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ARTICLE INFO ABSTRACT
Keywords: The research on the dynamics analysis-based energy-saving technology is significant to reduce ship energy
Ship energy efficiency consumption and greenhouse gas emissions. The adoption of dynamics analysis theory and Computational Fluid

CFD approaches
Hull optimization design
Drag reduction technology

Dynamics (CFD) approaches can achieve the optimal design and energy efficiency improvement of the ship. This
research focuses on the ship energy efficiency improvement technology through CFD-based dynamics analysis,
Navigation state optimization including the hull optimization design, drag reduction technology, navigation state optimization, efficient pro-
Energy-saving equipment pulsion devices, energy-saving equipment, and the coupled dynamics analysis for comprehensive performance
Low-carbon shipping optimization. The current research and application status of ship performance optimization based on CFD ap-
proaches for energy-efficient shipping are systematically analyzed. On this basis, the challenges and problems in
the application of the CFD-based energy-saving technology are discussed, and the future research works are
proposed, aiming to provide references for the development of ship energy-saving technology based on CFD
approaches. The analysis results show that the adoption of CFD-based dynamics analysis methods can effectively
optimize the ship dynamics performance, thus reducing ship energy consumption and pollution gas emissions. In
the future, the CFD-based coupled dynamics analysis should be further studied to achieve the overall perfor-
mance optimization of the integrated ship-engine-propeller-appendages system under the influence of multiple
complex factors, to continuously improve the ship energy efficiency, thus promoting the low-carbon develop-
ment of the shipping industry.

Abbreviation: (continued)
BEM Boundary element method

CFD Computational Fluid Dynamics TPTR Twin-propeller twin-rudder
GHG Greenhouse gas VPP Variable pitch propellers
IME Improved maximum entropy AUV Autonomous Underwater Vehicle
MIGA Multi-island genetic algorithm PSS Pre-swirl stators
SBD Simulation-based design GRS Gate Rudder System
CAD Computer Aided Design CPRS Composite propeller-rudder system
RSM Response Surface Model DBN Deep belief network
MIS Marine creature-Inspired Surface SPP Surface-piercing propeller
WAIP Winged Air Induction Pipe NSGA II Non-dominated Sorting Genetic Algorithm II
ALDR Air-Layer Drag Reduction IMO International Maritime Organization
VOF Volume of Fluid ML Machine learning

(continued on next column) (continued on next page)

* Corresponding author.
** Corresponding author.
E-mail addresses: kwang@dlmu.edu.cn (K. Wang), huanglz@dlmu.edu.cn (L. Huang).
! These authors contributed equally to this work.

https://doi.org/10.1016/j.rser.2024.114896

Received 2 February 2024; Received in revised form 11 August 2024; Accepted 2 September 2024

Available online 18 September 2024

1364-0321/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


mailto:kwang@dlmu.edu.cn
mailto:huanglz@dlmu.edu.cn
www.sciencedirect.com/science/journal/13640321
https://www.elsevier.com/locate/rser
https://doi.org/10.1016/j.rser.2024.114896
https://doi.org/10.1016/j.rser.2024.114896

K. Wang et al.

(continued)
SBO Sampling-based Optimization
FFD Free-form deformation
PSO Particle Swarm Optimization
DOE Design of Experiment
DPD Dissipative particle dynamics
DRC Drag reduction coatings
MBDR Microbubble Drag Reduction
GILLS Gas-injected liquid lubrication system
ALS Air lubrication system
DP Dynamic programming
CRP Counter-rotating propellers
FPP Fixed-Pitch Propellers
RD CRT Rim-driven Counter-Rotating Thrusters
FEM Finite Element Method
PBCF Propeller boss-cap-fin
PRS Propeller-rudder system
AIAD Artificial intelligence-aided design
ANN Artificial neural networks
DFOC Daily fuel oil consumption

1. Introduction

With the continuous advancement of the shipping industry, carbon
emissions from maritime transport are also increasing significantly,
which is estimated to increase by 250 % by 2050 [1]. Therefore, it is
urgent to seek effective ways to decrease carbon emissions [2,3]. As a
consequence, the energy-saving and emission-reduction technologies
have appealed to widespread concentration [4]. The International
Maritime Organization (IMO) has introduced various policies related to
maritime emissions to decrease the emission of the greenhouse gas
(GHG) from ships [5,6]. Faced with the increasingly serious issues of
energy shortages and environmental pollution, the energy saving and
emissions reduction have become the primary challenge confronting the
development of the ship engineering, and it has a significant effect on
promoting the advancement of ship energy-saving technologies [7,8].

Ship energy efficiency enhancement technologies can not only
reduce ship energy consumption and carbon emissions effectively [9,
10], but also have significant implications for reducing shipping costs
and promoting the sustainable advancement of the shipping business
[11,12]. However, further studies and applications of innovative tech-
nologies for ship energy efficiency improvement are needed to meet the
increasingly serious GHG emission requirements [13]. Among them,
energy saving and consumption reduction through CFD-based dynamics
analysis is an important research direction for ship energy efficiency
improvement [14]. The studies and applications of the CFD approaches
on ships can provide a highly effective method for enhancing ship en-
ergy efficiency [15]. By using CFD approaches, ship hydrodynamic
models can be established to solve fluid dynamics control equations,
obtain a discrete quantitative description of the flow field, and calculate
and predict ship hydrodynamics performance, which can allow for ship
optimization design and performance enhancement [16]. In addition,
the adoption of CFD approaches can accurately estimate ship dynamics
performance parameters with advantages of high accuracy, low cost,
and high efficiency [17,18]. Currently, CFD approaches are widely
applied in ship flow field analysis and resistance calculation [19,20],
ship hull optimization design [21,22], efficient propulsion device design
and performance analysis [23], appendage resistance calculation [24],
energy-saving equipment and drag reduction [25,26], as well as ship
maneuvering optimization [27,28], and have achieved good application
results [29].

Although the CFD analysis approaches have been studied and
applied in various aspects for ship fuel efficiency optimization, there is
still a shortage of a comprehensive analysis for the ship energy efficiency
enhancement stemming from dynamics analysis methods, making it
difficult to provide valuable references and guidance for the further
study and development in ship energy efficiency improvement.
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Therefore, the current progress made on the CFD-based energy-saving
technology from the perspectives of energy consumption (hull optimi-
zation design, drag reduction technology), energy conversion (efficient
propulsion devices), energy saving (energy-saving equipment), energy
optimization (navigation state optimization), and the overall energy
optimization (comprehensive performance optimization through CFD-
based coupled dynamics analysis) is comprehensively analyzed in this
research, as shown in Fig. 1. In addition, the challenges and problems of
the CFD-based energy-saving technology are discussed, and the future
research works are proposed, aiming to provide guidance for the
development of ship energy-saving technologies. The contributions of
this work mainly include the following aspects.

1) The ship energy-saving technologies based on CFD approaches have
been discussed, including the hull optimization design, drag reduc-
tion technology, navigation state optimization, efficient propulsion
devices, energy-saving equipment, and the overall performance
optimization through the CFD-based coupled dynamics analysis.

2) A detailed summary of the progress on the CFD-based energy-saving
technologies has been provided. On this basis, the challenges faced in
the development of ship energy-saving techniques based on dy-
namics analysis methods are comprehensively analyzed, and the
future research work on the CFD-based energy efficiency optimiza-
tion is proposed.

This work can be regarded as an essential guidance for future

research on the overall design optimization and fuel efficiency

optimization of the ship based on CFD approaches, thereby pro-
moting the development of the low-carbon shipping industry.

3

—

The other part of this research is structured as follows: the energy-
saving performance of ship hull design optimization through CFD ap-
proaches is carried out in Section 2. Then, the energy-saving perfor-
mance analysis of ship drag reduction based on CFD approaches is
discussed in Section 3. In addition, the energy efficiency analysis of ship
navigation state based on CFD approaches is conducted in Section 4.
After that, the performance analysis of efficient propulsion devices
based on CFD approaches is summarized in Section 5. Moreover, the
performance analysis of energy-saving equipment based on CFD ap-
proaches is investigated in Section 6. Subsequently, the comprehensive
performance optimization through CFD-based coupled dynamics anal-
ysis is illustrated in Section 7. Afterwards, the discussions on the
energy-saving performance of the CFD-based technologies are carried
out in Section 8. Finally, the challenges and prospects for the devel-
opment of CFD-based energy-saving technology are outlined in Section
9.

2. Energy-saving performance of ship hull design optimization
through CFD approaches

The ship hull design optimization aims to enhance the performance
and operational efficiency of ships through the analysis and optimiza-
tion of the hull shape, cross-section, and other aspects [30,31]. The
detailed analysis of ship energy efficiency improvement methods based
on CFD and the optimization design of the ship hull shape, cross-section,
and bow/stern shape is carried out, aiming to provide theoretical and
technical references for the energy-efficient ship hull design and opti-
mization through CFD approaches [32].

2.1. Energy efficiency analysis of the hull shape optimization

The hull shape optimization refers to the adjustment and improve-
ment of the ship’s shape to enhance its performance, as shown in Fig. 2
[33]. The optimization of the hull shape considering factors, such as
hydrodynamic resistance and wave resistance, can significantly reduce
ship energy consumption and carbon emissions [34,35]. The numerical
calculation based on CFD approaches can facilitate to obtain the
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Efficient propulsion devices

Energy-saving equipment

Hull optimization design

Comprehensive performance
optimization through CFD-based
coupled dynamics analysis
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Navigation state optimization

Fig. 1. Ship energy-saving technologies through CFD approaches.

Fig. 2. Ilustration of the hull shape optimization based on dynamics anal-
ysis [33].

influence of hull shape on the ship performance and resistance [36], and
thus can achieve the optimized design of the hull shape to improve ship
energy efficiency [37,38].

For the performance analysis of the hull shape, Wang et al. [39]
proposed a non-uniform arch rib cylindrical ship hull, and the analysis
results based on the Finite Element numerical simulation method and
pressure experiment method showed that the structure had a smaller
buoyancy coefficient and greater compressibility compared with tradi-
tional cylindrical ship hulls, which provides a new method and idea for
further optimizing the ship hull shape and improving the ship fuel ef-
ficiency. In terms of the ship hull shape optimization methods, Zha et al.
[40] proposed an improved maximum entropy (IME)-based hull hy-
drodynamic optimization method, which can optimize the hull shape to
produce a smoother surface, and analyzed the dynamic characteristics

and drag reduction effects based on CFD approaches. In addition, Kim
and Yang [41] proposed a CFD-based shape optimization technique that
can generate new ship hulls using basis functions, and adopted numer-
ical simulation methods to analyze and verify the drag reduction effect
by optimizing the hull shape through CFD approaches. Furthermore,
Ouyang et al. [42] proposed an optimization process combining the
Maximum Entropy Sampling method with CFD numerical simulation
methods, which can reduce the total resistance of the hull by approxi-
mately 5.15 %. Wei et al. [43] proposed a novel hull shape optimization
method based on Sampling-based Optimization (SBO) and CFD, and the
study results showed that the hull shape optimization efficiency im-
proves by at least 17.5 %. Cheng et al. [44] proposed a full-parameter
hull lines optimization method based on CFD analysis, and the opti-
mized hull resistance performance can be increased by 3 %. Nazemian
and Ghadimi [45] optimized the trimaran hull through dynamics anal-
ysis based on the CFD method, which can reduce the ship resistance by
5.35 %. In addition, Nazemian and Ghadimi [46] proposed a shape
optimization method based on CFD analysis. The numerical calculation
results showed that the total resistance can be reduced by 6.67 % for a
trimaran. Senov et al. [47] proposed a new method for in-detail hull
form design based on the CFD and wave-based optimization, which can
reduce the hull resistance by 8.9 %. Overall, the hull shape optimization
based on dynamics analysis can effectively decrease the sailing resis-
tance and thus the energy consumption of ships.

2.2. Energy efficiency analysis of the hull cross-section optimization

The cross-section of the hull refers to the section that is perpendic-
ular to the longitudinal axis of the ship, and is usually used in ship design
to define and describe important parameters such as the shape, size, and
structural distribution of the ship [48,49]. During navigation, the ship
would be subjected to various complex hydrodynamic loads, such as
wave resistance and air resistance [50]. By using the CFD method
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combined with model experiments to optimize the design of the hull
cross-section, and the shape and size of the hull cross-section, the fric-
tional resistance and turbulence resistance can be reduced, and thus
improving the overall energy efficiency of ships [51].

In recent years, the hull cross-section optimization has been carried
out to improve the ship energy efficiency. Zong et al. [52] proposed a
hull cross-section optimization method based on CFD and the
Multi-island genetic algorithm (MIGA), and the obtained wave patterns
of the hull are shown in Fig. 3. The study results showed that the total
resistance coefficient of the ship can be reduced by 21.34 % compared
with the original ship. Additionally, Miao et al. [53] adopted the
free-form deformation (FFD) method to modify the surface of a cata-
maran and obtained a new hull shape. On this basis, they recommended
a multi-dimensional optimization technique for enhancing the hydro-
dynamic performance of ships and conducted the resistance analysis
using CFD approaches, as shown in Fig. 4, which can achieve good drag
reduction effects. Cheng et al. [54] proposed an automatic hull surface
correction technique combining CFD approaches with radial basis
function interpolation optimization. The optimization results on the
resistance performance of a 60-series ship showed that the correction
technique can effectively improve ship energy efficiency.

2.3. Energy efficiency analysis of the bow shape optimization

The bow shape directly affects the ship sailing resistance, speed, and
maneuverability [55]. The design optimization of the bow shape can
improve the overall structure of the ship, reduce hull resistance, and
enhance the overall energy efficiency of the ship [56,57]. The numerical
calculation method based on dynamics analysis is an effective way to
achieve the optimization of the bow shape [58]. Based on the dynamics
analysis of different bow shapes by using the CFD method, the impact of
the bow shape on the resistance and wave generation can be evaluated
[59]. Liu et al. [60] compared the static water resistance of ships with
and without bulbous bows, and found that the optimized bulbous bow
can reduce the wave resistance coefficient, thereby reducing ship energy
consumption. In addition, Yu et al. [61] adopted simulation-based
design (SBD) and Particle Swarm Optimization (PSO) methods to
analyze the hydrodynamic characteristics and resistance characteristics
of different bow shapes under static water and irregular waves. The
analysis results illustrated that the optimized bow shape can reduce
wave resistance by about 9.3 %. Luo and Lan [62] used CFD approaches
and Computer Aided Design (CAD) to achieve the optimal bow shape
design and conducted hydrodynamic performance analysis of the hull,
as shown in Fig. 5. The results showed that this method can effectively
enhance the ship design efficiency and reduce wave resistance [63,64].
Additionally, Cheng et al. [65] adopted the CFD approach to optimize
the bow of a container ship, and the numerical results showed that the
CFD method has a good calculation accuracy and can effectively predict
the variation trend of the ship’s hydrodynamic performance. Moreover,

Position[Z] (m,
& 1Z] (m)

4
0.075000° g 0.10300 0.131 0.15900 0.18700 0.21500

Fig. 3. Comparison of wave patterns [52].
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Fig. 4. S60 catamaran boundary conditions [53].

Fig. 5. Wave profile comparison [62].

Hong et al. [66] proposed a self-mixing method combining CFD and
Design of Experiment (DOE) technology to optimize the bow shape of a
fishing vessel, and conducted a hydrodynamic analysis of the bow, as
shown in Fig. 6. The analysis results indicated that the resistance coef-
ficient can be reduced by about 2 % by adopting the optimization
method.

2.4. Energy efficiency analysis of the stern shape optimization

The optimization design of a ship’s stern shape is one of the effective
methods to decrease the ship navigation resistance [67]. By optimizing
the design of the stern shape, the streamline properties of the flow field
can be improved and the wave resistance can be reduced, and thus the
overall ship energy efficiency can be enhanced [68]. Dynamics analysis
methods can be used to simulate and calculate the hydrodynamic
characteristics in the stern region, to effectively improve the hydrody-
namic environment around the hull, reduce energy loss, and improve the
ship energy efficiency [69,70]. Chen et al. [71] used the parametric
modeling combined with the CFD approaches to optimize the contour
design of the stern shape for a container ship, as shown in Fig. 7. The
optimized stern flow field showed a significant decrease in turbulence,
and the hull resistance can be reduced by about 9 %. In addition, Liu
et al. [72] analyzed the interaction between the ship hull resistance and
the stern flow field based on the CFD approach by optimizing the stern
shape. The pressure distribution at the stern before and after

Original bulbous bow
outline

Fig. 6. 3D surfaces of the bow [66].
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Fig. 7. Comparison of the CFD wake fields [71].

optimization is shown in Fig. 8. It is clear that the streamlined distri-
bution of the hull after optimization is more uniform, and the total
pressure resistance surround the stern is significantly reduced. Lu et al.
[73] proposed a ship stern resistance optimization method based on the
hull form transformation method and Response Surface Model (RSM)
hydrodynamic solution method, which can reduce the hull resistance by
about 7 % under the designed speed. Moreover, Hamed [74] proposed a
multi-objective hydrodynamic optimization strategy for the stern design
of a three-body ship using CAD combined with CFD calculations, which
can reduce the hull resistance by about 13.3 % and increase the wake
coefficient by 7.58 %.

2.5. Summary

The ship hull design optimization through the CFD approaches can
improve the flow field and hydrodynamic characteristics around the
ship, thereby reducing the sailing resistance and improving the overall
energy efficiency of ships [75,76]. Although some studies on the hull
design optimization based on the CFD approaches have been carried out,
there are still some challenges that need to be addressed.

(1) The high-quality meshing and fine time steps for the CFD
approach would result in high computational costs [77,78],
which would consume more time and computation resources to
achieve the hull optimization, especially under the coupling ef-
fects of various influencing factors.

It is hard to obtain the experimental data to verify the effective-
ness of the CFD-based ship hull design optimization method [79],
and thus the accuracy of the CFD-based optimization results
needs to be further investigated and demonstrated.

(2

—

3. Energy-saving performance analysis of ship drag reduction
based on CFD approaches

Ship drag reduction technology can reduce the sailing resistance by

Initial

Fig. 8. Comparison of Stern pressure distribution [72].
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adopting the methods such as surface treatment, coatings, and CFD-
based performance optimization, thereby reducing ship fuel consump-
tion. A detailed analysis on the energy-saving performance of the drag
reduction coating, and the drag reduction through bubble and air layer
is carried out, aiming to provide a reference for the research and
application of the ship drag reduction technology.

3.1. Energy-saving performance analysis and optimization of drag
reduction coatings

Ship coatings are used to protect the hull from corrosion, biofouling,
and hydrodynamic losses caused by the marine environment [80,81], to
reduce ship resistance and minimize the impact on the marine envi-
ronment [82,83]. By using CFD-based approaches, the influence of
different coatings on the fluid flow can be evaluated [84,85], and the
ship resistance can be reduced by adopting suitable drag reduction
coatings [86], thus improving the ship fuel efficiency [87,88]. Du et al.
[89] established a model by adopting the dissipative particle dynamics
(DPD) and CFD approaches to simulate and analyze the
resistance-reduction efficiency of polymer coatings on the ship’s surface,
and verified the resistance-reduction performance of polymer coatings
in external fluids, which can achieve the maximum drag reduction effect
by 82.6 %. In addition, Kim et al. [90] proposed a low-friction surface
coating with lubricant-injected spherical cavities for drag reduction,
which can effectively reduce frictional resistance in turbulent
high-speed flow. The drag reduction mechanism of the Marine
Creature-Inspired Surface (MIS) method was studied by using
CFD-based analysis methods, and the excellent resistance-reduction
performance of the MIS method was validated through the application
on the surface of high-speed flow ships. In addition, for the new types of
drag reduction coatings (DRC), Garcia et al. [91] studied the roughness
characteristics of four different ship coatings under sea conditions and
used CFD-based analysis methods to simulate and predict the effects of
different coatings on the KCS hull resistance, as shown in Fig. 9. More-
over, Alza et al. [92] analyzed the influences of silicon-based coatings
and traditional coatings on the drag reduction using numerical simula-
tion methods and verified that the silicon-based coatings have better
drag reduction performance, which is a solid foundation for the
energy-efficient drag-reducing coatings development to further improve
the ship energy efficiency.

3.2. Analysis of discrete bubble drag reduction technology

The drag reduction through discrete bubble (also called micro-
bubble) can reduce the fluid resistance by introducing bubbles into the
fluid [93]. With this technology, a two-phase flow in terms of gas-liquid
with the flowing water underneath the ship could be generated as a
lubricant for the ship’s bottom, which can reduce the hull drag and
energy consumption [94], as shown in Fig. 10. Yanuar et al. [95] pro-
posed a new air lubrication device called the Winged Air Induction Pipe
(WAIP) and calculated the effects of different hydrofoil clearance and
angle of attack configurations on the total drag force and drag reduction
by using the CFD analysis methods. The study results showed that the
drag reduction effect with the obtained optimal parameters can be
increased by 10 %. Yang et al. [96] calculated the effect of bubble drag
reduction technology on the drag reduction effect of a river-sea bulk
cargo based on CFD, and the research results showed that the total drag
coefficient of the ship can be reduced by 19 %. Moreover, Yanuar et al.
[97] conducted a comparative analysis of Microbubble Drag Reduction
(MBDR) and Air-Layer Drag Reduction (ALDR) technologies, and the
study results revealed that the MBDR has better performance than the
ALDR technologies. In addition, in order to further explore the potential
of bubble drag reduction for large ships, Mohammadpour et al. [98]
proposed a gas-injected liquid lubrication system (GILLS) and analyzed
the impact of GILLS on the drag reduction effect of the ship based on CFD
approach. The results showed that the resistance of the hull can be



K. Wang et al.

207 (2025) 114896

Fig. 9. Analysis on the dynamics performance of the hull with different coating materials [91].

OUTER FLOW

Fig. 10. Schematic diagram of bubble drag reduction technology [94].

reduced by as much as 10.45 %.
(1) Influence of bubble size on the drag reduction effect

The bubble size is a significant factor affecting the resistance-
reduction performance of the bubble drag reduction technology [99,
100]. Simulation and experiment analysis based on CFD analysis method
(as shown in Fig. 11) indicate that smaller bubbles can achieve a better
drag reduction effect, which is more conducive to enhancing the energy
efficiency level of ships [101]. Giernalczyk and Kaminski [102] found
that the size of bubbles in the MBDR region is a key factor that influences
the resistance-reduction rate by adopting the CFD analysis method. The
diameter of the bubbles significantly affects their distribution under the
ship’s hull and reduces the ship’s resistance. At the same air inflow rate,
larger water flow velocity produces smaller bubbles, and smaller bub-
bles are more conducive to improving the drag reduction effect. In
addition, Moriguchi and Kato [103] analyzed the effect of microbubble

(a) The ship speed of 0.542 m/s

diameter on the frictional drag under different incoming airflow veloc-
ities, and the study results showed that the increase of the mean void
ratio can improve the resistance-reduction performance. This research
finding has significant implications for improving the energy-saving
effect of the bubble drag reduction.

(2) Influence of bubble size distribution on the drag reduction effect

The distribution of bubble sizes also influence the resistance-
reduction performance of the bubble drag reduction technology,
because the distribution status of bubble sizes affects the moving ways of
the bubbles and the resistance in the liquid, and thus affecting the drag
reduction effect. Zhao et al. [104] analyzed the influence of the bubble
size distribution on the drag reduction effect through numerical simu-
lation, as shown in Fig. 12. The study demonstrated that the size of
bubbles gradually increases along the direction of free flow, with the
largest bubble appearing behind the tail of the model. A significant

(b) The ship speed of 0.868 m/s

Fig. 11. Experiment of the bubble morphology at two different ship speeds [101].
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Fig. 12. Bubble diameter distribution analysis [104].

bubble merging effect occurs in the downstream area of the water
stream. Therefore, the bubble-induced drag reduction performance can
be improved to some extent by regulating the distribution status of
bubbles reasonably.

(3) Influence of bubble void fraction on the drag reduction effect

Based on CFD approaches, studies have found that the void fraction
has an obvious influence on the resistance-reduction effect in gas-solid
two-phase flow [105]. Zhao and Zong [106] conducted an analysis of
the drag reduction effect based on the Eulerian-Eulerian two-fluid
model, the Volume of Fluid (VOF) model, and the Discrete Particle
Model (DPM), the maximum drag reduction effect can reach by 7 %. The
findings indicated that a higher air void fraction would obtain a better
drag reduction effect. However, excessively high air void fractions may
lead to excessive sparsity of the fluid, resulting in a decline in fluid flow
performance, as shown in Fig. 13. Therefore, the reasonable adjustments
are required in practical applications.

(4) Influence of bubble injection volume on the drag reduction effect

Bubble injection rate refers to the quantity of bubbles injected into
the fluid during the application of the bubble drag reduction technology.
Different bubble injection rates have varying effects on the drag
reduction performance. Generally, a higher bubble injection rate can
obtain a better drag reduction effect [107]. Tanaka et al. [108] found
that a large number of bubbles generated by a bubble generator can
inhibit the ship frictional resistance based on the CFD analysis method.
Experimental data showed that skin-friction resistance of the ship model
can be decreased by approximately 50 % after the bubble generator
produces bubbles, and the resistance of the ship model will decrease
with the increasing injection rate of bubbles. Therefore, the
energy-saving performance of the bubble drag reduction technology can
be enhanced by adjusting the bubble injection rate reasonably.

Above all, the study on the bubble-induced drag reduction technol-
ogy is of significant importance in improving energy utilization effi-
ciency, reducing emissions of pollutants, and enhancing ship fuel
efficiency. The applications and drag reduction effect of the bubble drag
reduction technology based on CFD approaches are presented in Table 1.

3.3. Analysis of continuous air layer drag reduction technology

The adoption of the continuous air layer drag reduction technology
can decrease frictional resistance between gas and water surface by
forming a layer of air film at the bottom of a ship, thereby reducing the
drag force experienced by an object moving through a fluid [109,110]. A

alpha.air
0 0.25 0.5

(a) Bubble size of 5 mm
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Table 1
Application analysis of the bubble drag reduction technology based on CFD
approaches.

Influencing Application Drag reduction effect Reference
factor
Bubble size Air lubrication The smaller the bubble, [101-103]

system (ALS) the better the drag

reduction effect
The drag reduction effect [104]

Bubble size Optimization of

distribution bubble drag in downstream area is
reduction obvious
Bubble void Optimization of The larger the void ratio of [106]
ratio bubble drag bubbles, the better the
reduction drag reduction effect
Bubble Marine lubrication Friction resistance can be [108]
injection resistance reduced by about 50 %
volume optimization

schematic diagram on the principle of the drag reduction through air
layer is illustrated in Fig. 14 [111]. The drag reduction effect of
microbubbles inserted into container hull model is studied based on CFD
method, and the results show that the friction resistance of the ship can
be reduced by as much as 27.6 %, and the drag reduction effect of
microbubbles decreases with the increase of air flow [112].

In the practical applications of the drag reduction through air layer,
the morphology of the ship’s bottom surface and the method of air in-
jection can be optimized through CFD numerical simulation methods to
minimize frictional resistance and improve drag reduction effectiveness.
Currently, the research and applications of the air layer drag reduction
technology by adopting CFD approaches to enhance ship energy effi-
ciency are shown in Table 2.

3.4. Summary

The energy-saving technologies, including coating [118], bubble
[119], and air layer drag reduction technologies [120,121], have been
widely studied and applied on ships, which can effectively reduce ship
fuel consumption. The specific applications and the energy-saving ef-
fects of each technique are summarized, as show in Table 3. As it can be
seen, various drag reduction technologies, including DRC, BDR, ALDR,
have been employed to reduce ship energy consumption. The DRC
technology mainly used in bulk carriers, container ships, oil tanker can
effectively reduce the ship fuel consumption. In addition, the BDR
technology is mainly used in hydrofoils, AUVs, cargo ships, which can
reduce the ship fuel consumption by 5%-25 %. The ALDR technology,
utilized in high-speed planning boats and container ships, can achieve a
4%-26 % reduction in ship resistance and can also decrease the ship
sailing speed by 10%-30 %. Additionally, the WAIP have demonstrated
a 16 % fuel reduction on a ferry. The ALDR applied to a typical Great
Lakes ship can decrease net energy use by 10%-20 %. Moreover, the
GILLS can reduce the hull resistance by 10.45 % on a Catamaran ROPAX
ferry. These advancements in WAIP, GILLS, and ALS can further
contribute to reducing resistance and fuel consumption of ships, thus
advancing the low-carbon shipping industry.

Although the coating, bubble, and air layer drag reduction technol-
ogies can reduce ship resistance to some extent and have promising
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Fig. 13. The void distribution of different bubble sizes [106].
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Fig. 14. A schematic diagram on the principle of the drag reduction through air layer [111].
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Table 2
Research on the air layer drag reduction technology based on CFD approaches.
Considered Application target Drag reduction effect Reference
factor
Froude number, A glider with a The resistance can be [113]
Drag cavity effectively decreased
coefficient
Hull speed A planning boat The drag can be [114]
without air injection  decreased, and the speed
can be effectively
increased
Wave resistance, A ship with an air The wave resistance can [115]
Froude chamber be reduced by 14 %
number
Drag reduction Model of a flat The drag reduction rate [116]
ratio groove at the can be effectively
bottom of a ship increased
Sailing speed High-speed The sailing speed can be [117]

planning boat

increased by 10%-30 %

application prospects [131,132], there are still the following challenges.

(1) Ship coatings would inevitably withstand long-term underwater
environments, physical impact, and chemical corrosion, making
durability of coatings very crucial [133]. In the future, the CFD
should be used to simulate and predict the dynamics performance
of coatings in complex sea conditions and develop more durable
and long-lasting coating materials to enhance the overall ship
energy efficiency.

Currently, the bubble distribution study based on CFD analysis
methods considering multiple factors is still in the preliminary
stage, lacking accurate control of the bubble uniformity, size, and
position. Therefore, further studies are needed to optimize the
bubble control, thereby improving the energy-saving effect [134,
135].

Although drag reduction technology through air layer has been
proven to effectively decrease the ship frictional resistance in
theory [136], there is still a lack of field tests and verification in
practical applications. Further studies and tests are required to
verify the effectiveness and feasibility of the air layer drag
reduction technology in ship fuel efficiency optimization [137].
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4. Energy efficiency analysis of ship navigation state based on
CFD approaches

The ship navigation state refers to the postures or motion states
during navigation [138,139], and the optimization of which can reduce
fuel consumption and environment footprint of the ship effectively [140,
141]. The energy efficiency analysis under different ship navigation
states based on dynamics methods [142,143] can lay a solid foundation
for the optimization control of the ship navigation states [144].

Table 3
The applications of the drag reduction technologies.
Technology  Target ship Energy-saving effect Reference
BDR Hydrofoil The resistance can be [95]
decreased by 10 %
BDR A river-sea bulk The total drag coefficient can [96]
cargo be reduced by 19 %
GILLS Catamaran ROPAX The resistance of the hull can [98]
ferry be reduced by 10.45 %
BDR Experimental ship The maximum drag reduction [106]
model effect can reach by 7 %
ALDR A Great Lakes ship 10 %-20 % of net energy [111]
savings can be achieved
ALDR A container hull The maximum friction [112]
model resistance can be reduced by
27.6 %
DRC The towing tank The skin frictional drag can be ~ [122]
VLCC model deceased by 10 %
DRC Ultra large container It can save as much as [123]
vessel Emma Maersk ~ 804749.4 kg of fuel for a
voyage from Gdansk to Ningbo
DRC Cruise ship Queen It can save as much as [123]
Mary II 442027.1 kg of fuel for a
voyage from Dubai to
Southampton
DRC A 176 k DWT bulk The fuel consumption can be [124]
carrier saved by 11.7 %
DRC A 176k bulk carrier The fuel usage can be reduced [125]
by 48.06 %
BDR A 120-m-long ship The electricity can be reduced [126]
by 5%
BDR AUV The resistance can be [127]
decreased by 25 %
WAIP A fishing boat The fuel usage can be reduced  [128]
by 29 %
WAIP A ferry The fuel usage can be reduced [128]
by 16 %
WAIP A cargo ship The fuel usage can be reduced  [128]
by 9.1 %
ALDR A container ship The resistance can be reduced [129]
by 4%-16 %
ALS A 50,000 t medium The ship resistance can be [130]

range tanker model

reduced by 18.1 %

4.1. Analysis of the impact of trim on the ship fuel efficiency

The floating state of a ship has a significant impact on its stability and
resistance during navigation [145]. Therefore, optimizing and control-
ling the ship’s navigation state can effectively reduce sailing resistance
and improve the energy efficiency level [146,147]. Ship trim refers to
the difference in draft between the bow and stern of the ship [148,149],
and an appropriate trim angle can reduce energy losses caused by
external forces such as waves [150], thus improving the ship fuel effi-
ciency [151]. The use of CFD-based methods can analyze the ship’s
resistance under different trims, which can provide an important foun-
dation for the trim optimization [152,153]. Korkmaz et al. [154]
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analyzed ship trim and drag reduction performance using EFD and CFD
methods, which can effectively predict the optimal trim of the ship.
Mahmoodi et al. [155] optimized the trim of a VLCC ship using the CFD
method, and found that the ship’s total resistance is the lowest at a bow
trim of 0.2°, as shown in Fig. 15, which can achieve a reduction of 10.90
% in propeller thrust and 4.58 % in fuel consumption. Additionally, Fan
et al. [156] achieved the trim optimization of a bulk carrier based on
CFD analysis, which can reduce the ship resistance by as much as 4 %,
and thus it is of great significance to decrease the energy consumption
and carbon emissions of ships. Furthermore, Shivachev et al. [157]
calculated the additional resistance of a ship under six different trim
angles using a model-scale CFD method, and achieved the ship fuel ef-
ficiency optimization by obtaining the optimal trim angels. Additionally,
Li et al. [158] conducted dynamic trim optimization research on a VLCC
ship along typical routes using the boundary element method (BEM).
Compared to the trim optimization results on the calm water surface, the
dynamic trim optimization considering complex wind and wave condi-
tions can achieve fuel saving of approximately 949.3 kg for a specific
voyage, thus can effectively improve the ship energy efficiency.

In addition, ship draft refers to the effective immersion depth of a
ship in water [159,160], which would affect the wetted surface area of a
ship in water, directly influencing the stability and resistance of the ship
[161,162]. Campbell et al. [163] calculated the ship resistance under
different drafts and trim conditions using CFD-based method. The results
indicate that increasing ship’s draft under different speeds would result
in the increased sailing resistance, which can be compensated by
adjusting the ship’s trim angle. At low sailing speeds, the resistance
caused by the increased draft can be reduced by 10 % by the trim angle
optimization.

4.2. Analysis of the impact of other navigation states on the ship fuel
efficiency

The navigation state of a ship is influenced by the sailing resistance,
including the water resistance and wind resistance [164]. The sailing
resistance of a ship at different speeds can be obtained by using the CFD
analysis methods, allowing for the decisions on the optimal sailing speed
under various conditions to enhance the ship fuel efficiency. In addition,
the sailing speed also affects the optimal trim of the ship [165]. There-
fore, the joint optimization of the sailing speed and trim can further
enhance the ship fuel efficiency. Li et al. [166] examined the effects of
different speeds on the behavior of two ships sailing side by side under
wave conditions through the CFD-based hydrodynamics calculations

0.45 Deg by aft
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based on a Wigley III ship model, as shown in Fig. 16. Fan et al. [167]
adopted the CFD and Dynamic programming (DP) algorithm to deter-
mine the optimal speed for different segments of a ship’s voyage.
Meanwhile, the optimal trim was also obtained under the optimized
speeds. The proposed method can reduce the total power consumption
by 7.64 %, which is of significant importance for further improving the
ship energy efficiency.

4.3. Summary

In summary, some studies have been conducted on the energy effi-
ciency optimization through ship navigation state based on CFD ap-
proaches, which can lay solid foundations for the ship energy efficiency
optimization. However, there are still some problems and limitations
that need to be addressed.

(1) The comprehensive modeling and analysis methods considering
the complex and uncertain dynamic factors, such as wind, waves,
and currents, have not yet been established for ship navigation
state optimization.

The research on the fuel efficiency improvement by ship navi-
gation state optimization based on dynamics analysis methods
often involves certain simplifications and assumptions, which
would affect the effectiveness of the energy efficiency optimiza-
tion method. Thus, it is vital to validate the fuel efficiency
enhancement effects of the navigation state optimization under
different environmental and operational conditions through
specific case studies.

(2

—

5. Performance analysis of efficient propulsion devices based on
CFD approaches

Dynamics analysis methods can be used to achieve the performance
analysis and the design optimization of the propulsion systems,
including propellers, rim thrusters, water jet propulsion, and podded
propulsion unites, which can enhance the propulsion efficiency and
improve the overall energy efficiency of the ship. In addition, optimizing
the combustion performance of marine diesel engines can also effec-
tively improve fuel utilization and reduce fuel consumption based on
CFD [168,169], thus promoting the green development of ships [170,
171].

0.2 Deg by aft

Level trim

0.2 Deg by bow

0.45 Deg by bow
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Fig. 15. Skin friction coefficient distribution on KVLCC2 hull [155].
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Fig. 16. The wave field distribution with different values of Fn [166].

5.1. Optimization analysis of the propeller performance

The propeller, as the important device for propulsion [172], has a
specific effect on the maneuverability, stability, and energy efficiency of
the ship [173]. The hydrodynamic properties analysis of propellers by
CFD approaches can provide insights into the relationship between the
dynamic parameters, such as thrust, resistance, and torque, and can
achieve the optimized design of propellers with significant implications
for improving ship energy efficiency [174]. The open-water perfor-
mance of a propeller plays a crucial role in the ship propulsion perfor-
mance [175]. Eom et al. [176,177] analyzed the relationship between
the open-water performance and the ratio of immersion depth to
diameter, as well as the advance coefficient of a propeller based on CFD
approaches. They also analyzed the influence of immersion depth and
skew angle on the open-water characteristics of the propeller under the
wave conditions, and obtained the trend of propeller performance
varying with the skew angle. In addition, Liu et al. [178] optimized the
propeller performance based on CFD approach, which can improve the
propeller wake performance by 2 %. Stan et al. [179] proposed a novel
backflow marine propeller and optimized the propeller through CFD
approach, which can improve the efficiency of the propeller by 8 %9 %.
Liu et al. [180] calculated the ship resistance, propeller open-water
performance, and other parameters by adopting the CFD analysis
method, as shown in Fig. 17. On this basis, the analysis and prediction of
the power performance at different ship speeds were conducted, laying a
solid foundation for improving the operational performance of propul-
sion systems. Lovibond et al. [181] analyzed the hydrodynamic per-
formance of the propeller based on CFD, and found that the ship
efficiency can be improved by 62 % at lower propeller thrust and torque
coefficients. Furthermore, the combined propellers have high propul-
sion efficiency and good energy-saving effect. Su et al. [182] analyzed
the hydrodynamic performance of single propeller and the combined
propeller based on CFD. The results show that the open-water efficiency
of the combined propeller is significantly higher than that of the single
propeller under the same power, and the combined propellers have high
propulsion efficiency and good energy-saving effect.

The dynamic characteristics analysis of full-scale propellers can
avoid the problem of analysis errors and uncertainties caused by using
the model scales, and can improve the accuracy and effectiveness of the

NO-slip wall
(propeller)

Interface 1.0726 0.85802 ‘

performance analysis [183]. Kim et al. [184] used CFD-based analysis
method to predict the impact on different wall y + values on the dy-
namic performance of a full-scale propeller in real and virtual fluids, as
shown in Fig. 18, which is of great importance for promoting the
research and real-world applications of the propeller performance
optimization.

5.1.1. Performance analysis of twin-propeller propulsion systems
Twin-screw propulsion systems can reduce hydrodynamic losses and
improve propulsion efficiency by utilizing the interaction between two
propellers, thereby enhancing the energy efficiency of ships. Compared
to single-screw propeller, twin-screw systems can provide greater thrust
and achieve higher speeds with the same power input [185,186]. Lu
et al. [187] proposed a twin-propeller twin-rudder system (TPTR) and
analyzed the hydrodynamic performance by using CFD analysis, and
also conducted an analysis of the ship maneuverability with the aid of
CFD analysis. Vimala et al. [188] obtained joint computational results of
pressure, velocity, and turbulence under propeller operating conditions
using the FLUENT software. On this basis, the optimal propeller rota-
tional speed was determined, which can effectively improve the pro-
peller propulsion efficiency. Additionally, Acanfora et al. [189]
performed CFD simulations to analyze the dynamics performance of
twin-screw propellers under complex irregular sea conditions, which is
of significance for improving the fuel efficiency and reducing pollution
gas emissions. Moreover, Guo and Zou [190] developed a numerical
model for twin-screw propeller thrust and torque based on the CFD
method, as shown in Fig. 19. On this basis, the hydrodynamic charac-
teristics of the propeller were investigated and the variation law of
propeller thrust load during ship turning motion was obtained, which is
significant for the energy efficiency prediction of the twin-screw ships.

5.1.2. Energy efficiency analysis of counter-rotating propellers
Counter-rotating propellers (CRP) is a propulsion system consisting
of two propellers rotating in opposite directions. In the CRP system, the
rear propeller compensates for the energy losses caused by the front
propeller, thereby improving ship propulsion efficiency [191]. Numer-
ical simulations of CRP dynamics can be conducted using CFD tech-
niques to quantitatively analyze the propulsion -efficiency and
performance of the CRP system, thus enhancing the ship energy

Velocity[j] (mis)
064348 0.428

Fig. 17. Propeller open-water performance analysis [161].
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Fig. 18. Analysis of the dynamic characteristics of full-scale propellers [184].
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Fig. 19. The CFD computational modeling of the twin-propeller propulsion
systems [190].

efficiency. Pereira et al. [192] analyzed the hydrodynamic characteris-
tics of CRP wake under different operating conditions using dynamic
particle image velocimetry. On this basis, the influence of the relative
position of CRP propellers on flow characteristics was obtained. Capone
et al. [193] studied the hydrodynamic characteristics of CRP systems
under three different thrust coefficients and analyzed the interaction
between the vortex systems generated by the front and rear propellers,
as shown in Fig. 20. The results emphasized the importance of hydro-
dynamics analysis of wake flow for improving the energy efficiency of
CRP propulsion systems. In terms of CRP optimization design, Grassi
et al. [194] proposed a design method based on the hydrodynamics
analysis to obtain the optimal shape of the CRP system. The

J=1.0 phis0® UL

ume

Fig. 20. The mean and normalized velocity field [193].

experimental results demonstrated that the CRP system has a higher
flexibility. In addition, Nowrouz et al. [195] conducted an optimization
analysis of the CRP system using the CFD analysis method, and the hy-
drodynamics performance of the CRP system was simulated and calcu-
lated, as shown in Fig. 21. On this basis, an optimization model for CRP
by combining the genetic algorithm and Kriging method was con-
structed, which is of great significance for optimizing marine propellers
and thus improving the energy efficiency of ships.

5.1.3. Energy efficiency analysis of variable pitch propellers

Variable pitch propellers (VPP) can improve efficiency under
different sailing conditions by changing the blade angle of the propeller
[196], thereby improving ship energy efficiency [197]. The perfor-
mance of VPP is closely related to the flow field. The CFD analysis
methods can be used to precisely simulate the flow field around VPP and
optimize the related parameters, such as blade shape and angle, to
obtain the performance characteristics of different design schemes. Zhu
et al. [198] analyzed the dynamic performance of the VPP and tradi-
tional propellers under different operating conditions by using CFD
methods, as shown in Fig. 22. In addition, Gypa et al. [199] optimized
the performance of VPP based on the CFD analysis method to minimize
the total power consumption of the ship. The design and optimization of
VPP under high load conditions can yield solutions with the lowest total
energy consumption. Ma and Wang [200] carried out a comparison
between the VPP and Fixed-Pitch Propellers (FPP) by calculating thrust
and torque using the lattice Boltzmann method. The study results
showed that the VPP can effectively improve the ship sailing speed and
propeller efficiency, and can make up for the efficiency error caused by
the FPP design, which is significant for the drag reduction and energy
efficiency improvement of ships.

5.1.4. Performance analysis of other types of propellers
Ducted propeller is an advanced propulsion system widely used in
the optimization of propeller efficiency [201]. An et al. [202] used a
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Fig. 21. The axial velocity contour [195].
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Fig. 22. The pressure distribution of the VPP and FPP [198].

bi-directional fluid-structure coupling method to analyze the influence
of the tip gap between composite metal ducted propellers and blades on
the hydrodynamics performance and pressure fluctuations of the pro-
peller, as shown in Fig. 23. The results showed that using composite
materials with smaller tip gaps can achieve better hydrodynamics per-
formance of the propeller and can significantly reduce pressure fluctu-
ations on the blade surface. In addition, Joung et al. [203] focused on
the shape optimization of an AUV with a ducted propeller based on CFD
approach. The optimization results showed that the resistance of the
AUV is the lowest when the angle of attack of the propulsion nozzle is
9.15°. Furthermore, Li and Sun [204] carried out numerical simulations
focusing on a helical propeller’s 3D model by adopting the CFD analysis
method, and analyzed the correlation between the dynamics parameters
and scale effects. The results showed that the thrust and torque co-
efficients would increase with the Reynolds number within a certain
range, which can lay a foundation for the development and practical
applications of the propellers.

5.2. Optimization analysis of the rim-driven thruster performance

Rim-driven thruster is a new kind of ship propulsion system [205,
206], which is mainly driven by an electric motor and gearbox to
generate thrust and propel the ship forward [207]. By directly mounting
the propeller blades on the rim, the transmission system found in
traditional thrusters can be eliminated, which can reduce the energy
losses effectively [208]. For the dynamics parameters optimization of
the rim-driven thrusters, Jiang et al. [209] established three novel hy-
drodynamics simulation models for Rim-driven Counter-Rotating
Thrusters (RD CRT) by adopting the CFD analysis method. They simu-
lated the frictional power loss and flow characteristics in the gap
channels, and investigated the effects of the gap on the hydrodynamic

GSR=0.417

performance of the thruster through CFD analysis, as shown in Fig. 24.
The study suggested that the RD CRT has a better thrust coefficient,
torque coefficient, and maximum efficiency compared to a single pro-
peller. Zhai et al. [210] analyzed the influence of optimized duct on the
rim-driven thruster propulsion performance based on CFD. The results
showed that the duct optimization can improve the rim-driven thruster
propulsion efficiency by 3.3 %. In addition, Cai et al. [211] analyzed the
open-water performance of rim-driven thruster to improve the efficiency
of rim-driven thruster based on CFD, and the results showed that the
improved rim-driven thruster can improve the open-water efficiency by
10.9 %.

Moreover, Cao et al. [212] predicted the wake field and load dis-
tribution of a rim-driven propulsion device using the CFD method, and
analyzed the dynamics characteristics of the propeller blade based on
the prediction results, and established a numerical method that can
better predict the hydrodynamics performance of the rim-driven
thruster. Yang [213] investigated the effects of hydrodynamics param-
eter on the propeller by adopting numerical simulation. On this basis,
the power consumption and heat dissipation issues of the shaftless rim
thruster and the hydrodynamics performance of the propeller are
analyzed. The obtained relationship between blade thickness and fric-
tion torque on the inner and outer surfaces of the rim-driven device is an
important foundation for further optimizing the performance and effi-
ciency of the thruster.

5.3. Optimization analysis of the water jet propulsion performance

The water jet propulsion system can propel the ship forward through
the generated powerful thrust by utilizing the reaction force of water
[214]. The advantages of water jet propulsion systems for ships include
good maneuverability, quick response, simple operation, and low noise

GSR =0.833 GSR =2.500 GSR =3.750

Fig. 23. Pressure distribution of the composite ducted propellers [202].
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Fig. 24. Mesh division and gap fluid velocity distribution of the rim-driven thruster [209].

[215]. However, there are also limitations associated with water jet
propulsion systems, such as high energy consumption and the depen-
dence on water flow [216]. Therefore, optimizing the hydrodynamics
parameters of water jet thrusters through CFD analysis, and meanwhile,
considering factors, such as ship motion states and characteristics of the
water jet propulsion system, can help to achieve the appropriate design
and application strategies, thereby enhancing the ship fuel efficiency.
In the aspects of numerical simulation analysis, Zhao et al. [217]
utilized CFD simulations to analyze the fluid dynamics and flow prop-
erties of water jet propulsion systems during the mooring condition. On
this basis, the open-water characteristics of water jet propellers, and the
hydrodynamics of the water jet-propelled ships were obtained. This
study provided an effective method for the hydrodynamic performance
analysis of the water jet propeller, which can contribute to the optimi-
zation of ship energy consumption. Eslamdoost et al. [218] conducted
CFD-based research on the pressure variation of the ship hull caused by
the water jet system under static and dynamic water conditions, as well
as the variation of frictional resistance, obtaining the resistance varia-
tion process within a range of speeds. Additionally, Eslamdoost et al.
[219] suggested a pressure jump method that can effectively predict the
flow rate of water jet propulsion systems. The interaction between thrust
and hull frictional resistance of water jet propulsion systems was
investigated by using the potential flow/boundary layer theory and CFD
method, as shown in Fig. 25. Moreover, Liu et al. [220] established a
double-waterfoil ship model equipped with a water jet propulsion sys-
tem. On this foundation, the effects of water jet propulsion systems on
the performance (e.g. resistance) of the stern water foils were simulated
and predicted by using the CFD analysis methods, which can provide
important guidance to improve the hydrodynamics performance of
ships. Shirazi et al. [221] analyzed the propulsion performance when the
water jet propulsion device was installed at the back of the hull, which
can improve the performance of the entire hull by 82 %. Additionally,
Lee et al. [222] optimized the shape of the slit that injects the jet from
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Fig. 25. Pressure distribution diagram of water jet propulsion system [219].
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the surface of the propeller based on CFD approach, improving the
propeller propulsion efficiency by 2 %, which lays a foundation for the
performance optimization of the ship propeller.

5.4. Optimization analysis of the podded propulsion performance

Podded propulsion systems are the devices directly installed on the
bottom of ships or underwater vehicles [223,224]. Podded propulsion
systems can rotate 360°, providing omnidirectional thrust, and making
ships more maneuverable during operation and navigation. They can
also effectively reduce vibration and noise generation [225,226]. The
use of CFD-based analysis methods allows for a quantitative evaluation
of the energy efficiency performance of podded propulsion systems
during ship operation, which can facilitate to obtain the optimal dy-
namics performance and provide strong support for the optimization of
podded propulsion systems, thus enabling ships to improve energy ef-
ficiency under various operational conditions. Zhang et al. [227] studied
the unsteady dynamics characteristics of the CPR-POD mixed propeller
propulsion system and calculated the load distributions of two pro-
pellers by adopting the CFD method, to reveal the characteristics of the
unsteady flow field. In addition, Wu et al. [228] analyzed the influence
of installation position on ship propulsion efficiency. The research
showed that when the podded propulsion is in the initial position, the
maximum propulsion efficiency of the podded propulsion cruise ship is
0.7010 at the initial installation position. Additionally, Park et al. [229]
suggested an innovative approach for predicting the full-scale perfor-
mance of podded propulsion systems, and provided a correction method
for the thrust and torque of podded propulsion systems by comparison
analysis between the numerical simulation results and model tests.
Moreover, Choi et al. [230] conducted dynamics simulation calculations
of podded propulsion systems using CFD methods from model to full
scale, and analyzed the effects of the Reynolds number scale and load on
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Fig. 26. The CFD meshing of the podded propulsion system [230].
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the interaction between propeller blades and the pod housing, as shown
in Fig. 26. The simulated outcomes closely matched the experimental
results, indicating the feasibility of using CFD methods to predict the
hydrodynamics performance of the podded propulsion systems.

5.5. Summary

The performance analysis and optimization design of efficient pro-
pulsion systems are important aspects of enhancing ship energy effi-
ciency. The design optimization and performance improvement of the
commonly used propellers, twin propellers, rim-driven thrusters, water
jet propulsion systems, podded propulsion systems based on CFD ap-
proaches can effectively decrease the ship fuel consumption and
greenhouse gas emissions. In addition, the combustion performance of
marine diesel engines can be also optimized based on CFD, thus
enhancing the ship energy efficiency [231,232]. The research status on
the efficient propulsion system optimization based on CFD approaches is
shown in Table 4.

Although a considerable numerous studies have been conducted on
the performance optimization of efficient propulsion systems based on
dynamics analysis, there are still the following issues and challenges.

(1) The dynamics analysis of efficient propulsion systems for ships
does not fully consider the influence of various coupled factors,
such as complex operational conditions, payloads, and speeds
[233].

There is still a lack of comprehensive optimization analysis for
parameters, such as blade shape, pitch distribution, and rough-
ness of the propellers.

The hydrodynamics losses of propellers during the dynamics
analysis are overlooked, and there is a lack of practical opera-
tional data validation for the complex hydrodynamic perfor-
mance analysis of the efficient propulsion systems.

2

—

3

6. Performance analysis of energy-saving equipment based on
CFD approaches

Ship energy-saving equipment can reduce the sailing resistance and
improve the propulsion efficiency of ships, which is important to reduce
the ship energy consumption and CO, emissions [234,235]. The
commonly used ship energy-saving equipment mainly include the
pre-propeller energy-saving devices (such as flow rectifying ducts and

Table 4
Research on the efficient propulsion system optimization based on CFD
approaches.

Types Reference Method  Optimization Effect
parameter
Ordinary [176-182]  CFD Hydrodynamics The resistance is
propeller performance, and reduced and the
open-water propulsion
performance efficiency is
improved
Twin [187-190] CFD Propulsion Propeller driving
propeller efficiency efficiency is
improved
Rim [210-213]  CFD Hydrodynamics Torque loss is
propeller performance reduced and
efficiency is
improved
Water jet [217-222]  CFD Hydrodynamics The drag
propulsion parameter reduction rate is
plant as high as 25.7 %
Pod [288-230] CFD Propeller dynamics Resistance is
propeller parameter reduced and
propulsion
efficiency is
improved
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fins) and post-propeller energy-saving devices (such as rudders, bulbous
bows, and stern appendage fins), as well as the wind-assisted propulsion
systems, etc. The dynamics analysis and optimization of the
energy-saving appendages is significant to reduce energy consumption
[236,237], thereby improving the fuel efficiency of ships [238,239].

6.1. Performance analysis of energy-saving appendages

By optimizing the performance of energy-saving devices such as
rudder bulb thrust fins, stern ducts, and pre-swirl stators (PSS) using
CFD methods, the overall hydrodynamic performance of the ship can be
improved, which is highly significant for improving the energy effi-
ciency of ships. Shen et al. [240] used CFD numerical simulation to
analyze and predict the scale effect of ship propulsion efficiency with
rudder bulb thrust fins, as shown in Fig. 27. The model-scale simulation
presented a 4.85 % improvement in ship propulsion efficiency, while the
full-scale simulation showed a 2.28 % improvement in ship propulsion
efficiency. The research results can help to better understand the
mechanism how the energy-saving appendages boost the energy per-
formance of ship. Wu et al. [241] used CFD simulation to predict the
influence of stern ducts on the overall resistance and viscous flow field
around the ship. It was found that the ship can achieve the most effective
drag reduction effect when the angle of the stern duct is 7°, which can
reduce the ship resistance by approximately 2.49 %. In addition, Bakica
et al. [242] studied the impact of different propulsion methods on the
hydrodynamic performance of pre-swirl stators (PSS) using CFD and
Finite Element Method (FEM), and found that the PSS can effectively
improve the efficiency of ship propellers by approximately 4.69 %.
Furthermore, Obwogi et al. [243] optimized the hydrodynamic param-
eters of the rudder-bulb-fins system using CFD theory and numerical
simulations and achieved the combined optimization of the
rudder-bulb-fins system through CFD-based dynamics analysis for ship
fuel efficiency improvement. The analysis results showed that the
rudder-bulb-fins system can improve propeller efficiency by 2.63 %
under optimal conditions.

6.2. Performance analysis of other energy-saving equipment

In addition to the rudder bulb thrust fins, stern ducts, and PSS, the
performance analysis and optimization of other energy-saving equip-
ment has also been investigated [244,245], such as the Gate Rudder
System (GRS) [246,247], hull vane [248,249], Pre-duct [250], Mewis
Duct [251], wing-typed sail [252,253], and Flettner rotor [254,255].
The CFD approaches can be employed to optimize the rudder angle of
GRS [256] and the shape of the sails [257,258] to improve the dynamics
performance of those equipment [259,260], thereby decreasing the
energy usage and CO, emissions of ships [261]. Kiryanto et al. [262]
analyzed the effect of adding hull vane on ship drag reduction based on
CFD, which can reduce the total resistance of the ship by about 20 %
compared with that of the ship without hull vane. In addition, Soma and
Vijayakumar [263] analyzed the effect of hull vane on ship resistance
based on CFD, as shown in Fig. 28. The results showed that the total drag
coefficient of the ship equipped with hull vane can be reduced by 7 %
compared with the original hull. Atlar et al. [264] analyzed the
energy-saving effect of GRS on ships based on CFD. The results showed
that the GRS can achieve energy saving by 10 %. Munazid et al. [265]
analyzed the influence of Pre-duct on the propulsion performance based
on CFD approach. The results showed that the use of Pre-duct can
improve the ship propulsion performance by 3 % for fishing boats,
which can effectively enhance the ship energy efficiency. Trimulyono
et al. [266] analyzed the influence of Mewis Duct on the propeller
performance based on CFD approach. The results showed that the use of
Mewis Duct can improve the propeller thrust by 3-5%. In addition, Shen
et al. [267] proposed a new partial duct and unconventional pre-swirl
fin combination system and analyzed the energy-saving effect of the
combined system on ships based on CFD, which can achieve energy



K. Wang et al.

256854 185762 027514 098605

114670 043578
Axial Velocity (m/s)

Renewable and Sustainable Energy Reviews 207 (2025) 114896

e
Axial Weboe 7 Tm/s)

1.1903 O 4B 0.92830

Fig. 27. Dynamic characteristics analysis of thrust fins of rudder ball based on CFD [240].

Fig. 28. Comparison of the ship pressure coefficient based on CFD analysis [263].

saving by as much as 4.26 %. Tan et al. [268] analyzed the influence of
the propeller boss-cap-fin (PBCF) on ship propulsion system perfor-
mance based on CFD. The results showed that the use of PBCF can
improve the ship propulsion performance by 3 %, thus enhancing the
ship energy efficiency. Additionally, Zhang et al. [269] conducted the
analysis and optimization of the dynamics performance of wing-typed
sails by using CFD combined with the PSO algorithm, which can in-
crease the system’s thrust coefficient by 6.5 %.

6.3. Summary

The research and applications of energy-saving appendages for ships
based on CFD approaches can reduce carbon emissions effectively [270,
271], and contribute to the sustainable development of the shipping
industry [272,273]. The research status on the performance optimiza-
tion of energy-saving equipment based on CFD approaches is presented
in Table 5.

Although there have been some studies on the performance analysis
and optimization of energy-saving equipment for ships [274], there are
still the following problems and challenges.

(1) Further efforts are needed to strengthen the CFD-based coupled
dynamics analysis and optimization of energy-saving equipment
considering the influence of multiple complex factors compre-
hensively [275,276].

(2) The interactions among the ship, engine, propeller, and energy-

saving appendages using dynamics analysis need to be further

studied to assess their impact on the maneuverability and overall
energy consumption of ships. Additionally, more studies should
be carried out to strengthen the coupled dynamics analysis and
joint optimization of the ship, propeller, and energy-saving ap-

pendages based on the CFD approaches [277].

Currently, there is relatively limited research on the optimization

and application effects analysis of energy-saving appendages

using dynamics methods. Therefore, it is necessary to conduct
more practical experiments and simulations on different types of
energy-saving appendages to achieve the goal of improving ship

energy efficiency [278].

3

-
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Table 5
Performance optimization of energy-saving equipment based on CFD
approaches.
Types References  Optimization Drag reducing effect
parameters
Rudder ball [240] Propulsion The propulsion efficiency is
thrust fin efficiency increased by 2.28 %
Rectifier [241] Resistance The resistance is decreased
conduit characteristics by approximately 2.49 %
PSS [242] Propulsion The propulsion efficiency can
efficiency be improved by 4.69 %
Rudder-Ball- [243] Hydrodynamic The propeller efficiency can
Fin parameter be increased by 2.63 %
Hull vane [263] Total drag The total drag coefficient of
coefficient ship is reduced by 7 %
GRS [264] Ship energy-saving  The ship energy saving can
effect be improved by 10 %
Pre-duct [265] Propulsion The ship propulsion
performance performance is improved by
3%
Mewis Duct [266] Propeller The propeller thrust can be
performance improved by 3 %-5 %
PD-PSF [267] Ship energy-saving  The energy saving effect is as
effect much as by 4.26 %
PBCF [268] Ship energy-saving  The ship propulsion energy
effect can be saved by 2 %

7. Comprehensive performance optimization through CFD-based
coupled dynamics analysis

The comprehensive performance optimization through the CFD-
based coupled dynamics analysis aims to achieve integrated optimiza-
tion design [279], and energy efficiency enhancement of hull shapes,
propellers, energy-saving devices, and assisted propulsion devices by
comprehensively considering the effects of multi-phase coupling of
air-liquid-solid [280,281]. The integrated optimization design through
CFD-based coupled dynamics analysis is an efficient technique and
method to enhance the overall energy efficiency of ships [282,283].
Huang et al. [284] developed a bi-directional transient fluid-solid
coupling algorithm, and studied the transient fluid-solid coupling
characteristics and laws of composite material propellers. On this basis,
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the hydrodynamic performance in non-uniform wake fields could be
accurately predicted. Zhang et al. [285] analyzed the propulsion per-
formance and changes in wake fields of the composite propeller-rudder
system (CPRS) by adopting the coupling analysis method of fluid-solid,
which is of great importance for further enhancing the operational
performance of the propeller-rudder system (PRS). In addition, Zhang
etal. [286] analyzed the coupling effects between the water jet propeller
and hull based on CFD approach, as shown in Fig. 29. The results showed
that the coupling dynamics optimization of the water jet propeller and
the hull can effectively improve the propeller propulsion efficiency. The
proposed coupling dynamics analysis method can provide a reference
for the optimal design and operation optimization of the water jet pro-
pulsion system.

The engine-propeller-hull is a complex system, which has strong
coupling relationship in the actual navigation [287]. Integrated
coupling dynamics analysis of engine-propeller-hull based on CFD ap-
proaches can achieve the optimization design of propulsion systems and
enhance the overall energy efficiency of ships. Taskar et al. [288]
analyzed the effects of wind and waves on the dynamics performance of
the engine-propeller coupling system, which could provide an important
foundation for ship fuel efficiency optimization. Liu et al. [289] con-
ducted analysis on the hydrodynamic interaction between the
hull-engine-propeller coupling system and analyzed the engine oper-
ating characteristics during ship turning circle maneuvers by adopting
CFD approaches. Additionally, Liu et al. [290] established a coupling
dynamics analysis model of propeller-shafting-hull system and analyzed
the coupling effect of propeller dynamics on shafting dynamics based on
the CFD approaches. The optimized shafting dynamics with consider-
ation of the coupling effect of propeller-shafting-hull was achieved,
which can effectively improve the ship energy efficiency. Furthermore,
Song et al. [291] conducted a coupling dynamics analysis of the inte-
grated hull-propeller-rudder-stern flap system by using CFD method, as
shown in Fig. 30. The study results showed that the propulsion perfor-
mance improvement by adopting the stern flap can achieve 50 %-70 %
of energy saving. Therefore, the integrated ship-propeller-rudder-stern
flap calculation based on CFD approach is significant to further
enhance ship fuel efficiency.

The design optimization of the ship is complex system engineering,
because the overall performance and energy efficiency of the ship are
closely related to hydrodynamics, aerodynamics, structural mechanics,
and other characteristics. The presence of multiphase flow, multi-
physics field interactions, and nonlinear effects make the
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comprehensive optimization design of ships through the CFD-based
coupling dynamics analysis extremely complex. Due to limitations in
experimental conditions and equipment, it is often challenging to vali-
date the results of multi-field coupling simulation calculations through
real experiments. Additionally, the comprehensive optimization design
of ships through the CFD-based coupling dynamics analysis struggles to
consider multiple parameters, variables, and their highly nonlinear in-
teractions effectively. Therefore, further studies are needed to deepen
the dynamics performance analysis and optimization by taking into
account the impact of multiple factors and nonlinear coupling effects for
the integrated optimization of the ship.

8. Discussions

The CFD-based energy-saving technologies, including the hull opti-
mization design, drag reduction technology, navigation state optimiza-
tion, efficient propulsion devices, energy-saving equipment, and the
coupled dynamics analysis for comprehensive performance optimiza-
tion have been comprehensively discussed in this research. On this basis,
the energy-saving effects of different technologies for the practical ap-
plications are summarized, as shown in Table 6.

As can be seen from Table 6, the hull optimization technology can
reduce ship resistance by more than 2 %, with the highest of 21.34 % of
the total resistance coefficient reduction for the Trimaran. In addition,
the hull drag reduction technology can reduce the ship resistance by
more than 7 %, and the DR Polymer coating has the maximum drag
reduction effect with 82.6 %, meanwhile, increasing the boat sailing
speed by 10 %-30 %. Moreover, the navigation state optimization
technology can to achieve 10 % of reduction in the ship resistance by
optimizing the trim of the KCS. Furthermore, the efficient propulsion
devices can effectively improve the ship dynamics performance by more
than 2 % and the application of a post-swirl pump jet system can
improve the performance of the entire hull by as much as 82 %. Last but
not least, the energy-saving equipment can improve the ship propulsion
performance by more than 2 %. Particularly, the adoption of the NACA
2415 vane can reduce the total resistance by 20.13 % for a model ship.
Overall, the applications of the CFD-based energy-saving technologies
can effectively improve the comprehensive performance and energy
efficiency level of the ship, thereby contributing to the development of
the low-carbon shipping industry.

The energy-saving technologies through CFD-based dynamics anal-
ysis can effectively improve ship energy efficiency. In recent years, the

(d) v;, =3.00m/s

(e) v, =3.99m/s

Fig. 29. Stern wave and streamline between single propeller and propeller-rudder-hull coupling [286].
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(b)

Fig. 30. The integrated coupling dynamics analysis model of the hull-propeller-rudder-stern flap [291].

advancement of Al technology has also promoted the applications of
machine learning (ML) in fluid mechanics analysis to achieve the
optimal design and energy management of ships [292,293]. Conse-
quently, the ML-based approaches, with the advantages of enhanced
accuracy and intelligence as well as high speed calculation [294], have
also been adopted for the dynamics analysis to improve the ship energy
efficiency [295]. In the optimization of hull shape design, Fahrnholz and
Caprace [296] proposed a resistance prediction model based on ML,
which can quickly assess hull resistance during the initial design in
comparison to the CFD approach. Bagazinski and Ahmed [297] opti-
mized the hull ship based on ML, which can decrease the ship resistance
by 60 %. In addition, Zhang et al. [298] proposed a hull shape optimi-
zation method based on deep belief network (DBN), and the results
showed that the wave-making resistance coefficient can be decreased by
12.6 %, which is closely aligned with the CFD results. Ao et al. [299]
proposed an advanced integrated hull optimization method based on
artificial intelligence-aided design (AIAD), which can decrease ship
resistance by 3 %. As for the optimization of ship propeller design, Li
et al. [300] developed a propeller diagram based on CFD and ML, which
can improve the propulsion performance by 7 %. Zarezadeh et al. [301]
focused on the optimization of surface-piercing propeller (SPP) sections
using artificial neural networks (ANN). The results showed that this
approach can obtain the optimal SPP section, similarly with the results
obtained from CFD, as shown in Fig. 31. In addition, Lee and Lee [302]
proposed an ANN-based prediction method for the resistance analysis of
the flow control fins (FCFs) with the similar accuracy compared to the
CFD results. Additionally, Vasilev et al. [303] proposed a ship trim
optimization method based on CFD and ANN methods, which can reduce
the daily fuel oil consumption (DFOC) by as much as 10.5 %.

Above all, the ML-based dynamics analysis method can achieve the
ship optimal design and energy efficiency improvement [304]. The
research on the dynamics analysis based on ML for ship energy saving
are summarized, as illustrated in Table 7. As it can be seen, the ML-based
dynamics analysis method mainly includes the DBN, ANN, AIAD, DL,
which have been applied in hull shape design and propeller optimization
with good performance in reducing ship resistance and energy con-
sumption. In addition, the ML-based method can achieve the same effect
as the CFD approach to predict the ship performance, meanwhile
reducing the computation time, improving the prediction accuracy, and
speeding up the convergence of CFD calculation [305,306].

The specific contents of the review mainly include the hull optimi-
zation design, drag reduction technology, navigation state optimization,
efficient propulsion devices, energy-saving equipment, and the coupled
dynamics analysis for comprehensive performance optimization.
Although the new advanced energy-saving technologies based on dy-
namics analysis have been reviewed, there are other CFD-based energy-
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saving technologies, such as performance optimization of diesel engines.
Due to the extensive scope and complexity of this topic, it is not feasible
to comprehensively discuss all the energy-saving technologies in this
paper. A specific review of those other energy-saving technologies
would be carried in the future research work.

9. Conclusions and prospects

The research and applications of energy-saving techniques based on
CFD approaches can effectively analyze and optimize the performance
of ships in terms of energy efficiency. A comprehensive overview of the
current research on the energy-saving techniques based on CFD ap-
proaches, including the hull optimization design, drag reduction tech-
nology, navigation state optimization, efficient propulsion devices,
energy-saving equipment, and the CFD-based coupled dynamics anal-
ysis for comprehensive performance optimization is carried out. In
addition, the challenges faced in the development of ship fuel efficiency
improvement techniques based on CFD analysis methods are compre-
hensively analyzed, and the future research works on the CFD-based
energy efficiency optimization are proposed.

(1) The development and applications of the CFD approaches effec-
tively contribute to the ship design optimization and energy ef-
ficiency improvement. However, the problems and challenges
including mesh generation difficulties, uncertainty in physical
models, appropriate boundary condition selection, significant
computational resources, time requirements, and the need for
experimental validation to ensure the accuracy and reliability,
should be further studied.

The design optimization and energy efficiency improvement of
ships based on dynamics analysis methods requires the compre-
hensive consideration of influencing factors, such as complex
marine environments (wind, waves, and currents). Those influ-
encing factors, which are usually difficult to accurately predict
and control, have significant impacts on the CFD analysis results.
Currently, in the optimization design of ship performance, the
coupling impact of complex navigation conditions, load condi-
tions, speed, waves, and ship motion on the comprehensive en-
ergy efficiency performance of ships are not fully taken into
consideration. Thus, going forward, it is essential to conduct the
integrated numerical analysis and optimization design of ships
considering the influence of multiple factors and the coupling
effects, thereby further reducing ship energy usage and envi-
ronmental footprint.

The complex and variable influencing factors would result in a
certain degree of uncertainty for the CFD analysis and
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Table 6
The CFD-based ship energy-saving technologies.
Technology Method Research Target Energy-saving effect Reference
Hull optimization design CFD-IME S60 Hull The total resistance of the hull can be reduced by 5.15 % [42]
CFD-SBO KCS The hull shape optimization efficiency can be improved by at least 17.5 % [43]
CFD Ship model The hull resistance can be decreased by 3 % [44]
CFD- Trimaran The total resistance coefficient of the ship can be reduced by 21.34 % [52]
MIGA
CFD-DOE Fishing ship The resistance coefficient can be reduced by 2 % [66]
CFD Container ship The hull resistance can be reduced by 9 % [71]
CFD Japan Bulk Carrier The resistance can be decreased by 9.48 % [72]
CFD-CAD Three-body ship The hull resistance can be reduced by 13.3 % [74]
Hull drag reduction CFD DR Polymer coating The maximum drag reduction effect can reach by 82.6 % [89]
technology CFD Hydrofoil The resistance can be decreased by 10 % [95]
CFD A river-sea bulk cargo The total drag coefficient can be reduced by 19 % [96]
CFD A Catamaran ROPAX ferry The hull resistance can be reduced by 10.45 % [98]
CFD Experimental ship model The maximum drag reduction effect can reach by 7 % [106]
CFD KCS The maximum friction resistance of the ship can be reduced by 27.6 % [112]
CFD A ship with an air chamber Wave resistance can be reduced by 14 % [115]
CFD Experimental ship model The drag reduction rate is about 32.78 % [116]
CFD High-speed planning boat The sailing speed can be increased by 10 %-30 % [117]
Navigation state CFD VLCC ship The total resistance of the ship is the lowest at a bow trim of 0.2° [154]
optimization CFD KCs The total resistance of the ship is the lowest at a bow trim of 0.6° [156]
CFD-BEM  VLCC ship The trim optimization can achieve fuel saving of 949.3 kg for a voyage [157]
CFD KCs The resistance can be reduced by 10 % by the trim optimization [162]
CFD-DP A 7500-ton inland bulk carrier The total ship power consumption can be reduced by 7.64 % [167]
Efficient propulsion CFD The propeller model of JBC The propeller wake performance can be improved by 2 % [178]
devices CFD A new innovative backflow marine The efficiency of the optimized propeller can be improved by 8 %-9 % [179]
propeller
CFD Wageningen B-series propeller The ship efficiency can be improved by 62 % at lower propeller thrust and torque [181]
coefficients
CFD The rim-driven thruster The optimized rim-driven thruster propulsion efficiency can be improved by 3.3 % [210]
CFD Ka4-70 propeller The optimized rim-driven thruster can improve open-water efficiency by 10.9 % [211]
CFD Shaftless rim thruster The overall efficiency of the thruster can be increased by 5.79 % [213]
CFD A post-swirl pump jet system The performance of the entire hull can be improved by 82 % [221]
CFD The podded propulsion cruise ship The maximum propulsion efficiency of the podded propulsion is 0.7010 at the [228]
initial installation position
Energy-saving equipment CFD A single screw 35000 DWT bulk The model-scale simulation showed a 4.85 % improvement in ship propulsion [240]
carrier efficiency
CFD Japan bulk carrier The ship resistance can be reduced by 2.49 % [241]
CFD-FEM KVLCC2 ship The PSS can improve the efficiency of the propellers by 4.69 % [242]
CFD-EFD A single screw 35000 DWT bulk The rudder-bulb-fins system can improve the ship propulsion efficiency by 2.63 %  [243]
carrier
CFD Ship model equipped with NACA The total resistance of the ship can be reduced by 20.135 % compared with that of ~ [262]
2415 vane the ship without hull vane
CFD A high-speed displacement vessel The total drags coefficient of the ship equipped with hull vane can be reduced by up [263]
model to7 %
CFD 6400 The GRS can improve the ship energy saving by 10 % [264]
DWT general cargo ship
CFD Fishing boat The use of Pre-duct can improve the ship propulsion performance by 3 % [265]
CFD INSEAN e779a propeller The use of Mewis Duct can improve the propeller thrust by 3 %-5 % [266]
CFD A single screw 35000DWT bulk The energy-saving effect of the ship is as much as by 4.26 % [267]
carrier
CFD Wageningen B series propeller The PBCF can improve the energy saving of the propulsion system by 2 % [268]
CFD-PSO New Aden The system thrust coefficient can be increased by 6.5 % [269]
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Fig. 31. Comparison of ANN and CFD for wake distributions for ship optimal
design [301].

calculation, thereby affecting the effectiveness and accuracy of
the model and analysis. Therefore, it is essential to consider the
synergy between different ship systems and components, as well
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as the diversity of ship structures in the dynamics performance
analysis. It is essential to establish a comprehensive ship opera-
tion performance analysis method considering complex and un-
certain dynamic factors. It is also vital to analyze the impact of
irregular waves on the overall performance of ships and
strengthen the research on high Reynolds number turbulence
models. In addition, to solve the problem of model analysis un-
certainty, more accurate boundary conditions and reasonable
mesh division methods should be employed.

(4) The integrated optimization design of the ship based on the CFD-

based coupled dynamics analysis is an effective way and method
to improve ship fuel efficiency. In the future, it is necessary to
strengthen the fundamental research on multi-field coupled dy-
namics, conduct numerical simulation calculations on multiple
typical ships and multi-flow field conditions, analyze the coupled
dynamic characteristics of the integrated ship-engine-propeller-
appendages system, and establish a gas-liquid-solid multiphase
coupled dynamics analysis method. It will provide effective
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Table 7
The dynamics analysis based on ML for ship energy saving.
Method  Research Target Effect Reference
ML KCS The resistance of the ship can be [298]
reduced by 60 %
DBN Wigley ship The wave-making resistance [299]
coefficient can be reduced by 12.6 %
AIAD KCS The resistance of the ship can be [300]
decreased by 3 %
ML INSEAN E1619 The propulsion performance of the [301]
propeller propeller can be improved by 7 %
ANN Surface piercing The relative errors of ANN and CFD [302]
propeller results in propeller thrust and torque
are 3.5 % and 4.24 %, respectively
ANN FCFS on 1000 The prediction result of viscous [303]
TEU container resistance coefficient is less than 0.01
ship % of the CFD results
ANN Ro-Ro vessel The DFOC can be reduced by as much [304]
as 10.5 % at a 1.5m trim and 7.5m
draft
DL P5475 propeller The cavitation volume of the [307]
propeller can be reduced as much as
by 51 %

technical solutions for enhancing the ship fuel efficiency by
adopting the CFD-based coupled dynamics analysis approaches.
Currently, ship performance optimization research is mainly
based on numerical simulation analysis using dynamics theory,
and there are lacks of effective testing and verification analysis,
especially for new energy-saving technologies and devices. Thus,
going forward, it is essential to strengthen the experimental study
on ship fuel efficiency enhancement based on CFD approaches,
propose the optimization performance test and energy-saving
evaluation methods for the CFD-based ship optimization design,
establish a software system for the ship performance optimization
design and energy-saving evaluation, and develop more
advanced numerical methods and computing technologies. It will
improve the consistency between laboratory simulation experi-
ments and actual sailing environment, and thus ensuring the
reliability and authenticity of laboratory numerical simulation
calculations.

In the ship optimal design and performance optimization, there is
still lack of analysis on the interaction between the ship-engine-
propeller-appendages and their impact on the overall opera-
tional performance in terms of ship fuel efficiency. Therefore, it is
necessary to carry out the CFD-based coupled dynamics analysis
of the ship-engine-propeller-appendages under the cross-
coupling effects of multiphase flow and multi-physics field, and
propose an energy efficiency improvement method for integrated
optimization design of the ship, and develop an integrated opti-
mization system for the ship-engine-propeller-appendages design
based on the CFD-based coupled dynamics analysis, thus
improving the overall fuel efficiency of the ship.
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