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Abstract

Least Squares Support Vector Machines (LS-SVMs) are state-of-the-art learning algorithms
that have been widely used for pattern recognition. The solution for an LS-SVM is found
by solving a system of linear equations, which involves the computational complexity of
O(N3). When datasets get larger, solving LS-SVM problems with standard methods becomes
burdensome or even unfeasible. The Tensor Train (TT) decomposition provides an approach
to representing data in highly compressed formats without loss of accuracy. By converting
vectors and matrices in the TT format, the storage and computational requirements can be
greatly reduced. In this thesis, we develop a Bayesian learning method in the TT format to
solve large-scale LS-SVM problems, which involves the computation of a matrix inverse. This
method allows us to include the information we know about the model parameters in the prior
distribution. As a result, we are able to obtain a probability distribution of the parameters,
which enables us to construct confidence levels of the predictions. In the numerical experiment
we show that the developed method performs competitively with the current methods.
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Chapter 1

Introduction

Artificial intelligence (AI) has the potential to accelerate medical diagnosis and management
by rapidly reviewing immense amounts of images and performing classification for human
experts. For those cases that are easy to diagnose, they can be processed automatically by
the machine. When the machine fails to give a definite result, the expert can take over.
In this thesis, we will complete a classification task on a medical imaging dataset. We give
images to the machine, and let it tell whether the corresponding patients are diseased or not.
Figure 1-1 shows some of the examples of the dataset.

(a) Normal (b) Diseased

Figure 1-1: Samples of the medical imaging dataset.

The AI models we choose to solve the problem are Least Squares Support Vector Ma-
chines (LS-SVMs) [2], the least-squares versions of Support Vector Machines (SVMs) [3],
which are state-of-the-art learning algorithms widely used for classification and regression
analysis. For many algorithms, one has to explicitly transform the raw data into feature
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2 Introduction

vector representations via a user-specified feature map. However, as kernel-based methods,
LS-SVMs enable us to operate in a high-dimensional, implicit feature space without ever
computing the exact coordinates of the data in that space, but rather by simply computing
the inner products between the images of all pairs of data in the feature space. This approach
is called the kernel trick. To take advantage of it, the solution has to be found in dual space,
leading to solving a system of linear equations for LS-SVMs. This linear system can be further
reduced to two symmetric positive definite (SPD) linear systems of size N ×N for a training
set of N data points, which may be solved with the computational complexity of O(N3).

When datasets get larger and larger, solving LS-SVM problems with standard methods be-
comes burdensome or even unfeasible. To circumvent this bottleneck, some low-rank ap-
proximation methods are considered. The Nyström method [4] uses a random subset of the
training set to find an approximation to the kernel matrix. Then the linear system is solved by
applying the Sherman-Morrison-Woodbury formula [5], with the computational complexity
of O(M2N) for a subset containing M data points. The Nyström method also provides an
explicit estimate of the nonlinear feature map, which makes it possible to solve LS-SVM prob-
lems in primal space. This approach is referred to as the Fixed Size LS-SVM (FS-LSSVM)
[2]. Since the size of the vector of unknowns in primal space is proportional to the dimension
of feature vectors, the computational requirements do not grow with the size of dataset.

The existing low-rank approximation methods only consider a subset of dataset, which may
lose some key information. Tensor Networks (or tensor decompositions) provide an approach
to representing data in highly compressed formats without loss of accuracy. Amongst them,
the Tensor Train (TT) decomposition [6] is numerically stable and easy to compute. Moreover,
structured vectors and matrices can be well represented in low-rank TT formats [7], and
basic operations can be efficiently implemented. By converting the kernel matrix into the TT
format, the storage and computational requirements can be significantly reduced.

In addition to the large-scale problem, there is also one drawback associated with LS-SVMs.
Take our medical classification problem for example. Basic LS-SVM classifiers can only give
the label of a given instance, i.e., if a patient is ill. However, when the machine is actually put
into use, we need to know how confident they are to make a diagnosis, so that we can decide
whether a human expert is required. To tackle this problem, we develop a Bayesian learning
method for solving the LS-SVM problems. This approach allows us to include the information
we have about the model parameters in the prior distribution. As a result, we are able to
obtain a probability distribution of the parameters, which enables us to construct confidence
levels of the predictions. There exists the batch solution to the posterior distribution, which
involves computing a matrix inverse.

In this thesis, we will investigate whether the Batch Bayesian learning approach can be well
applied to solving (large-scale) LS-SVM problems in the TT format. Specifically, the research
questions to be answered are listed below.

Q1. By converting the kernel matrix in the TT format, can we find a low-rank structure to
efficiently store the data without losing its accuracy?

Q2. Can the matrix inversion be reliably computed in the TT format, i.e., is the resulting
covariance matrix guaranteed to be SPD?

Q3. What are the advantages and disadvantages of our method compared with the state of
the art, and what would be the suitable cases to implement our model?

Chenxu Wang Master of Science Thesis



3

Q4. In which aspects can the method be further improved?

The remainder of the thesis is organized as follows. Chapter 2 introduces basic theories of LS-
SVMs and several methods for solving large-scale LS-SVM problems. Chapter 3 provide all the
information needed about tensor networks, including the definition of the TT decomposition,
basic operations, solving linear systems, and matrix inversion in the TT format. Chapter 4
illustrates the practical details about how to implement the Batch Bayesian learning approach
in the TT context, and provides the numerical results of the model performance on the medical
imaging dataset. Lastly, conclusion and some recommendations for future work are given in
Chapter 5.

The notations used in this report are listed in Table 1-1.

Table 1-1: Basic notations and products.

y, γ,M scalars
x,α vectors
A,Ω matrices
A,X tensors
AT,A−1, ‖A‖F transpose, inverse and Frobenius norm of matrix A
A(k),A(k) the k-th matrix or tensor in a sequence
IN identity matrix of size N ×N
1N ,0N vectors of all ones or zeros of length N
A ∈ RI1×I2×···×Id d-way tensor of size I1 × I2 × · · · × Id
ai1,i2,...,id the (i1, i2, . . . , id)-th entry of tensor A
〈a,b〉 inner product of vectors a and b
A�B Hadamard (element-wise) product of matrices A and B
A⊗B Kronecker product of matrices A and B
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Chapter 2

LS-SVMs for Classification and
Large-Scale Problems

In this Chapter, we introduce the basic theory of Least Squares Support Vector Machines
(LS-SVMs), including the existing methods for solving large-scale problems. To have a good
understanding, a brief overview on the formulation of Support Vector Machines (SVMs) is first
given in Section 2-1, in which we show that one solves a convex Quadratic Programming (QP)
problem in both primal and dual space for a linear classifier. The extension to the nonlinear
case is achieved by the so-called kernel trick. Thereafter, Section 2-2 discusses the LS-SVM
theory and basic methods for solving small- and medium-scale LS-SVM problems. With
small modifications to the standard SVM, one solves a system of linear equations instead
of a QP problem in the LS-SVM context. For problems with large-scale datasets (typically
N ≥ 15000), the computation of the system becomes burdensome. This is where the low-
rank approximation methods come in. Section 2-3 introduces two methods suited for solving
large-scale LS-SVM problems.

For the sake of simplicity, the discussion will only focus on the binary classification case.
The formulations can be easily adapted for regression tasks [3, 2]. To perform the multiclass
classification one can train multiple binary classifiers, known as the one-versus-one strategy
[2].

2-1 Support Vector Machines

2-1-1 Linear classifiers

Given a training set for a binary classification problem {xk, yk}Nk=1, with input data xk ∈ Rn
and class labels yk ∈ {−1,+1}, a linear SVM classifier predicts the class ŷ of a new instance
x ∈ Rn based on the sign of the weighted sum of all elements:

ŷ(x) = sign
(
wTx + b

)
, (2-1)

Master of Science Thesis Chenxu Wang
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Figure 2-1: A separable dataset: several
working hyperplanes.
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Figure 2-2: The hyperplane given by the
SVM that maximizes the margin.

where the weight vector w and the bias term b together define a hyperplane (i.e., a decision
boundary) to separate the given data points.

Hard margin classification

Figure 2-1 depicts a linearly separable dataset in a two-dimensional space. It is easy to show
that there exist infinitely many hyperplanes which are able to separate the data correctly. The
decision boundaries represented by the dashed lines will not generalize well on new instances,
since they are so close to the data points. In contrast, the solid line represents the decision
boundary of a linear SVM classifier, which not only correctly separates the two classes but
also stays as far away from instances as possible. A natural question to be asked is: how can
we measure this distance?

To do that, let the points closest to the decision boundary satisfy |wTxk + b| = 1. As shown
in Figure 2-2, two parallel dashed lines that are at equal distance to the decision boundary
form a margin around it. In this case the margin equals 2/‖w‖. It is a desirable property to
maximize this margin, which corresponds to minimizing ‖w‖.

For a separable case if we want all instances to be correctly classified, called the hard margin
classification, we need{

wTxk + b ≥ +1, if yk = +1
wTxk + b ≤ −1, if yk = −1 ⇐⇒ yk

(
wTxk + b

)
≥ 1, k = 1, . . . , N.

We can formulate our search for the optimal hyperplane as a constrained optimization prob-
lem. The objective is to maximize the margin under the constraints that all data points must
lie on the correct side of the hyperplane:

min
w,b

1
2wTw

s.t. yk
(
wTxk + b

)
≥ 1, k = 1, . . . , N.

(2-2)
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Figure 2-3: The hard margin classifica-
tion is sensitive to outliers.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-3

-2

-1

0

1

2

3

positive class (+1)

negative class (-1)

Figure 2-4: Most real-life classification
problems are non-separable.

When we obtain the optimal pair (w∗, b∗), it can be shown that some instances have tight
constraints, i.e., yk(w∗Txk + b∗) = 1. These points are called the support vectors (circled
in Figure 2-2), which determine the shape of the hyperplane – if we move one of them and
retrain an SVM classifier, the resulting hyperplane would change.

Soft margin classification

There are two main issues with the hard margin classification, i.e., enforcing all data points
to be correctly classified: (1) it is sensitive to outliers. Figure 2-3 shows the resulting decision
boundary after adding just one outlier; (2) it only works for separable problems. However,
most real-life datasets are noisy and non-separable, as depicted in Figure 2-4. As a conse-
quence, we need to tolerate misclassified data points and at the same time limit their influence
on the result. This strategy is known as the soft margin classification.

To achieve the soft margin objective, we introduce the slack variables ξk ≥ 0 for all instances
[8]: ξk measures how much the k-th instance is allowed to violate the margin. The optimization
problem now becomes

min
w,b,ξ

1
2wTw + C

N∑
k=1

ξk

s.t. yk
(
wTxk + b

)
≥ 1− ξk, k = 1, . . . , N

ξk ≥ 0, k = 1, . . . , N,

(2-3)

where C > 0 is a hyperparameter that allows us to define the trade-off between reducing the
margin violations and increasing the margin [9].

According to the duality theory [10], given a constrained optimization problem, known as the
primal problem, we can form the Lagrangian by introducing the Lagrange multipliers, take
the conditions for optimality, and finally solve the dual problem.

Master of Science Thesis Chenxu Wang



8 LS-SVMs for Classification and Large-Scale Problems

The Lagrangian for problem (2-3) is

L(w, b, ξ,α,ν) = 1
2wTw + C

N∑
k=1

ξk −
N∑
k=1

αk
[
yk
(
wTxk + b

)
− 1 + ξk

]
−

N∑
k=1

νkξk, (2-4)

with Lagrange multipliers αk ≥ 0, νk ≥ 0 for k = 1, . . . , N . The solution is given by the
saddle point of (2-4) [10]:

max
α,ν

min
w,b,ξ

L(w, b, ξ,α,ν). (2-5)

The Karush-Kuhn-Tucker (KKT) conditions of optimality [10] yields

∂L

∂w = 0 → w =
N∑
k=1

αkykxk,

∂L

∂b
= 0 →

N∑
k=1

αkyk = 0,

∂L

∂ξk
= 0 → C − αk − νk = 0.

(2-6)

By combining (2-4) - (2-6), we obtain the following QP problem as the dual problem:

max
α

− 1
2

N∑
k=1

N∑
l=1

αkαlykylxT
kxl +

N∑
k=1

αk

s.t.
N∑
k=1

αkyk = 0

0 ≤ αk ≤ C, k = 1, . . . , N.

(2-7)

Once we find the optimal dual vector α∗, we can compute the pair (w∗, b∗) that minimizes
the primal problem (2-3) as follows [11]:

w∗ =
N∑
k=1

α∗kykxk, b∗ = 1
ns

N∑
k=1
α∗k>0

(
yk − xT

kw∗
)
, (2-8)

where ns denotes the number of support vectors, which corresponds to the data points with
non-zero α∗k values. The linear SVM classifier takes the form

ŷ(x) = sign
(

N∑
k=1

α∗kykxT
kx + b∗

)
. (2-9)

Note that the dual optimization problem (2-7) and the decision function (2-9) only depend
on the inner product of instances. This provides an approach to extending linear SVMs to
nonlinear cases [3].

Chenxu Wang Master of Science Thesis
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(b) Linearly separable in a 2-D feature space

Figure 2-5: Mapping data into a higher dimensional space makes a dataset linearly separable.

2-1-2 Nonlinear classifiers: Kernel trick

The basic idea of performing nonlinear classifications is to map the input data into a higher (or
even infinite) dimensional feature space, in which the linear separating hyperplane is found.
Figure 2-5(a) shows a one-dimensional dataset that is not linearly separable. By applying the
mapping ϕ(x) = [x, x2]T, the dataset is linearly separable as depicted in Figure 2-5(b).
It could be burdensome, however, to work in a huge dimensional feature space. Fortunately,
the kernel functions enable us to do that without actually doing the computations in that
space. Furthermore, explicit definition of the nonlinear map is not needed. This is known as
the kernel trick [3]. Given a nonlinear map ϕ(·) : Rn → H, if for all x, x′ ∈ Rn:

K(x,x′) = ϕ(x)Tϕ(x′), (2-10)

then K(x,x′) is called a kernel function. To become a valid kernel, the continuous function
K(x,x′) should be symmetric and satisfies Mercer’s condition [12]. The commonly used
kernels are listed as follows:

Linear: K(x,x′) = xTx′,
Polynomial: K(x,x′) = (xTx′ + 1)d,

RBF: K(x,x′) = exp
(
−‖x− x′‖2

2σ2
rbf

)
.

(2-11)

The following example illustrates how the kernel trick works. Suppose that we want to apply
a second-degree polynomial transformation to a two-dimensional training set:

ϕ(x) = ϕ

([
x1
x2

])
=

 x2
1√

2x1x2
x2

2

 ,
and train a linear SVM classifier on the transformed dataset. The inner product of the
transformed vector is

ϕ(x)Tϕ(x′) = (x1x2 + x′1x
′
2)2 = (xTx′)2.
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10 LS-SVMs for Classification and Large-Scale Problems

Thus, there is no need to actually compute the transformation; just replace the inner product
by its square in (2-7). With the help of the kernel trick, the extension from linear SVM
classifiers to nonlinear cases is straightforward: we can replace x by ϕ(x) and apply the
kernel trick where possible. The primal problem now becomes

min
w,b,ξ

1
2wTw + C

N∑
k=1

ξk

s.t. yk
(
wTϕ(xk) + b

)
≥ 1− ξk, k = 1, . . . , N

ξk ≥ 0, k = 1, . . . , N.

(2-12)

Note that ϕ(x) is usually not well-defined and can even be infinite dimensional (e.g. when
using the RBF kernel). Hence, it could be difficult or even impossible to compute the optimal
vector w∗ directly from the primal problem. On the other hand, the dual QP problem for
the nonlinear case is written as

max
α

− 1
2

N∑
k=1

N∑
l=1

αkαlykylK(xk,xl) +
N∑
k=1

αk

s.t.
N∑
k=1

αkyk = 0

0 ≤ αk ≤ C, k = 1, . . . , N,

(2-13)

where K(xk,xl) = ϕ(xk)Tϕ(xl) is given by the kernel trick. Surprisingly, predictions can be
made without knowing w∗:

ŷ(x) = sign
(

N∑
k=1

α∗kykK(xk,x) + b∗
)
, (2-14)

where α∗ is the solution to the QP problem (2-13) and b∗ is computed by averaging over all
the support vectors:

b∗ = 1
ns

N∑
k=1
α∗k>0

yk − N∑
l=1
α∗l >0

α∗l ylK(xk,xl)

 .

Training of SVMs can be done using a QP solver. There also exist some fast algorithms, such
as the Sequential Minimal Optimization (SMO) [13]. Some properties of SVM classifiers are
summarized here.

• Choosing a positive definite kernel guarantees that we can obtain a global and unique
solution α∗ to the QP problem (2-13).

• Most of the elements in α∗ are equal to zero (known as the sparseness property). Those
non-zero entries correspond to the support vectors.
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2-2 Least Squares Support Vector Machines 11

2-2 Least Squares Support Vector Machines

2-2-1 LS-SVM classifiers

LS-SVMs, proposed in [14], aim to simplify the formulation of standard SVMs while main-
taining their advantages. In the LS-SVM context, the primal problem (2-12) is modified as
follows [2]:

min
w,b,ξ

1
2wTw + γ

1
2

N∑
k=1

ξ2
k

s.t. yk
(
wTϕ(xk) + b

)
= 1− ξk, k = 1, . . . , N.

(2-15)

On the one hand, a sum of squared errors is used in cost function. On the other hand, the
inequality constraints are replaced by equality constraints. As discussed before, w might be
infinite dimensional for a nonlinear classifier. So the problem is better solved in dual space.
The Lagrangian for (2-15) is given by

L(w, b, ξ,α) = 1
2wTw + γ

1
2

N∑
k=1

ξ2
k −

N∑
k=1

αk
[
yk
(
wTϕ(xk) + b

)
− 1 + ξk

]
, (2-16)

where the Lagrange multipliers αk can be positive or negative due to the equality constraints.
The conditions for optimality yield

∂L

∂w = 0 → w =
N∑
k=1

αkykϕ(xk),

∂L

∂b
= 0 →

N∑
k=1

αkyk = 0,

∂L

∂ξk
= 0 → αk = γξk, k = 1, . . . , N,

∂L

∂αk
= 0 → yk

(
wTϕ(xk) + b

)
− 1 + ξk = 0, k = 1, . . . , N.

(2-17)

By eliminating w and ξ, we obtain the following linear KKT system [2] as the dual problem:[
0 yT

y Ω + IN/γ

] [
b
α

]
=
[

0
1N

]
. (2-18)

Kernels listed in (2-11) can be well applied to LS-SVMs [2]. The kernel trick is applied within
the matrix Ω ∈ RN×N , defined element-wise as

Ωk,l = ykylϕ(xk)Tϕ(xl) = ykylK(xk,xl), k, l = 1, . . . , N.

Once obtained the solution (b∗,α∗) to the linear system (2-18), the resulting classifier takes
the form

ŷ(x) = sign
(

N∑
k=1

α∗kykK(xk,x) + b∗
)
. (2-19)

Finally, some important properties of LS-SVMs are listed here.
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12 LS-SVMs for Classification and Large-Scale Problems

• The dual problem for linear and non-linear LS-SVMs corresponds to solving a linear
KKT system instead of a QP problem. A unique solution is guaranteed given a full-rank
system matrix.

• The size of the KKT system is not influenced by the dimension of the input space n,
but is only determined by the number of data points N .

• The regularization parameter γ in (2-18) allows us to determine the complexity of the
model, which can be tuned by the cross-validated grid-search.

• In the LS-SVM context, no α∗k values will be exactly equal to zero. The points located
close and far from the decision boundary contribute more to the model. There are,
however, many approaches to obtaining a sparse model. For instance, one can apply a
simple pruning algorithm [2]: train an LS-SVM in several steps where in each step a
small amount of instances (e.g. 5% of the data) with smallest support values |αk| are
omitted, and re-train the model on the reduced training set.

2-2-2 Solving the LS-SVM KKT system

There are various methods for solving linear systems. Most of them, however, are suited for
the system with symmetric positive definite (SPD) matrix. The linear KKT system (2-18) is
not SPD due to the existence of the top-left zero. Fortunately, we can transform the system
according to [15] as follows[

s 0T
N

0N A

] [
b

α+ bA−1y

]
=
[
yTA−11N

1N

]
, (2-20)

where A = Ω + IN/γ and s = yTA−1y > 0. Since A is SPD, the overall matrix is SPD. The
solution pair (b,α) can then be found in the following steps [2]:

(1) Solve z2, z1 from Az2 = y and Az1 = 1N .
(2) Compute s = yTz2.
(3) Find solution b = zT

2 1N/s and α = z1 − z2b.

Now the problem reduces to solving two linear systems of the form Az = d with A = AT > 0.

Direct methods

Direct methods are well suited for solving small-sized systems (N ≤ 3000) [2]. One of the most
efficient ways is to apply the Cholesky factorization [5]. Given an SPD matrix A ∈ RN×N ,
there exists a unique lower triangular matrix G ∈ RN×N with positive diagonal entries such
that A = GGT, where G is called the Cholesky factor. The linear system Az = d can be
decomposed into two triangular systems{

Az = d
A = GGT ⇐⇒

{
Gz′ = d,
GTz = z′,

Chenxu Wang Master of Science Thesis



2-3 Large-Scale Problems 13

which are easily solved using forward and backward substitution.

Other direct methods include LU factorization and Gaussian elimination. Direct methods
would in general involve a computational complexity of O(N3) and a memory requirements
of O(N2) [5] assuming that the matrix is completely stored in memory. Therefore, these
methods become unfeasible as the size of matrix grows. For larger datasets the use of iterative
methods is recommended.

Iterative methods

Iterative methods are appropriate for medium-scale problems (3000 ≤ N ≤ 15000) [16]. Given
a linear system Az = d with A = AT > 0, the iterative methods start with an initial guess
z(0). At each step i, the vector z(i) is updated based on some algorithms. The sequence
{z(0), z(1), . . . , z(i), . . .} will converge to the optimal solution z∗.

There are various methods that are widely used [5], including Gauss-Seidel, Successive Over-
relaxation (SOR), Conjugate Gradient (CG), Generalized Minimal Residual (GMRES), etc.
We introduce the CG methods because of their efficiency. For further reading about other
methods, [5, 17, 18, 16, 19] are proven to be useful.

Consider the cost function of the quadratic form

V (z) = 1
2〈z,Az〉 − 〈z,d〉 (2-21)

the solution to the linear system is found as arg minz V (z). For the Hestenes-Stiefel CG
algorithm [5], shown in Algorithm 1, V (z(i)) is guaranteed to decrease in each iteration step
i [20]. The A-norm of a vector ρ is defined as

‖ρ‖A =
(
ρTAρ

) 1
2 .

The algorithm stops when one of the three stopping criteria is satisfied. While the first one
is related to the maximal number of iterations imax, the second one is based on the norm of
the residuals, and the third one is based on the evolution of the cost function (2-21). The
convergence rate depends not only on the requested accuracy ε, but also on the condition
number κ = ‖A‖‖A−1‖ [2, 5].

When the matrix A is too large for the memory requirements, one can recompute individual
row of matrix in each iteration step [20], which costs O(N2) operations per step but also
reduces the memory requirements to O(N). In general, the total computational complexity of
the CG methods is O(iN2) [16], where i denotes the number of iterations before convergence.
The basic CG algorithm might be further improved by using preconditioners [2].

2-3 Large-Scale Problems

Solving the LS-SVM dual problem corresponds to solving two SPD systems of size N ×
N , which involve the computational requirements of O(N3). Work on large-scale methods
proposes solutions to circumvent this bottleneck.
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14 LS-SVMs for Classification and Large-Scale Problems

Algorithm 1: Hestenes-Stiefel Conjugate Gradient [5]
Input: maximal iteration imax, accuracy ε, system matrix A, right-hand side d
Output: estimated solution ẑ such that Aẑ ≈ d

1 i = 0; z(0) = 0; r(0) = d
2 while (i < imax) ∧

(
r(i) > ε‖d‖

)
∧
(
V (z(i−1))− V (z(i)) > ε

)
do

3 i← i+ 1
4 if i = 1 then
5 ρ(i) ← r(0)

6 else
7 β ← ‖r(i−1)‖2 / ‖r(i−2)‖2

8 ρ(i) ← r(i−1) + βρ(i−1)

9 end
10 v(i) ← ‖r(i−1)‖2 / ‖ρ(i)‖2A
11 z(i) ← z(i−1) + v(i)ρ(i)

12 r(i) ← r(i−1) − v(i)Aρ(i)

13 V (z(i))← −1
2(r(i) + d)Tz(i)

14 end
15 return ẑ← z(i)

One approach is to find low-rank approximations to the kernel matrix Ω and do the compu-
tations based on these approximations, e.g., the Nyström method [4]. Another approach is
to solve LS-SVM problems in primal space because then the size of the vector of unknowns
is proportional to the dimension of feature vector and not to the number of data points.
However, the feature space mapping induced by the kernel is needed in order to obtain non-
linearity. For this purpose, a method of Fixed Size LS-SVM (FS-LSSVM) is proposed [2],
which uses the Nyström method to estimate the feature space mapping.

2-3-1 The Nyström method

The Nyström method is related to finding a low-rank approximation to the given kernel matrix
Ω ∈ RN×N by randomly selecting M data points {x1, . . . ,xM} from the training set. Let us
denote this small kernel matrix by Ω̄ ∈ RM×M . Consider the eigenvalue decomposition of Ω̄

Ω̄Ū = ŪΛ̄, (2-22)

where Λ̄ = diag([λ̄1, . . . , λ̄M ]) contains the eigenvalues and Ū = [ū1, . . . , ūM ] ∈ RM×M the
corresponding eigenvectors. According to Mercer’s Theorem [12], the kernel function K(x,x′)
can be expressed as

K(x,x′) =
nH∑
i=1

λiφi(x)φi(x′), (2-23)

where nH ≤ ∞ is the size of the high dimensional feature space H, λ1 ≥ λ2 ≥ . . . ≥ 0 the
eigenvalues, and φi the eigenfunctions that yield∫

K(x,x′)φi(x)p(x)dx = λiφi(x′), (2-24)
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with p(x) the probability density of x. To approximate (2-24) with M samples, we replace
the integral over p(x) by an empirical average [4] to obtain

1
M

M∑
k=1

K(xk,x′)φi(xk) ≈ λiφi(x′). (2-25)

By combining (2-22) and (2-25) we arrive at the following approximations:

φi(xk) ≈
√
Mūk,i, λi ≈

1
M
λ̄i, (2-26)

where ūk,i denotes the element (k, i) of the matrix Ū. By plugging (2-26) back into (2-25) we
obtain the Nyström approximation to the i-th eigenfunction at point x′,

φ̂i(x′) =
√
M

λ̄i

M∑
k=1

K(xk,x′)ūk,i. (2-27)

Furthermore, as explained in [4] the eigenvalues and eigenvectors of the complete kernel matrix
Ω can be approximated based on (2-22) as follows

λ̃i = N

M
λ̄i, ũi =

√
N

M

1
λ̄i

Ω(N,M)ūi, (2-28)

where Ω(N,M) is the N ×M block matrix of Ω. Therefore, the linear system of the form
(Ω + IN/γ)z = d can be solved by applying the Sherman-Morrison-Woodbury formula [4]:

z = γ

(
d− Ũ

(1
γ

I + Λ̃ŨTŨ
)−1

Λ̃ŨTd
)
, (2-29)

where Λ̃ and Ũ are calculated from (2-28).

The Nyström method involves a memory requirements of O(MN) and a computational
complexity of O(M2N) [4], which can be significantly smaller than iterative methods when
M � N .

2-3-2 Fixed Size LS-SVMs

Estimation in primal space

Since the linear KKT system scales with the number of data points, it would be advantageous
for large-scale datasets if the problems could be solved in the primal weight space. To do
that, we need to find a meaningful estimate of the nonlinear feature map ϕ(·), which is in
principle implicitly determined by the kernel trick.

On the basis of the Nyström approximation (2-27) with M chosen points, at any point x′,
the approximate map ϕ̂i(·) : Rn → R, with ϕ̂(·) = [ϕ̂1(·), . . . , ϕ̂M (·)]T, can be computed by

ϕ̂i(x′) =
√
λ̃iφ̂i(x′) =

√
M√
λ̃i

M∑
k=1

K(xk,x′)ūk,i. (2-30)
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16 LS-SVMs for Classification and Large-Scale Problems

The prediction model in primal space then takes the form

ŷ(x) = sign
(
w̃Tϕ̂(x) + b

)
= sign

 M∑
i=1

w̃i

√
M√
λ̃i

M∑
k=1

K(xk,x)ūk,i + b

 . (2-31)

With a finite dimensional approximation to the feature map ϕ̂(·), the following ridge regression
problem can be solved in primal space with unknowns w̃ ∈ RM , b ∈ R:

min
w̃,b

1
2w̃Tw̃ + γ

1
2

N∑
k=1

[
1− yk

(
w̃Tϕ̂(xk) + b

)]2
. (2-32)

Active selection of support vectors

In order to make a more suitable selection of the support vectors instead of a random selec-
tion, an entropy based method is applied in the FS-LSSVM context. The method aims at
maximizing the Quadratic Rényi Entropy, defined as

HR = − log
∫
p(x)2dx.

In practice, an estimator based upon M samples {x1, . . . ,xM} is given by

ĤR({x1, . . . ,xM}) = − log 1
M2

M∑
i=1

M∑
j=1

Kp(xi,xj), (2-33)

where Kp(·, ·) is a normalized kernel with respect to density estimation [21].

The selection method is explained as follows [2]. Given a training set TN = {xk, yk}Nk=1 withN
data points, we choose at random a working setWM of sizeM(M � N) containing candidate
support vectors. In the working set WM , a point x− is randomly selected and replaced by
a randomly selected point x+ from TN if the new point x+ improves the Quadratic Rényi
Entropy (2-33). The selection procedure stops if the change in entropy value is smaller than
a given threshold or the number of iterations is exceeded.

After obtaining M representative support vectors, we can estimate the unknowns in primal
space as discussed before. An optimized FS-LSSVM model is proposed in [21] with a fast
cross-validation method.

The focus of our study is on solving large-scale problems. We will show in Chapter 3 that
Tensor Networks provide an efficient way for making low-rank approximations to reduce the
storage requirements without losing the accuracy.
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Chapter 3

Tensor Networks

In this Chapter, we provide all the information we need about Tensor Networks to establish
our model in Chapter 4. A brief introduction to tensors is first given in Section 3-1, including
the required tensor operations and properties. We then discuss the Tensor Train (TT) decom-
position in Section 3-2, which will be used to build and solve large-scale LS-SVM problems.
We show that vectors and matrices can be represented in the TT format and many opera-
tions can be efficiently applied. In Section 3-3, several methods for solving linear systems
are presented. Finally, in Section 3-4 the introduced algorithms are adapted to perform fast
matrix inversion, which forms the basis for our proposed method.

3-1 Tensor Basics

Tensors are multi-dimensional arrays that generalize the notions of vectors and matrices to
higher orders. A d-way or d-th order tensor is denoted by A ∈ RI1×I2×···×Id , and each of
its elements ai1,i2,...,id is determined by d indices (modes). A 1-way tensor is a vector and a
2-way tensor is a matrix. The numbers I1, I2, · · · , Id are called the dimensions of the tensor.
Subtensors are formed when a subset of tensor indices is fixed. Of particular interest are
fibers which are vectors obtained by fixing every tensor index but one, and slices which are
two-dimensional sections (matrices) of a tensor, obtained by fixing all the indices but two.

The description of tensors and their computation is facilitated by the use of diagrammatic
notations borrowed from physics and quantum chemistry [22]. In this notation, a tensor is
represented by a circle while the order of it is determined by the number of connecting edges.
The size of each mode can be noted next to the corresponding edge. Figure 3-1 shows the
notations of a scalar, a vector, a matrix, and a 3-way tensor. Some of the required definitions
and operations about tensors are provided below.

Definition 3.1 (Kronecker product [23]). The Kronecker product of two matrices X ∈
RM×N and Y ∈ RP×Q is denoted by X ⊗Y. The result is a matrix of size MP × NQ and
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a aI1 AI1

I2

AI1

I2

I3

Figure 3-1: Diagrammatic notations of tensors. From left to right: a scalar a ∈ R, a vector
a ∈ RI1 , a matrix A ∈ RI1×I2 , and a 3-way tensor A ∈ RI1×I2×I3 .

defined by

X⊗Y =


x1,1Y x1,2Y · · · x1,NY
x2,1Y x2,2Y · · · x2,NY

...
... . . . ...

xM,1Y xM,2Y · · · xM,NY

 .
Definition 3.2 (Hadamard product [23]). The Hadamard product is the element-wise matrix
product. Given matrices X and Y both of size M ×N , their Hadamard product is denoted
by X�Y. The result is also of size M ×N and defined by

X�Y =


x1,1y1,1 x1,2y1,2 · · · x1,Ny1,N
x2,1y2,1 x2,2y2,2 · · · x2,Ny2,N

...
... . . . ...

xM,1yM,1 xM,2yM,2 · · · xM,NyM,N

 .
Definition 3.3 (Cubical and symmetric tensors [23]). A tensor is called cubical if every mode
is the same size, i.e., A ∈ RI×I×···×I . A cubical tensor is called symmetric if its elements
remain constant under any permutation of the indices.

Definition 3.4 (Tensor norm [23]). The (Frobenius) norm of a tensor A ∈ RI1×I2×···×Id is
analogous to the matrix Frobenius norm, defined as the square root of the sum of the squares
of all its elements, i.e.,

‖A‖F =

√√√√√ I1∑
i1=1

I2∑
i2=1
· · ·

Id∑
id=1

ai1,i2,...,id .

Definition 3.5 (Inner product [23]). The inner product of two same-sized tensors A,B ∈
RI1×I2×···×Id is the sum of the products of their elements, i.e.,

〈A,B〉 =
I1∑
i1=1

I2∑
i2=1
· · ·

Id∑
id=1

ai1,i2,...,idbi1,i2,...,id .

It follows immediately that 〈A,A〉 = ‖A‖2F .
Reshaping is an essential operation when working with high-dimensional tensors. The dimen-
sions of a tensor can be combined or separated to form a new tensor as long as the number
of elements is consistent. We adopt the MATLAB® reshape operator defined as follows.

Definition 3.6 (Reshaping [24]). The operator “reshape(A, [I1, I2, . . . , Id])” reorders a given
tensor A into a d-way tensor with dimensions I1 × I2 × · · · × Id. The total number of elements
of A should be the same as the products I1I2 · · · Id.
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3-1 Tensor Basics 19

The most common reshaping is the matricization (or unfolding), which reorders the elements
of a tensor into a matrix. We introduce a canonical form of matricization in the following
definition, which can be easily performed via reshaping.

Definition 3.7 (Unfolding matrices [25]). A d-way tensor A ∈ RI1×···×Id has d−1 unfolding
matrices. The k-th unfolding matrix of A, denoted by A[k], is defined by

A[k] = reshape

A,

 k∏
i=1

Ii,
d∏

j=k+1
Ij

 , k = 1, . . . , d− 1,

and the size of A[k] is (I1 · · · Ik)× (Ik+1 · · · Id).

The following example is of help to understand the reshaping operator and unfolding matrices.
Let a 3-way tensor A ∈ R3×4×2 be

A:,:,1 =

1 4 7 10
2 5 8 11
3 6 9 12

 , A:,:,2 =

13 16 19 22
14 17 20 23
15 18 21 24

 . (3-1)

The first and second unfolding matrices, A[1] ∈ R3×8 and A[2] ∈ R12×2, are given by

A[1] = reshape(A, [3, 8]) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

 ,

A[2] = reshape(A, [12, 2]) =


1 13
2 14
...

...
12 24

 .

Another important reshaping of a tensor is its vectorization. The vectorization of a tensor A,
denoted by vec(A), rearranges all its entries into one column vector. For the example above,
the vectorization is

vec(A) = reshape(A, [24, 1]) =
[
1 2 · · · 24

]T
.

In addition to reshaping, there is another important operation when doing computations
with higher-order tensors, called the permutation. We again adopt the MATLAB® permute
operator given in the following definition.

Definition 3.8 (Permutation [24]). The operator “permute(A,p)” rearranges the indices
of A ∈ RI1×I2×···×Id in the order specified by the vector p. The resulting tensor has the
same values of A but the order of the subscripts when accessing any particular element is
rearranged by p. All the elements of p must be unique, positive integers from 1 to d.

The transpose of a matrix B can be expressed as “permute(B, [2, 1])”. For a 3-way tensor
C ∈ RI1×I2×I3 , “permute(C, [1, 3, 2])” results in a 3-way tensor D ∈ RI1×I3×I2 with ci1,i2,i3 =
di1,i3,i2 .
Tensors can be multiplied together like matrices and vectors. The definition of k-mode product
is given below, where a tensor is multiplied by a matrix at the k-th mode.
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Definition 3.9 (k-mode product [23]). The k-mode product of a tensor A ∈ RI1×···×Ik×···×Id

with a matrix U ∈ RM×Ik is denoted by A ×k U. The element of the resulting tensor B is
defined as

bi1,...,ik−1,m,ik+1,...,id =
Ik∑
ik=1

ai1,...,ik,...,idum,ik ,

and B ∈ RI1×···×Ik−1×M×Ik+1×···×Id .

The tenser-matrix multiplication is generalized to tensor-tensor version through the operation
called the tensor contraction. The contraction is done via the summation of the products
over equal-sized indices. For instance, the contraction of a tensor A ∈ RI1×I2×I3 and a tensor
B ∈ RI3×I4×I5 over the dimension of size I3 is denoted by A×1

3 B [25], which yields a tensor
C ∈ RI1×I2×I4×I5 whose entries are given by

ci1,i2,i4,i5 =
I3∑
i3=1

ai1,i2,i3bi3,i4,i5 .

The notation can be simplified as A×1 B when the last index of the first tensor is contracted.
The graphical notation of (3-2) is depicted in Figure 3-2:

C = (A×1 B)×4 U ∈ RI1×I2×I4×M . (3-2)

AI1

I2

B

I4

U M CI1

I2

I4

M

I3 I5

Figure 3-2: Diagrammatic notation of (3-2), showing the tensor contraction and k-mode product.

3-2 Tensor Train Decomposition

Tensors are a natural way of representing data in many fields such as quantum molecular
dynamics [26], financial modelling [27] and scientific computing [28]. However, tensors can-
not be handled by standard numerical methods due to the curse of dimensionality, since the
required memory and amount of operations grow exponentially with the number of dimen-
sions. Tensor Networks or tensor decompositions provide special structures that break down
higher-order tensors into a set of sparsely interconnected lower-order core tensors. In this
way, large-scale data can be approximately represented in highly compressed formats.

There are three most popular tensor decomposition methods: the canonical polyadic (CP) de-
composition [29, 30], the Tucker decomposition [31], and the Tensor Train (TT) decomposition

Chenxu Wang Master of Science Thesis
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[6]. The CP format decomposes a given tensor Y ∈ RI1×···×Id into d matrices A(1), . . . ,A(d).
The elements of the tensor are defined by

yi1,i2,...,id =
R∑
r=1

a
(1)
i1,r
a

(2)
i2,r
· · · a(d)

id,r
, (3-3)

where R is the (canonical) tensor rank and matrices A(k) ∈ RIk×R are canonical factors.
The CP format provides an effective way to represent large-sized tensors. Assume that I =
max{I1, I2, . . . , Id}, the storage complexity of a d-way tensor Y in the CP format is O(dIR),
while the original storage complexity is O(Id). However, the computation of the tensor rank R
is an NP-hard problem [32], and there is no robust algorithm for finding the best or quasi-best
approximation.

The Tucker decomposition of a d-way tensor Y is given by

Y = G ×1 A(1) ×2 A(2) ×3 · · · ×d A(d), (3-4)

or element-wise by

yi1,i2,...,id =
R1∑
r1=1

R2∑
r2=1
· · ·

Rd∑
rd=1

gr1,r2,...,rd
a

(1)
i1,r1

a
(2)
i2,r2
· · · a(d)

id,rd
.

Here A(k) ∈ RIk×Rk are the factor matrices, and the core tensor G ∈ RR1×R2×···×Rd can be
thought of as a compressed version of Y . The Tucker format is numerically stable but its
storage complexity is O(dIR + Rd) given that R = max{R1, R2, . . . , Rd}, which still grows
exponentially with d. Hence, it is only suitable for tensors with low dimensions, especially
for the three-dimensional case.

The TT format combines the advantages of the CP and Tucker formats. On the one hand,
it does not have an intrinsic exponential dependence on the number of dimensions d. On
the other hand, it is numerically stable in the sense that it can be computed by sequentially
applying the Singular Value Decomposition (SVD) to unfolding matrices [6].

3-2-1 Definition

The TT decomposition, also known as the Matrix Product State (MPS) [22], represents a
d-way tensor Y ∈ RI1×I2×···×Id in terms of d 3-way tensors:

Y = G(1) ×1 G(2) ×1 · · · ×1 G(d), (3-5)

where 3-way tensors1 G(k) ∈ RRk−1×Ik×Rk are called the TT cores, interconnected via con-
tractions. Parameters Rk are TT ranks and by definition R0 = Rd = 1. Each element of Y
is determined by

yi1,i2,...,id =
R1∑
r1=1

R2∑
r2=1
· · ·

Rd−1∑
rd−1=1

g
(1)
1,i1,r1

g
(2)
r1,i2,r2

· · · g(d)
rd−1,id,1. (3-6)

1The cores G(1) and G(d) are actually 2-way tensors (matrices), but for a uniform representation they are
treated as 3-way tensors of sizes 1× I1 ×R1 and Rd−1 × Id × 1, respectively.
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The TT decomposition of a 3-way tensor A is illustrated in Figure 3-3, where R0 = R3 = 1
are omitted for simplicity. The storage complexity of a d-way tensor in the TT format is
O(dIR2). The TT decomposition with small TT ranks can thus significantly reduce the
memory requirements. In order to make the notation clear and concise, from now on a tensor
in the TT format will be called a TT.

AI1

I2

I3 A(1)

I1

A(2)

I2

A(3)

I3

R1 R2

Figure 3-3: Diagrammatic notation of TT decomposition of a 3-way tensor A ∈ RI1×I2×I3 .

The TT ranks of any given tensor are upper bounded by the ranks of its unfolding matrices.

Theorem 3.1 (Upper bound of TT ranks [6]). For any tensor Y ∈ RI1×···×Id there exists a
TT decomposition with TT ranks

Rk ≤ rank(Y[k]).

where Y[k] is the k-th unfolding matrix of Y .

When TT ranks satisfy Rk = rank(Y[k]), the tensor is exactly represented by the TT decom-
position. Low-rank approximations are obtained if Rk < rank(Y[k]), which can be done by
the use of truncated SVD.

Definition 3.10 (δ-truncated SVD [5]). Given the SVD of an m × n matrix (m ≥ n)
A = UΣVT, where U ∈ Rm×n and V ∈ Rn×n have orthonormal columns, and Σ ∈ Rn×n
is a diagonal matrix of the singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 with the fact that
‖A‖2F = ‖Σ‖2F =

∑n
i=1 σ

2
i . Then an approximation Ã with rank r < n can be obtained by

Ã = U:,1:rΣ1:r,1:rVT
:,1:r.

The δ-truncated SVD of A gives the approximation with the minimum rank r satisfying

‖A− Ã‖F =

√√√√ n∑
i=r+1

σ2
i ≤ δ.

The corresponding rank is called δ-rank of matrix A, denoted by rankδ(A).

We are now able to find a TT approximation of a given tensor by sequentially applying (d−1)
truncated SVDs to its unfolding matrices. The values at which these SVDs are truncated are
indeed the TT ranks. This algorithm is called the TT-SVD and its computational complexity
is O(IdR2) [7].

Theorem 3.2 (Approximation Error of TT-SVD [6]). Given a tensor Y ∈ RI1×···×Id , the
TT-SVD computes a TT Ỹ with TT ranks Rk. The total approximation error yields

‖Y − Ỹ‖2F ≤
d−1∑
k=1

min{Il,Ir}∑
i=Rk+1

σ2
i (Y[k]), Il = IkRk−1, Ir =

d∏
i=k+1

Ii,

where σi(Y[k]) denotes the i-th largest singular value of the k-th unfolding matrix.
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Algorithm 2: TT-SVD [6]
Input: tensor A ∈ RI1×···×Id , prescribed accuracy ε
Output: TT B ∈ RI1×···×Id with TT cores B(k) ∈ RRk−1×Ik×Rk such that

‖A−B‖F ≤ ε‖A‖F
1 Compute truncation parameter δ ← ε√

d−1‖A‖F
2 Sizes of unfolding matrix: Il = I1, Ir =

∏d
i=2 Ii

3 First unfolding matrix M← reshape(A, [Il, Ir])
4 Compute δ-truncated SVD2: M ≈ UΣVT, R1 ← rank(Σ)
5 First TT core B(1) ← reshape(U, [1, I1, R1])
6 Compute M← ΣVT

7 for k = 2, 3, . . . , d− 1 do
8 Redefine the sizes: Il ← IkRk−1, Ir ← Ir/Ik
9 k-th unfolding matrix M← reshape(M, [Il, Ir])

10 Compute δ-truncated SVD: M ≈ UΣVT, Rk ← rank(Σ)
11 k-th TT core B(k) ← reshape(U, [Rk−1, Ik, Rk])
12 Recompute M← ΣVT

13 end
14 Last TT core B(d) ←M

From Theorem 3.2 it follows that we have two options to transform a tensor Y into the TT
format. Firstly, we can prescribe the relative accuracy ε such that ‖Y − Ỹ‖F ≤ ε‖Y‖F . To
achieve that, the truncated error of each unfolding matrix should not exceed the threshold
value ε√

d−1‖Y‖F . This algorithm is shown in Algorithm 2. Secondly, we can just set a maxi-
mal bound for each TT rank and estimate the approximation error using Theorem 3.2. This
way provides us with full control over the resulting TT structure, but it cannot guarantee any-
thing about the relative error. In practice, these two options can even be combined together.
Generally, there is always a trade-off between the accuracy and the memory requirements
since the TT format is efficient in terms of storage only if the TT ranks stay small.

An example of image compression is provided in Figure 3-4, where a 512×512 grayscale image
is first converted into a 9-way cubical tensor of dimensions 4 and then approximated in the
TT format by the TT-SVD with a relative accuracy ε = 0.1. The total number of elements
stored in the TT format is 22356, which reduced 91.5% of storage requirements.

3-2-2 Vectors and matrices

Given a vector y ∈ RN , we can reshape it into a d-way tensor Y ∈ RI1×I2×···×Id such that
N = I1I2 · · · Id. This tensor can then be transformed into the TT format. By doing so, each
element of the original vector is determined by a multi-index instead of just one. For example,
suppose we have a vector a ∈ R8 that can be reshaped to a 3-way tensor B ∈ R2×2×2. Then

2Given a tensor B ∈ RI1×···×Id , size(B, k) = Ik.
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(a) Original image. (b) Image approximated by TT-SVD with ε = 0.1.

Figure 3-4: Example of image compression using TT decomposition.

the corresponding elements of a in tensor are given by

a1 ⇔ b1,1,1, a2 ⇔ b2,1,1, a3 ⇔ b1,2,1, a4 ⇔ b2,2,1,

a5 ⇔ b1,1,2, a6 ⇔ b2,1,2, a7 ⇔ b1,2,2, a8 ⇔ b2,2,2.

Now consider the case of matrices. Each element of a matrix is determined by two indices,
thus matrices can be multiplied by vectors (or matrices) with matched dimensions. To achieve
that, we now introduce an adapted version for matrices called the Tensor Train matrix (TTm)
decomposition [7], also known as the Matrix Product Operator (MPO) [22].
A matrix A ∈ RM×N can be treated as a d-level matrix with rows indexed by a multi-index
(i1, i2, . . . , id) and columns by (j1, j2, . . . , jd). This d-level matrix can be seen as a 2d-way
tensor A ∈ RI1×J1×I2×J2×···×Id×Jd such that M = I1I2 · · · Id and N = J1J2 · · · Jd. The TTm
decomposition represents a 2d-way tensor in terms of d 4-way tensors as

A = G(1) ×1 G(2) ×1 · · · ×1 G(d), (3-7)

where G(k) ∈ RRk−1×Ik×Jk×Rk are called the TTm cores and Rk the TTm ranks with R0 =
Rd = 1. Each entry of A is determined by

ai1,j1,i2,j2,...,id,jd =
R1∑
r1=1

R2∑
r2=1
· · ·

Rd−1∑
rd−1=1

g
(1)
1,i1,j1,r1

g
(2)
r1,i2,j2,r2

· · · g(d)
rd−1,id,jd,1. (3-8)

If all TT ranks Rk are equal to 1, then TT cores are basically matrices, G(k) ∈ RIk×Jk , and
(3-7) reduces to the Kronecker product:

A = G(d) ⊗G(d−1) ⊗ · · · ⊗G(1). (3-9)

Definition 3.11 (Operator τ and sub-trains [33]). Given a vector x ∈ RI1···Id and a matrix
A ∈ R(I1···Id)×(J1···Jd) in the TT(m) format with cores X (k) ∈ RRk−1×Ik×Rk and A(k) ∈
RRk−1×Ik×Jk×Rk , respectively, the operator τ allows us to write them as

x = τ(X (1), . . . ,X (d)), A = τ(A(1), . . . ,A(d)). (3-10)
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3-2 Tensor Train Decomposition 25

With notation τ , it also enables us to merge a subset of TT(m) cores into a 3-way or 4-way
tensor called a sub-train:

X (k:p) = τ(X (k), . . . ,X (p)) ∈ RRk−1×(Ik···Ip)×Rp ,

A(k:p) = τ(A(k), . . . ,A(p)) ∈ RRk−1×(Ik···Ip)×(Jk···Jp)×Rp ,
(3-11)

for 1 ≤ k ≤ p ≤ d. For boundary cases of vectors, sub-trains become 2-way tensors called the
interface matrices:

X(1:k) = τ(X (1), . . . ,X (k)) ∈ R(I1···Ik)×Rk ,

X(k+1:d) = τ(X (k+1), . . . ,X (d)) ∈ RRk×(Ik+1···Id).
(3-12)

The definition is extended to have X(1:0) = X(d+1:d) = 1.

For the sake of simplicity, a vector (matrix) represented in the TT (TTm) format will be called
a TT-vector (TT-matrix). The graphical notation of a TT-matrix with 3 cores is shown in
Figure 3-5. By merging the second and third modes of each TTm core, we can obtain a
TT-vector with mixed row and column indices.

A

M

N

A(1)

I1

J1

A(2)

I2

J1

A(3)

I3

J3

R1 R2

Figure 3-5: A matrix A is represented by the TTm decomposition, such that M = I1I2I3 and
N = J1J2J3.

When creating higher-order tensors from vectors and matrices, known as the tensorization,
each mode of resulting tensors in general has a small size (e.g 2, 3 or 4). In this way, a
low-rank tensor approximation with high compression ratios can be obtained [7]. In addition
to vectors and matrices, lower-order tensors can also be reshaped into higher-order ones to
attain more efficient representations [34, 25].

3-2-3 Canonical form and Recompression

The TT format of a tensor is not unique, i.e., there are infinitely many TT decompositions
that represent the same tensor. By applying orthogonalization to the TT cores, we can obtain
a canonical form, which is essential for many algorithms [6, 35, 36, 37]. Given a TT A, each
3-way TT core A(k) ∈ RRk−1×Ik×Rk has two unfolding matrices: the left unfolding matrix

A(k)
L := A(k)

[2] ∈ RRk−1Ik×Rk , (3-13)

and the right unfolding matrix

A(k)
R := A(k)

[1] ∈ RRk−1×IkRk . (3-14)
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Algorithm 3: Left-orthogonalization [25]
Input: TT A ∈ RI1×···×Id with TT cores A(k) ∈ RRk−1×Ik×Rk

Output: TT A with all TT cores except A(d) are left-orthogonal
1 for k = 1, 2, . . . , d− 1 do
2 QR decomposition of left unfolding A(k)

L = QR, Rk ← size(Q, 2)
3 Update core A(k) ← reshape(Q, [Rk−1, Ik, Rk])
4 Replace A(k+1)

R ← RA(k+1)
R

5 end

Algorithm 4: Right-orthogonalization [25]
Input: TT A ∈ RI1×···×Id with TT cores A(k) ∈ RRk−1×Ik×Rk

Output: TT A with all TT cores except A(1) are right-orthogonal
1 for k = d, d− 1 . . . , 2 do
2 QR decomposition of right unfolding A(k)T

R = QR, Rk−1 ← size(Q, 2)
3 Update core A(k) ← reshape(QT, [Rk−1, Ik, Rk])
4 Replace A(k−1)

L ← A(k−1)
L RT

5 end

Definition 3.12 (Left- and right-orthogonal TT cores [35]). A given TT core A(k) is left-
orthogonal if its left unfolding matrix satisfies

A(k)T
L A(k)

L = IRk
. (3-15)

Similarly, A(k) is right-orthogonal if its right unfolding matrix satisfies

A(k)
R A(k)T

R = IRk−1 . (3-16)

We are now able to define the site-k mixed-canonical form of a TT [22].

Definition 3.13 (site-k mixed-canonical form [22]). A d-way TT is in site-k mixed-canonical
form (1 ≤ k ≤ d), if all the cores A(p)(1 ≤ p ≤ k − 1) are left-orthogonal and all the cores
A(q)(k + 1 ≤ q ≤ d) are right-orthogonal.

One advantage of a TT A being in the site-k mixed-canonical form is that its Frobenius norm
is equal to the norm of the k-th TT core, i.e., ‖A‖F = ‖A(k)‖F . A TT can be orthogonalized
efficiently by applying recursive QR decompositions. Recall that the QR decomposition [5] of
a matrix X ∈ Rm×n (m ≤ n) is given by X = QR, where Q ∈ Rm×m has orthonormal columns
and R ∈ Rm×n is an upper triangular matrix. Each core is replaced by the Q-factor while
the R-factor is merged into the next core. The procedures of left- and right-orthogonalization
are summarized in Algorithm 3 and 4, respectively.

A dense tensor can be converted into the TT format by the TT-SVD. Now consider the
case when the tensor is already in the TT format, but with suboptimal TT ranks w.r.t
the prescribed accuracy. In Section 3-2-4, we will show that many operations lead to the
increase of TT ranks, which quickly makes the TT formats inefficient, thus a recompression is
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Algorithm 5: TT rounding [6]
Input: TT A ∈ RI1×···×Id with TT cores A(k) ∈ RRk−1×Ik×Rk , prescribed accuracy ε
Output: TT B ∈ RI1×···×Id with optimized TT ranks such that ‖A−B‖F ≤ ε‖A‖F

1 A← right-orthogonalize(A)
2 Compute norm ‖A‖F ← vec(A(1))T vec(A(1))
3 Compute truncation parameter δ ← ε√

d−1‖A‖F
4 Initialize B ← A
5 for k = 1, 2 . . . , d− 1 do
6 δ-truncated SVD of left unfolding: B(k)

L ≈ UΣVT, Rk ← rank(Σ)
7 Update core B(k) ← reshape(U, [Rk−1, Ik, Rk])
8 Replace B(k+1)

R ← (ΣVT)B(k+1)
R

9 end

necessary. To this end, the TT rounding algorithm can be used as a post-processing procedure
to avoid rank growth.
The rounding algorithm consists of two steps. First, the given TT is orthogonalized from
right to left to make it in the canonical form. Norm of the TT is now located in the first TT
core. Next, we apply the truncated SVD to each of the unfolding matrices from left to right.
This compression step can be done either by setting an upper bound for the relative error ε
or by specifying the maximum TT ranks. Note that the TT rounding is mathematically the
same as the TT-SVD. However, due to the use of the TT format, the SVDs are computed only
for relatively small matrices, so that the complexity is greatly reduced. The whole procedure
of the TT rounding algorithm is shown in Algorithm 5, which costs O(dIR3) operations.

3-2-4 Basic operations
Multiplication by a scalar From the definition of the TT decomposition, it follows that
multiplying a TT by a scalar amounts to multiplying one of the TT cores by the given
value. If a TT is in the site-k mixed-canonical form, the orthogonality can be preserved by
multiplying the scalar with the k-th TT core.

Consider two TTs with same dimensions: A, B ∈ RI1×I2×···×Id , for which the TT ranks are
r(A) = [R1, R2, . . . , Rd−1] and r(B) = [R′1, R′2, . . . , R′d−1], respectively. The addition and
inner product between them can be performed as follows.

Addition The element-wise definition of the TT decomposition (3-6) of a d-way tensor Y ∈
RI1×I2×···×Id can also be expressed as

yi1,i2,...,id = G(1)
i1

G(2)
i2
· · ·G(d)

id
, (3-17)

where G(k)
ik

:= G(k)
:,ik,: ∈ RRk−1×Rk are matrix slices of the TT core A(k) ∈ RRk−1×Ik×Rk ,

with ik = 1, . . . , Ik. It follows that the summation of two TTs, C = A + B, has TT ranks
r(C) = r(A) + r(B) and can be computed by concatenating the corresponding TT cores as

C(k)
ik

=
[
A(k)
ik

0
0 B(k)

ik

]
, k = 2, 3, . . . , d− 1, (3-18)
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Algorithm 6: TT inner product [6]
Input: TT A ∈ RI1×···×Id with TT cores A(k) ∈ RRk−1×Ik×Rk ,

TT B ∈ RI1×···×Id with TT cores B(k) ∈ RR
′
k−1×Ik×R′k

Output: z = 〈A,B〉 ∈ R
1 Initialize Z = 1
2 for k = 1, 2 . . . , d do
3 Mk ← reshape(ZTA(k)

R , [R′k−1Ik, Rk])
4 Zk ←MT

kB(k)
L ∈ RRk×R′k

5 end
6 z ← Zd

and for border cores we have

C(1)
i1

=
[
A(1)
i1

B(1)
i1

]
, C(d)

id
=
[
A(d)
id

B(d)
id

]
. (3-19)

The sum of two TT-matrices can be performed in a similar way by replacing A(k)
ik

with A(k)
ik,jk

,
obtained by fixing the second and third indices of the TTm cores A(k) ∈ RRk−1×Ik×Jk×Rk .

Hadamard product The computation of the Hadamard (element-wise) product of two TTs
of the same size, C = A�B, can be performed by expressing the slices of the cores, C(k), as

C(k)
ik

= A(k)
ik
⊗B(k)

ik
, k = 1, . . . , d. (3-20)

The resulting TT has ranks r(C) = [R1R
′
1, R2R

′
2, . . . , Rd−1R

′
d−1]. The computational com-

plexity is O(dI(RR′)2).

Inner product The inner product of two TTs z = 〈A,B〉 is computed by successive contrac-
tions of TT cores from left to right. As an example, the inner product of two 3-way TTs is
shown in Figure 3-6. Since there is no free edge, the result is a scalar. The full computation
is given in Algorithm 6, with the computational complexity of O(dI(R2R′ + RR′2)). This
provides us with a new way to compute the norm in the TT format: ‖A‖F =

√
〈A,A〉.

A(1) A(2) A(3)

B(1) B(2) B(3)

z

R1 R2

R′1 R′2

I1 I2 I3

Figure 3-6: Diagrammatic notation of the inner product of two 3-way tensors in the TT format.

Now consider two TT-matrices A ∈ R(M1···Md)×(I1···Id) with cores A(k) ∈ RPk−1×Mk×Ik×Pk

and B ∈ R(I1···Id)×(J1···Jd) with cores B(k) ∈ RQk−1×Ik×Jk×Qk , and a TT-vector x ∈ RI1···Id

with cores X (k) ∈ RRk−1×Ik×Rk .
Chenxu Wang Master of Science Thesis



3-3 Solving Linear Systems in TT Formats 29

Algorithm 7: TT matrix-vector product [6]
Input: TT-matrix A ∈ R(M1···Md)×(I1···Id) with cores A(k) ∈ RPk−1×Mk×Ik×Pk ,

TT-vector x ∈ RI1···Id with cores X (k) ∈ RRk−1×Ik×Rk

Output: TT-vector y ∈ RM1···Md with cores Y(k) ∈ RPk−1Rk−1×Mk×PkRk such that
y = Ax

1 for k = 1, 2 . . . , d do
2 Ak ← reshape(permute(A(k), [1, 2, 4, 3]), [Pk−1MkPk, Ik])
3 Xk ← reshape(permute(X (k), [2, 1, 3]), [Ik, Rk−1Rk])
4 Yk ← reshape(AkXk, [Pk−1,Mk, Pk, Rk−1, Rk])
5 Y(k) ← reshape(permute(Yk, [1, 4, 2, 3, 5]), [Pk−1Rk−1,Mk, PkRk])
6 end

Matrix transpose From definition of the TTm decomposition the transpose of A is simply
obtained by interchanging the second and third modes of each TTm core. That is, AT ∈
R(I1···Id)×(M1···Md) can be represented in the TTm format with cores Ā(k) ∈ RPk−1×Ik×Mk×Pk .

Matrix-vector product When vectors and matrices are represented in the TT format, the
matrix-vector product can be computed through tensor contractions just similar to the com-
putation of the inner product. The product of a TT-matrix and a TT-vector leads to a
TT-vector. The resulting TT ranks are also the product of the original ranks. It is thus gen-
erally followed by a rounding procedure to limit rank growth. The diagrammatic notation of
y = Ax with d = 3 are depicted in Figure 3-7. The full computation process of matrix-vector
product is provided in Algorithm 7, with the computational complexity of O(dIM(PR)2).

A(1)

M1

A(2)

M2

A(3)

M3

X (1) X (2) X (3)

B(1)

M1

B(2)

M2

B(3)

M3P1 P2

R1 R2

I1 I2 I3
P1R1 P2R2

Figure 3-7: Diagrammatic notation of the matrix-vector product in the TT format.

Matrix-matrix product The product of a TT-matrix and a TT-matrix leads to a TT-matrix,
which only requires small modifications from the matrix-vector product. The computational
complexity of C = AB is O(dIJM(PR)2).

3-3 Solving Linear Systems in TT Formats

The TT operations together with the rounding procedure allows us to first think about solving
linear systems with the usage of traditional iterative methods [38, 39, 40]. However, these
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methods are not very robust since computations of auxiliary quantities may require large TT
ranks [1]. In order to get rid of additional vectors, another family of methods suggests to
search for the cores of the TT format directly.

Suppose we choose to minimize the Frobenius norm error in terms of the full tensors,

‖x∗ − τ(X (1), . . . ,X (d))‖2 → min (3-21)

over the TT cores X (k) ∈ RRk−1×Ik×Rk . This optimization problem becomes highly nonlinear
and nonconvex w.r.t. the TT cores, due to the polylinear action of the τ operation (Definition
3-10). To relax the nonlinearity, the so-called alternating methods were proposed. A general
approach is to substitute a simultaneous optimization over all TT cores by a subsequent
optimization over each TT core, which is based on the fact that the TT format is linear w.r.t
each of its cores.

Definition 3.14 (Frame matrices [33]). Given a tensor X ∈ RI1×···×Id in the TT format
with cores X (k) ∈ RRk−1×Ik×Rk , the k-th frame matrix reads

X6=k = (X(k+1:d))T ⊗ IIk
⊗X(1:k−1) ∈ R(I1···Id)×(Rk−1IkRk). (3-22)

The frame matrix performs a linear map from the elements of the TT core to the elements of
the initial tensor,

x = X 6=kx(k), (3-23)

where x = vec(X ) and x(k) = vec(X (k)) ∈ RRk−1IkRk . Moreover, imposing the orthogonality
conditions on the TT cores enables us to make the whole frame matrix orthogonal. That is,
if x is put in the site-k mixed-canonical form, we have XT

6=kX6=k = IRk−1IkRk
.

We now introduce several alternating methods for solving SPD linear systems Ax = b, where
both the matrix A ∈ R(I1···Id)×(I1···Id) and the right-hand side b ∈ RI1···Id are represented in
the TT format, with TTm cores A(k) ∈ RPk−1×Ik×Ik×Pk and TT cores B(k) ∈ RQk−1×Ik×Qk ,
respectively. The solution x ∈ RI1···Id is also given in the TT format. We aim at optimizing
the following objective function

J(x) = 1
2〈x,Ax〉 − 〈x,b〉. (3-24)

3-3-1 Alternating Linear Scheme

The Alternating Linear Scheme (ALS) algorithm [35] solves the optimization problem (3-24)
by a sequence of micro-steps, i.e., consecutive optimizations over TT cores X (k) with fixed
TT ranks r = [R1, . . . , Rd−1]. Each such local problem writes

U (k) = arg min
X (k)

J(x) over X (k) ∈ RRk−1×Ik×Rk . (3-25)

The TT core X (k) is then replaced by U (k), and the next core is considered. In general, the
cores are updated one by one from k = 1 to d (forward half-sweep) or k = d to 1 (backward
half-sweep), and so on until reaching convergence.
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The linearity of the TT format (3-23) allows us to rewrite (3-25) as follows:

u(k) = arg min
x(k)

JAk,bk
(x(k)) over x(k) ∈ RRk−1IkRk , (3-26)

where matrices Ak and bk are given by

Ak = XT
6=kAX6=k ∈ R(Rk−1IkRk)×(Rk−1IkRk),

bk = XT
6=kb ∈ RRk−1IkRk .

(3-27)

The unique minimum is delivered by the solution of the local system

Aku(k) = bk, (3-28)

which is of a reasonable size and within capabilities of standard methods. The computational
complexity of solving each local system is basically O((IR2)3). As depicted in Figure 3-8, Ak

and bk can be assembled from the TT representations of A, x and b.

X (1) X (k−1) X (k+1) X (d)

A(1) A(k−1) A(k) A(k+1) A(d)

X (1) X (k−1) U (k) X (k+1) X (d)

X (1) X (k−1) X (k+1) X (d)

B(1) B(k−1) B(k) B(k+1) B(d)

I1 Ik−1 Ik Ik+1 Id

I1 Ik−1 Ik Ik+1 Id

I1 Ik−1 Ik Ik+1 Id

Rk−1

Pk−1

Rk−1

Rk−1

Qk−1

Rk

Pk

Rk

Rk

Qk

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

R1

P1

R1

R1

Q1

Rk−2

Pk−2

Rk−2

Rk−2

Qk−2

Rk+1

Pk+1

Rk+1

Rk+1

Qk+1

Rd−1

Pd−1

Rd−1

Rd−1

Qd−1

Ak

bk

Figure 3-8: A local linear system (3-28) assembled directly from TT formats of A, x and b.

The accuracy of the obtained solution crucially depends on the conditioning of the local
system. Fortunately, it can be put under control using the orthogonality constraints on the
TT cores, and thus the orthogonality of the frame matrix [33]. If the TT-vector x is in
the site-k mixed-canonical form when updating the k-th TT core, it can be shown that the
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Algorithm 8: ALS for Ax = b (forward half-sweep) [33]
Input: SPD TT-matrix A ∈ R(I1···Id)×(I1···Id) with A(k) ∈ RPk−1×Ik×Ik×Pk ,

right-hand side TT-vector b ∈ RI1···Id with B(k) ∈ RQk−1×Ik×Qk ,
initial guess TT-vector t ∈ RI1···Id with T (k) ∈ RRk−1×Ik×Rk

Output: optimized TT-vector x ∈ RI1···Id with X (k) ∈ RRk−1×Ik×Rk such that
J(x) ≤ J(t)

1 Copy X (k) ← T (k), k = 1, . . . , d
2 Initialize A<1 = A>d = B<1 = B>d = 1
3 {Orthogonalization and right reductions}
4 for k = d, d− 1 . . . , 2 do
5 QR decomposition X(k)T

R = QR, Rk−1 ← size(Q, 2)
6 Update core X (k) ← reshape(QT, [Rk−1, Ik, Rk])
7 Replace X(k−1)

L ← X(k−1)
L RT

8 Compute and store A>k−1,B>k−1 from A>k,B>k

9 end
10 {Optimization over TT cores}
11 for k = 1, 2 . . . , d do
12 Form Ak, bk by (3-29) and solve Aku(k) = bk
13 Replace X (k) ← reshape(u(k), [Rk−1, Ik, Rk])
14 if k 6= d then
15 QR decomposition X(k)

L = QR, Rk ← size(Q, 2)
16 Update core X (k) ← reshape(Q, [Rk−1, Ik, Rk])
17 Replace X(k+1)

R ← RX(k+1)
R

18 Compute left reductions A<k+1,b<k+1 from A<k,B<k

19 end
20 end

spectrum of Ak lies with the spectral range of A [33, 35]:

λmin(Ak) = λmin(XT
6=kAX 6=k)

= min
‖v‖=1

〈X6=kv,AX6=kv〉

= min
‖z‖=1

z∈span X6=k

〈z,Az〉

≥ min
‖z‖=1

〈z,Az〉 = λmin(A),

and similarly λmax(Ak) ≤ λmax(A). It follows that the condition numbers yield κ(Ak) ≤
κ(A), i.e., the local system (3-28) is conditioned not worse than the original system Ax = b.

Computation of local systems

In each optimization step, we create and solve the local system (3-28). In fact, only small
corrections are required to update the local systems between micro-steps k = 1, . . . , d. In
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3-3 Solving Linear Systems in TT Formats 33

order to show that, we define, in Figure 3-9, the left reductions,

A<k ∈ R1×Rk−1×Rk−1×Pk−1 , B<k ∈ R1×Rk−1×Qk−1 ,

and right reductions,
A>k ∈ RPk×Rk×Rk×1, B>k ∈ RQk×Rk×1.

They can be seen as special TT(m) cores. Given A<k and the k-th cores A(k) and X (k),
A<k+1 can be easily computed via tensor contractions with the computational complexity of
O(IR3P + I2R2P 2). The computations of B<k and B>k are indeed the TT inner product,
which cost O(IR3) operations for each micro-step.

For initialization, we take A<1 = A>d = 1. Now the local system (3-28) can be assembled as

Ak = τ(A<k,A(k),A>k), bk = τ(B<k,B(k),B>k). (3-29)

In practice, the right reductions are computed and stored during the orthogonalization, while
the left reductions are computed after each of the TT cores is updated. The detailed procedure
of the ALS is shown in Algorithm 8.

X (1) X (k−1) X (k+1) X (d)

A(1) A(k−1) A(k) A(k+1) A(d)

X (1) X (k−1) U (k) X (k+1) X (d)

X (1) X (k−1) X (k+1) X (d)

B(1) B(k−1) B(k) B(k+1) B(d)

I1 Ik−1 Ik Ik+1 Id

I1 Ik−1 Ik Ik+1 Id

I1 Ik−1 Ik Ik+1 Id

Rk−1

Pk−1

Rk−1

Rk−1

Qk−1

Rk

Pk

Rk

Rk

Qk

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

R1

P1

R1

R1

Q1

Rk−2

Pk−2

Rk−2

Rk−2

Qk−2

Rk+1

Pk+1

Rk+1

Rk+1

Qk+1

Rd−1

Pd−1

Rd−1

Rd−1

Qd−1

A<k A>k

B<k B>k

Figure 3-9: The graphical explanation of left reductions, A<k and B<k, and right reductions,
A>k and B>k, used for assembling the linear system (3-28) [1].

TT approximation problems

As a special case, the ALS may be targeted to solve the problem of approximating a given
tensor in the TT format from an initial guess, which is the case if the matrix A = I and the
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right-hand side is a normal tensor instead of a TT. With interface matrices being orthogonal,
the identity is preserved in the local problem (3-27):

Ak = XT
6=kAX 6=k = XT

6=k I X6=k = I.

Therefore, we just compute bk according to (3-27) and assign uk = bk. When the expected
TT ranks of the target tensor is the same as the TT ranks of the initial guess, the ALS only
needs one half sweep for returning a good approximation. Furthermore, if the initial guess is
close to the target, the approximated error can be further reduced.

3-3-2 Rank adaptation and Modified ALS

The drawback of the ALS algorithm is that the TT ranks remain the same during the compu-
tations. We thus have to guess the TT ranks of the solution a priori, which might be difficult.
If they are underestimated, the obtained solution will be far from the exact one; if they are
overestimated, the complexity of solving local systems may be too high.

The modified ALS (MALS) algorithm [35] allows us to change the TT ranks adaptively during
the computations. Instead of a single TT core, the local optimization step is performed over
a supercore X (k:k+1) = τ(X (k),X (k+1)) as follows,

u(k,k+1) = arg min
x(k,k+1)

JAk,k+1,bk,k+1(x(k,k+1)) over x(k,k+1) ∈ RRk−1IkIk+1Rk+1 . (3-30)

The minimizer is the solution of the local system Ak,k+1u(k,k+1) = bk,k+1 with

Ak,k+1 = XT
6=k,k+1AX 6=k,k+1 ∈ R(Rk−1IkIk+1Rk+1)×(Rk−1IkIk+1Rk+1),

bk,k+1 = XT
6=k,k+1b ∈ RRk−1IkIk+1Rk+1 ,

(3-31)

where X 6=k,k+1 is the two-site frame matrix

X6=k,k+1 = (X(k+2:d))T ⊗ IIk+1 ⊗ IIk
⊗X(1:k−1) ∈ R(I1···Id)×(Rk−1IkRk). (3-32)

The computational complexity of solving each local system becomes O((I2R2)3). Similar to
the ALS, the local system can be assembled as

Ak = τ(A<k,A(k),A(k+1),A>k+1), bk = τ(B<k,B(k),B(k+1),b>k+1). (3-33)

The canonical form has to be ensured before solving each local system. The updated super
core U (k,k+1) is then decomposed into U (k) and U (k+1) by applying the truncated SVD to its
second unfolding matrix,

U(k,k+1)
[2] ≈ U(k)

L U(k+1)
R ∈ R(Rk−1Ik)×(Ik+1Rk+1),

U(k)
L ∈ R(Rk−1Ik)×R′k , U(k+1)

R ∈ RR
′
k×(Ik+1Rk+1).

(3-34)

This can be implemented either by setting an upper bound for the TT ranks or by giving a
relative accuracy ε. The Frobenius norm of the local permutation to U (k,k+1) is the same as
the global permutation due to the orthogonality of the frame matrix. After the decomposition,
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Algorithm 9: MALS for Ax = b (forward half-sweep) [33]
Input: SPD A ∈ R(I1···Id)×(I1···Id) with A(k) ∈ RPk−1×Ik×Ik×Pk ,

right-hand side b ∈ RI1···Id with B(k) ∈ RQk−1×Ik×Qk ,
initial guess t ∈ RI1···Id with T (k) ∈ RRk−1×Ik×Rk ,
accuracy ε, rank bound Rmax

Output: rank-updated x ∈ RI1···Id with X (k) ∈ RR
′
k−1×Ik×R′k such that R′k ≤ Rmax

1 Copy X (k) ← T (k), k = 1, . . . , d
2 Initialize A<1 = A>d = B<1 = B>d = 1
3 {Orthogonalization and right reductions}
4 for k = d, d− 1 . . . , 2 do
5 QR decomposition X(k)T

R = QR, Rk−1 ← size(Q, 2)
6 Update core X (k) ← reshape(QT, [Rk−1, Ik, Rk])
7 Replace X(k−1)

L ← X(k−1)
L RT

8 Compute and store A>k−1,B>k−1 from A>k,B>k

9 end
10 {Optimization over TT cores}
11 for k = 1, 2 . . . , d− 1 do
12 Form Ak,k+1, bk,k+1 by (3-33) and solve Ak,k+1u(k,k+1) = bk,k+1

13 Compute ε-truncated SVD: Uk,k+1
[2] ≈ UΣVT and rank(Σ) ≤ Rmax

14 Replace X(k)
L ← U, X(k+1)

R ← ΣVT

15 Compute left reductions A<k+1,b<k+1 from A<k,B<k

16 end

the TT cores X (k) and X (k+1) are replaced by U (k) and U (k+1), respectively. And the TT
rank Rk is substituted by R′k. The procedure of the MALS is summarized in Algorithm 9.

The TT structure changes in each micro-step, and further optimization is carried out over the
updated tensor manifold. This generally speeds up the convergence [36, 35], but also makes
it more difficult to analyse the process. Actually, there is no systematic analysis yet of the
theoretic convergence behavior of the MALS, though it works quick well in practice. Just like
the ALS, the MALS algorithm can also be used to find TT approximations of given tensors.

3-3-3 Alternating Minimal Energy algorithm

Due to the local manner of optimization, the ALS (even MALS) may lose important infor-
mation about the direction towards the exact solution, and stagnate at some local minima
[1, 36, 35]. By combining the alternating optimization scheme with the steepest descent
method, the Alternating Minimal Energy (AMEn) algorithm [33] is able to overcome this
problem.

The basic idea comes from the conception of enrichment. It is found in [36, 41] that by adding
to the solution a TT of small ranks with randomly filled TT cores from time to time, the
convergence becomes faster and the accuracy level is also maintained. As an example, the
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ALS (Algorithm 8) equipped with the enrichment after Line 12 can be written as follows,

X(k)
L =

[
U(k)

L Z(k)
L

]
, T(k+1)

R =
[
T(k+1)

R
0

]
, (3-35)

where Z(k)
L ∈ RRk−1Ik×ρk are the left-unfolding of randomly populated tensors. This step

may be seen as a zero TT-sum with TT ranks Rk becoming Rk + ρk, so that both x =
τ(X (1), . . . ,X (d)) and J(x) are preserved. But the frame matrix is changed with new basis
components for the optimization and hence may accelerate the convergence [1]. In order to
avoid the stagnation in local minima, it is reasonable to choose the expansion related to the
residual.

Given an initial guess t, the residual is computed by z = b−At. However, the TT cores of
the residual would not match the gradient precisely after several updates of the TT cores of
the solution. Note that the updated solution enters only the k-th core. Hence if we compute
the exact residual after each micro-step, we are able to better approximates the current
gradient. This process can be done efficiently since the TT-sum and matrix-vector product
are performed core by core.

To be more clear, let y = −Ax, where we assume the first k− 1 cores of x has been updated
(and expanded) and the k-th core X (k) = U (k) is the solution of the local system. Instead
of concatenating the cores Y(k) ∈ RR

′
k−1Pk−1×Ik×RkPk and B(k) ∈ RQk−1×Ik×Qk by (3-18), we

take into account the cores X (i) for all i < k. Given the left reductions A<k and B<k, the
reduced residual is computed as follows,

Ŷ(k)
R = A<k

[2] Y(k)
R ∈ RR

′
k−1×Ik(RkPk),

B̂(k)
R = B<k

L B(k)
R ∈ RR

′
k−1×IkQk ,

Ẑ(k)
L =

[
B̂(k)

L Ŷ(k)
L

]
∈ RR

′
k−1Ik×(Qk+RkPk),

(3-36)

where A<k
[2] ∈ RR

′
k−1×(R′k−1Pk−1) is the second unfolding matrix of A<k. The computation is

also described in Figure 3-10. The reduced residual Ẑ(k)
L is then used to expand the core by

(3-35). To limit the rank growth, both U(k)
L and Ẑ(k)

L can be easily truncated by only one
additional SVD. We summarize the whole procedure of the AMEn in Algorithm 10. The
detailed convergence analysis can be accessed in [33, 1].

Chenxu Wang Master of Science Thesis



3-3 Solving Linear Systems in TT Formats 37

X (1) X (k−1) T (k+1) T (d)

A(1) A(k−1) A(k) A(k+1) A(d)

X (1) X (k−1) U (k) T (k+1) T (d)

X (1) X (k−1) T (k+1) T (d)

B(1) B(k−1) B(k) B(k+1) B(d)

I1 Ik−1 Ik Ik+1 Id

I1 Ik−1 Ik Ik+1 Id

I1 Ik−1 Ik Ik+1 Id

R′k−1

Pk−1

R′k−1

R′k−1

Qk−1

Rk

Pk

Rk

Rk

Qk

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

R′1

P1

R′1

R′1

Q1

R′k−2

Pk−2

R′k−2

R′k−2

Qk−2

Rk+1

Pk+1

Rk+1

Rk+1

Qk+1

Rd−1

Pd−1

Rd−1

Rd−1

Qd−1

Ŷ(k)

B̂(k)

Figure 3-10: The computation of the reduced residual (3-36) based on the left reductions and
the k-th TT cores.
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Algorithm 10: AMEn for Ax = b (one iteration) [1]
Input: SPD TT-matrix A ∈ R(I1···Id)×(I1···Id) with A(k) ∈ RPk−1×Ik×Ik×Pk ,

right-hand side TT-vector b ∈ RI1···Id with B(k) ∈ RQk−1×Ik×Qk ,
initial guess TT-vector t ∈ RI1···Id with T (k) ∈ RRk−1×Ik×Rk ,
accuracy ε and rank bound Rmax for solution,
accuracy ε and rank bound ρmax for residual

Output: optimized TT-vector x ∈ RI1···Id with X (k) ∈ RR
′
k−1×Ik×R′k such that

R′k ≤ Rmax + ρmax

1 Copy X (k) ← T (k), k = 1, . . . , d
2 Initialize A<1 = A>d = B<1 = B>d = 1
3 Compute the initial residual z = b−Ax
4 {Orthogonalization and right reductions}
5 for k = d, d− 1 . . . , 2 do
6 QR decomposition X(k)T

R = QR, Rk−1 ← size(Q, 2)
7 Update core X (k) ← reshape(QT, [Rk−1, Ik, Rk])
8 Replace X(k−1)

L ← X(k−1)
L RT

9 Compute and store A>k−1,B>k−1 from A>k,B>k

10 QR decomposition Z(k)T
R = QRk−1, store Rk−1

11 Replace Z(k−1)
L ← Z(k−1)

L RT
k−1

12 end
13 {Optimization over TT cores}
14 for k = 1, 2 . . . , d do
15 Form Ak, bk by (3-29) and solve Aku(k) = bk
16 Compute ε-truncated SVD: U(k)

L ≈ U1Σ1VT
1 and rank(Σ1) ≤ Rmax

17 if k 6= d then
18 Compute reduced residual Ẑ(k)

L by (3-36)
19 COmpute ε-truncated SVD: Ẑ(k)

L RT
k ≈ U2Σ2VT

2 and rank(Σ2) ≤ ρmax

20 Expand X(k)
L ←

[
U1 U2

]
, X(k+1)

R ←
[
X(k+1)

R
0

]
21 QR decomposition X(k)

L = QR, R′k ← size(Q, 2)
22 Update core X (k) ← reshape(Q, [R′k−1, Ik, R

′
k])

23 Replace X(k+1)
R ← RX(k+1)

R
24 Compute left reductions A<k+1,b<k+1 from A<k,B<k

25 end
26 end
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3-4 Matrix Inversion

Matrix inversion forms the basis for our proposed method in Chapter 4. With all the TT
arithmetics introduced before, the Newton method for the matrix inversion can be used to
compute approximate inverses [42, 7]. Given a matrix A, it has the following iterative form

Xk+1 = 2Xk −XkAXk, k = 0, 1, . . . .

If ‖AX0 − I‖ < 1 for some matrix norm, it converges to the inverse quadratically. The
problem is that the newton method requires two matrix-matrix products in each step, and
thus the TT ranks of XkAXk will quickly become prohibitively large. We now introduce an
alternative approach that is much simpler to implement given an algorithm that solves linear
systems (in the TT format).
The inverse matrix X to a given matrix A satisfies

AX = I, (3-37)

which can be written as a linear system:

(I⊗A) vec(X) = vec(I).

From the definition of the TTm decomposition, an identity matrix can be represented by a
rank-1 TT-matrix, since it can be written as the Kronecker product of several small identity
matrices. To benefit from this rank-1 structure, we choose the vectorized identity TT-matrix
as the right-hand side and we are going to find a vectorized TT-matrix as the solution. Indeed,
by merging or splitting the two dimensions in the middle, a 4-way TTm core can be easily
converted into a 3-way TT core and vise versa. Since the vectorization is applied core by core,
the Kronecker product (I ⊗ A) should also be computed core by core. This can be simply
done by an outer product of two vectorized TTm cores, as shown in Algorithm 11.
Now suppose that X is an approximate solution of AX ≈ I, i.e., ‖AX − I‖ is small. But it
does not mean that ‖XA− I‖ is small, even for a symmetric matrix A. That is, the obtained
inverse for a symmetric matrix can be nonsymmetric. To avoid this and make the approach
more robust [36], let us solve

AX + XA = 2I, (3-38)
instead of (3-37). This is the Lyapunov equation with the symmetric right-hand side, being
known to have a symmetric solution. In addition, the TT ranks for the corresponding matrix
are only two times larger than that for the initial one.

Algorithm 11: TT Kronecker product for inversion [36]
Input: TT-matrix A with cores A(k) ∈ RPk−1×Ik×Ik×Pk ,

TT-matrix B with cores B(k) ∈ RQk−1×Ik×Ik×Qk

Output: TT-matrix C with cores C(k) ∈ RQk−1Pk−1×I2
k×I

2
k×QkPk such that C = A⊗B

1 for k = 1, 2 . . . , d do
2 Ck ← vec(B(k)) vec(A(k))T

3 Ck ← reshape(Ck, [Qk−1, Ik, Ik, Qk, Pk−1, Ik, Ik, Pk])
4 Ck ← permute(Ck, [1, 5, 2, 6, 3, 7, 4, 8])
5 C(k) ← reshape(Ck, [Qk−1Pk−1, I

2
k , I

2
k , QkPk])

6 end
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Chapter 4

Tensor Network Batch Bayesian
Learning of LS-SVMs

In this Chapter, we develop the method of Tensor Network Batch Bayesian Learning of LS-
SVM (TNBBL-LSSVM). The theoretical formulation of the model is given in Section 4-1,
where we introduce the Bayesian learning framework of LS-SVMs and how to implement it in
the TT format. Thereafter, we apply the TNBBL-LSSVM to a biomedical dataset to perform
image classification. The results and analysis of the experiments are provided in Section 4-2.
We will discuss how to determine the rank parameters of the model and compare the results
given by the MALS and AMEn when computing matrix inversion. Finally, we compare the
TNBBL-LSSVM with the state-of-the-art methods for solving large-scale LS-SVM problems.
Note that to represent vectors and matrices in the TT format, we assume that they are all
first converted into a cubical tensor of dimensions 2, that is, the mode size of all TT-vectors
and TT-matrices is 2.

4-1 Bayesian Learning in TT Formats

There are two main drawbacks associated with the original LS-SVMs. First, since the size
of the linear KKT system scales with the number of data points, it becomes burdensome to
solve the dual problem when dealing with large-scale datasets. In order to circumvent the
bottleneck of the computational requirements and speed up the training process, we use the
low-rank TT decomposition to approximate the kernel matrix and perform the computations
in the TT format.
Another drawback is that the LS-SVM classifiers only predict the class label of a given
instance. There is nothing we can tell about how confident they are to make such predictions.
To tackle this problem, we develop a Bayesian learning method for solving the LS-SVM
problems. As a result, we are able to obtain a probability distribution of the parameters,
which enables us to construct confidence levels of the predictions, which is of use when we
need to make further decisions.
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Recall from Chapter 2 that given a training set {xk, yk}Nk=1 the dual problem of an LS-SVM
classifier is given by [

0 yT

y Ω + IN/γ

] [
b
α

]
=
[

0
1N

]
, (4-1)

where the element of Ω is defined as Ωk,l = ykylK(xk,xl) for k, l = 1, . . . , N . It can be written
in a more compact way as

Hᾱ = z, with ᾱ =
[
b
α

]
∈ RN+1, z =

[
0

1N

]
∈ RN+1. (4-2)

In Bayesian way, we treat each row of matrix H as a “measurement” hi (for i = 1, . . . , N + 1)
[43] that is related to the following linear model,

zi = hiᾱ+ ei, (4-3)

where we assume the measurement noise ei are i.i.d. random variables with zero-mean Gaus-
sian distribution ei ∼ N(0, v2), and the prior distribution of the parameters ᾱ is Gaussian with
known mean and covariance ᾱ ∼ N(µ0,P0). Then the linear model (4-3) can be expressed in
probabilistic notation as1

P (zi | ᾱ) = N(zi |hiᾱ, v2),
P (ᾱ) = N(ᾱ |µ0,P0).

(4-4)

By application of Bayes’ theorem, the posterior probability is derived as a consequence of the
prior probability and the likelihood function,

P (ᾱ | z1:N+1) ∝ P (ᾱ)
N+1∏
i=1

P (zi | ᾱ)

= N(ᾱ |µ0,P0)
N+1∏
i=1

N(zi |hiᾱ, v2).
(4-5)

The advantage of the prior distribution being Gaussian is that the posterior distribution will
also be Gaussian:

P (ᾱ | z1:N+1) = N(ᾱ |µN+1,PN+1). (4-6)

The analytic batch solution [43] of mean and covariance in (4-6) is written as

P := PN+1 =
[
P−1

0 + 1
v2 HTH

]−1
,

µ := µN+1 =
[
P−1

0 + 1
v2 HTH

]−1 [ 1
v2 HTz + P−1

0 µ0

]
.

(4-7)

In brief, training an LS-SVM model by the Batch Bayesian Learning approach amounts to
computing the inverse of an SPD matrix (and also a matrix-vector product). As a result,
we can not only obtain the optimized model parameters, [b∗;α∗] = µ, but also compute a
confidence interval based on the covariance matrix P.

1The likelihood of zi is also conditional on hi, but for simplicity this dependence is assumed to be explicit
from the context.
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By applying the TT-SVD to matrix H (reshaped to a 2d-way tensor) with a prescribed rank
bound r(H)max, we can convert it into a low-rank TT-matrix H̃. Given the variance v2 of the
measurement noise and a predefined diagonal matrix P0, we are able to compute the matrix
to be inverted,

A = P−1
0 + 1

v2 H̃TH̃, (4-8)

with a simple TT matrix-matrix product and a TT addition. To guarantee positive defi-
niteness of H̃TH̃, no TT rounding step is followed. Therefore, the largest TT rank of A is
basically (r2(H) + 1).

Next we form the Lyapunov equation (3-38) by computing the core-based Kronecker product
(i.e., Algorithm 11),

(I⊗A + A⊗ I) vec(P) = vec(2I), (4-9)

which is the linear system to be solved by the MALS or AMEn, with the right-hand side being
a rank-1 (vectorized) TT-matrix. The solution is indeed the posterior covariance P. When
solving this linear system, we also need to prescribe a rank bound r(P)max for the solution. To
make sure the obtained solution is symmetric, we use a rank-1 random symmetric TT-matrix2

as the initial guess.

Suppose we have now obtained the approximate inverse matrix P, the mean of parameters
µ can be computed by (4-7) with a TT matrix-vector product and a TT addition, where z
is represented by a rank-2 TT-vector. In order to limit the rank growth, we may add one
additional rounding step.

Making predictions is straightforward. Consider a new data point x′, the class label can be
computed by a TT Hadamard product and a TT inner product,

ŷ(x′) = sign
(
b∗ +

N∑
k=1

α∗kykK(xk,x′)
)

= sign
([

1 kT
]([1

y

]
� µ

))
,

where the k-th entry of k ∈ RN is K(xk,x′). To simplify the notation, we define

k̄ =
[

1
k

]
, ȳ =

[
1
y

]
. (4-10)

Then the label prediction can be written as

ŷ(x′) = sign
(
k̄T(ȳ� µ)

)
, (4-11)

where k̄ can be converted into the TT format by the TT-SVD or ALS. The Hadamard
product can be precomputed and may be followed by a rounding step. Since we assume a
binary classification problem, i.e., yk ∈ {+1,−1}, ȳ can be exactly represented by a rank-2
TT-vector if we rearrange the training set to put all the samples with positive labels in the
first half such that

ȳ = [+1 · · · + 1 − 1 · · · − 1]T.
2Given a rank-1 TT-matrix B, an easy way to get a symmetric TT-matrix is by computing BTB.

Master of Science Thesis Chenxu Wang



44 Tensor Network Batch Bayesian Learning of LS-SVMs

Experiments show that no matter how many +1s it has, the resulting TT-vector always has
a maximal TT rank of 2.

The variance of the sample can be computed using the covariance P as

σ2 = k̄TPk̄ + v2. (4-12)

Now we are able to establish the confidence interval according to the property of the Gaussian
distribution. For example,

ŷ+
σ (x′) = sign

(
k̄T(ȳ� µ) + σ

)
,

ŷ−σ (x′) = sign
(
k̄T(ȳ� µ)− σ

)
.

(4-13)

If the values of ŷ+
σ (x′) and ŷ−σ (x′) are the same as ŷ(x′), we can say that we have a confi-

dence level of 68.27% (1σ) about the prediction of x′. For higher levels we may choose, e.g.,
95.45% (2σ), 99.73% (3σ) and 99.99% (4σ).

Related work

In [2], a hierarchical framework for Bayesian inference of LS-SVMs is presented, which allows
us to take probabilistic interpretations of the outputs and automatically determine the tuning
parameters. This framework also enables us to do input selection using the principle of
automatic relevance of determination. However, it has the same drawback as the basic LS-
SVMs, i.e., its computational complexity grows fast as the number of data points increases.
Hence, it is difficult to apply this framework on large-scale datasets.

In [44], a Tensor Network Kalman filter is developed to compute the posterior mean and
covariance in a recursive manner and has been implemented on several large-sized datasets.
In each iteration a single row of the kernel matrix is used to update the posterior distribution,
and the posterior distribution in step i is interpreted as the prior distribution in step i + 1.
Thus, there is no need to actually build and store the entire kernel matrix, which reduces
the storage requirements from O(N2) to O(N). This approach also avoids the computation
of a large-scale matrix inverse, but in each iteration it involves 2 matrix-vector products, 1
inner product, 2 matrix additions and 4 rounding steps and it needs to run N iterations for
a training set of N points.

4-2 Experiments and Analysis

In this Section, the TNBBL-LSSVM is applied to a retinal Optical coherence tomography
(OCT) imaging dataset to make classifications for medical diagnosis. The model performance
is compared with the state-of-the-art methods for large-scale LS-SVMs, including the Nyström
method and FS-LSSVMs. The RBF kernel is used for all models, which means there are two
hyper-parameters to be tuned: γ and σ2

rbf .

All the experiments are conducted in MATLAB® R2019b. The laptop on which the computa-
tions are performed has an Intel® i5-8250U CPU running at 1.60 GHz with 8.00 GB of RAM.
The code can be accessed from https://gitlab.tudelft.nl/msc-projects/tnbbl-lssvm.

Chenxu Wang Master of Science Thesis

https://gitlab.tudelft.nl/msc-projects/tnbbl-lssvm


4-2 Experiments and Analysis 45

4-2-1 OCTMNIST dataset

OCT is an imaging technique that uses low-coherence light to capture high-resolution images
from within optical scattering media (e.g., biological tissue) [45]. It is now a standard of care
for guiding the diagnosis and treatment of some of the leading causes of blindness [46].

We aim at testing the capacity of our model, thus we choose to work with a lightweight dataset
called OCTMNIST3 instead of the original high-resolution OCT dataset that contains more
than 8 GB of data. OCTMNIST is a part of MedMNIST [47], a collection of 10 pre-processed
medical open datasets. Each image is center-cropped and resized from (384− 1536)× (277−
512) into 28× 28 (that is further stacked into a vector of length 784), with the value of each
pixel ranging from 0 to 255. There are four types involved, but we only use two of them leading
to a binary classification problem: CNV (simply defined as diseased and labeled as +1) and
Normal (labeled as +1). Some samples of the dataset are already shown in Figure 1-1.

Since the mode size is set to 2, matrix H will be converted into a TT-matrix of size 2d × 2d.
Hence, the number of data points in the training set should yield N = 2d − 1. Table 4-1
gives an overview of the datasets to be used. The training set #1 and #2 are both subsets of
training set #3, while training set #3, validation set and test set have no intersection with
each other. The values are shifted and rescaled so that they end up ranging from 0 to 1. Most
of the experiments start with training set #1, and further extend to #2 and #3 to explore
whether the results obtained on smaller datasets can be well generalized to larger datasets.

Table 4-1: Information of the training and test sets to be used.

Dataset Normal Diseased Total, N

Training set #1 2048 2047 4095
Training set #2 4096 4095 8191
Training set #3 8192 8191 16383
Validation set 2560 2559 5119

Test set 1000 1000 2000

Prior distribution

The Bayesian learning method allows us to include the information about the model pa-
rameters and dataset in the prior distribution and measurement noise. For OCTMNIST,
there is no information available about its measurement noise, which is typically brought by
sensors during the data collection. Thus we regard the variance of measurement noise as a
hyper-parameter to be tuned. To begin with, it is set to v2 = 0.12.

Since the values of α can be either positive or negative, the prior mean is simply set to
µ0 = 0N+1, and the covariance is initialized as P0 = 10 ·IN+1, yielding a wide distribution. It
can be seen from (4-7) that P0 and v2 together define how we obtain the posterior distribution.
A small value of v2 means that we trust the data more than the prior assumption. In general,
P0 can be set to some coefficient a times an identity matrix, i.e., P0 = aI. This coefficient

3http://medmnist.com/
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Figure 4-1: The relationship between the
relative error of the TT-SVD and the rank
bound r(H)max up to 100 (on training set
#1).
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Figure 4-2: The relationship between the
relative error of the TT-SVD and the rank
bound r(H)max up to 6 (on all training
sets).

can also be seen as a hyper-parameter to be tuned. In this report, we only consider tuning
v2.

4-2-2 TT ranks for kernel matrix

In order to find suitable values for the TT rank bound r(H)max, we apply the TT-SVD to
matrix H generated from training set #1, and compute the approximate error ‖H− H̃‖/‖H‖
of the obtained TT-matrix H̃. If there exists a jump (or several jumps) somewhere, then it
would be reasonable to pay more attention to this value (or these values). Before that, we
need to set the hyper-parameters first. A reasonable choice is to use the tuned values of the
basic LS-SVM model. We do a 10-fold cross-validation on training set #1. The resulting
values are γ = 0.15 and σ2

rbf = 1.152.

The relationship between the relative error and the rank bound r(H)max up to 100 is shown
in Figure 4-1. It can be seen that a big jump appears between 2 and 3 with the error reducing
from 0.180 to 0.039, and a small jump appears between 3 and 4 with the error reducing
from 0.039 to 0.033. The experiments on larger datasets (zoomed in up to 6) report similar
results, which are summarized in Figure 4-2. It is thus reasonable to focus on the cases where
r(H)max ∈ {3, 4}.

The total number of elements of H stored in the TT format is about 4 log2(N + 1)r(H)max,
while in the normal form it is (N+1)2. Take r(H)max = 3 on training set #3 as an example, it
means we use only 0.00019% of the original space to retain more than 92.5% of the information.

4-2-3 MALS vs. AMEn

We can now use the MALS and AMEn to compute the matrix inverse. The rank bound
r(P)max is determined as follows. For each value of r(H)max ∈ {3, 4}, we increase r(P)max
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Figure 4-3: The relative residual versus the sweep number on training set #1 with r(H)max = 3.
r(P)max = 7 for both the MALS and AMEn.
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Figure 4-4: The relative residual versus the sweep number on training set #1 with r(H)max = 4.
r(P)max = 7 for both the MALS and AMEn.

and run the algorithm until the converged residual yield

‖AP + PA− 2I‖
‖2I‖ ≤ 1× 10−4, (4-14)

where A is defined by (4-8). The rank bound for the residual in the AMEn algorithm is fixed
to 1. Figure 4-3 and 4-4 show the convergence behavior of the MALS and AMEn running on
training set #1 with r(H)max = 3 and r(H)max = 4, respectively. The rank parameters for
all three training sets are summarized in Table 4-2.

The relative error in symmetry on training set #1 is shown in Figure 4-5, and the positive
definiteness is summarized in Figure 4-6. It can be seen that the AMEn needs a value
r(P)max ≥ 5 to make the error close to 1× 10−4, while the error of the MALS can be always
seen as 0. As for eigenvalues, the resulting inverse matrix is shown to be positive definite
when r(P)max ≥ 4. The experiments on training sets #2 and #3 indicate that when the rank
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Table 4-2: The rank parameter of the inverse matrix, r(P)max, for all training sets.

Training set r(H)max = 3 r(H)max = 4

MALS AMEn MALS AMEn

#1 5 5 7 7
#2 5 5 7 7
#3 5 5 9 8
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10 -15

10 -11

T

(a) MALS

0 2 4 6 8
10 -5

10 -2

T

(b) AMEn

Figure 4-5: The relative error in symmetry of the inverse matrix.

bound r(P)max is chosen according to Table 4-2, the obtained inverse matrix P is guaranteed
to be positive definite with the error in symmetry less than 1× 10−8 for the MALS and less
than 5× 10−4 for the AMEn.

The time needed for each sweep are shown in Figure 4-7. We can see that the time of one
sweep for the MALS is longer than that for the AMEn due to its two-site optimization scheme
(i.e., it optimizes a super-core in each micro-step). However, from Figure 4-3 and 4-4 it is
clear that the MALS needs less sweeps to converge. In practice, an early stopping scheme is
applied, i.e., the algorithm stops when the residuals of three consecutive sweeps are all below
the tolerance or the error changes between them are both smaller than 1 × 10−4. The total
optimization time for the two algorithms are close, as will be shown in Section 4-2-6.

4-2-4 Tuning hyper-parameters

With the chosen rank bound parameters, r(H)max and r(P)max, we are able to tune the
hyper-parameters, v2, γ and σ2

rbf , of our TNBBL-LSSVM model using grid search and cross
validation. Each time we use 4095 samples of validation set for training and the rest 1024
points for evaluating the performance (i.e., the accuracy), and we do this five times. Note
that σ2

rbf determines the values of k̄ when making predictions. Therefore, only after getting
the tuned hyper-parameters, we can finally determine the truncation value for converting k̄
into the TT format.
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Figure 4-6: The positive definiteness of the inverse matrix by checking if all eigenvalues are
positive, (1 for Yes and 0 for No).
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Figure 4-7: Time of one sweep versus the sweep number.

Since we do not need the confidence level now, we can convert the obtained TT-vector µ back
into a (normal) vector to compute the predicted labels by (4-11). The hyper-parameters for
r(H)max = 3 and r(H)max = 4 are listed in Table 4-3. In Section 4-2-6, it will be shown that
these values generalize well on training set #2 and #3. The variance of measurement noise
is finally set to v2 = 0.052.

Table 4-3: Model hyper-parameters γ and σ2
rbf given by a 5-fold cross-validation.

r(H)max γ σ2
rbf

3 0.15 0.732

4 0.25 0.682
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4-2-5 Prediction in low-rank structures

In this part, we show that not only can the model training be carried out in low-rank structure,
but the prediction can also be made with low-rank approximations. Given a test point, we
need to compute k̄ based on the kernel function, convert it into a TT-vector, and compute
the prediction by (4-11), where ȳ and µ are both in low-rank TT forms. This allows us to
choose a low-rank bound r(k̄)max when applying the TT-SVD.

Suppose that the resulting TT-vector of k̄ is denoted by k̄svd, and the corresponding prediction
computed in the TT format is denoted by ŷsvd. Here we assume the sign function is not
applied, i.e., ŷ = k̄T(ȳ � µ). To measure how good the approximation is, we consider the
relative error ‖ŷ− ŷsvd‖/‖ŷ‖ instead of ‖k̄− k̄svd‖/‖k̄‖. For a test set of more than one data
point, the error becomes ‖ŷ− ŷsvd‖/‖ŷ‖. Since the length of k̄ ∈ RN grows with the size of
training set, the rank bound should also increases. The information about using the TT-SVD
to convert k̄ into the TT format is summarized in Table 4-4 for r(H)max = 3, and in Table 4-5
for r(H)max = 4, including the rank bounds, relative error, computation time and storage
reduction.

It can be seen that on training set #3 the low-rank approximation reduces the storage require-
ments by 73.0% with the relative error less than 0.1. Moreover, it is found in practice that
computing the predictions with this low-rank TT structure may even increase the accuracy
by about 1%.

Table 4-4: The rank bounds, relative error, computation time and storage reduction when using
TT-SVD to convert k̄ into TT format, with r(H)max = 3.

Training set r(k̄)max ‖ŷ− ŷsvd‖/‖ŷ‖ Time (sec.) Storage reduction (%)

#1 12 0.0931 11.36 58.4
#2 15 0.0986 17.12 64.6
#3 18 0.0956 23.63 73.0

Table 4-5: The rank bounds, relative error, computation time and storage reduction when using
TT-SVD to convert k̄ into TT format, with r(H)max = 4.

Training set r(k̄)max ‖ŷ− ŷsvd‖/‖ŷ‖ Time (sec.) Storage reduction (%)

#1 12 0.0830 11.90 58.4
#2 15 0.0962 17.75 64.6
#3 20 0.0941 27.32 68.5

Fast prediction: ALS on sorted datasets

Now consider the cases where we have access to the true labels of the data points to be
predicted, and we want to do a quick test of our model performance before launching it. We
may use the ALS to approximate k̄. When the initial guess is close to the target, only one
half-sweep is enough to give a good approximation. To take advantage of this, we need to
rearrange the dataset so that two adjacent points are as close as possible. Then we can take

Chenxu Wang Master of Science Thesis



4-2 Experiments and Analysis 51

0.4 0.6 0.8 1
0

100

200

300

400

N
um

be
r

Before sorting
After sorting

Figure 4-8: Cosine of angles between each two adjacent points (with positive labels) before and
after sorting.

the TT form of the last point as the initial value when approximating the current one. We
compute the (cosine of) angle between two data points to measure their closeness, i.e.,

cos θ = aTb
‖a‖‖b‖ . (4-15)

The closer the value is to 1, the closer they are with each other.

To begin with, the dataset is divided into two parts: one with positive labels and another
with negative labels. Then we sort them separately based on the angle: find the most close
one to the first point and put it in the second place; then find the most close one to the second
point and put it in the third place, and so on again. The angles between each two adjacent
points (with positive labels) before and after sorting are shown in Figure 4-8. About 94% of
values are greater than 0.9.

Note that k̄1 is converted using the TT-SVD with rank bound r(k̄)max, which is a TT-vector
in site-d mixed-canonical form. Then it is used as the initial guess for the ALS to perform
one half-sweep from right to left, leading to a TT-vector in site-1 mixed-canonical form. In
this way, we save the time spent on extra orthogonalization steps. The time and relative error
given by the ALS is shown in Table 4-6 for r(H)max = 3, and in Table 4-7 for r(H)max = 4.
The same values of r(k̄)max are used for direct comparison. We can see that not only the time
required has been reduced to about 65% of the original but the relative error is also reduced
by 0.01− 0.02.

Table 4-6: The rank bounds, relative error and computation time when using ALS to convert k̄
into TT format, with r(H)max = 3.

Training set r(k̄)max ‖ŷ− ŷals‖/‖ŷ‖ Time (sec.)

#1 12 0.0987 7.07
#2 15 0.0856 11.57
#3 18 0.0717 15.29
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Table 4-7: The rank bounds, relative error and computation time when using ALS to convert k̄
into TT format, with r(H)max = 4.

Training set r(k̄)max ‖ŷ− ŷals‖/‖ŷ‖ Time (sec.)

#1 12 0.0960 8.30
#2 15 0.0896 12.13
#3 20 0.0701 18.76

4-2-6 Final performance

Finally, we compare the performance of our model with the Nyström method and FS-LSSVM.
They are both trained on training set #3 using the LS-SVMlab4. The Nyström method uses
a uniform random sampling procedure, and the FS-LSSVM chooses the support vectors based
on the Rényi Entropy. The hyper-parameters of them are tuned separately by grid search.

To begin with, let us report the training time for the TNBBL-LSSVM to find which parts
cost the most. The total training time (T ) can be divided into four parts, i.e., computing the
kernel matrix (t1), applying the TT-SVD (t2), matrix inversion by solving linear systems (t3),
and others (t4). The results on training set # 3 are shown in Table 4-8, where the values are
all taken from the average of five experiments. It can be seen that the time for computing
the kernel matrix and converting it into the TT format accounts for more than 98.8% of the
total time when r(H)max = 3.

Table 4-8: The total training time of the TNBBL-LSSVM on training set #3.

Rank Bound t1 (sec.) t2 (sec.) t3 (sec.)
t4 (sec.) T (sec.)

MALS AMEn MALS AMEn

r(H)max = 3 56.54 52.72 1.073 0.921 0.181 110.51 110.36
r(H)max = 4 56.54 67.75 7.326 8.124 0.175 131.79 132.59

We compute the accuracy (i.e., ratio of correct predictions) on test set to measure the per-
formance. The higher value between the MALS and AMEn is taken as the final result for the
TNBBL-LSSVM. The accuracy versus the size of training set is shown in Figure 4-9. We can
see that the hyper-parameters tuned on a smaller dataset also work well when the model is
trained on larger datasets. The performance of all models are summarized in Table 4-9. We
see that for the OCTMNIST dataset, the TNBBL-LSSVM performs even better than those
two.

For the TNBBL-LSSVM, we also provide the number of correctly labeled points for different
confidence levels and the corresponding accuracy, in Table 4-10. The higher the confidence
level is, the higher the accuracy we get.

4https://www.esat.kuleuven.be/sista/lssvmlab/
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Figure 4-9: The accuracy of TNBBL-LSSVM on test set versus the size of training set.

Table 4-9: The accuracy on test set of the TNBBL-LSSVM, Nyström method and FS-LSSVM.

Model Accuracy (%)

TNBBL-LSSVM, r(H)max = 3 88.95
TNBBL-LSSVM, r(H)max = 4 89.15

Nyström, M = 50 86.10
Nyström, M = 100 85.80
Nyström, M = 200 86.45
Nyström, M = 300 85.65

FS-LSSVM, M = 100 78.75
FS-LSSVM, M = 200 82.30
FS-LSSVM, M = 300 85.45
FS-LSSVM, M = 400 87.35

Table 4-10: The number of data points and the corresponding accuracy for different confidence
levels.

Confidence Level Number Accuracy (%)

r(H)max = 3 r(H)max = 4 r(H)max = 3 r(H)max = 4

1σ 1352 1256 92.38 93.71
2σ 1097 1040 94.07 94.62
3σ 894 912 94.52 94.95
4σ 771 758 95.03 95.68
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Chapter 5

Conclusion and Future Work

In this thesis, we give a comprehensive introduction to the LS-SVM and TT decomposition. A
Tensor Network Batch Bayesian learning approach is developed to solve large-scale LS-SVM
problems. The numerical experiments on a medical image dataset show that it performs
competitively with the two state-of-the-art methods. We can now answer the questions posed
before.

Q1. By converting the kernel matrix in the TT format, can we find a low-rank structure to
efficiently store the data without losing its accuracy?
The relative error after applying the TT-SVD indicates that we are able to approximate
the kernel matrix in a highly compressed low-rank TT form, without losing too much
information.

Q2. Can the matrix inversion be reliably computed in the TT format, i.e., is the resulting
covariance matrix guaranteed to be symmetric positive definite (SPD)?
The computation of the matrix inversion is quite accurate and reliable. By solving the
Lyapunov equation, the resulting covariance matrix is guaranteed to be symmetric and
positive definite if the convergence error is below some threshold.

Q3. What are the advantages and disadvantages of our method compared with the state of
the art, and what would be the suitable cases to implement our model?
Both the Nyström method and FS-LSSVMs use a subset of dataset to obtain an ap-
proximation, so that they can reduce the storage requirements, which is one of the most
important bottlenecks for large-scale LS-SVMs. For our method, however, we still need
to compute and store the whole kernel matrix with the storage requirements of O(N2),
due to the use of TT-SVD. Therefore, our method currently cannot be well applied to
the cases where the kernel matrix cannot be completely stored. When the complete
kernel matrix can be stored and the TT-SVD can be applied, our method is shown to
be able to outperform those two methods.

Q4. In which aspects can the method be further improved?
In order to avoid the storage requirements of O(N2), the future research may focus

Master of Science Thesis Chenxu Wang



56 Conclusion and Future Work

on finding approaches to directly constructing the kernel matrix in the TT format or
converting it block by block. Due to time limit, we are not able to test the model on
more datasets and problems, e.g., the regression problems. This method needs more
cases to test.
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Glossary

SVMs Support Vector Machines
LS-SVMs Least Squares Support Vector Machines
QP Quadratic Programming
SMO Sequential Minimal Optimization
KKT Karush-Kuhn-Tucker
CG Conjugate Gradient
FS-LSSVM Fixed Size LS-SVM
CP canonical polyadic
TT Tensor Train
MPS Matrix Product State
SVD Singular Value Decomposition
TTm Tensor Train matrix
MPO Matrix Product Operator
SPD symmetric positive definite
ALS Alternating Linear Scheme
AMEn Alternating Minimal Energy
TNBBL-LSSVM Tensor Network Batch Bayesian Learning of LS-SVM
OCT Optical coherence tomography
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