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Disappearance of Roton Propagation in SuperfluidHe at T,
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Using neutron scattering, we determine the dynamic structure fagtary) of liquid “He for the
roton wave numbeg = 2.0 A~ as a function of frequency at constant densit§.1715 g cm2 and for
ten temperatures in the rang®8 = 7 = 2.00 K, primarily near the superfluid transition temperature
T, = 1.9202 K. The superfluid transition is marked by a complete softening of the roton mode and a
rapid decrease in lifetime. This change is continuous with temperature, and we find no evidence for a
new mode appearing as one enters the superfluid phase, as has been proposed on the basis of theoretical
considerations. [S0031-9007(96)01635-3]

PACS numbers: 67.40.—w, 05.30.—d, 67.20.+k

The temperature dependence of roton excitations ithis work has been given previously [8]. These mea-
liquid *He near the superfluid transition temperaturesurements were undertaken in order to study, much more
T, has been extensively studied by means of neutrothoroughly than previously, the evolution of the character
scattering (for recent reviews, see [1]). Rotons are planef the roton excitation as one passes through the super-
wave excitations in the fluid with wave numbegr =  fluid transition. The measurements were carried out using
2.0 A=! corresponding to the range of the interatomicthe N5-triple-axis spectrometer at the NRU reactor of the
potentialc = 27 /q, = 3.1 A. A roton reveals itself as Chalk River Laboratories. The scattered neutron energy
a peak in the experimentally observed dynamic structurevas fixed atE/h = 1.19 THz and Si(111) and pyrolytic
factor S(gq, v) atq = ¢, and frequency = v,(T). For graphite (002) planes were used for the monochromator
T =< 1 K the roton peak ir§(g, v) at v,o(T) is extremely and analyzer, respectively. The energy resolution at the
strong and sharp [1]. For increasig> 1 K the width  energy transfers most relevant for our experiments was
of the roton peak inS(g,v) gradually increases while 0.06 THz (full width at half maximum). A sapphire fil-
the frequencyv,.(T) slowly decreases. AT =T, (= ter at 77 K was placed in the incident beam to reduce
2.17 K at saturated vapor pressure) the widthS¢§, ») is  the fast neutron background and a 6 in. beryllium filter at
much larger than the peak position. Thus one conclude&7 K was placed in the scattered beam to prevent higher-
that the roton peak inS(g,») is a signature of the order neutrons from reaching the detector. The effect
superfluid phase ofHe, although no sharp transition is of higher-order neutrons on the diffracted beam monitor
observed directly ir§ (g, ») on passing throughf, [2]. was determined from a set of indium foil absorption mea-

Recently, Glyde and Griffin [3,4] postulated that the surements. We used a cylindrical aluminum pressure cell
roton forT < T, can be viewed as a renormalized single-(4.45 cm inside diameter, with 0.05 cm wall thickness),
particle mode typical of the superfluid state and physiwhich contained horizontal boron nitride absorbing disks
cally different from the semiclassical density fluctuationsspaced 1.6 cm apart to minimize multiple scattering. The
observed inS(q, v) for T > T, [5]. Therefore one might results were corrected for multiple scattering and for scat-
expect distinct changes $Xg, ») on passing througff,.  tering from the empty cell, allowing for the attenuation by
Furthermore, these changes are expected to be such thhe sample.
they signal the appearance of a new excitation in the fluid The temperature of the pressurized helium sample
when one enters the superfluid phase. The Glyde-Griffinvas established by controlling the vapor pressure of the
model has been used extensively (see, e.g., [6,7]) to anaelium bath to which the sample cell was thermally
lyze recent neutron scattering results for ligtide. anchored. For all measurements, the helium bath was in

We present neutron scattering results §g,, v) for  the superfluid state, thereby giving excellent temperature
liquid *He at constant density = 0.1715 gcm™3 (pres-  uniformity of and heat conductivity through the bath. The
surep = 20 bar) for ten temperatures in the rang@8 =  temperature fluctuations in the sample cell were less than
T = 2.00 K, with particular emphasis on temperatures0.0005 K in the superfluid phase, and less than 0.005 K in
very close toT, = 1.9202 K. A preliminary account of the normal phase. The superfluid-transition temperature
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of the sample was measured (several times) by slowlyith 2 (¢) = M"Y /MY, and M™ the nth frequency
lowering the temperature of the helium bath through thenoment ofS(q, »). The static susceptibility is given by
transition at7’, of the sample and letting the cell warm y(g) = M"Y /(zrh). In order to evaluate the temperature
up again, to detect the anomaly in the specific heat adlependence of the poles gf(g, ») which lie closest to
T),. We findT, = 1.9202 = 0.0002 K on the scale of a the origin, we opt for a memory kernél (¢, ») which
calibrated germanium resistor immersed in the sample. lis independent of frequency [i.84(q, v) = iz,(q)]. We
thiswayT — T, of the sample was accurately determinedrewrite Eqg. (1) in the form
and controlled. In this study we have probed to within 20 F2

. _ Jun(@)x(q)
0.0026 K of T, from below, almost 10 times closer than x(q,v) = — - 2)
in the only well-documented (as regards temperature _ (v =€) (v =)
accuracy) previous study [9]. Our approach from aboveWith € given by
which is much less crucial, was to within 0.014 K.

The experimental results fo(g,,») are shown in ex(q,,T) =+ \/ffn(qﬁT) — 2(qr, T)/4
Fig. 1. For T = 1.08 K, one observes a sharp and )
strong roton peak ar = 0.156 THz, broadened by the — iz.(q-,T)/2. (3)

experimental resolution. A% increases, the roton peak |n the case wherg,,(q) > z.(q)/2, this can be written
gradually broadens and the frequenoyy(T), slowly g

decreases. A broad peak at finite frequency is still .

observed abovd’,. There is no immediate indication €x(qr, T) = *v5(q,, T) — ils(gr, T), (4)

of any major change in the character of the roton orwherel;(q,,T) is the roton damping and,(q,, T) is the

passing through7, = 1.9202 K from the results for roton propagation frequency. Note that(g,, T) is only

S(g, v) shown in Fig. 1. equivalent tov,(T) if I's(q,,T) < v4(q,,T). However,
We analyze our data foS(q,») numerically using if f..(q) < z.(q)/2, the propagation frequency becomes

the memory function formalism (see, e.g., Chap. 9 ofzero resulting intwo diffusive (or overdamped) modes of

Ref. [4]). This formalism (which is formally equivalent different lifetimes [cf. Eq. (3)].

to the projection formalism described in [5,10]) expresses The memory kernelz,(g,,T) of Eq. (2), which is

the dynamic susceptibility (¢, ») in terms of the memory none other than the damping rate of the momentum

kernelM(q, v) as fluctuations, is obtained through a straightforward fitting
2712 (9)x(q) procedure to the experimental data using Eq. (2) and
x(q,v) = — (q) — 2 — vM(q,v)’ (1) the fluctuation-dissipation theorem [i.a/(q,») = (1 —

e B")S(q,v)/2h]. Thus, we fit our neutron scattering
. . data to the following model (which is convoluted with the
measured experimental resolution function in the fitting
1 procedure)

I
|
|
|
: 7 S(q9 V) =
!
!

2hvx(q) fliz
L= e P (f2, = )2 + vz,

(5)

with 8 = (kgT)~!, kg being Boltzmann’s constant. The

l ]
M above equation is identical to the one used in [5]; how-
| :

ever, we have chosen the memory function description

M since this shows directly that the fitted parameters are

! 1 poles ofy (g, v) [cf. Eq. (2)]. We apply the model to the

M region » = 0.3 THz so as to avoid the multiphonon re-

| h gion. Thus, we describe all our results &g, ») using
M only a single variable parametef(q, T), since x(¢) and

| N T fun(q, T) are given by the sum rules fdi(gq, »). How-
0 MK M ever, because we disregard some of the intensity at higher
energies (the multiphonon component), we find small de-
0 0.4 O 0.4 viations from the exact sum rules in the superfluid phase,
v [THZ] reflecting the presence of the multiphonon component be-
low T,. The results forf,,(q,,T) andz,(q,,T)/2 are

FIG. 1. S(qg,») of liquid *He for g, = 2.0 A~! at a constant plotted in Fig. 2, and the fitted values fdi(g, v) are

densityp = 0.1715 gem *. The energy resolution is given by shown by the solid curves in Fig. 1. Itis clear from Fig. 1

the width of the solid curve at 1.08 K. The results of the model . -
fit (see text) forv = 0.3 THz are given by the solid curves, that the model# = 0.3 THz) gives a good fit for all tem-

while the dotted curves are the extrapolation of the model tderatures and for both phases of the liquid. We have ex-
higher frequencies. trapolated the model to higher frequencies (dotted lines in

S(q,v) [counts/1000]
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TEMPERATURE [K] FIG. 3. The roton frequency;(q,,T) (circles) and the quan-

tity I,(q,,T) (asterisks) as a function af. The change from
FIG. 2. fu.(q.T) (squares) andz,(q,T)/2 (circles) as a propagating to nonpropagating behavioTat(indicated by the
function of 7. The superfluid transition temperatu#® is  dashed line) occurs in a very narrow temperature region. The
indicated by the dashed vertical line. Note that = z,/2 solid curve is given by a power law fit which indicates that
atT = T,. vy « (Ty, — Tl asT — T,. [Afitto I,(q,,T) gives an “ex-
ponent” of=1/3].

Fig. 1) to indicate the presence of the multiphonon contri-

bution belowT,. The results in Fig. 2 indicate that both results, including the fitting to the values of(q,,T)

fun andz, changecontinuouslyas a function of tempera- in Fig. 3 which gives a very small value (0.1) for the

ture. The increase with temperature 6f, reflects the “critical exponent,” show that there is a crucial change

disappearance of the multiphonon component, while thé the propagation character of the roton (driven by the

rapid change in the crucial parametgrreflects the dra- change in damping rate) that occurs precisely,at This

matic change in damping rate of momentum fluctuation$as not been observed previously. In fact, the changes

as one approaches and then crogses in propagation frequency and character can be made
On increasing the temperature, we observe the followvisible to the naked eye by plotting the relaxation function

ing behavior of the parameters governing the roton modeSsym (¢, »), defined by

fun > z4/2for T < T, (propagating modesy,,, = z./2 | — ¢ Bhv

for T =T,, and f., < z,/2 for T > T, (overdamped Seym(q, v) = TS(CI, v). (6)

modes). We illustrate this change from propagating to Bhv

nonpropagating behavior in Fig. 3, where we plot theThe reason for this can be seen by rewriting Eq. (1) using

roton excitation energy as a function of temperaturehe fluctuation-dissipation theorem. This leads to

[cf. Eq. (3)]. ForT > T,, the force f,, is too small _ 2

compared to the rate of dissipation to sustain propagating Saym(q.7) = fla) lx(¢. ) Im[M (g, »)]. (7)

modes in the fluid. Also plotted is the quantitfg,,T) with f(q) = 873m/Bhq>. Therefore, the poles of

{= @w/q:)vs(q,,T)/Ts(q,,T)}, which gives a measure x(q,v) are prominent features df;m(g,»). In special

of the spatial extent of the roton excitation, and whichcases whem(g, v) is only weakly frequency dependent

signals the transition from long range correlations to overin the region of interest, or when the low-lying poles of

damped (diffusive) modes. x(q,v) are well separated in frequency from the higher
We conclude from our line shape analysis that the twaenergy ones, one can directly observe the behavior of

roton modes of the fluid at-», are propagating in the the poles versus temperature. For liquid helium in the

superfluid region T < T,), merge atT = T,, and are low temperature range, this is clearly the case due to

nonpropagating fof” > T,. This behavior is due to the the absence in the neutron scattering spectra of a mode

sudden increase ned of the damping rate,(q,,T) of  corresponding to heat diffusion.

momentum fluctuations (cf. Fig. 2). From the continuity We determineSgn, (g, ») directly from our neutron

of our description forS(gq,,v) fromT > T, to T < T,  scattering data [cf. Eq. (6)] and plot the results in Fig. 4

we conclude that in the roton region there is no indication(not corrected for the experimental resolution function).

of a new type of mode appearing as one enters th&he solid lines in this figure are merely guides for the eye.

superfluid phase. Independent of any line shape analysis, one can directly
We emphasize that there is nothing in our analysi®bserve theontinuoussoftening of the roton mode &%

that could have forced the roton to go soft®t Our s approached from below, combined with a rapid increase
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modes. What is most often encountered in the literature
(see, e.g., [11]) is that the existence of a propagating mode
is assumea priori, and Eq. (4) is substituted into Eq. (5)
for all temperatures, effectively ruling out the possibility
of a nonpropagating roton mode abdlg

(3) Contrary to what had been inferred from earlier
measurements [1] and is expected from theoretical con-
siderations [3,4], we do not find any evidence for a renor-
malized single-particle mode replacing the regular density
fluctuations of normal fluids as one goes belfy This
implies a qualitative disagreement with the interpretation
proposed by Glyde and Griffin [3,4].

We thank D. C. Tennant, P. Moss, and M. Gauthier for
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