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Abstract

Autonomous vehicle (AV technology) relies heavily on vision based applications like ob-
ject recognition, obstacle/collision avoidance etc. In order to achieve this, understand-
ing and estimating the dynamics in the environment is extremely important. LIDARs
are proven to detect both shape as well as the speed/movement of the objects in the
scene but one of the biggest challenges faced in adapting LIDAR technology is the huge
amount of data it produces and the way it is processed. Most of this data is redundant
static information which results in wastage of system memory, computational resources,
power and time. Inspired from biological retina, first Neuromorphic-Retina for LIDAR
is proposed that is able to extract and encode movement happening at particular dis-
tance, particular angle and with particular velocity from raw LIDAR temporal pulses
into unique spike sequences so that the information about the dynamic environment can
be efficiently classified and processed by event based and low powered Neuromorphic
processing unit. The system is designed in such a way that it avoids consumption of
large amount of computational resources and system memory. Simulation results show
that the Retina is able to filter out redundant static information from the LIDAR data
stream thereby reducing data throughput of around 50 - 70 % with 5 - 22 % spatial
quality loss (based on scenario) as well as remove noise caused due to luminous reflec-
tions. This has tremendous impact on system latency and power consumption due to
drop in memory accesses.
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Introduction 1
This chapter gives an overview of the thesis, defines the overall project, what is the
main problem and how the proposed design can solve it.

1.1 Outline

Autonomous vehicle technology is the new buzz word in modern AI era. More and
more companies are investing heavily into self driving car technology. The applications
like automatic cruise control, automatic lane changing and maneuvering, collision
avoidance, pedestrian/vehicle detection etc not only makes life of the driver easy but
also increase road safety for both driver as well as pedestrians and other surrounding
vehicles [9].

Centre of these applications is the AI driven vision technology which relay heavily
on understanding and estimating the dynamics of the environment. Hence, captur-
ing and interpreting this information is extremely important. Sensor fusion from
various sensors like LIDAR, RADAR and camera have proved to be quite beneficial
for safe and efficient AI based processing. The report briefly describes each and ev-
ery sensor in detail and how their fusion affects AI based decision making in the vehicle.

LIDARs are becoming popular in modern navigation and geolocalization based
applications. LIDAR provides both shape as well as motion information to the user
which can be harnessed by AI for vision based applications like obstacle avoidance,
emergency braking, efficient real-time navigation, cruise control etc. The report
describes state of the art LIDAR sensors, their properties, why they are impor-
tant and their drawbacks. One of the major drawbacks targeted in this thesis is the
enormous amount of data that the LIDAR sensor produces and how it can be addressed.

Motion perception is a biological activity for understanding direction and speed
of the elements occurring in the view [10]. Human retina have mainly two types of
neurons which are sensitive to two different applications. First, Motion Detection
and second, Directional Selectivity. Retina neurons pre-process the visual information
before transmitting it to the visual cortex. There have been attempts to mimic the
neural activity occurring in retina.

There are two major areas where the progress have been made and which are the
main focus of the thesis. First, neuromorphic processing which is based on the concept
of event based processing like human brain and second, data acquisition process like ar-
tificial retinas [11] that detects changes in the scene and asynchronously transmits them.
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The event based processing is extremely low powered while artificial retina removes
huge amount of redundant information. Therefore, less throughput means lower system
memory accesses and storage , less computational requirements thereby reducing overall
power consumption and systems latency.

1.2 Problem statement

Biggest challenges faced in adapting LIDAR technology is the huge amount of data it
produces and the way it is processed. Most of this data is redundant static information
which results in wastage of system memory, computational resources, power and time.
To address this issue three major questions are answered.

1. How to extract relevant information from the LIDAR data stream and filter it?

2. How to make this technology computationally efficient without consuming large
amount of memory and computational resources?

3. How can this information be encoded for efficient use in vision applications?

1.3 Goal

The main goal of the thesis is to design a Neuromorphic-Retina to directly pre-process
raw LIDAR data at sensor level in order to extract, encode and transmit motion,
distance and directional selective information from the raw LIDAR data stream without
consuming excessive memory and computational resources.

1.4 Solution

Inspired from biological retina, first Neuromorphic-Retina for LIDAR is proposed that
is able to extract and encode movement happening at particular distance, particular
angle and with particular velocity from raw LIDAR temporal pulses into unique spike
sequences so that the information about the dynamic environment can be efficiently
classified and processed by event based and low powered Neuromorphic processing unit.

1.5 Approach

The most important information in LIDAR data is the movement information at par-
ticular distance and angle. Hence, these features were targeted in this thesis. An
event based Spiking neural network was designed to detect motion and encode it into
unique spike train representing motion at particular distance, angle and speed. In or-
der to qualitatively and quantitatively analyse and compare the results same functional
module was designed using DSP and RAM based mechanism. The final step was to
simulate, visualize and verify the results.

2



1.6 Contribution

There are two major contributions that this thesis made: -

1. The proposed LIDAR pre-processing model is first Neuromorphic Retinal that cog-
nitively detects motion in a LIDAR scene and filters out the redundant information
without using large amount of system memory and computational resources.

2. This technique also removes static noise without using heavy signal processing
operations.

3. The motion information is further utilized to extract and encode events happening
at particular distance, speed and angle into unique temporal pulses so as to be
processed on event based low powered Neuromorphic computing units for efficient
vision based classifications and optical flow predictions.

1.7 Thesis overview

The report is subdivided into 3 major Parts: -

1. Part I: Literature study

2. Part II: Methodology, construction and results

3. Part III: Conclusion and future work

Part I is further divided into 3 chapters: -

1. Chapter II: Autonomous driving technology and sensors

2. Chapter III: Vision

3. Chapter IV: Neuromorphic computing and SNN simulator

Chapter I tries to answer the following questions: -

1. What is autonomous driving technology?

2. Which sensors are involved?

3. What is the importance of LIDAR in autonomous driving technology?

4. What are the available LIDARs technologies and products in the market?

5. Importance of sensor fusion?

Chapter II tries to answer the following questions: -

1. Importance of Artificial intelligence for autonomous driving technology?

2. What are various vision based applications for autonomous vehicles?

3. What is the Importance of analyzing dynamics of the scene?

3



4. Why LIDARS are effective than Cameras/RADAR for Dynamics of moving ob-
jects?

5. What are the Available/Possible Deep learning methodologies/techniques CN-
N/SNN?

6. How SNN is better than CNN?

7. What is the Scope of the Project w.r.t to SNN?

8. Why do we need to reduce the data for vision applications?

9. What is the concept of artificial retina what are its benefits and how can it be
adapted in the project?

Chapter III: tries to answer the following questions: -

1. What is neuromorphic computing?

2. Which simulator is chosen for the project and what is its architecture?

Part II is further divided into 2 chapters: -

1. Chapter V: Methodology

2. Chapter VI: Results and discussion

Chapter V: This chapter describes in detail the process, system as well as the simulation
architecture followed, designed and developed during the thesis. This chapter is further
subdivided into subsections:-

1. Understanding dynamics of the scene by experimenting with event information
extraction in camera data.

2. LIDAR data processing and visualization

3. SNN architecture design for motion detection

4. CODEC (Encoder/Decoder) design for the proposed SNN

5. Experiments conducted

Chapter VI: This chapter describes the results and provides analysis on them. This
chapter is further divided into subsections: -

1. Single pixel based simulations and result analysis

2. Multiple parallel pixel based simulations and result analysis

3. implementing the SNN on LIDAR data, visualization of the output and its detailed
analysis

4. Section wise neighbor data processing

5. Comparison between SNN based approach and signal processing based approach

Part III discusses conclusion and future work.

4
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Literature Study
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Autonomous vehicle
technology and sensors 2
Autonomous vehicles (AV) are key to the next generation of transportation. Automatic
driving assistance system (ADAS) gives cognitive ability of vision and thinking to the
vehicles.

How much autonomous is the vehicle is characterized in 5 levels [12] :-

1. Level 0: Human controls direction, acceleration and navigation

2. Level 1: Adaptive cruise control assistance with human control

3. Level 2: Partial automation under human monitoring

4. Level 3: Safety critical system are fully controlled by ADAS and human interven-
tion allowed

5. Level 4: Vehicle handles safety as well as speed, steering and navigation without
human monitoring. All the driving conditions are not met

6. Level 5: Full automation, driver less vehicle

2.1 Sensors

Sensors are the eyes and ears for the autonomous cars. In order to reach full automa-
tion of level 4 and 5 the ADAS operates on data from various sensors like LIDAR,
RADAR, SONAR, Camera, GPS etc. This fusion helps vehicle to better understand
the environment around it.

Each sensor has its own benefits/drawbacks and processing requirements. Hence,
fusing data from multiple sensors not only produces better results but also require
heavy processing involving complex algorithms. The following section discusses the
most important vision based sensors available today namely RADAR, LIDAR and
camera.

2.1.1 RADAR (Radio Detection and Ranging)

RADAR works on the principle of doppler effect to estimate the velocity and distance
of the moving object. RADARs are good in detecting movement rather than shape of
the object. Hence, they are used in many ADAS applications ranging from automatic
cruise control, collision avoidance to critical emergency braking systems.

There are 3 types of RADARs:-

7



1. Short range (SRR) - 0 to 20m

2. Medium Range (MRR) - 0 to 100m

3. Long range (LRR) - 0 to 250m

SRRs have high field of view and are mainly used for proximity detection applica-
tions like parking assistance. MRR and LRRs are mainly used in emergency braking
systems and cruise control systems.

RADARs are used by many vision applications to enhance vehicle navigational
capabilities and safety. RADAR works only when something moves in the scene.
Hence, it produces way less data than its optical counterparts.

Main working principle of RADAR is as follows. The sensor has lanes which detects
the reflected signals. These signals are transmitted serially to the processing unit. This
data is processed to extract:-

1. Doppler velocity

2. Object’s coordinate

3. Object’s azimuth angle

4. Radial distance w.r.t to the source

From this information, an occupancy grid is created in order to apply vision based
algorithms.

2.1.2 Image sensors

Cameras are termed as the eyes of autonomous vehicles and one of the most important
sensors used for accurately detecting shapes and sizes of various objects in the scene.

Camera is usually based on CMOS image sensors that detects light and produces
RGB data stream. For achieving high vehicle autonomy, both 360 degree and rear
cameras are used.

Cars use 2D or 3D camera based in the cost-accuracy trade-offs as 3D camera use
more number of cameras and hence are more accurate and precise. Therefore,they
are much more suitable to achieve 4 to 5 level of autonomy. 2D cameras are used
in augmented reality fashion to provide the driver extra information like vehicle
proximity, lane enhancement etc.

State of the art 360 degree and rear camera image sensors produce 40 to 60
frames/second with 24 bit depth. With multiple fusion of these cameras tremendous
amount of data is produced. To process this data huge hardware resources including
processors and accelerators are used.
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Figure 2.1: Scene visualization through rotating Velodyne LIDAR [1]

Forward facing cameras are used to detect objects upto 250 yards (medium and high
range). These cameras are used in vision applications like pedestrian/vehicle detection,
traffic signal detection etc.

2.1.3 LiDAR (Light Detection and Ranging)

LIDAR uses laser to estimate the distance of objects. It emits continuous laser pulses
in order to detect time of flight (TOF) of reflected laser pulses. This information is
further processed to calculate the distance [13]. Using this information, 3 dimensional
point cloud is created which replicates the environment around the source (in our case
Autonomous Vehicles).

The point cloud information is further exploited to determine shape as well as
velocity of the object. LIDAR offers various applications to the AV like obstacle
avoidance, realtime navigation and cruise control.

LIDARS available in market offers a range of about 250m and resolution of about
0.02m. Apart fro the autonomous vehicles, LIDARs are also used to map various
geographical terrains when mounted on drones/aircrafts. Using GPS locations the
LIDAR accurately creates 3D terrain maps. Hence, LIDARs are also extensively used
in geo-localization based application [9].
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2.2 Importance of LiDAR for Autonomous Driving Technol-
ogy

LIDAR offers two major benefits, first, it captures the shape of the object like
camera and second, it records the motion of the object like RADAR. Utilizing these
two functionalities, the vision based algorithms can precisely mimic the dynamic
environment surrounding the vehicle.

This increases vehicle safety and its navigational efficiency. Hence, because of LI-
DARs, vehicle can become less prone to accidents due to sudden change in the vehicle’s
environment [14].

2.3 Available LiDAR technology and products in the market

In order to decide which LIDAR has state of the art features as well as future research
growth possibility, we looked into various commercially available LIDARs.

LIDARs are mainly classified into long and short range. Long range LIDAR can
detect distances upto 250m while short range can detect upto 50m.

Flash LIDARs [2] are short ranged, they illuminate the entire region at a time
and detects distances based on the light intensity detected by the pixels. This gives
them high field of view. Scanning LIDARs are long ranged as they focus on small
regions unlike Flash LIDARs, they transmit beam that hits a section of the target.
The reflection is captured by a single pixel which gives better resolution and quality
over long distances. The laser beam is then rotated in such a way that the entire scene
is covered by all the pixels [2].

Hence, scanning LIDARs are preferred choice for applications like pedestrian/vehi-
cle detection/avoidance.

The most famous scanning LIDARs today [2] have rotating motion in order to get
full 360 degree view. This scanner scans the scene by transmitting beam and receiving
line by line reflections at constant angular velocity.

Now, the problem with these scanning LIDARs is the mechanical part. Its huge
and adds on the weight to the system and hence have huge energy requirements.

Therefore the industry is now looking towards special type of LIDARs without
such huge mechanical moving components called the solid state LIDARs. There are
two major state of the art solid state LIDARs. First, Optical phase array (OPA) and
second Microelectromechanical mirror system (MEMS) [9].

Both of them are affordable i.e their cost is less than 175 euros. OPA scans at 100
kHz using micro structured waveguides to guide the beam. The problem is that its
still not been able to work for long ranges i.e.distances beyond 200m. MEMS based
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Figure 2.2: Infineon 1D MEMS LIDAR [2]

LIDARs on the other hand uses micro moving mirrors for scanning purposes, they are
proven to be more robust than OPA and offer upto 250m range [2].

MEMS based LIDARs can scan either on one dimension or two dimensions
depending on the requirement. One dimensional scanning offers higher frequencies
than two dimensional counterparts. The micro-mirrors rotate in either resonant or non
resonant fashion. Resonant mirror movements are preferred because they are more
robust to external vibrations.

Hence, a one dimensional resonant MEMS based LIDAR was chosen to perform
experiments for this thesis.

2.3.1 LIDAR technology used in the thesis

As described in the previous section, 1D MEMS based LIDAR is the best state of the
art LIDAR available to conduct research. Hence, Infineon 1D MEMS Lidar [2] is used
in the thesis.

The working architecture of LIDAR is described in figure 2.2. A laser beam pulse
with four parallel edges hits the rotating MEMS mirror to produce a beam line scanner.
The vertically rotating mirror also moves linearly in horizontal axis to produce a two
dimensional scan [2]. The time between transmission and reception of laser pulse called
Time of Flight (TOF) is recorded by each pixel. This information is passed through
an FPGA that calculates real time 12 bit raw TOF values. These values are passed
through a controller ASIC that calculates the distance from raw TOF values based on
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the equation 2.1.

Dis =
VPulse∆T

2
(2.1)

Where Dis is the Distance (m) of the object from LIDAR, VPulse is the velocity of
the laser pulse (m/s) and ∆T is the raw TOF value.

The receiver hardware consists of photodiodes to detect light, transimpedance am-
plifiers to detect noises produced due to photodiodes and analog to digital converters
for transmitting raw TOF data.

The infineon 1D MEMS LIDAR has range upto 250m with 0.12m resolution, 25 to
180 frames/sec frame rate and 120x32 pixels (HxV) field of view (FOV) [2].

2.4 Importance of LIDAR data reduction/filtering

The average data throughput from LIDAR is usually in Gb/sec. 1D MEMS LIDAR
output data depends on various factor as described by the following equation:-

Data = PulseRF × VPx × ADCRes × ADCRate (2.2)

Where Data is the raw Time Of Flight, PulseRF is the pulse refresh rate, VPx is the
number of vertical pixels and ADCRes and ADCRate are the Analog to digital converter
resolution and rate respectively.

We consider infineon 1D MEMS LIDAR [2] for our analysis. This LIDAR uses
12-bit ADC resolution with with 1.5 GHz of sampling rate and pulse repetition rate of
100 KHz. Each LIDAR frame is 120x32 pixels.

Putting these values in the equation 2.2 we can see that several Gbs of data is
produced per second which has to be further processed to construct 3D point cloud
with real time constraints. This huge amount of data therefore requires filtering
and/or compression. There are many techniques like histogramming that attack 3D
point cloud but filtering at sensor level itself is usually ignored [15].

In this thesis we directly target the raw TOF pulses at the sensor level so as to
remove the unwanted information cognitively before transmitting them to the system
memory.

2.5 Sensor fusion

Sensor fusion is one of the most important step in increasing the intelligence of
autonomous vehicles. This section gives an overview of the benefits and applications
of sensor fusion w.r.t autonomous vehicles.
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A collective set of different sensors acts as eyes and ears to the autonomous vehicles.
Fusing data from different sensors means that AI running in the ADAS can better
understand the scene and can take decisions more accurately and with high precision.
This is possible because the decisions made by AI are guided by the data fed into it.

This also means that if sensors are not doing their job properly then the AI will
be bound to take wrong decisions. So, for AI to take better decisions, fusion helps in
major ways:-

First, it introduces redundancy in the system to increase robustness. For example,
RADAR-LIDAR pair can be used to accurately predict velocity of the moving object
while LIDAR-Camera pair can be used to accurately determine the shape and size of
the object

Secondly, one sensor can overpower the short comings of the other. For example,
camera has high image resolution and can very accurately shoe the colored environment
but is affected by harsh conditions like sunlight, darkness, fog, rain, hail etc. RADAR
on the other hand has low image quality but can work without being affected by too
much or too less light and can penetrate through rain, fog, hail etc. Hence combination
of sensors provide a better picture of the environment to the AI so as to take more
safe and accurate realtime decisions.

One of the major disadvantages of sensor fusion is the huge amount of data it pro-
duces. Hence, processing of fusion data usually requires huge amount of computational
resources, power and memories. Thus, there is a need to pre-process the sensor data
such that only key information is passed to the fusion stage.

Focusing majorly on LIDAR this thesis demonstrates a way to cognitively pre-
process LIDAR data such that irrelevent redundant information is removed at the
sensor raw data processing stage itself.

2.6 Conclusion

This chapter answered the following questions - What is autonomous driving technol-
ogy, Which sensors are involved, What is the importance of LIDAR in autonomous
driving technology, What are the available LIDARs technologies and products in
the market, Why is it important to filter/Compress LIDAR data and what is the
Importance of sensor fusion?

Hence based on the information provided three main conclusions are drawn :-

1. Vision is one of the most important aspect for autonomous velocities

2. As LIDAR provides both shape as well as velocity information, it plays a vital
role for vision based applications.
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3. 1D MEMS based resonant solid Lidar is state of the art LIDAR available in the
market.

4. There is a need for data reduction in LIDAR throughput at sensor itself.
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Vision 3
This chapter focuses majorly on AI and the technologies used in the automotive
industries to provide vision based solutions to the autonomous vehicles.

We first start by looking into various deep learning strategies. There has been
tremendous growth in different deep learning mechanisms mainly due to increase in
computing capabilities , increase in access to huge amount of data and advancement in
machine learning algorithms. These techniques are used in various applications from
natural language processing, voice recognition to vision based image segmentation,
object detection etc.

With the amalgamation of various sensors and deep learning techniques the AI is
able to see, listen as well as think the way humans do while driving. Thus achieving
human like cognitive abilities required for driving . The vision system interprets sensor
information to estimate how the road, lanes and nearby vehicles look, what is the
vehicle’s proximity with other vehicles and what to do when an object like car or
pedestrian comes dangerously close.

Learning strategies used in deep learning are mainly three types :-

1. Supervised learning: that uses labelled dataset in order to train the deep learning
models so as to achieve high accuracy.

2. Unsupervised learning: tries to classify the data based on some common patterns
found in the dataset. This technique is usually used when labelled dataset in not
available.

3. Semisupervised learning: is applied on unlabelled dataset using only small amount
of available labelled dataset.

General step used in machine learning are feature extraction, training the classifier
by twitching the parameters to decrease resulting error and finally testing the trained
model on the available dataset. The figure 3.1 below shows different vision applications
used in autonomous vehicles.

Further sections will describe basic components and various deep learning techniques
as well as discuss why understanding dynamics of the scene is important and how can
it be used for vision based applications.

3.1 Dynamics of the scene analysis

For autonomous vehicles understanding/estimating the dynamic changes occurring in
the environment is of utmost importance. Recognising changes and predicting the
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(a) lidar based object tracking [16]

(b) optical flow prediction [17]

(c) Semantic segmentation [18]

Figure 3.1: Different vision based applications used by autonomous vehicles

next movement ensures efficient and accurate safety and path planning. For example
for tracking vehicle or car, the system first needs to identify the moving objects in the
scenes, then classify them and then predict their behavior, using this information AI
running on the ADAS can take calculative decisions to either change direction, speed
or apply brake.

Majority of the safety critical applications like obstacle avoidance, pedestrian/ve-
hicle tracking, emergency braking, critical path navigation etc requires the knowledge
of fine changes happening around the vehicle.
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3.1.1 Importance of LIDARs for dynamics of the scene analysis

Camera data is usually used in optical flow predictions but requires heavy post
processing and is not extremely robust due to limitations in acquiring distance
information. RADARs are able to provide the movement information in terms of
doppler-shift but lacks geometric information. LIDARs on the other hand provides
data which has both the geometrical as well as movement information.

Hence LIDAR is the key technology used for dynamics analysis and thus is used in
this thesis.

3.2 Available/Possible Deep learning methodologies/tech-
niques

3.2.1 ANN: Artificial Neural Networks

ANN tries to replicate the original neural network of human body. An ANN neuron
processes input information scaled by a configurable weight, these weighted input
to neuron connections are called synapse. A neuron can be connected to many
synapses to perform accumulative operations. Hence a neuron usually performs a
multiply-accumulate based linear functions

Although, these networks are not biologically plausible but are still used in wide
array of learning based applications.

3.2.1.1 Basic components of artificial neural networks

As discussed in the previous section, the network consists of both linear as well as
non linear processing elements. (Figure 3.2) The linear processing neuron which per-
forms multiply-accumulate operations on the input synapse is governed by the following
equation 3.1 :-

Bj = f(
n∑

i=1

wi.j.Ai) (3.1)

Where Ai is the ith input value, Bj is the processed output and wij is the weight of
the synaptic connection between ith and the jth neuron.

Non linear processing elements called the activation functions like sigmoid,
Rectifier-Linear-Unit etc are used to introduce non linearity into the network. The
principle on which they are activated is based on a condition. When the input synapse
crosses a defined threshold value then the function activates.

Figure 3.2 represents two major aspects of ANN. First, connectivity: the connec-
tivity between two layers can be fully connected (when each neuron of layer one is
connected to each neuron of layer two) or sparsely connected.
Second, the network style: Networks can be feed-forward (where the processing occurs
from one layer to another without any feedback loop involved) or Recurrent (where

17



Figure 3.2: Schematic of a basic artificial neural network

feedback loops are involved to find temporal patterns)
Third, Hidden layers are used to make the model more efficient because extra layers of
learning are introduced.

3.2.2 CNN: Convolutional Neural Networks

CNN is a type of ANN and is one of the most famous deep learning strategies used
today for various applications using textual, visual and auditory data. They are most
widely used in vision based applications.

One of the major advantages of CNN is that CNN usually many deep layers
including regular stages of pooling layers that reduces the net throughput for the
subsequent layers as shown in the figure 3.3. This facility has huge impact of net
computation and power consumption.

The basic flow for CNN architecture is shown below:-

1. Convolutional layers: These layers try to extract different features from the input
data so that the classifier can more efficiently and accurately classify the data.

2. The non linear activation layer is introduced after every convolutional layer to
introduce non linearity into the network.

3. The pooling layer is introduced to compress the convoluted non linear data.

4. These three stages are repeated and the network is made deeper based on the
application. Finally a fully connected output classifier produces the corresponding
probability distribution for the output classes.
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Figure 3.3: CNN data flow [3]

3.2.3 SNN: Spiking Neural Networks

Spiking neural network are closest to the biological neural networks. They work on
temporal events/spikes unlike the ANNs. The fundamental concept behind SNN is
that the network is sensitive to certain temporal patterns i.e it can detect temporal
patterns from the dataset.

The membrane potential is affected by synaptic strength as well as time difference
between the spikes. Hence, using this property a neuron is sensitive to temporal
patterns and thus can be trained to identify them.

SNN usually depends on the way an input is encoded into spike based temporal
pattern. Hence, choosing correct encoding scheme to train SNN is really important.
In theory SNNs are known for power efficient processing because they process events
rather than absolute data which saves lot of power. The detailed description of spiking
neural network is described in chapter 4.
The upcoming section describes how much power is consumed by ANNs and their
hardware requirements.

3.3 Hardware Requirement/ Computational requirement of
ANN

This section is adapted by the studies conducted by [8]. For highly accurate image
classification a frame size of atleast 1280x1280 pixels is required (1.5 Mpixels). 32 bit
floating point are required for weight update and mac operations. The results displayed
in table 3.1 are based on two most famous ANNs used in computer vision industry today
namely Alexnet and VGGNET-16.

As the image resolution and network depth increases the overall power consumption
as well as computational requirements will increase.

19



Figure 3.4: Spiking neural network [4]

Table 3.1: Compute requirements 28nm [8]

Metrics AlexNet VGGNet-16

Total operations 25.5J 505G

Parameters(weights) 1.6J 3.3.9J

Memory access 77G 1515J

SRAM access energy 11.5mJ 227.2mJ

DRAM access energy 862.4mJ 16968mJ

Total energy 873.95mJ 17195mJ

Power 4.3W 85.9W

Therefore, to process this huge amount of data hardware accelerators like FPGAs
and GPUs are needed. Heterogeneous processing platforms consisting of combination
of different processing platforms like neuromorphic computers are also used (described
in chpter 4)

3.4 SNN over ANN

The paper [19] quantitatively describes the memory, energy and computational re-
quirements of CNN based on profiling on certain CNN benchmarks. The results clearly
indicate the requirement for massive optimization in terms of algorithm and hardware
resources in order to run vision based applications efficiently on the autonomous
vehicle computing unit in real time without hampering other processes.

SNN as described in previous section are more closer to actual human neural
system. Hence, they have higher chances of gaining human like cognitive abilities
than their artificial neural counterparts like ANNs. As SNNs process information in
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temporal format it is proven that they are much more computationally efficient than
ANNs.
Unlike ANN where a neuron has to wait for all the pre-synaptic updates from the
previous layers a spiking neuron works in asynchronous fashion where the information
is processed whenever a pre-synaptic spike is issued. This decreases overall system
processing latency

Therefore, SNNs are preferred over ANNs because they are more computationally
efficient and less power hungry. Hence, in conclusion SNNs are better choice than
ANNs for vision based deep learning applications due to above reasons.

3.5 SNN challenges

Due to temporal and asynchronous pre-processing aspect, designing machine learning
algorithms is also tricky. Hence, still a lot of work is needed in that direction.

Second major challenge is temporal encoding. Temporal encoding is required to
represent every data point or features uniquely as a spike sequence. The project focuses
more on pre-processing using spiking neural network in order to extract event based
features and encode them into unique spike trains so as to be processed efficiently on
a neuromorphic processor.

3.6 Concept of Artificial/Silicon Retina

In human visual system, Retina preprocesses data so as to extract important informa-
tion from the scene and transmit only events to the visual cortex in brain. It doesnt
analyze the scene frame by frame but rather perceives changes in asynchronous manner
unlike modern day cameras [20].

Motion perception is a biological activity for understanding direction and speed
of the elements occurring in the view [10]. Human retina have mainly two types of
neurons which are sensitive to two different applications. First, ”Motion Detection”
and second, ”Directional Selectivity”. There have been attempts to mimic the neural
activity occurring in retina.

Artificial retinas have been developed [11] that detects luminous changes in the
scene and asynchronously transmits them. This removes huge amount of redundant
information compared to frame based approach. Further, less throughput means
lower system memory accesses and storage , less computational requirements thereby
reducing overall power consumption and systems latency.

As this process is asynchronous, extremely minute changes are reported by each
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pixel thereby increasing the temporal image resolution.

Dynamic vision sensors (DVS) (state of the art artificial retina) [21] are event based
devices which can detect luminous changes in the scene. They use analog circuits to
detect logarithmic changes in the light intensity.

Each DVS pixel generates ON/OFF flag indicating positive/negative event detected
by the pixel and transmit the data on an AER bus [22]. This enables the system to
store and process only relevant data/changes.

Therefore, DVS proposes several benefits as compared to conventional frame based
cameras. First, Ultra low latency event data. Second, High dynamic range and third
long system battery life [23].

3.6.1 Address Event Register protocol

AER is a communication protocol which is widely used in event based neuromorphic
computing [22]. In this protocol any event occurring at specific address is transferred
over the bus enabling event based processors to process information synchronously. The
basic signals involved in AER protocol are shown below in figure 3.5

Figure 3.5: AER based event processing

Different neuromorphic or event based computing units can be connected via this
bus (figure 3.5) in order to scale the system and process the events concurrently.

3.7 Conclusion

This chapter answered the following questions :- What is the Importance of Ar-
tificial intelligence for autonomous driving technology? What are various vision
based applications for autonomous vehicles? What is the Importance of analyzing
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dynamics of the scene? Why LIDARS are more effective than Cameras/RADAR
for Dynamics of moving objects? What are the Available/Possible Deep learning
methodologies/techniques CNN/SNN? How SNN is better than CNN? What are the
drawbacks of SNN and What is the concept of artificial retina and what are its benefits?

Based on the above discussions we can draw the following conclusions: -

1. Understanding dynamics of the scene is of utmost importance for designing highly
efficient and safe AI for autonomous vehicles.

2. SNN is the best choice for achieving high computational as well as power efficiency.

3. DVS is able to detect motion in the scene and hence can be used for directional
selectivity but accurate information about speed is still missing from the data.
Hence, there is a need to fill this void. There is a need to come up with a device
that not only detects motion but also gives speed information so as to complete
construction of an actual artificial retina.

Based on the chapters 2 and 3 two major concerns can be reported

1. LIDAR is one one the best sources to extract shape, speed and hence directional
selectivity from the scene. Hence, to fill the void available in state of the art
DVS LIDARs can be used. Therefore, in this thesis we designed first of a kind
LIDAR based silicon retina that is able detect motion, shape as well as directional
selectivity of the elements in the scene.

2. Form chapter 1 we concluded that there is a need for throughput reduction of
LIDAR data. This demand is also achieved by the proposed silicon retina.
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Neuromorphic computing 4
This chapter Describes the basics of neuromorphic hardware, biological neural networks
as well as artificial models used to mimimic the these networks

4.1 Neuromorphic Hardware

Neuromorphic machines mainly consists of 3 parts namely neuron, synapse and connec-
tivity. The upcoming sections will briefly describe each of these components in detail
with their biological motivations.

4.1.1 Neuron

Figure 4.1: Neuron membrane potential vs time plot over single synaptic stimulus [5]

Figure 4.2 shows the basic structure of a neuron. It is fundamental element
of nervous system. Humans gain their cognitive abilities by training these neural
connections. The information in a neuron is transferred by electro-chemical reactions
via electrical impulses (ion transfers) [5].

Each neuron has a nucleus inside a body called soma. The input stimulus enters
neurons through dendrites. Based on certain chemical reactions the neuron spikes
an output which is transferred to the other neurons via axon. Each neuron is
activated from the impulses coming from dendrites. This current can either be positive
(excitatory) or negative (inhibitory) which induces electric potential across the neural
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membrane. If this potential exceeds a specific threshold then the axon of the neuron
spikes or produces an electrical impulse.

After producing the axonal pulse, the neuron enters a refractory period where the
membrane potential drops below the resting potential. The mathematical models for
neurons are described in section 4.2

Figure 4.2: Neuron membrane potential vs time plot over multiple synaptic stimulus [5]

4.1.2 Synapse

Figure 4.3: Biological Synapse [5]

Synapse is a non connected region between axon of one neuron and dendrite of
another. The gap prevents short circuit between neurons. Neurotransmitters are
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released when an axon spikes. They cross the synapse and induce current through the
dendrite of another neuron by releasing ions.(Figure 4.3).

Hence, ion exchange occurs across the synapse which leads to information transfer
across neurons. Each synapse has a weight, synaptic plasticity is associated with
weight adaptivity of synapse. this is the main reason behind neural learning.

Hence in a neuromorphic processing hardware synapse a connection with access to
the weight memory (usually stored in memristors). Based on the learning rules these
weights are updated.

4.1.3 Axon Delay

Axon delay is referred to the delay in conducting an activation spike from one neuron
to another depending on the neural distances and conductivity. When a neuron excites
and produces a spike, the dendrite of other neuron doesn’t activates immediately (like
electric circuits). There are many techniques to implement axon delays [24][25][26].
This section will mainly focus on the state of art technique shown in [7].

The basic principle described in [7] is that a programmable delay can be produced by
passing a user defined voltage and a time varying voltage produced by a ramp generator
through a comparator. The comparator will spike when the ramp signal exceeds the
stored voltage. This produces a delayed spike. There are three main components to
the delay circuit - Ramp generator, delay storage cell and spike generator. The circuit
is described in detail in appendix 8.

4.2 Neuron mathematical Model

Spiking neuron models try to represent the biological neural functionality by mathemat-
ical functions. Hodgin and Huxley (1952) [27] model is closest to the actual biological
neuron but is too complex to model an entire network. The next section describes
detail model of a Leaky Integrate and Fire (LIF) neural model which is plausible to
implement electrically.

4.2.0.1 Leaky Integrate-and-Fire model

This model is the most plausible model to emulate on actual hardware. It is a simple
RC circuit with a comparator. The information entering LIF’s synapse is in form of
temporally encoded spikes. An input current i(t) generated from the incoming spikes
passes through the RC circuit and stores the ”membrane” voltage (Vm)across the
capacitor. Based on the RC time constant τ the charging as well as the discharging
time of the capacitor is decided and hence the increase/decrease on the Vm.
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Figure 4.4: LIF circuit diagram

At a certain time if Vm is greater than the user defined Vth then the comparator will
issue a spike. The behavior of Vm over time is shown below as differential equation:-

CdVm(t)/dt = Vr(t) +Ri(t) (4.1)

Where Vr(t) is the resting potential of membrane once the LIF issues a spike. The
current i(t) generated by incoming spike train can be approximated by the equation:-

i(t) = w ∗ [
∑
i

∆(t− ti) ∗ (e−
t
τ )] (4.2)

Where ∆(t− ti) is an impulse train from ith synapse at time t.

4.3 Information representation in SNN: Spike Encoding

Like brain, representing information about space and time in terms of events/impuls-
es/spikes is key to the information processing in spiking neural networks. There are
two major types of spike based information representation schemes:- Rate encoding and
pulse encoding [28].

4.3.1 Rate Encoding

Rate encoding refers to representing information in terms of average number of spikes
over a time frame. Hence, the information is encoded in frequency of spike train.

r = Nspikes/T (4.3)

where r is the rate, Nspikes is the number of spike over time T. This encoding is
majorly used to represent information/stimuli which can be affected by noise. As we
average the number of spikes over time we tend to remove the effects of noise on the
input signal.
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4.3.2 Temporal Encoding

This encoding scheme is time based rather than frequency base. Here, the exact tem-
poral position of the spike matters. Hence, this technique is usually used to represent
the classified information in final stages on the neural network.

(a) Rate Encoding [28] (b) Temporal encoding [28]

Figure 4.5: Encoding Schemes

4.4 Conclusion

Based on the discussing in the current chapter we can draw following conclusions:-

1. Neuromorphic computing is low powered temporal event based asynchronous pro-
cessing and hence is suitable for AI based vision applications for autonomous
vehicles.

2. There is a need to encode relevant information in temporal binary spike data. For
LIDAR based silicon retina major information is shape, velocity and directional
selectivity(event per angle). Encoding should also be robust to noise.
Hence, keeping these factors in mind the proposed neuromorphic retina encodes
shape (TOF), speed as well as directional selectivity information into spike trains
with rate encoding scheme.
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Part II

Methodology, construction and
results
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Methodology and system
design 5
5.1 Overview

This chapter describes in detail the process, system as well as the simulation architec-
ture followed, designed and developed during the thesis.

Based on the literature review, we came to the following conclusions essential for
the system design. :-

1. Event analysis/dynamics of the scene analysis is the most important task for
LIDAR.

2. SNN is the most favorable approach for low powered and computational resource
efficient design for dynamics of the scene analysis.

3. There is a need for data reduction at sensor level itself in LIDAR.

4. There is a need for event based feature extraction for efficient SNN based classi-
fication.

Based on the conclusions made above, a neuromorphic retina is designed for
LIDAR in order to tackle above requirements. The SNN based retina for LIDAR
firstly, reduces the overall LIDAR data throughput and secondly provide motion based
features like velocity and directional selectivity for efficient SNN based classification.
In order to verify and visualize the proposed SNN design a Matlab based module is
developed that produces reference data to verify the quality of the output of SNN
based design and visualize it.

Upcoming sections are categorized as following :-

1. System design, simulation and verification

2. DSP based event detector design

3. SNN based Silicon Retina Design for LIDAR

4. Verification and quality analysis strategy.

5.2 Concept

The concept of event based LIDAR preprocessing or neuromorphic preprocessing has
been adapted from the neural processing by retinal neurons. Retinal neurons extract
event based motion information from the scene captured by luminous sensors in eye.

33



These features (spikes) are then transferred to visual cortex in brain to process the
information efficiently. Similarly, motion or event based pre-processing at LIDAR
sensor level itself reduces the overall throughput, power consumption and helps the
further classification stages perform operations efficiently.

Hence, as shown in the figure 5.1, the proposed neuromorphic retina processes raw
LIDAR TOF data with spiking neurons and extracts important motion based features
in order to filter out redundant static information as well as assist future classification
stages in order to perform more efficient vision based operations/applications as well
as reduce over all system throughput and power consumption.

Figure 5.1: Concept of Artificial Retina

5.3 System Design and verification approach

Thesis is divided into three major modules (Figure 5.2).

1. DSP based event detector for LIDAR module

2. SNN based retina design

3. LIDAR visualization and SNN verification module.

DSP based event detector (described in detail in section 5.4) is a Matlab based
module. The module performs following operations. First, it converts raw .ild
LIDAR packet into TOF matrix. Second, it detects changes in the TOF values from
consecutive LIDAR frames and third, it classifies the TOF matrix into dynamic and
stationary objects.
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Figure 5.2: System Design and verification approach pipeline

SNN based retina module is designed and simulated in Matlab. The module
performs following operations. First, it encodes the raw LIDAR TOF data into spikes.
Second, it performs motion detection operation using spiking neural network and
third, it produces event based filtered TOF spike matrix, velocity spike matrix and
event per angle matrix.

The visualization and verification module performs following operations. First, it
converts TOF LIDAR data into 3d point cloud movie for visualization. Secondly, it
produces 3 major verification matrices :-

1. Throughput reduction matrix: this matrix describes the amount of data reduced
after applying SNN based data reduction technique.

2. Quality matrix describes the amount of pixels of moving objects lost due to SNN
based data reduction technique.

3. Spatial Quality matrix describes the quality of moving objects affected due to
SNN based data reduction with respect to distance of the object from the sensor.

Hence, the final deliverable of the thesis are the following:-

1. LIDAR 3D point clouds representing actual as well as filtered data.

2. Silicon retina outputs:- event based TOF spike train, velocity per pixel spike train
and event per angle matrix.

3. Verification and quality matrix.
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5.4 DSP based motion detector and scene segmentation

As discussed in the previous sections, a DSP based model is designed as a reference
design for SNN based retina model. This section gives detailed description of the system
architecture as well as the algorithms involved and resource utilization.

The module is further subdivided into three submodules or processes (As shown in
Figure: 5.3)

Figure 5.3: Signal processing schematics for event detection in pixels

1. LIDAR data extractor: This module extracts TOF values from the 1D MEMS
based LIDAR packet (.ild files). These TOF pixels are further converted to frames
for further processing and visualization.

2. Filter module: This module finds difference between the TOF values of consecutive
frames. If the difference is not able to exceed the user defined ∆T then that pixel
is removed from the frame. Thereby filtering out those pixels which don’t report
any significant change. (Figure 5.4)

3. Image segmentation: This module utilizes the TOF difference information front
he previous module to segment the scene into moving and static objects based on
”motion based scene segmentation” technique. This ”moving objects” matrix is
further utilized as reference for checking the data quality produced by the SNN
based retina. (Figure 5.4)

5.4.1 Implemetation on Raw LIDAR Data

LIDAR data used for experimentation was procured from Infineon tech. (1D MEMS).
Three major matrices are generated from the DSP module:-

1. Processed LIDAR frames matrix
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Figure 5.4: Flow chart representing algorithm used for LIDAR TOF data filtering and scene
segmentation

2. Filtered LIDAR Frames matrix

3. ”Moving object” matrix

A visualization module is developed to convert these matrices into 3D point cloud.
The following figures gives glimpses of the output of visualization module when
implemented on the DSP data.

Figure 5.5 shows a scenario where LIDAR mounted on a moving car. The first
part shows original LIDAR TOF 3d point cloud while the second part shows filtered
data. Third part shows the ground truth captured from a camera mounted on the car.
Its visually evident from figure 5.5b that the DSP based algorithm is able to capture
the information of moving objects (highlighted in red). This information is used as a
basis for classifying the scene into the ”moving object” and ”static information” shown
in Figure 5.7 using standard motion based scene segmentation technique. Figure 5.6
shows the implementation of a scenario where the LIDAR is static and a person is
moving away from it.

5.4.2 Resource utilization

The algorithm was synthesised in VHDL to analyse the resource utilized by the system.
The system majorly consumes per pixel one 12 bit SRAM, one 12-bit subtractor, one
12-bit comparator and one 12 bit multiplexer. when extrapolated to an entire LIDAR
frame (120x32) (12 bits per pixel), then the system utilizes 46 Kb of RAM and 3840
12-bit subtractors, comparators and multiplexors each.
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(a) shows the visualization of the scene in 3d point
cloud environment

(b) shows the same data highlighting (as red) the
pixels having significant change in displacement of
frames

(c) shows the ground truth as captured by a camera

Figure 5.5: Scenario: LIDAR mounted on a moving car, LIDAR point cloud representation
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(a) shows the visualization of the scene in 3d point cloud environment where a person is moving away
from the car

(b) highlighted as red, the pixels having significant
change in displacement of frames

(c) shows the filtered output based on events shown
in 5.6b

Figure 5.6: Scenario: LIDAR mounted on a stationery car and a person is moving away from
the sensor, LIDAR point cloud representation39



Figure 5.7: LIDAR scene segmentation based on dynamics of the environment

5.4.3 Conclusion

As discussed in this section, the DSP based event detector module is able to segment
the LIDAR data into dynamic and static objects. This information is further used as
reference for SNN based retina for verification purposes. This module also demonstrates
that huge throughput can be reduced by ”event” based filtering in LIDAR data, but
this comes with a cost of utilizing large amount of SRAM which further affects overall
system power consumption due to memory accesses.

Hence, There is a need to implement this algorithm without using large memory
and computational resources. This void is filled by SNN based retina design explained
in the next section.

5.5 SNN based Silicon Retina Design for LIDAR

As discussed in the previous section a different approach was needed in order to reduce
overall memory and computational resource consumption. Hence, there is a need to de-
sign a system that detects events as described in the section 5.4 but without consuming
large memory elements.

The following section presents detailed construction, I/O constraints and properties
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of SNN based event detector system for LIDAR.

5.5.1 System Architecture

Figure 5.8 describes complete hardware architecture required for the SNN based silicon
retina. As described in the previous sections, the proposed architecture directly accepts
raw TOF pulses generated from the photodetector array of the LIDAR.

Figure 5.8: SNN based neuromorphic architecture

As described in [2] the sensor produces digital logic ’1’ when it receives a laser
pulse. Hence, every pixel has two signals- event data line and corresponding address
bus. This channel is routed to both spike encoder as well as the axon delay module.

The axon delay module is programmed to hold incoming spike and release it after a
delay of 4 msec. This delay is equivalent to the frame rate of the LIDAR. The delayed
spike is then routed to the encoder. At time t the encoder receives spike from the
current frame as well as the previous frame. Hence, it receives the concurrent signals.

The encoder converts TOF spike into corresponding frequency based spike train
(described in detail in section 5.5.4). The spike trains representing both current as
well as previous frame’s TOF values is transmitted in parallel to the input of the
neuromorphic hardware.

The synaptic interconnect is the programmable connection between the neurons
their inputs and outputs. This connection is established via a multiplier unit connected
with weight memory (where corresponding weights are stored)

The spike inputs and corresponding pixel addresses enter the neuromorphic proces-
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sor are connected to the LIF neurons via the synapses. The processed spike train is
the decoded via decoder to generate the required output in AER format. A detailed
description of each of the involved module is described in the upcoming sections.

5.5.2 System Design

Figure 5.9: System design for SNN based LIDAR Data Pre-processing

The proposed system (Fig: 5.9) consists of mainly four modules:-

1. Axon Delay module (Mixed signal) : Described in section 4.1.3 is state of the
art axon delay module that delays the incoming spike based on a programmable
”voltage to time” converter.

2. Encoder (Digital): Described in section 5.5.4 is a standard ”value to spike rate”
converter that converts a digital value to corresponding spike train.

3. SNN based motion detection model (Analog/mixed signal): The neural network
(described in section 5.5.5) processes spike trains based on LIF mathematical
model (described in section 4.2.0.1) and detects temporal frequency changes.

4. Decoder (Digital): Described in section 5.5.6 works as a pulse/spike counter and
is responsible for filtering out zero or low pulsed signals over a fixed period of
time.

The system takes in raw TOF spikes directly from the photo-sensor of LIDAR and
produces 4 major signals, Event ON/OFF signal, velocity spike train, filtered TOF
spike train and directional selectivity on/OFF Boolean signal(per angle) per pixel
address. Hence, this system is able to replicate human retina with additional feature
of distance and displacement determination.

The Input output channels of the system as well as parametric constrains are men-
tioned below:
Input/Output channels :

1. Axon Delay (32x120 signal input channel): LIDAR TOF Data (Boolean)

2. Encoder (32x120 signal input channel): LIDAR TOF Data (Boolean)
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3. Decoder (4x32x120 signal output channel): Velocity spike train (Boolean), LIDAR
TOF Data spike train, ON/OFF (Boolean- Event enable signals) and Directional
selectivity ON/OFF (Boolean).

Input Parameters:

1. Axon Delay: Delay voltage (mV) - (16 bit integer)

2. Encoder: Delta tolerance (4 bit integer)

3. Spiking Neural network : Threshold Voltage (mV) - (16 bit integer), Resting
time(ms) - (16 bit integer), Resistance (Mohm) - (16 bit integer), Capacitance
(nF) - (16 bit integer)

5.5.3 Stage 1: Axon Delay

The design of axon delay for thesis is inspired from the design [7] described in section
4.1.3. This design can be used to provide a programmable delay between post-synapse
of one neuron and pre-synapse of another. For the thesis we require a delay of 4 msec
which is equivalent of the LIDAR frame rate (frame clock) of 25 frames/sec.

(a) Axon Delay block diagram

(b) Ramp generator Circuit [7] (c) Spike generator Circuit [7]

Figure 5.10: Axon Delay design

In order to achieve this delay we chose to adapt the model shown in figure 5.10a.
As soon as a spike is issued, the ramp generator which is a basic RC based integrator
starts moving towards Vdd due to It(200pA). This linear ramp up of voltage over time
acts as delay for the circuit. This VRamp is compared with a programmable voltage
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Vbuf set by the user using an analog comparator shown in figure 5.10a. In order to
achieve 4 msec delay the Vbuf is set to 200mV . Hence when the VRamp exceeds Vbuf a
spike/pulse is issued at the set pin of SR Latch shown in the spike generator Figure
5.10c.

Spike generator works like a normal pulse based SR latch. When a pre synaptic
spike is issued, the reset pin of SR latch is set high for some time and then set
low again with the drop of spike pulse. This stores a digital logic 1 in the latch.
When another pulse is issued at set pin of the latch, the stored logic 1 is released
in form of a spike. The pulse width of this spike is determined by a current starved
inverter connected with an AND gate using programmable Ipre as shown in Figure 5.10c.

Therefore in order to summarize, when a pre-synaptic spike is issued, the ramp
generator resets and starts rising the voltage while the SR latch in spike generator
stores the spike information in form of logic 1. When the ramp voltage exceed the
programmable voltage, the SR latch releases the delayed spike. Hence, after every
LIDAR frame this axon delay is used to delay the TOF spike issued by the LIDAR
photodetector.

5.5.3.1 Importance of Axon delay block

Axon delay acts as an analog memory element by delaying the information. One could
argue why not use standard SRAM to store the information as done in the section
5.4. There are several benefits of using the axon delay mechanism over SRAM stated
below:-

1. First of all it saves system memory space which can be used by other memory
based operations in neuromorphic hardware like weight updates.

2. Overall system latency drops firstly, due to asynchronous way of processing for
axon delay and secondly avoiding unnecessary time lost due to memory accesses.

3. Axon-delay delays/stores single pixel information in terms of spikes which makes
system less resource, computation and power hungry compared to SRAM based
design which stores information digitally in 12 SRAM cells per pixel.

Hence, asynchronous spike based axon delays are more suitable for neuromorphic
computing than their SRAM based counterparts. The resource utilization analysis is
covered in appendix 8.

5.5.4 Stage 2: Spike Encoder

Spike encoder (figure: 5.11) is a generic ”Rate Encoder”. Rate encoding is one of
the most common encoding techniques used to represent data in spike rate form for
spiking neural networks. The encoder not only feeds event/motion detector SNN but
also represents the TOF (Time of flight) i.e. distance information to the subsequent
classification and fusion stages.
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The encoder (digital logic) was modelled in MATLAB as well as implemented in
RTL so as study the resource utilization. The encoder converts input TOF spike to
corresponding spike train. The relationship between spike train rate and the input
value in shown below in equation 5.1.

F (Data) = Frequency = ∆T/Data (5.1)

Where ”Delta Tolerance” (∆T ) is defined as the change required in the pixel value
over time to be considered as an event, it is set by the user so as to make the system
sensitive to a specific displacement in the scene represented by the the change in the
Time of flight values.

This also enables the system to remove various types of thermal and luminous
based noises affecting optical sensors of LIDAR.

Figure 5.11: SNN encoder

The system flow of encoder is described below:-

1. Output of axon delay/photodetector is connected to the ”Spike to value” converter
of the encoder, this is a 9-bit counter counts upto 500 clock edges and registers
a value corresponding to the number of clock edge where an input TOF spike is
observed.

2. The registered value in previous stage is divided by ∆T by a 9-bit Divider.

3. The output of divider is then fed to a ”value to spike” converter which is a 9-bit
counter that converts the input value into a voltage spike train with rate governed
by the equation 5.1.

5.5.4.1 Current Equation

The currents applied as inputs to the spiking neurons of the proposed network 5.5.5.1
due to the encoder spike train is shown in the equation 5.2. Each pixel value k (TOF)
is approximately converted into a constant input current (eq: 5.2) when the voltage
spike train is applied across the LIF membrane based on eq: 5.3.

i(k) ∝ ∆T

k
(5.2)

i(t) = w ∗ [
∑
i

δ(t− ti) ∗ (e−
t
τ )] (5.3)
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Where δ(t − ti) is an impulse train from ith synapse at time t and τ is the time
constant for the LIF RC circuit shown in figure ?? and w is the synaptic weight of the
connection.

5.5.4.2 Output spike train frequency range

The input TOF values are in range [0 to 500] [0 to 50 m]. Hence based on the equation
5.1. (The range can be increased while decreasing the input sensitivity by diving the
input TOF value with higher delta tolerance value). The output frequency range of the
spike trains is [8 to 1000] Hz.

5.5.4.3 Encoder Resource Utilization

Based in the RTL implementation of the encoder, we concluded that three major mod-
ules are involved namely two 9-bit counters and one 9-bit divider per encoder. The
proposed design requires two encoders per pixels. Hence, four 9-bit counters and 2 9-
bit dividers are required per pixel. Hence, for the entire 120x32 pixel design we require
15360 9-bit counters and 7680 9-bit dividers.

5.5.5 Stage 3: SNN based event detection model design

This section provides a detailed description of the spiking neural network based event
detector module as a major part of the neuromorphic retina activity. Like human retina
that extracts visual information with respect to luminous changes in space and time,
the proposed network is able to cognitively detect dynamic changes in the scene. The
section is divide into three parts:-

1. Neuron model

2. Network model

3. Simulation model

5.5.5.1 Neuron model

Neuron used in the SNN model (section: 5.5.5) and the simulator is LIF based neuron
(Figure: 5.12) as described in section 4.2.0.1. Certain properties of this Neuron like
threshold voltage, RC-time constant as well as the resting time were exploited so as to
achieve the task of finding temporal frequency changes in the incoming spikes.

Four major input parameters (Fig: 4.1) mentioned before are described below:-

1. Threshold Voltage (VTh): When V (t) > VTh in equation 4.1 , a spike is issued and
transmitted to the down-stream synapses.

2. RC-Time constant (τ): It controls the rate at which the capacitor charges and
discharges in the LIF circuit.
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Figure 5.12: LIF schematics and circuit diagram [6]

3. Resting Time (TRest): Biological neurons enter a refractory period immediately
after a spike is issued during which another spike cannot be issued. likewise TRest

determines the time duration in which next spike can not be issued.

5.5.5.2 Effects of Varying Neuron Parameters

The rate of post synaptic spike train is dependent on the neural parameters mentioned
in section 5.5.5.1. This section discusses the impact of each parameters on the post
synaptic spike train.

1. Threshold Voltage (VTh): Threshold voltage is responsible for setting the sensi-
tivity of the temporal input synaptic spikes. That means if VTh is low then the
neuron will be sensitive to a larger pallet of input spike rates as compared to when
it is set high because lower VTh will enable the neuron to spike even if the input
spike rate is low.

2. RC-Time constant (τ): τ is described as a product of Resistance and Capacitance
of the RC circuit (Neuron membrane). It is the time required to charge a
capacitor to 63 % of full charge or to discharge it to 37 % of its initial value.

Hence, if τ is dropped then the‘ tendency of the neuron to hold the voltage drops.
This implies that an input synaptic spike train with low frequency and power
will not impact much on the post synaptic spike train because the neuron will
discharge quickly.

Therefore, in order to maintain the dynamic range of the input synaptic spike
rates (representing input (TOF) values to the overall system) τ should not be too
less. On the other hand the simulator does not allow high τ and produces delay
in the system over time. Hence, a balanced value of Resistance R and capacitance
C is selected based on several experimentation. R is fixed at 250 GΩ and C is
fixed at 100 fF.
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3. Resting Time (TRest): Lower (TRest is more sensitive to input spikes as the system
is ready for another synaptic spike soon after a post synaptic spike. Hence, The
dynamic range of post synaptic spike also increases. Therefore, The (TRest is fixed
at a low value (but high enough for the proper functioning of the simulator) at
10 msec.

Hence, in the thesis R, C and TRest values are kept constant (as they are hardware
parameters) while VTh is kept as variable controlled by the user.

5.5.5.3 Network Design

Main task of the spiking neural network is to identify frequency changes in the
incoming spike trains. These frequency changes represents change in TOF LIDAR
values which indeed represents displacement of the target object.

Hence, The neurons in the network are sensitive to both positive as well as changes
in the frequency of incoming spike train of a pixel. To achieve this the concept of axon
delay from the human neural system has been incorporated in the design. Like in
biologic neural networks, phase shifts in synaptic spike trains are introduced through
axon delays, similarly axon delays (Section:4.1.3) are used in the proposed network to
delay spikes from the LIDAR so that the neurons receive TOF spikes from current as
well as the previous frame concurrently.

This enables the neurons to sense changes asynchronously. The design is inspired
from the SNN explained in paper [29]. Hence, based on the axon delay mechanism a
model is proposed to detect moving objects. Its structure is shown in Fig: 5.16.

The network is divided into three major phases:-

1. Axon delay

2. Positive/Negative change detector

3. Net change detector

In order to detect positive/negative change we have to target the current flowing
across the neural membrane. If this current is high enough to raise a voltage surpassing
the threshold voltage then we can say an information has been detected. Hence, we
use the concept of inhibitory and excitatory synapse in this network. An inhibitory
synapse produces negative current across the neural membrane while an excitatory
synapse produces positive current.

In mathematical terms inhibitory synapse multiples the input current with a
negative weight while excitatory synapse multiples the input with positive weight.
Current across the neural membrane is directly proportional to the incoming spike
rate represented by the equation 4.1
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Figure 5.13: Neuron sensitive to positive change

Figure 5.14: Neuron sensitive to negative change

Hence, using this information a neuron synapse interaction is shown in the figures
5.13 and 5.14. Suppose first synapse is the current pixel value while second synapse
is the previous frame value. As shown in figure 5.13 a positive change is occurred
when the current across first synapse is higher than the current across second synapse.
First synapse is an excitatory synapse while the second one is inhibitory. Hence, if
the synaptic current on the excitatory channel is higher than the inhibitory channel
then it is more likely that the membrane voltage will surpass the threshold voltage to
generate an output axon spike.

Similarly figure 5.14 demonstrates negative change where first synapse is inhibitory
in nature while second synapse is excitatory. Hence, if first synapse has higher input
current than second then no output spike is produced. An output spike is only
produced when the current on second synapse is higher than the first one. Which
means this neuron is sensitive to all the negative changes occurring.

In order to detect the net change we need a neuron that spikes when any one of
the synapse spikes. This is called a ”Winner takes all” type spiking neuron. In order
to achieve this we increased the synaptic weight to a comparatively high value so that
the neural membrane voltage surpasses the threshold voltage whenever any one of the
synapse spikes as shown in figure 5.15.

The proposed neural network is a feed forward network of two neural layers as
shown in figure 5.16. Current and delayed TOF spike trains enter the network from
each pixel P (x, y) concurrently to the first layer SNx(x, y).

As shown in equation 4.1 a constant current is generated due to the input
synaptic spike train produced by the encoder. Let IxP (x, y, t − t0) be the current
from the input pixel P (x, y). Ie and Ii represents excitatory and inhibitory synaptic
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Figure 5.15: Neuron sensitive to both positive/negative change

Figure 5.16: Spiking neural network model for motion detection

currents respectively. If IeP (x, y, t) is greater than IiP (x, y, t − f) then the neuron
SN1 will spike. if IeP (x, y, t − f) is greater than IiP (x, y, t) then SN2 will spike.
This enables the system to detect positive and the negative changes in the pixel P (x, y).

The second layer SN3 contains one neuron per pixel. This neuron is ”winner takes
all” type neuron as described in previously. The synaptic connections wSN1 from
neuron SN1(x,y) and wSN2 from neuron SN2(x,y) both have comparatively high
weights to spike the neuron SN3 when either one of the neuron from previous layer
spikes.

Therefore, temporal changes in pixel (TOF) values of LIDAR frames are reflected
in the output neuron layer.

5.5.5.4 SNN Simulation Model Design

Based on the neural network design mentioned above, a feed forward neural network
model was developed in MATLAB for simulating the network. In order to perform sim-
ulations, TOF data represented in int32 format was taken directly into the simulation
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environment instead of TOF temporal spikes. Hence, the simulation encoder converts
the TOF value directly into spike train with frequency governed by the equation 5.1.
For efficient simulation, the delay block is placed after the encoder which instead of
delaying a single spike delays the entire spike train.

Neuron A and B shown in figure 5.17 represents the current and the delayed inputs
respectively. Neuron C spikes only when the frequency of the spike train at A is
significantly (based on user controlled threshold) higher than the frequency of spike
train at B. Neuron D spikes only when the frequency spike train of B is significantly
higher than the frequency of spike train of A. Neuron E spikes when either of the C or
D neuron spikes.

Hence, neurons C and D are activated by positive and negative change in the pixel
value respectively while neuron E is activated when there is either positive or negative
change occurring in the pixel value over time.

Figure 5.17: Spiking neural network model for motion detection

Constant synaptic weights are applied to the network. The excitatory connections
between first and second layers WAC and WBD are assigned +1.00e−14 , inhibitory
WAD and WBC are assigned −1.00e−14 (W is the charge stored across the membrane
capacitor in Coulomb - hence to analyse the network response due to change in C and
V across the capacitor which are in the range of fF and mV respectively, we chose
W to be +1.00e−14 ). The neuron E in the last layer acts as ”winner takes all” type
spiking neuron i.e any synaptic spike will result in an instantaneous post synaptic spike.

Hence, to achieve this, the synaptic weights between second and third layers are
set very high i.e six times the synaptic weights in other network layers (6.00e−14) as
shown in figure 5.17. The simulation results generated from the network are described
in detail in Chapter 6.
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5.5.5.5 SNN Resource utilization

The SNN architecture uses 3 spiking neurons per pixel which when extrapolated to
the entire LIDAR frames constitutes to 11,520 (120x32x3) spiking neurons, 3840 axon
delays and 23,040 synapses.

5.5.6 Stage 4: Spike decoder

Figure 5.18: Spike Decoder schematics

Spike train generated from the neural network (mentioned in the previous section
5.5.5.4) represents the movement of an object recorded by the Time of flight values of
LIDAR. If the rate of this spike-train is zero then there was no event. The rate also
represents the displacement. Hence, the decoder determines the rate of incoming spike
train and generates ON/OFF signals accordingly.

The decoder is subdivided into four parts. First, Pulse counter that counts the num-
ber of pulses occurring the spike train over specific time (in this case frame rate). Sec-
ond, event generator, it generates ON/OFF signal based on the formula given below:-

f(υ) =

{
ON, if υspike 6= 0

OFF, if υspike = 0
(5.4)

Where f(υ) is the multiplexer output and υ is the SNN output spike train frequency
or rate.

Third, filter that acts as a multiplexer so as to filter out pixel values based on
the ON/OFF flag from the event generator. Hence, only those pixels where motion
occurred are allowed to pass through the filter. This means that both TOF input
spike trains as well as the SNN output displacement spike trains are filtered by the
filter. Thus, the decoder generates the AER [22] based event information at every
pixel address.

Fourth, Directional selectivity module, this module spikes when more than half of
the vertical pixels encounter event. Hence, for every vertical column of a LIDAR frame
(which represents each degree in 120 degree field of view) an ON/OFF signal is gener-
ated. This signal represents whether in a particular direction some motion has occurred.
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Decoder produces majorly three types of signals/ features for further SNN based
classification stages:-

1. Filtered TOF signal

2. Velocity/displacement signal

3. Directional selectivity signal selectivity

5.5.6.1 Displacement/velocity spike train

Based on the neuron parameters (section 5.5.5.2) the displacement information is
represented in 8 different rates which are determined both by the current TOF val-
ues as well as the difference between two consecutive TOF values as shown in section ??.

Frequency range of the velocity spike train is mainly influenced by the TRest param-
eter of the neuron. The relationship is described below:-

υRange ∝
1

TRest

(5.5)

where υRange is the frequency range of velocity spike train. Hence, lower the value
of TRest higher will be the frequency range.

5.5.6.2 Directional Selectivity

Figure 5.19: Directional selectivity functionality

Directional selectivity (DS) represents the DS cells in biological retina. These cells
are fired when the retina captures motion in particular spatial direction. Similarly the
decoder fires only when temporal motion is observed in a particular direction. As shown
in figure 5.19, if the SNN senses motion in more than half of the pixels in a particular
direction then the decoder cell representing that angle fires.
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5.5.6.3 Decoder Resource utilization

Based on the RTL implementation of decoder, three major components are used per
pixel namely one 9-bit counter, one comparator and one multiplexer. One 32 bit adder
and a comparator is used for every 32 pixel column for directional selectivity. Hence for
entire network, 3840 9-bit counters and multiplexers are used while 3960 comparators
and 120 32-bit adders are used.

5.5.7 Net resource utilization of the neuromorphic retina

Proposed neuromorphic retina is a mixed signal processing unit. The following resources
are used:-

1. Analog: In terms of transistor counts, approximately 195k to 337k transistors
including LIF neurons as well as axon delays

2. Digital: This analysis includes both spike encoder as well as decoder. They require
19.2k 9-bit counters, 3840 multiplexers, 3960 comparators, 120 32-bit adders and
7680 9-bit dividers.

5.6 Conclusion

This chapter presented a detailed design of each and every module used during the
thesis in order to design, analyze and verify the neuromorphic retina for LIDARs:-

1. DSP based ”Motion based” scene segmentation module.

2. SNN based retina module including submodules namely axon delay, spike encoder,
neural network and spike decoder.

3. LIDAR raw TOF data visualization and verification module.

Based on above discussions, certain conclusions are reported below:-

1. DSP based scene segmentation module produces two different matrices namely
”objects in motion” and ”static objects”. These datasets are used for verification
of the results generated by SNN based module.

2. SNN based module preprocesses the LIDAR data and extracts event based in-
formation at sensor stage itself. This feature extraction process is inspired from
biological retina that extract useful motion information before sending it to visual
cortex in brain.

3. The neuromorphic processing unit or retina extracts the following features from
raw LIDAR data:-

(a) Moving objects

(b) Velocity of moving objects

(c) Directional selectivity i.e. Event occurred per angle in the field of view.
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These features are encoded in terms of spikes and can be further processed directly
on a neuromorphic computer for further low powered LIDAR based classifications
and optical flow predictions.

Various experimentation were conducted on the proposed SNN architecture. The
results and the inferences are discussed in next chapter.
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Experimentation and results 6
6.1 Overview

Previous chapter described detailed construction of neuromorphic retina and its veri-
fication algorithm. This chapter deals with simulations, results and inferences drawn
from various experiments conducted to understand and verify the functionality and
quality of proposed system. Simulations were conducted in the following manner: -

1. Scene Independent Simulations: Observed output based on manual input stimuli
so as to understand the behavior of network due to varying input parameters.

2. Scene dependent Simulations: Observed the effect of applying proposed network
on actual LIDAR frames to evaluate the effect of silicon retina on overall system.

Following matrices were analysed based on the experimentation conducted:-

1. Data Throughput

2. Power consumption

3. Data Quality

4. System robustness

6.2 Scene Independent Simulations

Figure 6.1: Neural network model showing connection parameters
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Experiments were conducted over single pixel SNN architecture as shown in the
figure 6.1

6.2.1 Simulations demonstrating Event detection

The weight, delay and plasticity of the neural connections were fixed as shown in the
figure 6.1. The plasticity was fixed to zero because there was no learning involved in
the process. The weights between N1 and N3 and N2 and N3 were forced to 6 times w
(w = 1.00e−14) so that any spike in either of the two neurons (N1/N2) spikes the N3
neuron and makes it winner takes all type LIF neuron.

Keeping network parameters namely ∆T , Vth, TRest and τ constant to 4, 120mV,
10msec, 25msec respectively, the network was activated by a range of input stimuli so
as to simulate its event detection property. (The network parameters were set based
on multiple experimentation so as to come up with best results, the details about
affect of these parameters on the network is described in detail in upcoming sections).

Figure 6.2: Wave form representing negative event

The wave forms shown above (figure: 6.2) represent post synaptic voltages of all
the neurons in the network over time. Wave form represents output of all the neurons
described in the network (figure: 6.1) A and B are inputs, C and D are hidden layer
neuron responsible to positive and negative event detection respectively. E is the
output ”Winner takes all” neuron.

In order to detect positive event, a set of input TOF values was generated such
that every successive input is lower than the previous value. (atleast by a margin of
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∆T ). The simulation results proved that the network is able to detect positive changes
in the input data stream. Positive event is detected when there is a significant drop in
the TOF value of the pixel. Lower the TOF value higher the frequency of its encoded
spike train (eq: 5.1). Frequency of the spike train at input pad A is higher than the
the frequency of the spike train at input pad B. Hence, the neuron C is activated while
neuron D remains at rest. Neuron E activates instantaneously with the activation of
neuron C. Therefore, the data collected at neuron C indicates occurrence of a positive
event.

In order to detect negative event, a set of input TOF values was generated such
that every successive input is higher than the previous value. (atleast by a margin of
∆T ). The simulation results proved that the network is able to detect negative changes
in the input data stream. To demonstrate this behavior, screen shot of the system
waveform is shown in figure: 6.2. negative event is detected when there is a significant
raise in the TOF value of the pixel. higher the TOF value lower the frequency of its
encoded spike train (eq: 5.1). Frequency of the spike train at input pad A is lower
than the the frequency of the spike train at input pad B. Hence, the neuron D is
activated while neuron C remains at rest. Neuron E activates instantaneously with the
activation of neuron D. Therefore, the data collected at neuron D indicates occurrence
of a negative event.

Hence, these demonstrations prove that the network is able to detect events
in the successive LIDAR frames. These demonstrations were performed keeping
various input parameters constant, upcoming section describes the effect of alter-
ing these parameters on the output spike train and what it means to the overall system.

A similar simulation with 3 parallel neurons is demonstrated below (figure: 6.3
and 6.4), with the network performing event detection across multiple parallel neurons
with change in LIDAR frame. This time instead of providing 2 separate inputs we
activated the network with single input data stream per pixel. A delay (Axon delay) was
introduced so that the network could compare the successive data frames concurrently.
The results demonstrate that pixels 1 and 2 are able to detect negative change while
pixel 3 is able to detect positive change.

6.2.2 Network response analysis (Input stimuli)

As discussed in previous section, the proposed and demonstrated network is able to de-
tect changes in the input TOF stimuli. When there is no change, the output spike rate
is zero because the output neuron is not activated. If there is a significant change then
the output neuron fires at specific rate. This section gives an analysis of the network re-
sponse, its relationship with the input stimuli and its relevance in overall system design.

Network response f(υ) can be represented as a function of frequency or rate (υ)
of the output spike train. In order to analyze the response, input TOF was varied in
5 different ranges (1-50), (50-100), (100-200), (200-300) and (300-500). These ranges
also represent a range of distance of the target from the LIDAR sensor. Hence the
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Figure 6.3: Neural network with 3 parallel sub-neural networks

Figure 6.4: Simulation results for spiking with 3 parallel sub-neural networks

rate of the output spike train is observed at different input values as well as their
differences at constant input parameters ∆T = 4 and 15, Vth = 120mV , τ = 25msec
and Trest = 10msec.

Output spike train also represents the displacement occurring at a specific distance
at specific time. Hence by observing the network spike response we can extract the
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velocity information of the objects moving at certain distance and angle.

Figure 6.5: Network Response at ∆T = 4

6.2.2.1 Inference

Based on the plots shown in figure 6.5 and 6.6 we can infer following properties :-

1. Output spike rate increases as input Delta TOF (∆TOF ) increases (Delta TOF is
the difference between two consecutive TOF values of a pixel).

2. Output spike rate decreases as the input TOF value increases.

Hence, the output rate depends on both ∆TOF as well as the successive TOF value
of the inputs. This implies that a SNN classifier will require both Delta TOF as well
as current TOF values to understand or extract the velocity information.

f(υ) ∝ f(∆TOF )

f(TOF )
(6.1)

6.2.3 Network response analysis (Input parameters)

Network response was observed by varying three major input parameters:-

1. Neural threshold Voltage (Vth)

2. Neural Resting time (Trest)

3. Neural Time constant (τ)
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Figure 6.6: Network Response at ∆T = 15

6.2.3.1 Neural threshold Voltage (Vth)

Keeping τ = 25msec and Trest = 10msec, Vth was varied to study its effect on the
network response at different ∆T . Output response was observed based on input
stimuli with Vth at 120 mV, 150 mV and 200 mV. Sensitivity is defined as minimum
difference between consecutive pixel values that can be detected by the network.
Sensitivity was observed for different input (TOF/∆T ) values as shown in the fig: 6.7.

The simulation results show that the sensitivity increases with increase in input
TOF values and increase in Vth as shown in eq: 6.2. Two major inferences are drawn
from the experiments. First, keeping threshold voltage low (120mV) guarantees that
the system will maintain constant sensitivity throughout the pallet of input values.
This implies that once the delta tolerance is fixed by the user then an event will be
reported only when the change in the value of pixel is more than the delta tolerance.

Sensitivity ∝ f(Vth).f(TOF ) (6.2)

Second, keeping threshold significantly high enables the system to have a variable
sensitivity. This means that the sensitivity will increase as the input TOF increases.
This implies that as we go away from the sensor, the ability of the sensor to finely detect
displacements decreases. Hence, the system cognitively fine tunes to the objects near
the LIDAR source and course tunes to the objects far from the source. This property
can be further exploited to decrease the sensor throughput by adjusting the sensitivity
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as required by the user.

Figure 6.7: Sensitivity (∆T ) vs Distance (TOF/∆T )

6.2.3.2 Neural Time constant (τ)

Keeping Vth = 120 mV and Trest = 10msec, τ was varied to study its effect on the
network response at different ∆T . Output response was observed based on input
stimuli with τ at 10 msec, 15 msec, 20 msec and 25msec. Sensitivity was observed for
different input (TOF/∆T ) values as shown in the fig: 6.8.

The simulation results show that the sensitivity increases with increase in input
TOF values and decrease with τ as shown in eq: 6.3. Two major inferences are drawn
from the experiments. First, keeping time constant high (25msec) guarantees that the
system will maintain constant sensitivity throughout the pallet of input values. This
implies that once the delta tolerance is fixed by the user then an event will be reported
only when the change in the value of pixel is more than the delta tolerance.

Sensitivity ∝ f(TOF )

f(τ)
(6.3)

Second, keeping threshold significantly low enables the system to have a variable
sensitivity. This means that the sensitivity will increase as the input TOF increases.
This implies that as we go away from the sensor, the ability of the sensor to finely detect
displacements decreases. Hence, the system cognitively fine tunes to the objects near
the LIDAR source and course tunes to the objects far from the source. This property
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can be further exploited to decrease the sensor throughput by adjusting the sensitivity
as required by the user.

Figure 6.8: Sensitivity (∆T ) vs Distance (TOF/∆T )

6.2.3.3 Neural resting time (Trest)

Keeping Vth = 120 mV and τ = 25msec, Trest was varied to study its effect on the
network response at different ∆T . Output response was observed based on input stimuli
with Trest at 5 msec, 10 msec, 15 msec and 20 msec. Output frequency range or
bandwidth was observed for different input (TOF/∆T ) values as shown in the fig: 6.9.

BandwidthSpike ∝
1

f(Trest)
(6.4)

The simulation results show that the bandwidth increases with decrease in Trest as
shown in eq: 6.3. From the result shown below we can infer that as Trest decreases the
output spike bandwidth increases. Hence, the displacement can be represented more
accurately as we decrease Trest.

6.2.3.4 Inference

Hence, from the discussions made in this section we can conclude that the network
response is a function of ∆TOF , TOF, Vth, Trest and τ .

f(υ) = f(∆TOF , TOF, Vth, Trest, τ) (6.5)
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Figure 6.9: Bandwidth vs Trest

6.3 Scene Dependent Simulations

This section demonstrates the properties, functionalities as well as robustness of the
proposed neuromorphic retina. The system is applied across actual raw LIDAR TOF
data path. The dataset describing two different scenarios with 5 sets each was acquired
from Infineon Technologies BV, Netherlands.

6.3.1 Neuromorphic Retina functional simulations

As described in previous chapter, proposed Neuromorphic Retina is able to detect events
at particular distance and particular direction. Two major functionalities mentioned
below will be demonstrated in the upcoming sections.

1. Event based data filtering

2. Directional selectivity

6.3.1.1 Event based data filtering

To demonstrate filtering property of the system, the LIDAR frames were passed through
120x32 pixel parallel neural network with constant input parameters, τ = 25msec,
Trest = 10msec, ∆T = 4 with varying Vth at 120 mV and 200 mV. As discussed in
the previous section low Vth has constant sensitivity while high Vth has higher sensi-
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tivity. Hence, we are able to demonstrate the network response at variable sensitivities.

The decoded output matrices are then imported to the custom developed Matlab
based LIDAR point cloud visualization tool to generate video files, snippet of which
is displayed below. Two major scenarios were captured by the sensor. First scenario:
LIDAR mounted on a moving car and second scenario: LIDAR mounted on a non
moving car and a single person is moving away from the sensor.

Simulations show that the retina is able to detect events in the scene and filter
out the redundant static information. Figure 6.11 and 7.2 clearly demonstrates the
reduction of static data due to the retina. There is even more data reduction in part c
of figure 6.11 due to coarse tuning on the moving objects at far distances.

The quantitative analysis of net throughput reduction is presented in the next
section. These demonstrations show that the retina is able to detect events according
to programmable sensitivity and report only important dynamic LIDAR information
to the SNN based classifier and the sensor fusion processing unit.

This functionality resembles the event based processing property of the biological
vision system were retina pre-processes the information acquired from visual sensors in
eye to extract event based important information and transmit only that information
to the visual cortex in brain.

6.3.1.2 Directional Selectivity

Directional selectivity is a property of biological retina where certain group of cells
are sensitive to certain direction. Incorporating this property to LIDAR means the
Neuromorphic retina should detect events happening at certain direction, hence the
system should be sensitive to point out events per direction.

To simulate this property the directional selectivity matrix form the network is im-
ported to the visualization tool so as to compare the events/angle Boolean information
with actual LIDAR 3d point cloud. Figure 6.12 demonstrates the functional property.
Left side of the image shows the actual LIDAR 3d point cloud while right side shows
the 120x32 pixel LIDAR frame where any event occurring per angle is displayed in black.

Hence, due to this property we are able to detect event happening not only at
particular distance but also at particular angle as well. This has several benefits for
section based processing where other sensors of the fusion network can focus or fine
tune in particular direction.

6.3.2 Neuromorphic Retina properties

This section gives qualitative analysis of neuromporphic retinal properties like:-

1. Throughput reduction
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(a) shows the visualization of the scene in 3d point cloud environment where a person is moving away
from the car

(b) shows the filtered output based constant delta
tolerance

(c) shows the filtered output based variable delta
tolerance

Figure 6.10: Scenario: LIDAR mounted on a stationery car, Visualization from. SNN decoder
output
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Figure 6.11: Visualization from SNN decoder output Scenario: LIDAR mounted on a moving
car, first picture shows the visualization of the scene in 3d point cloud environment. second
picture shows the filtered output based constant sensitivity, third picture shows the filtered
output based variable sensitivity

2. Power analysis

3. Data quality analysis

4. System robustness

6.3.2.1 Throughput reduction

The table 6.1 shown below describes the reduction in the net throughput in each of the
experiments when passed through the proposed neuromorphic retina. The results show
that more than 50 - 60 % of the redundant data is removed from the LIDAR source
when V th = 120mV while more than 60 - 70 % of data is reduced when V th = 200mV .
As described in previous sections, as V th increases the sensitivity also increases. This
results in coarse tuning of moving objects at far distances. Therefore, the throughput
reduction is even more than low V th based simulations.

6.3.2.2 Power reduction

In order to quantise the effect of reduction in throughput on original LiDAR data flow
power consumption, energy consumed per bit of DRAM memory access was taken into
account. in a data processing environment majority of energy is consumed in memory
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Figure 6.12: Directional selectivity Demonstration

Experiment Data reduction (%) V th = 120mV Data reduction(%) V th = 200mV

Exp Car moving 1 55 70

Exp Car moving 2 52 73

Exp Car moving 3 54 71

Exp Car moving 4 55 73

Exp Car moving 5 52 70

Exp pedestrian moving 1 59 63

Exp pedestrian moving 2 60 62

Exp pedestrian moving 3 58 65

Exp pedestrian moving 4 57 60

Exp pedestrian moving 5 61 65

Table 6.1: LiDAR Data reduction table

accesses [30]. The Energy consumed per bit per accesss of generic DRAM is around
20pJ [30]. Hence, for a 1D MEMS based LiDAR used in the thesis, power consumed per
frame transfer is around 120 ∗ 32 ∗ 10 ∗ 20 = 768000pJ or 768nJ . Thus based on the re-
sults from section 6.3.2.1, this system saves around 384nJ to 460nJ of energy per frame.

Due to the AER system, only those pixels are updated in memory which are labelled
with an event flag (ON/OFF signal). Hence, the proposed AER based neuromorphic
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system reduces data throughput entering further LiDAR/Fusion signal processing vision
units and thereby saving tremendous amount of system memory and power.

6.3.2.3 Data Quality

This matrices used to check how much quality is retained/lost when event based
filtering operation is performed. This means that how much important information is
also lost wile the filtering operation. To analyze this matrix, we use the motion based
DSP scene segmentation technique described in previous chapter. This operations
provides a matrix containing all the pixels representing the moving objects in the
scene. Hence, the output from retina is compared with the moving objects DSP matrix
so as to compare how much quality data has been lost. Table 6.2 describes the results.

Results show that with lower Vth the quality loss is less than the quality loss at
higher Vth. When the sensor is in dynamic environment based on the collected data
sets then the system loses about 10 - 25 % quality based on the sensitivity while it
loses 5-7 % quality when movement is captured in a static environment.

Spatial Quality matrix describes the quality per distance. every data point is as-
signed a quality factor based on its distance from the sensor i.e. its TOF value. This
means that points points which are closer to the sensor are more important than those
which are far from it. The factors per TOF range are mentioned below:-

1. (0-100) - 20

2. 100-200 - 8

3. 200-300 - 4

4. 300-400 - 2

5. 400-500 - 1

Hence, Based on the observations from Spatial Quality matrix table 6.3 we can
conclude that with V th = 200mV we lose Quality of around 25 - 27 % while Spatial
Quality of around 20 - 23 %.

6.4 Robustness

This section throws light on the effect of variations on 4 major input parameters (de-
scribed below) on the system’s functionality and how robust is the system to those
variations.

6.4.1 Input LIDAR data frequency

Input data frequency of LIDAR (Computational bound): The digital circuit provides
no major latency bottleneck to the input LIDAR stream that varies from 20 to 200 Hz.
While the SNN system is bounded by the axon delay limits (which has to be matched
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Experiment Quality reduction (%) V th = 120mV Quality reduction(%) V th = 200mV

Exp Car moving 1 10.45 25.30

Exp Car moving 2 11.23 26.43

Exp Car moving 3 10.50 25.54

Exp Car moving 4 12.30 27.35

Exp Car moving 5 10.56 25

Exp pedestrian moving 1 5.30 6.63

Exp pedestrian moving 2 5.45 7.34

Exp pedestrian moving 3 4.54 7.54

Exp pedestrian moving 4 5.43 6.65

Exp pedestrian moving 5 4.65 6.45

Table 6.2: LiDAR Data Quality table

Experiment Quality reduction (%) V th = 120mV Quality reduction(%) V th = 200mV

Exp Car moving 1 10.14 20.87

Exp Car moving 2 11.15 22.34

Exp Car moving 3 10.24 21.67

Exp Car moving 4 12.12 22.56

Exp Car moving 5 10.17 20.67

Exp pedestrian moving 1 5.13 5.95

Exp pedestrian moving 2 5.15 6.14

Exp pedestrian moving 3 4 6.23

Exp pedestrian moving 4 5.30 5.35

Exp pedestrian moving 5 4.13 5.65

Table 6.3: LiDAR Data Spatial Quality table

with the Frame rate). The adapted axon delay circuit 4.1.3 can provide a delay from
1ms to 50 ms which can clearly accommodate maximum LIDAR frame time period of
5 ms. Hence, the system works at all the input LIDAR data frequencies.

6.4.2 Time Constant τ variations

.
Experiments were conducted on all the available dataset keeping VTh constant at

200 mV and varying the value of τ linearly across the neural distribution as shown in
figure 6.13. The experiments allowed variation of +-20% of variation in τ values. The
results shown in table 6.2 suggests that small changes in τ doesn’t affect the overall
system output. Hence, the system is robust against small τ variations

6.4.3 Threshold Voltage VTh variations

. Experiments were conducted on all the available data set keeping τ constant at 25
and varying the value of VTh linearly across the neural distribution as shown in figure
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Figure 6.13: Variation of τ throughout the neural hardware space - LiDAR frame -120x32

Experiment change in Data reduction (%)

Exp Car moving 0.005

Exp Car moving 0.005

Exp Car moving 0.004

Exp Car moving 0.005

Exp Car moving 0.005

Exp pedestrian moving 1 no significant change

Exp pedestrian moving 2 no significant change

Exp pedestrian moving 3 no significant change

Exp pedestrian moving 4 no significant change

Exp pedestrian moving 5 no significant change

Table 6.4: change in data reduction of spatially variable τ w.r.t constant τ at 25

6.14. The experiments allowed variation of +-20% of variation in VTh values. The
results shown in table 6.3 suggests that small changes in VTh doesn’t affect the overall
system output. Hence, the system is robust against small VTh variations

6.4.4 Axon delay (section: 4.1.3)

Axon delay acts as temporary spike memory. It is responsible for concurrent processing
of spikes from consecutive frames. This enables the system to detect changes in current
and the previous inputs. If these spikes are shifted then then the current produced
due to these changes will change accordingly and hence will affect the output spike rate.

Benefit of Spike encoding is that the output is affected by an average rate rather
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Figure 6.14: Variation of VTh throughout the neural hardware space - LiDAR frame 120x32
pixels

Experiment change in Data reduction (%)

Exp Car moving 0.012

Exp Car moving 0.020

Exp Car moving 0.011

Exp Car moving 0.017

Exp Car moving 0.014

Exp pedestrian moving 1 no significant change

Exp pedestrian moving 2 no significant change

Exp pedestrian moving 3 no significant change

Exp pedestrian moving 4 no significant change

Exp pedestrian moving 5 no significant change

Table 6.5: change in data reduction of spatially variable VTh w.r.t constant VTh at 160

than individual spikes (as mentioned in the equation 5.3). Hence, +-(10 to 20%) phase
shift doesn’t have drastic affect on the pre-synaptic current. Therefore the system
output is not much affected due small phase shifts in delayed input spike trains.

6.4.5 Conclusion

In conclusion, the system is robust to small variations in major input parameters namely
Vth, τ , LIDAR input data frequency and axon delay
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Part III

Conclusion and future work
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Conclusion and Future work 7
7.1 Conclusion

The proposed Neuromorphic Retina for LIDAR is able to perform three major
functions:-

1. Detect event in the scene.

2. Detect velocity of the moving objects in the scene.

3. Directional selectivity

Hence, this unique pre-processing unit is able to extract and encode movement
happening at particular distance, particular angle and with particular velocity into
unique spike so that the information about the dynamic environment can be efficiently
classified and processed by an event based power efficient neuromorphic processing unit.

Retina is able to filter out redundant static information from the LIDAR data stream
thereby reducing data throughput as well as remove noise caused due to luminous
reflections. The results show that the retina is able to reduce around 50 - 70 % of data
with 5 - 22 % spatial quality loss (based on scenario). This has tremendous impact on
system latency and power consumption due to drop in memory accesses. The system is
robust to small variations in major input parameters which increases the overall system
reliability.

7.2 Future work

There are two major areas where more work is needed:-

1. Reduction in number of spiking neurons

2. SNN based classification and learning

7.2.1 Reduction in number of spiking neurons by averaging nearby pixels

Shown below (fig: 7.1) is an architecture that was designed in order to average (spike
rate) the incoming spike train from a window of 4 nearby pixels. AS shown in the
figure: below, the system generates output spike train with a frequency which is almost
average of the four input spike train frequencies

Due to this architecture, the neural requirements drops by 4 times but the major
problem is the dynamic input range. The proposed system is able to take input TOF
values from 0 to 100 which is quit less. Hence, a better architecture has to be designed
in order to increase the input dynamic range.
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Figure 7.1: Neural network model for averaging 4 neighboring pixels

7.2.2 Classifications and optical flow predictions

Various learning methods are available for classifying real-time spatio-temporal pat-
terns. Hence, LIDAR data by nature supports the dynamic movement information
in the scene. The proposed SNN model provide both the velocity as well as distance
encoded information in terms of spikes which can be further utilized for classifying and
understanding the dynamics of the scene as shown in the figure: 7.4
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(a) (b)

(c) (d)

Figure 7.2: output waveforms when 1 input neuron is active (a), when two input neurons are
active (b), when 3 are active (c) and when all the 4 are active (d)
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Figure 7.3: Sectionwise event information

Figure 7.4: SNN based model planning to better classify the dynamics of the scene for au-
tonomous vehicles
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Appendix 8
8.1 Axon Delay circuit

8.1.1 Ramp generator

Figure 8.1: Ramp generator [7]

On the activation from input spike, the ramp signal resets (Vramp = 0) and starts
increasing towards Vdd. The instantaneous value of increasing ramp signal is directly
proportional to time. Hence, this elapsed time represents delay. In further stages this
ramp signal is compared with a programmable voltage in order to spike out a pulse
after a fix interval of time.

The typical values used in the circuits as described in [7] are Cramp = 2pF and
It = 200pA. The ramp generator can generate voltage from 100mV to 2.5V which
translates to delay of 1ms to 5 ms. Hence, 50mV represents 1 ms delay.

8.1.2 Delay Circuit

The delay circuit consists of two modules. First, Delay storage circuit which is
responsible to store the programmable delay voltage value 8.2. Second, spike generator
8.3 that compares the instantaneous ramp signal with the stored programmable delay
value so as to generate a spike by enabling a SR latch.

The storage cell consists of a 2pF capacitor that is able to store the programmable
voltage for about 500 sec without refreshing. The refreshing is managed by a separate
adapter circuit if required. This voltage is buffered across an operational transconduc-
tance amplifier (OTA). The spike generator has SR latch that is reset when the spike
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Figure 8.2: Delay Storage circuit [7]

arrives and is set when the ramp voltage exceeds the stored voltage.

Figure 8.3: Spike Generator [7]

The system uses 3 OTA buffers and RS latch which consumes the highest area, the
ramp generator consumes 1600um2 of area at 0.6um technology.

8.1.3 Axon delay Resource utilization

In terms of transistor count a module based list has been provided below:-

1. Ramp Generator: 1 current source, 1 capacitor and one NMOS transistor is equiv-
alent to 11 transistors in total [7]

2. comparator: Size of operational transconductance based comparator can vary
from 5 transistors [31] to 15 transistors [32].

3. Standard SR latch, Invertor and AND gates are 8, 2 and 4 transistors design
respectively.

Hence in terms of transistor count for a single pixel the axon delay requires approx-
imately 30 to 40 transistors which is equal to 115200 to 153600 transistors for the
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entire design (120x32 pixels)

While in therms of area consumption we focused towards two biggest components
namely ramp generator and the comparator. Based on 0.5 µm technology used in [7],
the ramp generator occupies 1600µm2 area while the comparator occupies 1500µm2

[33]. Hence, the net area consumption per pixel by the biggest components in axon-
delay circuit is around 3100µm2 which is equivalent to around 12mm2 for the entire
design.

8.1.3.1

Area comparison with SRAM based DSP implementation
The area consumption of an SRAM cell (0.5µm− technology) with 12 bits per pixel

is around 567µm2/bit ∗ 12 = 6800µm2 [34]. Hence if we compare the area consumed by
an SRAM unit with the area consumed by major components of axon delay cell then
we can say that axon delay cell consumes approximately 50% less area than SRAM cell
per pixel.
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