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Introduction

eTrends in wind power
e Increase in installed GW
e Larger turbines
e Decrease of cost (€/kWh)

e Turbines
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Introduction

Optimization of components:

e |Less material used
= Decrease in turbine weight
= Transport and installation is easier
= Smaller foundations

" |ncrease in flexibility of component
= |Local dynamic behavior
= Higher component loading
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Introduction
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Introduction

Dynamic substructuring is proposed to fill this need for a
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Content

 Theory of dynamic substructuring
= What is dynamic substructuring?
= Techniques for dynamic substructuring

e Application to a multi-MW wind turbine
= Yaw system
= Component models
= Validation measurements
= Analysis results

e Conclusions and recommendations
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Theory of dynamic substructuring
What is dynamic substructuring?

Epiihehds dhvpaiulbstirutddeds in terms of most
important dynamic behaviour
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Theory of dynamic substructuring
What is dynamic substructuring?

Bxperih el ified] prddbigerotusrsns of most

important dynamic behaviour
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Results in a less complex and more compact set of equations,
while accurately describing the assembled behavior
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Theory of dynamic substructuring
What is dynamic substructuring?

Several advantages:
* Allows evaluation of large complex structures

* Experimental substructures combined with numerical
(component) models

e Local dynamic behavior is easier to identify i
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Theory of dynamic substructuring

What is dynamic substructuring?

Equations of motion of total structure:

MA+ Ku-=f
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Theory of dynamic substructuring

What is dynamic substructuring?

Equations of motion of separate substructures:

M (DA + K (g = f 4 gl1)

M (20A(2) + K (24(2) = g(2)

g(1) g(2)
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Theory of dynamic substructuring
Techniques for dynamic substructuring

e Reduction of components

’\/\/
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* Assembly of components
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Theory of dynamic substructuring

Reduction of component models

Often FE models are very refined
 High accuracy
e Large number of DoF

— Results in high computational effort for dynamic

problems

 Re-meshing could be very expensive

- Component model reduction methods
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Theory of dynamic substructuring
Reduction of component models

Basic idea:

e Description in terms of vibration mode shapes instead of
nodal displacements:

—>

—

—

15t mode shape

« Exact if all mode shapes are included
 Reduction is performed by only including a number of

mode shapes
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Theory of dynamic substructuring

Reduction of component models

e “Communication” between substructures needed
—> Add DoF on the interface
" Interface forces (&b)
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Theory of dynamic substructuring
Assembly of component models

Three passible assembly cases:
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Theory of dynamic substructuring

Assembly of component models

Two conditions:

 Compatibility

— Displacements on both sides of the interface must be
the same

e Equilibrium

— Connecting forces must be in equilibrium (i.e. equal in

magnitude and opposite in direction)
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Theory of dynamic substructuring

Assembly of component models

Interface displacements (Y1) to Interface displacements (Y1)

e Compatibility

0 w® = g

lto

e Equilibrium
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Theory of dynamic substructuring
Assembly of component models

Interface displacements (Y1) to Interface displacements (Y1)
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Application to a multi-MW wind turbine

* Yaw system

« Component models

 Measurements for component validation
* Analysis results
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Application to a multi-MW wind turbine

Yaw system

VARG
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Application to a multi-MW wind turbine

Yaw system

Tower top

Yaw motor Yaw controller

Main

Yaw gearboxes

Main shaft

bearing

ﬂJ
Gearbox

<«1— Yaw gearbox

Yaw motors
Yaw co

Yaw ring

— Interface

. System
boundary

Tower top

Yaw pads
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Application to a multi-MW wind turbine

Component models

Yaw gearbox

Tower to and yaw ring

awpac Bedplate
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Application to a multi-MW wind turbine

Component models

* Yaw gearbox model is built from 2 submodels:
= Yaw gearbox housing model
= Yaw gearbox gear model
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Application to a multi-MW wind turbine

Measurements for component validation

Measurements performed to validate:
e Simple bedplate model:
* Yaw gearbox model:

* Assembly of bedplate and 4 yaw gearboxes:
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Application to a multi-MW wind turbine

Measurements for component validation
Bedplate

Measurement performed to validate the bedplate model
33 locations measured using 3D acceleromters
*Excitation in z-direction using random signal
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Application to a multi-MW wind turbine

Measurements for component validation
Yaw gearbox

« Shaker attached to output pinion
* 3D accelerometer at input pinion

Crucial
* Geal’lis
e Prel
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Application to a multi-MW wind turbine

Measurements for component validation
Yaw gearbox

Preload applied:

* Using a mass suspended on a cable
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Application to a multi-MW wind turbine

Measurements for componen

t validation

Bedplate — yaw gearboxes assembly

AnAssembly aVss created trbarbesiplade amdModelsgearboxes

*AddgerdBdquatioies mved snoetk stia
*Random signal used for excitation
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Identified mocdes

10

Application to a multi-MW wind turbine

Measurements for component validation

An assembly was created of a bedplate and 4 yaw gearboxes
*First 5 eigenmodes and 8 and 9 show a high correlation
*Frequency difference < 5%

. Differance between measured and FE eigerfrequencies
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Application to a multi-MW wmd turbine

Analysis results

A ¥samgda dfadésomponents:

1 Bedplate

22 Yaw pads

1 Tower top and yawring
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Application to a multi-MW wind turbine

Analysis results

Full structure model as reference (293.000 DoF):
Frequency error [%]
 1-MAC value [-]

Reduced structure models

e Craig Bampton method (7929 DoF)

e Dual Craig Bampton method (8637 DoF)
* Rubin’s method (7881 DoF)
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Comparison of results
Reduction methods

Error on frequencies [%]

Relative error of eigenfrequencies
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Comparison of results
Reduction methods

Reduced models accurate up to the 80" eigenmode

Reduction of approximately a factor of 35!

Large number of DoF are interface DoF (> 90%)

Apply an extra reduction step to reduce the interface DoF

Reduced models
e Craig Bampton, 100 interface modes (730)
e Craig Bampton, 200 interface modes (830)
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Comparison of results
Interface reduction methods

e Accurate up to the 80" eigenmode

* BrradlgnrrkaiaidietaldpoF (730 vs. 293.000] - MAC [-]

. Relative error of eigenfrequencies I l o Error of mode shapes
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Conclusions and recommendations

Conclusions

 The general framwork was implemented

e Y system was accurately modeled using only 730 DoF

* Total reduction of a factor 400!

o Thé grtalp bt ivible assig nngenes lbfrbemwantiifoe the
application of dynamic substructuring within wind turbine
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Questions
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