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Abstract: We consider the fractional-order version of the hybrid integrator-gain system
(HIGS) including memory reset. For the implementation an explicit higher-order approximation
is considered, which combines first-order reset elements with an integer-order HIGS. This
framework can also be used for fractional-order extensions without memory reset. Using passivity
theory we present a Circle-Criterion-like condition for the closed-loop stability based on this
higher-order approximation.

1. INTRODUCTION

The hybrid integrator-gain system (HIGS) is a nonlin-
ear switching control element which can overcome the
limitations of linear control. For this reason it has been
successfully applied to precision motion control (Deenen
et al., 2017; Heertjes et al., 2017; Van Den Eijnden et al.,
2024; Heertjes et al., 2023). The key feature of this loop-
shaping element is a quasi linear describing function, which
shows the amplitude response of a first-order low pass
filter but the phase only drops to −38◦, which allows for
larger phase margins. As the element is passive the Circle
Criterion can be applied to assess stability conservatively
(Deenen et al., 2021).

In this paper we consider the fractional-order (FO) gener-
alization of the HIGS introduced by Weise et al. (2025)
including a memory reset. As in Hosseini et al. (2022)
the order of integration provides an additional tuning
parameter for loop shaping with the benefit of a lower
reduced phase drop in the describing function for high
frequencies. The memory reset simplifies the element as
no additional 0-mode is required.

The main contribution of this work is the passivity anal-
ysis of the memory reset FO-HIGS by means of higher
order approximations, which are inevitable for the online
implementation of FO operators. We show that the same
quadratic storage function can be used in both operation
modes as a part of the approximation states is set to zero
in the gain mode. This cannot be shown for the element
presented in Hosseini et al. (2022) as the memory states
do not vanish in the gain mode. Via passivity we derive a
stability theorem based on the Circle Criterion which can
be evaluated using measured frequency responses.

The remainder of this contribution is structured as follows.
In Section 2 the required definitions of the applied FO
operators are given. The following section introduces the
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integer-order (IO) HIGS element as well as the FO version
including the memory reset. In comparison to Hosseini
et al. (2022) the memory of the FO operator is reset
when re-entering the integration mode. In order to enable
a strict implementation of both FO elements, higher-
order approximations as a spacial discretization of the
infinite state representation (Trigeassou et al., 2012) are
introduced in Section 2.3. These approximations enable us
to show the passivity of the new element using standard
methods. The closed-loop stability can be shown via a
Circle-Criterion-like theorem. Section 4 gives a simulation
example before conclusions are drawn in Section 5.

2. PRELIMINARY RESULTS AND DEFINITIONS

In this section we recall the definition and basic poperties
of the IO-HIGS element as well as its FO counterpart
applying Caputo’s definition.

2.1 Fractional-Order Operators

Non-integer order derivatives combine classical IO deriva-
tives with the FO integral. We consider two approaches,
following Podlubny (1999) for the integral of f(·) we have

t0Iαf(t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1f(τ)dτ, t > t0, (1)

with the order of integration α ∈ R
+ and Euler’s Gamma

function Γ(·). For convenience we shall consider causal
functions f(·) ∈ L1

loc(R) with f(t) = 0 for all t < t0, see
(Matignon, 1996). A second approach is the infinite state
(diffusive state) representation (Trigeassou et al., 2012;
Trigeassou, 2019; Trigeassou and Maamri, 2019) given by

ζ̇(ω, t) = −ωζ(ω, t) + f(t), ω ∈ [0,∞)

Iαf(t) =

∫ ∞

0

µα(ω)ζ(ω, t)dω, µα(ω) =
sin(απ)

πωα

(2a)

(2b)

with integral kernel µα(·) defined for α ∈ (0, 1). The
complete history of the function f(·) for t < t0 can be
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function Γ(·). For convenience we shall consider causal
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loc(R) with f(t) = 0 for all t < t0, see
(Matignon, 1996). A second approach is the infinite state
(diffusive state) representation (Trigeassou et al., 2012;
Trigeassou, 2019; Trigeassou and Maamri, 2019) given by
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with integral kernel µα(·) defined for α ∈ (0, 1). The
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reduced phase drop in the describing function for high
frequencies. The memory reset simplifies the element as
no additional 0-mode is required.

The main contribution of this work is the passivity anal-
ysis of the memory reset FO-HIGS by means of higher
order approximations, which are inevitable for the online
implementation of FO operators. We show that the same
quadratic storage function can be used in both operation
modes as a part of the approximation states is set to zero
in the gain mode. This cannot be shown for the element
presented in Hosseini et al. (2022) as the memory states
do not vanish in the gain mode. Via passivity we derive a
stability theorem based on the Circle Criterion which can
be evaluated using measured frequency responses.

The remainder of this contribution is structured as follows.
In Section 2 the required definitions of the applied FO
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lumped into the initial distribution of the state ζ(ω, t0).
Applying the FO integral to an IO derivative of f(·) leads
to Caputo’s operator (Podlubny, 1999; Monje et al., 2010)

t0Dα
t f(t) =

1

Γ(m− α)

� t

t0

f (m)(t)

(t− τ)α−m+1
dτ, (3)

where α ∈ R
+ is the differentiation order and m is an

integer such that m− 1 ≤ α < m. Due to the FO integral
contained in this operator, the FO derivative has a memory
and acts with respect to the time limits t0 and t.

2.2 Integer- and Fractional-order HIGS

The IO-HIGS introduced by Deenen et al. (2017, 2021);
Heertjes et al. (2017) takes the form

HIO:







ẋ(t) = ωhe(t), (e, ė, u) ∈ FIO,1 (I-Mode)

x(t) = khe(t), (e, ė, u) ∈ FIO,2 (P-Mode)

u(t) = x(t)

(4a)

(4b)

(4c)

with kh > 0 and ωh > 0 and the sector bounds defined by

FIO,1 =
�

(e, ė, u) ∈ R
3|eu ≥ 1

kh

u2 ∧ (e, ė, u) �∈ FIO,2

�

FIO,2 =
�

(e, ė, u) ∈ R
3|u = khe ∧ ωhe

2 > kheė
�

.

As long as the trajectories are located in the sector FIO,1

the element acts as an integrator. Once the sector bound
is hit (u = khe) the element switches into the gain
mode (P-Mode) and the state of the integrator follows the
input e(t). The HIGS can be understood as a switching
differential algebraic equation.

Generalizing this element towards FO integration is not
straightforward, as the memory of the FO operators has
to be considered. The memory-reset version given in Weise
et al. (2025) reads

H̃FO :











tkDα
t x(t) = ωhe(t), (e, ė, u) ∈ F̃1

x(t) = khe(t), (e, ė, u) ∈ F̃2

u(t) = x(t),

(5a)

(5b)

(5c)

where tkDα
t denotes Caputo’s derivative of order α ∈ (0, 1),

kh>0, ωh>0 and the memory reset instances tk given by
�

e(t−k ), ė(t
−
k ), u(t

−
k )

�

∈ F̃2,
�

e(t+k ), ė(t
+
k ), u(t

+
k )

�

∈ F̃1

with the sector bounds illustrated in Fig. 1 (left) defined
similar to the IO case above

F̃1 =
�

(e, ė, u) ∈ R
3|eu ≥ 1

kh

u2 ∧ (e, ė, u) �∈ F̃2

�

F̃2 =
�

(e, ė, u) ∈ R
3|u = khe ∧ ωhe

2 > khe (tkDα
t e(t))

�

.

The second condition in F̃2 allows the re-entering of the
integration mode if the trajectories are on the sector bound
pointing inwards (see Fig.1). The resulting inequality in
the input-output space can be reformulated with a time-
derivative of arbitrary order

kh < ∂u
∂e = u̇(t)

ė(t) = t
k
Dα

t
u(t)

t
k
Dα

t
e(t) = ωhe(t)

t
k
Dα

t
e(t) , for e > 0.

As long as the trajectories remain in the sector F̃1 the
FO integration uses the time instant of entering the
integration mode tk as a lower limit in (5a). Thus memory
is accumulated and it is only reset when the gain-mode
(F̃2) has been active in between.

e(t)

u(t)

khe(t)

F̃2/FIO,2
∂u
∂e = t

k
Dα

t
u(t)

t
k
Dα

t
e(t)

F̃1/FIO,1

u(t) = tkIα
t ωhe(t)

G

H̄FO

w(t)

0 v(t)

e(t)

u(t)

−

Fig. 1. Sector bounds of the FO-HIGS (IO-HIGS) in the
input-output plane (left) and Lur’e system (right).

2.3 Diffusive State Truncation

As FO operators are non-local the implementation requires
a truncation of its memory. Besides the application of the
well-known short memory principle (see (Podlubny, 1999))
higher-order LTI systems can be used to approximate the
desired behavior in a certain frequency range. A typical
approximation can be derived by applying Oustaloup’s
formula to obtain a Padé approximation of the FO term in
the Laplace domain (see (Monje et al., 2010)). We derive
the approximation by lumping the distributed state space
of (2a) into a finite dimensional LTI system.

Direct Approximation In order to approximate the FO
integral we use a spacial discretization of the positive
halfline ω ∈ [0,∞) by selecting N frequencies 0 = ω1 <
ω2 < · · · < ωN < ∞. Choosing ω1 = 0 includes the pure
IO integration as the kernel µα(·) in (2b) is weakly singular
at ω = 0. Hence the FO integral is approximated by an
LTI system of order N :

ż(t) = Āzz(t) + B̄zωhe(t)
ωhIαe(t) ≈ u(t) = C̄zz(t),

(6a)
(6b)

with Āz = − diag (ω1 · · · ωN ), B̄⊤
z = (1 · · · 1) and C̄z =

(c1 c2 · · · cN ), ci > 0 for i = 1, . . . , N .

Remark 1. The coefficients ci scaling the individual modes
ωi of the approximation can be derived from the kernel
µα(ω) in (2b). Typically the individual modes ωi are
chosen equidistant in a logarithmic scale within a certain
frequency band of interest. The coefficients ci result from
the integration of the kernel µα(ω)

ci =

� ω̄i

ω
i

µα(ω)dω = sin(απ)
(1−α)π

�

ω̄1−α
i − ω1−α

i

�

, (7)

with ωi =
√
ωiωi−1, ω̄i =

√
ωiωi+1 for i = 1, . . . , N and

ω0 = 0. As the integral of the kernel (2b) does not converge
if the upper limit tends to infinity, the approximation is
limited in the higher frequency range and the coefficient
cN scaling this mode can only take into account the
frequencies up to mωN = ωN+1 (m > 0) .

In addition to that standard approximations of FO opera-
tors like the Oustaloup-filter or its refined version (Monje
et al., 2010; Tepljakov et al., 2011) can be used to obtain
the coefficients ci, as all these approximations are based
on real poles and therefore system (6) is a modal state-
space representation of these transfer functions with a
normalized input matrix.

With (6) and the slightly changed sectors F̄1, F̄2, the FO-
HIGS element with memory reset is approximated by

H̄FO:















ż(t) = Āzz(t) + B̄zωhe(t), (e, ė, u) ∈ F̄1

z(t) =

�

kh(c1)
−1

0N−1

�

e(t), (e, ė, u) ∈ F̄2

u(t) = C̄zz(t),

(8a)

(8b)

(8c)

F̄1 =
�

(e, ė, u) ∈ R
3|eu ≥ 1

kh

u2 ∧ (e, ė, u) �∈ F̄2

�

F̄2 =
�

(e, ė, u) ∈ R
3|u = khe ∧ bNωhe

2 > kheė
�

,

and bN =
�N

i=1 ci, ci > 0, kh > 0. (9)

The memory is captured in the states z2 to zN and in the
P-mode (e, ė, u) ∈ F2 it is reset to zero. The first state is

given by the pure proportional term z1(t) = kh

c0
e(t) such

that the output is continuous at the switching instant. The
solution z(·) exists for all t > t0 for all initial conditions
satisfying C̄zz(t0) ≤ khe(t0) and inputs e(·) ∈ L2

loc(R).
Note that the states are set to zero if the input vanishes,
i.e. e = 0. This happens either in F̄2 directly or in F̄1 as
C̄z has only positive elements and the system is zero-state
observable, Khalil (1996). As a consequence the individual
states zi have always the same sign. Since the input matrix
B̄z has only positive elements the input e determines the
sign of each state, i.e. sign(e) = sign(zi) for all i = 1, . . . , n.

Remark 2. This state space representation is not suitable
for the implementation of the FO-HIGS without memory
reset. When the memory is not set to zero, the dynamics
of the last N − 1 states remain unchanged in the P-mode
and these states are therefore nonzero. As a consequence
the output matrix C̄z has to be switched into the second
mode, i.e. u(t) = (c1 0) z(t) with (e, ė, u) ∈ F2. As the
switching condition (e, ė, u) ∈ F2 depends on the output
u itself, this leads to an algebraic loop.

Indirect Approximation For a second approach to im-
plement the FO integral of order α we split the FO in-
tegral, such that the integrating behavior is guaranteed
for the low frequency range as demonstrated in Weise
et al. (2025). For this split we apply Caputo’s operator:
Iαf(t) = I1

�

D1−αf(t)
�

= I1
�

Iα
�

D1f(t)
��

. Applying
the distributed state representation (2) we obtain for
u(t) = xI(t) = Iα(ωhe(t)):

ζ̇(ω, t) = −ωζ(ω, t) + ωhė(t)

ẋI(t) = D1−α (ωhe(t)) =
�∞

0 µα(ω)ζ(ω, t)dω.

(10a)

(10b)

We can rewrite (10a) with the new distributed state xζ(·) :
R

+×R
+ → R and distributed output ζ(·) : R+×R

+ → R

(ω ∈ [0,∞)) using a feedthrough term

ẋζ(ω, t) = −ωxζ(ω, t) + ωhe(t)

ζ(ω, t) = −ωxζ(ω, t) + ωhe(t)

ẋI(t) = D1−α (ωhe(t)) =

� ∞

0

µα(ω)z(ω, t)dω.

(11a)

(11b)

(11c)

Remark 3. Equations (11) show that Caputo’s operator
can be implemented causally for α∈(0, 1).

To approximate the distributed dynamics in xζ , we use the
same frequencies as above: 0 < ω2, . . . , ωN < ∞. As the
integrator (ω1 = 0) is separated, the mode ω1 = 0 is not
included to approximate the output (11c). This results in

żM (t) = AzzM (t) +Bzωhe(t)

żI(t) = CzAzzM (t) + bNωhe(t)

ωhIαe(t) ≈ u(t) =zI(t)

(12a)

(12b)

(12c)

with Az = − diag (ω2 · · · ωN), Bz = (1 · · · 1)⊤ and
positive coefficients ci > 0, i = 2, . . . , N given by (7)
and bN given by (9). In this approximation the state
zM ∈ R

N−1 represents the memory of the FO operator and
the single IO integration guarantees a continuous output.
This new state can also be interpreted as a transformed
version of the direct approximation

�

zM
zI

�

=

�

0 I
c0 Cz

�

z = Tz. (13)

Now we are able to approximate both FO hybrid elements
in terms of the LTI system (12) without algebraic con-
straints.

The FO-HIGS with memory reset can be approximated
with the following LTI approximation similar to the ap-
proximation presented by Weise et al. (2025):

H̃FO′



























�

żM (t)
żI(t)

�

=

�

AzzM (t) +Bzωhe(t)
CzzM (t) +Dzωhe(t)

�

,
(e, ė, u) ∈ F̄1

(I-mode)
�

zM (t)
zI(t)

�

=

�

0
khe(t)

�

,
(e, ė, u) ∈ F̄2

(P-mode)

u(t) = zI(t).

In this implementation the memory states zM are set to
zero as the element is in the gain-mode ((e, ė, u) ∈ F̄2).
Therefore this IO approximation combinesN−1 first-order
reset elements with an integrator. As the reset condition
is given in terms of the in- and output of the element,
however, it does not show the same behavior as a series
connection of first-order reset elements and an IO-HIGS.

3. STABILITY ANALYSIS

In this part we generalize the stability results presented
in Deenen et al. (2017) for the IO-HIGS towards the
approximation of the FO-HIGS element H̄FO. The sector-
boundedness of the input-output behavior allows for a
stability analysis in the frequency domain.

3.1 Passivity Analysis

Although the reset of the state leads to partial hybrid
dynamics, we are able to use classic passivity definitions as
applied in Carrasco et al. (2010) to reset control systems.

Definition 4. (Passivity (van der Schaft, 2017)). Let L2,e

denote the extended L2-space. A system H̄ :L2,e→L2,e

H̄ :

�

ẋ = f(x, u), u ∈ R

y = h(x, u), y ∈ R

(15a)

(15b)

is passive if there exists a positive semidefinite storage
function V = V (x), such that for all initial conditions and
any input u(·) the following inequality holds for all t ≥ t0

V (x(t)) − V (x(t0)) ≤
� t

t0

S(u(τ), y(τ))dτ, (16)

where the supply rate is defined as S(u, y) = uy.

In comparison to the passivity definition given in Khalil
(1996) we require the integral version of the dissipation
inequality, as the states z of the memory reset FO-HIGS
jump when it changes from I- to P-mode.

Lemma 1. The approximation of the FO-HIGS element
H̄FO with ωh, kh > 0, modes ωi > 0 for i = 2, . . .N , and
positive constants ci > 0 for i = 1, . . . , N is passive.
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H̄FO:















ż(t) = Āzz(t) + B̄zωhe(t), (e, ė, u) ∈ F̄1

z(t) =

�

kh(c1)
−1

0N−1

�

e(t), (e, ė, u) ∈ F̄2

u(t) = C̄zz(t),

(8a)

(8b)

(8c)

F̄1 =
�

(e, ė, u) ∈ R
3|eu ≥ 1

kh

u2 ∧ (e, ė, u) �∈ F̄2

�

F̄2 =
�

(e, ė, u) ∈ R
3|u = khe ∧ bNωhe

2 > kheė
�

,

and bN =
�N

i=1 ci, ci > 0, kh > 0. (9)

The memory is captured in the states z2 to zN and in the
P-mode (e, ė, u) ∈ F2 it is reset to zero. The first state is

given by the pure proportional term z1(t) = kh

c0
e(t) such

that the output is continuous at the switching instant. The
solution z(·) exists for all t > t0 for all initial conditions
satisfying C̄zz(t0) ≤ khe(t0) and inputs e(·) ∈ L2

loc(R).
Note that the states are set to zero if the input vanishes,
i.e. e = 0. This happens either in F̄2 directly or in F̄1 as
C̄z has only positive elements and the system is zero-state
observable, Khalil (1996). As a consequence the individual
states zi have always the same sign. Since the input matrix
B̄z has only positive elements the input e determines the
sign of each state, i.e. sign(e) = sign(zi) for all i = 1, . . . , n.

Remark 2. This state space representation is not suitable
for the implementation of the FO-HIGS without memory
reset. When the memory is not set to zero, the dynamics
of the last N − 1 states remain unchanged in the P-mode
and these states are therefore nonzero. As a consequence
the output matrix C̄z has to be switched into the second
mode, i.e. u(t) = (c1 0) z(t) with (e, ė, u) ∈ F2. As the
switching condition (e, ė, u) ∈ F2 depends on the output
u itself, this leads to an algebraic loop.

Indirect Approximation For a second approach to im-
plement the FO integral of order α we split the FO in-
tegral, such that the integrating behavior is guaranteed
for the low frequency range as demonstrated in Weise
et al. (2025). For this split we apply Caputo’s operator:
Iαf(t) = I1

�

D1−αf(t)
�

= I1
�

Iα
�

D1f(t)
��

. Applying
the distributed state representation (2) we obtain for
u(t) = xI(t) = Iα(ωhe(t)):

ζ̇(ω, t) = −ωζ(ω, t) + ωhė(t)

ẋI(t) = D1−α (ωhe(t)) =
�∞

0 µα(ω)ζ(ω, t)dω.

(10a)

(10b)

We can rewrite (10a) with the new distributed state xζ(·) :
R

+×R
+ → R and distributed output ζ(·) : R+×R

+ → R

(ω ∈ [0,∞)) using a feedthrough term

ẋζ(ω, t) = −ωxζ(ω, t) + ωhe(t)

ζ(ω, t) = −ωxζ(ω, t) + ωhe(t)

ẋI(t) = D1−α (ωhe(t)) =

� ∞

0

µα(ω)z(ω, t)dω.

(11a)

(11b)

(11c)

Remark 3. Equations (11) show that Caputo’s operator
can be implemented causally for α∈(0, 1).

To approximate the distributed dynamics in xζ , we use the
same frequencies as above: 0 < ω2, . . . , ωN < ∞. As the
integrator (ω1 = 0) is separated, the mode ω1 = 0 is not
included to approximate the output (11c). This results in

żM (t) = AzzM (t) +Bzωhe(t)

żI(t) = CzAzzM (t) + bNωhe(t)

ωhIαe(t) ≈ u(t) =zI(t)

(12a)

(12b)

(12c)

with Az = − diag (ω2 · · · ωN), Bz = (1 · · · 1)⊤ and
positive coefficients ci > 0, i = 2, . . . , N given by (7)
and bN given by (9). In this approximation the state
zM ∈ R

N−1 represents the memory of the FO operator and
the single IO integration guarantees a continuous output.
This new state can also be interpreted as a transformed
version of the direct approximation

�

zM
zI

�

=

�

0 I
c0 Cz

�

z = Tz. (13)

Now we are able to approximate both FO hybrid elements
in terms of the LTI system (12) without algebraic con-
straints.

The FO-HIGS with memory reset can be approximated
with the following LTI approximation similar to the ap-
proximation presented by Weise et al. (2025):

H̃FO′



























�

żM (t)
żI(t)

�

=

�

AzzM (t) +Bzωhe(t)
CzzM (t) +Dzωhe(t)

�

,
(e, ė, u) ∈ F̄1

(I-mode)
�

zM (t)
zI(t)

�

=

�

0
khe(t)

�

,
(e, ė, u) ∈ F̄2

(P-mode)

u(t) = zI(t).

In this implementation the memory states zM are set to
zero as the element is in the gain-mode ((e, ė, u) ∈ F̄2).
Therefore this IO approximation combinesN−1 first-order
reset elements with an integrator. As the reset condition
is given in terms of the in- and output of the element,
however, it does not show the same behavior as a series
connection of first-order reset elements and an IO-HIGS.

3. STABILITY ANALYSIS

In this part we generalize the stability results presented
in Deenen et al. (2017) for the IO-HIGS towards the
approximation of the FO-HIGS element H̄FO. The sector-
boundedness of the input-output behavior allows for a
stability analysis in the frequency domain.

3.1 Passivity Analysis

Although the reset of the state leads to partial hybrid
dynamics, we are able to use classic passivity definitions as
applied in Carrasco et al. (2010) to reset control systems.

Definition 4. (Passivity (van der Schaft, 2017)). Let L2,e

denote the extended L2-space. A system H̄ :L2,e→L2,e

H̄ :

�

ẋ = f(x, u), u ∈ R

y = h(x, u), y ∈ R

(15a)

(15b)

is passive if there exists a positive semidefinite storage
function V = V (x), such that for all initial conditions and
any input u(·) the following inequality holds for all t ≥ t0

V (x(t)) − V (x(t0)) ≤
� t

t0

S(u(τ), y(τ))dτ, (16)

where the supply rate is defined as S(u, y) = uy.

In comparison to the passivity definition given in Khalil
(1996) we require the integral version of the dissipation
inequality, as the states z of the memory reset FO-HIGS
jump when it changes from I- to P-mode.

Lemma 1. The approximation of the FO-HIGS element
H̄FO with ωh, kh > 0, modes ωi > 0 for i = 2, . . .N , and
positive constants ci > 0 for i = 1, . . . , N is passive.
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Proof. To prove the passivity of the approximation H̄FO

we use the modal coordinates given in (6). Consider the

storage function V (z) = κ1

2 u2 + κ2

2

∑N
i=2 ciz

2
i , i.e.

V (z) =
κ1

2
z⊤

(

C̄⊤
z C̄z

)

z +
κ2

2
z⊤Mz = z⊤P̄ z > 0. (17)

with κ1, κ2 > 0 and M = diag(0, diag(Cz)).

If H̄FO is strictly passive in each mode and the storage
function V decreases at the instances of state-reset, then
H̄FO is passive, see Carrasco et al. (2010).

The derivative of the storage function in the I-mode is

V̇ (z)|I = κ1u C̄z ż + κ2

∑N
i=2 cizi(−ωizi + ωhe)

= z⊤
(

κ1C̄
⊤
z C̄zĀz + κ2 diag(C̄z)Āz

)

z + κ2ωhe
∑N

i=2 cizi

= −z⊤Q̄z + κ2ωheu− κ2ωhec1z1,

where Q̄ = −κ1C̄
⊤
z C̄zĀz − κ2 diag(C̄z)Āz . While Q̄ is

indefinite, we still have z⊤Q̄z ≥ 0 as all components zi
have the same sign i = 1, . . . , n. Note that ω1 = 0 in Āz ,
thus is independent of the first state z1. The second term in
V̇ represents the required supply rate S(e, u) = eu. Recall
that the states z1 have the same sign as the error e. Thus
the last term is also negative.

To show the strict passivity (following the definition given
in Khalil (1996)) in the integration mode we apply the
sector condition given by F̄1. For e > 0 we use khe ≥ u =
Cz leading to e ≥ k−1

h Cz and

V̇ (z)|I ≤− z⊤Q̄z − κ2ωh

kh

Cz c1z1 + κ2ωheu. (18)

For e < 0 we have e ≤ k−1
h Cz and obtain the same result.

With the choice κ2 = ω−1
h the integration mode is strictly

passive (Khalil, 1996), i.e.

V̇ (z)|I ≤ −z⊤Q̄z − φ2(z) + eu

with φ2(z) =
1
kh

z⊤C⊤ (c1 0) z, where z⊤Q̄z + φ2(z) ≥ 0.

In the P-mode the same storage function (17) is applied.
As the states zi for i = 2, . . . , N are zero the storage
function (17) simplifies to V (z)|P = κ1

2 u2 = κ1

2 c21z
2
1 and

V̇ (z)|P =κ1c
2
1z1ż1 = κ1c1khuė,

as z1 = kh

c1
e. From the region condition in F̄2 we obtain

bNωheu > khėu. Adding zero yields

V̇ (z)|P ≤ κ1c1bNωheu+ κ3

kh

u2 − κ3

kh

c21z
2
1 − z⊤Q̄z

≤ (κ1c1bNωh + κ3) eu−
(

κ3

kh

Cz c1z1 + z⊤Q̄z
)

.

Choosing κ1, κ3 > 0 such that (κ1c1bNωh + κ3) = 1 yields
a similar form as in the integration mode

V̇ (z)|P ≤ eu− z⊤Q̄z − κ3φ2(z). (19)

Therefore the approximation of the FO-HIGS is also
strictly passive in the gain mode. With κ3 < 1 the right-
hand side in (19) is also an upper bound on the derivative
in the I-mode.

The state z is discontinuous when changing from the
integration to the gain mode. The value of the storage
function decreases at these switching instances since

V (z(t+k ))−V (z(t−k )) =
κ1

2 u2−
(

κ1

2 u2 + κ2

2 z⊤Mz
)

= −κ2

2 z⊤Mz ≤ 0. (20)

Hence the dissipation inequality (16) is satisfied in both
modes. This concludes the proof. ✷

The proof does not require the constants ci to approximate
the original FO operator, hence the parameters ci might
also be used to tune any hybrid element.

Note that the storage function (17) cannot be used to show

the passivity of system ĤFO (without memory reset) as the
memory states zi with i = 2, . . . , N do not vanish in the
P-mode.

3.2 Circle-Criterion-like Condition

Consider closed-loop Lur’e type interconnection in Fig. 1
(right) with the passive linear plant

ẋp(t) = Apxp(t) +Bpvv(t) +Bpww(t)

e(t) = Cpxp(t)

(G(s) Gew(s)) = Cp (sI −Ap)
−1

(Bpv Bpw) .

(21a)

(21b)

(21c)

Definition 5. (ISS (Khalil, 1996)). The system (15a) is
called input-to state stable (ISS), if there exist a class KL-
function β(·, ·) and a class K-function γ(·), such that for
any initial condition x(t0) and any bounded input u, the
solution x exists and satisfies for all t ≥ t0

�x(t)� ≤ β(�x(t0)�, t− t0) + γ sup
t0≤τ≤t

�u(τ)�.

Theorem 6. Consider the system (21) in feedback with the
approximation of the FO-HIGS with memory reset H̄FO

in (8) with kh > 0 and ωh > 0 as depicted in Fig. 1. This
feedback system is ISS with respect to the input w, if Ap

is Hurwitz and the transfer function G(s) satisfies

Re {G(jω)} > − 1
kh

for all ω ∈ R ∪ {±∞}. (22)

Proof. The proof follows the ideas presented in Deenen
et al. (2021). We apply the Kalman–Yakubovich-Popov
(KYP) lemma (Khalil, 1996) in combination with the
storage function (17) of Lemma 1 to generate a common
(quadratic) ISS Lyapunov function.

As the stable process with the minimal realization given by
(21) satisfies condition (22), the KYP lemma establishes
the existence of L, P = P⊤ > 0, and εp > 0 such that

A⊤
p P + PA⊤

p = −L⊤L− εpP, PBpw = C⊤
p −

√

2
kh

L⊤.

The corresponding Lyapunov function Vp(xp) = x⊤
p Pxp

satisfies λ(P )�xp�2 ≤ Vp(xp) ≤ λ̄(P )�xp�2 with the
minimal and maximal eigenvalue λ(P ) and λ̄(P ) of the
matrix P , respectively. For the derivative of Vp along the
solution of the closed-loop system in Fig. 1 and following
the steps in van Loon et al. (2017) yields

V̇p(xp) ≤ −
(

εpλ̄(P )− 1
δ1

)

�xp�2 + δ1
(

λ̄(P )�Bgw�
)2 �w�2.

For sufficiently large δ1 > 0 we have κ6 := εpλ̄(P )− 1
δ1

> 0.

The upper bound of the derivative of the storage func-
tion (19) can be modified applying Young’s inequality and
�u� ≤ kh�e� leading to

V̇ (z) ≤ −
∥

∥

∥

κ3

kh

C⊤(c10) + Q̄
∥

∥

∥
�z�2 +

(

δ3
2 k

2
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2δ3

)

�e�2

for some δ3 > 0. With κ4 :=
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∥

∥

κ3

kh

C⊤(c10) + Q̄
∥

∥

∥
> 0,

κ5 := δ3
2 k

2
h + 1

2δ3
> 0 and substituting (21b) yields

V̇ (z) ≤ −κ4�z�2 + κ5 �Cp� �xp�2. (23)
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Now we combine both functions to construct the Lyapunov

function of the closed loop with xcl =
(

x⊤
p z⊤

)⊤
, i.e.

Vcl(xp, z) = Vp(xp) + µV (z) = x⊤
cl

(

P 0
0 µP̄

)

xcl ≥ 0

with 0 < µ < κ6(κ5 �Cp�)−1 which is positive definite and
radially unbounded. Finally the upper bound on the time
derivative satisfies

V̇cl(xp, z) ≤ −δ4 �xcl�2 + δ1
(

λ̄(P )�Bgw�
)2 �w�2

with δ4 = min (κ6 − µκ5 ||Cp|| , µκ4), almost everywhere.

As the Lyapunov function only combines the storage
function (17) with a quadratic term of the process states
we have according to (20)

Vcl(xcl(t
+
k ))−Vcl(xcl(t

−
k )) = −κ2

2 z⊤Mz ≤ 0,

hence input-to-state stability according to Definition 5. ✷

This approach is rather conservative regarding the stabil-
ity results, as it mostly exploits the passivity of the process
and the hybrid element. Therefore the gain parameter kh
has the main influence on the results. Future analysis
should focus on approaches similar to the partitioning
ideas presented by Deenen et al. (2021) and Van Den Ei-
jnden et al. (2024) for the IO-HIGS.

4. SIMULATION EXAMPLE

Our example demonstrates the potential performance en-
hancement of FO-HIGS in a control system and the analy-
sis of the closed-loop stability using the proposed method.

The plant P consists of a second-order transfer function
and a pole-zero pair approximating a delay Td = 0.0015 s

P (s) =
ω2
n

s2 + 2ζωns+ ω2
n

−Tds+ 1

Tds+ 1
,

ωn = 5,
ζ = 0.2.

(24)

We consider tracking control of the reference r(t)=sin(15t)
subject to the input disturbance di(t)=0.1 sin(40t). Since
the plant exhibits a large phase-drop at high frequencies,
the bandwidth is limited. The following PID controller
achieves a phase margin φr = 30◦ at ωc = 100 rad/s:

CPID(s) = kp
(

1 + ωi

s

)

(

s/ωd+1
s/ωt+1

)

, (25)

where kp = 115.5, ωi = ωc/5 is the frequency at which
integral action stops, differentiating action starts at ωd =
ωc/a and terminates at ωt = aωc, where we choose a =
3.4 to achieve the phase margin. Note that the integral
frequency ωi, and thus tracking and disturbance rejection,
is limited to 20 rad/s due to the phase lag.

To compensate some phase lag that allows to increase the
integral frequency ωi we add a so-called Constant-in-gain
Lead-in-phase (CgLp) element, see Fig. 2. For comparison
we devise two CgLp elements using an IO-HIGS and FO-
HIGS element, respectively. For Clead we choose the inverse
of the base linear transfer function of (1 + H̄FO) given by
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Clead(s) =
(1+s/wrh)

α

(1+s/wrh)
α+kh

. (26)

For α = 1, Clead(s) acts as an integer lead, compensating
the gain of the IO-HIGS; for α ∈ (0, 1) it can compensate
the gain of the FO-HIGS element. In the latter case we
use a third-order transfer function to approximate the FO
Clead(s) for the stability analysis and implementation in
the time-domain.

For tuning of this PID+CgLp controller we first elevate the
integral frequency ωi from 20 rad/s to 50 rad/s ensuring
sufficient gain at low frequencies. This introduces a 15◦

phase lag at ωc = 100 rad/s, which we aim to compensate
with the CgLp element. For the IO-HIGS (α = 1) we
choose kh = 2.2 and ωh = 40. For the FO-HIGS we
choose α = 0.75, kh = 2.2, and ωh = 18, to maintain a
constant gain across all frequencies and achieve a phase
lead of 15◦ at ωc = 100 rad/s for the describing function of
the CgLp element. The frequency responses for the open-
loops with the three controllers (PID and PID+CgLp with
IO-/FO-HIGS) are shown in Fig. 3. In order to achieve a
comparable crossover frequency the controller gain with
either CgLp element is adjusted to k̃p = 99.17.

As the nonlinear controllers are designed using their de-
scribing function, with higher-order harmonics neglected,
we analyse the performance of the three control loops
using the normalized cumulative power spectrum density
(CPSD) shown in Fig. 4. Recognizing that higher-order
harmonics can propagate through all frequency ranges,
CPSD analysis can help to observe their effect on the error.
In Fig. 4, the reduction in error related to reference track-
ing and disturbances is evident in the nonlinear controllers.
This reduction is attributed to their gain advantage at low
frequencies while maintaining the phase consistent at the
bandwidth frequency. Additionally, minor jumps observed
in the PID+CgLp cases can be attributed to higher-order
harmonics. Nevertheless, these higher-order harmonics do
not significantly impact the system performance. Despite
the slightly better performance of the FO-HIGS controller
in this example, we cannot conclusively establish the supe-
riority of the introduced FO-HIGS filter in terms of perfor-
mance based solely on this case. Here, we analyzed the two
controllers side by side to demonstrate that this new filter
not only performs comparably but also has the potential
to outperform the existing IO-HIGS. However, the key
advantage of the FO-HIGS lies in its tunability and its
applicability in scenarios where the degree of nonlinearity
introduced into the system is critical.
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For α = 1, Clead(s) acts as an integer lead, compensating
the gain of the IO-HIGS; for α ∈ (0, 1) it can compensate
the gain of the FO-HIGS element. In the latter case we
use a third-order transfer function to approximate the FO
Clead(s) for the stability analysis and implementation in
the time-domain.

For tuning of this PID+CgLp controller we first elevate the
integral frequency ωi from 20 rad/s to 50 rad/s ensuring
sufficient gain at low frequencies. This introduces a 15◦

phase lag at ωc = 100 rad/s, which we aim to compensate
with the CgLp element. For the IO-HIGS (α = 1) we
choose kh = 2.2 and ωh = 40. For the FO-HIGS we
choose α = 0.75, kh = 2.2, and ωh = 18, to maintain a
constant gain across all frequencies and achieve a phase
lead of 15◦ at ωc = 100 rad/s for the describing function of
the CgLp element. The frequency responses for the open-
loops with the three controllers (PID and PID+CgLp with
IO-/FO-HIGS) are shown in Fig. 3. In order to achieve a
comparable crossover frequency the controller gain with
either CgLp element is adjusted to k̃p = 99.17.

As the nonlinear controllers are designed using their de-
scribing function, with higher-order harmonics neglected,
we analyse the performance of the three control loops
using the normalized cumulative power spectrum density
(CPSD) shown in Fig. 4. Recognizing that higher-order
harmonics can propagate through all frequency ranges,
CPSD analysis can help to observe their effect on the error.
In Fig. 4, the reduction in error related to reference track-
ing and disturbances is evident in the nonlinear controllers.
This reduction is attributed to their gain advantage at low
frequencies while maintaining the phase consistent at the
bandwidth frequency. Additionally, minor jumps observed
in the PID+CgLp cases can be attributed to higher-order
harmonics. Nevertheless, these higher-order harmonics do
not significantly impact the system performance. Despite
the slightly better performance of the FO-HIGS controller
in this example, we cannot conclusively establish the supe-
riority of the introduced FO-HIGS filter in terms of perfor-
mance based solely on this case. Here, we analyzed the two
controllers side by side to demonstrate that this new filter
not only performs comparably but also has the potential
to outperform the existing IO-HIGS. However, the key
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the closed-loop error.

To assess the stability of the FO-HIGS-based controller,
we utilize Theorem 6. Fig. 5(a) shows the Nyquist plot
of L = CleadCPID P establishing that Ap is Hurwitz. In

Fig. 5(b) the Nyquist plot of G = L
1+L is shown. We

observe that (23) is satisfied for kh < 3.37. Furthermore,
we have Re {G(j∞)} > − 1

kh

for all kh > 0 as G is strictly

proper. Therefore, with Theorem 6, the closed-loop system
of Fig. 2 is ISS for all kh < 3.37 and ωh ∈ (0,∞).
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5. CONCLUSIONS

In this contribution we investigate the passivity of the FO-
HIGS element with memory reset. The reset of the infinite
memory simplifies the FO-HIGS element as only the gain
and integration mode are present. As the possible negative
memory is deleted, the trajectories cannot leave the sector
at the lower limit (u=0), hence the 0-mode is not required.

We derive a direct approximation based on the infinite
state representation of the FO integral. The resulting
higher order approximation contains the actual memory
in the state zM whereas the continuous output of the FO
integration is given by the state zI . When the output
zI crosses the sector bound, the states zM are set to
zero. So we may apply the same storage function in I-
and P-mode to show strict passivity of the element. The
approximations combine first-order reset elements with an
IO-HIGS, thus, the results are not limited to the original
FO integration. Based on passivity we provide a Circle-
Criteria-like condition to guarantee ISS in closed loop.
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