WELCOME !

GRADUATION PRESENTATION | LIEVE CROONEN | 06-11-2020

A sustainable and reusable concrete facade system

An approach to improve the use of concrete in the Dutch housing market

FIRST MENTOR: ARIE BERGSMA

SECOND MENTOR: CHARLOTTE HEESBEEN

DELEGATE OF THE BOARD OF EXAMINERS: LOUIS LOUSBERG

LIEVE CROONEN

4212096

SUSTAINABLE DESIGN STUDIO

Background

Problem

Research question

Framework

 \checkmark

INTRODUCTION

THEORETICAL RESEARCH

ANALYSIS PHASE

Case study – Standardisation

Case study – Modular building systems

Final design criteria

 \checkmark

INTRODUCTION

RESEARCH

ANALYSIS

DESIGN PHASE

Explanation of the design strategy

FINAL DESIGN STRATEGY Building system strategy

Final design strategy

RESEARCH

ANALYSIS

DESIGN PROCESS

FINAL DESIGN STRATEGY

CONCLUSION

- THEORITICAL RESEARCH
- ANALYSIS PHASE
- RESEARCH THROUGH DESIGN
- **FINAL DESIGN STRATEGY**
- CONCLUSION

DICUSSION & RECOMMANDATIONS

Background

Background

Problem

Research question

THEORETICAL RESEARCH

THEORETICAL RESEARCH

THEORETICAL RESEARCH

Barrier is High-value Reuse of Concrete

Government Conflicting regulations & subsidies

Negative consumer behaviour

Negative perception of reused concrete

Lack of knowledge and collaboration

ີ≣**≃**∰ ດີະເວີງ

Mismatch supply & demand

THEORETICAL RESEARCH

Risk Skewed relationship between contractor and customer Lack of quality control

Level of priority

Level of value of a element

10R's – Jaqueline Cramer

HIGH LOW

Refuse Rethink Reduce Reuse

Repair

Refurbish

Remanufacture

Repurpose

Recycle

Recover

THEORETICAL RESEARCH

Level of priority			Focus of the project
HIGH		Refuse	10R's – Jaqueline Cramer
		Rethink	Rethink or redesign the project in view of circularity
		Reduce	Decrease the use of concrete and cement (make it more sustainable)
		Reuse	Ability to reuse the concrete facade system in a new lifecycle
		Repair	
		Refurbish	
		Remanufacture	
		Repurpose	
		Recycle	
	LOW	Recover	

Adaptable to change

Change of facade finish

due to change in preferences

Different lay out

due to newer requirements building, taste or function change

Reuse of panels

due to wanting a complete new design

RETHINK

Standardisation

RETHINK

Standardisation

Standardisation makes reuse easier to use in future

Dutc**dimensings**market

DESIGN

CRITERIA

Standardisation

Repetition in production process

Consequences for flexibility & diversity

Simple form

As less different kind of panels to speed up production process

DESIGN **CRITERIA**

THEORETICAL RESEARCH

Building modular

THEORETICAL RESEARCH

Independence

Separation of elements, its lifecycles and functions to increase lifespan

Exchangeability

Designing a simple & easy product, to enhance its production, assembling and disassembling

DESIGN CRITERIA

Separation of functions and lifecycles

Easy and fast assembly & disassembly

DESIGN CRITERIA

Exchangability of connection (complexity)

Connections easy to inspect, assemble and disassemble

Minimize the number of different connections,

(materials and components)

Use of a flexible dry connection

1 Overlapping, 2 interlocking and 3 external connections

The form of the components edge

has influence on the assembly sequence

DESIGN CRITERIA

Number of connections per panel

DESIGN CRITERIA

Use of dry connections (demountable)

DESIGN CRITERIA

Complexity

REUSE
How can a sustainable concrete façade system be designed for the Dutch housing market in order to make it reusable?

Sustainability of concrete

THEORETICAL RESEARCH

THEORETICAL RESEARCH

Concept criteria

Standardisation

Building efficiency

Sustainability

Adaptability

Concept criteria

THEORITICAL RESEARCH

ANALYSIS PHASE

Why?

with standard panels?

How can a sustainable concrete facade system be designed for the Dutch housing market in order to make it reusable?

Best suitable dimensions

Case study: standardisation

Why?

Hows

5 Case studies

Four standard panel widths

Input of literature study

How5

- Restrictions
 - With a margin error of 5%

0-313-320

120cm

10-313-320

90cm

90cm

90cm 50

Best suitable dimensions

Within a 30 cm grid

How much can be filled with standard panels?

What?

Range needed for flexibility

	Standard panels 75-85%			
surface				
Closed				

	Standard panels 55-65%			
surface				
Total				

Case study method

Assessment by concept criteria list

Case study criteria

What?

Safety

Amount of material used

Man power needed

Lay-out flexibility

Final design criteria

RETHINK	REDUCE	REUSE	RETHINK	Final design	Minimum	Maximum
				General		
				requirements		
STANDARDIZATION	SUSTAINABILITY	BUILDING EFFICIENCY	ADAPTABILITY	Prefab (thickness)	100/120 mm	-
				Stackable	-	- 0
				Load bearing capacity	-	-
	MATERIAL	CONNECTIONS		Technical		
				requirements		
			Adaptable to change	Thermal insulation	4.5 m2K/W	-
As less different kind of				Fire safety	120 minutes	-
nanala	Separation of materials	Use of dry connections		Water tightness	202 DB	
paneis				Standardization		
				Number of different	1	4
				panels	-	1
c: l (As loss connections as		Simple form		
Simple form	Sustainable materials	As less connections as	Law out floxibility	Dimensions	300 mm	1200 mm
		possible	Luy-Out nexibility	Building efficiency		
		·		Connections		
				Use of dry connections	-	-
				(demountable)		
Suitala altra anti-	Amount of material used	Connections can be easily		Number of connections	1	4
Suitable almensions		inspected		per panel		
				be inspected	-	-
				Complexity	-	-
				Assembling R		
		Complexity of the		Assembling &		
		Complexity of the		Easy and fast assembly	2	-
		connections		& disassembly		
				Separation of functions	-	23
		ASSEMBLING & DISASSEMBLING		and lifecycles		
				(replacement)		
	BUILDING LIGHTWEIGHT			Safety	-	<i>T</i> .(
				Man power needed		
				Adaptability		
		Easy and fast assembly & disassembly		Lay-out flexibility	-	-
				Sustainability	-	-
				Material		
	CO2)			Separation of materials	-	-
				Sustainable materials	-	-
		Separation of functions and		Amount of materials		
				used		
		ine cycles		Building lightweight		
		Safety		Use of lightweight	-	-
				components		
				(Lightweight) form	-	-
				Aesthetics		
		Manpower needed		Finishing	-	-
				Hidden connections	-	-
				Overall points		
				Total		

Assessment method for the design phase

Choices made by assessment through final criteria list

ANALYSIS PHASE

DESIGN PHASE

Design Process

Assembling & disassembling aspect

Design Process

Matching profile

Decision chart

Decision chart

FINAL DESIGN STRATEGY

Building system strategy

How can a sustainable concrete facade system be designed for the Dutch housing market in order to make it reusable?

Decision chart

Design tool

CONCLUSION

Conclusion

How can a sustainable concrete facade system be designed for the Dutch housing market in order to make it reusable?

Design tool Final design strategy & decision chart

Conclusion

Conclusion

Standardisation

Building efficiency

Sustainability

Adaptability

DISCUSSION & RECOMMANDATIONS

- What are the chances of success?
 - Overcoming the barriers of reuse
 - Developing a circular business case
- Limitations
 - Standardisation case study

- Mixture of concrete and wooden panels
- Reuse of concrete facade system in office sector?
- Developing a circular business case for the facade system

THANK YOU!

GRADUATION PRESENTATION | LIEVE CROONEN | 06-11-2020