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Stationary core-annular flow through a horizontal pipe
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A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core
surrounded by a low-viscosity annular liquid layer through a horizontal pipe. Special attention is paid to the
guestion how the buoyancy force on the core, caused by a possible density difference between the core and the
annular layer, is counterbalanced. From earlier studies it is known that at the core surface ripples are present
that have the shape of “bamboo” waves or “snake” waves. They generate pressure variations and secondary
flows in the annular layer that can cause a net hydrodynamic force on the core. Using hydrodynamic-
lubrication theory(assuming the core to be rigi@ has been shown that for snake waves the lubrication force
can counterbalance the buoyancy force. For bamboo waves that is not the case.
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[. INTRODUCTION in that case. Experimental results suggest that under normal
conditions a steady eccentric core-annular floather than a
In transporting a high-viscosity liquid through a pipe a stratified flow is achieved. It can be shown that for a steady
low-viscosity liquid can be used as a lubricant film betweenflow a wavy interface is needed to levitate the core. Rela-
the pipe wall and the high-viscosity core. This technique tively little attention has been given to the explanation of this
called core-annular flow, is very interesting from a practicallevitation mechanism. Oomfgt], Ooms and Beckergll],
and scientific point of view. In a number of cases it wasOomset al. [12], and Oliemans and Oonj2] proposed a
successfully applied for pipeline transport of very viscousmechanism based on hydrodynamic lubrication theory. They
oil. The low-viscosity liquid in these cases was water. Theshowed that levitation could not take place without a hydro-
pressure drop over the pipeline was considerably lower fodynamic lifting action due to the waves present at the oil-
oil-water core-annular flow than the pressure drop for thewater interface. In their work they assumed that the core
flow of oil alone at the same mean oil velocity. viscosity is infinitely large. So any deformation of the inter-
Much attention has been paid in the literature to coreface was neglected and the core moved as a rigid body at a
annular flow. Joseph and Renarfl] have written a book certain speed with respect to the pipe wall. The shape of the
about it. There are several review articles, see for instancaeyaves was given as empirical input. They were assumed to
Oliemans and OomE2], and Joseplet al. [3]. Most papers be sawtooth waves that were like an array of slipper bearings
deal with the development of waves at the interface betweeand pushed off the core from the wall by lubrication forces.
the high-viscosity liquid and the low-viscosity one, seeln their case the core would be sucked to the pipe wall if the
Ooms|[4], Bai et al. [5], Bai et al. [6], Renardy[7], Li and  velocity was reversed. So the slipper bearing picture is
Renardy[ 8], Kouris and Tsamopould®], and Koet al.[10].  obligatory if levitation is wanted. However it was pointed
These studies deal with axisymmetric vertical core-annulaout by Baiet al.[5] that(at finite oil viscosity the sawtooth
flow (the core has a concentric position in the pida that waves are unstable since the pressure is highest just where
case the buoyancy force on the core, due to a possible dethe gap between the core and the pipe wall is smallest. So the
sity difference between the two liquids, is in the axial direc-wave must steepen where it is gentle and become smooth
tion of the pipe. It was shown experimentally and theoreti-where it is sharp, and levitation of the core due to lubrication
cally that both liquid phases can retain their integrity,forces is no longer possible. To get a levitation force from
although an originally smooth interface was found to be un-+his kind of wave inertial forces are needed according to Bai
stable. For vertical upward flows axisymmetric travelinget al. [5].
waves develop with slightly sharper cregp®inting toward From their study of the wave development for a concen-
the annular fluigl than troughs, the so-called “bamboo tric vertical core-annular flow Bagt al. [5] tried to draw
waves.” For vertical downward flows also “corkscrew some conclusions about the levitation force on the core in
waves” and “snake waves” are possible, in which case thecase of an eccentric horizontal core-annular flow. They con-
interface is not only dependent on the axial direction of thesidered what might happen if the core moved to a slightly
pipeline but also on the tangential directiéalthough the eccentric position owing to a small difference in density. The
core remains concentric in the pipdJsing the calculated pressure distribution in the liquid in the narrow part of the
wave form also predictions were made for the pressure dropnnulus would intensify and the pressure in the wide part of
over the pipe and the hold-up’s of the liquids. the annulus would relax according to their predicted varia-
For the transport of very viscous @br other liquidg itis  tion of pressure with the distance between the core and the
also important to pay attention to core-annular flow throughpipe wall for the concentric case. In that case a more positive
a horizontal pipe. Since the densities of the two liquids argressure would be generated in the narrow part of the annu-
almost always different, gravity will push the core off-centerlus which would levitate the core. It is important to point out
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FIG. 1. Sketch of the geo-
| eccentricity metrical configuration.

again that the study of Bat al. [5] was for a concentric tribution in the annulus will be derived and the pressure
core. In a horizontal core-annular flow with a density differ- forces and viscous forces exerted on the core are determined.
ence between the liquids the core will be in an eccentridt is then investigated whether a steady situation is possible.
position and due to the presence of waves at the interfaceor a steady situation to arise a balance is required between
secondary flows perpendicular to the pipe axis are generatethe buoyancy force on the core and the vertical components
This type of secondary flows that also contribute to the forceof the pressure forces and viscous forces on the core. We will
on the core is not considered in concentric core-annular flonshow that for snake waves such a balance is possible.
Another core levitation model was proposed by Bannwart

[13]. It is based on an interface-curvature-gradient effect as- Il. THEORY
sociated with interfacial tension: if the radius of curvature . . .
increases withd (the tangential coordinate, see Fig). 4 As mentioned in the Introduction we start from the Rey-

downward force acts on the core due to interfacial tension. Ifolds equation for the liquid flow in the annulus
this paper we will not make a comparison of the relative

importance of the three levitation mechanisms, levitation due d hg do d [ 59¢
to (1) hydrodynamic-lubrication forceg?) pressure forces 20 @% a_x(
caused by inertia, an@) interfacial-tension forces. Here we

concentrate on a further development of the hydrOdyn""mlc\'/vherer, 0, andx are the cylindrical coordinates belonging to

lubrication model. ) . )
o the pipe.d has the value 0 at the top of the horizontal pipe.
The fact that a levitation of the core does not come f“’”.‘A frame of reference is chosen, according to which the core

l(:tbgicﬁstl]ofg:%rclfns dtr)|l(J:ta]|clr or: Ir?]iwrtel?rlicio\:v;e\/ssszlva'l?h%rw:\?eks)ytr?a?l is at rest and the pipe wall has a velodiin the x direction.
X y y sy X h,(60,x) represents the thickness of the annular space be-

were used in their calculation were bamboo waves that Werg: cen the core and the pipe waR.is the radius of the pipe
periodic in the axial direction of the pipe and were indepen- '

: . and w is the dynamic viscosity of the liquid. In Fig. 1 a
dent of the tange_ntlal coordinate. As f_oun_d by Rendlrdly ._sketch of the geometrical configuration is givefit is
waves are possible that are not cylindrically symmetric;_ . d hat in this fi he thick fth |
waves that are dependent on théirection and also on the pomte_ out that in this figure t e_t icKness o t. € annuiar
tangential directiorffor instance, snake wavest seems evi- layer is much too large to be practical for applications. How-

9 ' ever, the figure is only meant for introducing the relevant
dent that for such waves the forces on the core and also theeometrical aramete)sThe variableg is given b
secondary flow in the annulus will be different than for ad P 9 y
core with bamboo waves. So it is interesting to study the

o o =p+ pgr coso, 2
levitation forces on the core for the case of noncylindrically $=p+rg @

symmetric waves and to investigate the possible contributioq}\,r1erep is the hydrodynamic pressure in the liquid in the
of hydrodynamic lubrication to these forces. In this paper WeannuIUSp is the density of the liquid, ang is the accelera-
will show that core levitation by lubrication forces alone is o0 due to gravity. ’

possible for snake waves, contrary to the result for bamboo The thickness of the annulus can be derived from the
waves. As in the earlier work of Ooms and Oliem&2kwe relation

assume that the core viscosity is infinitely large. So the core

(with snake wavesmoves as a rigid body at a certain veloc- h,+h,=R, 3)

ity with respect to the pipe wall. In our calculations the prob-

lem of a moving core is transformed into one in which the hereh, describes the core surface with respect to the pipe

core is supposed to be at rest with respect to the referencgis \we assume the general shape of the core to be given by
system and where the pipe wall has a velocity in the axial

direction. The starting point of the calculation is the Rey-

=6uW—-, (1)

oo

: : . d nx
nolds equation, the basic equation of the hydrodynamic- hy(6,x)= h(lo) 1+ € 2 a, nCOSmé cosl
lubrication theory for the pressure distribution in the annulus. mn=0 " !
We will solve this equation by means of a perturbation cal- o .

; ; ; ; i T
qulauon with the dimensionless wave amplitude as per.turb.a- + E b nCOSMO SIN—— | |, (4
tion parameter. From the calculated pressure the velocity dis- m.n=0 |
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whereh{® is the constant radius of the core for the case that L)

no wave is present arlds the wavelength of the wave at the > =0 (8)
core surfaceeh{¥a,, , andeh{®)b,, , are the Fourier ampli-

tudes of the wave with respect to the core centerlines a 104 a1 o

constant and assumed to be much smaller than uiityghe = —=M—[— —(v )}, 9
paper of Ooms and Beckeffd1] only the termsag,, rde “ariror

amo.0on, andby, o were multiplied bye in the expression

for hy. All other terms were multiplied by? and were for dp w9 [ ow 10
that reason an order of magnitude smaller. Krofiig] al- ox ror\ or)’ (10

ready criticized this assumption. In this respect the calcula-

tion given in this paper in which all terms are of the order where v and w represent the velocity components of the
is an improvement with respect to the earlier calculajion. |iquid in the annulus in the andx directions, respectively.
We will first solve the flow problem for the general shape of The boundary conditions are

Eq. (4) and thereafter we will study the special case that the

wave has the form of a snake wave. In Ed) we have for r=h;:v=0 and w=0 (11)
omitted terms with simé, as for symmetry reasons they can-

not contribute to a net vertical hydrodynamic force on thegnd

core and hence to a compensation of the buoyancy force.

The Reynolds equation is solved by means of a perturba- for r=R'v=0 and w=W. (12)
tion calculation withe as the perturbation parameter. So we
assume thai can be written as Integration of the equations of motidmsing the boundary
. conditions yields
- i () 5
¢ |:20 €ov © 1 9¢ | hi(r2-=R?)Inh; R*r2-h?)InR
v=-——|rinr -
2u 96 2_ K2 2_ 12 J
After some straightforward calculations we find the follow- r(R%=hy) r(R™=hy) (13
ing solution in zeroth-order approximation
2_Rh2
¢(0):'3X (6) W:i% > o2 (R°=hp)Inr/R —WInr/R+W
du ox Inh;/R Inh,/R '
and in first-order approximation (14)
* m As the pressure distribution and velocity distribution in
pM=38x >, RI2 the liquid annulus are now known, we are able to calculate
m.n=0 mu(”i) the net vertical pressure—and viscous force exerted on the
| core. We assume that these forces counterbalance the buoy-
narx nx ancy force on the core caused by the difference in density
% amynsinmacosi—bm,nsinma sini) between the core and the liquid in the annulus. It has been
| ' shown by Ooms and Beckefd1] that this results in the
(an following condition:
(12uWIR) I 2w (1
+_h§me,2io W RJ def dX( @), -rCOSH
— me+| —— 0 0
R I
27 | dlv
nX nrx +MRJ’ dHJ dX—(—) sin@
X | a,qc0SMA COS—— by ncOSME sinl—), 0 o LIr\r/_g
A 27 |
(@) - —pgf daf dxtE. (15
2 Jo 0

where B represents a constant pressure gradient.

In order to be able to calculate the net hydrodynamicThe first term on the left-hand side represents the contribu-
force on the corgwith contributions from pressure forces tion due to the pressure forces on the core, the second term
and viscous friction forcgswe need to calculate also the represents the contribution due to the viscous forces and the
velocity distribution in the liquid in the annulus. Assuming term on the right-hand side represents the buoyancy force.
the thickness of the annulus to be small compared to the pipBubstitution of the calculated pressure distribution and veloc-
radius and the wavelengtfthe basic assumption of the ity distribution gives the following condition for stationary
hydrodynamic-lubrication theoyythe equations of motion core-annular flow(counterbalancing of the buoyancy force
can be simplified to by the pressure forces and viscous fojces

066301-3



G. OOMS AND P. POESIO PHYSICAL REVIEW B8, 066301 (2003

0.035 - - - included the contributions of ati values. And for each se-
s x_n-contrbution, N lected value ofh we have included the contributions of ail
0.08F "x 1 values. As can be seen the lowest valuemaindn are most
< important for the vertical hydrodynamic force.
0.025 x 1 (4) From Eq.(16) it is clear that no counterbalancing of
x the buoyancy force is possible far=0. The physical expla-
€ 002 x 1 nation is, of course, that far=0 no wave is present at the
2 < core surface. So no core levitation is possible without a wave
Z0.015} "x . at the core surface moving with respect to the pipe wall.
(5 If we selectag;#0 (a;0#0 because of core eccen-
0.011-° . tricity) and all other possible combinations af, ,=0 and
. b, n=0, the wave has the symmetrical shape of a cosine
0.005F o function in thex direction independent of the value. From
° %600, Eq. (16) it follows that core levitation is not possible for such
L 20000000000000000000000000000000000000 a wave shape. Stationary core-annular flow is, therefore, only
0 20 e 80 1% nossible when the wave has a nonsymmetrical shape ix the
direction or when the wave shape is dependention
FIG. 2. Contribution of each term im and n. Harmonicsn (6) B is not present in Eq(16). So the constant pressure
<100 forN(n) andm<20 for M(m) are the only modes that are gradient over the pipe has no influence on the levitation force
relevant. on the core.
Equation(16) can be written in the following dimension-
( an) less way:
62 uwezl 2NN R | Ap _Fr , o
TUOPRE e e MR P RS w
I

with the Froude number FrW?/gR and the Reynolds num-
X (8mnPm+ 10~ Bmn@my+ 10) = TApgIN{D2, (1) ber Re=(pWR/u). f(HY,L) is a known function of the
dimensionless thickness of the annular laygf’=h{/R
Equation(16) is very interesting and we make the follow- and the dimensionless wavelendthk-1/R. p is the density
ing remarks about it. of the liquid. With Eq.(17) we can calculate which dimen-
(2) In our calculation we found that the net vertical force sionless density difference can be counterbalanced by the
on the core is only due to the viscous forces, not due to th&ibrication forces as function of the relevant dimensionless
pressure forces. The mathematical reason is that the viscogsoups. In the following sectiofwhen we discuss a core
term in Eq. (15 (with the velocity derivativi consists of  with a ripple in the form of a snake wayvee will give some
terms containing a product of s and cosifn+1)6 (be-  quantitative results derived from this equation.
cause of the product af¢/d6 and the function oh; in the Ooms and Beckerdl1] also proved that the force exerted
viscous term Such a product can be written as a sum of twoon the core in the length direction of the pipe per unit of
trigonometric functions, one of which is séhSubstitution in  length is given by
Eq. (15) gives a siRd term, which after integration results in

a net contribution to the vertical hydrodynamic force on the = =M—szwd0f|dx< 07_W> (18)
core. This explanation cannot be given for the pressure term “ 1 Jo 0 oar :R'
in Eq. (15). o

(2) Because of the buoyancy force the core will have arPr after substitution of Eq(14) by
eccentric position in the pipe. The eccentricity is given by uR 27 | 1 R2 (27 |
the termeh{®a, cose in Eq. (4) for the description of the Fo=—"—— daj dx( —) + J daf dx
core surface with respect to the pipe centerlifiecan be I Jo o \In(h./R)/ 4l Jo 0
shown that in first-order approximation with respecktthis 1—(hy/R)?\ 96
term describes the vertical displacement of a cylinder with X| 24+ —————| —. (19
respect to its origin.All other termsa,, , andb, , describe In(h, /R) ] ox
the wave shape at the core surface. The first part of the right-hand side of Eq.9) represents the

(3) The denominator of Eq(16) contains terms witi®  contribution due to the main flow in the axial direction of the
andn’. As the coefficients,, , andby,, , are of the order of pine. When there is no additional pressure gradient in the
unity, it follows that the contribution to the vertical hydrody- annular layer =0), the second part is solely due to the
namic force on the core depreases with i.ncre'asing order of secondary flows perpendicular to the pipe agaused by the
and n. To illustrate this point we show in Fig. 2 the term ripple in the core surfagewhich are necessary for counter-
M(m)=37_o[(n7RI)/(m+1)>+(nwR/)?] as function  palancing the buoyancy force. Again in the following section
of m and N(n)==7_ [(n7R/1)/(m+1)?>+(n7R/1)?] as  we will give quantitative results derived from this equation
function of n. So, for each selected value of we have for the case of a core with a snake wave.
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IIl. BAMBOO WAVES, SAWTOOTH WAVES,
AND SNAKE WAVES

Bamboo waves and sawtooth waves have the same gen-
eral wave form

h,=eh{Va; ccosh+h{?

+

” nmTX ” nmX
eh(lo)(nEl 80,,C0S— +r121 bonSi i )

(20

As mentioned earlier the first term on the right-hand side

represents the eccentricity of the core with respect to the pipe . 3, sketch of a core with ripple in the form of a snake wave.

axis, the second term is the constant radius of the core in

case of absence of a wave, and the third term represents the ) ) )

wave shape. As can be seen the wave shape is independenf§fond term is the constant radius of the core in case of

the tangential directiord. The only difference between a absence of a wave, and the third term represents the wave

bamboo wave and a sawtooth wave is the shape of the wah'@pe. It can be seen from E(6) that for snake waves a net

in thex direction. It is clear from Eq(16) that for both types ~Nydrodynamic force is possible ”? approximation. So even

of waves a vertical hydrodynamic force is not foundeh when the wave shape in tixadirection for the snake wave is

approximation. However, we know from the work of Ooms ¢hosen to be equal to the one for the bamboo wave gthe

and Beckerd11] that when we extend the calculation to dependence of the snake wave changes the calculation pro-

higher orders ine a net vertical force will be found. They foundly. _ _

found that the sawtooth wave can levitate the core by a net e have studied core-annular flow for a core with a snake

viscous force. The problem is, as discussed in the Introduc¥ave in more quantitative detail. The dependencedois

tion, that the sawtooth wave is not hydrodynamically stableflear from Eq(21). The shape in the direction was chosen

and will deform(in case a finite core viscosity is taken into i Such a way that a#=0 it was identical to the shape of a

account. Also for a bamboo wave a net viscous force ex-bamboo wave. This was done accordlng to the following

erted on the core is found in higher orderseofHowever, —Procedure. We selecte@=0. In that case in E¢(21) only

this force is in the same direction as the buoyancy force an§o17x/l and simmx/l terms are present with coefficients

the core will therefore be sucked against the pipe wall. Ad@o,nta1,) and 0o n+by). These coefficients were deter-

shown by Baiet al. [5] inertial forces are needed for a pos- Mined by selecting a bamboo-wave shape fromegail. [5]

sible levitation of a core with a bamboo wave. and calculating the Fourier components for this wave. The
Snake waves differ from bamboo waves because of theigontribution of the Fourier components was then split over

6 dependence. There are many snake wéawith differents ~ @o,n @anda,, and overb, , andb,, in such a way that the

dependencdepossible. From Ec(16) we know, however, that Shake wave shown in Fig. 3 was found. As with thele-

for a net levitation force it is necessary that there are at leagt€ndence many more possibilities exist for #aependence.

two Fourier components with successinevalues:m and In our calculation for the core with a snake wave we

aop, Ain, b, andby, are different from zero. All other like rovy flgld was _found. Some ty_p|cal streamlines are

Fourier components are assumed to be absent. So we choddown in Fig. 3. This flow field is different from the one

the following shape for the ripple in the core surface: calculated by Ooms and Beckefsl] for the case of a
sawtooth-shape wave. In that case an oscillatory-like flow
h,=eh{®a; cosh+h{? field was found: superposed on the main flow in the length
' direction of the pipe there were oscillating secondary flows
(0) - nmx on both sides of the core.
+| ehj n§=:1 8onCOS—— For the snake wave witla,, , and b, , coefficients as

described above we have calculated the dependente/of

as a function of the relevant parameters given by &d).

For that purpose the eccentricity parametep and the am-

plitude parametere were chosen to have certain values.

Some results are given in Fig. 4 and Fig. 5. In Fig. 4 the
. (dimensionlessdensity differencgwhich can be counterbal-

anced is shown as function of thedimensionlesisthickness
(21)  of the annular layer for three values of the ratio Fr/Re. In Fig.

5 it is given as a function of th@imensionlesswavelength.
Again the first term on the right-hand side represents thdt is clear that the film thickness has a significant influence,
eccentricity of the core with respect to the pipe axis, thewhereas the dependence on the wavelength is negligible. The

nmX

+(ay,—ay gcosd cosl—

+

- nx nx
eh{®> bosin—— + by ;086 sin— )
n=1

066301-5



G. OOMS AND P. POESIO PHYSICAL REVIEW B8, 066301 (2003

0.035 T T T T T 0.35
— Fr/Re=1
=+ Fr/Re=5
N — — Fr/Re=10
0.08 " . o3}
o025k N, . 0.25}
o 0021 \\\ ] __o2r
e 23
<10.015—\_\ AR ) * 0.15}
oorr e ] 0 Ap=t0kgm®
L Tl _ i Ap =5kg/m3
0.005 Sl ] S 7. LR AANR
o\ Ap=1.1kg/m®
0o+ 005 006  ofg o008 0.09 0.1 o5 o5 o o o 1
2 W (m/s)
: 0
FIG. 4. Aplp as function ofHE” for three values of Fr/Re FIG. 6. Levitation force as function of velocity (a; ;=0.5,
(810=0.5, €=0.02). R=0.1 m,1=0.03 m, x=0.001 Pase=0.01, h{)=0.002 m).
dependence on Fr/RéNv/gR* is also considerable: is the Finally we show in Fig. 9 the axial force on the core as

kinematic viscosity of the liquid. With increasing values of function of the axial velocityW. The contributions of the
Fr/iRe larger density differences can be counterbalanced. main flow and of the secondary flow are plotted separately.
We have made some additional calculations for the casat small core velocities the contribution of the secondary
of oil-water core-annular flow. We choos@=0.1m, |  flow is dominant. At large core velocities the contribution of
=0.01 m, »=0.001 Pasg=0.01, anda, (=0.5. For these the secondary flow becomes negligible and the frictional
value of the parameters we show in Fig. 6 the levitation forceorce is mainly due to the flow in the axial direction of the
on the core as a function of the core velocity. Also three linegipe.
are given, which indicate which levitation force is needed to
counterbalance density differences &p=1.1 kg/n?, Ap
=5 kg/n?, and Ap=10 kg/n®. In practice density differ-
ences between oil and water are of the order 10 Rgis A theoretical model, based on the hydrodynamic-
can be seen oil velocities of the order 0.5 m/s are sufficient tquprication theory, for core-annular flow through a pipe has
levitate the oil core. Such velocities are Certainly possible irbeen deve|0ped_ According to this model the movement of
practice. Similar results for oil-water core-annular flow arethe rippled core with respect to the pipe wall induces pres-
given in Fig. 7 and Fig. 8. They show the dependence of thgyre variations and secondary flows in the annular liquid,
levitation force on the wavelength and on the water filmwhich can exert a net lubrication force on the core in the
thickness, respectively. The levitation force increases with
increasing wavelength and decreasing water film thickness. _ .

IV. DISCUSSION

10
0.035
10' b
3
. ooz N
=
B o
0.015} 10° |
0.0t}
0.005
10_1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1
0 1 1 1 1 I (m)
0 0.01 o2 o0 0.04 0.05
FIG. 7. Levitation force as function of wavelength(a;g
FIG. 5. Ap/p as function ofL for three values of Fr/Reag, =0.5, R=0.1m, h{’=0.01 m, x=0.001 Pas, e=0.01, W
=0.5, €=0.02). =1 m/s).
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— Levi on force
_ _ap=11kgm®
... Ap=5kgm®
._. Ap=10kgm®

10_2 1 1
0.005 0.01 © 0.015 0.02
b (m)

FIG. 8. Levitation force as function of water film thickness
(a;0=0.5, R=0.1m, 1=0.03 m, ©=0.001 Pas, e=0.01, W
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0.4

—o— Contribution from the main flow
—— Contribution from the secondary flow
0.35% —e— Total force I

0.3

0.25

0.05

G o = K
10 10 10

FIG. 9. Axial force as function of the oil core velocitya{,
=0.5, R=0.1m, 1=0.03m, ©=0.001Pas, €=0.01, h{)

=1 m/s). =0.002 m).

vertical direction. For a ripple in the form of a snake wavesnake waves at the core surface. Also the influence of the
this force can be so large that it counterbalances the buoytrbulence in the annular layer will be included following the
ancy force on the core allowing a steady core-annular flow tavork of Oliemang 15].
arise. For a ripple in the form of a bamboo wave this is not At the moment three theoretical models exist for explain-
possible. ing the counterbalancing of the buoyancy forcé) the

In our calculations we have neglected inertial forces. Ashydrodynamic-lubrication-force model of Ooms, Oliemans,
was shown by Baét al.[5] inertial forces are likely respon- and co-workers(2) the inertial-pressure-force model of Bai,
sible for the levitation of a core with bamboo waves. Depen-Joseph, and co-workers, af®) the interfacial-tension-force
dent on the Reynolds number of the liquid flow in the annu-model of Bannwarth. It is necessary to compare the relative
lus it can, therefore, be expected that also for snake waveamportance of the levitation mechanisms described by these
the inertial forces can have a significant influence on corenodels as function of the values of the relevant parameters
levitation. For that reason we will in our future work include of core-annular flow. We will, therefore, pay attention to this
the inertial forces when studying core-annular flow with comparison.
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