

Delft University of Technology

Developer-centric test amplification
The interplay between automatic generation human exploration
Brandt, Carolin; Zaidman, Andy

DOI
10.1007/s10664-021-10094-2
Publication date
2022
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
Brandt, C., & Zaidman, A. (2022). Developer-centric test amplification: The interplay between automatic
generation human exploration. Empirical Software Engineering, 27(4), Article 96.
https://doi.org/10.1007/s10664-021-10094-2

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-021-10094-2
https://doi.org/10.1007/s10664-021-10094-2

Vol.:(0123456789)

Empirical Software Engineering (2022) 27:96
https://doi.org/10.1007/s10664-021-10094-2

1 3

Developer‑centric test amplification

The interplay between automatic generation human exploration

Carolin Brandt1 · Andy Zaidman1

Accepted: 2 December 2021
© The Author(s) 2022

Abstract
Automatically generating test cases for software has been an active research topic for many
years. While current tools can generate powerful regression or crash-reproducing test cases,
these are often kept separately from the maintained test suite. In this paper, we leverage the
developer’s familiarity with test cases amplified from existing, manually written developer
tests. Starting from issues reported by developers in previous studies, we investigate what
aspects are important to design a developer-centric test amplification approach, that pro-
vides test cases that are taken over by developers into their test suite. We conduct 16 semi-
structured interviews with software developers supported by our prototypical designs of a
developer-centric test amplification approach and a corresponding test exploration tool. We
extend the test amplification tool DSpot, generating test cases that are easier to understand.
Our IntelliJ plugin TestCube empowers developers to explore amplified test cases from
their familiar environment. From our interviews, we gather 52 observations that we sum-
marize into 23 result categories and give two key recommendations on how future tool
designers can make their tools better suited for developer-centric test amplification.

Keywords Software testing · Test amplification · Test exploration · Test generation ·
Developer-centric design

1 Introduction

Testing is an important (Whittaker et al. 2012), but time-consuming activity in software
projects (Beller et al., 2015a, 2015b, 2019). Automatic test generation aims to alleviate
this effort by reducing the time developers spend on writing test cases. The software
engineering community has created a plethora of powerful tools, that can automatically

Communicated by: Hadi Hemmati

 * Carolin Brandt
 c.e.brandt@tudelft.nl

 Andy Zaidman
 a.e.zaidman@tudelft.nl

1 Delft University of Technology, Delft, Netherlands

http://orcid.org/0000-0001-7623-1970
http://orcid.org/0000-0003-2413-3935
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10094-2&domain=pdf

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 2 of 35

generate JUnit test cases for software projects written in Java. For example, a widely
known tool is EvoSuite (Fraser and Arcuri 2011), which generates test cases from
scratch using search-based algorithms. It starts from a group of randomly generated test
cases and optimizes them by mutating their code and combining them with each other.
This paper focuses on test amplification, a technique that automatically generates new
test cases by adapting existing, manually written test cases (Danglot et al. 2019a). The
state-of-the-art test amplification tool DSpot (Danglot et al. 2019b) mutates the setup
phase of manually written test cases and generates new assertions to test previously
untested scenarios. For both EvoSuite and DSpot, studies have shown that the tools are
effective in generating or extending test suites to reach a high structural coverage and
mutation score (Danglot et al. 2019b; Fraser and Arcuri 2011; Rojas et al. 2015; Serra
et al. 2019).

Automatic test generation is, for example, used to detect regressions (Robinson et al.
2011), reproduce crashes (Derakhshanfar et al. 2020b, 2020a), uncover undertested sce-
narios (STAMP 2019b) and generate test data (Haq et al. 2021). For these use cases, it is
often sufficient to keep the generated test cases separate from the manually written and
maintained test suite (STAMP 2019b; Nassif et al. 2021). This separation is reinforced
by several hard-to-solve challenges that limit the understandability of the automatically
generated tests, such as their readability (Daka et al. 2015; Grano et al. 2018) or gener-
ating meaningful names (Zhang et al. 2016; Daka et al. 2017), or documentation (Roy
et al. 2020; Panichella et al. 2016; Bihel and Baudry 2018).

The amplified test cases created by DSpot are closely based on manually written
ones. This opens up the chance to generate test cases that are easier to understand by
developers, as they are likely familiar with the original test case, which the amplified
test case is based on. In this paper, we want to leverage this aspect. We take a look at
generating amplified test cases that developers can take over into the manually main-
tained test suite as if they would have written them themselves. To describe this kind
of test generation we use the term developer-centric, as the developer accepting the test
case is central for this kind of test generation:

Test amplification is developer-centric if it aims at generating test cases that are
accepted by the developer and taken over into the manually maintained test suite.

Generated test cases that are accepted by developers and are part of the maintained
test suite also fulfill several further typical uses for developer tests. For example, as a
form of executable documentation (Hoffman and Strooper 2003; Beck 2003; Kochhar
et al. 2019), or to locate the fault that causes a failing test by understanding the test in
question (Panichella et al. 2016).

To provide amplified test cases that developers take over into their test suite, the inter-
action of the developer with the test amplification tool in which they review the proposed
amplified test cases is critical. In past projects, users of DSpot reported that the tool was
complex to configure and they had to wait long for the tool to finish and for them to see
results (STAMP 2019b). There is little support that guides developers through the list of
generated test cases so they can effectively judge whether to keep or discard a newly ampli-
fied test case. To address these issues and realize developer-centric test amplification, we
embed the test amplification tool in a so-called test exploration tool:

A test exploration tool forms the interaction layer between the developer and the
test amplification tool. It lets the developer start the test amplification tool, and
later explore and inspect the different amplified test cases.

Empirical Software Engineering (2022) 27:96

1 3

Page 3 of 35 96

To illustrate how a developer would use a developer-centric test amplification approach
with a test exploration tool, we introduce an exemplary use case, which is also illustrated
in Fig. 1:

Hannah, a software developer, wants to expand the test suite of the industrial project
she is working on to cover more functionality and give her confidence that they are
not breaking important behavior when changing something. As her management is
constantly asking for new features, she is pressed on time and decides to use an auto-
matic test amplification tool to improve her project’s test suite. From her integrated
development environment (IDE), she starts the test amplification. The tool generates
several new test cases for her and notifies her that it is finished. Hannah inspects
the test cases one by one directly from the test exploration tool integrated into her
IDE. The exploration tool shows her the code of each new test case and where in the
production code new instructions are covered. Hannah browses through the new test
cases and if she is happy with any test case, she adds it to the test suite with one click
of a button. After exploring all proposed test cases, she commits her changes and can
lean back with the confidence of a better tested system.

In this paper, we investigate how we should design a developer-centric test amplifica-
tion approach to be successful with developers. As automatic test amplification is not
widely used and to prevent re-studying the already known issues in current tools, we
develop prototypes of a developer-centric test amplification approach and a correspond-
ing test exploration tool. To motivate the design choices we take for our prototypes,
we derive four design intentions from the test generation literature and the use case we
propose for developer-centric test amplification. Based on these intentions we revise the
test amplification process of DSpot to generate shorter, easier to understand test cases.

Fig. 1 Overview of test amplification with the help of a test exploration tool

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 4 of 35

Our corresponding IntelliJ plugin TestCube lets the developer generate and explore
test cases right from their integrated development environment (IDE).

We conduct a qualitative study to explore which aspects of our prototypes are suc-
cessful in supporting developer-centric test amplification and uncover further aspects
that should be addressed to realize it.

In previous studies, developers using EvoSuite were “concerned about the readability
of generated unit tests, the generated input data, and the generated assertions” (Almasi
et al. 2017), while DSpot users found it difficult to understand the generated test cases
(STAMP 2019b). Stemming from these observations, we investigate in our first research
question what developers find important in the code and behavior of an amplified test
case. The answers to this question give guidance on what factors in amplified test cases
are relevant for developers to include the test cases in their maintained test suite.

In our second research question, we explore how test exploration tools should be
designed to support developer-centric test amplification.

A powerful capability of such test exploration tools is to provide the developer with
information beyond the test code itself. We already know from test review that develop-
ers are interested in understanding the code under test, as well as knowing the code cov-
erage of test cases (Spadini et al. 2018). To deepen our insights into what information
test exploration tools should make accessible to developers, we pose our third research
question.

Creating a great tool alone is not enough for developers to appreciate using it. We
also need to convey the value our tool brings to them. Therefore our fourth research
question asks what value developers can gain from using developer-centric test amplifi-
cation. With the answers to this question, future tool creators know which benefits they
can focus on when they seek to convince users to start or keep using their tool.

Empirical Software Engineering (2022) 27:96

1 3

Page 5 of 35 96

To answer these research questions, we conduct semi-structured interviews with 16 soft-
ware developers from varied backgrounds. The participants tried out our prototypes and
provided us with rich insights on their impressions of our prototypes and how we could
improve them to better fit their needs. We group 52 recurring observations from the inter-
views in 23 result categories for our four research questions. During the discussion of these
results, we identify two key recommendations on how we should design future developer-
centric test amplification tools.

With this paper, we are taking a step towards developer-centric test amplification. In
short, we contribute:

– two recommendations on how to design developer-centric test amplification tools
– a structured overview of the key factors to make amplified tests as well as test explora-

tion tools suited for developer-centric test amplification
– a refined, developer-centric test amplification approach, based on the DSpot test amplification
– a developer-oriented test exploration plugin for the IntelliJ IDE

2 Creating Developer‑Centric Test Amplification

In this paper, we aim to investigate the key aspects that make amplified test cases and test
exploration tools suited for developer-centric test amplification by conducting semi-struc-
tured interviews with software developers. To illustrate the concept of test amplification
to our participants and receive rich and concrete input, we want to let them try out a test
amplification tool during the interview. A state-of-the-art test amplification tool is DSpot
(Danglot et al. 2019b), which was developed and evaluated during the European H2020
STAMP project. We adapt DSpot’s amplification process based on the feedback from the
reports of the European project (STAMP 2019b) and the requirements posed by our use
case of developer-centric test amplification. To facilitate the interaction of the developer
with the test amplification we also design a prototype of a test exploration tool.

In this section we discuss the inspirations leading to our design of both prototypes,
which is described in Section 3. The goal of this section is to clarify our reasoning behind
the design choices we took and connect them to the existing literature and user reports
about DSpot. We formulate four design intentions and present their connection to our
design choices in Table 1.

A central part of the load on developers comes from them having to understand the test
cases and judge whether they check intended behavior. According to Meszaros, obscure
tests that are difficult to understand at a glance are an anti-pattern, as it makes tests harder
to maintain and potential bugs in the test code more difficult to detect (Meszaros 2007).
As automatically generating human-readable code is a hard problem to solve, readability
and understandability of generated test cases are recurring topics in developer’s feedback:
developers from the STAMP project stated about DSpot that it was hard to interpret the
tool’s output and the “resulting tests were difficult to understand for a human developer”

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 6 of 35

Ta
bl

e
1

 T
he

 re
la

tio
n

be
tw

ee
n

ou
r d

es
ig

n
in

te
nt

io
ns

 (I
#1

-4
) a

nd
 th

e
de

si
gn

 c
ho

ic
es

 w
e

ta
ke

 fo
r o

ur
 d

ev
el

op
er

-c
en

tri
c

te
st

am
pl

ifi
ca

tio
n

an
d

ex
pl

or
at

io
n

pr
ot

ot
yp

es
 (C

#1
-1

5)

D
es

ig
n

C
ho

ic
es

Te
st

G
en

er
at

io
n

Te
st

Ex
pl

or
at

io
n

(C
#1

)
(C

#2
)

(C
#3

)
(C

#4
)

(C
#5

)
(C

#6
)

(C
#7

)
(C

#8
)

(C
#9

)
(C

#1
0)

(C
#1

1)
(C

#1
2)

(C
#1

3)
(C

#1
4)

(C
#1

5)

In
te

nt
io

n
A

m
pl

ifi
-

ca
tio

n
Re

m
ov

e
ca

lls

in
si

de
 o

ld

as
se

r-
tio

ns

O
ne

in

pu
t

m
ut

at
io

n

Ex
pl

an
a-

to
ry

co

m
-

m
en

ts

O
ne

as

se
rti

on

ge
ne

r-
at

ed

A
ss

er
tio

n
m

at
ch

in
g

in
pu

t

In
str

uc
-

tio
n

co
ve

ra
ge

Lo
ok

 fo
r

ad
di

to
n-

al
ly

co

ve
re

d
in

st.

Re
po

rt
co

ve
ra

ge
ID

E
pl

ug
in

St
ar

t
w

ith
 ru

n
B

ac
k-

gr
ou

nd

ta
sk

D
ef

au
lt

co
nfi

gu
-

ra
tio

n

C
ov

er
ag

e
in

fo
rm

a-
tio

n
te

xt

C
ov

er
-

ag
e

ed
ito

r

G
en

er
at

e
te

st
ca

se
s t

ha
t

ar
e

un
de

r-
st

an
da

bl
e

fo
r d

ev
el

op
-

er
s (

I#
1)

x
x

x
x

x
x

Ea
sy

 in
te

ra
c-

tio
n

to

de
cr

ea
se

 th
e

lo
ad

 o
n

th
e

de
ve

lo
pe

r
(I

#2
)

x
x

x
x

x

Fa
st

en
ou

gh

fo
r d

ire
ct

in

te
ra

ct
io

n
(I

#3
)

x

Im
pa

ct
 is

 c
le

ar

to
 d

ev
el

op
-

er
s a

nd
 th

ey

fin
d

th
e

te
sts

us

ef
ul

 (I
#4

)

x
x

x
x

Empirical Software Engineering (2022) 27:96

1 3

Page 7 of 35 96

(STAMP 2019b). In some cases, the developers found the generated tests useful, but so
hard to read that they wrote a corresponding test case themselves. Nevertheless, they were
glad that DSpot pointed to real bugs and supported them in testing exceptional behavior
in systems where only the optimal behavior was tested before. Several previous works
in test generation were concerned with making the generated tests more understandable
for developers (Panichella et al. 2016; Daka et al. 2017; Roy et al. 2020; Palomba et al.
2016; Rojas et al. 2015). This clearly shows that we should also take understandability
into account while designing our prototypes. Therefore, our first design intention is to
generate test cases that are understandable for developers.

From literature and our own experiences, we understand that the users of current
test amplification tools face obstacles that lead them to abandon automatic test ampli-
fication. During the STAMP project (STAMP 2019b), various industrial partners noted
that DSpot takes very long to generate test cases. The configuration is overly “com-
plex because of the multitude of possible parameter values” which require experience
to tweak correctly. The high effort required by users was reported for other test genera-
tion tools, too. Previous studies of EvoSuite pointed out the high load on developers to
inspect generated test suites and to decide if assertions in test cases are correct (Fraser
et al. 2015). They also spend a lot of time analyzing generated test cases to decide
whether to improve or discard them (Fraser et al. 2015) as generated test cases tend to
be less readable than manually written ones (Grano et al. 2018). That is why another
intention leading the design of our prototypes is to decrease the load on the developers
while they use test amplification.

Another intention leading our design, is that the amplification process should be fast
enough so that developers can start it and receive new test cases in the same session. This
means, for example, that they do not have to wait for an external build process to finish. We
conjecture that this makes it easier for them to understand the results and the value of the
test amplification as they can include it directly while they work on improving their test
suite.

Lastly, it is our intention that the developers can grasp the impact an amplified test
case. They should see the test case as a useful addition when taken over into their test

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 8 of 35

suite. Impact in this case could refer, for example, to the coverage, code quality, test
code size or test suite runtime. We assume that understanding the impact is a pre-requi-
site to deciding whether the test is useful or not. The test exploration tool should make
the impact and the quality of the amplified test cases clear so that the developers see the
value that the automatic test amplification brings them.

Both (I#2) and (I#4) can not be addressed by modifying the test amplification of DSpot
itself. Rather this shows the need for a layer in between the test amplification tool and the
developer that facilitates their interaction. This role is taken by the test exploration tool.

3 Bringing Test Amplification to the Developer (IDE)

Based on the intentions we defined in Section 2, we develop prototypes for both a developer-
centric test amplification tool as well as a test exploration tool. We will use these prototypes dur-
ing our interviews to illustrate a possible version of developer-centric test amplification. In the
following, we present our design and explain how our choices are motivated by the intentions we
set. Table 1 gives an overview of these choices, which we mark throughout the text with (C#n).

This section starts with a more detailed definition of test amplification and clarifies why
we choose to base our developer-centric test generation on this technique. We describe how
we adapt DSpot to generate test cases that are better suited to be read by developers. Fur-
ther, we present our test exploration tool, the IntelliJ Plugin TestCube , which enables
developers to easily use our developer-centric test amplification with minimal configura-
tion, right from their familiar development environment.

Introduction to Test Amplification Test amplification is a term for test generation tech-
niques that take manually written test cases as their primary input. Danglot et al. conducted
a literature study to map this emerging field and defined test amplification as follows:

Test amplification consists of exploiting the knowledge of a large number of test
cases, in which developers embed meaningful input data and expected properties in
the form of oracles, in order to enhance these manually written tests with respect to
an engineering goal (e.g., improve coverage of changes or increase the accuracy of
fault localization). (Danglot et al. 2019a)

For our prototype design we choose test amplification to generate the test cases. We exploit
the existing test cases, as well as the code under test to create additional test cases that
improve the instruction coverage of a test suite.

We base our approach on test amplification (C#1), because we expect that for a devel-
oper already familiar with the test suite it will be easier to understand a variation of an
existing test case than a completely new one. In addition, most software projects that are
looking to improve their testing already have at least a rudimentary test suite.

Empirical Software Engineering (2022) 27:96

1 3

Page 9 of 35 96

3.1 Developer‑Centric Amplification with DSpot

During our interviews, we want to showcase a possible version of developer-centric ampli-
fied test cases to software developers. We adapt Danglot et al.’s tool DSpot (Danglot et al.
2019b), addressing the issues which were already reported by developers. Figure 2 gives
an overview of our revised test amplification approach. Starting with the original test case
from the existing test suite, we remove all existing assertions, modify the objects and val-
ues in the setup phase of the test case, add new assertions based on the changed behavior,
and select test cases that cover additional instructions in the code under test.

Our design and implementation is strongly based on Danglot et al. (2019b) and DSpot
version 3.1.0.1 We created a fork of their repository2 and contributed our changes back to
DSpot through an accepted pull request.3 In the following, we describe for each step the
behavior of the original amplification as well as the changes we made to generate more
understandable test cases (I#1). and convey their value to developers more easily (I#4). We
illustrate our explanations with a running example in Figs. 3, 4, 5, 6.

3.1.1 Remove Assertions

At the start of the amplification process, DSpot removes all assertions in the original test
case, as they will likely no longer match the new amplified test case. All method calls
within the assertions are preserved because they might have side effects that influence the
rest of the method calls in the test case.

However, these method calls tend to be confusing outside of the context of the assertion.
As the behavior of the test cases is changed through the amplification anyways, we decide
to also remove method calls within assertions (C#2). Figure 3 shows the first amplification
step for our example, where the two assertions of a test case are removed completely.

3.1.2 Mutate Input

DSpot uses a variety of mutations to explore the input space of a test case. Literals like inte-
gers, booleans, and strings are slightly modified or replaced by completely random values. On
existing objects, the input amplification removes, duplicates, or adds new method calls. It can
also create new objects or literals that are then used as parameters for mutated method calls.

Our developer-centric amplification leverages the powerful input mutations of DSpot.
However, from Grano et al. we know that the more complex a test case is, the harder it is

Fig. 2 Overview of our automatic, developer-centric amplification process within DSpot

1 https:// github. com/ STAMP- proje ct/ dspot/ relea ses/ tag/ dspot-3. 1.0
2 https:// github. com/ TestS hiftP roject/ dspot/ relea ses/ tag/ v3.2. 0- dev- frien dly
3 https:// github. com/ STAMP- proje ct/ dspot/ pull/ 993

https://github.com/STAMP-project/dspot/releases/tag/dspot-3.1.0
https://github.com/TestShiftProject/dspot/releases/tag/v3.2.0-dev-friendly
https://github.com/STAMP-project/dspot/pull/993

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 10 of 35

to understand for a developer (Grano et al. 2020). To make the generated test case easier
to understand for the developer, we focus on one input modification at a time (C#3) and
add an explanatory comment to every mutation (C#4). We make use of all available muta-
tion operations in DSpot 3.1.0. In Fig. 4 one of the string parameters in the constructor
for the object attr is replaced with a new string that contains the special non-breaking
space character. We also add a comment that details which value was changed to which
new value to help the developer spot the change easily.

3.1.3 Generate Assertion

Generating new assertions is one of the central features of DSpot. The tool instruments
the test case to observe the state of the objects under test after the setup phase. Then
it generates assertions comparing the return value of every method call on the objects
under test with the observed value. While adding all generated assertions leads to a more
powerful test case with respect to structural coverage, it also makes the test case hard to
understand and unclear which of the added assertions improve these metrics. To mini-
mize the generated test cases, DSpot provides a prettifier stage. It removes the asser-
tions one by one, reruns the metric calculation, and adds the assertion back if the score
decreased. Unfortunately, the stage multiplies the already long runtime of DSpot.

To generate shorter, more understandable test cases (I#1), we opt to only add one
assertion to each test case (C#5). While this at first generates more test cases, the ones
with assertions that do not improve the final selection metric are excluded in the follow-
ing step. To produce test cases that developers find useful (I#4), the generated assertion
should assert a behavior that changed through the previously mutated input. To achieve
this, we compare all assertion candidates before and after the mutation and only include
an assertion if the value it asserts changed through the mutation (C#6).

As shown in Fig. 5, the assertion generated for our example checks the return value of
attr.toString(), which shows the changed input "Hello∖∖nthere NBSP".

Fig. 3 Example amplification: Remove all existing assertions from the original test case

Fig. 4 Example amplification: Mutate string parameter in the constructor of the object under test

Empirical Software Engineering (2022) 27:96

1 3

Page 11 of 35 96

3.1.4 Select Test Cases

After generating a broad range of test cases through mutating input values and generat-
ing assertions, DSpot selects which test cases to keep. Depending on the configuration,
DSpot selects test cases that improve instruction coverage, improve mutation score, or
cover the changes in a specific commit.

As determining the mutation score is computationally expensive, it is currently not a
feasible option if the test generation should run on the developer’s local computer and
we want to enable direct interaction with as little wait time as possible (I#3). Therefore,
we select test cases based on instruction coverage (C#7).

DSpot originally keeps all generated test cases that by themselves cover more lines
than the original test case they are based on. However, for a developer, it is not impor-
tant that the coverage of one test case is high. Rather, a new test case should contribute
additional coverage to the test suite. To determine this, we measure the instruction cov-
erage of the original test suite on a fine-grained, line-by-line basis. For each generated
test case, we check whether it covers additional instructions on any line (C#8). If that
is the case, we keep the test case, if not, we discard it. The combination of this fine-
grained coverage comparison together with the small number of additions we make to
the original test case (C#3)(C#5) enables us to generate smaller test cases (I#2) com-
pared to DSpot. Furthermore, these test cases have a local and therefore easier to under-
stand impact on the coverage of the test suite (I#4).

To communicate to the developer which additional instructions are covered, our
developer-centric amplification reports for each test case in which lines in the production
code additional instructions are covered (C#9). Figure 6 shows a pretty-printed version
of the additional information we provide. The amplified test case in our example covers 8
more instructions over two lines in the escape method of the Entities class.

Fig. 5 Example amplification: Generate an assertion which checks a behavior changed by mutating the
input

Fig. 6 Example amplification: Information about the coverage improvement of the amplified test case

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 12 of 35

3.2 Test Exploration Plugin TestCube

For successful developer-centric test amplification, we conjecture that the second impor-
tant step to support developers with amplification test cases is exploration. In this sec-
tion, we describe the design of our prototype of a developer-centric test exploration tool:
TestCube . To make our new, powerful test amplification easily accessible to developers
(I#2), we develop TestCube as a plugin to the IntelliJ IDE (C#10). A lot of previous
research points out the importance of integrating tools into existing development environ-
ments. It reduces time and focus lost by switching tools (Liu and Holmes 2020) and ena-
bles developers to inspect test cases and related code (Spadini et al. 2018). TestCube is
open source4 and available to download on the JetBrains Marketplace.5 The screenshot in
Fig. 7 illustrates the user interface of TestCube and how a developer would interact with
it. In the following, we present how developers can use TestCube to amplify tests right
from their editor, inspect the generated test cases and easily integrate them into their code
base.

3.2.1 Starting the Amplification

After installing TestCube , the developer can start the amplification in the same way as she
would execute a JUnit test (C#11) . She picks an original test case to be the input for the ampli-
fication process (in Fig. 7). Then she can click on the green arrow next to the test, and select
the new option ‘Amplify’ (in Fig. 7). After she selects this option, TestCube starts ampli-
fying the test in a background task (C#12).

For other test generation tools, research has shown that even though tuning parameters
to the specific project increases performance, using the default settings already produces
good results (Arcuri and Fraser 2013). To take the configuration burden off the devel-
oper as much as possible (I#2) during our interviews and to evaluate how well our new
approach performs with its default configuration, we choose to set default values for the
vast number of DSpot parameters (C#13).

3.2.2 Result Inspection

When the amplification finishes, TestCube notifies the developer with a pop-up from the
built-in notification system (in Fig. 7). The developer can then choose to inspect the test
cases or, in case of reported errors, the terminal output of DSpot.

We present the results of the test amplification within IntelliJ, but in a tool window
separated from the code. The tool window is located on the right, next to the editor with
the original test case selected by the developer. It has various components:

– At the top of the tool window we present information about the currently selected
amplified test case (in Fig. 7): Which modifications were applied to it and which
additional instructions are covered (C#14).

4 https:// github. com/ TestS hiftP roject/ test- cube
5 https:// plugi ns. jetbr ains. com/ plugin/ 14678- test- cube

https://github.com/TestShiftProject/test-cube
https://plugins.jetbrains.com/plugin/14678-test-cube

Empirical Software Engineering (2022) 27:96

1 3

Page 13 of 35 96

– Next we present navigation buttons to the developer (in Fig. 7). With these but-
tons, the developer cycles through the proposed test cases, can add the current test to
the test suite, ignore the current test or close the amplification results all together.

– Below the navigation buttons we present the amplified test cases in a fully function-
ing editor, as shown in (in Fig. 7). The developer can edit the test case in their
familiar environment and use code navigation to inspect called methods.

– The developer can click on the additionally covered lines in the test case informa-
tion to open up the coverage inspection editor on the bottom of the tool window.
The editor shows the class where coverage was improved and highlights all addi-
tionally covered lines in green (C#15). Showing the added coverage in the context
of the code under test should help the developer judge the value of the generated
test case (I#4).

4 Study Design

The goal of this paper is to explore which aspects are important to create a success-
ful developer-centric test amplification approach. To this end, we invited 16 software
developers to try out our prototype TestCube on an example project. We observed
their interaction with the tool and interviewed them on their experience and opinions
on how an ideal test generation tool should behave. We report our observations split
along four sub-questions: With the interviews we investigate what makes amplified
tests (RQ1) and exploration tools (RQ2) suited for developer-centric test amplifica-
tion, what information the developers are seeking while investigating the test cases
(RQ3) and what value developers see in test amplification (RQ4). In the following we
describe the design of our interview study: How we recruit participants and ask for
their consent, our technical setup, the flow of one interview as well as our data col-
lection and analysis process.

Fig. 7 Overview of the interaction with the TestCube plugin

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 14 of 35

4.1 Preparation

We used convenience sampling to recruit participants for our interviews. We posted about
it on Twitter6 and wrote to existing industry contacts. In addition, we contacted participants
of a previous survey about motivation to write test cases who indicated to be open for a
follow-up interview.

As we are conducting a study with human participants, we followed the guidelines of
the TU Delft’s Human Research Ethics Council7 and submitted our study design to them
for review. Before each interview, we explained to the interviewees how we will process
their data and asked for consent on participating in the interview, recording the session for
later analysis and publishing the anonymized results in an online research repository. One
participant wished to not be quoted and the corresponding results not to be published in a
research repository, therefore our online appendix (Brandt and Zaidman 2021) excludes the
data collected from that interview.

To showcase TestCube to our participants, we selected the open-source HTML parser
jsoup.8 Jsoup is a mid-sized Java project (35K lines of code), which is built with Maven,
tested with JUnit 5 and was part of Danglot et al.’s evaluation of DSpot (Danglot et al.
2019b). We chose it because we expected HTML to be a relatively simple and widely under-
stood application domain, which would require less time to explain to our participants dur-
ing the interviews. Jsoup has a test suite with a relatively good instruction coverage of 86%.
Our interviews focused on the classes Attribute and AttributeTest, as we expected
the concept of an HTML attribute to be known by our participants. Attribute is fairly
well tested, with most functions covered by the test suite. However, its custom implementa-
tion of hashCode, clone and several branches in equals were not covered.

To take the setup burden off of our participants, we set up an instance of IntelliJ with
our plugin on a server and let the interviewees interact with it through the browser. This
was possible through the JetBrains Projector tool.9

6 https:// twitt er. com/ laci_ noire/ status/ 13283 34375 53729 9461, showed to 9.527 users, 406 interactions
7 https:// www. tudel ft. nl/ over- tu- delft/ strat egie/ integ ritei tsbel eid/ human- resea rch- ethics, last visited March
1st, 2021
8 https:// github. com/ jhy/ jsoup
9 https:// jetbr ains. github. io/ proje ctor- client/ mkdocs/ latest/

https://twitter.com/laci_noire/status/1328334375537299461
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
https://github.com/jhy/jsoup
https://jetbrains.github.io/projector-client/mkdocs/latest/

Empirical Software Engineering (2022) 27:96

1 3

Page 15 of 35 96

4.2 Interview Procedure

To get a rough context of the participant’s opinion on and knowledge about software test-
ing, we asked an open question about the participant’s prior experiences with testing soft-
ware. Then we briefly introduced test amplification: automatically modifying existing test
cases to generate new ones that improve the coverage and can be taken over into the test
suite. We explained that the goal of the interview is to see their interaction with our tool
and gather feedback on what aspects they like, what they would change, and how they
would use such a test amplification tool in their work. We sent the developers a link to
our online setup of IntelliJ which they accessed through their browser. We introduced the
example project and explained how to start TestCube . From this point on we invited the
interviewee to explore on their own, thinking aloud about all their thoughts and impres-
sions. We did not define an explicit task to solve, rather our introduction of test amplifica-
tion and the user interface of TestCube animated the participants to browse through the
test cases and judge whether to include them, and in some cases include them in the test
suite of the example project. We kept any more explanations to a minimum to observe a
situation as close as possible to the developer interacting with the tool alone. We let each
participant amplify and browse through several test cases for about twenty minutes. Dur-
ing this time we ask them to think aloud about their impressions. We nudge them by ask-
ing questions about their actions and opinions on TestCube ’s behavior. At the end we
asked them to fill out the System Usability Score questionnaire, a metric frequently used in
the field of Human-Computer Interaction to assess how useable a product is Bangor et al.
(2008). While filling out the questionnaire, we ask them to reflect on the usability of the
plugin and how it could be adapted to better fit their needs.

4.3 Data Collection and Analysis

We recorded all interviews, including the screen of the developer while they were inter-
acting with TestCube . In addition, the interviewer took extensive notes. We performed
open coding (Corbin and Strauss 1990) to analyze the interview notes, checking back with
the recording when anything was unclear or missing from the notes. Following that, we
applied axial coding (Corbin and Strauss 1990) to structure the emerged codes. We report
our findings along these axial codes, which we assigned to each of the research questions.
Table 2 presents the axial codes arising from our analysis of the interviews.

All interviews and the initial coding were performed by the first author. To increase the
validity of our analysis, the second author watched two of the performed interviews, took
notes and coded them separately. Then we compared the codes both authors created for the
validation interview and refined our coding schema and our interpretations of the inter-
views. We saw that both focused on different aspects of the interviews, one assigning about
20 codes and the other one about 10 codes per interview. In total, we agreed on 90% of the
assigned codes in the first validation step. As a second validation step, we performed an
inter-rater reliability analysis. We selected re-occurring topics from our codes that appear
in 4 or more interviews. The second author assigned them to 3 further interviews. To com-
pare the assignments of both authors, we calculate the percentage agreement (70%) and
Cohen’s Kappa (60%, moderate agreement). The value of Cohen’s Kappa is relatively low,
because some of the codes we validate have skewed values. If a code appears in nearly all
the cross-validated interviews, its chance of appearance is close to one, leading to a small
Cohen’s Kappa because arithmetically the agreement could be a coincidence. We provide

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 16 of 35

our code book together with the code’s frequencies in the interviews, as well as our cross-
validation ratings in our online appendix (Brandt and Zaidman 2021).

5 Results

In this section, we present the results we elicited from our study. Firstly, we give an overview
of key demographic factors characterizing our study participants. Secondly, we detail what
factors are important to the developers when it comes to the generated test cases themselves
(RQ1) and which aspects make a test exploration tool developer-friendly (RQ2). Next, we
describe the various kinds of information the developers sought while exploring the gen-
erated test cases (RQ3) and what value our interviewees saw in automatic test generation
(RQ4). Every observation that comes from the interviews will be labeled with (O#n) and if it
is directly tied to one of the codes we assigned, we also report its support, i.e., in how many
interviews we observed it. The observations without explicitly mentioned support summarize
multiple codes, describe anecdotal evidence or report general impressions we obtained over-
arching the single interviews. Even though we cannot link them to a specific code from our
interview notes, we still consider them valuable to report for our qualitative study.

Table 2 Structured overview of the answers to our research questions

Shown are the axial codes we obtained during our data analysis described in Section 4.3

Generated Test Cases RQ1 Code Identifiers
Concise
Consistent

Behavior Relevant
Invariant
Diverging

Exploration Tools RQ2 Ease of Use Minimal Configuration
Integration
Usability

Information Management
Focus
Expectation Management Runtime

Capabilities
Sought Information RQ3 Test Case Behavior / Intent

Outcome
Runtime

Code Under Test
Coverage
Original Test Case

Value for Developers RQ4 Improve Test Suite Ease Test Engineering
Inspiration

Learning
Confidence

Empirical Software Engineering (2022) 27:96

1 3

Page 17 of 35 96

While high support signals that a topic is very relevant for our participants, we cannot infer
from a small support number that an aspect is less relevant. As we wanted to explore as many
aspects of developer-centric test amplification as possible, we mainly let the comments of our
participants guide the direction of the interviews, similar to an unstructured interview (Zhang
and Wildemuth 2009). This lead to many observations only appearing in a small number of
interviews, possibly because the topic they concerned was only reached in a small number of
interviews.

Throughout this section, we structure our explanation along the axial codes of our results
presented in Table 2.

5.1 Participants

We recruited 16 participants for our study, whose demographics are summarized in Fig. 8.
As shown in Fig. 8a, their previous experience with software development was distributed in
a range from two to 23 years. Most of them work in teams of two to nine and consider Java to
be among their primary programming languages. Our participants work in a wide variety of
industries, which are presented in Fig. 8d.

5.2 RQ1: What Are the Key Factors to Make Amplified Test Cases Suited
for Developer‑Centric Test Amplification?

During the interviews, it quickly became clear to us how important the test cases them-
selves are for the developers. Many of our participants were directly focusing on the test
cases and spend much of their time praising or critiquing them (O#1). This is reflected in
the large number of observations with high support we present in this section. What unified

Fig. 8 Summarized demographics of our interview participants

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 18 of 35

our participants is that they tried to understand the generated test cases (O#2). Rojas et al.
also noted that how easy it is to obtain the intent and behavior of a test case is a strong indi-
cator for its quality (Rojas et al. 2015)

Code: Identifiers Looking at the code of the test cases, the most prevalent comment was the need
for less cryptic identifiers (O#3, Support: 14). The developers wished that the identifiers, such as
the test name or variable names, convey the intent of the new test case (O#4, Support: 2). They
gave examples such as which code is additionally covered or simply which methods are newly
called. More expressive identifiers would help them understand the intent of the test case faster.
While integrating the test cases, many participants renamed the test cases (Support: 7) and the used
variable identifiers (Support: 3). For identifier names that should be renamed by the developer
during the inspection, two participants promoted a clearer naming such as “placeholderN”.

Code: Concise We observed that the code should be as concise as possible. Developers
were confused by unnecessary statements (O#5, Support: 7), which were left over from
the amplification process. Underneath them were object initializations or method calls no
longer relevant for the intent of the new test case. The developers needed additional time to
detect these statements as unimportant and to delete them (O#5, Support: 3).

We saw a similar effect with unnecessary casts (O#7, Support: 8) introduced by DSpot
for type safety. In many cases, the casts could be identified as superfluous, but the develop-
ers were unhappy that extra work is necessary to remove obviously superfluous code.

For generated assertions that check the return value of a function, DSpot actively splits the
function call and the assertion through a variable declaration. While one participant preferred
this step for clarity and would find it easier to understand with an expressive variable name,
three other participants were annoyed by the additional bloating of the code (O#8, Support: 3).
While inlining the variable declaration a participant even pointed out that splitting the function
call from the assert statement lead to less powerful assertions being used (O#9). Instead of
assertNotEquals the test used assertFalse, which gives a much less expressive error
message in case the assertion fails. assertNotEquals throws a org.junit.Compari-
sonFailure and prints the expected and actual values, while assertFalse simply throws
an java.lang.AssertionError at the line of the assertion.

Another issue brought up by the developers was concise input strings. To gener-
ate parameters while creating new objects for the setup phase of a test case, DSpot can
generate unnecessarily long random strings of characters (O#10, Support: 2). To under-
stand the test’s behavior, developers now would need to know which of these characters
are important for the intent of the test case, which takes a lot of time and effort. In one
case we observed, DSpot created a new object and checked that it is not equal to the exist-
ing one. The developer spent a lot of time going through the various special characters in
the constructor parameters for the new object, trying to determine which one is triggering
the behavior of the test case. In the end, none of the special characters were necessary,
the strings simply had to be different from the strings initializing the existing object. This
anecdote points to the need for minimizing input values in generated test cases, which was
also pointed out by Fraser et al. (Fraser and Arcuri 2013)

Code: Consistent Apart from the need for the test code to have a high quality (Athanasiou et al.
2014) itself, it should also be consistent with the rest of the test suite. Three participants pointed
out that the assertion methods were fully qualified instead of statically imported, like in the

Empirical Software Engineering (2022) 27:96

1 3

Page 19 of 35 96

original test case (O#11, Support: 3). A similar comment was made for the identifiers, which one
participant wanted to be in the same naming schema as existing test cases.

Behavior: Relevant Moving to the behavior of the test cases, we saw that it is important
to test methods relevant to the developers. As our example project already had a relatively
good test suite covering most core functions of the class, many of the proposed test cases
covered extra branches in equals, hashCode or clone. The initial reaction of vari-
ous participants was “I would not test this method” (O#12, Support: 11), leading some
to discard the test directly. Others investigated further and uncovered that hashCode was
overwritten with a custom implementation, which for one participant meant it was relevant
after all to test the method. We believe that it is not only important to focus on testing
methods important to the developer, such as core functions defined in a class, but also to
make it clear why a newly covered function is considered important, e.g., because it over-
writes the defaults with a custom implementation. How many interesting test cases are pro-
posed was an important point for the developers we interviewed, this would majorly influ-
ence whether they keep using TestCube (O#13, Support: 4).

Behavior: Invariant A further comment on the behavior of the generated test cases
was that developers would like them to test invariants of methods instead of absolute
values (O#14, Support: 8). The most prominent example being hashCode. As other
test generation tools, DSpot uses the current behavior of a system as an oracle. To
test hashCode, it calls the method on an object and creates an assertion compar-
ing the resulting value to the return value of hashCode. This is a fragile test case,
as the hashCode changes as soon as any changes are made to the class’s attributes.
Our participants advocated testing the invariant of hashCode instead of an absolute
value. Interestingly though, they proposed a variety of ways how to test this invariant:
Cloning an object and checking the hashCode is still the same (as well as that they
are equals), creating the same object twice and compare the hashCode, check that
if equals is true the hashCode is also the same, or even creating random objects and
verifying that only a few of them lead to hashCode collisions. While proposing ampli-
fied test cases to open source projects, Danglot et al. also saw diverging reactions to
test cases testing hashCode (Danglot et al. 2019b).

Behavior: Diverging One of our observations that is special to test amplification is
how far the behavior of the generated test case should diverge from the original test
case (O#15, Support: 6). Some of our participants were enthusiastic that the generated
test cases explored so many new paths and scenarios, even naming this as one of the key
strengths of TestCube . Others were confused by this divergence as they mainly focused
on comparing the behavior of both test cases. The most severe cases of such a divergence
approach when the original test case involves objects from another class than the class
under test. Some of the amplified test cases then test functionality in this other class and
completely disregard the original class under test (O#16, Support: 3). While these tests
can be valid and helpful additions to the test suite, our participants mostly disliked them,
because they were focussing on testing the original class under test. In a future version
of TestCube , tests for another focal class should be marked as such and proposed to be
added to the fitting test class.

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 20 of 35

5.3 RQ2: What Are the Key Factors to Make Test Exploration Tools Suited
for Developer‑Centric Test Amplification?

To enable developers to interact with and judge the amplified test cases, we created a test explo-
ration tool. In the following, we will explain our observations from the interviews on what factors
are important for such a tool to be suited for developer-centric test amplification.
Ease of Use: Minimal Configuration First and foremost, a test exploration tool should be easy
to use and especially easy to start. Our approach of using a default configuration was suc-
cessful, two of our participants pointed out how little effort was needed from their side to get
started (O#17, Support: 2). Some still noted concerns about how easy the tool would be to set
up locally for their projects (O#18, Support: 2), so clear supporting documentation is impor-
tant if one wants to let the developer try out and discover a tool all by themselves.

Ease of Use: Integration A factor that helped developers start up and explore TestCube so
quickly was its tight integration with IntelliJ (O# 19, Support: 3). Participants noted that it
was easy to start from the “run test” location, two made use of the built-in code navigation
to explore the code under test (O#20, Support: 2) and one liked that they could perform all
actions without having to switch tools (O#21, Support: 1).

Ease of Use: Usability In addition to minimal configuration and being integrated, a developer-
centric exploration tool should also adhere to the long-established criteria for usability from
Human-Computer-Interaction research (Bevan 2001). We have seen that it is important to give
the developer control over the layout of TestCube : various participants had different wishes
for which information they want to see and how much space the tool should take up on their
screen (O#22, Support: 1 each from 5 codes). Some were looking for buttons to close, e.g., the
coverage editor they no longer needed (Support: 3) or got confused after they could not undo an
unintentional action (Support: 3). We believe it is crucial for a successful tool to give the devel-
oper options to configure the layout of the tool to fit their needs and let them recover from errors.

Empirical Software Engineering (2022) 27:96

1 3

Page 21 of 35 96

With the help of the System Usability Score, we evaluated the overall usability of Test-
Cube . 44% of our participants rated the usability as “Excellent”, 38% as “Good” and
19% as “Poor”. This shows that even with the above mentioned issues, we overall suc-
ceeded in creating a tool that is easy to use.

Information Management We observed big difficulties with managing the information Test-
Cube is displaying for developers. The text detailing which instructions are additionally cov-
ered was overlooked by many study participants, some later said they thought it is “unimportant
debug output” (O#23, Support: 3). Providing the information sought out by developers in a way
that does not overwhelm them and is accessible to them where they expect it is one of the big
challenges looking at future versions of TestCube . Also the number of generated test cases
should not be too large (O#24, Support: 4). For some methods, over fifty new test cases were
proposed that one by one tested a previously uncovered class. One participant said they lost inter-
est after looking over several of these test cases and seeing how many were left (O#25, Support:
1). An effective test exploration tool should focus on a few impacting test cases to not overwhelm
the developer and keep each interaction session compact. Additionally it would help to rank the
generated test cases and show the most impactful ones first.

Focus Related to information management is also the issue of focus. Through nearly each
one of our interviews, we saw how important it is to only show information to the developer
which they are supposed to focus on in that moment. In the current design of TestCube
, the amplified test cases are all part of the same text file presented at once in an editor. This
means that multiple tests are visible at the same time. While TestCube ’s internal navigation,
e.g., the coverage information and the automatic adding to the test suite, was focused only on
the first test case at the start, many of our participants started scrolling through the list of test
cases immediately (O#26, Support: 5). Later some of them were confused (O#27, Support: 3),
as they tried to add the test case they were currently focussing on to the test suite, while Test-
Cube copied over the first one in the list. It is therefore extremely important for a future test
exploration tool to make sure the focus of the developer aligns with the focus of the tool. For
example, by only showing the code of one test at a time and therefore forcing the user to click
on the next and previous buttons to explore the generated test cases.

Manage Expectations: Runtime A test exploration tool should manage the expectations
of its users. We observed this with the runtime of the amplification process. Even though we
took care in our configuration to keep the runtime of DSpot as low as possible, in some cases
the generation still took several minutes to complete, which four participants considered as too
long (O#28, Support: 4). While we included a business indicator that signaled to the developers
that the amplification is running a background task, many were wondering how long it will take
before they get results. Our participants wished for an expressive progress bar that either gives an
estimation of the remaining time or at least shows an approximated form of progress (O#29, Sup-
port: 2). Some were wondering whether, or even expecting that, it is possible to switch to another
task while they were waiting.

Manage Expectations: Capabilities The expectations with respect to the capabili-
ties of a tool should also be correctly set. As we gave the developers only a minimal
introduction to the tool, it was not clear for some whether the generated test cases are
meant to replace the existing test case or are meant to be an addition to the test suite.

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 22 of 35

Toward the end of their interviews, participants pointed out that they slowly under-
stand the power of the tool better and see clearer how they would employ it (O#30).
One pointed out that the generated test cases were much more appreciated by him
now that he understood the editing effort which was necessary before including them.

Overall, we observed a plethora of important aspects to make a test exploration tool
developer-centric. It should be easy to start and use, the way of displaying information
needs to be carefully chosen, it has to keep track of the focus of the developer and manage
the user’s expectations towards its capabilities and runtime.

5.4 RQ3: What Information Do Developers Seek While Exploring Amplified Test
Cases?

While exploring the generated test cases, our participants did not only scrutinize the test code
itself but were also looking for and asking about a lot of additional information. We saw that
it is crucial to provide quick and familiar ways for developers to provide this information so
they can efficiently decide on whether to keep or how to adapt an amplified test case.
Test Case: Behavior / Intent As mentioned in Section 5.2, the test cases themselves and
their behavior or rather their intent were a main focus of the developers. After making
edits to a test case, one participant wondered whether the original intent of the gener-
ated case was still preserved (O#31, Support: 1). This is in line with Grano et al.’s results:
developers are concerned with determining whether a unit test “actually exercises the cor-
responding unit” and how many relevant scenarios are covered (Grano et al. 2020). Prado
and Vincenzi showed that the code of a test case is one of the main sources of information
about a test case for the developer (Prado and Vincenzi 2018), an observation corroborated
by Aniche et al. (Aniche et al. 2021). As far as we observed, the current editor displaying
the code of the generated test case is enough to satisfy this information need for developers.

Test Case: Outcome Furthermore, the developers were interested in the outcome generated test
cases (O#32, Support: 3), i.e., whether they are passing or failing. As all test cases generated by

Empirical Software Engineering (2022) 27:96

1 3

Page 23 of 35 96

DSpot pass, this could be addressed by a better explanation of the tool. Alternatively, tool devel-
opers could provide the existing IDE utility to run a test case in the editor proposing the new
test case or provide functionality such as Infinitest, a tool that runs JUnit tests continuously in
the background (Infinitest 2021). This would allow the developer to easily check that a test case
is still passing after editing it and before integrating it to the test suite.

Test Case: Runtime The runtime of a test case was also pointed out by one of our par-
ticipants (O#33, Support: 1), as they were used to projects where increasing the runtime of
the continuous integration build was frowned upon. Test exploration tools should include a
note about the measured execution time with each test case.

Code Under Test While inspecting the new test cases, most of our participants quickly
jumped to also inspecting the code under test. Two were trying to understand its behavior
(O#34, Support: 2) to see the intent of the test case and to judge whether the additional
coverage was relevant. Also, they checked if the tested method overrides standard behavior
and if exceptions were thrown and tested. As Spadini et al. already pointed out, it is crucial
for test review tools to provide easy navigation between test code and the code under test
(Spadini et al. 2018). Prado and Vincenzi point out that developers should receive tool sup-
port to build the context between test code and code under test (Prado and Vincenzi 2018).
Through reusing the standard editor component of IntelliJ, TestCube allows its users to
use their familiar code navigation tools, such as command-click to go to the definition of a
method.

Coverage The third large area developers wondered about was coverage. Under this falls the
original coverage of the test suite and which additional coverage each generated test case and
all the generated test cases together yield. A recurring question was whether a functionality
covered by the generated test cases was already covered by another test case (O#35, Support:
2). Developers scanned the test suite to find other tests calling the same method. Even though
TestCube provides detailed information on which instructions are additionally covered by
the new test case, not all participants understood that this implies the instructions were not
covered by any existing test case. The developer that found our visualization of the added
coverage, found it helpful to see the covered lines not only as numbers but also in the code
context (O#36, Support: 1). They wished for a separate report of the original instruction cov-
erage and the improvement of instruction coverage after including the amplified test cases.
We also observed two times that the developers used the coverage of a test case to infer its
intent (O#37, Support: 2), an observation also made by Grano et al. (2020). Sometimes it was
unclear to our participants why the new code covers these additional instructions (O#38, Sup-
port: 3). This points towards a need for exploration tools to visualize clearer how test code
and code under test connect.

Instruction coverage seemed to be a satisfying metric for most of our participants. Some
of them wished for more information about how many branches are covered or hoped the
tool would help them cover all branches as they would aim for while writing unit tests
themselves. Even though some of our participants were aware of the concept of mutation
score, none of them asked for information about improved mutation score or for test cases
that kill additional mutants. Rojas et al. saw that in an industrial context many developers
used coverage to evaluate a generated test case (Rojas et al. 2015).

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 24 of 35

Original Test Case Special for the case of test amplification, was the interest of the partici-
pants to inspect the original test case that was the basis for the amplification. They tried to
understand the intent of the original test case (O#39, Support: 5) and used this information,
together with the knowledge of which instructions were changed to determine the behavior of
the amplified test cases (O#40, Support: 2). Highlighting the changes from the original to the
generated test case through comments (C#4) was not successful in our study. The developers
ignored them and questioned their usefulness (O#41). We hypothesize that the generated test
cases were short enough to spot the changes without the comments.

5.5 RQ4: What Value Does Developer‑Centric Test Amplification Bring
to Developers?

One way to make developer-centric test amplification successful, is to bring across the value they
can expect from the amplified test cases and from using the test amplification tool. To give us an
indication, which values we should focus on, we collected comments from our participants about
the benefits they believe they would achieve from using a tool similar to TestCube .
Improve Test Suite: Ease Test Engineering First and foremost, automatic test amplification
would help them improve their test suite. By proposing complete, ready-to-run test cases that
cover more code or interesting behavior (O#42, Support: 4), automatic test amplification eases
test engineering for developers. The test amplification alleviates the developer from having
to write test cases from scratch, reducing the effort necessary to develop a test suite. Reducing
effort is a concern for developers: one participant stated, that they would “either look for less
work or for tests with a better quality” (O#46, Support: 1).

Improve Test Suite: Inspiration The generated test cases also provided inspiration. Sev-
eral users created new test cases to cover the behavior of the amplified test cases (O#47,
Support: 4). They were glad to be pointed to untested code paths (O#43, Support: 4) and
to unexpected scenarios that could happen in the system (O#44, Support: 1). A recurring
comment was that a test covers methods the participant always forgets to test (O#45, Sup-
port: 3). By proposing new scenarios with the generated test cases, test amplification tools
can take the burden of designing test scenarios of the developers.

Empirical Software Engineering (2022) 27:96

1 3

Page 25 of 35 96

Learning Packaging test case generation in an easily accessible plugin can be a valuable
step to enable more developers to learn about test amplification itself. Many of our par-
ticipants did not know about the technique of test amplification before and one said that a
plugin like TestCube could be a way to bring this idea into industry (O#48). The partici-
pants got more confident towards the end of the interviews about what TestCube can do
for them and how they could apply it effectively (O#30). In general, we saw that amplifica-
tion was easy to grasp for the developers (O#49). A participant pointed out they would like
to use such a tool while they are working on improving the test suite (O#50, Support: 1) and
another was eager to try it on their own projects (O#51, Support: 1).

Confidence One participant said that using TestCube more often would increase their
confidence in their test suite (O#52, Support: 1). On the one hand simply through the
higher coverage after adding the generated test cases, and on the other hand because they
see more important scenarios being covered.

6 Discussion and Recommendations

In the following, we consolidate our results into two actionable recommendations on
how to make amplified test cases and test exploration tools suited for developer-centric
test amplification. Table 3 shows from which of our interview observations we infer the
recommendations.

We chose an additional layer between the test amplification and the developer, a test explora-
tion tool, to address the issues users previously reported with DSpot. Our prototypes could already
surface different kinds of information the developers were seeking, such as the behavior of the
test case (O#2), its coverage (O#35), or which code is tested (O#34). Further, it became clear how
tightly the characteristics of the test exploration tool are bound to the kind of test cases it pre-
sents to the developer. In our design, the technique of test amplification (C#1) and the informa-
tion from the amplification process reports (C#9), is tightly bound to what our exploration tool
TestCube presents to its users about the test cases (C#14). Our participants were questioning
how the test cases are generated, and also sought information especially related to test amplifica-
tion, like the original test case (O#39)(O#40). We saw the importance of expectation manage-
ment (O#30), e.g., on how much they should edit the proposed test cases, and conveying the value
the test amplification can bring to the developer, such as pointing to untested code paths (O#43).
The tight integration into the developer’s IDE was helpful to get them started quickly (O#19).

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 26 of 35

Overall, we saw a positive effect of using a test exploration tool to facilitate the developer-centric
test amplification. We conjecture that this support of an integrated test exploration tool is also ben-
eficial for other test generation approaches that aim to be developer-centric. We recommend to
future authors of developer-centric test generation approaches to provide a test exploration tool
that is targeted towards the test generation method they employ and accessible to the developer
from their familiar environment.

Concretely, TestCube can be improved in several points: Clearer visualization of the
connection from the amplified test case to the additionally covered instructions in the code
under test (O#23)(O#34)(O#38) and describing the behavior of the amplified test case and
how it diverges from the original test case (O#31). Further we can help developer focus by
proposing one test case at a time (O#24)(O#26)(O#27) and address waiting time (O#28) by
generating test cases before they are requested.

Looking at the results of our first research question, we can see that the developers were
mainly concerned with understanding the test cases TestCube presented to them (O#2). The
observations which occurred in most interviews are about the identifiers (O#3), the concise-
ness of the code (O#5) (O#7), and trying to understand the behavior and intent of the test case
(O#31), be it through the test code itself or the various other kinds of information sought. Dur-
ing our interviews, the understanding was always the first step—only after the participants
understood a test case they started to judge the impact or relevance (O#12)(O#35). When judg-
ing the test cases, we observed that not all tests which increase instruction coverage are relevant
to developers, e.g., because they test a to them less important method (O#12) or a too narrow
behavior (O#14). From these results, we infer that for a developer-centric approach, where the
central aim is for a developer to take over the generated test case into their maintained test suite,
the understandability of the generated test case and the relevance to the developer is of a bigger
concern than how high its numeric impact is on the coverage of the test suite. An understand-
able test case with a weaker coverage contribution is more likely to be accepted by developers,
compared to a test case that increases coverage greatly but they discard because they can not
understand what it does. We recommend to future authors of developer-centric test generation

Table 3 Connection of our recommendations to our interview observations

Recommendation Corresponding Observations

Recommendation 1: Consider the interaction of the developer with the
test cases: provide a test exploration tool that is targeted towards the
test generation method and integrated into the developer’s environ-
ment.

(O#2) (O#35) (O#34) (O#39)
(O#40) (O#30) (O#43) (O#31)
(O#24) (O#26) (O#27) (O#28)

Recommendation 2: When the main goal is for developers to accept a
test case into their maintained test suite, it is more important that the
test case is understandable and relevant to the developer, than how
much it impacts the coverage of the test suite.

(O#2) (O#3) (O#5) (O#7)(O#12)
(O#35) (O#14) (O#11)(O#9)
(O#10)

Empirical Software Engineering (2022) 27:96

1 3

Page 27 of 35 96

approaches to prioritize the understandability of the generated test cases and their relevance to
the developer higher than their impact on the coverage of the test suite.

Concretely, the amplified test cases generated by DSpot can be improved by generating use-
ful identifiers (O#3), possibly informing about the unique coverage provided by the test case
(O#35) (Nijkamp et al. 2021). Further unnecessary statements (O#5) and casts (O#7) should
be removed (Oosterbroek et al. 2021), the style of the test cases (O#11) can be adapted to fit
the existing test suite, randomly generated strings shortened and focused to the part triggering
the tested behavior (O#10), and assertions adapted to use the most specific assertion giving an
informative error message (O#9).

Our participants pointed out how easy it was to interact with TestCube right from their
IDE (O#17)(O#19)(O#20), many found test cases that they liked and added them into the test
suite of our example project. We conjecture that combining the already powerful state-of-the-
art test amplification approaches with well-designed, developer-centric test exploration tools
will let us reach more developers to amplify their software testing practice.

7 Threats to Validity

There are several threats to the validity of our results which we discuss in this section.

Confirmability To ensure that our results are formed by the interviewees and not by the
authors, we base our results as closely as possible on the interviews. While coding and ana-
lyzing the interviews we performed extra steps to validate the codes elicited from the inter-
views and evaluated the inter-rater reliability, as described in Section 4.3. Nevertheless,
other researchers might structure the resulting codes differently or draw varying conclu-
sions from them. We publish the full codes together with their frequency in our interviews
(Brandt and Zaidman 2021) for others to further explore the research area and add to our
study.

Reactivity and Respondent Bias As the first author created the prototypes and conducted
all interviews, the statements of the participants might be influenced by the participants
wanting to please the creator of the tool they are evaluating. To mitigate this threat, we
repeatedly invited the participants to be critical and refrained from defending the current
state of the tool. Based on the wide variety of critical and positive points we could collect,
we conjecture to have mitigated this threat.

Construct Validity A threat to the construct validity of our study is that our participants
interacted with an early prototype showing one possible design of a test amplification
tool. Bugs in the prototype or design decisions we took could influence the developer’s

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 28 of 35

experience and the generalizability of the results to general test amplification approaches.
We identify several of our results as being related to our choice of test amplification to gen-
erate the test cases (C#1), which we indicated while reporting them in Section 5. Similarly,
our observations can be influenced by our default configuration of DSpot. Optimizing the
configuration of DSpot to fit the target project would likely lead to more relevant test meth-
ods being generated. Furthermore, our participants were not developers of the example
project we used in the study. We expect that developers familiar with a project would spend
less time on understanding the original and amplified test cases and could judge more eas-
ily if a production method is relevant to be tested.

Dependability Whether our results are consistent and can be repeated in a replication is
the concern of dependability. With 16 participants we were able to interview a relatively
large number of software developers. Our presented results mainly focus on observations
that we made in multiple interviews (that have high support). Nevertheless, there were
many insightful comments that only emerged from one or a few interviews. Through the
openness of our setup and questions, the interviews went in many different directions and
the observations we could make are dependent on the taken direction. We expect that
repeating this study would yield different support for the rarely-mentioned aspects, how-
ever the overall conclusions will likely stay the same.

External Validity There are several threats to the generalizability of our results. As well as other
state-of-the-art test generation tools, our prototypes address Java and its specific properties. We
expect our results to generalize to other object-oriented, statically typed languages and are curi-
ous to see the different information needs developers of other programming languages have.

The choice of presenting our prototypes together with the example project Jsoup can
also impact our results. Because equals, hashCode and clone were not covered by the exist-
ing test suite, DSpot generated tests mainly for these functions that were named “irrel-
evant” by several of our participants. In other projects whose test suite has a lower or dif-
ferently distributed coverage, the aspect of testing relevant methods might be less apparent.

As we performed convenience sampling, the results of our study might be influenced by
our professional networks, as well as a self-selection bias of developers that are especially
interested in high-quality test suites. From the demographic information we collected, we con-
clude that we sampled from a broad variety of experiences, industry domains and team sizes.

8 Related Work

Various past works have focused on the two main parts of or approach, mainly improving
the understandability of test cases and integrating test generation tools into development
environments.

8.1 Understandability of Test Cases

The issues of cryptic identifiers and lack of documentation in generated test cases are addressed
by Roy et al. (2020) in their tool DeepTC-Enhancer. With a combination of templates and
deep learning, they generate comments that explain the behavior of a test case and meaningful

Empirical Software Engineering (2022) 27:96

1 3

Page 29 of 35 96

identifiers. Their work is an extension of TestDescriber by Panichella et al. (2016) and was eval-
uated by 36 developers. The developers were most enthusiastic about the meaningful identifiers,
while some said the explanatory comments are not concise enough. In our interviews, we also
observed the importance of expressive test names and variable identifiers. While our partici-
pants were trying to understand the behavior of the amplified test cases, they could interpret the
raw code of the test cases well. Therefore, we do not believe any additional summarization of
the test itself is necessary. Easier access to the code under test and information about previous
and added coverage are more relevant concerns going forward. In similar vein, Li et al. describe
UnitTestScribe (Li et al. 2016).

Alsharif et al. (2019) investigated which factors are important for the understand-
ability of automatically generated SQL schema tests. They saw that human-readable
string values are better to understand than randomly generated ones and the repeti-
tion between generated test cases made it easier to focus on the relevant differences of
the test cases towards each other. Their results align with ours: Randomly generated
strings were mentioned as confusing and our interview participants repeatedly used the
similarity between the original and the amplified test case to understand the behavior
and impact of the newly generated test case.

Daka et al. (2015) define a regression model for test case readability based on vari-
ous syntactic properties of test cases. They integrate the model into the fitness function of
EvoSuite (Fraser and Arcuri 2011) to generate more readable test cases. In their model and
post-experiment survey they identified several important factors overlapping with our find-
ings: Identifiers are important for the understandability of a test case, as well as no unnec-
essarily defined variables and short string literals.

Next to DeepTC-Enhancer by Roy et al. (2020), several further works focus on
generating meaningful names for test cases. NameAssist by Zhang et al. (2016) infers
test names from the class under test, the expected outcome stated in the assertion and
the overall test scenario defined in the body of the test. Daka et al. (2017) derive test
names from additionally covered exceptions, methods, outputs and inputs of the com-
ponent under test. They showed that the generated names are equally excepted com-
pared to names given by developers and made it easier for developers to match a test to
the code under test. Including an advanced name generation approach such as the one
by Daka et al. (2017) would be a valuable addition to TestCube and DSpot.

Bihel and Baudry (2018) focused specifically on making tests amplified by DSpot more
accessible for developers. They generate a natural language description of the changes
made during the amplification, of the value observations which lead to new assertions,
and of the mutants which will be killed by the newly added test cases. These descriptions
are designed to accommodate a pull request proposing to add an amplified test case. In
comparison, TestCube focuses on a just-in-time interaction of the developer, embed-
ding test amplification into their IDE. In our scenarios, not only tool performance, but
also the amount of presented information is a distinguishing challenge. Compared to Bihel
and Baudry’s approach (Bihel and Baudry 2018), TestCube more carefully selects the
information presented to the developer. We also evaluate our approach in a study with
developers.

Because of the high computational cost of test generation, many tools have opted
for integration into the continuous integration process (Arcuri et al. 2016; Danglot
et al. 2020). This, however, leads to a long time distance between triggering the test
generation and receiving results (Beller et al. 2017), as well as the developers hav-
ing to inspect the tools outside of their familiar development environment. To pro-
vide more immediate value and direct feedback, we opted to let TestCube run on our

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 30 of 35

user’s computers, leading to many more constraints regarding the available execution
power and therefore possible complexity of the applied algorithms.

8.2 Test Generation Tools Integrated in the IDE

Several other test generation tools have been integrated into IDEs up until now. Following
an industrial study of EvoSuite, Rojas et al. (2015) pointed out the importance to inte-
grate test generation tools into development environments. Since then, EvoSuite has been
lightly integrated into IntelliJ IDEA as a plugin (Arcuri et al. 2016) which provides options
to configure the test generation within an existing build process. In contrast to this, Test-
Cube runs independently from a project’s build process and can be installed and applied
with nearly no configuration.10

DSpot has been integrated into the Eclipse IDE as a plugin together with other tools
from the STAMP project (STAMP 2019a). The plugin offers a graphical interface to set the
various configuration parameters of DSpot and start the amplification process. Compared
to TestCube , the additional information showing the impact of a generated test case is
just presented as a JSON text and the developer is still confronted with many configuration
parameters.

Tillmann and de Halleux (2008) developed the Pex tool which generates inputs for
parameterized tests based on program analysis. They integrated their tool into Visual
Studio, enabling the developer to generate and execute the unit tests by right-clicking on
the parameterized unit test. The tool presents the generated inputs and corresponding test
results in a new window as a simple table.

8.3 Interactive Test Generation

The idea of connecting the developer closer with the test generation is also realized in Inter-
active Search-Based Software Testing (ISBST). In the concept of Marculescu et al. (2012),
domain experts decide the importance of different components in the fitness function lead-
ing the automatic optimization of the test cases. The interaction happens during the search
process, where in defined moments the expert evaluates the current candidate test cases and
adapts the fitness function for the next round of test generation. When compared to manual
testing, ISBST could find different test cases and execute behavior previously not consid-
ered by developers, similar to what our participants reported about TestCube (O#45).
Marculescu et al. also investigated the mental workload of developers using ISBST com-
pared to manually writing test cases. They did see a higher load and explain it through the
distance from the developer’s interaction with the fitness function to the outcome of the
search process. Similarly, we saw during our interviews that the developers tried to retrace
the generation of the test cases, strengthening the choice to perform only small edits during
the amplification to make the process easier to retrace. After transferring their approach to
industry (Marculescu et al. 2018), Marculescu et al. point out the need for ISBST and other
automated test systems to effectively communicate their results to their users. Our work
addresses this by prototyping a developer-centric test exploration tool and eliciting the key
factors to make such tools suited to be used for test amplification.

10 In the current version the user only has to provide the path to their Java 8 installation and their Maven
Home.

Empirical Software Engineering (2022) 27:96

1 3

Page 31 of 35 96

9 Conclusion

With this paper, we are setting a step towards test amplification that is centered around
the developer and their needs. Based on reported issues with current state-of-the-art
tools, we devised design intentions for a developer-centric test amplification approach
that aims to generate test cases that will be taken over into the manually maintained
test suite. We used these intentions to adapt DSpot’s test amplification and create Test-
Cube , a powerful test exploration plugin for IntelliJ. With the help of these tools,
we interviewed 16 software developers from a variety of backgrounds and collected
detailed insights on how the amplified test cases and the exploration tool should be
adapted to best fit their needs. Through evaluating the information sought during the
test exploration, as well as the value test amplification brings to developers, we guide
future tool developers on what they should bring forward in their upcoming, devel-
oper-centric test generation tools. We summarized our observations and results into
two recommendations: Tool makers should consider the interaction of the developers
with the amplified test cases and provide a targeted and integrated test exploration tool.
If taking over the test cases into the maintained test suite is the declared goal, the
understandability of the amplified test cases should be prioritized over optimizing the
coverage of the test suite.

In short, we contribute:

– two recommendations on how to design developer-centric test amplification tools
– a structured overview of the key factors to make amplified tests as well as test explo-

ration tools suited for developer-centric test amplification
– a refined, developer-centric test amplification approach, based on the DSpot test

amplification
– a developer-oriented test exploration plugin for the IntelliJ IDE

Going forward we want to understand the different aspects of developer-centric test
amplification in more depth. We want to look into generating meaningful identifiers
fast enough, ranking test cases according to their relevance to the developer, and pro-
viding them information such as runtime or coverage when they look for it, but without
overwhelming them. Our tools will dive deeper into their day-to-day development, for
example by helping them incrementally generate test cases for new or untested classes.
We want to give them more power to direct the amplification and receive test cases that
cover code or scenarios they are interested in, while also providing them with subtle,
helpful recommendations before they realize they need another test case. Our vision
is to build tools and methods that empower developers to create better test suites with
less effort, while they are at the steering wheel deciding over, leading, and benefiting
from our automatic test amplification.

Acknowledgements We would like to thank the participants of our study for the valuable feedback on our
work.

Funding This research was funded by the Dutch science foundation NWO through the Vici “TestShift”
grant (No. VI.C.182.032).

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 32 of 35

Declarations

Competing interests The authors have no competing interests to declare that are relevant to the content
of this article.

Conflict of Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Almasi MM, Hemmati H, Fraser G, Arcuri A, Benefelds J (2017) An industrial evaluation of unit test gen-
eration: Finding real faults in a financial application. In: 39th IEEE/ACM international conference on
software engineering: Software engineering in practice track, ICSE-SEIP 2017, Buenos Aires, Argen-
tina, May 20-28, 2017. IEEE Computer Society, pp 263–272

Alsharif A, Kapfhammer GM, McMinn P (2019) What factors make SQL test cases understandable for
testers? A human study of automated test data generation techniques. In: 2019 IEEE international con-
ference on software maintenance and evolution, ICSME 2019, Cleveland, OH, USA, September 29
- October 4, 2019. IEEE, pp 437–448

Aniche MF, Treude C, Zaidman A (2021) How developers engineer test cases: An observational study.
IEEE Transactions on Software Engineering

Arcuri A, Fraser G (2013) Parameter tuning or default values? An empirical investigation in search-based
software engineering. Empir Softw Eng 18 (3):594–623

Arcuri A, Campos J, Fraser G (2016) Unit test generation during software development: EvoSuite plugins
for Maven, IntelliJ and Jenkins. In: 2016 IEEE international conference on software testing, verifica-
tion and validation, ICST 2016, Chicago, IL, USA, April 11-15, 2016. IEEE Computer Society, pp
401–408

Athanasiou D, Nugroho A, Visser J, Zaidman A (2014) Test code quality and its relation to issue handling
performance. IEEE Trans Software Eng 40(11):1100–1125

Bangor A, Kortum PT, Miller JT (2008) An empirical evaluation of the System Usability Scale. Int J Hum
Comput Interact 24(6):574–594

Beck KL (2003) Test-Driven Development - By Example. The Addison-Wesley signature series,
Addison-Wesley

Beller M, Gousios G, Panichella A, Zaidman A (2015a) When, how, and why developers (do not) test in
their IDEs. In: Nitto ED, Harman M, Heymans P (eds) Proceedings of the 2015 10th joint meeting
on foundations of software engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,
2015. ACM, pp 179–190

Beller M, Gousios G, Zaidman A (2015b) How (much) do developers test? In: Bertolino A, Canfora G,
Elbaum S G (eds) 37th IEEE/ACM international conference on software engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, vol 2. IEEE Computer Society, pp 559–562

Beller M, Gousios G, Zaidman A (2017) Oops, my tests broke the build: an explorative analysis of Travis
CI with GitHub. In: Proceedings of the 14th international conference on mining software repositories
(MSR). IEEE Computer Society, pp 356–367

Beller M, Gousios G, Panichella A, Proksch S, Amann S, Zaidman A (2019) Developer testing in the IDE:
patterns, beliefs, and behavior. IEEE Trans Software Eng 45(3):261–284

Bevan N (2001) International standards for HCI and usability. Int J Hum Comput Stud 55(4):533–552
Bihel S, Baudry B (2018) Adapting amplified unit tests for human comprehension. KTH Internship Report
Brandt C, Zaidman A (2021) Developer-centric test amplification: The interplay between automatic genera-

tion and human exploration — appendix. https:// doi. org/ 10. 5281/ zenodo. 52548 70

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.5254870

Empirical Software Engineering (2022) 27:96

1 3

Page 33 of 35 96

Corbin JM, Strauss A (1990) Grounded theory research: Procedures, canons, and evaluative criteria. Qual
Sociol 13(1):3–21

Daka E, Campos J, Fraser G, Dorn J, Weimer W (2015) Modeling readability to improve unit tests. In: Nitto
ED, Harman M, Heymans P (eds) Proceedings of the 2015 10th joint meeting on foundations of soft-
ware engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015. ACM, pp 107–118

Daka E, Rojas JM, Fraser G (2017) Generating unit tests with descriptive names or: Would you name your chil-
dren thing1 and thing2?. In: Bultan T, Sen K (eds) Proceedings of the 26th ACM SIGSOFT international
symposium on software testing and analysis, Santa Barbara, CA, USA, July 10 - 14, 2017. ACM, pp 57–67

Danglot B, Vera-Perez O, Yu Z, Zaidman A, Monperrus M, Baudry B (2019a) A snowballing literature
study on test amplification. J Syst Softw 157:110398

Danglot B, Vera-Pėrez OL, Baudry B, Monperrus M (2019b) Automatic test improvement with DSpot: A
study with ten mature open-source projects. Empir Softw Eng 24(4):2603–2635

Danglot B, Monperrus M, Rudametkin W, Baudry B (2020) An approach and benchmark to detect
behavioral changes of commits in continuous integration. Empir Softw Eng 25(4):2379–2415

Derakhshanfar P, Devroey X, Panichella A, Zaidman A, van Deursen A (2020a) Botsing, a search-based
crash reproduction framework for java. In: 35th IEEE/ACM international conference on auto-
mated software engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE, pp
1278–1282

Derakhshanfar P, Devroey X, Zaidman A, van Deursen A, Panichella A (2020b) Good things come in
threes: Improving search-based crash reproduction with helper objectives. In: 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, pp 211–223

Fraser G, Arcuri A (2011) EvoSuite: Automatic test suite generation for object-oriented software. In:
Gyimo ̇thy T, Zeller A (eds) SIGSOFT/FSE’11 19th ACM SIGSOFT symposium on the foundations
of software engineering (FSE-19) and ESEC’11: 13th European Software Engineering Conference
(ESEC-13), Szeged, Hungary, September 5-9, 2011. ACM, pp 416–419

Fraser G, Arcuri A (2013) EvoSuite: On the challenges of test case generation in the real world. In: Sixth
IEEE international conference on software testing, verification and validation, ICST 2013, Luxem-
bourg, Luxembourg, March 18-22, 2013. IEEE Computer Society, pp 362–369

Fraser G, Staats M, McMinn P, Arcuri A, Padberg F (2015) Does automated unit test generation really help
software testers? A controlled empirical study. ACM Trans Softw Eng Methodol 24(4):23:1–23:49

Grano G, Scalabrino S, Gall HC, Oliveto R (2018) An empirical investigation on the readability of manual
and generated test cases. In: Khomh F, Roy CK, Siegmund J (eds) Proceedings of the 26th conference
on program comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018. ACM, pp 348–351

Grano G, Iaco CD, Palomba F, Gall HC (2020) Pizza versus pinsa: On the perception and measurability
of unit test code quality. In: IEEE international conference on software maintenance and evolution,
ICSME 2020, Adelaide, Australia, September 28 - October 2, 2020. IEEE, pp 336–347

Haq FU, Shin D, Briand LC, Stifter T, Wang J (2021) Automatic test suite generation for key-points
detection dnns using many-objective search (experience paper). ACM, ISSTA 2021

Hoffman D, Strooper P (2003) API documentation with executable examples. J Syst Softw
66(2):143–156

Infinitest (2021) Infinitest - the continuous test runner for the JVM. https:// ingfi nitest. github. io/
Kochhar PS, Xia X, Lo D (2019) Practitioners’ views on good software testing practices. In: Sharp H,

Whalen M (eds) Proceedings of the 41st International conference on software engineering: Soft-
ware engineering in practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE /
ACM, pp 61–70

Li B, Vendome C, Va ̇squez ML, Poshyvanyk D, Kraft NA (2016) Automatically documenting unit
test cases. In: 2016 IEEE international conference on software testing, verification and validation
(ICST). IEEE Computer Society, pp 341–352

Liu X, Holmes R (2020) Exploring developer preferences for visualizing external information within source
code editors, IEEE

Marculescu B, Feldt R, Torkar R (2012) A concept for an interactive search-based software testing sys-
tem. In: Fraser G, de Souza JT (eds) Search based software engineering - 4th International Sympo-
sium, SSBSE 2012, Riva del Garda, Italy, September 28-30, 2012. Proceedings, Springer, Lecture
Notes in Computer Science, vol 7515, pp 273–278

Marculescu B, Feldt R, Torkar R, Poulding SM (2018) Transferring interactive search-based software
testing to industry. J Syst Softw 142:156–170

Meszaros G (2007) XUnit Test Patterns: Refactoring Test Code. Pearson Education
Nassif M, Hernandez A, Sridharan A, Robillard MP (2021) Generating unit tests for documentation.

IEEE Transactions on Software Engineering

https://infinitest.github.io/

 Empirical Software Engineering (2022) 27:96

1 3

 96 Page 34 of 35

Nijkamp N, Brandt C, Zaidman A (2021) Naming amplified tests based on improved coverage. In: 2021
IEEE international working conference on source code analysis and manipulation (SCAM)

Oosterbroek W, Brandt C, Zaidman A (2021) Removing redundant statements in amplified test cases. In:
2021 IEEE international working conference on source code analysis and manipulation (SCAM)

Palomba F, Panichella A, Zaidman A, Oliveto R, De Lucia A (2016) Automatic test case generation:
What if test code quality matters? In: Zeller A, Roychoudhury A (eds) Proceedings of the 25th
international symposium on software testing and analysis, ISSTA 2016, Saarbru ̇cken, Germany,
July 18-20, 2016. ACM, pp 130–141

Panichella S, Panichella A, Beller M, Zaidman A, Gall HC (2016) The impact of test case summaries
on bug fixing performance: An empirical investigation. In: Dillon LK, Visser W, Williams L (eds)
Proceedings of the 38th international conference on software engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016. ACM, pp 547–558

Prado MP, Vincenzi AMR (2018) Towards cognitive support for unit testing: A qualitative study with prac-
titioners. J Syst Softw 141:66–84

Robinson B, Ernst MD, Perkins JH, Augustine V, Li N (2011) Scaling up automated test generation: Automati-
cally generating maintainable regression unit tests for programs. In: Proceedings of the 26th IEEE/ACM
international conference on automated software engineering (ASE). IEEE Computer Society, pp 23—32

Rojas JM, Fraser G, Arcuri A (2015) Automated unit test generation during software development: A con-
trolled experiment and think-aloud observations. In: Young M, Xie T (eds) Proceedings of the 2015
international symposium on software testing and analysis, ISSTA 2015, Baltimore, MD, USA, July
12-17, 2015. ACM, pp 338–349

Roy D, Zhang Z, Ma M, Arnaoudova V, Panichella A, Panichella S, Gonzalez D, Mirakhorli M (2020)
DeepTC-Enhancer: Improving the readability of automatically generated tests. In: 35th IEEE/ACM
international conference on automated software engineering, ASE 2020, Melbourne, Australia, Sep-
tember 21-25, 2020. IEEE, pp 287–298

Serra D, Grano G, Palomba F, Ferrucci F, Gall HC, Bacchelli A (2019) On the effectiveness of manual and
automatic unit test generation: Ten years later. In: Storey MD, Adams B, Haiduc S (eds) Proceedings
of the 16th International Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019.
IEEE / ACM, Montreal, Canada, pp 121–125

Spadini D, Aniche MF, Storey MD, Bruntink M, Bacchelli A (2018) When testing meets code review: Why
and how developers review tests. In: Chaudron M, Crnkovic I, Chechik M, Harman M (eds) Proceed-
ings of the 40th international conference on software engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018. ACM, pp 677–687

STAMP (2019a) STAMP project: Eclipse IDE. https:// github. com/ STAMP- proje ct/ stamp- ide
STAMP (2019b) Use cases validation report v3. https:// github. com/ STAMP- proje ct/ docs- forum/ blob/ mas-

ter/ docs/
Tillmann N, de Halleux J (2008) Pex-white box test generation for .NET. In: Beckert B, Hȧhnle R (eds)

Tests and Proofs - 2nd international conference, TAP 2008, Prato, Italy, April 9-11, 2008. Proceedings,
Springer, Lecture Notes in Computer Science, vol 4966, pp 134–153

Whittaker JA, Arbon J, Carollo J (2012) How Google Tests Software. Addison-Wesley
Zhang B, Hill E, Clause J (2016) Towards automatically generating descriptive names for unit tests. In: Lo

D, Apel S, Khurshid S (eds) Proceedings of the 31st IEEE/ACM international conference on auto-
mated software engineering, ASE 2016, Singapore, September 3-7, 2016. ACM, pp 625–636

Zhang Y, Wildemuth BM (2009) Unstructured interviews. Applications of social research methods to ques-
tions in information and library science, pp 222–231

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://github.com/STAMP-project/stamp-ide
https://github.com/STAMP-project/docs-forum/blob/master/docs/
https://github.com/STAMP-project/docs-forum/blob/master/docs/

Empirical Software Engineering (2022) 27:96

1 3

Page 35 of 35 96

Carolin Brandt is a Ph.D. student at the Software Engineering
Research Group of the Delft University of Technology. She received
her bachelor’s degree from the Technical University of Munich and in
2020 completed the Elite Graduate Program Software Engineering at
the Technical University of Munich, the University of Augsburg and
the Ludwigs-Maximilians-University of Munich. The focus of her
research is the interaction of software developers with automated
tools that are designed to support their work. Her goal is to embed the
developer’s expertise into automatic test generation tools to create test
cases that the developers can directly use to improve their test suites
and the quality of their software.

Andy Zaidman is a full professor in software engineering at Delft
University of Technology, The Netherlands. He received the MSc and
PhD degrees in Computer Science from the University of Antwerp,
Belgium, in 2002 and 2006, respectively. His main research interests
include software evolution, program comprehension, mining software
repositories, software quality, and software testing. He is an active
member of the research community and involved in the organization
of numerous conferences (WCRE’08, WCRE’09, VISSOFT’14 and
MSR’18). In 2013 he was the laureate of a prestigious Vidi mid-
career grant, while in 2019 he received the most prestigious Vici
career grant from the Dutch science foundation NWO.

	Developer-centric test amplification
	Abstract
	1 Introduction
	2 Creating Developer-Centric Test Amplification
	3 Bringing Test Amplification to the Developer (IDE)
	3.1 Developer-Centric Amplification with DSpot
	3.1.1 Remove Assertions
	3.1.2 Mutate Input
	3.1.3 Generate Assertion
	3.1.4 Select Test Cases

	3.2 Test Exploration Plugin TestCube
	3.2.1 Starting the Amplification
	3.2.2 Result Inspection

	4 Study Design
	4.1 Preparation
	4.2 Interview Procedure
	4.3 Data Collection and Analysis

	5 Results
	5.1 Participants
	5.2 RQ1: What Are the Key Factors to Make Amplified Test Cases Suited for Developer-Centric Test Amplification?
	5.3 RQ2: What Are the Key Factors to Make Test Exploration Tools Suited for Developer-Centric Test Amplification?
	5.4 RQ3: What Information Do Developers Seek While Exploring Amplified Test Cases?
	5.5 RQ4: What Value Does Developer-Centric Test Amplification Bring to Developers?

	6 Discussion and Recommendations
	7 Threats to Validity
	8 Related Work
	8.1 Understandability of Test Cases
	8.2 Test Generation Tools Integrated in the IDE
	8.3 Interactive Test Generation

	9 Conclusion
	Acknowledgements
	References

