TU Delft

System Call Sandboxing: Enhancing Security Through Analysis
Comparing Dynamic and Static System Call Analysis for Diff and SSH

Duco de Bruin'
Supervisor: Alexios Voulimeneas'

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2024

Name of the student: Duco de Bruin
Final project course: CSE3000 Research Project
Thesis committee: Alexios Voulimeneas, Przemyslaw Pawelczak

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Sandboxing is a technique that restricts software
applications’ access to system resources to limit un-
intended harmful behaviour. These measures may
include limiting the number of system calls that
can be used. This paper compares dynamic and
static analysis methods for determining the neces-
sary syscalls, focusing on the applications SSH and
diff. The contributions of this research include a
custom dynamic analysis approach, a comparison
to an existing static solution, and insights into their
strengths and weaknesses. Furthermore, it is ex-
plained how the use of execution phase separation,
a technique that involves analyzing each phase of
a program separately, can be used to further refine
the system call set. The results of the experiments
reveal that both methods can effectively decrease
the attack surface, each eliminating over 60% of
unnecessary system calls. On the one hand, static
analysis covers all possible use-cases but includes
calls that are never used. On the other hand, dy-
namic analysis provides a more realistic set based
on actual use-cases, but may miss some edge cases.
Moreover, it was found that execution phase sep-
aration works well and can reduce the amount of
system calls required in the main working phase of
SSH by 79%.

1 Introduction

Sandboxing is a way of creating an environment for a soft-
ware application that has limited, controlled access to system
resources. This is done to reduce the damage of unintended,
potentially harmful behaviour. It limits the possibilities for
adversaries to use an existing, compromised application for
performing an attack on the rest of the system [1]. These re-
strictions may include reducing the amount of system calls
that can be made. Linux has a built in functionality called
Secure Computing (seccomp) that allows for specifying, per
application, what system calls can be inferred with so called
filters [2]. However, manually constructing these sets of al-
lowed calls is time-consuming and error prone [3].

There are two primary methods for analysing programs to
find the required subset of system calls. The first is static
analysis, which involves inspecting the code and/or binary to
find which system calls are expected to be used [3], [4], [5],
[6]. Dynamic analysis, on the other hand, utilizes realistic
scenarios to find which system calls are actually being used
during runtime [5].

A tool that can be used to further refine the system call
set for both static and dynamic analysis, is execution phase
separation. It allows for even stricter sandboxes, since the
restricted syscalls are adapted based on the execution phase
of a program [7]. For instance, the "execve’ syscall is often
only needed in the initialization phase and can be blocked
after that. This tool ensures the tightest restriction at each
stage of the execution.

Prior work has mainly focused on static analysis and using
the results to create filters for seccomp [3], [4]. The ’Sys-

filter’ tool uses static analysis to find an overestimation of
the required syscall set [4]. Notably, Canella et al. pro-
posed a hybrid combination called ’Chestnut’, which com-
bines the different methods in a two phase approach. The
first phase is used to find all system calls with static analysis,
and the second phase is used to further refine this set with
dynamic analysis [3]. Additionally, the benefits of execu-
tion phase separation have been extensively explored in liter-
ature, demonstrating its effectiveness in enhancing sandbox-
ing mechanisms [4], [6], [7]. Another technique for reducing
a program’s attack surface is software debloating, which uti-
lizes dynamic analysis to identify and remove unnecessary
code segments, thus enhancing its security [8]. Research has
also extended sandboxing techniques to Docker containers,
with various strategies enhancing container security [5], [9].

This research attempts to provide an understanding of the
differences between static and dynamic analysis techniques
for creating syscall filters. Furthermore, it explores how ex-
ecution phase separation can provide an even stricter policy.
To address these objectives, this paper poses the following
research question:

”How do dynamic and static analysis methods
compare in identifying required system calls for
applications, and how can execution phase
separation further refine the system call sets?”

In order to achieve these objectives, this paper will be lim-
ited to two specific applications: diff and SSH [10], repre-
senting varying complexities.

The contributions of this research include a simple, cus-
tom approach for dynamic analysis using Strace [11], [10].
This custom method and the static analysis tool Sysfilter are
then used to conduct syscall analysis on diff and SSH. The
resulting sets of both will be analysed and compared, giving
insights into their strengths and weaknesses. Moreover, it is
explored how the use of execution phase separation can be
used for SSH. This will involve identifying different phases
in SSH as well as finding the system calls per phase.

The structure of this paper is as follows: Section 2 out-
lines the methodology used for the experiments, explaining
the tools and applications involved. Section 3 presents the re-
sults of the dynamic and static analysis. Section 4 describes
the process and results of execution phase separation for SSH.
Section 5 compares the findings and discusses the limitations
of the two methods. Section 6 briefly addresses responsi-
ble research. Finally, section 7 provides the conclusions and
gives suggestions for future work.

2 Methodology

This section focuses on the methodology of this research.
First, the selected applications for the analysis will be listed.
Then, the tools used for both dynamic and static analysis will
be explained. Next, the environment in which the experi-
ments were conducted is discussed. Finally, the approach for
execution phase separation will be explained.

2.1 Application Selection

To limit the scope of this research, two applications were cho-
sen to be analysed.

The first one is diff [10], a small binary that compares files
line by line, indicating any differences between them. Due
to its relatively simple functionality and codebase, diff is a
good first candidate for analysis, since the amount of syscalls
it uses will most likely also be limited. Additionally, the
number of execution paths for dynamic analysis is not very
high. This simplicity makes diff an ideal starting point for
understanding the basics of system call sandboxing without
the complexity of larger programs.

The second application that was selected is Secure Shell
(SSH) [101], a protocol for secure remote login and command
execution over an encrypted connection. Unlike diff, SSH has
a much more complex codebase and functionality, including
network communication and encryption mechanisms. This
complexity makes SSH another excellent candidate for anal-
ysis because it allows evaluation of how larger applications
benefit from system call sandboxing. Moreover, SSH consists
of multiple execution phases, which will be explored later in
this paper.

2.2 Strace

Dynamic analysis of the applications will be done using the
Strace [11], [10] tool. It is a system call tracer that intercepts
and records the system calls made by a selected program dur-
ing execution. By running an application under Strace, a de-
tailed log of all system calls, along with their parameters and
return values, is generated.

For the sake of this research, the focus is solely on the
syscall names. Therefore, the data needs to be parsed for eas-
ier evaluation. To achieve this, a simple utility called sparse
was developed in C++, which filters out unnecessary infor-
mation and ensures that duplicate entries are removed. The
resulting set of system calls is then presented for analysis.
On top of that, a shell script (traceparse.sh) was written to
streamline the process, allowing for the execution of Strace
and sparse with a single command and storing the results in a
file. The code and documentation for both tools can be found
on GitHub [12].

To properly find all the system calls that the chosen appli-
cations require, it is essential to run the tracer on a variety
of inputs to cover as many possible execution paths. Once
all of these traces are obtained and parsed, they need to be
combined into a single dataset. To achieve this, a tool called
unique-file-merge was developed in C++. This tool generates
the final set, which contains all the system calls needed, by
taking the union of the smaller sets. The code and documen-
tation of this tool can be found on GitHub [13].

2.3 Sysfilter

Sysfilter is a static binary analysis tool for x86-64 Linux
which can be used to generate system call filters [4]. It con-
sists of two main components: an extraction tool and a filter
enforcement tool. For this research, the focus lies on the ex-
traction tool, which can be used to identify the system calls
that are likely to be used by a program, given its binary. This
tool provides an over-approximation of the calls invoked by
the application.

The result of running Sysfilter extraction on a binary is
a JSON file containing a list of numbers that correspond to

specific syscalls. In order to be able to compare this with
the results from dynamic analysis, it is required to parse this
file by replacing the numbers with their corresponding syscall
names. This will be done with a Python program, using the
list of syscalls for x86-64 provided in Strace’s GitLab [11].
The result of this is a JSON file containing the list of syscall
names. The program that converts the syscall numbers to
names, including code and documentation, can be found on
GitHub [14].

2.4 Environment Selection

All experiments were conducted on the x86-64 architecture
[15] using Ubuntu 22.04 LTS [16]. The primary reason for
this choice is that Sysfilter was developed for the x86-64 ar-
chitecture. This ensures that the tool will work as intended.
Ubuntu 22.04 LTS was selected due to its stability and ease
of use.

2.5 Execution Phase Seperation

The methodology for execution phase separation involves
manually inspecting the syscall traces produced by Strace for
the SSH client. This process includes analyzing the sequence
of system calls to identify patterns or transitions that differ-
entiate between the various phases of execution. To help with
this identification, the execution of the program was manually
stopped at key points:

1. Before Logging In: The execution was paused before
actually logging in, to capture the initial setup and ini-
tialization syscalls.

2. Directly After Logging In: The execution was stopped
immediately after the login process to capture the
syscalls associated with the session establishment.

3. After Performing Tasks: Finally, the execution was
paused after performing several tasks to capture the
working phase syscalls.

This makes it easier to identify which phases can be distin-
guished and which syscalls belong to each. It could also be
useful to look at or modify the code to identify key transition
points, but that is outside the scope of this paper.

3 Analysis Results

This section presents the findings from the dynamic analy-
sis of system calls on diff and SSH using Strace [11], [10].
Furthermore, the results from static analysis using Sysfilter
[4] will be shown. For both static and dynamic analysis, the
percentage of system calls compared to the total number of
system calls present in x86-64 is shown in figure 1 per appli-
cation.

3.1 Diff
Dynamic Analysis
Dynamic analysis on the diff application revealed a set of sys-
tem calls that are likely to be needed during its execution.
This set was discovered using the methodology outlined in
the previous section.

It is to be noted that this set may not be complete as it was
obtained on a limited number of inputs and might, therefore,

miss some edge cases. However, the most important function-
alities of diff were used to generate these sets so it is likely
close to complete and can therefore be used for further anal-
ysis.

The dynamic analysis resulted in a set of 24 system calls.
This is only 7% of all 335 system calls available in the x86-64
architecture. This relatively small percentage indicates that
diff only utilizes a small subset of the overall system func-
tionality. This was, of course, expected, as it only has limited
functionality.

The calls found cover basic operations like file handling
(e.g., openat, read, write, getdents64), process control (e.g.,
execve), memory management (e.g., brk, mmap, mprotect,
munmap) and some other essential functions.

The complete resulting set of system calls found by the dy-
namic analysis can be found in Appendix A. Using this set,
a filter could be made in order to sandbox this application.
By restricting syscalls to this specific subset, the attack sur-
face would be significantly reduced without compromising
the application’s main functionality.

Static Analysis with Sysfilter

In contrast with dynamic analysis, static analysis resulted in
a significantly larger set of system calls. This was to be
expected, as Sysfilter is designed to over-estimate the set
of syscalls needed by the application [4]. However, this
also means that we are certain that at least all the necessary
syscalls are included. It is also noteable that the analysis was
very easy and didn’t require doing any manual work.

The static analysis resulted in a total of 59 system calls
being identified. This is only 18% of all 335 system calls
available in the x86-64 architecture. This is more than the
dynamic analysis yielded, but this is expected. It is still small
enough to reduce the attack surface significantly when using
the set as a filter.

The calls cover operations like file handling (e.g., ope-
nat, read, write, getdents64), process control (e.g., execve),
memory management (e.g., brk, mmap, mprotect, munmap),
system information (e.g., arch_prctl, uname, prlimit64, sys-
info), networking (e.g., socket, connect, sendto, recvfrom)
and many more.

The complete resulting set of system calls found by the
static analysis can be found in Appendix A.

3.2 SSH

Dynamic Analysis

Dynamic analysis of the SSH application produced a larger
set of system calls than the one for diff. This was expected,
considering that SSH is a much more complex application
with functionalities like networking and encryption.

It was decided to split the result into two sets, since there
is a significant difference between the two use-cases of SSH.
One set is the result of using SSH as a client: remoting into
another device. The other set was the result of using SSH as
a server, where another device was used to remote into the
device under test. By dividing the analysis into client and
server components, the difference in system call behavior of
each aspect of the SSH application can easily be analysed.

35
35 |- =
30 .
g a5l |||
5 22
]
§ 200 18 i
N
10 - n
7
5 = ﬂ\ T T T -
Diff SSH-client SSH-server SSH-combined
Application
‘ 0 0 Dynamicl 0 Static

Figure 1: Percentage of all x86-64 system calls required per appli-
cation, per analysis method.

It is important to note that the results obtained from dy-
namic analysis might not be complete because certain paths
might have been missed. However, the main functionalities
were used for testing so it is likely to be close to complete.

Analysing the clientside part of SSH was straightforward,
as Strace could be invoked on the application directly. SSH
was then used to remote into another machine, where various
tasks were performed to get as many required system calls as
possible. Notably, the specific tasks performed on the remote
machine did not impact the resulting set of system calls.

It was revealed that SSH requires 43 system calls when
used to remotely access another machine. This is only 13%
of the total system calls. Considering that this application has
complex functionalities, this is still a relatively small amount.
This suggests that there are many system calls that are only
required in very specific use-cases. It also means that system
call sandboxing is likely still effective in reducing the attack
surface significantly.

This list of system calls covers a wide range of operations.
These include networking (e.g., socket, connect, setsockopt),
file handling (e.g., openat, read, write, getdents64, lseek),
process control (e.g., execve, exit_group getpid), memory
management (e.g., brk, mmap, mprotect, munmap), polling
(e.g., poll ppoll) and many more.

Analyzing the server-side aspect of SSH presented some
challenges, mainly because the program runs in the back-
ground. It was therefore necessary to identify the process ID
(pid) of the ’sshd’ process. This was achieved using ’ps aux’
and locating the process names: ’sshd: /ust/sbin/sshd’. Strace
was then invoked on this process to record the system calls.
The purpose of this specific process is to actively listen for
incoming connections and establish them. Upon connection
by an external device, a new process is spawned, identifiable
by the name: ’sshd: username [priv]’, where username rep-
resents the user that was remoted into. Subsequently, Strace
was applied to this process to capture the rest of the system

calls.

This analysis resulted in a set of 74 system calls. Even
this is only 22% of all system calls available. This re-
sult indicates that most work for the remote connection is
done on the server side, on the host. The list of system
calls covers mainly networking(e.g., accept, bind, setsock-
opt, recvmsg), but also thread management (e.g., futex, tgkill,
sched_getaffinity), polling (e.g., poll, ppoll), user manage-
ment(e.g., chown, setfsuid, setgroups) and much more.

The final resulting set of system calls for both client and
server side as well as the combined set, can be found in Ap-
pendix A.

static Analysis with Sysfilter

Unlike the dynamic analysis for SSH, it was not possible to
split the resulting set of system calls into a client and server
part. This is, because there is only one binary to analyze. Ei-
ther way, the results are still useful for sandboxing the entire
application.

When applying Sysfilter to the binary for SSH, some chal-
lenges were presented. Despite having all the required sym-
bols installed, the tool was unable to parse the binary. This
issue is known to occur with certain hand-coded assembly
functions and requires a manual override. The Egalito frame-
work, which Sysfilter largely relies on for its binary analysis,
sometimes struggles with these kinds of functions [4]. How-
ever, the tool provides a couple of overrides for some com-
mon libraries, and using these overrides resolved the problem
in this case. The tool was therefore executed with the follow-
ing command to address the parsing issue:

EGALITO_PARSE_OVERRIDES=overrides
app/build_x86_64/sysfilter_extract /usr/bin/ssh

The result of the analysis was a set of 111 system
calls, which is 35% of all system calls available in x86-
64. This is a large percentage compared to the previous
results, but it is still a relevant reduction when used for
sandboxing. The list of system calls cover inter-process
communication(e.g., pipe, dup), networking(e.g., bind, lis-
ten, connect, sendmsg), scheduling(e.g., schet_getpararm,
schet_get_priority_max) and timers(e.g., timerfd_settime) and
many more.

The complete set of system calls can be found in Appendix
A

4 Execution phase seperation

For SSH, it was possible to identify multiple execution phases
and find system call sets per phase. The process and outcomes
for this are described in the following section.

4.1 Phasesin SSH

As explained in the methodology, by manually stopping the
execution of the SSH client at several key points, it was possi-
ble to identify several phases. By inspecting the traces, it was
possible to find their respective functionalities. The phases
are as follows:

1. Initialization Phase: In this phase, the client prepares
all necessary components to establish a connection and
then initiates the connection to the server.

2. Authentication Phase: The user is prompted to enter
their credentials. These are then verified by the server.

3. Session Establishment Phase: Once the user is veri-
fied, the session is created. This includes some extra
preparation.

4. Working Phase: This is the main part of the application
where the actual tasks are performed. The user can now
interact with the remote system. For simplicity, this also
includes exiting the application.

It was challenging to determine the boundaries of the au-
thentication phase due to its smaller size and close integration
with the initialization phase. Therefore, it was decided to be
included as part of the initialization phase.

Moreover, it may be possible that there are more smaller
phases within the identified phases. However, it was decided
not to further separate them, as the results of using just 3
phases was already very promising.

4.2 Phases in Traces

The phases can be identified by specific system calls, which
mark their beginnings and endings. It was decided to use
these seemingly logical points, but the boundaries could also
be slightly shifted.

The initialization phase starts at the beginning of the pro-
cess and ends after the user has entered their password. This
can be recognised by two consecutive syscalls that are read-
ing and then printing a newline character:

read(5, "\n", 1) 1
write(5, "\n", 1) 1

the session establishment phase occurs after this and before
the next phase.

The working phase begins when the first text is printed to
the client console. For instance, when remoting into a Rasp-
berry Pi, this is indicated by the following system call:

write(5, "Linux rpi 6.1.21-v7+ #1642
SMP M"..., 418) = 418

4.3 Resulting Syscall Sets

Having identified these phases in the traces, it is now possible
to identify the required system calls. The sparse [12] program
was used on the subsets of the traces to obtain the syscall sets.
This resulted in three, partially distinct sets of varying sizes,
which can be found in Appendix B.

Figure 2 provides a comparison of the percentage of system
calls required per phase. This is not only shown in compari-
son with the total number of system calls in x86-64 but also in
relation to the number of system calls required for the entire
SSH-client.

The initialization phase required the most system calls,
with 36, which is 86% of the system calls required for SSH
client. This suggests that the setup process involves a sub-
stantial number of system interaction, likely related to estab-
lishing connections and security measures.

In contrast, the session establishment phase requires only
19 system calls, representing 45% of the total calls typically
required by the SSH client. This shows that it still requires a

100

100 :
86
> 80 5
g
N 60 (- |
g 15
S
40 H |
§ 21
Y
& 20 H |13 11 5 H s
0 \m \m \m \Ii
All Init Session Working
Phase

’ [0 SSH-client [1 x86-64 \

Figure 2: Percentage of system calls required per phase of SSH.
Compared to either the number of required system calls for SSH-
client or to all available in x86-64.

lot of system interactions, but this is expected since this phase
is also part of the setup.

Notably, the working phase is the smallest set, only requir-
ing 9 system calls. This indicates that most system calls are
required during setups and not necessarily during the usage
of the application. Only 21% of the system calls normally
needed for the SSH client are required. This is a consider-
ably small portion, thus significantly reducing the potential
vulnerabilities during the application’s main usage.

5 Discussion

The results show how dynamic and static analysis can be used
to find a set of required system calls for an application. This
section will compare the dynamic and static analysis and dis-
cuss limitations of both methods. A tool that combines both
methods will be discussed as well.

5.1 Comparison

Both static and dynamic analysis provide valuable insights
into the required system calls of applications. They do, how-
ever, function in different ways and produce different results.
Diff
Dynamic analysis results in a much smaller set of required
system calls than static analysis with Sysfilter [4]. As can be
seen in Figure 1, there is a difference of 11% between the two
sets. It is interesting to see that, for diff, the dynamic set is
not necessarily a subset of the static set. It is largely a subset,
but there are some minor differences.

Specifically, there are four calls that appear in the result of

dynamic analysis but not in the result of static analysis. These
are:

e arch_prctl: This system call is architecture-specific and
is used for thread management. It might not have been
captured by the static analysis because it is dependent on
the runtime environment, which is not predictable from
the code [10].

* set_tid_address: It sets a pointer to the thread id. Similar
to arch_prctl, this call is tied to the runtime behaviour,
which cannot be predicted beforehand [10].

* access: This checks the user’s permission for a file. This
call might be invoked by the operating system instead of
the application, so it is not evident in the code [10].

* rseq: Standing for Restartable Sequences, this system
call also has to do with thread management. Therefore,
it can also not be predicted beforehand [10].

As it appears, some system calls handling thread management
and access rights are not able to be detected by static analysis
as they are likely only called by the runtime environment.
This could also mean that they are not always called but only
in specific situations.

The set of system calls that was only found by static analy-
sis is less interesting. This set contains 39 extra system calls,
which are mostly not actually used by diff. It contains some
calls that are certainly wrong, like several regarding network-
ing(e.g., socket, connect, sendto, recvfrom). This type of call
is unexpected, considering that diff operates on local files and
doesn’t require network functionality. This unexpected inclu-
sion shows the tendency of Sysfilter to overestimate the re-
quired system calls. Leaving these system calls available in
a sandbox, while not required, could lead to extra vulnera-
bilities. This is important to consider when using this static
analysis tool.

On the contrary, there are some syscalls that could be right,
like rt_sigreturn, which handles signaling [10]. This call may
not have been found by dynamic analysis because no signals
were used during execution, highlighting the downside of dy-
namic analysis.

SSH
Again, static analysis with Sysfilter yielded much more sys-
tem calls required than dynamic analysis. The difference,
similar to diff, is around 10%, which could indicate that this is
the overhead of the tool. However, more applications would
need to be tested to confirm this hypothesis. Even though the
percentage differences are nearly the same, the actual vari-
ation between the sets is even larger than for diff. This is
expected, as SSH already requires more system calls.

To begin with the system calls that appear in the result of
dynamic analysis but not in the result of static analysis. There
are 20 of these, which can be split into 2 main groups:

* Process/Thread Management: restart_syscall, clone3,
setpriority, setfsuid, capset, close_range, rseq, arch_prctl,
setfsgid, capget, getpriority

e /O Operation: epoll_ctl, ppoll, timerfd_settime,

epoll_wait, epoll_createl, timerfd create, readlinkat,
chown

Although there are more syscalls of each type, the overall re-
sult is comparable to the findings for diff. Once again, many
process and thread management calls are not found by the
static analysis, due to the dependency on the runtime envi-
ronment or conditions.

For example, ppoll_create may have been left undetected
because it is a Linux-specific API that depends on the envi-
ronment and is thus not used on every operating system. Also

chown, capable of changing ownership of a file, may not have
been found by static analysis due to its dependency on the
runtime conditions. Additionally, rseq remains undetected by
Sysfilter, as seen with diff, since it is unpredictable just from
the code.

There were many calls that were only found by Sysfilter
and not by dynamic analysis. There were a total of 47 extra
calls, that are mainly due to the overestimation of the tool.
Some examples of system calls which are likely not required
by SSH in reality are: mkdir, sync_file_range, gettimeofday,
add _key, but also many more. These are system calls that
don’t seem to be in line with the functionalities of SSH. Their
presence is due to dependencies or libraries containing them,
but they may not be actively used in the program’s execution.

Some system calls could be right, however. Some exam-
ples of this are: exit, listen, select and likely some more.
These seem to correspond to the behaviour of SSH. Espe-
cially, the ’listen’ system call seems to be crucial when wait-
ing for clients to connect to the server, so it is odd that dy-
namic analysis did not detect it.

5.2 Limitations of Dynamic Analysis

Dynamic analysis produces a set of syscalls necessary for re-
alistic use-cases of applications. This means that the resulting
number of system calls will be as limited as possible. Which
is a good thing, since this will reduce the attack surface of the
application significantly.

On the contrary, it is hard to guarantee that all possible ex-
ecution paths were followed during analysis. It might there-
fore occur that an application in a sandbox with this set as
a filter might not function properly in some scenarios. Nev-
ertheless, with a sufficiently large and diverse set of inputs,
a near-perfect set of system calls can be achieved, ensuring
reliable performance within a sandbox. This does, unfortu-
nately, require a lot of manual labour and proper insights into
the execution of applications.

A challenge of dynamic analysis is the difficulty in deter-
mining the best approach to analyzing certain programs. For
example, a background task like SSH or other services might
consist of multiple small components, which will all need to
be analysed individually in order to obtain complete results.
This makes the analysis process more complicated and prone
to errors.

5.3 Limitations of Static Analysis

Static analysis, on the other hand, is guaranteed to provide
a complete set of system calls for the analysed application.
Every possible system call that can be called from the code
will be found. This means that using this set as a filter for
a sandbox will most likely not limit the functionalities of the
application. Consequently, it also means that system calls,
which might never be reached, will also be found. These
syscalls will therefore also be included in the filter for a sand-
box, leading to a larger vulnerability gab for adversaries to
exploit.

In certain cases, like with diff, Sysfilter is easy to use. It
only requires the execution of one command while providing
the path to the binary. However, this is not always the case,

as many larger applications like SSH require the correct de-
bug symbols to be installed on the system for the analyser to
be able to understand the binaries. This requires manually
identifying which debug packages are used by a certain ap-
plication and then installing them. Even that doesn’t always
work, and then it is necessary to manually provide overrides
for specific functions. In some cases, these overrides are pro-
vided by the tool itself, but in other cases a lot of manual work
and research will be required to find them.

5.4 Combining Both Methods

An effective method that addresses the limitations of both ap-
proaches, involves combining the two. This is done by a tool
known as Chestnut [3]. Initially, Chestnut employs standard
static analysis on the binary (p1), just like Sysfilter [4]. The
difference comes in the second phase (p2), where dynamic
analysis is used to reduce the set of system calls even more.

For this study, it was attempted to use Chestnut on diff and
SSH in order to gain insights in what results this approach
might yield. Unfortunately, Chestnut’s documentation proved
to be inadequate, making it hard to use. Luckily, the paper by
Canella et al. provides some results that can be used for this
comparison.

According to their findings, which can be seen in compar-
ison with dynamic analysis and static analysis by Sysfilter in
Figure 3, static analysis of the binary of SSH resulted in 36
system calls. This set was then reduced to 16 through the
second, dynamic phase.

It is worth noting that the binary analysis by Sysfilter pro-
duced almost two times more system calls than the analysis
by Chestnut. A possible explanation for this difference, is
that Sysfilter does a deeper analysis of the libraries that are
potentially used in the code and thus finds more (not actually
required) syscalls.

Even more intriguing is that the final result after p2 is
smaller than the set found by dynamic analysis. This is puz-
zling, because all calls identified by the dynamic analysis pro-
posed by this study are sure to be used, as they were dis-
covered while the application was running. One possible ex-
planation is that certain system calls were not considered by
Canella et al. Even then, it is still hard to explain why the
difference is so big and what was not considered. Unfortu-
nately, without inspecting the actual set of syscalls found by
Chestnut, the answer cannot be provided.

While these results were not available for SSH, the obser-
vations from diff indicate that the resulting set would also be
smaller. This could very well be the case for most application,
since this method seems to combine the best of both static and
dynamic analysis, yielding tight result sets.

6 Responsible Research
6.1 Ethical Concerns

All tools and methods used in this paper were designed to
avoid harming existing systems. The aim of this research was
to contribute positively to cybersecurity. Most importantly,
all experiment results were reported accurately and without
falsification.

. 15f 2
S

N

g 11

S

$ 10p 2
A

i B
! ! ! !
Dynamic Sysfilter Chestnut-pl Chestnut-p2

Analysis method

Figure 3: Percentage of all x86-64 system calls required for diff per
analysis method.

6.2 Reproducibility

To ensure reproducibility, all steps of the experiments were
documented. All tools and software used, including sysfil-
ter, SSH and custom-developed tools like sparse, are publicly
available. For the custom-developed tools, all code is pub-
licly available, well commented and Readme files with usage
instructions are provided. This transparency enables other re-
searcher to replicate and verify this study.

7 Conclusions and Future Work

In conclusion, this paper has explored how approaches for
dynamic and static analysis of system calls compare with re-
gards to system call sandboxing. By evaluating a custom dy-
namic analysis method using Strace [11], [12], [13] against
the static analysis tool Sysfilter [4], this study provides in-
sight into their strengths and weaknesses.

The results indicate that dynamic and static analysis signif-
icantly reduce the attack surface, with each method eliminat-
ing more than 60% of unnecessary system calls for both SSH
and diff. This indicates that using either method for sandbox-
ing would result in a safer environment with a reduced attack
surface.

Static analysis identified a larger set of system calls, cover-
ing every possible scenario. However, it also found additional
calls that are present in libraries, for example, but are never
actually used by the application. In contrast, dynamic analy-
sis provided a tighter and more realistic set of calls based on
actual behaviour. The downside of dynamic analysis is that
the resulting set might miss some edge cases, overlooking
rarely used calls. Thus, when using either method for sand-
boxing, there is a trade-off between maintaining full function-
ality and achieving maximum attack surface reduction.

To maximize security, a hybrid approach combining both
methods, such as used by the Chestnut [3] tool, appears
promising. This method mitigates the drawbacks of the in-
dividual approaches, while leveraging their strengths.

Moreover, using in depth techniques such as execution
phase separation can further enhance system call reduction,
particularly for larger applications like SSH. By ensuring that
only the essential system calls are available in each phase,
execution phase separation offers an even better approach to
reducing attack surface reduction. It was found that the work-
ing phase of the SSH client only requires 21% of what the
entire application normally requires.

7.1 Future Work

While this research offers insight into how effective dynamic
and static analysis are, several aspects remain to be explored
for future research. To gain even more insights in how each
method performs, future research could extend the analysis to
a broader range of applications.

Additionally, incorporating fuzzing techniques, as sug-
gested by Canella et al. [3], could be useful in ensuring full
coverage of all execution paths during dynamic analysis. By
subjecting applications to diverse inputs, fuzzing can uncover
potential edge cases that may not be captured by manual anal-
ysis.

While this study primarily focused on identifying system
calls and quantifying the reduction they would yield, there
is potential value in developing a tool. It should be capable
of automatically performing the explained custom dynamic
analysis, as well as filter creation for sandboxing, solely
based on a set of provided inputs.

The manual identification of execution phases is a labor-
intensive and error-prone task. A tool that automates this is
Syspart, which employs static and dynamic analysis to sand-
box phases separately for several server applications [17]. Fu-
ture work should explore methods of automating this process
for other application. This could potentially also be done us-
ing machine learning to identify key transition points.

This study observed approximately a 10% overhead of sys-
tem calls for Sysfilter compared to dynamic analysis. Future
research should investigate whether this overhead remains
consistent across multiple applications and how it can be re-
duced.

References

[1] V. Prevelakis and D. Spinellis, “Sandboxing applica-
tions,” in 2001 USENIX Annual Technical Conference
(USENIX ATC 01), (Boston, MA), USENIX Associa-
tion, June 2001.

[2] “A seccomp overview.” LWN.net [Online]. Available:
https://lwn.net/Articles/656307/. (accessed May 5,
2024).

[3] C. Canella, M. Werner, D. Gruss, and M. Schwarz, “Au-
tomating seccomp filter generation for linux applica-
tions,” in CCSW 2021, 2021.

[4] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca,
and V. P. Kemerlis, “sysfilter: Automated system call
filtering for commodity software,” in RAID 2020, 2020.

[5] S. Ghavamnia, T. Palit, A. Benameur, and M. Poly-
chronakis, “Confine: Automated system call policy gen-

eration for container attack surface reduction,” in RAID
2020, 2020.

https://lwn.net/Articles/656307/

[6] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychron-
akis, “Temporal system call specialization for attack
surface reduction,” in USENIX Security 2020, 2020.

[7]1 Z. et al., “Building dynamic system call sandbox with
partial order analysis,” in Proceedings of the ACM on
Programming Languages, vol. 7, 2023.

[8] Q. et al,, “Razor: A framework for post-deployment
software debloating,” in Proceedings of the 28th
USENIX Security Symposium, 2019.

[9] S. Yang, B. B. Kang, and J. Nam, “Optimus:
association-based dynamic system call filtering for con-
tainer attack surface reduction,” Journal of Cloud Com-
puting, vol. 13, 2024.

[10] M. Kerrisk, “man7.” [Online]. Available: https://man7.
org. (accessed Apr. 28, 2024).

[11] D. Levin, “Strace.” GitLab. [Online]. Available: https:
/lgitlab.com/strace/strace. (accessed May 27, 2024).

[12] D. de Bruin, “sparse.”” GitHub. [Online]. Available:
https://github.com/DucodB/sparse. (accessed Apr. 28,
2024).

[13] D. de Bruin, “unique-file-merge.” GitHub. [On-
line]. Available: https://github.com/DucodB/
unique-file-merge. (accessed May 4, 2024).

[14] D. de Bruin, “syscall-numbertoname.” GitHub.
[Online]. Available: https://github.com/DucodB/
syscall-numbertoname. (accessed May 27, 2024).

[15] R. Chapman, “Linux system call table for
x86_64. R. Chapman’s Blog. [Online].
Available: https://blog.rchapman.org/posts/

Linux_System_Call_Table_for_x86_64/.
May 3, 2024).

[16] “Jammy jellyfish release notes.” Ubuntu. [On-
line]. Available: https://discourse.ubuntu.com/t/
jammy-jellyfish-release-notes/24668. (accessed May
17, 2024).

[17] V. L. Rajagopalan, K. Kleftogiorgos, E. Goktas, and
G. P. Jun Xu, “Syspart: Automated temporal system call
filtering for binaries,” in CCS 2023 - Proceedings of the
2023 ACM SIGSAC Conference on Computer and Com-
munications Security, 2023.

(accessed

A Results of Experiments

A.1 System Call List from Dynamic Analysis on
Diff

ACCESS, ARCH_PRCTL, BRK, CLOSE, EXECVE,
EXIT_.GROUP, FCNTL, GETDENTS64, GETRAN-
DOM, LSEEK, MMAP, MPROTECT, MUNMAP,
NEWFSTATAT, OPENAT, PREAD64, PRLIMIT64,
READ, RSEQ, RT_SIGACTION, SET_ROBUST_LIST,
SET_TID_ADDRESS, SIGALTSTACK, WRITE.

A.2 System Call List from Static Analysis on Diff

ACCESS, ARCH_PRCTL, BRK, CLOSE, EXECVE,
EXIT_GROUP, FCNTL, GETDENTS64, GETRAN-
DOM, LSEEK, MMAP, MPROTECT, MUNMAP,
NEWESTATAT, OPENAT, PREADG64, PRLIMIT64,
READ, RSEQ, RT_SIGACTION, SET_ROBUST_LIST,
SET_TID_ADDRESS, SIGALTSTACK, WRITE, POLL,
IOCTL, WRITEV, SCHED.YIELD, MREMAP, MIN-
CORE, MADVISE, DUP, DUP2, GETPID, SOCKET,
CONNECT, SENDTO, RECVFROM, RECVMSG, BIND,
GETSOCKNAME, SETSOCKOPT, CLONE, EXIT,
WAIT4, FCNTL, GETCWD, READLINK, GETTIMEOF-
DAY, SYSINFO, SIGALTSTACK, SCHED_GETPARAM,
SCHED_SETSCHEDULER, SCHED_GETSCHEDULER,
SCHED_GET_PRIORITY_MAX,
SCHED_GET_PRIORITY _MIN, GETTID, TIME,
FUTEX, SCHED_GETAFFINITY, GETDENTS64,
CLOCK_GETTIME, EXIT_GROUP, TGKILL, OPENAT,
NEWFSTATAT, SET_ROBUST_LIST, PIPE2, PRLIMIT64,
GETRANDOM

A.3 System Call List from Dynamic Analysis on
SSH

Clientside

ACCESS, ARCH_PRCTL, BRK, CLOSE, CLOSE_RANGE,
CONNECT, DUP, DUP2, EXECVE, EXIT_GROUP,
FCNTL, FUTEX, GETDENTS64, GETPEERNAME,
GETPID, GETRANDOM, GETSOCKNAME, GET-
SOCKOPT, GETUID, IOCTL, LSEEK, MMAP, MPRO-
TECT, MUNMAP, NEWFSTATAT, OPENAT, POLL,
PPOLL, PREAD64, PRLIMIT64, READ, RSEQ,
RT_SIGACTION, RT_SIGRETURN, SET_ROBUST_LIST,
SET_TID_ADDRESS, SETSOCKOPT, SOCKET, STATES,
UMASK, UNAME, UNLINK, WRITE

Serverside

ACCEPT, ACCESS, ALARM, BIND, BRK, CAPGET,
CAPSET, CHOWN, CLONE, CLONE3, CLOSE,
CONNECT, DUP2, EPOLL_CREATEl, EPOLL_CTL,
EPOLL_WAIT, EXIT_GROUP, FCNTL, FTRUNCATE,
FUTEX, GETDENTS64, GETEGID, GETEUID, GETGID,
GETGROUPS, GETPEERNAME, GETPID, GETPRIOR-
ITY, GETRANDOM, GETSOCKNAME, GETSOCKOPT,
GETTID, GETUID, IOCTL, KEYCTL, LSEEK, MMAP,
MPROTECT, MUNMAP, NEWFSTATAT, OPENAT,
PIPE2, POLL, PPOLL, PREAD64, PRLIMIT64, READ,
READLINK, READLINKAT, RECVFROM, RECVMSG,
RENAME, RESTART_SYSCALL, RT_SIGACTION,
RT_SIGPROCMASK, RT_SIGRETURN, SENDMSG,
SENDTO, SETFSGID, SETFSUID, SETGROUPS, SET-
PRIORITY, SETREGID, SETRESGID, SETRESUID,
SETREUID, SETSOCKOPT, SOCKET, SOCKETPAIR,
TIMERFD_CREATE, TIMERFD_SETTIME, UMASK,
WAIT4, WRITE

Combined

ACCEPT, ACCESS, ALARM, ARCH_PRCTL, BIND,
BRK, CAPGET, CAPSET, CHOWN, CLONE, CLONES3,
CLOSE, CLOSE_RANGE, CONNECT, DUP, DUP2,

https://man7.org
https://man7.org
https://gitlab.com/strace/strace
https://gitlab.com/strace/strace
https://github.com/DucodB/sparse
https://github.com/DucodB/unique-file-merge
https://github.com/DucodB/unique-file-merge
https://github.com/DucodB/syscall-numbertoname
https://github.com/DucodB/syscall-numbertoname
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes/24668
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes/24668

EPOLL_CREATEI, EPOLL_CTL, EPOLL_WAIT, EX-
ECVE, EXIT_GROUP, FCNTL, FTRUNCATE, FUTEX,
GETDENTS64, GETEGID, GETEUID, GETGID, GET-
GROUPS, GETPEERNAME, GETPID, GETPRIORITY,
GETRANDOM, GETSOCKNAME, GETSOCKOPT,
GETTID, GETUID, IOCTL, KEYCTL, LSEEK, MMAP,
MPROTECT, MUNMAP, NEWFSTATAT, OPENAT, PIPE2,
POLL, PPOLL, PREAD64, PRLIMIT64, READ, READ-
LINK, READLINKAT, RECVFROM, RECVMSG, RE-
NAME, RESTART_SYSCALL, RSEQ, RT_SIGACTION,
RT_SIGPROCMASK, RT_SIGRETURN, SENDMSG,
SENDTO, SET_ROBUST_LIST, SET_TID_ADDRESS,
SETFSGID, SETFSUID, SETGROUPS, SETPRIORITY,
SETREGID, SETRESGID, SETRESUID, SETREUID,
SETSOCKOPT, SOCKET, SOCKETPAIR, STATFS,
TIMERFD_CREATE, TIMERFD_SETTIME, UMASK,
UNAME, UNLINK, WAIT4, WRITE

A.4 System Call List from Static Analysis on SSH

READ, WRITE, CLOSE, STAT, FSTAT, LSTAT, POLL,
LSEEK, MMAP, MPROTECT, MUNMAP, BRK,
RT_SIGACTION, RT_SIGPROCMASK, RT_SIGRETURN,
IOCTL, PREAD64, READV, WRITEV, ACCESS, PIPE, SE-
LECT, SCHED.YIELD, MREMAP, MADVISE, DUP,
DUP2, PAUSE, NANOSLEEP, ALARM, GETPID,
SOCKET, CONNECT, ACCEPT, SENDTO, RECVFROM,
SENDMSG, RECVMSG, SHUTDOWN, BIND, LISTEN,
GETSOCKNAME, GETPEERNAME, SOCKETPAIR,
SETSOCKOPT, GETSOCKOPT, CLONE, VFORK,
EXECVE, EXIT, WAIT4, KILL, UNAME, FCNTL,
FLOCK, FSYNC, FTRUNCATE, GETDENTS, GETCWD,
CHDIR, RENAME, MKDIR, RMDIR, LINK, UNLINK,
READLINK, CHMOD, FCHMOD, UMASK, GET-
TIMEOFDAY, SYSINFO, GETUID, GETGID, SETUID,
SETGID, GETEUID, GETEGID, SETSID, SETREUID,
SETREGID, GETGROUPS, SETGROUPS, SETRE-
SUID, SETRESGID, STATFS, SCHED_GETPARAM,
SCHED_SETSCHEDULER, SCHED_GETSCHEDULER,
SCHED_GET_PRIORITY _MAX,
SCHED_GET_PRIORITY _MIN,
GETTID, TIME, FUTEX, SCHED_SETAFFINITY,
SET_TID_ADDRESS, CLOCK_GETTIME,
CLOCK_GETRES, EXIT_-GROUP, TGKILL, ADD_KEY,
KEYCTL, OPENAT, NEWFSTATAT, SET_ROBUST_LIST,
PIPE2, PRLIMIT64, SENDMMSG, GETRANDOM

PRCTL, SYNC,

B Results of Execution Phase Separation

B.1 System Call List for Initialization Phase SSH

ACCESS, ARCH_PRCTL, BRK, CLOSE, CLOSE_RANGE,
CONNECT, EXECVE, FCNTL, FUTEX, GETDENTS64,
GETPEERNAME, GETPID, GETRANDOM, GETSOCK-
NAME, GETUID, IOCTL, LSEEK, MMAP, MPRO-
TECT, MUNMAP, NEWFSTATAT, OPENAT, PPOLL,
PREAD64, PRLIMIT64, READ, RSEQ, RT_SIGACTION,
SET_ROBUST_LIST, SET._TID_ADDRESS, SETSOCK-
OPT, SOCKET, STATFS, UMASK, UNAME, WRITE

B.2 System Call List for Session Establishment
Phase SSH

CLOSE, DUP, DUP2, FCNTL, GETPID, GETSOCKNAME,

GETSOCKOPT, IOCTL, MMAP, NEWFSTATAT, OPENAT,

POLL, PPOLL, READ, RT_SIGACTION, SETSOCKOPT,

UMASK, UNLINK, WRITE

B.3 System Call List for Working Phase SSH

CLOSE, EXIT_-GROUP, GETPID, IOCTL, MUNMAP,
POLL, READ, RT_SIGACTION, WRITE

	Introduction
	Methodology
	Application Selection
	Strace
	Sysfilter
	Environment Selection
	Execution Phase Seperation

	Analysis Results
	Diff
	Dynamic Analysis
	Static Analysis with Sysfilter

	SSH
	Dynamic Analysis
	static Analysis with Sysfilter

	Execution phase seperation
	Phases in SSH
	Phases in Traces
	Resulting Syscall Sets

	Discussion
	Comparison
	Diff
	SSH

	Limitations of Dynamic Analysis
	Limitations of Static Analysis
	Combining Both Methods

	Responsible Research
	Ethical Concerns
	Reproducibility

	Conclusions and Future Work
	Future Work

	Results of Experiments
	System Call List from Dynamic Analysis on Diff
	System Call List from Static Analysis on Diff
	System Call List from Dynamic Analysis on SSH
	Clientside
	Serverside
	Combined

	System Call List from Static Analysis on SSH

	Results of Execution Phase Separation
	System Call List for Initialization Phase SSH
	System Call List for Session Establishment Phase SSH
	System Call List for Working Phase SSH

