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ABSTRACT

Scientific peer review is pivotal to maintain quality standards for
academic publication. The effectiveness of the reviewing process is
currently being challenged by the rapid increase of paper submis-
sions in various conferences. Those venues need to recruit a large
number of reviewers of different levels of expertise and background.
The submitted reviews often do not meet the conformity standards
of the conferences. Such a situation poses an ever-bigger burden
on the meta-reviewers when trying to reach a final decision.

In this work, we propose a human-Al approach that estimates the
conformity of reviews to the conference standards. Specifically, we
ask peers to grade each other’s reviews anonymously with respect
to important criteria of review conformity such as sufficient justi-
fication and objectivity. We introduce a Bayesian framework that
learns the conformity of reviews from both the peer grading pro-
cess, historical reviews and decisions of a conference, while taking
into account grading reliability. Our approach helps meta-reviewers
easily identify reviews that require clarification and detect submis-
sions requiring discussions while not inducing additional overhead
from reviewers. Through a large-scale crowdsourced study where
crowd workers are recruited as graders, we show that the proposed
approach outperforms machine learning or review grades alone and
that it can be easily integrated into existing peer review systems.
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1 INTRODUCTION

Peer review is the standard process of evaluating the scientific
work of researchers submitted to academic journals or conferences.
An essential task in this process comes at the end when the meta-
reviewers have to make a decision as to accept a paper or not.
Recently, peer review has been challenged by the rapid increase
of paper submissions. Consider the example of computer science
conferences: The Conference on Neural Information Processing
Systems (NeurIPS) and the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) received 9467 and 6656 submis-
sions in 2020, respectively; the numbers are five times the number
of submissions they received in 2010.

To guarantee a minimum number of reviews per paper, those con-
ferences recruit a large number of reviewers of different expertise
levels and background. For example, due to the very high number
of submissions, some conferences decided to lift the restriction of
having published papers in former editions of the same venue to
be part of the reviewing board [11]. The submitted reviews do not
always meet the conformity standards of the conferences such as
the presence of sufficient justification for the claims, the validity
of argumentation (e.g., not self-contradictory), and the objectivity
of comments. Such a situation poses an ever-bigger burden on the
meta-reviewers, who not only have to handle more papers and
reviews, but also have to carefully validate the reviews in terms of
the conformity to the review standards. For instance, in the NeurIPS
example we cite above, each meta-reviewer had to handle up to 19
submissions with around 76 reviews total.

The load could be reduced if we were able to develop methods to
automatically detect low-conformity reviews. The need has been ex-
plicitly discussed recently by program chairs of the ACM SIGMOD
conference [2]: “The chairs discovered low-confidence reviews man-
ually; such reviews, however, should be flagged automatically to
allow for immediate action”, “automated analysis of the reviews as
they come in to spot problematic text ... could dramatically alleviate
the overhead that chairs and meta-reviewers endure while trying
to detect the problem cases manually”. We note that computational
methods have provided strong support to streamline several parts
of the peer review process, such as those for paper assignment to
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reviewers [13, 21, 23, 27, 42], finding expert reviewers [12, 15, 30],
and reviewer score calibration [4, 16, 31]; however, relatively lit-
tle work can be found on developing computational methods for
detecting low-conformity reviews.

Automatic detection of low-conformity reviews is nontrivial for
two main reasons. First, the task is highly complex and requires
to assess reviews from a multitude of dimensions [1, 18, 36, 38, 41]
including justification, argumentation, objectivity, etc. Assessment
on those dimensions is cognitively demanding as it requires to com-
prehend the review text to understand the various relations among
its statements. Second, submission and review information of most
conferences are not openly accessible for privacy and confidential-
ity concerns. This lack of training data limits the performance of
existing natural language processing techniques.

To tackle these challenges, we advocate a human-Al collabora-
tive approach for the semi-automatic detection of low-conformity
reviews. We involve peer reviewers to grade each other’s reviews
anonymously with respect to important criteria of review confor-
mity. Simultaneously, a machine learning model joins the assess-
ment for less ambiguous reviews while learning from new peer
grading to make connections between the review features and
their conformity level. The main advantage of involving machine
learning is that the model encapsulates and accumulates human
knowledge of review conformity over time: what it learned in the
previous editions of a conference can be used for a new edition by
simply applying the model to new reviews. Over time, the model im-
proves and the human-AlI approach requires less amount of grading
from humans to detect low-conformity reviews. The “peer grading
peer reviews” mechanism does not disrupt current peer review
process: reviewers of the same paper are supposed to read each
other’s reviews and make adjustments to their own reviews when-
ever necessary. Making such an explicit step by asking them to
grade each other’s reviews can potentially stimulate reviewers to
be more engaged and promote the quality of the discussion there-
after. Our proposed mechanism is, therefore, a lightweight add-on
to the current peer review systems without inducing much extra
effort from the reviewers.

At the technical level, we introduce a Bayesian framework that
seamlessly integrates machine learning with peer grading for as-
sessing review conformity while allowing the model to learn from
peer grading. An important consideration of our framework design
is that it models the reliability of the graders, thus taking into ac-
count the effect of their various background and expertise levels.
To learn the reliability and the parameters of the machine learn-
ing model, we derive a principled optimization algorithm based
on variational inference. In particular, we derive efficient updating
rules that allow both model parameters and grader reliability to be
updated incrementally at each iteration. By doing so, both types of
parameters can be efficiently learned with little extra computational
cost compared to the computational cost for training a machine
learning model alone.

To evaluate our proposed approach, we first conduct a small-scale
online experiment with real expert reviewers, where we simulate
the real peer review process with peer grading. We evaluate the
effectiveness of peer grading by taking into account the grading as a
weight of the reviewers’ recommendation scores in the aggregation
and we show that the aggregated score is a better approximation of
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the meta-decisions as compared to existing aggregation methods,
e.g., average or weighted average by self-reported confidence. The
number of expert grading is, however, not sufficient for evaluat-
ing proposed Bayesian framework. Inspired by the positive results
of worker performance in judging the relevance of both scientific
papers and search results to specific topics [8, 24], we conduct a
larger-scale crowdsourcing study where we collect worker grad-
ing to approximate expert grading. We then use worker grading
to evaluate our framework on the dataset we collected from the
ICLR conference over a three-year time period, which allows us to
observe the gradual model improvement over time.
In summary, we make the following key contributions:

e We propose a new dual-role mechanism called “peer grading
peer reviews” to lighten the review process. Our approach can
be easily integrated into current scholarly peer review systems;

e We introduce a Bayesian framework that integrates a machine
learning model with peer grading to collaboratively assess the
conformity of scholarly reviews while allowing the model to
improve over time;

e We conduct a longitudinal evaluation of our framework across
multiple years of a conference, showing that our method sub-
stantially improves the state of the art by 10.85% accuracy and
that the model improves by 6.67% accuracy over three years.

2 RELATED WORK

In this section, we first discuss the state of the art in peer review-
ing, then review existing work methodologically related to our
framework in review assessment and peer grading.

2.1 Scientific Peer Review

In the following, we discuss two relevant topics: computational sup-
port for scientific peer review and biases in reviews. State-of-the-art
tools from artificial intelligence are making inroads to automate
parts of the peer-review process [37]. A typical example is auto-
matic paper assignment to appropriate reviewers. The problem has
been formulated as an information retrieval problem [13, 19, 22, 30],
where a paper to be assigned is a “query” and each review is repre-
sented as a document (e.g., an expertise statement or publications of
the reviewer). This problem has also been formulated as matching
problem, where the goal is to match a set of papers with review-
ers under a given set of constraints, like workload, interest, and
conflicts-of-interest [20, 21, 23, 27, 42]. Another important topic is
finding expert reviewers. The task generally relies on automatic con-
tent analysis of textual documents (e.g., academic publications) and
scientometrics (e.g., number of grants and patents), as well as link
analysis based on cross-references between documents [12, 15, 30].
Apart from those, work has also been devoted to developing meth-
ods for identifying sentiments in reviews [45] and for predicting re-
buttal results [17]. Recently, a pre-trained language model SciBERT
has been introduced for modeling text in scientific publications [6].

Compared to the large body of work on those problems, rela-
tively little effort can be found on developing automatic tools for
review conformity assessment. Recent discussions have pointed to
problems in low-conformity reviews, where reviewers can exhibit
bias or only support expected, simple results, or ask for unnecessary
experiments (2, 3, 5, 7, 14, 37].
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Among those problems, biases in reviews is the most exten-
sively studied topic. An important source of review biases comes
from the setup of the review process being single- or double-blind.
Snodgrass [40] reviews over 600 pieces of literature on reviewing,
summarizing the implications of single- and double-blind reviews
on fairness, review quality, and efficacy of blinding. In particular,
the author points out the significant amount of evidence showing
review biases in a single-blind setup, favoring high-prestigious in-
stitutions and famous authors. A more recent study by Tomikins et
al. [43] through a controlled experiment on the ACM WSDM con-
ference confirms such a finding. Another important source of bias
is varying standards of reviewers in providing recommendations. A
recent analysis by Shah et al. [39] over the reviews of the Neurips
conference finds that the fraction of papers receiving scores over a
threshold is not aligned with the meaning of the threshold defined
by the conference. For example, nearly 60% of scores were above
3 despite the fact that the reviewers were asked to give a score of
3+ only if the paper lies in the top 30% submissions. This leads to
the frustration of many authors whose papers get rejected despite
receiving good scores.

Compared to those studies on review biases, other aspects of
low-conformity reviews are much less discussed such as the lack of
justification for decisions and of arguments. We show in Section 4
through an online survey that the lack of justification for argu-
ments and decisions is most often due to low-conformity reviews,
which increases the complexity of the meta decisions and, if not
handled well, lower the authors’ trust in the venue. We envision
that automatic methods for low-conformity reviews detection can
significantly reduce this issue, similar to what automatic methods
for paper-reviewer assignment achieved in the past decades. Our
work makes a first attempt along this direction, providing a first-of-
it-kind human-in-the-loop AI method that leverages both human
and machine intelligence in determining review conformity.

2.2 Review Assessment and Peer Grading

In the design of our approach, we draw inspiration from existing
methods for review assessment and peer grading, developed in dif-
ferent domains. Methods for review assessment have been mainly
developed for e-commerce and online rating platforms. Olatunji
et al. [33] propose a convolutional neural network with a context-
aware encoding mechanism to predict the product reviews’ helpful-
ness based on the review text. Zhang et al. [47] study the problem of
predicting the helpfulness of answers to users’ questions on specific
product features. Their model is based on a dual attention mech-
anism to attend the important aspects in QA pairs and common
opinions reflected in the reviews. These methods rely in their core
on pre-trained language models such as Glove [35] or ALBERT [26].
These language models are trained on massive and heterogeneous
corpora to capture text semantics, which provide useful informa-
tion for review classification. Prediction for scholarly reviews is
more challenging than for other types of reviews due to both the
cognitive complexity of the task, the highly specialized topic, and
the lack of available datasets for model training. Unlike those fully
automatic methods, we consider the role of humans (i.e., peers) in
our approach as indispensable, as we show in our experiments.
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Methods for peer grading have been mainly developed for (on-
line) education and crowdsourcing platforms. In the educational
context, Wang et al. [46] study the phenomenon of students divid-
ing up their time between their own homework and grading others
from a game theory perspective. Crowd workers have been used to
simulate the role of students and to assess homework quality. Mi et
al. [29] propose a probabilistic graphical model to aggregate peer
grading. Their method considers an online course setup and models
both the student and the grader’s reliability, imposing a probabilistic
relationship between the reliability of a student and the true grade.
Carbonara et al. [10] model the peer grading process in MOOCs
as an audit game where students play the role of attackers and the
course staff play defenders. In the context of crowdsourcing, Labu-
tov et al. [25] propose a framework that fuses both task execution
and grading. They adopt an Expectation Maximization algorithm
to aggregate the grading by inferring both worker’s reliability and
task difficulty. From a methodological perspective, our framework
is different from those aforementioned methods in that we take a
human-AlI approach that integrates peer grading and a supervised
machine learning model, which is important for both improving
the accuracy of review conformity and for reducing manual efforts.

3 THE PGPR FRAMEWORK

In this section, we introduce our proposed Bayesian PGPR frame-
work that learns to predict the conformity of reviews from a few
peer-graded reviews as well as from historical data (reviews and de-
cisions) of a given venue. We first formally define our problem and
then describe our overall framework, followed by our variational
inference algorithm for learning PGPR parameters.

3.1 Notations and Problem Formulation

3.1.1  Notations. Throughout this paper, we use boldface lowercase
letters to denote vectors and boldface uppercase letters to denote
matrices. For an arbitrary matrix M, we use M; ; to denote the
entry at the i-th row and j-th column. We use capital letters (e.g.,
%) in calligraphic math font to denote sets and |#| to denote the
cardinality of a set P.

Table 1 summarizes the notations used throughout this paper.
We denote the set of reviews with 7 and the set of graders as G. We
restrict 7 to include only the graded reviews without ground truth
of conformity — our framework can be initialized with any number
of reviews with ground truth, thereby utilizing historical data (see
Section 3.4). For each review i € 7, we extract a set of features as
described in detail in Section 5.1.5 and denote the resulting vector
by x;. We use A;, 4 to denote the grade given by grader g € G when
reviewing i € 7. Due to the fact that an individual grader can only
grade a limited number of reviews, A is a sparse matrix where only
a small proportion of the entries are known.

3.1.2  Problem Definition. Let I be the set of reviews, where each
review i € I is represented by a feature vector x;. Let A be the
grader-review matrix where each element A; 4 is a grade given by
a grader g € G to a review i. Our goal is to infer the conformity
score z; for all reviews i € I using x; and A.
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Table 1: Notations.

Notation | Description

I Set of reviews

G Set of graders

A Grader-Review matrix

Xi Feature vector of a review

z; Review conformity distribution

rg Grader reliability distribution

by Grader bias distribution

Ui, Oj Parameters of the review conformity distribution
Ag, By Parameters of the distribution of grader reliability
mg, og Parameters of the distribution of grader bias

3.2 PGPR as a Bayesian Model

PGPR is a unified Bayesian framework that integrates a machine
learning model -modeling review conformity from features— with
peer grading for predicting review conformity. Once trained, the
machine learning part of PGPR can be used alone to predict confor-
mity of reviews without peer grading.

The overall framework is depicted as a graphical model in Fig-
ure 1. It models review conformity from both the features (through
the machine learning model) and peer grading, which is modeled as
a process conditioned on the review conformity and grader proper-
ties (i.e., reliability and bias). In the following, we first describe how
amachine learning model is embedded into PGPR and then describe
the grading process and its integration into our framework.

3.2.1 Learning Conformity. We model review conformity z; with
a Gaussian distribution:

zi ~ N(pi, 1), (1)

where y; and o; are the mean and the variance of the distribution,
respectively. y; is predicted from the review features x; through a
neural network of arbitrary architecture.

pi = softmax(f W (x;)), @

where the function f" (x;) models the output of the network layers
preceding the softmax layer, parameterized by ‘W shared across
all reviews. The variance o; of the Gaussian distribution is auto-
matically learned through our inference algorithm (described in
Section 3.3). Unlike normal supervised settings, we do not have the
ground truth of review conformity y;; instead, we are given a set
of review grades, which we model next.

3.22 Modeling Review Grades. We model the grading process by
considering two important properties of graders, namely reliability
and bias. In practice, we would like to have a measure of confidence
in estimating the reliability and bias of the graders grading different
numbers of reviews: we should be more confident in estimating
the reliability and bias of graders who grade 50 reviews than those
who grade 5 reviews only. To quantify the confidence in our infer-
ence, we adopt a Bayesian treatment when modeling both grader
properties by introducing prior distributions.

Specifically, we denote the grader reliability by r4 (g € G) and
model it with a Gamma distribution: a higher value indicates a
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Grader

L Review

Figure 1: Graphical representation of PGPR. Double circles
represent observed variables, while single circles represent
latent variables. Squares represent model parameters. Edges
represent conditional relationships in text classification. On
the left-hand side, a machine learning model parameterized
by ‘W predicts the conformity z; of a review. Each review is
represented with a feature vector x;. On the right-hand side,
a grader is represented with her reliability distribution rg
with parameters A; and By and her bias b; with a, as a prior.
The grader assigns a review with grade A; 4.

better ability to provide accurate grades.
rg ~ (A, B), (3)

We consider grader bias as the tendency of a grader to give high
or low conformity scores to reviews. We denote the grader bias by
by (9 € G) and model it using a Gaussian distribution.

1
by ~ N(m, ~). 4)

3.2.3 Integrating Machine Learning with Peer Grading. We define
the likelihood of a grader g giving a score A; 4 to review r as a
probability conditioned on the grader’s reliability rg, the bias bg,
and the latent conformity of the review z;.
1
p(Aiglzi,rg, bg) = N(zi + by, a) ®)
The conditional probability in Eq. (5) formalizes the following in-
tuitions: i) a grader with a bias by > 0 (or by < 0) is likely to over-
estimate (or underestimate) the conformity of a review, whereas a
grader with a bias by ~ 0 has a more accurate estimation of review
conformity; and ii) a grader with a high reliability r, is likely to give
a conformity score with a small deviation from the true conformity.

3.3 Variational Inference for PGPR

Learning the parameters of PGPR resorts to maximizing the follow-
ing likelihood function:

p(A) = /p(A, z,r,b|X;W)dz,r,b, (6)

where z is the latent conformity scores for all the reviews, and r
and b are the latent reliability scores and biases for all graders. X
represents the feature matrix of all reviews and ‘W is the set of
machine learning parameters.
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Since Eq. (6) contains more than one latent variable, it is compu-
tationally infeasible to optimize [44]. Therefore, we consider the
log of the likelihood function, i.e.,

p(A,z,r,b|IX; W)
q(z,r,b)

L(W,q)
q(z,r,b)
+ /q(z, r, b)p(z, r BIAX.W) dz,r,b, 7)

KL(qllp)

log p(A) = / q(z,r,b) dz,r.b

where KL(-) is the Kullback Leibler divergence between two
distributions. The log likelihood function in Eq. (7) is composed
of two terms. Using the variational expectation-maximization al-
gorithm [44], we can optimize the objective function iteratively
in two steps: 1) the E-step, where we minimize the KL-divergence
to approximate p(z, r, b|A, X; ‘W) with the variational distribution
q(z,r,b); and 2) the M-step, where we maximize the first term
L(W, q) given the newly inferred latent variables. In the following,
we describe both steps.

E-step. Using the mean-field variational inference approach [9],
we assume that q(z, r, b) factorizes over the latent variables:

gz r.b) = [ [ g [ | atrg) | | atby)- ®)

iel geG 9geG
To minimize the KL divergence, we choose the following forms
for the factor functions:
1
q(zi) = N(pi, 01).q(rg) = T(Ag. Bg). q(bg) = N(mg, ). (9)
4
where y;, o}, Ag,Bg, mg, ag are variational parameters used to per-
form the optimization and minimize the KL-divergence.
In the following, we give the update rules for each of the latent
variables. We first give the update rules for review conformity z;
by the following lemma.!

LEmMA 3.1. (Incremental Update for Review Conformity) The con-
formity distribution q(z;) follows a Gaussian distribution and can be
incrementally computed using the grade, the grader reliability, and
the review conformity from the previous iteration:

1

4z ~ N ) (10

where:
W = Ag A; Hi
= Zg B_g( i,g —Mg) + o2
= (3, Ba 1
V=02 B, * Uiz).
Next, we show the updating rules of grader’s reliability and bias.

LEMMA 3.2. (Incremental Update for Grader Reliability) The update
of the grader reliability q(ry) follows a Gamma distribution with
parameters that can be incrementally updated using the conformity

Proofs for all the lemmas are given in the appendix.
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of reviews she graded, her bias and her reliability from the previous
iteration:

q(rg) ~ Gamma(X,Y), (11)
where:
X = Ag+%, ‘
Y = Bg+§(a—i+ Zi[A?’g + 02+ 2pi(mg — Aig) — 2A; gmg)).

LEmMma 3.3. (Incremental Update for Grader Bias) The bias of the
graders q(by) follows a Gaussian distribution with parameters that
can be incrementally updated using the review conformity, the grader
reliability and her bias from the previous iteration:

L1
bg) ~ N(=, =), 12
albg) ~ N ) (12
where:
Agldyl
K= ngg +ayg,
A
L=agmg + B_z Zi(Ai,g = Hi)-
M-step. Given the conformity of a review, the grader reliability

and bias inferred in the E-step, the M-step maximizes the first term
of Eq. (7) to learn the parameter ‘W of the machine learning model:

L(W.q)
= /q(zi,rg,bg)logp(A,-,g,z,-,rg,bglxi;W)dzi,rg,bg +C
= /q(zi,rg,bg)log[P(Ai,g|Zi,rg,bg)P(2i|xi;W)] dzj,rg,bg +C

- / 41,192 bg) log p(Ar g |21, rg bg) dzi g, by

My

+/q(zi)logp(zi|xi;"W)dzi +C (13)

M,
where C = Eq(zi,rg’bg)log(m) is a constant. Only the sec-
ond part of L(‘W, q), i.e., Mz, depends on the model’s parameters.
M3 is exactly the inverse of the cross-entropy between g(z;) and

p(zilxi; W), which is widely used as the loss function for many
classifiers. My can, therefore, be optimized using back-propagation.

3.4 Algorithm

The overall optimization algorithm is given in Algorithm 1. We
start by initializing the parameters of each probability distribution
and of the machine learning model. Then, we iterate between the
E step (rows 3-7) and the M step (rows 8-9). The E step consists
of updating the variational distributions of the review conformity
q(z;), the grader reliability q(ry) and her bias q(by). The M step
consists of updating the parameters ‘W of the machine learning
model using back-propagation. The convergence is reached when
the review conformity q(z;) is no longer modified by the grader
reliability and bias. Note that when some reviews with ground
truth conformity are available, the machine learning model can
be trained first to obtain an initialization of ‘W, which will then
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Algorithm 1: Learning PGPR Parameters

Input : Grader-Review matrix A, Review features matrix
X
Output :Parameters of the PGPR framework:

Hi, Oi, Ag, Bg, mg, 0!9, (W
1 Initialize PGPR parameters ;
2 while log p(A) has not converged do
3 forie I do
4 L update g(z;) using Lemma 3.1;
5 forge G do
6 update q(ry) using Lemma 3.2;
update q(by) using Lemma 3.3;
8 forie I do
9 L Update ‘W using back-propagation;

be updated further by Algorithm 1. Once the learning algorithm
terminates, the machine learning model of PGPR can be taken out
to assess the conformity of any review.

The iterations in rows 3-4 require a time complexity of |7 | and
the iterations through all graders yield a time complexity of |G|. The
overall complexity of our algorithm is O(#iter(|Z |+|G|+Cyw ) where
#iter is the total number of iterations needed until convergence
and Cyy is the complexity to learn the parameters of the machine
learning model.

4 TASK DESIGN FOR GRADING REVIEWS

In this section, we present our design for the review grading task,
which is used to collect data for evaluating our proposed framework.
Due to the privacy concern, submissions and review information in
most venues are not publicly available. Fortunately, we have access
to such an information in two venues, on which we conduct a small-
scale experiment with expert reviewers to evaluate the effectiveness
of peer grading in measuring review conformity. Evaluating our
proposed PGPR framework, however, requires more grading than
those we can collect from expert reviewers. We conduct a larger-
scale crowdsourcing study, in which we collect worker grading
to approximate the grading from expert reviewers and use those
grading for evaluating PGPR.

This section focuses on the task design of grading reviews for
both expert and crowd scenarios. We present an analysis on the
effectiveness of grading from both expert reviewers and crowd
workers in the next section. In the following, we first identify a set
of criteria for review conformity assessment and then describe the
setup of the grading task.

4.1 Criteria for Review Conformity

We compile a list of eight criteria for review conformity from the
literature, a set of review guidelines published by journals and
conferences [1, 18, 36], and guidelines from publishers such as
Springer [41] or Nature Research [32]. Those criteria are grouped
into the following three categories.

o Clarity. The clarity of a review resides in three main aspects. 1)
Structure: it is often imposed that the review should contain a
summary of the paper, the decision, and supporting arguments
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Figure 2: Ranking of review criteria.

for this decision. 2) Length: a review should be of adequate length
to provide sufficient information for the meta-reviewer to un-
derstand the reviewer’s recommendation [34]. 3) Justification: a
review should include supporting arguments of the decision, by
including pointers to prior work as well as references to specific
parts of the paper on which the score is based [18].

e Consistency. The consistency of a review is defined by three
aspects. 1) Score: the recommended score should be supported
by at least one or two justifications. 2) Claims: there should be
no contradiction between the summary and the stated weak or
strong claims. 3) Confidence: the reviewer should make a clear
acknowledgement when certain aspects of a paper are beyond
her expertise [18].

e Objectivity. A review should be fair and provide constructive
critiques. 1) Fairness: A review should not be biased towards
irrelevant factors such as assigning a low score because of missing
references from the reviewer’s own work only?. 2) Offensiveness:
A review should cover the technical work rather than giving
personal statements and/or offensive terms [18].

To understand the importance of those criteria, we initially con-
ducted an online survey with 38 expert reviewers from two inter-
national venues: SEMANTICS (SEM) (2019 edition) and the Inter-
national Workshop on Decentralizing the Semantic Web (DSW)
(2017 and 2018 editions). We asked the expert reviewers to rate the
importance of each individual criterion and the three categories on
a 5-point Likert scale and show the results in Figure 2. We observe
that clarity ranked the highest (by 28 expert reviewers) and, in
particular, that justification is viewed as the most important aspect
of a high-conformity review. Consistency is equally important to
objectivity. While many agree that objectivity is not a deterministic
aspect, half of the experts admit having received or read unfair
reviews while few have received offensive ones. In fact, 24 expert
reviewers rank fairness as equally or more important than offen-
siveness. These results indicate that the experts consider review
fairness as an important concern.

4.2 Task Design

For each of the reviews we consider in our work, we ask participants
to provide ratings for each of the eight conformity criteria, grouped
in three sections corresponding to the three categories introduced
above. In the crowdsourcing scenario, we recruit from Amazon

Zhttps://www.seas.upenn.edu/ nenkova/AreaChairsInstructions.pdf
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MTurk workers with a “Master” qualification, i.e. workers who
have demonstrated high degree of success in performing a wide
range of tasks across a large number of requesters. The task starts
by explaining how a scholarly review is presented, the criteria (on a
category level), followed by a positive and a negative example. Then,
we show workers a review and ask them to rate each criterion from
1 to 4 with 4 being the best rating. We set the range to be 1-4 instead
of 1-5 as we found in a preliminary study that workers tend to favor
3 in the latter case. Each rating question is accompanied with an
information box that explains the aspect to rate. For questions
regarding justification, fairness and offensiveness, we ask workers
to provide a snippet from the review as a rationale justifying their
grading decision [28]. The rationale can be used as an explanation
for the conformity score assigned to the review. For attention check,
we ask workers to identify the recommendation decision from the
review; results of workers who fail at recognizing review decisions
are excluded. After getting their ratings, we ask the workers to
enter feedback in free text. Each review is rated by three different
workers. The task takes approximately 12 min to complete. Workers
who completed the task received a reward of 1.8 USD.

In the expert scenario, the task is simplified to include only
the rating for each of the criteria. The peer grading of scholarly
reviews is implicit in the current peer review systems: each reviewer
is supposed to read the reviews from other reviewers and decide
whether to keep her original recommendation or not; however,
they are typically not required to express their opinion about other
reviews explicitly. We assume explicit peer grading can stimulate
reviewers to look into other reviews and promote the quality of
the discussions afterwards. We show in the next section through
an experiment with real expert reviewers that the peer grading
is effective when used to weight the reviewers’ recommendation
scores in score aggregation, which approximates meta-decisions
better than existing aggregation methods, e.g., weighted average
by reviewers’ self-indicated confidence.

5 EXPERIMENTAL RESULTS

This section presents the results of our empirical evaluation®. We
first conduct a preliminary analysis to understand the effectiveness
of expert and worker grading, then evaluate the performance of
our PGPR framework by comparing it against the state of the art.
Finally, we perform an in-depth analysis of PGPR’s main properties.
We answer the following questions:

e Q1: How effective is expert and worker grading in assessing
review conformity? (Section 5.2).

o Q2: How effective is our proposed human-AI approach in pre-
dicting review conformity? (Section 5.3).

e Q3: How effective is our framework in leveraging peer grading
compared to majority voting? (Section 5.4).

o Q4: How effective is peer grading in improving the conformity
prediction over time when more reviews with ground truth deci-
sions become available? (Section 5.5).

5.1 Experimental Setup

5.1.1 Datasets. We collect data from the ICLR conference, which
provides open access to reviews and evaluation scores for all

3Source code and data are available at https:/github.com/eXascaleInfolab/pgpr.
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Table 2: Description of the ICLR Datasets. #Misalign. sub. is
the number of submissions to which there is at least areview
with decision misaligned with meta-decision; #Misalign. re-
views is the overall number of not-aligned reviews.

Edition | #sub. #Misalign. sub. #Misalign. reviews

2017 506 169 530
2018 846 355 1072
2019 1565 670 2060

submissions through OpenReview?. We collected reviews for all
submissions to the ICLR conference from 2017 until 2019. Our ICLR
dataset contains in total 2917 submissions and 8838 reviews. 1194
papers have at least one review that is misaligned with the meta-
decision. In our study, we are mainly interested in those cases as
they require some additional effort when reaching a final decision.
Key statistics on the collected dataset are reported in Table 2.

5.1.2  Active Selection of Reviews for Grading. We leverage active
learning to select a subset of the most informative reviews from the
ICLR-2018 and 2019 datasets for grading: for each year, we apply
the model trained in the previous year to all reviews in the current
year, and select the reviews on which the model prediction is most
uncertain (measured by the entropy of the predicted probability)
for crowdsourcing. We select the top-30% (321) reviews and top-
5% (103) reviews from ICLR-2018 and ICLR-2019, respectively, and
show in our experiments that those numbers are sufficient for the
model to converge to optimal performance. We refer to the selected
reviews as “uncertain” reviews and the rest as “certain” ones. We
investigate in our experiments the performance of PGPR on both
categories as well as the impact of the number of graded uncertain
reviews on model training. In total, we crowdsourced a subset of
444 reviews in 2018 and 2019 and collected 1093 grades from 64
crowd workers on those selected reviews.

5.1.3 Data Split. To simulate the real-world application of PGPR,
we evaluate it on different editions of the ICLR conference as fol-
lows: for each year (2018 or 2019), we assume the reviews and the
ground truth from previous years are known, while for the current
year only the reviews are available without the ground truth. For a
subset of the reviews in the current year, we collect grading from
workers. The training data, therefore, contains reviews and deci-
sions from the previous years, and some reviews with crowd labels
from the current year. We take reviews with the ground truth of
the current year and equally split it into validation and test sets.

5.1.4 Label Extraction. We consider the ground truth of a review
conformity as a binary variable indicated by the alignment between
a reviewer decision and the meta-reviewer decision: when both the
reviewer and the meta-reviewer decide to accept or reject a paper,
the ground truth for the review is set to 1, otherwise to 0. Our model
predicts for each review a value between 0 and 1 describing the
probability of the review being conform. The higher the value, the
higher the likelihood of the review to be conform. For the grades
collected from crowd workers, we map it to the interval [0, 1] using
the function #(x) = (x — 1)/4, so that the range of valid grading
matches the range of our model’s predictions.

*https://openreview.net/
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5.1.5  Neural Architecture and Features. The inputs of our machine
learning model are hand-engineered features along with embed-
dings of the sentences in a review. For the hand-engineered features,
we extract for each review the decision score, the confidence score,
and their difference with the decision and confidence scores of the
other reviews on the same paper. We also compute the review’s
length, the number of citations within the review, and the number
of keywords referring to a paper’s content (e.g., equation, section,
figure). For the textual embeddings, we represent each sentence as
a fixed-size vector by leveraging the pre-trained language model
SciBERT [6]. These inputs are fed to the machine learning com-
ponent of our framework consisting of a multi-input model we
call “Mix-model”. It includes both an attention-based model for the
review’s embedding and a logistic regression for the review’s sta-
tistical features. We concatenate the output of the attention-based
model and logistic regression and use a fully connected layer with
tanh activation followed by a linear layer; the output is generated
by a softmax function (Eq. 2).

5.1.6  Comparison Methods. We compare our approach against the
most applicable techniques for review’s conformity assessment. We
first compare against classification methods designed for the schol-
arly domain: 1) MILNET [45], a Multiple Instance Learning (MIL)
neural model used to classify scholarly reviews (originally for sen-
timent analysis). 2) SciBERT [6], a self-attention-based neural lan-
guage model pre-trained on scientific text consisting of publications
from the computer science and biomedical domains. 3) DoesMR [17],
a Logistic Regression model that takes hand-engineered features
from scholarly reviews for prediction. In addition, we compare
against models developed for non-scholarly review tasks, includ-
ing a general-purpose language model and two models originally
developed for predicting the helpfulness of product reviews: 4) AL-
BERT [26], a pre-trained language model for various NLP tasks, tak-
ing into account inter-sentence coherence to capture fine-grained
information in documents including reviews. 5) PCNN [33], a con-
volutional neural model with context encoding. 6) RAHP [47], an
attention-based model relying on a bidirectional LSTM to capture
the sequential dependencies in text. For DoesMR, in addition to the
original features, we include all features used by our method, such
as the number of citations within the review and the number of
keywords referring to a paper’s content. All other methods use only
textual data and hence cannot leverage hand-engineered features.

We also compare PGPR with its variant Mix-model that only con-
sists of the machine learning component. Note that in Mix-model,
the attention-based model used for the review’s embedding is the
same model used to evaluate SciBERT and the logistic regression
used for the hand-engineered features is similar to DoesMR. All
the comparison methods are trained using the same training data,
i.e., historical reviews with decisions and new reviews with worker
grading, which are aggregated by majority voting.

5.1.7  Parameter Settings. For all the comparison methods, we tune
the hyperparameters on the validation set. This includes the learn-
ing rate searched in {le-5, le-4, le-3, le-2, le-1}, and the batch size
in {8, 16, 32, 64}. For RAHP and PCNN, we vary the dimension of
the embedding vector in {50, 100, 200, 300}. We train the models
for a maximum of 500 epochs and take the versions that achieve
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Table 3: Accuracy of approximating meta-decisions with av-
erage review scores and weighted average by self-reported
confidence, expert grading, and worker grading.

Method | SEM | DSW | ICLR
Average 0.33 | 0.60 0.69
Confidence-weighted 0.50 | NA 0.70

Grade-weighted (Experts) | 0.83 | 0.80 NA
Grade-weighted (Workers) | NA | 0.80 0.73

the best performance on the validation set. For PGPR, after con-
catenating the output from the attention-based model and logistic
regression, we use a fully connected layer with tanh activation and
ten neurons.

5.1.8 Evaluation Metrics. We measure the effectiveness of expert
and worker grading in assessing review conformity by the accuracy
of approximating meta-decisions with the grading-weighted aver-
age of reviewers’ recommendation scores. Given a set of reviews
R on the same paper, we denote the recommendation score of a
review r € R to the paper by s, and the average grading the review
receives by g,. The aggregated score of R is given by:
sg = M (14)
ZrER 9r
To measure the performance of PGPR and our baselines, we
use accuracy, precision, recall and F1-score over the positive class.
Higher values indicate better performance.

5.2 Preliminary Analysis on Peer Grading

We verify the effectiveness of peer grading on review conformity
by expert reviewers and by crowd workers. We use the grading to
weight reviewers’ recommendation scores in score aggregation, and
compare to other aggregation methods. We compute the accuracy
of approximating meta-decision with the aggregation result.

5.2.1 Grading Reviews by Experts. For our first experiments, we
select seven and five borderline papers from SEM and DSW, respec-
tively. We only consider the borderline papers on which reviewers
have some disagreement over their recommendations. Reviews
from DSW papers are publicly available through OpenReview. For
SEM, as the reviews are not publicly available, we contacted the
reviewers to get their consent before sharing them with their peers.
For both venues, we asked the original reviewers of the same paper
to grade each other’s reviews. 21 reviewers were involved for SEM
providing one review each and 12 reviewers were involved for the
DSW papers providing in total 16 reviews. Results are shown in
Table 3. We observe that the grade-weighted average of the re-
views’ recommendations is better at approximating meta-decisions
than other means of aggregating review scores. The result veri-
fies that peer grading is a better indicator of review conformity
than self-reported confidence scores and can be leveraged to better
approximate meta-decisions than existing aggregation methods.

5.2.2 Grading Reviews by Crowd Workers. For this experiment, we
use the DSW and ICLR datasets. We do not consider the reviews
from SEM since those reviews are not public. Results are shown
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Table 4: Performance (Accuracy, Precision, Recall and F1-score) comparison with baseline methods. The best performance is

highlighted in bold; the second best performance is marked by

[£3)

Method ICLR-2018 ICLR-2019
Accuracy Precision Recall F1-score | Accuracy Precision Recall F1-score

MILNET 0.533 0.580 0.770 0.660 0.528 0.560 0.860" 0.670
DoesMR 0.678* 0.710* 0.782 0.740" 0.747* 0.752% 0.838 0.792*
SciBERT 0.540 0.678 0.434 0.524 0.583 0.604 0.778 0.680
ALBERT 0.548 0.652 0.516 0.570 0.567 0.590 0.782 0.670
PCNN 0.523 0.624 0.508 0.562 0.516 0.570 0.645 0.605
RAHP 0.593 0.612 0.784" 0.688 0.501 0.570 0.515 0.540
PGPR 0.781 0.822 0.810 0.810 0.799 0.770 0.917 0.840

in Table 3. We observe that for both venues, the weighted aver-
age leveraging worker grading better approximates meta-decisions
than the weighted average by self-reported confidence scores or the
average without the weighting. Worker grading achieves compara-
ble results to expert grading on DSW reviews. To further compare
worker grading with expert grading in ICLR, we derive the peer
grading according to the agreement between the reviews’ recom-
mendation scores: the mutual grading between two reviewers is
set to 4 if they gave the same score; if two reviewers have the
same decision (e.g., an accept) with different scores, then we set
their mutual grading to 3; if two reviewers have different decisions
with a small difference between their scores (e.g., a weak accept
and a weak reject), we set their mutual grading to 2; otherwise
the mutual grading is set to 1. We calculate the average grading
to the same review by workers and experts and observe that on
67% of the reviews, worker grading is similar to expert grading
(difference < 1). We also observe that workers and experts have a
higher agreement on assigning high grades rather than low ones
and that workers tend to be more “generous” in grading reviews.
Overall, those results are aligned with related work showing that
crowd workers in carefully-designed tasks can provide satisfying
outcomes on domain-specific problems [8, 24].

5.3 Comparison with the State of the Art

Table 4 summarizes the performance of PGPR against all the compar-
ison methods on both ICLR-2018 and ICLR-2019. We make several
observations.

First, we observe that among the comparison methods, DoesMR
outperforms the other embedding or deep neural network mod-
els. Recall that DoesMR relies on hand-engineered features from
scholarly reviews. The result indicates the effectiveness of hand-
engineered features as compared to automatically-learned repre-
sentations in predicting review conformity. This is likely due to
the similarity of the vocabulary used in most reviews, making re-
view content alone not highly predictive of review conformity. In
contrast, we find through DoesMR that hand-engineered features
such as the relative strength of a review recommendation (and con-
fidence) with respect to other reviews on the same paper are highly
predictive of the review conformity. Second, we observe that meth-
ods developed for modeling scholarly reviews generally outperform
those for modeling non-scholarly reviews. In particular, deep neu-
ral networks for predicting the helpfulness of product reviews, i.e.,
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PCNN and RAHP, generally reach the lowest performance. These
results indicate that models developed in other domains cannot be
easily transferred to assess review conformity. Among the two pre-
trained language models SciBERT and ALBERT, we observe that
SciBERT, which is pre-trained on corpora including computer sci-
ence publications, does not necessarily outperform ALBERT. Such
a result indicates that language models pre-trained on scientific
publications are not necessarily effective for modeling scholary
reviews.

Most importantly, PGPR achieves the best performance on both
datasets. Overall, it improves the second best method by 15.19%
accuracy and 9.46% F1-score on ICLR-2018 and by 6.51% accuracy
and 6.06% F1-score on ICLR-2019. Such a result underlines the
effectiveness of our approach in integrating peer grading into model
training. The relatively lower improvement on ICLR-2019 compared
to that on ICLR-2018 is likely due to the larger historical data with
ground truth available for training, which we investigate latter in
our experiments.

5.4 Ablation Studies & Uncertain Reviews

The comparison between PGPR and machine learning baselines
is shown in Figure 3. The Mix-model, which consists of the ma-
chine learning component of PGPR, outperforms both DoesMr
and SciBERT by 11.5% and 40.9% accuracy and by 5.8% and 33.5%
F1-score, respectively. These results show the complementary pre-
dictive power of hand-engineered features and embeddings. We
observe that PGPR outperforms the Mix-model by 5.3% accuracy
and by 2.8% F1-score on average on both datasets. This result indi-
cates that using worker’s grading improves substantially the model
performance. We also observe that PGPR outperforms Mix-model
additionally trained with workers grading (aggregated by majority
voting), i.e., Mix-model+MYV, by 4.8% accuracy and 2.47% F1-score.
These results show that PGPR is better at utilizing worker’s grading
for conformity prediction by taking into account worker reliability.

Table 5 shows a breakdown comparison between the perfor-
mance of Mix-model and PGPR using the uncertain (actively se-
lected) and certain reviews. We observe that PGPR outperforms
the Mix-model by 23.53% and by 5.63% on the uncertain reviews
from ICLR-2018 and ICLR-2019, respectively. We also observe that
PGPR has little improvement over Mix-model on the certain reviews.
These results show that considering workers’ grading is important
in predicting the conformity of uncertain reviews accurately while
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Figure 3: Comparison between PGPR and machine learning
baselines measured by (a) Accuracy and (b) F1-score.

Table 5: Analysis of PGPR performance in terms of accuracy
on certain and uncertain reviews.

Dataset

Method ICLR-18 ICLR-19

all certain uncertain‘ all certain uncertain

0.793  0.801 0.764
0.799 0.801 0.807

Mix-model |0.752  0.845 0.510
PGPR 0.781 0.846 0.630

having little effect on certain ones. We also find that despite the
importance of worker’s grading in PGPR, the grading alone is not
sufficient to predict the conformity of reviews. Using a majority ag-
gregation of grading on the uncertain reviews leads to an accuracy
of 0.61 and 0.73 on ICLR-2018 and ICLR-2019, respectively; i.e., less
by 3.17% and 9.54% than our framework’s performance. This result
shows that combining workers grading with machine learning is
crucial for an accurate prediction of review’s conformity.

5.5 Grading Effect Over Time

The key advantage of our framework is leveraging peer grading
for conformity prediction. In what follows, we study the impact
of varying the amount of graded reviews on the performance of
our framework. We measure the impact on PGPR performance by
varying the percentage of the actively selected reviews. We split the
graded reviews by s;c; where we vary s,c; between 0% and 100%,
where sq¢r = 50% means that we use 50% of the graded reviews in
addition to the historical data for training. The results are shown
in Figure 4 where we use the same y-scale for ICLR-2018 and ICLR-
2019 for ease of comparison. We observe that the performance of our
framework increases along with the increase of s4¢; on the ICLR-
2018 dataset while it gradually stabilizes with the increase of sq¢;
on the ICLR-2019 data. This on one hand, confirms the effectiveness
of integrating peer grading for model performance. On the other
hand, using PGPR in subsequent editions of the same conference
requires less grading from one year to the next, as it gradually
“learns" the conformity standards of the conference. This property
is highly desirable in real-world scenarios as with the increase of the
number of submissions (and consequently the number of reviews)
our model improves its prediction on the conformity of reviews
while requiring fewer reviews to be graded.
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Figure 4: Performance of PGPR over the two years (2018-
2019) with an increasing number of actively graded reviews.

6 CONCLUSION

In this paper, we presented a human-AlI approach that estimates
the conformity of scholarly reviews by leveraging both human and
machine intelligence. We introduced peer grading mechanisms that
involve peer reviewers to grade each others’ reviews anonymously
and a Bayesian framework that seamlessly integrates peer grading
with a machine learning model for review conformity assessment.
The peer grading mechanism can be easily incorporated into current
peer review systems without inducing much extra effort from the
reviewers. The machine learning model trained by the Bayesian
framework can continuously learn from new grading from peer
reviewers over time. Through a crowdsourced, longitudinal study
over a three years-worth dataset, we showed that our approach
substantially improves the state of the art and that the machine
learning in our framework can largely improve the performance
over three consecutive years.

In future work, we plan to study transfer learning for our pro-
posed framework such that it can be applied to detect low-conformity
reviews in other conferences and journals.
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A APPENDIX

In this section, we present the proofs for our lemmas. We apply the
same notational conventions as in the paper. We use the symbol o
to denote that two variables are proportionally related.

A.1 Proof of Lemma 3.1

ProoFr. To minimize the KL divergence, we assume the variational
distribution follows the same distribution as the latent variable [44].
For q(z;), we obtain

4(z1)  hy(ry. ) [P(z1 7. b A e W), (15)

where hq(rg’ by) denotes the exponential of expectation exp {Ex [log(-)]}
with x being a variational distribution. According to the mean field
approximation, the probability p(z;,r, b, A;,«, W) factorizes over
Gi and Eq.(15) can be written as:

qz) [ | hytry.by)[p(zin7g.bg. Arg. W)L (16)
9EeGi

By applying the chain rule on the probability p(z;, 1, b, A; «, W)
and keeping only the terms that depend on z;, we get:

q(zi) < p(zilxi, W) | | hg(ry.b,)[P(Ar. gl2irg. by)]
9gEeGi

17)

T

The term 77 can be expressed using the probability density function
of a Gaussian distribution of p(Ar, 42,74, bg) where the logarithm
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of the Gaussian distribution is given by
Ty 1 g 2
log(N(z; + bg, —) o ~logrg — —(Aj,g — zi — by) (18)
rg 2 2
Then, we keep the terms dependent on z; and apply Erg’ by’

Ery. by [log(N(zi + by, IXBy,. b, [(At,g = 2i = bg)*]

(19)

1 rg
E)]“Erg,bg [?

We expand the second term by the square factor and get:
(Aiyg —zi — bg) = Af’g +27 + b2 +22;bg — 2Ai,g2; — 2Ai,gby (20)
We eliminate the terms independent from z; and apply By b,
Ery b [(Ai,g = 2i = bg)*] = By 1, [22] + 2B, [2i]Bry b, [bg]
= 2B, b,[AiglEry b, [2i] (1)

Using the properties of by distribution and since A;, 4 and z; do
not depend on by, the terms in Eq.(21) are expressed as follows:

Ep,[Aig] = Aig. By, [2]] = 2. By [2i] = 21, By, [bg] = mg (22)

. . s e .. . . A
The first term in Eq.(19) is the mean of ry’s distribution, i.e., FZ.
9

We replace the second term by the expressions in Egs.(21)-(22):

1 A
Ey,.b, [l0g(N (zi + by, E)]ocﬁx(z% +22i(mg — Arg))  (23)

We now replace in Eq.(17) p(z;i|x;, ‘W) by the probability density
function of z; and the term 77 by its simplification in Eq.(23).

q(zi) < N(ui, oi) n exp {—X(z +2zi(mg — Ag g))}
9geGi

ocexp{%l[(;B—Z+ilZ —2(2 (g = mg)+ Ller)

w1
« N(37» 37

where W = Zg B, 2(Ajg—mg)+ ‘u’z andV = (Zg A9 4 ?), which
concludes the proof o o
A.2 Proof of Lemma 3.2

Proor. Following the reasoning in Eq.(15)-(17) for g, we get:

q(rg) « p(rglAg, By) | | hqizibg)p(Ar.glzis rg, bg)l  (29)
iely

72
To incrementally update the grader reliability, we simplify the term
72 in Eq.(24). First, we use Eq.(20) to expand the term (A; g —z; —bg)2
and apply the expectation E, bg(')- Then, using the properties of
the Gaussian distribution of z; and bg, we get:

1
IE':z,-,bg [Zi]:ﬂi’ Ezi,by [Z?]:U,?’ IE':z,-,by [bg]:mg, ]Ezi,bg [b;]:?g (25)

The term Ezi,bg [(Aig
expressions in Eq.(25). We denote the simplification with M;

-z — bg)z] can be simplified using the

1
M,' = A?’g + 0'1-2 + 0{79 + Z(p,-mg - Ai,gl’i - Ai,gmg) (26)

The expectation of Eq.(18) conditioned on z; and by can be simpli-
fied using Eq.(26):

1 1 T
Euib, log(N (zi + by, )] o G logrg = i M (27)
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Now, we can replace the term 7 in Eq.(24) by its expression in
Eq.(27) and the probability p(ry|Ag, By) by its density function.

1 r
q(rg) <T(Ag, Bg) l_[ exp {5 logrgy — ?gMi}

iely
1 Ag Ag+‘[2g -
I(Ay) Ty exp{ (bg + ~ Z Mi)rg}

zeIg
o« Gamma(X, Y)

where X = Ag+| ol and Y = Bg+ Z(II ‘+Z [A2 +0%+2pi(mg —

Aj,g) — 2A;, gmg]) which concludes the proof. ]

A.3 Proof of Lemma 3.3
Proor. Following the reasoning in Eq.(15)-(17) for by, we get:

qlbg) < plbglmg, ag) | | hgiz;.ry) [P(Ar.g12i T, b)) (28)
ielg

73
To incrementally update worker’s bias, we simplify the term 73
in Eq.(28). In order to do that, we use Eq.(20) to expand the term
(Aig-zi —bg)z and apply the expectation E;, ., (-). Then, we use the
properties of the Gaussian distribution of z; and the independence
property of by with respect to z; and ry and get:

]Ezi,rg [zi] = pi, Ezi,rg [Z?] = o_iZ, Ezi,rg [bg] = bg’ Ez,-,rg [b;] = bé
(29)
Using the expressions in Eq.(29) and by eliminating the terms that
do not depend on bj, the expectation ]Ezi,bg [(Aig —zi - bg)z] can
be simplified as follows.

b, [(Aig = 2i = bg)*] = Ajglbg  (30)

rg [log(N(z; + g, %)] is given by:

bl + 2(pi —

The expectation term E;,

1 A
B rg log(N(zi + g, )] _ﬁ("; +2pi — Aigbg),  (31)

Ay . © 1e1s . .
where 7% is the mean of the reliability density function. We can

now replace the term 73 in Eq.(28) by its expression in Eq.(31) and
the probability p(by|mg, ag) by its density function.

A
q(bg) o« N(mg, by) | | exp{—ﬁ(b; +2(4i — Aig)bg))}

iely

1 AglZ,
o exp(=-(( 9b| i + ag)bl - 2lagmgy +
g

A
b—: Z(Ai, = ki)lbg)

« N )
where K = gl]l+0{ and L = agm +QZ(A‘ — p1i) which
B, g gMg + B, Lr\Aig — Hi
concludes the proof. O
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