regions, regardless of
their usual climate. In terms of equation B.12, the naïve model sets β3 = 0, which removes the
adaptation term (xit − µi)2. The simplified model is stated in Mérel et al. (2021) as equation 6:

yit = αi + b1xit + b2x
2
it + eit. (B.13)

The error term eit absorbs unexplained variation, including the effects of unmodelled adaptation. This
specification estimates the effect of weather fluctuations on economic output, using only within–region
variation over time. The fixed effects αi control for time–invariant differences between regions, such as
geography, infrastructure, or long–term income levels.

This approach is commonly used because it avoids bias from comparing regions with systematically
different climates. For example, richer regions are often located in cooler climates. A simple cross–
sectional regression of GDP on temperature might then mistakenly attribute differences in income to
temperature rather than to other factors. By using fixed effects, the model removes these time–invariant
confounders and estimates the effect of weather shocks within each region.

The inclusion of a quadratic term x2
it allows for non–linear responses to temperature. The key identifying

assumption is that annual weather deviations are uncorrelated with other determinants of growth, after
controlling for region and year fixed effects. This implies that xit is as good as randomly assigned once
these controls are included. Conceptually, the model compares a regions output in a warmer or cooler
year to its average outcome, treating the region as its own control.

However, a central limitation of this model is that it does not account for long–run adaptation. The
coefficients b1 and b2 are assumed to be constant across regions, even though some regions may be better
adapted to certain climate conditions than others. As Mérel et al. (2021) note, with region fixed effects
included, there is no remaining variation in long–run climate µi that can identify adaptation separately.
This means that b1 and b2 reflect short–term responses to weather under the current adaptation state,
but they do not capture the structural effect of being in a hotter or cooler climate.

The assumption for consistent estimation is that omitted factors like µi affect output only through the
fixed effect αi, and that there are no omitted time–varying variables that correlate with both xit and
yit. If in fact the marginal effect of weather depends on µi, as in equation B.12, then the naïve model is
mis–specified. In this case, b1 and b2 estimate a combination of short–run and long–run effects, rather
than a clean short–run response.

While the naïve panel model does not provide unbiased estimates of the parameters in equation B.12, it
still recovers some average effect of weather. The interpretation of b1 and b2 becomes more complicated
when their values reflect both adaptation and vulnerability. Mérel et al. (2021) show that when the
temperature distribution differs across regions, the non–linear shape of the fitted curve is informed
partly by cross–sectional differences, even in a fixed–effects specification.

Intuitively, regions with hotter climates provide more data points at the upper end of the temperature
range, while cooler regions provide more at the lower end. As a result, the estimated curvature in
xit reflects not just how a single region responds to different weather, but also how different regions
contribute to the shape of the overall response. The estimated coefficients b1 and b2 are therefore
biased versions of β1 and β2 when β3 ̸= 0, and the direction of the bias depends on the distribution of
temperature variation in the sample.



B.6. Principal mathematical formulas from Mérel et al. (2021) 86

Implementing equation B.13 with the dataset from Rosés et al. (2021) involves estimating a fixed effects
panel regression with log GDP per capita as the dependent variable. For each region i and year t, yit is
defined as ln(GDPit/Populationit). Explanatory variables include annual average temperature xit and
its square x2

it. Precipitation and its square are added as additional controls. Fixed effects αi account for
region–specific time–invariant factors, while year fixed effects control for shocks common to all regions.

The resulting coefficients b1 and b2 describe the average temperature–output relationship observed in
the panel. For example, a negative b1 combined with a positive b2 implies a concave shape, where output
decreases with rising temperature up to a certain point and then the decline slows. These coefficients
must be interpreted with care: they reflect the effect of short–term weather fluctuations, not necessarily
the long–term impact of climate change. If adaptation plays a role, as suggested by theory, then further
analysis is needed to isolate its influence. The next section introduces a decomposition that clarifies
how the panel estimates relate to underlying adaptation dynamics.
3. Decomposition of panel estimates into short– and long–run components

Mérel et al. (2021) derive a key result that links the fixed–effects panel model to both short–run and
long–run climate responses. Under certain conditions, the coefficients estimated from equation B.13 can
be expressed as a convex combination of the true short–run and long–run parameters from equation
B.12. This decomposition formalises how much of the estimated effect reflects immediate reactions to
weather versus structural adaptation to climate.

In the case of a quadratic temperature effect, the fixed–effects estimator converges to a weighted average
of location–specific short–run responses and the general long–run relationship, as shown in equation 11
of Mérel et al. (2021):

β̂ = (1 − θ̄)βLR + θ̄
∑

i

λiβ
SR
i (B.14)

The parameter θ̄ represents the share of total variation that comes from within–region annual weather
variation, while (1 − θ̄) reflects variation across long–term climate. The decomposition implies that
if local weather variability dominates, the fixed–effects panel estimate will lean towards the short–run
response. Conversely, when cross–sectional climate differences are more prominent, the estimate will
be closer to the long–run adaptation outcome.

This decomposition offers both theoretical insight and a practical diagnostic tool. It shows that fixed–
effects estimates from many panel studies do not capture a pure short–run response but rather a
mix. The framework clarifies when and how panel estimates may be interpreted as long–run effects.
Specifically, when local weather is symmetrically distributed around each regions mean climate µi, the
panel estimate β̂ becomes a convex combination of the true long–run parameter βLR and a weighted
average of region–specific short–run parameters βSR

i .

The short–run coefficients βSR
i are derived from equation B.12 and depend on the regions average

climate:

βSR
i = (β1 − 2β3µi, β2 + β3)

The average short–run effect βSR(µ̄) in equation B.14 is evaluated at the mean climate µ̄ =
∑

i λiµi,
with weights λi proportional to each regions contribution to total variance. At x = µ̄, the estimated
panel curve is tangent to the long–run curve, which means the marginal effect matches the long–run
response at this point. Elsewhere, it leans towards the short–run outcome.

When this model is applied to the European dataset by Rosés et al. (2021), it helps to evaluate whether
the estimated temperature–growth relationship is driven more by long–run adaptation or short–run
weather shocks. Europe includes a wide range of climates, from Mediterranean to Northern continental
zones. This geographic diversity increases the share of cross–sectional variation, which may lower θ̄ and
thus align panel estimates more closely with long–run effects. In contrast, precipitation tends to vary
more across years and less across space. As a result, fixed–effects estimates for precipitation are likely to
place greater weight on short–run fluctuations, yielding larger values of θ̄. Without explicitly modelling
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adaptation, such estimates may understate how regions respond to long–term shifts in precipitation
patterns. The value of θ̄ depends on the empirical ratio between within–region weather variability
and between–region climate differences. A high ratio implies that short–run responses dominate the
estimate, while a low ratio suggests that the estimate reflects long–run adaptation. This decomposition
framework can be used to guide interpretation and support more targeted modelling choices.

Where needed, models can be extended to include climate normals, climate–weather interactions, or
explicit adaptation terms. These allow a clearer separation of long–term and short–term effects. This
matters for policy relevance: understanding whether the estimated effect of a 1řC increase in annual
temperature refers to a weather shock or a structural change determines the usefulness of the estimate
for long–run climate impact projections.

B.7. Exploring regional heterogeneity in climate sensitivity and adap-
tation across Europe

This section explores the extent to which the models by BHM and Mérel et al. (2021) capture patterns
of regional heterogeneity in climate sensitivity and long-run adaptation. Both models are applied to a
harmonised regional panel dataset, allowing for a direct comparison of how each framework identifies
differential climate responses across European NUTS–2 regions over the long term.

The model developed by BHM assumes that economic output responds to annual temperature in a
concave manner, where productivity increases up to an optimal level and declines thereafter. The speci-
fication includes fixed effects to account for time-invariant differences across regions, such as geography
or baseline income, and uses year-to-year variation in temperature to estimate the economic response.
A quadratic term for temperature captures the non-linear relationship, consistent with the idea of an
optimal climatic range.

Although the model is designed to estimate short-run effects of weather variation, the use of non-linear
terms means that it partially reflects long-run differences in regional climate. As discussed in McIntosh
et al. (2006) and emphasised by BHM, panel models that include higher-order temperature terms draw
on both within-region variation and cross-sectional climate differences. This allows regions with different
average temperatures to inform different parts of the estimated curve, such that the regression reflects
not only short-run sensitivity to weather but also long-run differences in climate exposure.

Adaptation is not explicitly estimated in this model, but its effect is indirectly captured through the
variation in climate across regions. If regions have adapted to their historical climate, this will be
reflected in their contribution to the shape of the estimated temperature–growth curve. However, the
model does not separate adaptation as a distinct mechanism and does not estimate how much of the
observed effect is due to structural adjustment versus transitory weather responses.

The regression follows the specification in equation B.10, where both temperature and precipitation are
entered in quadratic form. Region fixed effects absorb time-invariant characteristics such as institutional
quality or geographic location. Year fixed effects control for common shocks, such as financial crises or
global technological changes. Region-specific trends may be added to account for long-term development
paths, such as those shaped by industrialisation or European integration.

In this model, heterogeneity in regional climate sensitivity can emerge through two main mechanisms.
First, regions at different points on the estimated temperature curve will experience different marginal
effects. Second, fixed effects and time trends allow each region to have its own baseline and trajectory,
even though the temperature–growth relationship is estimated uniformly across the sample. As a result,
while the model does not include explicit adaptation terms, it captures spatial variation in climate
sensitivity and allows for an assessment of how warming may affect regions differently.

The following section explores the model by Mérel et al. (2021), which explicitly separates short-run
responses from long-run climatic adaptation and offers a complementary approach to understanding
regional heterogeneity in the economic impacts of climate.
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First, regions differ in their long-run average temperature and therefore occupy different positions on
the estimated global concave response function h(T ). For example, a southern European region with a
relatively warm climate is more likely to fall on the right side of the temperature curve, where additional
warming is associated with reduced economic performance. In contrast, a colder northern region is more
likely to lie on the left side of the curve, where marginal increases in temperature may be beneficial
or less detrimental. As a result, the marginal effect of temperature varies by region, even though the
parameters β1 and β2 are estimated uniformly across all regions. The local sensitivity is given by the
derivative

∂h

∂T
= β1 + 2β2T

which depends directly on the regional temperature level T .

Second, structural heterogeneity can be investigated by interacting temperature terms with region-
specific characteristics. Following the approach described in BHM, interactions can be included be-
tween average temperature T i, average income Y i, or dummy variables representing different region
groups, such as richer and poorer regions. These interaction terms allow formal testing of whether the
temperature-growth curve differs across types of regions. If such terms are statistically significant, this
suggests systematic variation in temperature sensitivity. If they are not, the evidence supports the use
of a common functional form.

In the original work by BHM, income-based interaction terms were not statistically significant. This
indicated that income levels did not meaningfully alter the shape of the temperature-growth relationship
in their global dataset. A similar empirical approach is applied here to examine whether such structural
heterogeneity is present across European NUTS–2 regions. This provides a basis for evaluating whether
the estimated climate response function holds uniformly across regions or differs by local conditions.

An additional strategy, introduced in the supplementary materials of BHM, investigates the influence
of structural characteristics by modifying the baseline specification. This alternative model, presented
as equation 17 in the supplementary materials, includes interaction terms between annual temperature
and two structural variables: the regions long-run average temperature and its average income. The
aim is to assess whether the observed global concave response is primarily driven by climatic differences
or income disparities. The temperature response function is defined as:

h(Tit) = β1Tit + β2(Tit · T i) + β3(Tit · Y i), (B.15)

where Tit denotes the annual average temperature in region i and year t, T i is the regions long-run
mean temperature, and Y i is its average income level over the sample period. These interaction terms
allow the marginal effect of temperature to vary according to structural features of the region, providing
a more flexible functional form.

The empirical results reported by BHM indicate that the coefficient β2 is negative and statistically
significant, while β3 is not. This suggests that differences in long-run climate conditions explain more
of the variation in economic sensitivity to temperature than income levels do. The finding implies that
regions with warmer climates experience more negative marginal effects of temperature than cooler
regions, regardless of income. Consequently, the global concave relationship estimated in the baseline
model is largely shaped by climatic variation, and the assumption of a common functional form across
regions is supported, provided that regions are already positioned differently along the temperature
curve due to historical climate adaptation.

B.8. Regional heterogeneity in climate sensitivity and adaptation
in the model by Mérel et al. (2021)

The model developed by Mérel et al. (2021) builds on the fixed–effects panel framework by explicitly
including a term for adaptation. Their central insight is that standard panel regressions, such as the
one used by BHM, may conflate short–run and long–run responses to temperature depending on the
structure of the data. In particular, if economies adjust gradually to changes in their average climate,
the long–run response to sustained warming may differ from the immediate effect of a weather anomaly.
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The climate penalty term introduced by Mérel et al. (2021) captures the extent to which annual weather
deviates from a regions long–term climatic norm. This term allows the model to distinguish between
transitory weather shocks and structural changes in the baseline climate. When the average temperature
T i of a region rises gradually, the deviation between Tit and T i shrinks over time, implying that the
magnitude of the climate penalty should decline. The penalty term (Tit − T i)2 therefore acts as an
indicator of adaptation. A similar term can be constructed for precipitation, (Pit − P i)2, to reflect
deviations from long–run rainfall patterns.

The key innovation of this approach lies in its ability to separate the economic impact of expected
climate conditions from the effect of unexpected weather variation. Over time, as agents adapt to a
shifting climate, the difference between weather and climate is expected to decrease. If the estimated
coefficient β3 on the deviation term is negative and significant, it implies that output declines when
weather deviates from the expected climate, suggesting that adaptation remains incomplete.

The model by Mérel et al. (2021) is designed specifically to measure regional heterogeneity in both
sensitivity and adaptation. It captures two dimensions of regional climate response. First, the long–run
marginal effect of temperature, which applies when Tit = T i, is given by

∂yLR
it

∂Tit
= β1 + 2β2T i,

which reflects the slope of the fully adapted climateoutput relationship at the regional norm. Second,
when Tit ̸= T i, the short–run effect includes an additional term:

∂yit

∂Tit
= β1 + 2β2Tit + 2β3(Tit − T i),

which accounts for the immediate response to weather anomalies. If a year is unusually warm, the
marginal loss is greater than what the long–run curve would predict. Conversely, cooler-than-usual
years may attenuate the negative effect.

This specification provides a richer framework to analyse heterogeneity in climate impacts. Regions differ
not only in their baseline response to temperature, determined by T i, but also in how strongly they react
to deviations from this norm. A significantly negative β3 indicates that output is more sensitive in years
when the weather departs from typical conditions. If long–run adaptation has occurred, then much of
the short–term fluctuation should be absorbed by this term, resulting in a smoother long–run response.
The sign and magnitude of β3 across regions offer insight into adaptation patterns. A smaller absolute
value of β3 may suggest successful adaptation, particularly in historically warmer regions. In contrast,
larger values may indicate vulnerability to weather anomalies, especially in regions with historically
cooler climates. The model by Mérel et al. (2021) thus offers a more nuanced lens through which to
examine spatial variation in climate sensitivity and the role of adaptation over time.
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Appendix C - Results

This appendix presents additional tables and diagnostic statistics supporting the main regression results
of this thesis. It begins with an overview of the core findings from the global model developed by BHM,
which identified a concave relationship between temperature and economic growth using national–level
data from 1960 to 2010. The next sections re-analyse and extend this model in three steps. Subquestion
1 examines whether the concave pattern remains stable when applied to a long-term panel of European
regions from 1900 to 2015. Subquestion 2 adds SLR to the model to assess whether the inclusion of
additional climate risks alters the estimated relationship. Subquestion 3 evaluates the robustness of the
temperature-growth curve by estimating a simplified model with only temperature and applying spatial,
temporal, and country–level jackknife procedures. Together, these extensions test the consistency of
the BHM findings across space, time, and model complexity.

C.1. Main table from the work by BHM

Table C.1: Regression estimates: main specification and robustness (1–5)

(1) Base (2) >20yrs (3) No Oil (4) No US/China (5) ContYr FE

Temp. 0.0127∗∗∗ 0.0135∗∗∗ 0.0128∗∗∗ 0.0128∗∗∗ 0.0142∗∗∗

(0.0038) (0.0038) (0.0036) (0.0038) (0.0037)
Temp. sq. −0.0005∗∗∗ −0.0005∗∗∗ −0.0005∗∗∗ −0.0005∗∗∗ −0.0005∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Precip. 0.0145 0.0148 0.0130 0.0148 0.0124

(0.0100) (0.0100) (0.0101) (0.0101) (0.0106)
Precip. sq. −0.0047∗ −0.0049∗ −0.0040 −0.0048∗ −0.0041

(0.0026) (0.0026) (0.0025) (0.0026) (0.0027)
Constant 1.4575∗∗ 0.0740 1.4522∗∗ 1.4707∗∗ −0.0362

(0.6444) (0.0633) (0.6228) (0.6507) (0.0411)

Observations 6584 6477 6090 6484 6584
R squared 0.286 0.278 0.275 0.284 0.367
Optimum 13.06 13.39 12.64 13.09 14.92

Unless otherwise indicated, all models include country fixed effects, year fixed effects, and quadratic country time trends,
with errors clustered at the country level. Temperature is measured in °C and precipitation in metres. Columns: (1)

main specification, (2) as in column 1 but excluding countries with fewer than 20 years of growth data, (3) as in column
1 but dropping large oil exporting countries, (4) as in column 1 but dropping United States and China, (5) as in column
1 but adding continent-by-year fixed effects, (6) as in column 1 but adding continent-by-year fixed effects and dropping
country time trends, (7) as in column 1 but dropping year fixed effects, (8) as in column 1 but only linear time trend,
(9–10) as in column 1 but adding 1 or 3 lags of per capita growth (that is, lagging the dependent variable), (11) as in

column 1 but using growth data from Penn World Tables. Asterisks indicate statistical significance at the 1% (***), 5%
(**), and 10% (*) levels.
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Table C.2: Regression estimates: robustness specifications (6–11)

(6) ContYr + noTrend (7) No YrFE (8) LinearTime (9) LDV 1lag (10) LDV 3lags (11) PWT

Temp. 0.0133∗∗∗ 0.0103∗∗∗ 0.0128∗∗∗ 0.0087∗∗ 0.0062∗∗ 0.0072∗

(0.0034) (0.0039) (0.0043) (0.0039) (0.0038) (0.0039)
Temp. sq. −0.0004∗∗∗ −0.0004∗∗∗ −0.0005∗∗∗ −0.0004∗∗∗ −0.0003∗∗∗ −0.0004∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Precip. 0.0084 0.0159 0.0137 0.0165∗ 0.0201∗∗ 0.0195∗

(0.0098) (0.0107) (0.0100) (0.0095) (0.0098) (0.0109)
Precip. sq. −0.0021 −0.0045∗ −0.0035 −0.0047∗ −0.0052∗∗ −0.0038

(0.0023) (0.0026) (0.0023) (0.0024) (0.0024) (0.0028)
Constant −0.0819∗∗ −0.8024∗∗ −0.7693∗∗∗ −11.3227∗∗∗ −28.3451∗∗∗ 0.0643

(0.0370) (0.3366) (0.0517) (0.7957) (2.0763) (0.0467)

Observations 6584 6584 6584 6418 6086 6627
R squared 0.267 0.240 0.219 0.286 0.289 0.220
Optimum 17.40 12.74 13.40 11.92 9.98 9.88

Note: Same model form as Table C.1. Asterisks: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

C.1.1. of regression coefficients: BHM global model vs. European panel replica-
tion (this thesis)

Table C.3: Comparison of regression coefficients: BHM global model vs. European panel replication

Variable BHM (2015) Global (Col. 1) Your European Panel Repli-
cation

Comment

Temperature 0.0127∗∗∗ (0.0038) 0.0737∗∗∗ (0.018) Stronger positive effect in Europe
Temperature2 −0.0005∗∗∗ (0.0001) −0.0031∗∗ (0.001) More curvature ⇒ lower optimum tem-

perature
Precipitation 0.0145 (0.0100) −0.0003 (0.0002) Sign flips, small and insignificant
Precipitation2 −0.0047∗ (0.0026) +7.24e–08 (ns) Sign flips, both effects negligible in Eu-

rope
Intercept 1.4575∗∗ (0.6444) −0.0038 (0.003) Intercept not interpretable due to fixed

effects
Fixed effects Country, year Region (NUTS), year Consistent, adapted to spatial resolu-

tion
Clustered errors Country level Region level Same principle, adjusted for unit of

analysis
Sample Global, 1960–2010 Europe only, extended panel Different climate zone and longer time

horizon

Note: Standard errors in parentheses. Asterisks indicate statistical significance at the 1% (***), 5% (**), and 10% (*)
levels. ns = not significant.

C.2. Subquestion 1: Annual temperature and precipitation
This section presents the estimation results of the BHM model extended with annual temperature and
precipitation variables over the full period from 1900 to 2015. The model includes region-specific fixed
effects (µi), year fixed effects (νt), and region-specific time trends of the form θi1t+ θi2t

2.

Table ?? summarises the overall regression fit. The model explains 51.7% of the variation in log GDP per
capita growth (R2 = 0.517), while the adjusted R2 = 0.329 accounts for the large number of fixed effects
and interaction terms. The F -statistic of 5.624 × 1012 (p < 0.001) indicates strong joint significance of
the included variables.
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Table C.4: OLS regression summary (clustered standard errors)

Statistic Value
Dependent variable ln_growth
Model OLS
Method Least Squares
Observations 1,875
Degrees of freedom (residual) 1,350
Degrees of freedom (model) 524
R2 0.517
Adjusted R2 0.329
F -statistic 5.624 × 1012

Prob (F ) 0.000
Log-likelihood 834.02
AIC -618.0
BIC 2,289.0
Covariance type Cluster

Table C.5 provides the estimated coefficients. Temperature is significantly associated with economic
growth in a non-linear, concave manner, as shown by the positive linear term and negative squared
term. Precipitation coefficients are less precisely estimated.

Table C.5: Estimated coefficients from OLS regression

Variable Coef. Std. Err. t P>|t| [0.025 0.975]
Temperature 0.0737 0.018 4.066 0.000 0.038 0.109
Temperature2 -0.0031 0.001 -2.805 0.005 -0.005 -0.001
Precipitation -0.0003 0.000 -1.483 0.138 -0.001 0.000092
Precipitation2 7.24 × 10−8 9.08 × 10−8 0.797 0.425 −1.06 × 10−7 2.50 × 10−7

A joint significance test for the temperature and precipitation terms is reported in Table C.6, confirming
their collective relevance with p = 0.0018.

Table C.6: Joint significance test for temperature and precipitation terms

Test Statistic Value Description
F -statistic 4.49 Test statistic for joint significance
p-value 0.0018 Probability of observing F under H0
Numerator df 4 Number of restrictions tested
Denominator df 169 Residual degrees of freedom

Year fixed effects are presented in Table C.17. The year 1960 exhibits the largest positive deviation
from the baseline, while 2015 shows the most negative deviation.
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Table C.7: Estimated year fixed effects from OLS regression

Year Coef. Std. Err. t P>|t| [0.025 0.975]
1925 -0.1648 0.026 -6.391 0.000 -0.215 -0.114
1938 -0.0451 0.028 -1.584 0.113 -0.101 0.011
1950 -0.0317 0.022 -1.430 0.153 -0.075 0.012
1960 0.2823 0.019 14.809 0.000 0.245 0.320
1970 0.2621 0.020 12.974 0.000 0.223 0.302
1980 0.1342 0.027 4.945 0.000 0.081 0.187
1990 -0.1067 0.018 -5.877 0.000 -0.142 -0.071
2000 0.1045 0.014 7.623 0.000 0.078 0.131
2010 -0.0923 0.016 -5.944 0.000 -0.123 -0.062
2015 -0.2213 0.017 -13.353 0.000 -0.254 -0.189

The model’s residuals are further evaluated in Table C.8. The Durbin–Watson statistic of 2.947 indicates
no problematic autocorrelation. While the skewness is near zero, the Jarque–Bera test (p < 0.001)
and a kurtosis of 5.513 confirm heavy-tailed residuals. The condition number of 4.47 × 1017 reflects
multicollinearity, which is expected given the large number of fixed effects. These issues are mitigated
by the use of clustered standard errors.

Table C.8: Diagnostic statistics for temperature and precipitation model

Statistic Value
Durbin–Watson 2.947
Jarque–Bera p-value < 0.001
Skewness 0.082
Kurtosis 5.513
Condition number 4.47 × 1017

C.3. Subquestion 2: Adding sea level rise to temperature and pre-
cipitation

This section builds on the model in Section 5.1 by including SLR alongside temperature and precipita-
tion. The aim is to examine whether compound climate effects meaningfully alter the climate–growth
relationship and provide additional explanatory value beyond temperature and precipitation alone.

Table C.9 reports the regression summary. The R2 remains high at 0.518, with an adjusted R2 of
0.330values very similar to the specification without SLR (R2 = 0.517, adjusted R2 = 0.329). The joint
F -statistic of 4.415 × 1012 (p < 0.001) confirms overall model significance.
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Table C.9: OLS regression summary with temperature, precipitation, and sea level rise

Statistic Value
Dependent variable ln_growth
Model OLS
Method Least Squares
Observations 1,859
Degrees of freedom (model) 520
Degrees of freedom (residual) 1,338
R2 0.518
Adjusted R2 0.330
F -statistic 4.415 × 1012

Prob (F -statistic) 0.000
Log-likelihood 826.67
Akaike Information Criterion (AIC) -611.3
Bayesian Information Criterion (BIC) 2,269.0
Covariance type Clustered (by region)

The estimated coefficients in Table C.10 again confirm a concave temperature-growth relationship. Pre-
cipitation and SLR effects are weaker, though SLR and its squared term are jointly significant at the
10% level.

Table C.10: Estimated coefficients for temperature, precipitation, and sea level rise (clustered SE)

Variable coef std err z P>|z| [0.025 0.975]
Temperature 0.0727 0.021 3.547 0.000 0.033 0.113
Temperature2 −0.0030 0.001 −2.455 0.014 −0.005 −0.001
Precipitation −0.0003 0.000 −1.532 0.126 −0.001 8.24 × 10−5

Precipitation2 8.16 × 10−8 9.03 × 10−8 0.904 0.366 −9.53 × 10−8 2.58 × 10−7

Sea level rise −0.0007 0.000 −2.326 0.020 −0.001 −0.000
Sea level rise2 −1.199 × 10−6 6.96 × 10−7 −1.723 0.085 −2.56 × 10−6 1.65 × 10−7

Table C.11 shows the results of a joint F -test for the six climate variables. The test strongly rejects
the null hypothesis that temperature, precipitation, and SLR (and their squared terms) have no joint
effect on growth (p = 8.07 × 10−5).

Table C.11: Joint significance test for temperature, precipitation, and SLR terms

Test component Value
F-statistic 5.08
p-value 8.07 × 10−5

Degrees of freedom 6 (numerator), 168 (denominator)

Note: The null hypothesis is that all six climate terms (temperature, temperature2, precipitation,
precipitation2, SLR, and SLR2) jointly have no effect on GDP per capita growth. The low p-value
suggests the null hypothesis can be rejected.

Table C.12 displays regression diagnostics. Residuals are non-normal (Jarque–Bera p < 0.001), with
moderate skewness and high kurtosis. The Durbin–Watson statistic (2.954) indicates no first-order
autocorrelation. The condition number remains high due to multicollinearity among fixed effects and
polynomial terms.
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Table C.12: Regression diagnostic statistics (temperature, precipitation, and sea level rise model)

Statistic Value Statistic Value
Omnibus 112.491 DurbinWatson 2.954
Prob(Omnibus) 0.000 JarqueBera (JB) 457.118
Skewness −0.091 Prob(JB) 5.47 × 10−100

Kurtosis 5.422 Condition Number 9.08 × 1017

The year fixed effects shown in Table C.13 are stable across specifications and align with patterns seen
in earlier models. For example, 1960 and 1970 again show strong positive deviations consistent with
post-war economic expansion. The stability of these values supports the robustness of the model in
isolating climate effects from broader global shocks.

Table C.13: Estimated year fixed effects (temperature, precipitation, and sea level rise model)

Year coef std err z P>|z| [0.025 0.975]
1925 −0.1616 0.026 −6.239 0.000 −0.212 −0.111
1938 −0.0437 0.029 −1.518 0.129 −0.100 0.013
1950 −0.0241 0.023 −1.060 0.289 −0.069 0.020
1960 0.2887 0.020 14.640 0.000 0.250 0.327
1970 0.2654 0.020 13.036 0.000 0.225 0.305
1980 0.1363 0.028 4.933 0.000 0.082 0.190
1990 −0.1060 0.018 −5.814 0.000 −0.142 −0.070
2000 0.1069 0.014 7.913 0.000 0.080 0.133
2010 −0.0870 0.016 −5.506 0.000 −0.118 −0.056
2015 −0.2145 0.017 −12.744 0.000 −0.248 −0.182

C.4. Subquestion 3: Robustness and temperature-only specification
This section investigates the robustness of the concave temperature-growth relationship estimated by
the BHM model by first estimating a reduced model that includes only annual temperature and its
square. It then presents results from spatial, temporal, and country-level jackknife exercises, which test
the sensitivity of the findings to the exclusion of individual regions or years.

Table C.14 presents the regression output of the reduced specification. The model explains approxi-
mately 51.3% of the variation in log GDP per capita growth (R2 = 0.513), with an adjusted R2 of 0.325.
The F -statistic (2.619 × 1012, p < 0.001) confirms overall significance. The residual standard errors are
clustered at the region level to account for autocorrelation and heteroskedasticity.
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Table C.14: OLS regression summary with clustered standard errors

Statistic Value
Dependent variable ln_growth
Model OLS
Method Least Squares
Observations 1,870
Degrees of freedom (model) 519
Degrees of freedom (residual) 1,350
R2 0.513
Adjusted R2 0.325
F -statistic 2.619 × 1012

Prob (F -statistic) 0.000
Log-likelihood 824.27
AIC -608.5
BIC 2,269.0
Covariance type Clustered (by region)

Table C.15 reports the coefficient estimates. The temperature effect is positive and significant, while
the squared term is negative and significant, indicating a concave relationship in line with the BHM
model.

Table C.15: Estimated coefficients for temperature effects (clustered SE)

Variable coef std err z P>|z| [0.025 0.975]
Temperature 0.0572 0.016 3.594 0.000 0.026 0.088
Temperature2 −0.0021 0.001 −2.040 0.041 −0.004 −8.04 × 10−5

Diagnostic tests are summarised in Table C.16. The Durbin–Watson statistic (2.953) suggests no first-
order autocorrelation. Jarque–Bera and kurtosis statistics indicate the presence of heavy tails, which
is common in large panels. The high condition number (6.08 × 1018) reflects model complexity and
multicollinearity, mitigated through the use of cluster-robust standard errors.

Table C.16: Regression diagnostic statistics

Statistic Value Statistic Value
Omnibus 116.362 Durbin-Watson 2.953
Prob(Omnibus) 0.000 Jarque-Bera (JB) 492.681
Skewness −0.073 Prob(JB) 1.04 × 10−107

Kurtosis 5.510 Condition Number 6.08 × 1018

Table C.17 provides the estimated year fixed effects for this specification. The year 1960 and 1970 show
strong positive deviations, while 2015 again shows a large negative deviation, consistent with previous
models.
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Table C.17: Estimated year fixed effects (reference year omitted)

Year coef std err z P>|z| [0.025 0.975]
1925 −0.1427 0.024 −5.874 0.000 −0.190 −0.095
1938 −0.0079 0.025 −0.321 0.748 −0.056 0.040
1950 −0.0069 0.018 −0.386 0.699 −0.042 0.028
1960 0.2898 0.020 14.609 0.000 0.251 0.329
1970 0.2877 0.018 16.214 0.000 0.253 0.323
1980 0.1543 0.026 5.985 0.000 0.104 0.205
1990 −0.0877 0.016 −5.519 0.000 −0.119 −0.057
2000 0.0999 0.013 7.614 0.000 0.074 0.126
2010 −0.1000 0.014 −6.943 0.000 −0.128 −0.072
2015 −0.2196 0.016 −13.440 0.000 −0.252 −0.188

C.4.1. Jackknife robustness checks

The next three tables show the results of spatial, temporal, and country-level jackknife robustness
checks. These tests investigate the sensitivity of the estimated coefficients by iteratively excluding key
spatial units or time periods from the regression.

Table C.18: Spatial jackknife results for climate coefficients

Variable Mean Std. dev. t-stat p-value
Temperature 0.0738 0.0013 58.64 0.000
Temperature2 -0.00313 0.000077 -40.76 0.000
Precipitation -0.00029 0.000013 -22.28 0.000
Precipitation2 0.0000000745 0.0000000062 11.97 0.000

Table C.19: Temporal jackknife results for climate coefficients

Variable Mean Std. dev. t-stat p-value
Temperature 0.0762 0.0330 2.31 0.021
Temperature2 -0.00320 0.00146 -2.19 0.028
Precipitation -0.00029 0.00014 -2.10 0.036
Precipitation2 0.0000000722 0.0000000714 1.01 0.312

Table C.20: Country jackknife summary statistics for climate coefficients

Variable Mean Std. Dev. t-statistic p-value
Temperature 0.0739 0.0089 8.33 0.0000
Temperature2 -0.0031 0.0006 -5.26 0.0000
Precipitation -0.0003 0.0001 -4.19 0.0000
Precipitation2 7.23e-08 2.16e-08 3.35 0.0008



D
Appendix D - Re-analysis and

Extension of the BHM Model with
Climate Variables

D.1. Constructing Rolling Means
This section documents exploratory work aimed at capturing long-run climate conditions through 30-
year rolling means of temperature and precipitation. For each region i and year t ≥ 1930, the rolling
averages are defined as

T
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For earlier years, from 1900 to 1929, the averages are calculated using all available years up to t:
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This method avoids interpolation across wide time gaps and maintains the historical signal. To match
the structure of the economic dataset by Rosés et al. (2021), the rolling means are calculated first on
the full annual series and only then linked to the benchmark years. This ensures that each benchmark
year reflects a full 30-year climatic context rather than a shorter or uneven period. Unlike BHM, who
apply population weights at the grid-cell level, this analysis uses pre-aggregated regional averages. Since
population-weighted re-aggregation is not possible after this step, further weighting would not change
the values.

These rolling means are not included in the main analysis since they do not conceptually align with
the rest of the research design. The model used in this thesis focuses on annual climate differences to
estimate growth effects. Long-run means are not directly comparable to the dynamic structure of the
benchmark growth data. Still, they are presented here for exploratory purposes.

D.2. Exploratory Data Analysis
To understand the properties of the climate variables and assess their suitability, an exploratory data
analysis is carried out. Summary statistics are calculated for per capita GDP growth ∆ ln GDPpci,t,
rolling mean temperature T 30

i,t, rolling mean precipitation P
30
i,t, and sea level rise ∆SLRi,t, including

squared terms. These results are included in Appendix A.

Pairwise correlations are computed between GDP growth and each climate variable, and scatterplots are
used to explore the shape of the relationships. High correlations between each variable and its squared
term are found: r = 0.96 for temperature and r = 0.98 for precipitation. These are expected due to
their mathematical construction but raise concerns about multicollinearity in regressions. Correlations
between GDP growth and each climate variable (including squared terms) range from −0.04 to +0.03,
indicating that bivariate linear relationships are weak. This suggests that any effect of climate is likely
concave or conditional on other variables, and therefore best analysed using multivariate regression

98
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models. The correlation between temperature and sea level rise is moderate, with r = 0.38, possibly
reflecting shared global warming trends.

Figure D.1: Lower triangle of the pairwise correlation matrix between GDP per capita growth and climate variables

D.3. Regression annualised Log-Growth from benchmark GDP
To calculate economic growth between benchmark years, the natural logarithm of GDP per capita is
used. For each region, the annualised log-growth rate is computed by subtracting the lagged log-GDP
per capita from the current value and dividing by the year difference. This approach allows for irregular
benchmark intervals and ensures that growth is expressed in annual terms:

ln_growthit = ln(GDPit) − ln(GDPi,t−1)
yeart − yeart−1

D.3.1. Empirical strategy
The following panel regression model is estimated on data from 1900 to 2015:

∆ ln(GDPit) = β1 Tit + β2 T
2
it + γ1 Pit + γ2 P

2
it + region and year fixed effects + εit

Here, Tit and Pit represent thirty–year rolling means of temperature and precipitation, respectively, for
region i in year t.

D.3.2. Main Results
The regression is based on 1,875 observations and includes 524 parameters, leaving 1,350 degrees of
freedom. The model explains about 57% of the variation in growth (R2 = 0.569), with an adjusted
R2 = 0.401. The climate variables are clustered at the region level to account for intra-region correlation.



D.3. Regression annualised Log-Growth from benchmark GDP 100

Table D.1: OLS regression GDP growth annualised summary statistics

Statistic Value
Dependent variable ln_growth
Model OLS
No. Observations 1875
Degrees of freedom (model) 524
Degrees of freedom (residual) 1350
R2 0.569
Adjusted R2 0.401
F-statistic 1.195 × 1013

Prob (F-statistic) 0.00
Log-Likelihood 5354.7
Covariance Type Clustered

D.3.3. Coefficient estimates

Table D.2: Estimated coefficients for climate variables in regression GDP growth annualised

Variable Coef. Std. Err. z p 95% CI [ ]
climate_temp_30yr 0.0306 0.010 3.074 0.002 0.011 – 0.050
climate_temp_30yr_sq −0.0005 0.000 −1.320 0.187 −0.001 – 0.000
climate_precip_30yr 0.0001 0.000 0.980 0.327 −0.000 – 0.000
climate_precip_30yr_sq −1.11 × 10−7 8.06 × 10−8 −1.377 0.168 −2.69 × 10−7 – 4.7 × 10−8

The temperature coefficient is positive and significant, while its squared term is negative but not sig-
nificant. This supports a concave relationship between temperature and growth, although the curve’s
shape is not precisely estimated. Precipitation terms are small and not statistically significant.

D.3.4. Year FE

Table D.3: Estimated year fixed effects GDP growth annualised (baseline omitted)

Year Coef. Std. Err. t p 95% CI Low 95% CI High
1925 -0.0158 0.002 -8.022 0.000 -0.020 -0.012
1938 -0.0065 0.002 -3.304 0.001 -0.010 -0.003
1950 -0.0070 0.002 -4.080 0.000 -0.010 -0.004
1960 0.0260 0.002 14.062 0.000 0.022 0.030
1970 0.0275 0.002 15.655 0.000 0.024 0.031
1980 0.0179 0.003 5.165 0.000 0.011 0.025
1990 -0.0030 0.003 -1.040 0.298 -0.009 0.003
2000 0.0120 0.002 7.777 0.000 0.009 0.015
2010 -0.0161 0.002 -10.298 0.000 -0.019 -0.013
2015 -0.0207 0.003 -6.676 0.000 -0.027 -0.015

Positive fixed effects in 1960 and 1970 likely reflect post-war economic growth, while negative values
in 2010 and 2015 capture the effects of the financial crisis. Most years show statistically significant
differences from the baseline, except 1990.

D.3.5. Temperature Optimum
The fitted growth curve is given by:

h(T ) = β1T + β2T
2
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with optimum temperature:

T ∗ = − β1

2β2
= − 0.0306

2 × (−0.000518)
= 29.6 ◦C

This peak implies that regions experience maximum growth near 29.6 ◦C under long-term climate con-
ditions. Beyond this, temperature has a negative effect.

Figure D.2: Estimated long-run temperature optimum of 29.6 ◦C (blue dot)

Figure D.3: Concave growth curve with 90% confidence band and distributions of temperature, population and GDP per
capita

The confidence band is narrowest where data are dense (5–17 ◦C), and widens at extreme temperatures
due to fewer observations. These patterns suggest that moderate warming can support growth in cooler
regions, but excessive heat remains economically harmful.
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D.3.6. Non-Annualised Growth Model Results
The results below are based on GDP per capita growth computed between benchmark years, without
annualisation. The panel consists of 1,875 regional observations. Ordinary least squares regression is
applied with fixed effects for year and region, and standard errors are clustered at the regional level.

Table D.4: OLS regression summary statistics (non-annualised growth)

Statistic Value
Dependent variable ln_growth
Model OLS
Method Least Squares
No. of observations 1,875
Degrees of freedom (model) 524
Degrees of freedom (residual) 1,350
R2 0.519
Adjusted R2 0.332
F-statistic 5.751 × 1012

Prob(F-statistic) 0.00
Log-Likelihood 837.69
Covariance type Clustered

The estimated coefficients for the climate variables are summarised below. The positive and sig-
nificant linear temperature coefficient and the negative significant squared term support a concave
relationship. Precipitation terms are statistically insignificant.

Table D.5: Estimated coefficients for climate variables (non-annualised model)

Variable Coef. Std. Err. t p 95% CI Low 95% CI High
climate_temp_30yr 0.4136 0.104 3.984 0.000 0.210 0.617
climate_temp_30yr_sq -0.0080 0.004 -2.079 0.038 -0.015 -0.000
climate_precip_30yr 0.0010 0.002 0.642 0.521 -0.002 0.004
climate_precip_30yr_sq −9.68 × 10−7 8.93 × 10−7 -1.084 0.278 −2.72 × 10−6 7.82 × 10−7

Year fixed effects are included to control for macroeconomic shocks and long-run trends. The
coefficients for 1960 and 1970 are large and positive, indicating robust growth in those years. The years
2010 and 2015 show significant negative effects, consistent with post-crisis stagnation.

Table D.6: Year fixed effects in non-annualised GDP growth model (baseline omitted)

Year Coef. Std. Err. t p 95% CI Low 95% CI High
1925 -0.1421 0.026 -5.492 0.000 -0.193 -0.091
1938 -0.0093 0.024 -0.389 0.697 -0.056 0.038
1950 -0.0213 0.020 -1.069 0.285 -0.060 0.018
1960 0.2883 0.019 15.049 0.000 0.251 0.326
1970 0.3123 0.019 16.028 0.000 0.274 0.350
1980 0.2235 0.038 5.935 0.000 0.150 0.297
1990 0.0094 0.031 0.299 0.765 -0.052 0.071
2000 0.1399 0.016 8.709 0.000 0.108 0.171
2010 -0.1610 0.017 -9.552 0.000 -0.194 -0.128
2015 -0.2909 0.034 -8.629 0.000 -0.357 -0.225

The annualised and non-annualised regressions both show a concave temperature–growth relationship,
but they differ in both statistical precision and model fit. In both models, the linear temperature coef-
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ficient is positive and significant, while the squared term is negative, supporting the concave structure
proposed by BHM. However, the curvature is more precisely estimated in the non-annualised model,
where both terms are statistically significant (β1 = 0.4136, β2 = −0.0080, p = 0.038), whereas the
squared term in the annualised model is not (β2 = −0.0005, p = 0.187). Despite these differences,
the turning point estimates are similar, and both models indicate that growth is maximised around
T ∗ ≈ 29.6 ◦C under long-run temperature exposure. Model fit statistics reveal another important dis-
tinction: the annualised regression achieves a substantially higher log-likelihood (LL = 5354.7) than the
non-annualised one (LL = 837.69), and explains a larger share of the variation in growth (R2 = 0.569
versus R2 = 0.519). This suggests that annualising growth may reduce noise caused by irregular
time intervals and improve statistical performance. Nevertheless, both specifications produce consis-
tent results: temperature remains the dominant climate variable, precipitation has no significant effect,
and year fixed effects reflect known macroeconomic shifts. The choice between annualised and non-
annualised growth affects the precision and efficiency of the estimates but not the overall conclusions
about the climate–economy relationship.

D.4. Climate temporal and spatial jackknife analysis (non-annualised)
To assess the robustness of the estimated long-run climate-growth relationship, a baseline OLS panel
regression model is first estimated. The model relates GDP per capita growth to quadratic terms
in 30-year average temperature and precipitation, capturing potential non-linear effects. It includes
region fixed effects to control for time-invariant unobserved heterogeneity across NUTS regions, year
fixed effects to account for global shocks, and region-specific linear and quadratic time trends to absorb
heterogeneous long-term trajectories. The regression is specified as follows:

ln(growthit) =β1 · climate_temp_30yrit + β2 · climate_temp_30yr_sqit

+ β3 · climate_precip_30yrit + β4 · climate_precip_30yr_sqit

+ αi + γt + δi · t+ θi · t2 + εit

(D.1)

Here, αi denotes region fixed effects, γt year fixed effects, and δi and θi allow for region-specific linear
and quadratic trends over time. Standard errors are clustered at the regional level to account for serial
correlation within NUTS units. Based on this baseline model, a jackknife procedure is conducted to test
the sensitivity of the results. In the spatial jackknife, the model is re-estimated repeatedly, each time
excluding one NUTS region. In the temporal jackknife, the same procedure is applied by sequentially
omitting one year at a time. The resulting variation in the estimated temperature-growth curves is
used to evaluate the robustness and stability of the non-linear climate response across space and time.

Table D.7: Jackknife summary of climate coefficient estimates

Variable Spatial Mean Spatial Std Temporal Mean Temporal Std
climate_temp_30yr 4.131 × 10−1 7.06 × 10−3 4.357 × 10−1 1.798 × 10−1

climate_temp_30yr_sq −7.949 × 10−3 2.63 × 10−4 −7.704 × 10−3 4.669 × 10−3

climate_precip_30yr 1.051 × 10−3 1.09 × 10−4 1.125 × 10−3 1.516 × 10−3

climate_precip_30yr_sq −9.803 × 10−7 6.18 × 10−8 −1.000 × 10−6 8.46 × 10−7

Table D.7 presents the jackknife estimates of the spatial and temporal stability of the climate coefficients.
The spatial mean of the 30-year average temperature coefficient is approximately 0.413, with a low
spatial standard deviation of 0.007, indicating consistent estimates across different spatial subsets. Its
squared term shows a negative mean of −0.00795, also with a small standard deviation, suggesting a
robust concave relationship between temperature and economic growth. The temporal means, derived
by sequentially omitting different time periods, show a similar pattern: the temperature coefficient has
a slightly higher mean of 0.436 and a larger standard deviation of 0.180, reflecting more sensitivity to
changes over time than across space. The squared term remains negative with a mean of −0.0077 and a
standard deviation of 0.0047, again supporting the presence of a stable non-linear temperature-growth
relationship. For precipitation, the spatial mean is 0.00105, with a small standard deviation, while its
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squared term is slightly negative. Temporally, the precipitation coefficient shows a mean of 0.00113 and
slightly higher variability. The squared term for precipitation is near zero in both spatial and temporal
dimensions, with low standard deviations, suggesting a minimal but stable non-linear effect. Overall,
the results confirm that the estimated climate coefficients are generally robust across both spatial and
temporal jackknife replications, with consistent signs and magnitudes that support the existence of a
non-linear climateeconomy relationship.

Figure D.4 illustrates the robustness of the estimated non-linear temperature growth relationship under
the spatial jackknife procedure. The plot shows how the predicted change in log GDP (∆ ln(GDP))
varies with the 30-year average temperature, comparing the full-sample estimate (black dashed line) to
estimates obtained by systematically omitting individual regions.

Figure D.4: Spatial jackknife curves of the estimated climate-growth relationship. Each line represents the predicted
change in log GDP as a function of 30-year average temperature, estimated by omitting one region at a time. The

dashed black line is the estimate using the full sample.

The curves all follow a concave pattern, confirming the existence of a global non-linear relationship where
economic productivity increases with temperature up to an optimum point, after which it declines. The
general similarity across the jackknife curves indicates that the estimated response is not driven by any
single region. However, some variation is visible in the upper range of the temperature distribution,
particularly for the curve omitting region NO07, which produces a slightly higher predicted growth at
extreme temperatures. Figure D.5 presents the results of the temporal jackknife analysis, where each
year except 1910 is excluded once from the sample and the model is re-estimated. The curves display the
predicted relationship between long-run temperature and economic growth, showing how the estimated
climate-growth function shifts depending on which individual year is left out.
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Figure D.5: Temporal jackknife estimates of the temperature-growth relationship. Each line shows the predicted change
in log GDP as a function of 30-year average temperature, estimated by omitting one year at a time. All years except

1910 are omitted once. The dashed black line shows the full-sample estimate.

The dashed black line represents the full-sample estimate, which features a concave shape. Most omitted-
year curves follow a similar pattern, although with notable differences in slope and curvature. For in-
stance, omitting 1938 or 1925 results in strongly upward-sloping curves with little evidence of curvature,
while omitting 1960 or 2015 leads to a more pronounced peak and faster decline at higher temperatures.
The most dramatic deviation is seen when 1950 is excluded, producing a curve that flattens and turns
negative across most of the temperature range.

D.4.1. annual temperature instead of climate means

Table D.8: Jackknife summary of climate coefficient estimates

Variable Spatial Mean Spatial Std Temporal Mean Temporal Std
Temperature 5.990760 × 10−3 1.220536 × 10−4 6.242053 × 10−3 2.951481 × 10−3

Temperature sq −2.389015 × 10−4 7.581468 × 10−6 −2.481640 × 10−4 1.466765 × 10−4

Precipitation −2.490379 × 10−5 1.217707 × 10−6 −2.472306 × 10−5 1.403412 × 10−5

Precipitation sq 5.338095 × 10−9 5.849296 × 10−10 5.176842 × 10−9 7.295679 × 10−9

Table D.8 reports jackknife summary statistics for the four climate coefficients. Spatial mean and spatial
standard deviation give the average and dispersion of each coefficient when omitting one region at a
time. Temporal mean and temporal standard deviation give the average and dispersion when omitting
one year at a time. Values are shown in scientific notation.

The spatial means for both temperature and temperature squared closely match the fullsample esti-
mates, and their spatial standard deviations are very small. This indicates that no single region drives
the overall temperature effects. In contrast, temporal standard deviationsespecially for the linear tem-
perature termare an order of magnitude larger than their spatial counterparts. This suggests that the
estimated temperature-growth relationship is more sensitive to the exclusion of particular years than to
particular regions. Precipitation coefficients show low spatial and temporal variability, implying robust
linear and quadratic precipitation effects across both space and time. Overall, the results demonstrate
strong regional robustness alongside notable year-to-year variation in temperature sensitivity.

Figure D.6 shows the full sample temperature-growth curve as a black dashed line and five jack-knife
curves in colour. Each coloured line represents the estimated relationship when one region is omitted
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(ITG1, SE33, FI1D, NO02, NO07). The horizontal axis is the annual average temperature in ◦C and
the vertical axis is the predicted change in log GDP per capita.

Figure D.6: Spatial Jack-Knife: drop influential regions

Omission of region ITG1 (green) shifts the peak to a higher temperature and flattens the curve
at warm values, indicating that this region pulls the global optimum downward. The curves for SE33
(blue), FI1D (red) and NO07 (purple) lie close to the full sample estimate, with only minor deviations
in curvature and peak height, suggesting those regions have limited influence. Excluding NO02 (orange)
produces a slightly lower peak and steeper decline at high temperatures, showing some sensitivity to
that regions data. Overall robustness of most curves around the dashed line confirms that the non–
linear temperature-growth relationship is not driven by any single region, although ITG1 and NO02
exert noticeable influence on the estimated optimum and curvature.

Figure D.7 shows the full sample temperature-growth curve as a black dashed line and five jack-knife
curves in colour. Each coloured line represents the estimated relationship when one influential year is
omitted (2010 in blue, 1925 in red, 1950 in orange, 2015 in green, 1970 in purple). The horizontal axis
is the annual average temperature in ◦C, and the vertical axis is the predicted change in log GDP per
capita.

Figure D.7: Temporal Jack-Knife: drop influential years

Omitting year 2010 (blue) produces a pronounced peak near 10◦C and a steep decline at higher
temperatures, indicating that early twenty-first-century data dampen curvature. Exclusion of 1925
(red) shifts the peak upward to around 25◦C and flattens the decline, showing that interwar data pull
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the optimum downward. Dropping 1950 (orange) yields a nearly monotonic increase in growth with
temperature, suggesting that mid-century observations are crucial for detecting any downturn. Omission
of 2015 (green) lowers the apex slightly and steepens the descent beyond the optimum, implying that
recent warming years soften the downturn. Excluding 1970 (purple) produces only minor adjustments,
indicating limited influence. Overall, sensitivity to specific years underscores the importance of temporal
coverage in estimating the non–linear climate-growth relationship.
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