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Abstract

Federated Learning (FL), is a distributed learning
approach where multiple clients collaboratively
train a model whilst maintaining data security
and privacy. One significant challenge in FL
that must be addressed is statistical heterogeneity
within the data. This occurs because data across
different clients may not come from the same
distribution, potentially leading to sub-optimal
performance. To address this, we examine how
insights gained from a generative model’s latent
space can mitigate these problems by adjusting
the aggregation weight (influence) assigned to
each client during the training process. We
leverage information derived from a Variational
Autoencoder (VAE) trained in a federated manner
and propose a method to modify the aggregation
weight of each client in FL. This method considers
local discrepancies, resulting from differences
between the local latent space distributions and
global latent space distributions, together with the
dataset sizes of each client. Experiments were
conducted on the MNIST and Fashion-MNIST
datasets. Our results indicate that our method
enhances the model’s performance by up to 6.76%
in the best case, in terms of reducing the average
test VAE loss and accelerating the convergence of
the VAE in scenarios characterised by severe data
imbalances among clients. It worsens performance
when all clients have an equal level of imbalance.
The source code for our research is avail-
able at https://github.com/FederatedRP2024Delft/
Federated-Learning- Py Torch- Weight-Modification.

1 Introduction

Federated Learning (FL), initially proposed by McMahan et
al. [1]] is a Machine Learning (ML) paradigm which sees a
set of massively distributed clients collectively train a unified
global model. In short, each client trains a model on their
own dataset, aiming to reduce the training error specific to
their dataset. Afterwards, the model parameters from all (se-
lected) clients are aggregated to make a new model. The en-
hanced model is shared with all clients who then undergo ad-
ditional rounds of training to further refine the global model
by reiterating the previously outlined procedure (Figure TJ).
This process is repeated across multiple epochs, referred to
as communication rounds in a FL context.

This approach eliminates the need for clients to share their
data, allowing for the development of ML models whilst en-
suring data security and privacy. Additionally, the vast size of
datasets residing on these clients often makes it impractical
to transmit this data to a central location for training purposes
due to resource constraints [1]], [2]]. These attributes render
FL methods especially appealing for applications in sensitive
domains such as healthcare [_2].

Training a model in a federated manner introduces certain
challenges, one of which is the statistical heterogeneity that
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Figure 1: Illustration of FL that shows weight distribution
among clients, local training, and subsequent weight aggre-
gation.
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arises from using FL. Typically in FL, the data distribution
among clients varies, which contradicts the conventional as-
sumption that data are independent and identically distributed
(IID) [3]]. In this thesis, we focus on a type of statistical het-
erogeneity, referred to as category distribution heterogeneity.
This occurs when some clients possess a significant number
of samples from specific classes, whilst others do not have
a comparable amount of samples from those same classes.
This is problematic as “different local models are optimised
towards different local objectives, causing divergent optimi-
sation directions” [4, p. 1]. This discrepancy can lead to per-
formance issues such as a decrease in accuracy and slower
model convergence [3]].

Optimisation approaches like the widely accepted FedAvg
algorithm have been proposed to facilitate the FL process [1]].
This algorithm, however, has been observed to diverge in sce-
narios where the data across clients is not IID [[1]], [3]. Var-
ious studies have investigated different strategies to address
this issue. Examples include: utilising clustering algorithms
to categorise similar clients and incorporating regularisation
terms to constrain local models [5]]. Our research focuses on
one specific approach: adjusting the aggregation weights of
the clients, a method that has demonstrated enhanced perfor-
mance [4], [5].

This thesis explores the less commonly researched subject
of adjusting aggregation weights in FL by investigating gen-
erative models’ latent spaces. We examine the properties of a
generative model known as a Variational Autoencoder (VAE),
which learns a compressed latent representation of the origi-
nal data. This investigation is motivated by the ability to use
information from the latent space of each client to infer the
similarity between the client’s data distribution and the over-
all global data distribution, thereby allowing us to weigh the
importance of each client accordingly. This raises the ques-
tion: how does adapting aggregation weights in FL, based
on the differences between the global latent space and locally
encoded sample distributions of a VAE, affect model perfor-
mance and convergence? This thesis provides insights into
the feasibility of training a VAE in a federated manner, such
that the difference between the locally encoded sample distri-
bution of each client and the global latent space distribution
can be used to re-modify the aggregation weights of clients
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when retraining said VAE from scratch.
This thesis begins by providing additional context pertinent
to the problem in|Section 2} [Section 3|discusses the proposed

Algorithm 1 FedAvg. K denotes the number of clients, T’
is the number of communication rounds, £ is the number of
local epochs, B is the local batch size, 7 is the learning rate.

method for adjusting client weights. Following this,[Section 4

details the experimental setup and the results obtained. [Sec-|
analyses these results, in the context of existing liter-
ature. This thesis concludes with [Section 6| and [Section 7|
where recommendations for future research are given along-
side a discussion regarding the ethical considerations inherent
to this subject matter.

2 Background

This section offers important contextual knowledge which is

relevant for [Section 3l [Subsection 2.1| discusses more back-

ground knowledge about FedAvg and an improved version

of FedAvg known as FedDisco. [Subsection 2.2| discusses

some background information related to the generative model
which was used in our experiments.

2.1 FedAvg and FedDisco

FL aims to minimise the finite-sum objective function seen in
Equation [

K
min » i Fi(w) (1)
k=1

where K represents the number of clients, [} denotes the
local objective function for client k, and pj, indicates the ag-
gregation weight of client k. The algorithm starts by initial-
ising global weights wy. Client k is trained in round ¢ with
the global weights of w;_; for E local epochs. To determine
w1, the weighted average is taken over the updated model
parameters of each client w/ " 1 weighed by py. In FedAvg,
this is equivalent to the relative dataset size of client k [1]]. It
is important to note, that the original FedAvg algorithm uses
a subset of clients for local updates. This thesis uses all K
clients across all communication rounds in experiments for
simplicity, as reflected in [Algorithm 1]

The best performance in FL is realised when a larger
weight is assigned to better-performing local models. Empir-
ical observations indicate that the discrepancy level of each
client’s local dataset offers a more precise reflection of lo-
cal model performance than the relative dataset size [4]. By
minimising the convergence error bound for FedAvg, an opti-
mised aggregation weight can be derived (Equation 2. It con-
siders a scalar discrepancy value dj, that corresponds to how
far a client’s local data distribution is from the (ideal) global
data distribution. This discrepancy is considered along with
the relative dataset size ny, and hyperparameters « and b,
which regulate the influence of dj in determining the weight
P [4].

D <Ny —a-dy +b ()

Following this observation, FedDisco was proposed by Ye
et al. [4] as an improvement to FedAvg, with the key differ-

ence being in the determination of p; (Equation 3):

1: function FEDAVG(T, E, B, K, n)
2: initialise wq

3 for eachround ¢t =1,2,...7 do
4 for eachclient k =1,2... K do
5: wf, | + ClientUpdate(k,w;, E, B,n)
6: end for
K
7 Wit kzl Pr - Wi
8 end for
9: return wr

10: end function
11: function CLIENTUPDATE(k, w, E, B, 1)
12: B < (split Py, into batches of size B)

13: for each local epoch i from 1 to E do
14: for batch b € B do

15: w <+ w— NVl (w;b)

16: end for

17: end for

18: return w

19: end function

nE—oa-di +b
D = K( k K+ b)t 3)

> (M — - dipy + b)4

m=1

where ReLU (denoted by (z)4) is used to eliminate neg-
ative weights [6]. FedDisco calculates the local discrepancy
dj, by applying a statistical metric function (such as KL di-
vergence) “between its local category distribution and the hy-
pothetically aggregated global category distribution”, which
they assume to be a uniform distribution [4, p. 5]. The ra-
tionale is to impose greater penalties on clients with im-
balanced datasets compared to those with balanced datasets,
where the local data has similar frequencies across all classes.
This is why the statistical distance to a uniform distribution
is used [4]. In we use alongside our
customised approach of determining local discrepancy which
eliminates the need to assume the shape of the global data
distribution. Instead, it draws from specific insights gained
from training a VAE in a federated fashion.

2.2 [-Variational Autoencoder

A Variational Autoencoder (VAE), is a type of generative
model represented as a neural network that encodes input data
into a compressed latent space and then decodes it back to
the original data. Unlike normal autoencoders, which are de-
terministic models, VAEs represent the latent space with a
continuous probability distribution [7]. This key difference
allows VAEs to generate new data points by sampling from
said distribution, a capability which is not inherently possible
with regular autoencoders.

The training process of a VAE involves minimising a loss
function that combines the reconstruction loss (as defined for
regular autoencoders) with the KL divergence between the



encoded sample(s) and a predefined prior distribution p(z).
This distribution is usually defined as a standard normal dis-
tribution, A/ (0, I) [7]. B-VAE is a type of VAE which extends
this idea but puts a coefficient 3 in front of the KL-loss term
which assigns a higher weight to the KL-Loss, as shown in
[71, [8]. The parameters of the decoder and en-
coder networks are represented by 6 and ¢ respectively. The
reconstruction loss is the expected log-likelihood of obtaining
a data sample z(?) being reconstructed from a latent vector
2 which is sampled from the approximate posterior distri-
bution g4(z|z(?). Here, J denotes the dimensionality of the
latent variable, and ® denotes element-wise multiplication.
, ;
ay). They represent the outputs of the encoder’s last hidden
layer in an arbitrary latent dimension j.

The encoded values for sample z(*) are denoted by 4\ and

L(0, ¢; ) ~ E[logpg(x(i) \z(i) ~ Q¢(Z|l‘(i)))] +

Reconstruction Loss

J
(1 +log((0)) = ()2 = (017
i=1

N

KL-Loss
where 2V = 1) 4 6 ©eand e ~ N(0,1) (4)

It is crucial to note that the loss function penalises the
model during training if an encoded sample does not closely
represent the predefined prior distribution due to the KL-Loss
regularisation term as seen in Furthermore, when
B > 1, “the model is pushed to learn a more efficient latent
representation of the data, which is disentangled if the data
contains at least some underlying factors of variation that are
independent” [8, p. 3]. Based on this information, it follows
that under an IID setting, the learned prior distribution ¢(z)
closely approximates A (0, I). In we discuss how
this property can be used in a federated setting in tandem with
what was discussed in

3 Determining Client Weights

In this section, we outline the contribution of this thesis and
introduce a method that leverages the concepts from[Section 2]
to adjust client weights.

From the observations in we understand that
since the global latent space closely resembles the predefined
prior distribution, a client’s dataset that closely represents the
global data distribution will produce locally encoded samples
that align well with the prior distribution. Conversely, if a
client has a highly imbalanced dataset, it will not match the
predefined prior distribution as well.

We conducted a preliminary trial to assess the impact of
an imbalanced dataset on a client’s sample encoding distri-
bution. For this trial, we trained a standard VAE in a feder-
ated manner on the MNIST dataset [9]. The setup included
four clients: two with IID local data distributions and two
with Non-IID local data distributions created using Dir(0.5)
(Figure 2)). Empirical observations highlight two key points
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Figure 2: Two clients have IID data distributions, while the
other two follow a Dir(0.5) distribution. Each coloured bar
represents one of the ten classes in MNIST.

about the two clients with IID distributions. Across both la-
tent dimensions, their distributions closely match the prior
distribution, except for a small anomalous gap on the left tail
in dimension 2 (Figure 3). The distributions of these two
clients are also virtually identical, which is to be expected.
The other two clients with imbalanced distributions depict
different characteristics. In dimension 1, their distributions
do not resemble a normal distribution. In dimension 2, whilst
the shape of the distribution is somewhat similar to a normal

distribution, it is not centred around zero (Figure 4).
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Figure 3: Encoding sample distributions of clients with I1ID
data distributions

We hypothesise that we can leverage this small yet signifi-
cant insight to adjust client weights based on the resemblance
between each client’s locally encoded sample distribution and
the prior distribution A/(0, I). After training a 3-VAE in a
federated manner, to determine the new weight py, for client
k, we will follow these steps: First, we will encode all local
samples on client £ by performing a forward pass through the
trained encoder network. Next, we will evaluate each latent
dimension individually (as each latent dimension is indepen-
dent [8]]) and compute the Wasserstein distance [[10] between
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Figure 4: Encoding sample distributions of clients with
Dir(0.5) data distributions

a N(0,1) distribution and the values of the locally encoded
samples for that specific latent dimension. To reiterate, we
focus on the statistical distance to N (0, 1), which represents
the prior distribution p(z). The rationale is to measure the
extent to which the locally encoded sample distribution de-
viates from p(z). The average of these distances across all
latent dimensions will be calculated to determine the local
discrepancy factor dj,. As discussed, we use dy, in[Equation 3|
to determine the new weights of each client. This process is
outlined in

We opted to use Wasserstein distance over KL divergence
for 3 reasons. Wasserstein distance is a true distance met-
ric, unlike KL divergence, which fails to meet the symme-
try property. This is significant because it ensures Wasser-
stein distance forms a metric space [11]]. Furthermore, the
Wasserstein distance between two probability distributions
represents the minimum amount of “work required to trans-
port the probability mass from one distribution state to an-
other. This characteristic provides a smooth and significant
representation of the distance between distributions, making
it a good candidate in domains where analysing the similarity
of outcomes is more relevant than an exact likelihood match-
ing” |11} p. 3]. This is crucial for our use case, as we prioritise
the notion of similarity between the distribution of local sam-
ple encodings and the global prior over the differences in like-
lihood at specific points within said distributions. Although
not an inherent advantage of Wasserstein over KL divergence,
it is worth noting that Wasserstein distance only takes values
in the range [0, 00). This is important as when
was proposed, the authors determined d, using either the L2
difference or the KL divergence [4]], both of which have the
range [0, 00). Therefore, using the Wasserstein distance in
this context is justified.

In we implement this method and outline the
experiment conducted in this thesis to evaluate its practical-
ity and effectiveness in achieving performance improvements
over how clients are conventionally weighed in the FedAvg
algorithm.

Algorithm 2 Proposed algorithm used to determine new
weights. K denotes the number of clients, Ency is used to
denote the trained encoder network with learned parameters
¢. a and b are hyperparameters.

1: function DETERMINE_NEW_WEIGHTS(K,Ency, o, b)
2: for eachclient k =1,2... K do

3: EM*" « Generate embeddings of £’s local sam-
ples through forward pass on Encyg

4: di < 0

5 for each dim € £7 do > Each latent dimension

6: D <+ Wasserstein_Distance(dim, A/(0, 1))

7 di < dp + %

8 end for

9 wy  (np —a-dip+ )y l>
10 end for

K
11: dig + Z Wi

k=1
12: fork=1,2,...
13: W %’;
14: Pr — Wk
15: end for

16: end function

K do

4 Experiments

Experimental setups are shown in [Subsection 4.1] and results
are presented in section [Subsection 4.2

4.1 Experimental Setup

Datasets: We consider two image datasets. Namely,
MNIST [9], which is a dataset of handwritten digits and
Fashion-MNIST which is a dataset of fashion item im-
ages [12]. Both datasets contain 70,000 28 x 28 grey-scale
images with 60, 000 training and 10, 000 test samples.

Data Preprocessing: For all experiments on both datasets,
we normalised the entire dataset to ensure that the feature
values have a zero mean and unit variance. Specifically, for
MNIST, we used a mean of 0.1307 and a standard deviation
of 0.3081. For FMNIST, we used a mean of 0.2860 and a
standard deviation of 0.3530.

Federated Scenarios: We will explore federated scenar-
ios (data distributions) identical to those introduced by Ye et
al. in the FedDisco paper [4]. We will focus on two sce-
narios denoted as NIID-1 and NIID-2. NIID-1 comprises 10
clients with a heterogeneous data distribution. This distribu-
tion is achieved by sampling §; ~ Dir (0.5) and assigning
d;,1; proportion of class ¢ instances to client & [13]]. NIID-2
consists of 5 biased clients, each containing data from 2 out
of 10 classes, alongside 1 unbiased client which has data from
all classes [3]], [4]]. The data distributions for these given sce-
narios can be seen in

Implementation Details: All experiments were conducted
with a fixed setup consisting of 25 communication rounds, 10
local epochs, and a local batch size of 64 samples. Through-
out these experiments, we adjusted the hyperparameter «,
which corresponds to the weight attributed to the discrepancy

factor when computing the new weight of p; (Equation 3).
Different values of « in the set {0.1,0.5,0.9} were used in
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Figure 5: Visualisations of the class distributions in NIID-1
and NIID-2

every trial. The hyperparameter b was kept constant at b = 0.

Model: The model used was a standard 5-VAE (8 =
10.0), trained with the Adam optimiser at a learning rate of
n = 0.001. A discussion of the model’s architecture, along

with a schematic diagram, is provided in [Appendix Al For
the reconstruction loss (Equation 4), we used mean-squared

error (MSE). It is important to clarify that instead of the
usual MSE, where the average of all the squared differences
is taken, we used the sum of the squared differences. This ap-
proach is standard for images, as the expectation of the log-
likelihood is calculated as the sum of all squared differences
for each pixel, rather than the average of the differences for
each pixel.

Software and Hardware: We employed an open-source
federated *framework’ built in PyTorch. We also adapted the
framework by integrating the client weight modification algo-

rithms discussed in this thesis. Both the original framewor

and our modified versiorﬂ are available to the public. The
experiments were conducted on a computer running Ubuntu
22.04.04, equipped with an AMD Ryzen 5800H CPU and an
Nvidia RTX 3050M GPU.

Metrics: The average VAE loss will be eval-
uated on the global model using all samples from the test set
at the end of each communication round. This will enable us
to assess the impact of our method on the performance of the
(B-VAE and to examine whether our method improves conver-
gence speed.

4.2 Results

We collected results for the experimental setups detailed in
and conducted five trials for each federated
setting to minimise the chance of undetected anomalies. It is
worth mentioning that for trials with o = 0.9, some were not
tested five times due to big local discrepancies at all clients,
which led to each client being assigned an undefined weight
(0 in the denominator of [Equation 3). Nevertheless, the over-
all trend observed in the remaining trials was consistent. To
contextualise these results, we compared them to a baseline
(B-VAE which corresponds to a 8-VAE trained using the regu-
lar FedAvg algorithm where the client’s weight

is determined by its relative dataset size (px = ng).

"https://github.com/AshwinRJ/Federated-Learning- Py Torch
Zhttps://github.com/FederatedRP2024Delft/
Federated-Learning- Py Torch- Weight-Modification:

To summarise the results for NIID-1, it is evident that the
introduction of new weights leads to a decline in the model’s
effectiveness on both the MNIST and FMNIST datasets when
training is completed. Nevertheless, a notable observation is
that the modified weights yield better performance compared
to the baseline during the initial communication rounds as «
increases.

In the MNIST dataset (Figure 6)), we see that for @ = 0.1,
it performs similarly to the baseline and both of them im-
prove steadily over communication rounds, with o = 0.1 be-
ing slightly worse in terms of performance. For oo = 0.5, the
model initially performs better than the baseline in the first
four communication rounds but then converges prematurely.
Even after five trials, the performance for o« = 0.5 varies, as
indicated by the high standard deviation of the loss across all
communication rounds. We were able to test « = 0.9 once
for this federated setting, however, it shows sub-optimal per-
formance after 5 communication rounds converging to an av-
erage test loss around 539.68, whereas the baseline converges
towards 517.35. In NIID-1, @ = 0.1 shows a high standard
deviation across all communication rounds, indicating that its
performance varies depending on the specific data distribu-
tion, suggesting that it potentially outperformed the baseline
in certain trials.
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Figure 6: Average test loss difference over 25 communication
rounds between a 3-VAE with = 10.0 and the same 3-VAE
retrained from scratch with modified weights across different
« values under NIID-1 on the MNIST dataset

For the FMNIST dataset (Figure 7)), similar behaviour was
observed. Higher values of « helped the model converge rela-
tively faster within the first three communication rounds. The
improvement in the second communication round is evident,
as the baseline shows an average VAE loss of 526.24, while
the best-performing model (o« = 0.9) exhibits an average
VAE loss of 479.71. When « values are too high, the model
tends to converge towards a client’s local objective, which is
undesirable in the scenario where all clients are equally un-
balanced (NIID-1).

For NIID-2, contrasting outcomes were observed. The pri-


https://github.com/AshwinRJ/Federated-Learning-PyTorch
https://github.com/FederatedRP2024Delft/Federated-Learning-PyTorch-Weight-Modification
https://github.com/FederatedRP2024Delft/Federated-Learning-PyTorch-Weight-Modification

700 1 —— Baseline
a=01
I —— a=105
650 | —— a=09
\
w
w
5
— 600 4
7
ol
@
o
e
3 550 4
z
S
>
500
e v e S e
450 ————— . -
T T T T
5 10 15 20 25

Communication Rounds

Figure 7: Average test loss difference over 25 communication
rounds between a 5-VAE with 8 = 10.0 and the same /3-VAE
retrained from scratch with modified weights across different
« values under NIID-1 on the FMNIST dataset

mary observation was that increasing « enhanced overall per-
formance. The presence of a greater class imbalance within
client datasets led to the baseline method demonstrating sub-
par performance. The baseline also exhibits the greatest vari-
ance across communication rounds. This is to be expected as
each biased client only has two classes.

In the case of MNIST (Figure 8), there is not much of a dif-
ference between the baseline and the two « values o = 0.1,
o = 0.5. Both settings performed better than the baseline,
however, they all converged to around the same average test
loss, which in the case of the baseline was 551.49, whilst the
other federated settings achieved 550.01 and 548.53 respec-
tively. In the case of « = 0.9, the model performance was
improved as it converged to an average test loss of 522.61.
One notable similarity with NIID-1 is that a« = 0.5 exhibits a
high error, indicating that in certain specific scenarios of data
distribution, it could result in either better or worse perfor-
mance.

The results aligned with our hypotheses when we tested
the same federated scenario using the FMNIST dataset (Fig]
[ure 9). One key difference from the MNIST dataset is that
even lower values of a = 0.5 yield a greater performance im-
provement than when o = 0.5 was used on MNIST. This is
evident in the second communication round, where the base-
line shows an average test loss of 603.98, while o = 0.5 and
a = 0.9 yield losses of 467.84 and 464.90, respectively. This
performance is already better for the model with modified
weights after just 2 communication rounds compared to the
baseline model outcome after 25 rounds. Higher values of «
promoted faster convergence than observed with the MNIST
dataset. This is noticeable with o = 0.5, where the average
test loss difference between the first and second communica-
tion rounds is 64.1.
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Figure 8: Average test loss difference over 25 communication
rounds between a 3-VAE with 8 = 10.0 and the same 3-VAE
retrained from scratch with modified weights across different
« values under NIID-2 on the MNIST dataset
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Figure 9: Average test loss difference over 25 communication
rounds between a 3-VAE with 8 = 10.0 and the same 3-VAE
retrained from scratch with modified weights across different
« values under NIID-2 on the FMNIST dataset

5 Discussion

The results of our experiments can be contextualized within
the broader landscape of FL and /3-VAE optimisation. Unfor-
tunately, a limited amount of research leverages latent space
insights to adjust client weights in a federated setting, making
it difficult to compare our results directly with other studies.

What we found aligns with existing literature, which sug-
gests that FL models struggle with heterogeneous data distri-
butions due to the non-IID nature of the data at each client [1]],
[3]. The high standard deviation observed in these settings
underscores the challenge of achieving consistent perfor-
mance across all communication rounds when client datasets
are imbalanced.



Our results showed that the potential improvement in per-
formance from using our method largely hinges on the choice
of hyperparameters. Since we used a 5-VAE with § = 10.0,
the model was encouraged to learn a disentangled latent rep-
resentation of the data, implying that latent factors are con-
sidered independent [[14] and closely follow a A/(0,1) dis-
tribution regardless of how other latent variables are learned.
This accounts for the observed enhancement in performance
for federated settings when « was increased, as it resulted
from penalising clients whose learned latent distribution did
not closely match the predefined prior. Our findings also sug-
gest that adjusting the o hyperparameter resulted in increased
model performance, suggesting that fine-tuning this parame-
ter is essential for optimal model performance. This claim is
substantiated by comparing the results of NIID-1 and NIID-2,
as comparing the same « values for the two different settings
shows that it may not be optimal for that specific federated
setting.

In scenarios with NIID-2, our method showed that there
was a performance increase for all values of o that were
tested. This outcome was anticipated. Unlike NIID-1, there is
a client in the cluster with an IID dataset, leading to a smaller
local discrepancy value compared to other clients, which only
had 2 out of the 10 classes present. This was not the case in
NIID-1, where all client datasets were similarly imbalanced.
This could also serve as an explanation as to why very high
values of o (o = 0.9) lead to premature convergence and ul-
timately sub-optimal model performance. During the exper-
iments, we observed that under NIID-1 and o« = 0.9, some
clients were assigned a weight of 0.0. While this may be
beneficial in the case of NIID-2 (as 1 client is guaranteed to
have all classes), it could fail to consider some clients which
mainly consist of classes that are encoded in a way that does
not match the prior, which means that the global model effec-
tively starts ignoring samples from certain classes. As a re-
sult, the model starts optimising towards the local objectives
of a subset of clients which is also not optimal.

One way to remediate this is by increasing the b hyper-
parameter (Equation 3). This would ensure that all clients
have non-zero weight. This was not tested in our experiments
as we kept this hyperparameter fixed. Moreover, NIID-1 in-
volved 10 users instead of 6, resulting in a more ‘fragmented’
dataset. In the case of NIID-2, all 60,000 training samples
were utilised, in contrast with NIID-1, where the dataset di-
vision among clients limited the availability of these samples
due to how they were drawn [13]]. The selection of data pre-
processing techniques applied to a dataset might additionally
impact performance variability across various scenarios, al-
though this aspect was not explored.

Further explanations for these results could involve the spe-
cific nature of the datasets used. The MNIST and FMNIST
datasets, while both consisting of 28 x 28 grey-scale images,
represent different types of classification tasks (digits vs fash-
ion items). The varying complexities of these datasets likely
influenced the performance improvements observed with dif-
ferent « values. This can be seen when we compare
and [Figure 8| against [Figure 7] and [Figure 9| respectively, as
the variance in performance across communication rounds
is lower for FMNIST. In NIID-2, the model trained using

a = 0.5 yields a 0.56% performance increase for MNIST,
whereas in FMNIST it yields a 6.19% performance improve-
ment after training. In the best-case scenario, the model
trained with = 0.9 achieved a performance increase of
5.40% for MNIST and 6.76% for FMNIST.

6 Conclusions and Future Work

FL enables decentralised model training, preserving data pri-
vacy and improving resource usage by eliminating the need
to transfer data to a central location for training [1]. How-
ever, it faces a fundamental challenge: there is no assurance
that the data distributions across clients are independent and
identically distributed (IID) [3]]. This introduces statistical
heterogeneity which is undesirable in an FL context.

This thesis investigated how the learned global latent space
representation within a federally trained [3-Variational Au-
toencoder (3-VAE) could be used to assess local discrep-
ancies based on the distance between each client’s local
data distribution and the global data distribution. The lo-
cal discrepancy of a client was determined by computing the
Wasserstein distance between the prior distribution and the
sample encoding distribution of each client. Following this,
we proposed a novel way to adjust client weights during the
federated training of a $-VAE. By integrating our version
of local discrepancy with the optimised way of determining
the aggregation weight of a client (py) as proposed by Ye et
al. [4]], the weights for each client were modified (using[Equa-
based on how well their encoding distribution matched
the prior distribution p(z).

We investigated how the new client weights as determined
by our proposed method affected the model performance and
convergence of the 3-VAE, when retrained from scratch in
two federated scenarios: NIID-1 and NIID-2. Our experi-
ments demonstrate that as the data imbalance increased, our
method enhanced model performance compared to the base-
line (FedAvg). We also determined that our method works
especially well in scenarios where some clients possessed
a ’globally representative’ dataset, but performed less ef-
fectively when all clients exhibited equal levels of imbal-
ance. This discrepancy arises because a globally represen-
tative dataset tends to align more closely with the prior distri-
bution in the latent space. In NIID-1, we observed instances
where a high value for the o hyperparameter resulted in the
weight of certain clients being set to zero, which resulted in
samples from a subset of classes being disregarded, leading
to premature convergence.

In terms of performance, we showed that under specific
federated scenarios, the proposed method may produce less
favourable outcomes compared to the baseline. However, un-
der other scenarios, a performance improvement is observed.
With respect to model convergence, we were able to show
that this was very dependent on the chosen hyperparameters
and the federated scenario. In NIID-1, most of our experi-
ments exhibited convergence within the first few communi-
cation rounds, converging prematurely in some cases. Un-
der NIID-2, convergence was achieved within a comparable
number of communication rounds to the baseline across both
datasets. However, this was accompanied by a lower average



VAE test loss.

As we conclude this thesis, we would like to point out sev-
eral areas for further exploration that can be pursued.

As mentioned in the proposed method was
exclusively tested on MNIST and FMNIST, which demon-
strated dissimilar model behaviour across the two datasets.
An interesting avenue for exploration could be evaluating this
method on more complex datasets such as CIFAR-10 and
CIFAR-100 [[15]]. The primary limitation of MNIST and FM-
NIST lies in their grey-scale nature. CIFAR datasets offer the
advantage of RGB images with three colour channels, pre-
senting a more advanced learning task. Exploring more so-
phisticated model architectures could also be beneficial since
our experiments were limited to testing a model with a two-
dimensional latent space.

Our investigation focused on measuring the VAE loss
across communication rounds, averaged across all test sam-
ples. While this approach provides a foundation when com-
paring model performance, it is essential to reiterate the ad-
vantages of a VAE over other generative models. By sampling
from the latent space distribution of a VAE, one can gener-
ate new synthetic data. Even if our method effectively min-
imises the VAE loss, the quality of the synthetic images that
can potentially be created from the model remains uncertain.
An avenue for further exploration involves utilising synthetic
images for downstream learning tasks and comparing perfor-
mance metrics such as classification accuracy score (CAS)
between the baseline method and our proposed method [16].

It is important to outline a significant limitation of the pro-
posed method: its dependence on a pre-trained 3-VAE. An
adaptation that we could make is to periodically reweigh each
client using after a specific number of commu-
nication rounds. This approach introduces a more practical
means of integrating our method, potentially enhancing its
utility. By doing so, the globally trained model would be en-
couraged to leverage its latent space information during train-
ing.

7 Responsible Research

When conducting research, it is crucial to consider the poten-
tial ramifications of ethical and societal impacts that may not
have been initially anticipated, as understanding the broader
implications of one’s work is essential. Researchers must rig-
orously assess the validity of their research to ensure its relia-
bility and accuracy. The following subsections address these
issues.

7.1 Ethical Considerations

The ethical considerations that predominantly challenge FL
revolve around issues of bias and privacy. One of the critical
concerns is the risk of biased machine learning outcomes. For
instance, our research might be applied in a way where clients
with a higher proportion of data containing a minority class
are assigned less weight. This practice is highly problematic
as it significantly amplifies bias, undermining the fairness and
inclusivity of the model. When applying machine learning
research to real-world scenarios, it is crucial to ensure that all
groups, particularly minority and underrepresented classes,

are fairly represented and treated. If the techniques discussed
in this paper are used on datasets where representation issues
may exist, they must be enhanced to mitigate any inherent
biases arising from the data itself.

Privacy concerns are important to address in FL. Even
though data is not directly exchanged across clients, the
model updates are. These updates can potentially be analysed
to infer the underlying data of individual clients, thereby com-
promising privacy. This vulnerability highlights a significant
challenge within the FL research domain.

7.2 Integrity and Validity

Ensuring the integrity and validity of data is crucial when
conducting research. Results must be presented exactly as
they were collected, without any alterations unless they are
accompanied by a valid and transparent explanation. This
thesis is committed to upholding this standard by presenting
all results without omission. Several trials were conducted
under consistent conditions. This method ensures that the
findings are reliable and accurate. This research upholds a
high standard of scientific integrity and validity by adhering
to these principles. This also ensures that the thesis complies
with the standards for good research practices as defined by
the Netherlands Code of Conduct for Research Integrity [|17].

7.3 Reproducibility

Reproducibility is a fundamental aspect of all research, en-
suring that other researchers can verify the accuracy and pre-
cision of the findings [18]]. If an experiment cannot be re-
produced, the researcher must justify this limitation. Sup-
pose a researcher understands that repeating the experiment
under the same conditions might yield different results. In
that case, they should explain any and all potential discrepan-
cies that may arise during a repeated trial of the experiment.
In this thesis, all experimental setups are detailed to facili-
tate replication. All code used to obtain the results were pro-
vided in the footnotes, ensuring complete transparency and
enabling other researchers to reproduce the experiments ac-
curately. Furthermore, all dependencies and their associated
versions were included in the requirements.txt file, which can
be found in the repository.

7.4 Use of AI

Acknowledging the role of generative Al tools such as GPT-
3.5, GPT-4, and GPT-40 in our writing process is crucial.
These tools were employed solely to enhance the conciseness
and readability of the thesis through rephrasing; they were not
utilised to produce any results. All outputs from these mod-
els were critically evaluated. The prompt that was used was:
”Rephrase the text to improve clarity and conciseness”.
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This appendix details the architecture of the 3-VAE utilised
in all experiments. A comprehensive schematic of the 5-VAE
can be seen in[Figure 10|

Encoder Architecture: The encoder comprised three lin-
ear layers with ReLU activation functions for the hidden lay-
ers. The first layer reshaped the input vector x from 784 to
512 dimensions, the second layer reduced it from 512 to 256
dimensions, and the final layer further reduced it to 2 dimen-
sions, corresponding to the dimensionality of the latent space.


https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
http://dx.doi.org/10.1016/j.neucom.2021.08.141
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlr.press/v202/ye23f.html
http://dx.doi.org/10.1016/j.future.2023.09.008
http://dx.doi.org/10.1016/j.future.2023.09.008
http://dx.doi.org/10.1109/TSSC.1969.300225
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:216078090
https://openreview.net/forum?id=Sy2fzU9gl
http://dx.doi.org/10.1137/1115049
http://dx.doi.org/10.1137/1115049
https://arxiv.org/abs/2201.07125
https://api.semanticscholar.org/CorpusID:702279
https://api.semanticscholar.org/CorpusID:702279
https://proceedings.mlr.press/v97/yurochkin19a.html
https://proceedings.mlr.press/v97/yurochkin19a.html
https://proceedings.mlr.press/v97/mathieu19a.html
https://proceedings.mlr.press/v97/mathieu19a.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/fcf55a303b71b84d326fb1d06e332a26-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fcf55a303b71b84d326fb1d06e332a26-Paper.pdf
https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:110600
https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:110600
http://dx.doi.org/10.1080/08989621.2016.1257387

nn.Linear(784,512)

)

Encoder

Architecture _| nn.Linear(512,256)

(lccr(:“") ¢ I l

M nn Linear(256,2) (e} nn.Linear(256,2)
!
z Sampled latent vector
nn.Linear(2,256)

Decoder
Architecture nn Linear(256,512)

po(z|z) 1

nn.Linear(512,784)

Figure 10: S-VAE Architecture used in Experiments

Notably, the final hidden layer was divided into two parts: one
for the mean (u) of the distribution and one for the standard
deviation (o). The output of the layer responsible for produc-
ing the o vector was exponentiated to ensure that o remains
positive.

Reparameterisation: As explained in [Subsection 2.2] the
output of the encoder was sampled (¢ and o) to obtain a re-
alisation from the latent distribution. We obtain the sample
latent vector z as follows:

Z=pu+o®e€
where

e~N(0,1)

Decoder Architecture: In summary, the decoder mirrors
the encoder in reverse. It employs ReLU activation functions
in the hidden layers and a sigmoid activation function in the
output layer to produce the reconstructed vector &. Specifi-
cally, the first hidden layer expands the latent vector from 2
to 256, the second hidden layer expands it from 256 to 512,
and the final layer increases the size from 512 to 784.
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