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ABSTRACT 

Light weight orthotropic steel bridge decks have been widely utilized for bridges in seismic 

zones, movable bridges and long span bridges. In the last three decades, severe problems were 

reported in relation to asphaltic surfacing materials on orthotropic steel deck bridges. Earlier 

investigations have shown that the bonding strength of membrane layers to the surrounding 

materials has a strong influence on the structural response of orthotropic steel bridge decks. The 

most important requirement for the application of membrane materials on orthotropic steel bridge 

decks is that the membrane adhesive layer shall be able to provide sufficient bond to the 

surrounding materials. The research aims on developing a FE tool to simulate and understand the 

performance of asphaltic surfacing structures, so as to improve the design of surfacings and increase 

their service life. In this paper, Finite Element (FE) simulations of Merwedebrug bridge with two 

membrane layers system are presented. The finite element system CAPA-3D developed at the 

Section of Structural Mechanics of TU Delft has been utilized as the numerical platform for this 

study. Due to the multilayer of the surfacing materials and geometrical complexity of the steel 

bridge, the FE model shows the in time development of strains and stresses inside the surfacing 

materials depends highly on the wheel loading frequency, wheel position, membrane bonding 

strength as well as thicknesses and characteristics of the surfacing layers. Emphasis is placed on the 

distribution of strains and the evolution of damage in surfacing layers of different cases. 

Recommendations of surfacing structures design on orthotropic steel bridges are given.  

Keywords: orthotropic steel deck bridges, FE simulation, multilayer sufacing systems, 

membranes. 

 

1  INTRODUCTION 

Since the first orthotropic steel bridge (OSB) was open for use in 1950 over the Neckar River in 

Mannheim, Germany, the OSB becomes a popular economical alternative when the following 

issues are important: lower mass, ductility, thinner or shallower sections, rapid bridge installation, 

and cold-weather construction[1]. Lower superstructure mass is the primary reason for the use of 

orthotropic decks in long-span bridges. Very thin decks can be built using the orthotropic system. In 

the Netherlands, the first orthotropic steel bridges were the Hartel bridge and the Harmsen bridge 

which opened in 1968. Nowadays more than 1000 orthotropic steel bridges have been built in 

Europe, out of which 86 are in the Netherlands. In Asia, there are also several orthotropic steel 

bridges and some are currently being built, especially in China and Japan [2].   

In the Netherlands, an asphaltic surfacing for orthotropic steel bridge decks mostly consists of 

two structural layers. The upper layer consists of Porous Asphalt (PA) because of its good noise 
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reduction characteristics. For the lower layer a choice between Mastic Asphalt (MA) or Guss 

Aspahlt (GA) are utilized. Mostly, different membrane layers are involved, functioning as bonding 

and water proofing layers. A typical layout of an orthotropic bridge with open stiffeners in the 

Netherlands is shown in Figure 1. 

 

 

Figure 1  A typical layout of an OSDB with two-layer surfacing system 

 

In the last three decades, several problems were reported in relation to asphaltic surfacing 

materials on orthotropic steel deck bridges such as rutting, cracking, loss of bond between the 

surfacing material and the steel plate. Better understanding of the response of the multilayer 

surfacings is required in order to improve the current design methodologies aimed at prolonging the 

service life of the wearing course.  

This study aims at providing a better understanding of multilayer surfacing systems based on 

composite beam theory and FEM simulations. The objective is to optimize multilayer surfacing 

systems composed of various asphaltic mixes and two layers of membranes. Special attention is 

paid on the influence of the characteristics of the interface regions between the various components. 

Finally, guidelines are provided for engineers involved with this type of constructions.  

After a brief presentation of material models of surfacing materials, FE simulations of the 

Dutch Merwede bridge are presented. The finite element system CAPA-3D[3] developed at the 

Section of Structural Mechanics of TU Delft has been utilized as the numerical platform for this 

study.  

The interaction between two bituminous mix surfacings, two membranes are quantified 

systematically. Representative material properties are utilized to describe the mechanical behavior 

of all material layers. The FE results show that, due to the multilayer nature of the surfacings and 

the geometric complexity of the steel bridge, the development of strains and stresses depends highly 

on the traffic loading frequency, wheel position, membrane bonding characteristics as well as the 

thicknesses and characteristics of the surfacing layers.  

2 MATERIAL MODELS AND PARAMETERS OF SURFACING MATERIALS 

2.1 Asphaltic materials 

As shown in Figure 1, there are four layers of asphalt materials: porous asphalt, guss asphalt, 

upper and bottom membrane layers. The mechanical characteristics of those asphalt material layers 

are different with the steel deck plate. It is well known that the asphaltic materials show nonlinear 

behavior. It is necessary to describe the real response of the surfacing materials in order to correctly 

understand the response the surfacing systems.  

It is believed that a viscoelastic material model, which can capture the main features of the 

mechanical behavior of asphaltic materials of orthotropic steel bridge is certainly needed. The 

viscoelastic Zener model is utilized for this finite element study. The reason of choosing the 

generalization of the Zener model for this finite element is because its constitutive relation is simple 
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and the model parameter can be easily determined by the conventional experimental tests, i.e. creep 

test or relaxation test.  Figure 2 shows the mechanical analog of this viscoelastic Zener model. 

 

Figure 2 Schematic diagram of Zener model 

The model consists of two parallel components. One is purely elastic with modulus E∞ and the 

other is viscoelastic consisting of a spring with modulus E1 and a damper with viscosity coefficient 

η in series. 

The governing equations of Zener model are listed as follows 
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where  0  is the strain in time zero.  

2.2 Interface layers 

A contact interface element based on the previous work by Liu & Scarpas[4] within the FE 

package CAPA-3D is utilized to model the cohesive behavior of the membranes and the 

surrounding surfacing materials causing into contact.  

The contact interface element developed is based on the classical 16-noded interface element. It 

consists of two opposite faces each with 8 nodes. The thickness of the element in its un-deformed 

configuration can be specified to any initial value. 

A cohesive traction-separation law is utilized to prevent the contact interface to freely separate 

as soon as it undergoes tensile forces, see Figure 3.  

 

Figure 3 Schematic of traction separation at contact interface 

Interfacial fibrillation is a typical mechanism that frequently occurs during debonding of 

membranes from substrates, Figure 3. It involves large displacements at the interface as well as 

large deformations in the membrane material. Therefore, a generic cohesive zone model is 

introduced that is suitable to describe the process of membrane debonding from the substrate.  

The cohesive zone law which is utilized to describe the traction-separation relation of 

fibrillation is controlled by one constitutive relation between traction force and the opening 

displacement along the fibril axis, Figure 3. Under large displacements, it is no longer physical to 

discriminate between normal and tangential openings. In the case of membrane debonding from 

substrates, such large displacements are bridged by fibrils, which at more or less like non-linear 

springs that can only transfer load along their axis.  

The cohesive law proposed here is defined as: 

 c
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where Gc is the strain energy release rate which is characterized as the energy per unit crack 

length required for crack/debonding extension. c  is a characteristic opening length. The maximum 

traction tf  is related to 
c

G  and 
c
 , see Figure 4.  

 

Figure 4 Schematic traction-separation relation 

3 FINITE ELEMENT SIMULATIONS OF THE MERWEDE BRIDGE 

3.1 FE mesh and material properties 

The Merwede bridge, locates in the A27 near Gorinchem, was opened on March 15 1961 by 

Queen Juliana. Over the past fifty years, this bridge has been playing very important role in 

connecting traffic between Randstad and North Brabant. Over 100,000 vehicles pass through the 

bridge every day as well as many cyclists. The Merwede bridge steel deck was constructed with 

open longitudinal stiffeners placed each 300mm. Crossbeams were placed every 2m and with 

10mm thick steel deck plate, Figure 5. 

 

Figure 5 Transverse cross-section of the Merwede bridge 

FE analyses was performed to better understand the composite behavior of the multilayer 

surfacing system. The FE mesh with symmetry in a vertical plane perpendicular to the direction of 

the bridge span is illustrated in Figure 6. A dual wheel moving load with 80km/h is applied on the 

top layer of the asphalt concrete.  The moving load location and boundary conditions are shown in 

Figure 7. 
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Figure 6  The mesh for simulation of 

moving load 

Figure 7 Cross section of the moving load location and 

boundary conditions 

 

In this study, all four contact interface regions are utilized in the simulation of the bonding 

between the various surfacing materials. Steel is regarded as a linear elastic material with Young’s 

modulus 210000 MPa and Poisson’s ratio 0.2. Asphaltic surfacings and membranes are assumed to 

be viscoelastic. Details of the finite element layers are shown in Figure 8.  

 
Figure 8 Finite element layers of bridge surfacing system 

 

The  mechanical properties of the surfacing materials are temperature dependent. All the 

studied cases were simulated under 10 C  and 5 C  respectively.  The parameters for porous 

asphalt and guss asphalt at 10 C and 5 C  are shown in Table 1. Four different surfacing 

structures are simulated. Five membrane products named A1, A2, B, C1and C2 are involved in 

those surfacing systems. The material properties of those five membrane products at 10 C  and 

5 C are listed in Table 2. 

Table 1 Parameters of porous asphalt and guss asphalt (10 C  & 5 C ) 

temperature ( C ) material layer E1(MPa) E  (MPa) Poisson’s ratio η (MPa.s) 

10 
Porous asphalt 200 1 0.3 15750 

Guss asphalt 450 3 0.3 15750 

-5 
Porous asphalt 2000 10 0.3 22500 

Guss asphalt 4500 30 0.3 22500 

 

Table 2 Properties of the five membrane products at +10
0
C and -5

0
C  

temperature( C ) Property A1 A2 B C1 C2 

10 

 

E1 6.19 5.7 4.59 9.24 9.38 

Poisson's ratio 0.15 0.15 0.15 0.15 0.15 

eta η 1876 1911 192 336.65 475.65 

E∞ 5.045 4.38 2.962 16.215 4.8 

-5 

 

E1 61.9 57 45.9 92.4 93.8 

Poisson's ratio 1.5 1.5 1.5 1.5 1.5 

eta η 18760 19110 1920 3366.5 4756.5 

E∞ 50.45 43.8 29.62 162.15 48 

 

Figure 9 shows a schematic overview of the FE simulation plan of this section.  
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Figure 9 FE simulation plan of a moving load submitted to different surfacing systems 

 

3.2 Responses of the bridge with various surfacing structures  

The one-way moving load was simulated for 1000 cycles. A typical in time transversal strain of 

a point in the bottom membrane layer is plotted in Figure 10. 

 

Figure 10 In time transversal strain at different temperatures 

From Figure 10, the development of transversal strains as the wheel moves can be seen. The 

dynamic response of the surfacing structure at 10 C  is clearly higher than that at  -5 C . 

Figure 11 shows the overall distribution of transversal strains in the structure due to the passage 

of the moving load.  

    

Figure 11 Transversal strains at different positions of the moving load 

It can be observed that high tensile strains occur in the middle of  the dual-wheel load as well as 

along its two sides, on top of the stiffeners. The highest transversal compressive strains occur when 
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the load is right between two crossbeams, while the highest transversal tensile strains appear when 

the wheel is next to the crossbeam. The bottom membrane sustains both higher tensile and 

compressive strains than the top membrane does. This phenomenon could be explained by 

stress/strain concentrations because the lower membrane layer is closer to bridge stiffeners so that 

stronger concentrations are achieved. Rather high tensile strain around 2000 m/m  occurs at the 

top of the surfacing from moving load simulations (Figure 11) and when the temperature increases, 

the accompanying decrease in mix stiffness results to significantly higher strain.  

The developments of the maximum transversal strains in the four surfacing structures at +10
o
C 

and -5
 o
C are plotted in Figure 12 and 13. 

 

Figure 12 Max. transversal strain xx  at material layers of four surfacing systems (+10 C ) 

 

Figure 13 Max. transversal strain xx  at material layers of four surfacing systems (-5 C ) 

From Figure 12 & 13 the following observations  need to be addressed:  

 At 10
o
C, the maximum tensile transversal strain occurs on the top of PA in the surfacing 

structure 2. The maximum tensile transversal strain at -5
o
C occurs on the bottom membrane 
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in the surfacing structure 2. At 10
o
C and -5

o
C, the lower tensile transversal strains appear on 

all layers in the surfacing structure 3 and 4. 

 The maximum tensile normal strains occur at the both temperatures of 10
o
C and -5

o
C, on the 

bottom membranes in the surfacing structure 2.  

 The maximum longitudinal tensile strains occur at 10
o
C, on the top of PA in the surfacing 

structure 2. However, at 10
o
C and -5

o
C, the four surfacing structures show almost the same 

magnitude of longitudinal tensile strain on the top of PA layer and steel deck. The lower 

temperature (-5
o
C) has less influence on development the longitudinal tensile strain. 

 At 10
o
C, the higher shear strains are developed on the upper and the bottom membranes in 

the surfacing structure 2. However, at 10
o
C and -5

o
C, the lower shear strains occur always 

on the upper and bottom membrane in the surfacing structure 3. 

 

3.3 Evolution of the total damage in surfacing materials 

The evolution of damage in the surfacing structure 1 that results from a dual-wheel moving 

load, at temperatures +10
o
C and loading speeds 80km/h after 1000 cycles is shown in Figure 14. 

 
 

 

damage @ porous asphalt damage @ upper membrane 

  

damage @ guss asphlat damage @ bottom membrane 

Figure 14  Damage  distributions in surfacing layers after moving load of 1000 cycles (10 C ) 

Figure 14 gives a global impression of the distribution of the damage in the surfacing structure 

1  due to the passage of the moving load.  The following remarks can be drawn. 

 As expected, the total damage at the surfacing layers on the steel deck increases after each 

load cycle. 

 The damage follows more or less the wheel paths. 

 The damage accumulation under the wheel that travels over the stiffener is much larger than 

that under the wheel travels between two stiffeners. This can be understood by considering 

the fact that the crossbeam supports the steel plate between the stiffeners and does not 

support the steel plate over the stiffeners. 
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 The highest total damages occur in GA layer at the cross beam and at the midway between 

two successive crossbeams, where also the stresses and strains are highest. 

 

4 REMARKS AND CONCLUSIONS 

The following remarks and conclusions can be drawn from FE simulations of the aforementioned 

cases: 

 The multilayer surfacing structure does not behave as a fully bonded composite beam 

because of the influence of the shear stiffness of the membrane materials and the bonding 

characteristics of the membrane  

 The distribution of the strains along the depth of the surfacing structure is not linear. This is 

also noticed by simulation work done by Liu et al.[5] and experimental work carried out by 

Hamaue et al.[6]. 

 The response of the surfacing structure differs significantly at different temperatures due to 

the high temperature sensitivity of asphaltic materials.  

 The transversal strains in all material layers are considerably higher than the longitudinal 

strains due to the under-deck steel stiffeners in the longitudinal direction. This is also the 

reason why most of the reported cracks in the surfacing structure on orthotropic steel bridges 

are along the longitudinal direction. 

 The membrane layers undergo quite high shear deformations and play an important role in 

ensuring the integrity of the bridge deck surfacing. It is extremely important to use a 

membrane product with good bonding characteristics in order to obtain good composite 

behavior of the surfacing.  

 The surfacing structure 3 shows the better integral response than the other three surfacing 

structures. The  surfacing structure 1 and 4 can be recommend as second option. However 

the  surfacing structure 2  is not recommend for the Dutch OSDB.  
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