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Executive Summary

In the field of soft robotics, rigid joints and links are replaced by soft, deformable 
elements, providing these robots with an infinite number of degrees of freedom. This 
property causes soft continuum robot arms to excel in unpredictable environments, 
but to face challenges during control and shape reconstruction. Limited access to 
visual cues in confined and unpredictable environments intensify these difficulties. 

The sensing ability present in octopus suckers provides inspiration for solutions. 
Octopuses employ their suckers not only to strengthen their grasp but also as tactile 
sensors to control the shape and position of their soft arms. This has motivated 
researchers to integrate artificial sensorized suckers in soft continuum robot arms 

Extensive literature research has shown that various sensorized suckers have already 
been developed. However, their employed sensing methods tend to be low in resolution 
and are often poorly embedded into the overall sucker architecture, which limits 
further integration. In this work, these limits are overcome by presenting an octopus-
inspired suction cup with integrated high-resolution tactile sensing abilities. This is 
achieved by utilizing the ChromaTouch Principle. This principle relies on embedding 
colored markers in the suction cup membrane. Tracking these markers with a camera 
produced tactile images containing useful information about forces, deformations 
and interactions with objects. Fabrication with multi-material additive manufacturing 
enabled direct integration of these markers into the suction cup membranes. 

We demonstrated the design’s basic functionality by conducting pull-off and pickup 
tests. The design exhibited a normal pull-off force of 9.53 N and a shear pull-off force 
of 5.28 N. It was also able to successfully pick up both flat and curved objects. 

The sensing ability was showcased by concentrating on obtaining a perpendicular seal 
in the absence of external visual cues. A Convolutional Neural Network was trained to 
learn the relationship between the camera images and the orientation of the suction 
cup with respect to a touching substrate. Using a spherical coordinate system, the 
orientation could be predicted with an error of less than 2 degrees for latitude and 
less than 9 degrees for longitude. This performance was validated by using the trained 
network to successfully correct the orientation when picking up objects under an angle. 

For a single suction cup, this sensing ability can be utilized to correct the orientation and 
achieve perpendicular contact with an object, crucial for achieving a seal and produce an  
attachment force. On a larger scale, integration of multiple suction cups in soft continuum 
robot arms has the potential to form a representation of the arm shape as a whole. It can 
thereby contribute to overcoming the control challenges faced in the field of soft robotics. 



76

Preface  3

Executive Summary 5

Introduction 8

Background 14
A.	 Artificial	Suction	Cups 14

B.	 The	ChromaTouch	Principle 15

Design & Manufacturing 16
A.	 Design	Process 16

B.	 Actuation	Method 16

C.	 Octopus	Inspiration	 18

D.	 Expected	Example	Signals	 22

E.		 Marker	Configuration	 24

G.	 Parametric	Modelling	 25

G.1. Marker Pattern 25

G.2. Geometrical Parameters 26

G.3. Effect of Parameter Variation  26

H.	 Fabrication	 31

H.1. Polyjet Printing 31

H.2. Post-Processing 31

H.3. Assembly of Test-Setup 32

Experimental Method 34
A.	 Pull-off	Tests 34

A.1. Normal Pull-off Test 34

A.2. Shear Pull-off Test 35

A.3. Data Post-Processing 35

B.	 Object	Pickup	Tests 35

C.	 Orientation	Recognition 36

C.1. Data Collection Method 36

C.2. Image Post-Processing 38

C.3. Network Architecture 39

C.4. Analysis of Trainable Parameters 39

Results 42
A.	 Pull-off	Tests 42

A.1. Normal Pull-off Test 42

A.2 Shear Pull-off Test 42

B.	 Object	Pickup	Tests 42

C.	 Orientation	Recognition 48

Verification 50
A.	 Passive	Correction 50

B.	 Active	Correction	 51

Discussion & Conclusion 54
A. Analysis of Results 54

A.1. Pull-off Test Results 54

A.2. Object Pickup Test Results 55

A.3. Tactile Images & Control 55

A.4. Prediction Performance 55

A.5. Demonstration 55

B. Design Opportunities 56

C. Future Work 56

D. Challenges 56

E.		 Conclusion 57

References 58

Contents



98

Inside of Mount

Camera View

Assembled Module

!!

Suction Cup

Markers

Mount

Camera

LED-Ring

Air Inlet

BA

C

D

However, soft robotic approaches also come with two 
important challenges. First, soft-bodied robots are 
characterized by low force outputs and slow response 
times due to their compliance [1]. The second challenge 
addresses the control difficulty. The flexibility of soft 
robots comes with the need for precise control over 
their position and shape [2]. While conventional robot 
control approaches rely on shape reconstruction by using 
inputs from linear and rotary sensors, the high number 
of degrees of freedom in the shape of soft robots makes 
this strategy difficult, which thereby complicates control  

Traditional robotic approaches are characterized by high 
precision, speed, and reliability. However, they come with 
a fundamental limitation – rigidity. These robots, equipped 
with rigid joints and links, have a finite number of degrees of 
freedom, typically only six. In the field of soft robotics, these 
rigid joints and links are replaced by soft, deformable elements, 
providing soft robots with an infinite number of degrees of 
freedom. This inherent flexibility enables them to easily adapt 
their shape in unpredictable and unstructured environments. 

To address these challenges, researchers have turned to 
nature for inspiration, particularly studying the manipulation 
and control strategies employed by octopuses. Octopuses 
employ their suckers not only to strengthen their grasp 
but also as tactile sensors to control the shape and 
position of their soft arms (Appendix IV.A). This motivates 
the integration of designing artificial sensorized suction 
cups for soft continuum robot arms, in order to overcome 
the force- and control-challenge in soft robotics. 

This work encompasses the design and validation of such a 
sensorized suction cup. A vision-based approach was chosen 
as the sensing-method, relying on ‘tactile’ images captured 
by a camera that tracks the suction cup membranes. By 
embedding a pattern of colored markers in these membranes, 
the captured images provide high resolution sensing data, rich 
in information about the suction cup’s deformation. Machine 
learning approaches decode the information from the images, 
enabling to use the information for effective control strategies. 
Figure 1A shows the final design concept. In Figure 1B, the 
inside of the suction cup mount is shown, accommodating 
a camera and a LED-ring for illumination. Figure 1C shows 
the camera view where all colored markers are clearly 
visible. In Figure 1D, the total assembled module is shown.

Figure 1 
(A) Annotated sketch of final design concept. The camera tracks markers in the suction cup membrane. Marker displacement patterns provide information 
about forces and deformations. (B) Inside of the mount, accommodating a camera and a LED-ring. (C) Camera view, clearly seeing all marker layers. (D) Picture 
of the assembled suction cup in the mount. 

Soft continuum robot arms excel in unpredictable environments 
but face challenges in control and shape reconstruction. Drawing 
inspiration from the octopus, recent research has focused on 
integrating tactile sensing abilities into artificial suction cups to 
overcome these challenges. This work focuses on the design and 
validation of such a suction cup. This first chapter leads up to the 
design objective, elaborates on potential use contexts and sketches a 
future use scenario to guide the design process. A part of this scenario 
is selected to design an experiment for validation of the design.

01 Introduction
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To illustrate the potential use of this suction cup in a soft continuum robot arm, consider 
the scenario shown in Figure 2. It encompasses three phases. First, the ‘exploration phase’ 
(Figure 2A), where the tactile images are decoded to extract information about the shape, 
stiffness, and texture properties of objects. By combining their data, a representation 
of the object and the arm’s own shape can be reconstructed, enabling it to formulate 
an appropriate approach. In the second phase, the ‘sealing & conforming phase’ (Figure 
2B), the suction cups establish a seal on the object, using negative pressure to create an 
attachment force. Tactile images are now primarily used to sense contact and ensure a 
seal. The third phase, the ‘tuning & manipulation phase’ (Figure 2C), involves using the 
images to detect leakage and analyze force distributions. This helps to retrieve object 
properties such as weight, orientation, and center of gravity. It aids in fine-tuning the 
attachment force, enabling a balanced grip and adaptive object manipulation. 

Figure 2
Envisioned future use of the sensorized suction cup when integrating multiple in a soft continuum robot arm. 
The scenario is divided into three phases. (A) the ‘exploration phase’, where tactile images are used to form a re-
presentation of the external environment, and construct a planning for approach, (B) The ‘sealing & conforming 
phase’, where the suction cups are placed onto the substrate and attachment forces are formed through nega-
tive pressure,  and (C) the ‘tuning & manipulation phase’, where tactile images are used to obtain information 
about leakage and force distributions in order to effectively interact with the object.



1312

“ Can a Trained Convolutional Neural Network Accurately Predict 

the Orientation of a Suction Cup Relative to a Substrate, based on Tactile 

Images Captured by Integration of Vision-based Tactile Sensing, and thereby 

Demonstrate the Feasibility of Achieving Perpendicular Seals in the   

Absence of Visual Cues ? ” 

Substrate Orientation

Machine Learning

Approach

Correct Orientation

Conform & Seal

Planning

21 3 4

Substrate Orientation

Machine Learning

Approach

Correct Orientation

Conform & Seal

Planning

21 3 4

This research narrows the scope to the orientation of a 
single suction cup with respect to an object boundary. This 
is motivated by the key challenge to achieve perpendicular 
contact between the suction cup and the substrate, which 
is necessary for a proper seal and attachment force. 
This simplified part of the scenario is shown in Figure 
3. The objective is to prove that integration of a vision-
based sensing approach in a suction cup, combined with 
a machine-learning based approach for decoding the 
tactile images, enables to retrieve its orientation with 
respect to an angled substrate. Using this information 
to adapt this orientation will enable to obtain a proper 
seal between the substrate and the suction cup. 

This work is structured as follows. First, the design and 
manufacturing process of the suction cup are explained. 
Then, two experiments are conducted. The first experiment 
addresses the basic functionalities a suction cup should 
have by conducting pull-off tests and object pickup tests. 
In these tests, it will also be shown that useful tactile 
images are obtained during these tasks. The second 
experiment focuses specifically on the sensing ability, and 
concentrates on obtaining a perpendicular seal in the 
absence of external visual cues. It addresses the recognition 
of the suction cup’s orientation with respect to angled 
substrates. For this, a Convolutional Neural Network will 
be trained to learn the relationship between images taken 
during tilted contact with a substrate, and the orientation 
of the suction cup relative to this substrate. This final 
experiment will answer the following research question:

Figure 3
Simplified version of the scenario, where the scope is narrowed to a single suction cup that uses its tactile images (1) to recognize its orientation with respect to 
an tilted substrate (2). The information is used to correct the orientation of the soft robot arm (3) to obtain perpendicular a perpendicular contact and seal with 
the substrate (4).
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A.	 Artificial	Suction	Cups
 
Van Veggel et al. investigated the state of the art in soft robotic 
suction cups (Appendix IV.A). Considering integration of tactile 
sensing in artificial suckers, several designs exist. Huh et al. 
[3] measured the differential pressure between four inner 
chambers in their suction cup to obtain information about 
surface curvature, proximity, and texture. Sareh et al. [4] used 
a fiber optic head in the sucker to measure proximity and 
tactile information, for use in motion planning and measuring 
substrate stiffnesses. Frey et al. [5] used a micro-LIDAR 
optical sensor next to the suction cup to measure proximity, 
and activated the membrane when approaching an object. 
Lee et al. [6] spray-coated four strain sensors on the suction 
cup’s outer wall. They used machine learning algorithms to 
successfully estimate the object’s weight and center of gravity 
from these input channels. Shahabi et al. [7] integrated four 
microfluidic strain sensors into a silicone suction cup. By 
using the sensor outputs in machine learning algorithms, 
they were able to estimate angles, directions, stiffnesses, and 
inclinations of substrates. For a more comprehensive overview, 
the reader can refer to the literature research work of Van 
Veggel et al. (Appendix IV.A).  

Several limitations exist in the current designs. The spatial 
distribution of sensing channels is often limited, usually 
reaching only up to four channels, which limits the spatial 
sensing resolution. Also, the degree of integration into the 
suction cup’s architecture is low. Many implementations rely 
on external sensors that increase the size of the module, 
or employ rigid sensors that interfere with the suction cup’s 
deformability, thereby limiting attachment to irregular surfaces. 
Additionally, the sensed information is rarely used for control. 
In conclusion, the state-of-the-art sensorized suction cup 
designs have not yet achieved the desired maturity level to 
integrate them into a soft continuum arm and address the 
proposed control challenges. This work aims to bridge this 
gap by embedding a vision-based tactile sensing principle into 
a suction cup. These types of sensing technologies usually 
employ a camera to track the displacement of markers 
embedded in a soft elastomer membrane [8]. Advantages of 
these methods are their high spatial resolution and minimum 
wiring requirements compared to other sensing technologies. 
While several types of vision-based technologies exist, this 
work employs the ChromaTouch Principle [8] [9] [10] [11].

B. The ChromaTouch Principle
 
The reason for choosing the ChromaTouch principle over 
other technologies is its ability to deduct both lateral and 
normal deformation of the elastomer membrane, forming a 
three dimensional representation of the deformation field. 
This puts it in a favorable position against other vision-based 
technologies which are often solely able to track the lateral 
membrane deformation. The principle works by having each 
marker consist of two superimposed color filters (Figure 4). The 
color of the partially translucent magenta markers on the inner 
layer is mixed with the opaque cyan markers on the outer 
layer. As a result, the centroids of both layers can be tracked 
simultaneously, even when the color filters overlap, resulting 
in a higher number of markers and a better spatial resolution. 
Detection of the centroid displacement of each marker is 
used to determine lateral deformation of the membrane, 
while normal displacement is tracked by subtractive color 
mixing. A change in normal force on the membrane results 
in a change of distance between the two color filters, which 
alters the ratio of cyan to magenta in the marker sub-image. 
This variation in hue is used to track the normal deformation. 
The principle is visualized in Figure 4. In the initial state, the 
sensor remains undeformed, and the markers exhibit a 
consistent purple color of cyan and magenta layers (Figure 4A). 

When shear forces are applied, the closer 
cyan layer moves tangentially with a larger 
amplitude compared to the magenta layer 
due to the elastic properties of the membrane. Consequently, 
the marker sub-image shows the superposition of two circles, 
with their intersection undergoing subtractive mixing and 
appearing purple (Figure 4B). The application of a normal 
force compresses the elastomer, decreasing the distance 
between the two color-filters and causing the cyan layer 
to occupy a larger portion of the sub-image (Figure 4C). 
 
To date, the ChromaTouch Principle has been demonstrated 
in a flat elastomer membrane [9] and hemispherical 
robot fingertips [8] [10] [11]. The first versions were still 
manufactured by multiple stages of silicon casting [8] [9] but 
the more recent versions employed multi-material additive 
manufacturing. Also, while previous versions were still 
calibrated by employing ground-truth models such as Hertzian 
Contact Theory [8] [9] [10], Boonstra [11] has proven the use 
of the ChromaTouch images in a Convolutional Neural Network 
(CNN). He demonstrated the ability of a CNN to learn the 
relationship between tactile images and the safety margin, and 
showed its potential use in mimicking human grasp control. 

Figure 4
Explanation of the ChromaTouch Principle. (A) Neutral state, where the markers fully overlap and the marker sub-image appears purple. (B) Application of a 
shear force, where the cyan color-filter, located further from the camera, moves tangentially with a larger amplitude compared to the closer magenta color-
filter. This changes the relative distance between the two and causes the image to appear as a superposition of two circles with their intersection subjected 
to subtractive color mixing. (C) Application of a normal force, where the compression of the elastomer causes the cyan filter to occupy a larger portion of the 
marker sub-image.

In this chapter, the state-of-the-art in artificial suction cups is 
described. One of its shortcomings is the low degree of integration of 
tactile sensing abilities, which is proposed as a design opportunity to 
improve on. It is argued how integration of the ChromaTouch Sensing 
Principle into a suction cup may be able to bridge the gap. 

02 Background



1716

F F F F F F

Body

Fluidic Channel

Fluidic Medium

Membrane

A

B

1 2 3 4

B. Actuation Method
 
Existing artificial suction cups employ various actuation 
methods, which encompass mechanical, fluidic, electric, 
thermal, and magnetic approaches (Appendix IV.A). This 
work’s design focuses on fluidic actuation, relying on an 
air pump and utilizing a membrane between the internal 
and external medium. Figure 5A shows this commonly 
used architecture, consisting of a sucker body and a 
membrane. The working mechanism is shown in Figure 5B. 

A. Design Process 

Although this work’s main focus is to recognize and 
correct the orientation error (Figure 3), the suction cup 
was designed with the full scenario in mind (Figure 2). 
The design process can be found in Appendix I, which 
includes formulating design requirements originating 
from the scenario (Appendix I.A), creating a morphological 
map (Appendix I.B), developing three concepts, (Appendix 
I.C) and the concept selection (Appendix I.D). The most 
important considerations are summarized in this section.

After contact with a substrate is obtained (Figure B1 & B2), a pump facilitates retraction of the membrane (Figure B3). This 
causes a volume increase of the sealed chamber between the suction cup and the substrate, which results in a pressure drop 
that produces an attachment force (Figure B4). This membrane-based fluidic actuation method offers several benefits.

• Robustness to Extreme Environments 

The membrane facilitates use in wet and dry conditions 
because it functions as a shield against dust and 
contamination, protecting internal components and 
fluidic channels.

• Adjustability of Attachment Force

Maximizing the benefits of a high-resolution sensing 
method also requires a high-resolution actuation method, 
rather than binary ON-OFF actuation. A membrane 
allows for adjusting the attachment force by modifying 
membrane retraction. This is  particularly advantageous 
when dealing with delicate or fragile objects. 

• Prevention of Leakage 

The membrane minimizes or eliminates fluidic leakage 
when the seal is not closed. This is especially useful in the 
case of employing multiple suction cups on a robot arm, 
actuated by the same fluidic circuit.

• Light-Blocking Capabilities

In combination with a diffuse outer layer, the membrane 
can block external light from interfering with the 
tactile images.

Figure 5
Working principle of a fluidically actuated membrane-based suction cup. (A) Architecture and components. (B) Steps in the adhesion process, (B1) Approaching 
a substrate, (B2) Obtaining contact (B3) Retraction of the membrane leads to a volume increase of the chamber between the suction cup and the substrate, 
(B4) the resulting pressure drop produces an attachment force. 

This chapter describes the design and fabrication process. First, 
several arguments for a membrane-based fluidic actuation method 
are given and the octopus sucker is referred to as an architectural 
inspiration. The choice for the marker configurations is explained 
by proposing theoretical sensing scenarios and membrane sample 
tests. Then, the parameteric modelling process, performed in Rhino 
Grasshopper, is explained and a choice for the final architecture 
is made. The chapter ends with a description of the Multi-Material 
Additive Manufacturing process and post-processing operations. 

03 Design & 
Manufacturing
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C. Octopus Inspiration 

In Figure 6A, a simplified view of the octopus sucker is shown. Their suckers consist of two 
chambers, the infundibular chamber or ‘infundibulum’ and the acetabular chamber or 
‘acetabulum’. The infundibulum, characterized by its soft and compliant nature, conforms 
to the substrate shape and closes the seal. The acetabulum, which possesses a stiffer 
structure, generates the pressure drop through volume increase by contraction of radial 
muscles. These two chambers are connected through an orifice. Likewise, this work’s design 
adopts a two-chamber approach. It aims to mimic the conforming and sealing abilities of the 
octopus infundibulum while using the acetabulum to obtain the volume change required for 
the pressure drop and attachment force. The design is showcased in Figure 6B. The figure 
highlights the architectural similarities between the biological and the artificial suction cup.

Figure 6
Architectural similarities between (A) the Octopus Vulgaris Sucker and (B) the suction cup presented in this work.
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In Figure 7, the adhesion processes of both suckers are showcased. This clearly shows that the 
fluidic membrane actuation utilized in the artificial suction cup (Figure 7B) is used to replicate 
the function of the radial muscles in the octopus acetabulum (Figure 7A). The proposed design 
incorporates the acetabular roof (top membrane) in two states. The first state corresponds 
to the ‘exploration phase’ of the scenario (Figure 2A), where the membrane is inflated 
(Figure 7B2). After achieving a seal (Figure 7B3), the second state is activated, which involves 
retraction of the membrane by activation of vacuum pressure (Figure 7B4). This leads to a 
volume increase of the sealed chamber, resulting in pressure drop and an attachment force. 

Figure 7
Adhesion processes of both suction cups. (A) Adhesion process of the octopus sucker.  (A1) Initial contact with 
the substrate. (A2) Formation of a seal after contracting the infundibular radial muscles. (A3) Pressure reduction 
through contraction of the acetabular radial muscles. (A4) Interlocking of the protuberance in the orifice through 
contraction of the meridional muscles, and (A5) Continued adhesion after relaxation of the radial muscles due 
to the friction from hairs and ridges, cohesive forces of water and stored elastic energy in cross connective tissue 
fibres. Adapted from Tramacere et al. [17]. (B) Adhesion process of the the artificial sucker. (B1) Approaching 
the substrate with the membrane in a neutral state. All pressures are equal to atmospheric pressure PE. (B2) 
Activation of the pump inflates the acetabular roof, increasing PU. PL is still equal to PE as no seal has yet been 
achieved. (B3) Pressing the suction cup against the substrate forms a seal. (B4) Activation of the vacuum 
decreases PU and thereby retracts the acetabular roof, increasing the volume of the chamber between the 
suction cup and the substrate. As this chamber is now sealed, this creates a pressure drop in PL.
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• State of Actuation

The marker deformation in the acetabular roof offers 
information about the pressure difference between the 
chamber above and below it (PU and PL in Figure 7B). This 
provides information about the fluidic actuation 
state (Figure 8A).

• Environmental Interactions

The markers in the acetabular wall provide information 
about interactions with the external environment. 
Examples are the orientation with respect to an object 
(Figure 8B) or sensing the object shape (Figure 8C).

D. Expected Example Signals  

The two-layer marker architecture is expected to provide an information-rich type of image 
data. Examples are shown in Figure 8 and further explained below. 

• Seal & Leakage Sensing

In case a seal is not formed (Figure 8D1), application 
of the vacuum results in a higher absolute pressure 
difference between PU and PL, resulting in a more extreme 
deformation of the acetabular roof compared to when 
a seal is formed (Figure D2). This mechanism would 
theoretically be able to show occuring leakages in the 
camera images.  

• Force Distributions

During pickup situations, the force interactions between 
the suction cup and the object will change the chamber 
shape. Due to air being trapped in this chamber, both 
the acetabular roof and wall will be affected by this. Their 
deformation patterns may provide information about the 
direction and magnitude of these forces (Figure 8E).

Figure 8
Theoretical scenarios causing membrane deformation, expected to produce information-rich image data. (A) Fluidic actuation in (A1) Neutral (off-) state vs. (A2) 
an inflated acetabular roof. (B) Indentation with (B1) Tilted contact, where the infundibular surface acts as a mechanical lever to transfer information to the 
acetabular wall and roof vs. (B2) Perpendicular contact with a sealed chamber. The chamber is sealed and the trapped air is subject to volume conservation. 
Therefore, the change of the chamber shape due to indentation results in an upwards deformation of the acetabular roof. (C) Sensing objects with (C1) a 
curved shape vs. (C2) a flat shape, showing a different deformation of the acetabular roof and wall. (D) Application of vacuum pressure (D1) without a seal 
vs. (D2) with a seal, showing a clear difference in deformation of the acetabular roof. (E) Picking up an object with (E1) the center of gravity misaligned with 
the suction cup , showing asymmetrical deformations of the acetabular roof and wall, vs. (E2) the center of gravity aligned with the suction cup, showing 
symmetrical deformations of the acetabular roof and wall.
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E.	 Marker	Configuration	

Using a second marker layer visible through a transparent membrane has not been employed 
in the previous versions of the ChromaTouch sensor. To validate this possibility, a sample 
test with two dome-shaped membranes was conducted to compare four marker layout 
variations (Figure 9A1-9A4). Then, the threshold distance where the lower markers were 
still visible through the top membrane was determined (Figure 9B). Although variations 
in visibility existed between the alternatives, all of them exhibited sufficient performance 
at a threshold distance of 3 mm. Finally, the layout in Figure 9A3 was chosen because it 
was expected to provide the most information about the lower membrane. This layout 
incorporates both the magenta- and cyan color-filter in the lower marker layer. 

G. Parametric Modelling 
G.1.	 Marker	Pattern

The suction cup was parametrically modelled in Rhino Grasshopper. This aided rapid 
comparison of variations, and experimentation with different geometrical parameter values. 
The marker-embedded portions of the acetabular roof and wall were modelled as parts of a 
sphere surface. This enabled using an adapted version of the Deserno Algorithm, used in the 
most recent version of the ChromaTouch sensor [10], to divide markers over the surface. The 
algorithm is visualized in Figure 10. It takes an arbitrary number of markers N, sphere midpoint 
location (x, y, z), sphere radius R and angular domain [θL , θU ]. as inputs. It then generates 
a collection of points on the surface, while ensuring the average marker area Am remains 
the same and approaches a square dθ ≈ dφ. This ensures a uniform sampling resolution in 
the tactile images. The generated points form the centers of cones with their base normal 
to the sphere surface, and diameter equal to the chosen marker diameter. The intersection 
between these cones and the inner and outer membrane layers defines the marker volumes. 

Figure 9
(A) Four alternatives for marker placement in the lower membrane. (B) Determination of the threshold distance 
where the bottom marker layers are still visible through the transparent top membrane

Figure 10
Adapted Deserno Algorithm to generate a collection of points on a spherical surface, to form the basis for 
marker modelling. (A) 3D view of the point collection. (B) Inputs of the algoritm: Number of markers N, sphere 
midpoint  (x, y, z), sphere radius R and angular domain [θL , θU ]. (C) Ensuring that the area AM surrounding 
each point is equal for all points and approximates a square so dθ ≈ dφ.
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representing the orifice, V1, is approximated as a circular disk 
with height ho and radius ro, giving V1 = π · ro 

2 · ho. Activation of 
the vacuum retracts the acetabular roof upwards, increasing 
the chamber volume between the substrate and the suction 
cup by ΔV, which is approximated as a spherical cap with 
height ha and sphere radius ra. The volume of this cap is 
calculated as ΔV = 1/3 · π · ha 

2 · (3 · ra - ha ). By using the ideal 
gas law equation PA ·V1 = P · (V1 + ΔV), we calculate P as 
P = PA · V1 / (V1 + ΔV ). The pressure change is then expressed 
as ΔP = P - PA.To calculate the force, the absolute 
pressure change is multiplied by the infundibular 
surface area, considering it flat with a surface area of 
Ai =  π ·(ro +  ri - ro / cos(θi) ) 2. Assuming even pressure distribution 
over the infundibular surface, the theoretical maximum 
attachment force becomes FMAX =  Ai · |ΔP|. Although the 
optimal parameter values have not been established yet, 
this work aims to achieve a proof of concept demonstration 
rather than to identify the best configuration. A heuristic 
approach led to selecting the purple version in Figure 12.

G.2.	 Geometrical	Parameters

Although the Grasshopper model contained 32 variable 
parameters, the ones selected here are those assumed 
to be most influential on the theoretical attachment force 
and sensing resolution. The force-related parameters 
are the ones affecting the volume change before and 
after adhesion. These include the infundibulum angle 
(θi), acetabulum angle (θa), infundibulum radius (ri), and 
acetabulum height (ha). The sensing-related parameters 
are the ones influencing the marker density. These include 
the number of markers on the upper and lower membrane 
(NU and NL), along with the marker diameter (dm). 

The parameters are illustrated in Figure 11A. To simplify the 
analysis, the number of markers on the upper membrane 
was set to half of the number on the lower membrane for 
every configuration, reducing the number of parameters from 
seven to six. The table in Figure 12 presents three variants for 
each parameter, theoretically resulting in 3 6 = 729 possible 
combinations. However, as assessing and displaying each 

combination would be too time-consuming, six random 
variants were displayed to explore different possibilities 
and assess the influence of their variation. The header row 
of the table displays the top, isometric, and front views of 
each configuration, respectively. Since the point of interest 
is the effect of relative variations between parameter values, 
the global scale of the suction cup remained unchanged 
in each configuration. This was achieved by setting the 
edge radius to 30 mm and the orifice radius to 8 mm. The 
membrane and marker thicknesses were replicated from 
the most recent ChromaTouch sensor in Scharff et al. [10]

G.3.	 Effect	of	Parameter	Variation	

To demonstrate the influence of parameter variation, the 
six bottom rows of the table in Figure 12 show six output 
values for each configuration. These include the marker 
density in the acetabular roof (MU) and wall (ML), which are 
expressed as the surface ratio between marker area and 

the total membrane area. On the one hand, displacement 
of larger markers is easier to track in the images and leads 
to an improved signal-to-noise ratio. However, as the Polyjet 
materials available for the markers are only available as 
rigid resins, a higher marker density would result in worse 
deformation properties of the suction cup. The output values 
below these are the marker resolution in the acetabular 
roof (MRU) and wall (MRL), which signify the number of 
markers per cm 2. As discussed in Scharff et al. [10], the 
Nyquist Theorem states that membrane deformations 
down to the size of two markers can be observed. 
The final two values are the theoretical pressure change (ΔP) 
and maximum attachment force (FMAX). Calculation of these 
values employs the ideal gas law, assuming a conservation of 
P · V under a constant gas temperature. The initial volume V1 
(Figure 11B1) represents the inflated state of the acetabular 
roof with the pressure equal to atmospheric pressure PA, 
while considering the infundibular surface fully flat on the 
substrate before activating the vacuum pressure. The volume 

Figure 11
(A) Visualization where the parameters are located. (B) The simplified geometrical models used for the theoretical force and pressure calculations. (B1) Volume 
of internal chamber before application of the vacuum and (B2) after application of the vacuum.
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Figure 12
Varying seven geometrical parameters in Rhino Grasshopper to obtain 
six configurations of the suction cup. The bottom of the table displays the 
influence of the parameters on output variables related to sensing 
(MD = Marker Density as the surface ratio of total marker area to 
membrane area, MR = Marker Resolution in #markers / cm2). The outer 
right configuration was eventually selected to manufacture. 
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H.2.	 Post-Processing

After the printing process, a white rubber spray-coating 
(Plasti-Dip 1), was sprayed onto the parts highlighted in Figure 
13A2. To conserve the transparency of the acetabular roof’s 
circular edge, this part was masked during the spraying 
process. The purpose of the Plasti-Dip layer is twofold. First 
and foremost, it blocks external light from outside from 
interfering with the tactile images. Second, it equally distributes 
the light throughout the chamber above the acetabular roof.

H. Fabrication 
H.1.	 Polyjet	Printing

Both the top and bottom parts of the suction cup were 
manufactured by Polyjet printing with the Stratasys J35 (Figure 
13A1). This made it possible to embed the markers in both 
membranes without requiring extra fabrication steps, thereby 
minimizing the risk of defects that could cause leakages. It also 
enabled the inclusion of a rigid edge, required for mounting the 
suction cup during the experiment. The colors of the markers 
were chosen from the translucent VeroVivid family. For the 
outer cyan layer, VeroCyan-V was used. The inner marker 
layers were fabricated in the more opaque VeroMagenta-V. The 
deformable parts were all printed in Agilus30Clear. For the rigid 
edge, VeroPureWhite was chosen. The support material was 
printed in SUP705, which is a gel-like, easily breakable material. 
Two other versions of the prototype that were not further 
included in the experiment, can be found in Appendix II. 

Figure 13
(A) Manufacturing steps. (A1) Fabrication of top and bottom parts by polyjet additive manufacturing with the Stratasys J35,    (A2) Spraying 
Plasti-Dip 1 onto the highlighted parts, (A3) Bonding the top and bottom and attaching them to a PLA 3D-printed mount. (B) Pictures in 
different stages of the process. (B1) Top and bottom parts before application of Plasti-Dip and (B2) after application of Plasti-Dip. (B3) 
Assembled module consisting of top part, bottom part, and PLA 3D-printed mount.



3332

Universal Robots UR5

PLA-printed Mount

Suction Cup

Plexiglass Substrate

Wittenstein HEX 32 6-Axis 
Force/Torque Sensor Kit

Raspberry Pi 3 RPi Camera
Module V3

8-bit NeoPixel
LED-ring

BMP280
Barometer

Tinkerminds
 Programmable Air

USB Cable

Ethernet Cable

H.3.	 Assembly	of	Test-Setup

A mount was 3D printed with PLA and attached to the suction cup with a glue gun 
(Figure 13A3). This mount was used for attachment to the UR5 Robot arm during the 
experiment and the housing of the electronic components (Figure 14). These components 
encompassed an Adafruit Neopixel 8-bit LED ring for the internal lighting, a wide-lens 
Raspberry Pi Camera Module V3 for capturing the tactile images, and a BMP280 barometric 
pressure sensor for recording the internal pressure. The mount has two inlets, one for 
the pneumatic channel and one for the wiring of the barometric sensor, camera and LED 
ring. The distance between the end of the mount and the upper part of the suction cup 
is 50 mm, which was found to be the minimal focus distance of the camera module.

The TinkerMinds programmable air device was attached to the pneumatic inlet of the mount. 
This device consists of an Arduino Nano, two pumps and three valves. The resulting pneumatic 
circuit was able to apply both vacuum and compression on several power levels. The camera 
module and the barometric pressure sensor were connected to a Raspberry Pi 3. In order 
to control all hardware components from the Raspberry Pi environment, a serial connection 
was made between the Arduino and the Pi by plugging the Arduino USB Cable into the 
Raspberry Pi. This enabled the Raspberry Pi to send serial commands to the Arduino. Finally, 
the mount was attached to the end-effector of the UR5. For force measurements, an acrylic 
plate of dimensions 100 x 100 mm, serving as the substrate, was attached to the Wittenstein 
HEX 32 6-Axis Force/Torque Sensor Kit. The setup is schematically shown in Figure 14.
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PLA-printed Mount
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Wittenstein HEX 32 6-Axis 
Force/Torque Sensor Kit

Raspberry Pi 3 RPi Camera
Module V3
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 Programmable Air
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Ethernet Cable

Figure 14
Schematic view of the experimental setup.
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A.	 Pull-off	Tests
A.1.	 Normal	Pull-off	Test

The objective of the normal pull-off tests is to determine 
the indentation and preload that corresponds to the 
highest normal pull-off force. As normal pull-off force is a 
commonly used metric for evaluation of artificial suction 
cups (Appendix IV.A), measuring it will facilitate an objective 
performance comparison to other state-of-the-art designs. 

The preload and pull-off force was measured at six different 
indentation levels, ranging from 1.0 mm to 3.5 mm in 
steps of 0.5 mm. The zero-level was defined as the point 
at which the suction cup exactly touched the acrylic plate 
but no deformation had yet taken place. The experimental 
procedure used the setup depicted in Figure 14 (schematic 
view) and Figure 15 (real view) and was executed in line 
with the adhesion process described in Figure 7B. During 
every stage, force and pressure data was collected at 100 
Hz and tactile images were obtained at 30 fps.  A video of 
the normal pull-off test can be found in Appendix IV.A.
The full process consisted of the following steps.

1. The pump was activated at positive pressure, causing 
inflation of the acetabular roof.

2. By translating the end-effector of the robot arm in the 
negative z-direction, the suction cup was moved down-
wards until it reached the determined indentation. This 
produced a preload force on the substrate.

3. The pump was activated at vacuum pressure, resulting 
in retraction of the acetabular roof. The volume increase 
of the sealed chamber between the suction cup and 
the substrate generated a pressure drop and led to an 
attachment force.  

4. The robot arm was translated in the positive z-direction 
at an acceleration and velocity of 0.01 m/s and 0.01 m/s2 
respectively, resulting in the suction cup being pulled off 
the substrate.  

A.2.	 Shear	Pull-off	Test

To proceed with the shear pull-off test, the indentation 
corresponding to the highest normal pull-off force was 
selected. This test followed a similar procedure to the 
normal pull-off test, with one key distinction. Instead 
of translating the robot arm in the z-direction after 
activation of the vacuum, the arm was now translated in 
the x-direction, generating a shear pull-off force. A video 
of the shear pull-off test can be found in Appendix IV.A. 

A.3.	 Data	Post-Processing

Analyzing the data required time-synchronizing the 
force- with the pressure- and image data, as they were 
collected on different devices. This synchronization was 
based on the moment of indentation, which corresponds 
to the minimal (negative) force in the z-direction on the 
substrate and the maximum (positive) pressure in the 
chamber above the acetabular roof. This is because the 
indentation caused a slight upward movement of the 
acetabular roof, resulting in a small pressure peak (Figure 
8B2). The normal pull-off force was then defined as the 
maximum of the z-component in the force data sequence, 
while the preload force was defined as the minimum.

B. Object Pickup Tests

The pickup tests also followed the same steps as the normal 
pull-off experiment, with one distinction. Instead of using the 
velocity and acceleration of 0.01 m/s and 0.01 m/s2 in step 
4, these values were now increased by a factor 5 to speed 
up the pickup of the object. Three objects were used. first, 
an aluminum block weighing 12.0 g and dimensions 55 x 40 
x 20 mm (l x b x h). This object was lifted with the center of 
gravity aligned with the central axis of the suction cup. The 
second object was an elongated aluminum profile weighing 
33.0 g and dimensions 150 x 40 x 20 mm. This object was 
lifted with its center of gravity 50 mm from the suction cup 
central axis. Lastly, to assess the adaptability to curved 
objects, an aluminum cylinder weighing 17.5 g with a 16 
mm radius and length of 75 mm was picked up. During all 
pickup tests, pressure data was gathered at 100 Hz. Videos 
of all three pickup tests can be found in Appendix IV.B.

Figure 15
Picture of the experimental setup. 

Three sets of experiments were conducted. The first two sets focused 
on the evaluation of the suction cup’s basic uses. First, two pull-off 
tests were conducted to evaluate resistance against normal and 
shear forces. Second, pickup tests with three different objects were 
performed. The third experiment focused on using images to train 
a Convolutional Neural Network in recognizing the suction cup’s 
orientation with respect to tilted substrates.

04 Experimental 
Method
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C. Orientation Recognition

The second experiment addressed the ability to recognize 
the orientation with respect to tilted substrates. However, 
to automate and simplify the data collection process, a 
flat substrate rather than a tilted one was used. The tilted 
contact was then instead obtained by using the robot 
arm to put the suction cup in a randomized orientation 
before indenting it on the substrate and taking an 
image. A Convolutional Neural Network was trained to 
learn the relationship between these images and the 
orientation of the suction cup relative to the substrate. 

C.1.	 Data	Collection	Method

The first phase of this experiment involved the collection of 
orientation-labelled tactile images. A quasi-static approach was 
adopted, leaving a sufficient amount of time between capturing 
each image. This ensured that damping and other dynamic 

effects of the visco-elastic Agilus30Clear did not introduce 
unwanted variations in the tactile images. Also, to eliminate 
variation introduced by camera focus, the lens distance was set 
to the minimal value of 50 mm and autofocus was disabled. The 
resolution of the captured images was 1170 x 1170 px. Figure 
16A explains how the orientations were defined. A spherical 
coordinate system was adopted where the center of rotation 
was located at the intersection of the suction cup’s central axis 
and the circular area defining the edge of the infundibulum 
(Figure 16A1). After defining a randomized target orientation 
(Figure 16A2) in an integer latitude (θ) domain between 0° 
and 20°, and an integer longitude (φ) domain between - 180° 
and 180° (Figure 16A3), the suction cup was rotated into the 
target orientation (Figure 16A4). With the goal of making the 
Neural Network able to generalize its predictions over varying 
indentation levels, a randomized indentation between 3.0 mm 
and 4.0 mm, with steps of 0.2 mm in between, was generated. 

1. The robot arm started with the suction cup 30 mm above 
the substrate (Figure 17A). 

2. The pump was activated at positive pressure, causing 
inflation of the acetabular roof (Figure 17B).

3. After introducing a waiting period of 2.0 s to allow for 
damping of vibrations in the membrane, the first image 
was captured (Figure 17C). 

4. The robot arm rotated the suction cup until it reached the 
desired orientation (Figure 17D).

5. The robot arm translated into the negative z-direction 
until it reached the desired indentation (Figure 17E).

6. After another waiting period of 2.0 s, the second image 
was captured (Figure 17F).

Figure 16B1 shows that the zero-level was defined as the outer edge of the infundibulum slightly touching 
the substrate. The suction cup was then translated in the negative z-direction of the world coordinate system 
until the desired indentation was reached (Figure 16B2). An explanation video, showing multiple randomized 
orientations and indentations, can be found in Appendix IV.C. Having adopted this system to define the orientations 
and indentations, the following steps were executed for the data collection process (Figure 17).

Figure 16
(A) Definition of orientation in a spherical coordinate system. (A1) The center of rotation is defined as the intersection of the suction cup's central axis and the 
circular area defining the infundibulum edge. (A2-A3) A random target orientation is generated in an integer latitude (θ) domain between 0° and 20° and an 
integer longitude (φ) domain of - 180° to 180°. (A4) The suction cup is rotated in the target orientation. (B) Definition of the tilted indentation on the substrate. 
(B1) Achieving initial contact with the infundibulum edge. (B2) Moving the suction cup in the world negative z-direction until the desired indentation, in a domain 
between 3.0 mm and 4.0 mm, and in steps of 0.2 mm,  is reached.

Figure 17
Steps required for collecting the data. (1) Neutral position with the lowest part of the suction cup located 30 mm above the substrate. (2) Inflation of the 
acetabular roof. (3) After a waiting period of 2.0 s, the ‘before’ image was captured. (4) The robot arm rotated the suction cup until it reached the desired 
orientation. (5) The robot arm moved in the negative z-direction until the desired indentation was reached. (6) After a waiting period of 2.0 s, the ‘after’ image 
was captured.
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C.2.	 Image	Post-Processing

The second phase of the experiment involved post-processing 
the tactile images before feeding them to a Convolutional 
Neural Network as training data. To ensure solely capturing 
relevant deformations introduced by the angled indentation 
and eliminate unnecessary background information, the 
two images were processed as a single difference image. 
Python OpenCV's subtract algorithm was employed for this 
operation. It is important to note that the OpenCV subtract 
algorithm preserves negative pixel outputs, resulting in a 
lossless difference calculation [12]. The total sequence of 
post-processing operations is displayed in Figure 18. After 

saving the difference (Figure 18A), the circle containing only the 
marker image was cropped out and the image is downsampled 
to 100 x 100 px to decrease the network’s training times 
(Figure 18B). Finally, the downsampled difference image 
was saved and labelled with the corresponding orientation 
and indentation values (Figure 18C). In total, 5528 labelled 
difference images were collected. An explanation video 
of the data collection process in combination with post-
processing operations, can be found in Appendix IV.C. 

C.3.	 Network	Architecture

The third phase of the experiment required defining the 
architecture of the Convolutional Neural Network. This 
architecture is visualized in Figure 19. The input dimension of 
the network was set to 100 x 100 x 4, corresponding to the 
RGBA values of the tactile images, normalized between zero 
and one (Figure 19A). Then, three sequences of convolution, 
each with ReLu activation, and followed by a 2 x 2 Max 
Pooling layer were used (Figure 19B-19F). The output was 
flattened and fed into three output nodes (Figure 19G-19I). 
These three output nodes correspond to the prediction of 
the latitude value, normalized between zero and one (θ), and 
the sine and cosine of the longitude value (sin (φ) and cos 
(φ)). This deconstruction of the longitude value was used to 
eliminate large prediction errors close to an entire revolution. 

C.4.	 Analysis	of	Trainable	Parameters

The kernel in convolutional neural networks is used for feature 
extraction and feature mapping, which helps in learning 
relevant patterns in the tactile images. It can be thought of as a 
smaller template of a feature that can be present in the image, 
for example, an edge, blob or certain marker configuration. 
The kernel slides over the image and detects the amount of 
match or overlap of the feature at each location. The total 
amount of overlap in the kernel at that location is then used to 
obtain the new pixel value of the output image. A high amount 
of overlap with a certain kernel thereby corresponds to a high 
pixel value in the output image. It can be said that the network 
then fires on that feature. Training the network actually means 
that the network learns which features it should recognize to 
obtain the best match between the training images and the 
training labels. 
 
Looking at this in more detail, the kernel is actually a 
three-dimensional matrix containing parameter values. Each 
parameter is multiplied with the normalized (between zero 
and one) pixel value at the current location in the input image. 
To obtain the new pixel value at that location in the output 
image, the multiplication results are summed and a bias is 
added. Training the network is a process of tuning the kernel’s 
parameter values, which regulates how sensitive the network 
becomes to certain combinations of patterns of pixel values in 
the input image. The top part of Figure 19 shows the course of 
the pixel output values after each layer when feeding a random 
input image into the trained network.  
 
The size of the kernel window is 5 x 5 pixels. Its depth 
corresponds to the number of channels in the input of the 
convolutional layer. For the input image, the amount of 
channels is 4 due to the RGBA format, which means that the 
kernel can be thought of as a 3D matrix of 5 x 5 x 4 parameter 
values (Figure 19A). As the sliding process is unable to 
continue when the kernel reaches the border of the image, the 
kernel can only slide 96 times in each dimension. Therefore, 
each output image of this convolutional layer will only be 
96 x 96 pixels. 

 
Because there are 20 kernels in this layer, the output of the 
first convolutional layer is a stack of 20 new 96 x 96 images 
with pixel values lying between zero and one. This can be 
thought of as the image now containing 20 channels, similar 
to the input image having 4 channels. The dimensions 
of our image are now 96 x 96 x 20 (see Figure 19B). 
 
After the convolutional layer, a 2 x 2 Max Pooling layer is 
applied. This means that each set of 2 x 2 pixels in the 
images will be replaced by the highest pixel value of those 
four, which reduces the dimension of the image to 48 x 48 
pixels. The dimensions of the image are now decreased to 
48 x 48 x 20 (see Figure 19C). 
 
The sequence of convolution followed by pooling is applied 
three times in total (Figure 19C-19G). The amount of kernels 
is halved in each next convolutional layer, so comes down 
to 20, 10 and 5 kernels respectively. The kernel window size 
is 5 x 5 pixels each time. After all convolution and pooling 
operations, the dimensions of the image are reduced to 
9 x 9 x 5 (see Figure 19G). 
 
The pixel values of this final image are flattened into a 
single vector of dimension 405 x 1 (Figure 19H), which 
are then fed into three output nodes that correspond 
to the sine and the cosine of the longitude (sin (φ) 
and cos (φ)) and the normalized latitude (θ). 

 
To investigate the number of total trainable 
parameters of this network: 

• The first convolutional layer has a 5 x 5 kernel 
window which is used on an input of 4 channels. 
There are 20 of these kernels, which adds up           
to 5 x 5 x 4 x 20 = 2000 parameters. For each 
kernel, a bias is added at the end, which results in                
2000 + 20 = 2020 parameters for this layer in total. 

• Applying the same calculation for the other two 
convolutional layers, gives 5 x 5 x 20 x 10 + 10 = 5010 
parameters for the second convolutional layer, and 
5 x 5 x 10 x 5 + 5 = 1255 parameters for the third 
convolutional layer. 

• The pooling and flattening layers do not involve any 
trainable parameters.  

• Feeding the 405 x 1 flattened pixel values into the 
three output nodes involves 405 x 3 = 1215 trainable 
parameters. Here, a bias is added to each node as 
well, which adds three more parameters. This adds 
up to 1215 + 3 = 1218 parameters for this operation. 

The total amount of trainable parameters then comes 
down to 2020 + 5010 + 1255 + 1215 = 9500 parameters.

Figure 18
Image post-processing sequence. (A) Subtracting the RGB values of the pixels of the ‘after’- from the ‘before’ image, leaving only the difference. (B) Cropping 
out the circle containing the markers and downsampling the image to 100 x 100 px. (C) Saving the image with the corresponding latitude (θ), longitude (φ) and 
indentation (I) labels.
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Figure 19
Visualization of the Convolutional Neural Network's Architecture. (A) The 
RGBA input image is fed into the first convolutional layer. (B) A Max Pooling 
operation is performed on the output of convolution. (C-F) The network 
feeds the image into two more sequences of convolution and pooling (G-H) 
The output of the final pooling layer is flattened. (I) The flattened vector is 
fed into three output nodes corresponding to the sine and the cosine of the 
longitude (sin (φ) and cos (φ)) and the normalized latitude value (θ).
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Force vs. Time

Pulloff Force vs. Preload
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A.	 Pull-off	Tests
A.1.	 Normal	Pull-off	Test

The force and pressure- plots of the normal pull-off test 
are shown in Figure 20A and 20B. It became clear that an 
indentation of 2.0 mm produced the optimal pull-off force 
of 9.35 N, with a corresponding preload of 22.2 N (Figure 
20C). This was achieved by activating the fluidic circuit with a 
positive input pressure of 15.28 kPa, followed by a pressure 
of - 15.77 kPa. The rest of this experiment was continued with 
the indentation of 2.0 mm. Figure 21A shows the tactile images 
taken during relevant stages of the normal pull-off test, along 
with difference images between them to visualize the change 
in deformation. 

A.2	 Shear	Pull-off	Test

When using this same indentation of 2.0 mm for the shear 
pull-off test, the suction cup achieved a shear pull-off force 
of 5.28 N. Figure 21B displays the tactile images during 
relevant stages of the process, along with difference images 
between them stages to visualize the deformations.

B. Object Pickup Tests

The pickup tests showed that the suction cup was able to 
pick up all three objects successfully. The corresponding 
tactile images for the relevant stages in these tests for these 
tests are shown in Figure 22, along with difference images 
between the stages to visualize the changes in deformation. 

Figure 20
(A) Force-, and (B) pressure plot for indentation levels ranging from 1.0 
mm to 3.5 mm. (C) Normal pull-off force plotted against preload force for 
each level of indentation.

This chapter describes the results of all three sets of experiments. 
First, the optimal preload force, leading to the highest normal-pull-off 
force, is determined. Then, the normal and shear pull-off test results 
are showcased by plotting the force and pressure trajectories along 
with obtained tactile images. The same procedure is conducted for 
the second set of experiments, which involves a pickup test of three 
different objects. For the third experiment, the Convolutional Neural 
Network’s performance to predict orientation with respect to tilted 
substrates is evaluated by investigating the prediction errors over 
different orientations. 

05 Results
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Figure 21
(I ) Force and (II ) pressure plots for the (A) normal pull-off test and (B) shear pull-off test. Along with tactile images and differences images at the (1) neutral, (2)  
inflated, (3) indented, (4) suctioned, (5) pull-off and (6) release stage.
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Figure 22
Pressure plots for the pickup tests of (A) an aluminum block with aligned center of gravity, (B) beam with unaligned center of gravity and (C) cylinder, along with 
tactile images and differences images at the (1) neutral, (2) inflated, (3) indented, (4) suctioned and (5) pickup stage.
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The images were randomly divided into training, validation 
and test data with a ratio of of 0.7, 0.15 and 0.15 respectively. 
The network was trained in 30 epochs with a batch size of 
32, the ADAM optimizer and the MSE (Mean Square Error) 
loss function. After applying a 3 x 3 x 3 grid search for the 
hyperparameters ‘kernel window-size’, ‘learning rate’ and ‘initial 
number of kernels’ (halved in each next convolutional layer), 
the hyperparameter set with the smallest validation loss was 
chosen to continue with. This corresponded to a 5 x 5 kernel 
window-size, a learning rate of 0.001 and 20 kernels in the 
first convolutional layer. The results of the grid search process 
is shown in Figure 23A. This final version of the network 
was trained in approximately 7 minutes (14 s per epoch for 
30 epochs). This resulted in a training MSE of 0.044 and a 
validation MSE of 0.042. The training and validation curves are 
shown in Figure 23B. 

Feeding the test set to the network resulted in an average 
absolute latitude error (| θ - θ |) of 1.97° (9.8 %) and an 
absolute longitude error (| φ - φ |) of 9.41° (2.6 %). Figure 
24 displays the error bars for both variables against the real 
latitude (θ) values. Next, the generalization behavior over the 
indentations was evaluated. Figure 25 shows the separate 
error lines for each indentation, while Figure 26 displays the 
error bars. To present the prediction performance in a more 
intuitive manner, Figure 27 displays the prediction results of 
four images that were randomly selected from the test set. 

Figure 24
Error bars for (A) latitude prediction errors (| θ - θ |) and (B) longitude 
prediction errors (| φ - φ |). Plotted against real latitude (θ) values.

Figure 23
(A) Grid Search process for hyperparameters ‘kernel window-size’, ‘number 
of kernels’ and ‘learning rate’. For visualization purposes, the inverse of the 
validation loss ( 1 / validation loss) is plotted. (B) Training and validation 
curve of the convolutional neural network, constructed of the optimal 
hyperparameter set.

Figure 26
Error bars displaying the (A) latitude prediction errors (| θ - θ |) and (B) 
longitude prediction errors (| φ - φ |) over each indentation value.

Figure 25
(A) Latitude prediction errors (| θ - θ |) and (B) longitude prediction 
errors (| φ - φ |) plotted against real latitude (θ) values and separated per 
indentation value.

Figure 27
Prediction results of the Convolutional Neural Network after feeding it four random difference images from the test set.
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2 31

Neutral Seal Pick up

θ = 2°Aluminum Block φ = 10°

Figure 28
Picking up an object oriented in latitude (θ) and longitude (φ) values comparable to the Convolutional Neural 
Network’s prediction errors. This corresponded to a latitude (θ) value of 2 ° and a longitude (φ) value of 10 °.

A. Passive Correction

In order to see if the average prediction errors of the Convolutional Neural Network would 
suffice in real life pickup scenarios, a pickup test was performed with the relative orientation 
of the object representing the error orders. The average absolute latitude predicion error 
(| θ - θ |) was 1.97° and the longitude prediction error  (| φ - φ |) was 9.41° . Therefore, the 
object was placed in an inclination (representing the latitude) of 2 degrees and a rotation 
(representing the longitude) of 10 degrees. The used object was the same as the one used in 
Figure 22A. The result of this pickup test is shown in Figure 28 and can be found as a video in 
Appendix IV.D. It is clearly visible that the suction cup shows a tilted deformation to conform 
the the object’s orientation. Then, it forms a seal, activates the vacuum and successfully lifts the 
object. This result proves that the passive compliance of the suction cup suffices to correct for 
the prediction error orders, and still obtain a seal between the substrate and the suction cup.

This chapter evaluates whether the theoretical performance of 
the Convolutional Neural Network would be satisfactory for real 
life pickup scenarios. First, it was investigated whether the suction 
cup’s passive compliance would suffice to correct for the network’s 
prediction error values. To this purpose, a pickup test without any 
correction was performed. The substrate was placed in an orientation 
with values comparable to the average prediction errors. Next, the 
ability to actively correct the orientation and obtain perpendicular 
seals was tested. For this, pickup tests in with objects in four different 
orientations were performed. In these tests, the network was used to 
recognize the relative orientation and orient the suction cup correctly 
to pick up the objects. 

06 Verification

B. Active Correction 

The original Convolutional Neural Network was coded in Tensorflow [21]. However, 
the Raspberry Pi was not suitable for the Tensorflow Python library. Therefore, the 
network was first converted to a Tensorflow Lite (TFLite) version before importing 
it onto the device. Then, four pickup tests were performed and the network was 
used to orient the suction cup correctly to successfully pick up the object. This 
is shown in Figure 29. Objects were placed into four different orientations 
The latitude (θ) values started at 5 ° (Figure 29A) and were incremented with 5 ° each time 
(Figure 29B-D). The longitude  (φ) started at 0 ° (Figure 29A) and was incremented with  
45 ° each time (Figure 29B-D). Difference images (before vs. after the tilted indentation) were 
obtained in the same way as used in the data collection process explained in Figure 17. The 
image was then fed to the neural network and the output values were used to calculate the 
relative orientation. This result was used to orient the suction cup perpendicularly above the 
object and achieve a seal. Although it showed that the prediction errors in the pickup test were 
larger than the theoretical ones, It still resulted in all four objects being successfully picked up.
Videos can be found in Appendix IV.E 
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Figure 29
Performance of Convolutional Neural Network when using it for live correction of orientation. For (A) a latitude (θ) of 5 ° and a longitude (φ) of 0 °, (B) a latitude 
(θ) of 10 ° and a longitude (φ) of 45 °, (C) a latitude (θ) of 15 ° and a longitude (φ) of 90 °, (D) a latitude (θ) of 20 ° and a longitude (φ) of 135 °. The left portion 
of each sub-figure shows the obtained difference image and predicted values. The right portion shows the front view and tactile images in the (1) ‘indented’ 
stage, (2) ‘corrected’ stage, (3) ‘sealed’ stage and (4) ‘picked up’ stage. 
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A. Analysis of Results
A.1.	 Pull-off	Test	Results

The pull-off tests demonstrated that the suction cup achieves 
its optimal pull-off force at an indentation of 2.0 mm, resulting 
in a normal pull-off force of 9.35 N with a preload of 22.2 N. 
Additionally, the shear pull-off force at this indentation was 
measured to be 5.28 N. These findings position the suction 
cup favorably among other state-of-the-art membrane-based 
fluidically actuated suction cups. As mentioned in van Veggel 
et al. (Appendix IV.A) , these suction cups typically operate 
within a range of 5 N - 40 N for normal pull-off force. 

However, it is occuring that the theoretical force of 100.2 N, 
calculated in section 3.G.3. (‘Effect of Parameter variation’), is 
much greater than the actual achieved pull-off force of 9.35 N. 
This could be partly explained by the fact that the assumption 
that the pressure is equally divided over the entire infundibular 
surface, might be false. If it would instead be assumed that 
the adhesion force only occurs in the orificial area, the area 
decreases and the resulting force would only be between 16 N 
and 18 N, which is much closer to reality. Other discrepancies 
could be explained by errors in geometrical assumptions 
of the calculation and surface roughnesses of the printed 
parts and Plasti-Dip coating, leading to an imperfect seal.

A.2.	 Object	Pickup	Test	Results

The pickup tests showcased the flexibility of the suction cup 
in grasping both flat and curved objects. Furthermore, the 
suction cup successfully demonstrated the ability to pick 
up an object with the center of gravity displaced from the 
suction cup’s central axis. This highlights the adaptability 
and potential practical applications for the suction cup. 

A.3.	 Tactile	Images	&	Control

Regarding the informational value of the tactile images 
during all tests, assessing their difference images showcased 
meaningful tactile output data. Active pixels in the difference 
images emerged for differing the normal force (Figure 
21A), shear force (Figure 21B), object shape (Figure 22), 
and the location of the object’s center of gravity during 
lift (Figure 22C). This highlights the potential of utilizing 
this tactile information for control and manipulation 
purposes in the future development of this design. 

A.4.	 Prediction	Performance

The results of the orientation recognition experiment 
demonstrated that the network successfully predicts latitude 
(θ) with an average absolute error 1.97° and longitude (φ) 
with an average absolute error of 9.41°. The suction cup 
is still able to close the seal with these error orders, as the 
passive compliance of the module proved to be effective in 
compensating for these error orders. Figure 24B indicates that 
the prediction errors for longitude (φ) display higher variance 
for a latitude (θ) value of zero degrees compared to other 
values. The cause for this would be that a latitude of zero 
automatically eliminates the longitude value, as no rotation 
takes place at all (see the definition of orientation in Figure 16). 
As latitude increases, more markers undergo displacement, 
resulting in a higher signal-to-noise ratio, leading to shorter 
error bars.  

 
Interestingly, the network’s prediction performance did not 
show a discernible trend based on different indentations 
(Figure 25 and Figure 26). Higher indentations were 
initially expected to yield a better performance due to 
increased marker displacement and improved signal-to-
noise ratio. The explanation for this might be that the 
presence of higher indentation introduces more slip 
between the substrate and the suction cup, contributing 
to increased variation in the tactile images, which may 
cancel out the effect of having a stronger signal. 

Analyzing the latitude (θ) error plot (Figure 24A), a slight 
decreasing trend is observed as the latitude value 
increases, passing through zero error at around 12°. 
This may be attributed to the fact that this experiment 
involved indirect contact deformations of the marker 
membranes, which occur through the transfer of 
deformation from the sucker infundibulum. This indirect 
mechanical filtering effect could result in lower prediction 
errors for certain ‘preferred’ latitude values, where the 
chosen architecture exhibits better transfer behavior.

Finally, to address potential variations in external light 
conditions and friction coefficients, future experiments 
could be extended over a longer period to capture 
different scenarios and enhance the network’s ability 
to generalize under varied conditions. Additionally, the 
application of lubricant on the substrate could help reduce 
friction variations, although it may limit the network’s 
performance if a different substrate material is used. 

A.5. Demonstration

During the demonstration, it was discovered that using 
another, identical prototype drastically decreased the 
prediction performance when using it to correct the 
orientation in real life. Although the two printed versions of the 
prototype may have been identical in theory, manufacturing 
errors and manual post-processing steps such as the Plasti-
Dip spraying process could induce slight variations. Therefore, 
the convolutional neural network had to be trained again with 
training data from the new prototype before being able to 
successfully use it for live correction of the orientation. This 
finding suggests that it is highly recommended to train the 
network on multiple prototypes to make sure it can generalize 
on these variations. It is expected that this results in sufficient 
performance on an previously unseen prototype as well. 

Training the network with the second prototype resulted in 
similar error values compared to the original one. However, 
the prediction errors became larger when using the network 
on real angled objects. This may be caused by the fact that the 
used objects were made of a different material (aluminum) 
than the substrate it was trained on (plexiglass), which could 
cause frictional variations. Another reason could be that the 
visco-elastic nature of Agilus30Clear stretches the suction 
cup material over time, which could cause a different tactile 
image for the same orientation and indentation values. 

This chapter analyzes the results of the three sets of experiments and 
validates the suction cup’s performance. Design opportunities are 
proposed to improve this performance. Then, several future directions 
are explored and remaining design challenges are elaborated on. 
The work is finally summarized and finished with a conclusion on the  
potential impact of the presented design. 

07 Discussion & 
Conclusion
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B. Design Opportunities

The first category of design opportunities relates to the 
Polyjet printer resins. The rigid marker materials (VeroCyan-V 
and VeroMagetna-V) decrease the membranes’ deformation 
abilities. The color change due to normal deformations 
in the membranes is then only caused by the decreasing 
distance between the two color filters, rather than also being 
dependent on the change in their size by elastic deformation. It 
is therefore highly recommended to explore the availability of 
stretchable photopolymers for the Polyjet printers. Additionally, 
substituting the Plasti-Dip coating with a white, stretchable 
resin would streamline post-processing procedures. 
 
The flexible resin used for the membranes, Agilus30Clear, 
exhibits highly visco-elastic properties. This may lead to 
hysteresis behavior and unwanted variations in the tactile 
images over time. To address this, it is recommended to 
explore the development of deformable, transparent resins 
that exhibit more purely elastic properties. Besides maintaining 
consistency in the tactile images, this would also enable 
speeding up control behavior in turbid environments. In 
the two most recent versions of the ChromaTouch sensor, 
this problem was partly overcome by casting a transparent 
silicon layer between the two marker membranes [10] [11]. 
However, this hemispherical sensor shape led to a rather 
simple mold architecture for this post-processing step. 
Repeating this strategy for this work’s design would prove 
rather complex and time-consuming. Another reason to 
choose different materials over Agilus30Clear is the fact 
that the hydrophilic nature of this material causes it to lose 
its transparency when submerged in water, which is crucial 
for the markers in the acetabular wall to be visible in the 
tactile images. This material property limits its use in 
wet environments.  

 
Regarding the desired properties of the infundibular surface, 
a design conflict emerges. On the one hand, the infundibulum 
should be soft, thin, and conformable to effectively conform to 
various object shapes and ensure a secure seal. On the other 
hand, a stiff and thick design is favorable to efficiently transfer 
the deformations to the parts containing the markers without 
loss of information. A similar conflict arises in the design of 
the acetabular wall. While it should exhibit compliance to 
capture meaningful tactile images with a high signal-to-noise 
ratio, it must also possess the strength to withstand the low 
pressures and prevent collapse. Optimizing these trade-offs 
requires further analysis to determine the most effective 
configurations. Here, the parametric design functionalities 
of Rhino Grasshopper could be put to use to quickly explore 
and test several variants. An interesting solution described in 
van Veggel et al. (Appendix IV.A), and implemented in several 
state-of-the-art designs [4] [7] [18] [20], is the application of a 
gradient stiffness design ranging from the infundibulum and 
acetabulum, resulting in a soft, conformable infundibulum that 
slightly transitions into a rigid acetabulum. With the possibility 
of the Polyjet printing process to print multiple materials 
simultaneously, this design opportunity is worth exploring.  

 
Continuing on the architecture of the infundibular surface, 
many state-of-the-art suction cups make use of additional 
surface features to improve adhesion on curved, rough 
and irregular surfaces (Appendix IV.A).Examples of these 
feature are the additions of radial or circumferential grooves, 
application of microdenticles and using a wet adhesion layer 
in between the suction cup and the substrate. With the great 
geometrical flexibility of the Polyjet Printing process, these 
options could be interesting for future versions of the design.  
 
A final design opportunity worth exploring is the investigation 
of a geometry that induces bistability in the acetabular 
roof. This could enable the suction cup to maintain the 
acetabular roof’s inflated or deflated state only requiring a 
negative or positive pressure pulse, rather than continuous 
actuation. This would save a significant amount of energy. 

C. Future Work

This work has primarily focused on training a Convolutional 
Neural Network to learn the relationship between tactile 
images taken and the orientation of the suction cup relative to 
a substrate. However, the tactile images acquired during the 
pull-off and pickup tests have also demonstrated the potential 
for sensing variations in normal force, shear force, object 
shape, and center of gravity. Future research could expand 
the machine learning framework and encompass this broader 
range of variables as well.  
 
Another promising idea is to utilize the amount of membrane 
inflation before touching or exploring a surface as a sensitivity 
metric. By adjusting the degree of inflation, the suction cup’s 
sensitivity to variations in surface stiffness can be fine-tuned. 
Actuating the fluidic circuit with a higher pressure reduces 
sensitivity to stiffness variations since there is less deformation 
sensed, thereby enabling the regulation of the signal-to-noise 
ratio accordingly.  

A possibility closely related to this is to analyze marker 
vibration patterns when sliding the suction cup over 
rough surfaces. These patterns could be used for haptic 
surface exploration and estimation of roughnesses. 
Previous studies by Huh et al. [3] and Wiertlewski et 
al. [13] provide valuable insights in this direction.

D. Challenges

While the high-resolution sensing capabilities of the proposed 
design are promising, the soft nature of the system remains a 
challenge. Unlike the octopus sucker, which can actuate and 
deform in three dimensions due to its muscular hydrostat 
structure [14], this work’s suction cup is only driven by a 
single fluidic input. In contrast, the softness introduces 
numerous degrees of freedom. This discrepancy between high-
resolution sensing and one-dimensional actuation poses a 
control challenge. 

 
Lastly, this work has primarily focused on the development 
and evaluation of a single suction cup. However, the 
integration of information from multiple suction cups to 
create a comprehensive virtual environment representation 
still poses a challenge. As the number of suction cups 
increases, challenges arise in terms of data fusion, 
synchronization, and coordination. This task seems even 
more complex when considering that these limitations are, 
to some degree, even present in the octopus itself. For 
example, Wells’ behavioral research [15] [16] revealed that 
octopuses perceive object diameters based solely on the 
local curvatures of their suckers. As a result, a large diameter 
cylinder that is constructed of multiple smaller cylinders is 
actually perceived as its smaller counterpart. This finding 
highlights the difficulties that are involved in integrating 
the sensory information from multiple suction cups. 

E. Conclusion

Drawing inspiration from the architecture and sensing 
abilities of octopus suckers, a suction cup with high-
resolution tactile sensing capabilities was developed. 
The sensing ability was realized by embedding colored 
markers acetabular roof and wall with the ChromaTouch 
Principle. Tracking these markers with a camera produced 
tactile images containing useful information about 
forces, deformations and interactions with objects.

The results of the first experiment demonstrated the design’s 
effectiveness for several practical applications. First, the suction 
cup exhibited a normal pull-off force of 9.35 N and a shear pull-
off force of 5.28 N. It also showed the ability to successfully pick 
up a flat object, curved object, and a beam with a misaligned 
center of gravity. All of these experiments generated tactile 
images that contained useful information for control. 
 
The results of the second experiment demonstrated the 
design’s effectiveness in sensing the orientation with respect to 
a touching substrate. A Convolutional Neural Network was able 
to predict orientation only using a 100 x 100 pixel difference 
image taken during tilted contact. Having adopted a spherical 
coordinate system, the achieved accuracy was an error of 
less than 2° for latitude (θ) and less than 10° for longitude (φ). 
These error orders proved to be satisfactory for correcting 
the orientation and achieving perpendicular contact, essential 
to achieve a closed seal. This performance was validated by 
successfully using the network for recognizing and correcting 
the orientation, and picking up four different angled objects.  
 
In conclusion, the presented sensorized suction cup sets 
a starting point to overcome challenges in controlling soft 
robot arms. Integrating multiple of these modules in a soft 
arm and combining their sensed data could help to form a 
representation of the arm shape as a whole, which greatly 
simplifies control in unpredictable and turbid environments. 
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