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ABSTRACT

We propose an algorithm for phase retrieval from three interferograms which differ only by an arbitrary unknown
tilt terms in the phase. The method is illustrated by examples.
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1. INTRODUCTION

In interferometry, the information about the physical quantity being measured is contained in the phase term
φ of a fringe pattern, or an interferogram, an intensity distribution described by the formula (1). The goal of
interferogram analysis1 is to extract this phase term. The phase-shifting methods are based on general techniques
of phase detection of a sinusoidal signal2–4 and use at least three phase-shifted interferograms. The phase shifts,
however, should be controlled with a high accuracy. Any error in linearity of an actuator response can introduce
an error into the calculated phase. Another popular approach is based on a spatial analysis of the interferogram
with discrete Fourier transform.1, 5–7 This method needs only one interferogram, but works well only when the
interferogram has a narrow bandwidth, carrier frequency and low noise level. Generally speaking, the method can
not be used, if the interferogram contains closed fringes, though different techniques were proposed to deal with
such interferograms.8 Both phase-shifting and Fourier transform-based methods calculate the phase wrapped
in interval (−π, π]. Some methods, based on local phase-tracking technique, or on genetic algorithms9–11 return
unwrapped phase values, but are computationally expensive.

This paper presents a new, to our knowledge, algorithm, which uses both spatial analysis of the interferogram
and phase shifting. This allows to alleviate restriction related to the bandwidth, carrier frequency, noise level,
background illumination and intensity variation, and, moreover, accuracy of phase shifts. In fact, introduced
phase shifts are calculated by the algorithm, and thus are not needed to be known a priori. The only requirement
on them is to change linearly over the detector region. Spatial analysis of two interferograms with such a phase
difference detects its parameters, and then general phase-shifting algorithm is used to retrieve the phase.

2. THE ALGORITHM

We will use the following notation for an interferogram

I[x] = a[x] + b[x] cos(φ[x]), (1)

where x = (x, y) denotes point position in the recorded image, and square bracket are used to emphasise its
discrete nature. We assume function a and b be dependent only on the detector point position x. Sometimes we
will omit the argument x to facilitate the formulae reading.
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Our method starts with recording three interferograms I0, I1, I2, which differ from each other only by small
linear term in phase, so

Ii[x] = a + b cos(φi[x]) , i = 0, 1, 2, (2a)
φ1[x] = φ0[x] + τ1[x] + σ1, (2b)
φ2[x] = φ0[x] + τ2[x] + σ2, (2c)

where τi[x] = ti ·x are tilt terms and σi are pistons. The interferograms can be obtained, for instance, by tilting
the reference mirror in Twyman-Green interferometer by a small random angle. Again we assume, that due to
low dependence of a and b on phase they can be considered to be the same for all three interferograms.

For every pixel with coordinates x we have now three equations (2), and we have five unknowns to define:
a, b, φ0, δ1 = τ1 + σ1, δ2 = τ2 + σ2. In phase shifting interferometry δ1 and δ2 are known, and equations (2) can
be solved for every pixel to obtain the (wrapped) phase φ0. For instance, the following identity:

(I1 − I2) cos φ + (I2 − I0) cos(δ1 + φ) + (I0 − I1) cos(δ2 + φ) = 0

can be used to find the phase as

φ = arctan
I2 − I1 + (I0 − I2) cos δ1 + (I1 − I0) cos δ2

(I0 − I2) sin δ1 + (I1 − I0) sin δ2
. (3)

In our case the phase shifts δ1 and δ2 are supposed to be unknown and different for every pixel. Moreover, for
some pixels one of the phase shifts or both of them are equal or close to integer numbers of 2π, thus reducing
the numbers of equations in system (2) from three to two or one. However, as it will be shown later, for the rest
of points the set of three interferograms contains enough information to determine the tilt and piston terms, and
thus to make system (2) solvable.

The following method is proposed to find unknown terms. Consider the differences of interferogram Id,1 and
Id,2:

Id,1 = I1 − I0 = b(cos(φ + τ1 + σ1) − cos(φ))

and
Id,2 = I2 − I0 = b(cos(φ + τ2 + σ2) − cos(φ)),

which we can write as

Id,1 = −2b sin
τ1 + σ1

2
sin

(
φ[x] +

τ1 + σ1

2

)
, (4a)

Id,2 = −2b sin
τ2 + σ2

2
sin

(
φ[x] +

τ2 + σ2

2

)
. (4b)

Then the set of zero-crossing points for every of the differences consists of two sets: first one is due to a term
sin τi+σi

2 , when τi + σi = 2kπ, and second contains points where φ + τi+σi

2 = 2kπ, where k is an integer. The
first set is not dependent on a, b, φ and forms parallel lines. It can be fully characterised by three parameters

θ, λ, s, (5)

where θ is the common normal, λ is the separation distance, and s is the distance from the origin of these lines.
The algorithm proceeds by finding these parameters. Then t can be found as 2π

λ (cos θ, sin θ) and σ = 2πs
λ . This

gives the phase shift values δi for every pixel which can be substituted in equations (2) or directly in the phase
formula (3).

Next section dwells on practical implementation of the algorithm and describes the method of extracting tilt
and piston values from the set of zero-crossing points.
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Figure 1. Three original interferograms that were obtained with a Twyman-Green interferometer. The first interferogram
corresponds to original shape of a deformable mirror, additional tilts were introduced in the second and third interferograms
by slightly rotating the mirror. Note that all three interferograms contain closed fringes.

Figure 2. Differences of the interferograms I1 − I0 and I2 − I0. Black and white colours correspond to minimum (−255)
and maximum (255) levels respectively.

3. PRACTICAL IMPLEMENTATION OF THE ALGORITHM AND EXAMPLES

To explain the algorithm, we describe and illustrate one of its possible implementations step-by-step. We start
with the interferograms shown on Fig. 1. Subtracting interferograms, we receive following images, shown on
Fig. 2. Note the regions of the middle gray level, corresponding to zero values in interferogram differences.

To extract the zero-crossing lines we have used threshold-based method – the point is considered to be zero-
crossing if its value is closer to zero then some chosen value. Fig. 3 shows the zero lines extracted on this step.
Points extracted from each of the interferogram difference form two sets – one with parallel lines and another
repeating the fringes of half-tilted interferogram.

To determine the angle of parallel lines, their separation and shift relative to origin, we have used an algorithm
based on the Hough transform.12 The Hough transform maps any point (x, y) into a sinusoidal function
ρ = x cos θ + y sin θ. The key property of the Hough transform is that sinusoidals in Hough space associated
with points lying on the same line have a common point of intersection (ρ0, θ0), say. This line has a normal
(cos θ0, sin θ0) and is shifted by distance ρ0 from the origin.

In practice, the Hough space is limited to (ρ, θ) ∈ [−R,R] × [0, π) for some R (maximum distance of image
points from the origin). Then it is quantized with finite steps δρ = R

m and δθ = π
n and is represented by matrix

of size (2m + 1) × n
A =

(
Ai,j

)
, i = −m, . . . ,m, j = 0, n − 1,

which is called accumulator. The rows of A represent the angle θ, and the columns – the radius-vector ρ. The
sinusoidals for every feature pixel in Fig. 3 are “drawn” in accumulator as follows. Initially, every cell of the
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Figure 3. Points in interferogram differences which are close to zero are used as zero levels. The threshold was chosen
to be 1.

accumulator is set to zero. Then for every row number j the column number i(x,y)(j) is calculated by

i(x,y)(j) =
[
x cos(jδθ) + y sin(jδθ)

δρ
− 1

2

]
,

where square brackets denote the integer part. The element Ai(x,y)(j),j is then incremented by one. The result
of the Hough transform is shown on Fig. 4. The points of intersection of large number of sinusoidals are clearly
visible. They all lie at row corresponding to θ = π31/40, as one can see on the zoomed part of the accumulator.

After the Hough transform is calculated, the parameters (5) are found as follows. Find the maximum element
M in the A and use θM and ρM corresponding to its position as lines normal θ and shift from origin s. To find
the separation distance λ, consider the row of the accumulator corresponding to θM (Fig. 5), and find the average
distance between its local maxima, which have values greater then αM for some threshold α (typical values are
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Figure 4. The interferogram difference Id,1 in the Hough space.R = 410, δρ = 1, δθ = π/200. The second picture
represents the part of the accumulator near the intersection points.
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Figure 5. Accumulator’s row containing the maximum element. The local maxima corresponds to the sinusoidal inter-
section points. The highest maxima corresponds to parallel lines in zero-crossing curves.
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Figure 6. Lines detected by the Hough transform. The threshold α for maxima selection was set to 1/5 for the first
zero-level points set and to 2/5 for the second one.

0, 3 − 0, 7, see Fig. 6). To reduce influence of the noise algorithm replaces nearby positioned maxima with their
average.

To test the found values for the added tilts one can divide interferogram differences (4) by the first term
−2 sin τi+σi

2 , to obtain

Îd,1 = b sin
(
φ[x] +

τ1 + σ1

2

)
and (6a)

Îd,2 = b sin
(
φ[x] +

τ2 + σ2

2

)
, (6b)

shown on Fig 7. With proper values of the tilt the picture should be as smooth as original interferogram except
the vicinities of the parallel lines, were sin τi+σi

2 is close to zero.

Now the phase φ can be found. Instead of formula (3) one can use simpler identity

sin(φ + α) = cos(φ + β) sin(α − β) + cos(α − β) sin(φ + β)

to write

cos(φ + β) =
sin(φ + α) − cos(α − β) sin(φ + β)

sin(α − β)
.

Thus one can obtain, with α = δ1/2 = τ1+σ1
2 and β = δ2/2 = τ2+σ2

2 ,

b cos
(
φ[x] +

τ2 + σ2

2

)
=

Îd,1 − cos( τ1+σ1−τ2−σ2
2 )Îd,2

sin( τ1+σ1−τ2−σ2
2 )

. (7)
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Figure 7. Interferogram differences divided by −2 sin τi+σi
2

.

Figure 8. Extracted phase φ + τ2+σ2
2

.

This together with (6b) permits to calculate the phase φ + δ2/2 as

φ +
τ2 + σ2

2
= arctan

( Îd,1 − cos( τ1+σ1−τ2−σ2
2 )Îd,2

sin( τ1+σ1−τ2−σ2
2 )

, Îd,2

)
. (8)

The result is presented on Fig. 8.

4. DISCUSSION

This section gives some remarks on the algorithm and its applicability.

4.1. Artefacts in the extracted phase

Extracted phase on Fig. 8 contains visible errors along the lines where either δ1, or δ2, or δ1 − δ2 is equal to
2kπ, k ∈ Z, that is where the system (2) is badly defined. Though these artifacts introduce small rms error, they
can seriously affect the unwrapped phase. They can be removed either by introducing fourth interferogram with
tilt δ3 in the algorithm, and calculating the phase as median of the results of three possible tilt combinations; or
by obtaining a and b from the system (2), and then calculating the phase φ by substituting their smoothed by
low-pass filter in equation (1); or just by using robust and noise immune phase unwrapping algorithms.

4.2. Initial phase

If the phase originally has a large linear carrier, its fringes are close to the set of parallel lines themselves, and
this can interfere with phase shift detection. In this case some initial estimates on introduced tilts are needed.
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4.3. Optimal tilt range

As the tilt information is derived from spatial analysis based on periodicity, it should change at least several
wavelengths over the detector area. The more lines are contained in the zero-level points, the more accurate are
the calculated parameters (5). On the other side, for large tilts the zero-level points due to the second terms
in (4) begin to approach parallel lines with the same slope, making the tilt detection difficult. Thus the algorithm
works best for those tilt values, where Fourier-transform base methods fail.

4.4. Computational effectiveness

The accuracy of the extracted tilts is dependent on the angle and radius resolution of the accumulator. To fill
the accumulator with angle step δθ = π/n one need O(n × N) operations, where N is the number of points in
zero-level set. To speed up the calculation it is better to estimate first the tilt with lower resolution, and then
fill only the small region of accumulator near the maximum with high resolution.

4.5. Robustness

The algorithm is not dependent on a and b as long as they are the same for all the interferograms. In regions
where b is close to zero or in case of high noise level of the detector spurious zero-level points appears and
decrease the accuracy. The algorithm also fails for overexposed interferograms.

5. CONCLUSIONS

We have presented a new algorithm for phase retrieval from three interferograms which differ by unknown tilt
terms in the phase. The method does not require presence of carrier frequency or exact control of the phase
shifts. We tested algorithm with real data and obtained good results. The method can be used in applications
which use inexpensive or non-linear actuators or control system.
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