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Abstract

Purpose Perioperative staff shortages are a problem in hospitals worldwide. Keeping the staff content and motivated is a
challenge in the busy hospital setting of today. New operating room technologies aim to increase safety and efficiency. This
causes a shift from interaction with patients to interaction with technology. Objectively measuring this shift could aid the
design of supportive technological products, or optimal planning for high-tech procedures.

Methods 35 Gynaecological procedures of three different technology levels are recorded: open- (OS), minimally invasive-
(MIS) and robot-assisted (RAS) surgery. We annotate interaction between staff and the patient. An algorithm is proposed that
detects interaction with the operating table from staff posture and movement. Interaction is expressed as a percentage of total
working time.

Results The proposed algorithm measures operating table interactions of 70.4%, 70.3% and 30.1% during OS, MIS and
RAS. Annotations yield patient interaction percentages of 37.6%, 38.3% and 24.6%. Algorithm measurements over time
show operating table and patient interaction peaks at anomalous events or workflow phase transitions.

Conclusions The annotations show less operating table and patient interactions during RAS than OS and MIS. Annotated
patient interaction and measured operating table interaction show similar differences between procedures and workflow
phases. The visual complexity of operating rooms complicates pose tracking, deteriorating the algorithm input quality. The
proposed algorithm shows promise as a component in context-aware event- or workflow phase detection.

Keywords Surgical workflow - Workload - Perioperative process - Camera monitoring - Human pose tracking - Robot-assisted
surgery

Introduction

Technology plays an increasingly large role in the operat-
ing room (OR) [1]. New technologies aim to improve patient
safety and procedure efficiency [2]. The adoption of robot-
assisted surgery (RAS) has grown in the last few decades.
Currently, RAS requires larger teams and more time to per-
form than minimally invasive surgery (MIS) or open surgery
(0S) [3].
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RAS, MIS and OS demand different skillsets from surgical
staff [4]. Procedures of technical nature shift the focus from
direct patient care towards technical activities [5, 6]. This
shift impacts work perception and satisfaction of the staff [7].

Added complexity and a shift away from care add stress
to an already stressful environment [5—7]. This can diminish
quality of care and staff wellbeing. Consequences like com-
munication difficulties, feelings of isolation, and anxiety are
quoted. Each of these contributes negatively to patient safety.

Shortages of perioperative staff and high turnover rates
are a worldwide concern [7]. Literature identifies workload
as a major cause [8]. Beside addressing workload, workflow
insights can lead to effective staff deployment and stream-
lined processes [2].

New technologies should ideally support healthcare pro-
fessionals without getting in the way or inducing stress. If a
technology causes severe changes in workflow, or increases
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procedure complexity, its design might leave room for
improvement. Specifically, some technologies may demand
much attention from personnel, thereby shifting focus from
direct patient care towards technical tasks.

Knowledge about the effects of technologies on periop-
erative workflow can aid in the design of new products and
support systems. To map these effects, an interesting metric
is the time spent on direct patient care. One possible approach
to measuring this metric is automatic monitoring of person-
nel activities in procedure videos. Such monitoring could be
deployed in hospitals on a large scale. Outcomes could yield
relations between procedure technology levels and perceived
workload.

Insights obtained by monitoring from many hospitals
could help in the design of future OR technologies. For exam-
ple, if much time is consistently spent configuring a device
during procedures, this reveals an opportunity where user-
friendliness can be improved. A new iteration of the product
could e.g. carry out the configuration autonomously, or sim-
plify it by making suggestions on its own. This way, the
technology assumes a more supportive role, without requir-
ing much attention from the staff. Another application is to
optimise planning and logistics for e.g. turnover time and
staff wellbeing [9]. Device placement could be updated for
better ergonomics or workflow efficiency. Tasks could be
divided differently to distribute workload more uniformly
over the surgical team.

Computer vision for automated OR monitoring is an
upcoming research topic [10]. Bounding box or pose detec-
tion can localise individuals in video. Pose trackers infer
bodypart—or keypoint—coordinates from all persons in a
video on every frame. Detection confidence is scored per key-
point, and each individual is assigned a unique identifier (ID)
for re-identification between frames. Most state-of-the-art
2D pose trackers rely on neural networks that need train-
ing on annotated images. Some authors provide models that
were pretrained on datasets like COCO [11] or MPII [12].
Important to consider is that monitoring itself could intro-
duce discomfort or stress for OR staff. Monitoring systems
should be designed carefully and non-intrusively, in a way
that does not hinder personnel comfort and wellbeing.

The OR shows visual differences from general-purpose
datasets. Clutter, occlusion and visually similar clothing
complicate detection and tracking. It cannot be assumed
that algorithms trained on general situations perform well
in the OR. Reference [13] presents an annotated dataset with
recordings of real surgeries. To our knowledge, this is the
only such public dataset at the time of writing.

This work presents a first exploration to quantify interac-
tion between staff and the patient from monitoring videos,
during procedures of varying technology levels. We take a
multimodal approach, where a computer vision algorithm
and manual annotations provide complementing measure-
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ments of interaction with the operating table and patient. To
our knowledge, no automated monitoring tool that measures
such perioperative interaction exists in the literature at the
time of writing. Patient interaction is annotated based on
observed intent and human pose tracklet motion and posi-
tion are constrained to automatically classify operating table
interaction. An interaction metric is designed specifically to
counteract bias from missing pose detections.

The “Methods” section describes our dataset, classifica-
tion of operating table interaction, and experiments. The
outcomes are shared in the “Results” section and discussed in
the “Discussion” section. Finally, the “Conclusions” section
presents our conclusions.

Methods
Dataset

Videos were recorded in two LUMC ORs during 35 OS,
MIS or RAS gynaecological procedures, from the view-
points shown in Fig. 1. The study was approved by a local
medical ethics committee, and all included patients gave
informed consent. MIS and OS procedures were filmed using
the same synchronised four-camera setup with a resolution
of 1920px x 1080px per viewpoint. RAS carried out with
the da Vinci surgical platform was filmed with two synchro-
nised cameras with a larger field of view and a resolution of
1280 px x 720 px.

Each recording was started at anaesthetic induction, and
ended after recovery in the OR. In each OR, the camera with
the clearest view of the operating table area was selected
for interaction quantification. The resulting viewpoints are
shown in Fig. 1.

In each procedure, areas were annotated where the wrists,
shoulders and head of a person should be present for them to
interact with the operating table. Two example annotations
are shown in Fig. 1. The wrists area was drawn loosely around
the patient in a lying position. Shoulders and head areas were
included to correct for the camera 2D projection of 3D scenes.

The personnel activities from the left side of Table 1 were
annotated for each person in the room. This was done by
two annotators who were unaware of the automatic detec-
tion method under development. Annotated activities were
grouped into the three categories on the right side of the
table, for use in patient interaction classification. Finally, the
workflow phases from Table 2 were annotated to enable eval-
uations per phase.

Pose tracking

We use AlphaPose [14] to detect poses in the OR. AlphaPose
applies a fast human bounding box detector [15, 16], after
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(a) RAS surgery viewpoint

(b) MIS and OS surgery viewpoint

Fig.1 Recording viewpoints in the two ORs. Annotated regions are shown where the wrists (blue), shoulders (purple) and head (orange) must be

for a person to interact with the operating table

which features are extracted [17] and a convolutional neural
network (CNN) places a pose in each box. During training,
a specific loss function and feature normalisation achieve
keypoint translation and scale invariance.

A tracker associates detected poses between video frames.
AlphaPose includes an optional tracker that uses visual
features. This strategy is unsuitable for the OR, as indi-
viduals here are dressed similarly. Instead, tracking is done
with PoseBYTE [18], which uses only geometric informa-
tion and prioritises confident detections. PoseBYTE adapts
BYTE [19] to associate poses instead of bounding boxes
using object keypoint similarity (OKS) [11]. PoseBYTE dis-
cards tracklets that are not present for at least two subsequent
frames. This compensates for the use of a low-threshold
object detector by AlphaPose, which increases the risk of
single-frame false positives.

Human bounding boxes are extracted from video with
YOLOvV3-SPP [15, 16], using features from ResNet152 [17].
A pose is detected in each bounding box using FastPose
(DUC) [14] and tracked and refined using PoseBYTE [18].
The pose detector was pretrained by its authors on the
COCO dataset [11], and we carried out no further training.
PoseBYTE is no machine learning algorithm and therefore
requires no training.

Detecting operating table interaction

Our model for detecting personnel interaction with the oper-
ating table is visualised in Table 3. When a person is standing
still in the correct position, this is assumed to signal inter-
action with the operating table. These two constraints are
detailed in the “Movement” and “Position” sections.

Table 1 Annotated personnel actions, and their classification as inter-
action with the patient

Annotated action Label

Active at table
Transferring instruments
Wrapping DV system
Active elsewhere
Inactive

Unpacking instruments
Moving cart

Absent

Patient interaction

No patient interaction

. Absence
Action unknown
Table 2 Annotated workflow phases
Phase Description
Induction Anaesthetic administration
Preparation  Surgical preparations
Surgery The intervention
Recovery Waking before departure
Movement

To detect (lack of) movement, we calculate for each key-
point its displacement magnitude in px over a span of fiotion
frames. Choosing a larger fmotion enables the capture of
longer-term motion. To account for undetected keypoints,
each pose is divided into subposes, for each of which move-
ment is classified separately. A subpose sp, is defined to be
still if at least a number Méi‘;;oim of its keypoints kr(rf“‘) C Sm
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Table 3 Detecting interaction with the operating table from personnel
position and movement

Position
By table  Elsewhere
-
=B
]
E 2
= Interaction

yields a displacement below a threshold réf ™) When a key-
point is not detected, or detected with a confidence below a
threshold yrgf ”‘), it is assumed to be still. A pose is defined to
be still if at least a number Myppose Of its subposes are.

Position

We classify positioning using the annotated regions from
the “Dataset” section. Poses are divided into three sub-
poses: (i) the wrists, (ii) the shoulders, and (iii) the head—
consisting of the nose, eyes and ears. Each subpose s, €
{wrists, shoulders, head} is classified to be by the table if

at least a number Pl:i}p/;oim of its keypoints kr()sp) C sp falls

within the corresponding annotated region. Keypoints with a
detection confidence below a threshold yp(sp) are not counted
within any region. A pose is classified to be by the table if at

least a number Pgyppose Of its subposes is.

Annotating patient interaction

Detected operating table interaction is intended as a mea-
sure for patient interaction. However, it is not guaranteed that
operating table interaction as defined in the algorithm indeed
signals interaction with the patient. Therefore, the person-
nel activities from Table 1 were annotated in the dataset in
“Dataset” section. These annotations provide a separate mea-
surement of actual interaction with the patient.

Experiments
Models

The used algorithm parameters are shown in Tables 4 and 5.
Constraining only a subset of subposes and keypoints com-
pensates for undetected keypoints. Legs are excluded as they
are detected least well. As arms can move during operating
table interaction, their movement is not considered.

@ Springer

Table 4 Values for the parameters defined in the “Movement” section,
used to detect pose movement based on two subposes

Parameter Value
f motion 5
M, subpose 1
Sm 1 2
e m) Shoulders Head
($m)
k;ypoim 1 1
Tim) 17.5px 17.5px
yigm) 0.3 0.3

Table 5 Parameters defined in the “Position” section used to detect
pose position

Parameter Value
P, subpose 2
Sp Wrists Shoulders Head
kl()s") Wrists Shoulders Nose, eyes, ears
(sp)
ke;poim 1 1 2
o 0.3 0.3 0.15

Classification

We measure the mean time fraction that personnel interacts
with the operating table

1
F =15 2 (), M
pepP
1 If pinteracts
r(p) = {O Otherwise 2)

where P is the set of all pose detections. Similarly, we
measure the mean time fraction of movement by making
r(p) 1 when a pose is moving. The mean time fraction of
patient interaction is measured using the annotations, where
P includes all annotated activities not labelled as ‘absence’.
This definition of F' compensates for pose tracking errors
in several ways. First of all, only detected poses contribute in
Eq. (1), 1.e. false negatives do not affect F'. Additionally, sum-
ming over all individuals removes any identity-specific infor-
mation, mitigating re-identification errors. Finally, letting
P cover a timespan—rather than a single frame—mitigates
single-frame detection errors through time averaging.
Equation (1) introduces limitations as well. As detection
accuracy varies between workflow phases, P will contain
more accurate poses during some phases than others. There-
fore, if P spans multiple workflow phases, this introduces a
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bias where some workflow phases affect F more than others.
Another limitation is the equal treatment of all individuals
in the room. Discarding information on person roles (e.g.
surgeon, nurse, patient, spectator) means that all roles con-
tribute equally to F. Patients and spectators therefore affect
F, whereas our main interest is the interaction of only per-
sonnel with the table.

During experiments, we extract F for three selections of
P per procedure type. First, we choose P to span all frames
of all videos of the same procedure type jointly. The second
experiment evaluates F per individual video, letting P span
one video at a time. Finally, we evaluate the evolution of F
over time within videos. Here, to maintain the time averag-
ing effect, F is calculated over a sequence of time windows.
Windows were chosen to have a length of 7500 frames, with
their start frames spaced 3750 frames apart. Thus, two adja-
cent windows overlap with 7500 frames — 3750 frames =
3750 frames.

Finally, we estimate pose detection performance by eval-
uating the quantity of detected human poses. The number
of pose detections is divided by the number of pose annota-
tions per window. This should yield a value close to 1 if the
numbers of annotated and detected poses lie close. Individual
pose detections cannot be verified without annotating their
location. Note, therefore, that a value of 1 does not guarantee
correct pose detections.

Qualitative results

Qualitative results are shown with colour-coded pose detec-
tions. A pose is drawn green if the person was classified to
interact with the operating table. If the person was in the
right position, but moving too fast to interact, they are drawn

. Finally, a person is drawn red if they were in the
wrong position for operating table interaction.

Shown video frames were selected by the authors to
demonstrate algorithm successes and failures. Keypoints
with a detection confidence below 0.2 were not drawn. For
each pose, an ID and a detection confidence score are shown.

Results
Dataset

The dataset contains RAS, MIS, and OS procedures in the
quantities shown in Fig. 2a. Lighting-dependent framerates
range from 6.2 to 26.1 frames per second (fps) during RAS
and 12.5 to 25.8 fps during MIS. Since OS is performed with
the lights on, the framerate was more constant here: from 24.7
to 25.3 fps. Recording durations are summarised in Fig. 2b,
c.

(b) Recording time

(a) Recording counts

0 1 2 3 4 5 6 7 8 9
Duration (hours)

(¢) Recording durations per procedure

Fig.2 Recorded procedure types and durations

Operating table interaction over the full dataset

Measured over the entire dataset, the provided algorithm
deems personnel to interact with the operating table 30.1%
of their time during RAS, 70.3% during MIS and 70.4% dur-
ing OS. The algorithm classifies personnel as moving 0.8%
of the time during RAS, 2.0% during MIS and 2.1% dur-
ing OS. Annotations report 24.6%, 38.3% and 37.6% patient
interaction during RAS, MIS and OS.

Operating table interaction per video

Figure 3a, b shows measured movement and operating table
interaction per video. The largest spread is seen between MIS
procedures, which range from 0.8 to 5.6% movement and
32.8 to 91.8% operating table interaction time. RAS shows
the least movement and operating table interaction time, from
0.7 to 1.0% and 25.0 to 35.9%, respectively. OS has move-
ment between 1.4 and 2.3% and operating table interaction
from 58.9 to 77.3%. Annotated patient interactions per video
in Fig. 3crange from 20.0 to 30.1% during RAS, 6.2t0 58.1%
during MIS and 29.8 to 54.2% during OS.

Two RAS procedures can be seen to have measured oper-
ating table interaction time fractions of 35.8% and 35.9%,
whereas the rest scores only up to 31%. During one of these,
closing the entry wounds took an hour, whereas normally it
takes about 15min. As fewer people are near the table dur-
ing RAS surgery than wound closure, more operating table
interaction is detected during the latter.

Looking at MIS, two procedures show operating table
interactions of 32.8% and 36.9%, the others scoring at least
47.4%. During one of these, two spectators are visible and
detected during the entire procedure. The personnel at the
operating table is poorly visible, due to the patient blanket
having the same colour as their clothes. Three other proce-
dures show 88.5%, 90.4% and 91.8% measured operating

@ Springer
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o 1 2 3 4 5 6 7 8 9 10
Measured movement (%)

(a) Measured movement

0 10 20 30 40 50 60 70 80 90 100
Measured operating table interaction (%)

(b) Measured operating table interaction

0 10 20 30 40 50 60 70 80 90 100
Annotated patient interaction (%)

(c) Annotated patient interaction

Fig. 3 Mean time fractions of movement, measured operating table
interaction and annotated patient interaction per video per procedure

type

table interaction. One of the three is a procedure with no
spectators and with few people present beside those at the
operating table. During another—again without spectators—
a complication caused the surgery to take longer than the
other workflow phases.

During OS, we observe the opposite as described in the
previous paragraph. Here, most interaction with the operat-
ing table is observed during surgery. One procedure shows
operating table interaction 58.9% of the time, which is at
least 74.2% for the others. This procedure has a relatively
long anaesthetic induction phase, spanning about one quar-
ter of the recording. As opposed to surgery, few people are
around during induction, and preparations are made in par-
allel throughout the room.

Interaction over time

Figure 4 shows movement, measured operating table inter-
action, and annotated patient interaction over time during
example RAS, MIS and OS procedures. During RAS and
MIS, least movement is seen during the surgery phase. MIS
and OS show the highest measured operating table interaction
during this phase. Annotated patient interaction fluctuates
around 40% for all procedures. OS shows most measured
variation throughout the procedure.

@ Springer

After 6 h, the OS procedure shows a movement and operat-
ing table interaction spike where the surgical team transitions
from surgery to closure of the wound. The RAS procedure
shows a spike in operating table interaction at 2h, where a
robot arm was replaced. shortly thereafter another increase
signals manual repositioning of a robotic arm. The observed
spikes are present in the annotated patient interaction during
RAS but not during OS.

Measured movement over time per procedure type and
phase is summarised in the top row of Fig. 5. Less movement
was measured in RAS procedures than other types. During
the surgery phase of OS, the peak at 6 h in Fig. 4c shows up as
an outlier. Less movement is measured during surgery than
during the other phases for all procedure types. During RAS,
a lower median movement is measured during preparation
than induction, whereas for MIS and OS this is the other way
around. median movements during induction and recovery
lie at most 0.59% point apart for all procedure types.

The second and third rows of Fig. 5 show measured oper-
ating table interaction and annotated patient interaction. Less
table and patient interaction are measured and annotated dur-
ing RAS than other procedure types. The median annotated
patient interaction lies higher during induction and recovery
than preparation and surgery for RAS and OS procedures.
During MIS most operating table interaction is measured dur-
ing surgery, and least patient interaction is annotated during
recovery. The main results from the “Operating table interac-
tion over the full dataset” to “Interaction over time” sections
are summarised again in Table 6.

Detected and annotated poses

Figure 6 summarises the number of detected poses as a per-
centage of the annotated number of people over time. This
was done separately for persons who were annotated and
measured as interacting with the operating table, and those
who were not. The median number of detected poses is
always below 100% for people not interacting with the oper-
ating table. For those who interact, detection percentages are
higher in most cases. The difference between interacting and
non-interacting detection percentages is larger for MIS and
OS than RAS. The interquartile spread is also larger for inter-
acting than non-interacting persons.

A larger fraction of non-interacting persons was detected
during RAS than during MIS and OS. For interacting persons,
detection percentages were more equal between procedure
types. The least non-interacting persons were detected dur-
ing the surgery phase for all procedure types. For interacting
persons, this is the case only during RAS. As individual pose
detections cannot be verified without annotating person loca-
tions, false negatives and false positives might nullify each
other in the results of Fig. 6.
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Fig. 4 Measured movement and operating table interaction, and annotated patient interaction, over time during an example RAS, MIS, and OS
procedure

Table 6 Summary of the main results from the “Operating table interaction over the full dataset” to “Interaction over time” sections

Dataset Per video Per window
Induction Preparation Surgery Recovery

Robot-assisted surgery

Table interaction 30.1 303£43 50.3 £ 15.0 28.0 £8.2 20.4 £13.8 372£11.5

Movement 0.8 0.9£0.1 22+£1.1 1.2+£0.2 04=£03 1.6 £1.5

Patient interaction 24.6 248 +4.1 49.6 £20.5 26.3+9.6 214+ 114 27.1+14.8
Minimally invasive surgery

Table interaction 70.3 662+ 154 67.3+17.5 56.0+£16.3 76.0 £22.9 59.6 £ 19.1

Movement 2.0 25+14 34+£22 43+1.8 1.5+44 39+£25

Patient interaction 38.3 37.7+£123 47.6 +27.0 42.24+20.4 389+ 14.6 37.9+21.9
Open surgery

Table interaction 70.4 712+£7.2 71.9+13.9 58.5+10.9 73.7+15.5 72.4 +20.6

Movement 2.1 1.9+04 27+14 5015 1.7+£1.8 38+4.6

Patient interaction 37.6 41.8+9.6 50.3 +£21.9 319+ 11.6 38.6 £11.2 55.3+14.9

Means (%) are reported with one standard deviation (percentage point) where applicable. Note that as RAS was recorded using a different camera
system than MIS and OS, these results cannot be compared directly
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Qualitative results

A sample of human pose detections is shown in Fig. 7.
The top-left image shows three correctly detected poses.
The cleaning person on the right satisfies the positional and
movement requirements, although their activity would not
be classified as interacting with the operating table by a
human. The person in the middle is not classified as inter-
acting because of their speed. On the left, someone is busy
elsewhere, whose left ankle was detected in the wrong place.

The top-right image shows ongoing MIS with the lights
turned off. Only two out of five persons are detected. Hips and
knees of the person in front are placed despite being occluded.
Three staff members near the table are heavily occluded or
face away from the camera, and are not detected. The shown
IDs of 1852 and 1858 mean that the algorithm assigned and
lost IDs 1856 times before this frame.

The middle-left image shows an OS procedure. Persons
in front of the camera are detected with confidence scores of

at least 0.70, with the exception of the partially out-of-frame
person in the lower right corner. The surgeon is classified
as interacting with the operating table, one assistant is in
the wrong position for this, and another is turning away to
move towards the instrument table. Three people in the back
are not detected, each of which is either occluded, partially
out-of-frame, or both.

The middle-right image was filmed during the induction
phase of an OS procedure. Two out of the five detected people
are close enough to the operating table to be classified as
interacting. Three persons were not detected, all of which
are occluded by clothing or another person, or partially out-
of-frame.

The larger-field-of-view camera filming the RAS proce-
dures makes persons appear smaller, as can be seen in the
fifth image. All persons but one—who is occluded by the
IV—are detected with a confidence of at least 0.69. The last
image shows a later stage of the same procedure, with the
lights off. Only one of the twelve persons is detected here.

@ Springer
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Fig. 7 Qualitative pose detections. Poses are drawn in green when classified as interacting with the operating table, orange when they are in the
right position but moving too fast to interact, and red when they are in the wrong position. A tracking ID and detection confidence are shown for

each pose

Looking closely, the sensor noise increased with respect to
that when the lights were on.

Discussion

In this work, we quantified the interaction of personnel with
the operating table, by analysing monitoring footage from 35
gynaecological procedures of three technology levels. Per-
sonnel movement was measured and interaction with the
patient annotated, for a multimodal comparison between
workflow phases and procedures of varying technology lev-
els.

Annotated patient interaction suggests less interaction
with the patient during RAS than other procedures. This

@ Springer

could be caused by the nature of the procedure: personnel
is spread through the room during RAS whilst the robot is
interacting with the patient and focussed around the operat-
ing table and patient during MIS and OS. Measured operating
table interaction shows a similar trend, although this result is
biased by the differing camera systems and higher-quality
pose detections near the operating table. Operating table
and patient interaction as a function of time differ similarly
between procedure types as well. These differences are more
pronounced in measured operating table interaction than the
annotated patient interaction. Again, biases from differing
camera systems and pose detection quality will amplify mea-
sured differences between RAS and the other procedures.
The “Detected and annotated poses” section suggests that
a similar percentage of poses is detected during all proce-
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dure types. This view could be distorted, as there are more
spectators—who are not annotated—during RAS than dur-
ing MIS and OS. Qualitative results reflect this: since many
false negatives here are unannotated spectators, the relative
number of pose detections remains high. Detecting spectators
reduces measured interaction without affecting the used pose
detection metric. Similar reasoning applies to false positives,
when persons are detected where there are none. Spectators
and false positives explain the detection rates above 100% in
“Detected and annotated poses” section.

Lights being off during RAS and MIS causes varying
pose detection rates within these procedures. The built-in
compensation from the “Classification” section might not
be sufficient with false negatives. When comparing results
between workflow phases, this needs to be kept in mind.

Least movement is detected during the surgery phase.
Here, most persons are busy at the table and spectators are
standing still. The other phases show more movement vari-
ation, as preparations or cleanup are ongoing throughout
the room. Most interaction is detected and annotated during
induction or surgery—depending on the procedure type.

The algorithm and annotations measured different kinds
of interaction by considering different properties of motion.
Patient interaction was annotated based on observed intent
and actions, and operating table interaction using only posi-
tion and displacement of detected poses. Future algorithms
could try to capture patient interaction using human action
recognition. Here, nuances in intent should be taken into
account. For instance, is waiting by the operating table to
carry out a task an interaction, or is it idling? Are controlling
the robot and monitoring the patient vitals technical or clin-
ical tasks? When looking per procedure or procedure type,
patient interaction was lower during RAS and MIS than OS.
Within individual procedures, interactions with the operat-
ing table and patient evolved differently. For example, during
OS, there was interaction with the patient, but not with the
operating table, when personnel transitioned from surgery to
wound closure.

Large fluctuations are visible in measured operating table
interaction, where certain events or workflow phase transi-
tions occur. These events are also visible in the annotated
patient interaction, albeit to lesser extent. Hence, the pro-
posed measuring approach might prove valuable for work-
flow recognition purposes.

This work presents a first step in quantifying time spent on
different activities in the OR. In future work, 3D pose detec-
tion could be used in the algorithm, which is less dependent
on the used camera system [20]. This would mitigate per-
spective and occlusion issues. A pose detection algorithm
should be used that is robust to motion blur and sensor
noise in low-light conditions [21]. It should be refined for
the OR by e.g. domain generalisation [22] using periopera-
tive monitoring footage like MVOR [13]. A tracking method

should be used that corrects for variable framerates. A scal-
able method, in addition to tracking poses robustly, should
not rely on new operating table annotations in each OR.
Instead, an object detector could be designed to locate the
table automatically. The use of 3D poses solves perspective
dependencies, removing the need to annotate or detect sepa-
rate regions per subpose. The patient interaction annotations
in this work could be replaced with a separate classification
algorithm. Classifying patient interaction will likely require
refined personnel features beyond position and movement,
such as roles or action recognition [23].

Recognising the nature of personnel actions can play a
role in context-aware systems for improved workflow or staff
deployment. The algorithm indicated workflow events and
anomalies, which can be used to streamline daily planning
and care. For example, the turnover team could be notified
when a procedure is finishing. Dashboarding workflow met-
rics could provide hospitals insight into their operation. This
could help reduce expenses and improve workflow through
well-informed decision making.

Conclusions

The presented algorithm is suitable to estimate high-level
interaction with the operating table when used with a modern
camera system. For lower-level analyses, a more descriptive
input feature is necessary that is robust in OR conditions.
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