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Comparison of time-varying system identification
methods to assess joint impedance

Sven Kraaijevanger, Delft University of Technology, The Netherlands

Abstract—Joint impedance describes the dynamic resistance
of a joint in response to position perturbations. Joint impedance
is known to vary nonlinearly during movement caused by varying
joint angle and muscle activation. The nonlinear behaviour can be
described using linear time-varying models under certain assump-
tion. Recently a number of time-varying system identification
algorithms to estimate joint impedance have been developed. Sys-
tem identification algorithms are typically validated in simulation.
These algorithms have not yet been compared using the same
simulated data or validated using real experimental data in this
application. In this study the algorithms are assessed on their
ability to estimate joint stiffness using three data sets. The first
data set is from a simulation model representing joint dynamics
with time-varying stiffness and damping. The second data set
is from a mechanical variable stiffness device. A mapping of
the true stiffness of the device was extracted by interpolating the
estimated stiffness of time-invariant trials. The last data set is real
experimental data from a human ankle with varying contraction
levels to which small position perturbations were applied. The
simulation study and the experimental mechanical study suggest
that when estimating stiffness the linear parameter varying (LPV)
method has a bias, the kernel based regression (KBR) method
overall has the highest error, the ensemble impulse response
function (eIRF) method needs many repetitions, the basis impulse
response function (bIRF) method is able to achieve the lowest
error, the short data segment (SDS) method is the most robust to
different perturbation signals, and the ensemble spectral methods
(ESM and mESM) are able to achieve reasonable results. The
results of the experimental human study show that the estimated
stiffness by the ensemble and short data segment methods have
a trend similar to that of the EMG signal, albeit with different
offsets. The bIRF, SDS, ESM and mESM make a reasonable
compromise between smoothness and required repetitions.

Keywords—Joint impedance, System identification, Time-
varying systems, Human motor control

I. INTRODUCTION

A. Identification of joint impedance

The mechanical properties of our limbs enable and con-
strain our ability to interact with the physical world. Under-
standing how the mechanical properties are regulated during
natural movement is critical for understanding the ability to
interact with the world and how they are compromised follow-
ing injury. Joint impedance is comprised of the combination of
intrinsic and reflexive properties [1]. The intrinsic properties
originate from the inertial, viscous, and elastic properties of
the tissue surrounding the joint which can be modulated by
voluntary muscle contractions. The reflexive properties are
attributed to the involuntary muscle contractions in response
to perturbations [2].

The quantification of joint impedance during motor tasks
contributes to the better understanding of the control and

physiology of the neuromuscular system. The mechanical
properties of a limb can be quantified using estimates of
joint impedance, the dynamic relationship between the rotation
and torque acting around a joint. The quantification of joint
impedance has multiple medical applications. Measuring joint
impedance during functional tasks can be used for the design of
active prostheses to make them interact with the environment
naturally [3], [4] and will enhance the mobility of the users
[5], [6], [7]. Furthermore, estimates of joint impedance can be
used to monitor the treatment of movement disorders.

To quantify joint impedance, system identification methods
are employed which make use of experimentally obtained
position and torque measurements of a joint during pertur-
bations. Joint impedance has been studied extensively during
static postural tasks over the past decades using Linear Time-
Invariant (LTI) methods [2], [8], [9], [10]. These LTI methods
only produce a local estimate of joint impedance and are
thus only valid for an operational point. Joint impedance is
known to vary nonlinearly which has multiple mechanical and
physiological causes such as joint angle and muscle activation
[1], [11], [12].

Fewer studies have quantified joint impedance over the
joint’s nonlinear range. A major reason for the limited number
of studies is the challenge with estimating impedance over an
operating range where the identified system can no longer be
linearized. Nonlinear time-invariant systems can be described
by linear time-varying models, as the nonlinear behaviour can
be treated as if it were caused by the change of time. This
allows for the employment of linear time-varying methods for
the identification of nonlinear time-invariant systems.

B. Thesis objective

Recently a number of methods have been developed to
quantify joint impedance during movement (Subspace [13],
[14], [15], Prediction Error [16], and Nonparametric [17], [18],
[19]. All these methods have proven to be accurate when
validated with simulated data, however, the simulations have
been conducted under different assumptions of signal-to-noise
ratio (SNR) and signal properties. The methods have not yet
been compared using the same simulated data allowing for a
true comparison. Furthermore, the performance when working
with experimental data has not been thoroughly tested for all
methods.

The objective of this thesis is to assess the accuracy and
robustness of seven time-varying joint impedance estimation
algorithms. These seven algorithms are tested because they
were available to the author, either through the university or
the internet. The assessment of the accuracy and robustness
will be done using three data sets:
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• The first data set is simulation data, where the true
underlying values of impedance are known and the
signal-to-noise ratio can be easily controlled. This
first data set will be used to confirm that the algo-
rithms are capable of producing accurate estimates of
the impedance. Furthermore, the lower boundary of
signal-to-noise ratio for which the algorithms can still
produce reliable estimates can be determined.

• The second data set is experimental data from a me-
chanical system. A mechanical device with a known
time-varying impedance has been designed and built.
The impedance of the mechanical device was esti-
mated with equipment traditionally used to quantify
joint impedance. The purpose of this second data set
will be to validate the performance of the algorithm
with real experimental data. This validation has never
been done before and is a novel contribution to the
field.

• The final data set will be real experimental data col-
lected from humans during a postural task with time-
varying joint torque. It is not possible to assess the
accuracy of the estimates generated by the algorithm
for this final data set, as the true time-varying values of
the human joint impedance are not known. However,
the values can be compared to estimates from linear
time-invariant methods. Furthermore, this final data
set will allow the comparison of the estimated joint
impedance of the algorithms on human data.

II. TIME-VARYING SYSTEM IDENTIFICATION METHODS

Three main system identification classes exist; Subspace,
Prediction Error and Nonparametric methods. In this section
first the three main system identification classes will be de-
scribed. Then the concepts of the seven algorithms compared
in this paper will be explained. The seven algorithms are
classified in Table I. The corresponding mathematics of the
algorithms can be found in Appendix VIII-A. The parameters
used in the system identification methods can be found in
Appendix VIII-C.

• During subspace identification, a Hankel matrix is
created from the input and output data. From this
Hankel matrix the singular values are used to derive
the order of the system and a subspace of the system
[20]. The subspace contains the essential data and the
system can be reconstructed by performing a similarity
transformation. The system is described using a state-
space model where the time-variation is represented
by time-dependent system matrices of the state-space
model.

• During prediction error methods, the system is mod-
elled parametrically. A cost function is expressed in
terms of the observed and predicted model output
based on the given input. The time-variation is rep-
resented by time-varying parameters in the model.
The system can be described by input-output model
structures or state-space models.

• During nonparametric estimation the system is de-
scribed using a Frequency Response Function (FRF)

or Impulse Response Function (IRF). In the time-
domain the correlation of the input and output data is
used to compute the IRF/FRF, where in the frequency
domain spectral densities of the input and output
data are used. The time-variation is represented by
computing a response function for every time step.

TABLE I. CLASSIFICATION OF TIME-VARYING METHODS
INVESTIGATED IN THIS THESIS.

Class Method Acronym

Subspace Linear Parameter Varying [13] LPV

Prediction Kernel Based Regression [21] KBR
Error

Non- Ensemble Impulse Response Function [22] eIRF
Parametric Basis Impulse Response Function [17] bIRF

Short Data Segments [18] SDS
Ensemble Spectral method∗ ESM
Multitaper Ensemble Spectral method∗ mESM

∗The ESM and mESM by Alfred C. Schouten are still in preparation at this time, and
are thus not referenced.

A. Linear parameter varying

The linear parameter varying (LPV) method makes use of
the assumption that there is a known scheduling function. The
estimated system matrices of the state-space model are multi-
plied by the scheduling function to describe the time-varying
behaviour. The method is based on an existing LPV method
[23]. However, this method is unable to describe improper
systems, e.g. experiments done with position perturbations.
This is overcome by implementing the generalized state-space
system description from a time-invariant method described in
[24]. The causal and anti-causal description are combined into
the non-causal form, allowing the use of position perturbations.
[13]

B. Kernel based regression

The kernel bases regression (KBR) method assumes that
the input and output signals can be explained by a linear
differential equation. The parameters of the differential equa-
tion vary with time, explaining the time-varying behaviour.
The time-varying parameters are described by a set of basis
functions, in this case a set of radial basis function kernels,
causing the smooth behaviour. The coefficients of the dif-
ferential equation are estimated in the frequency domain via
a kernel-based regression. The error between the measured
output and predicted output is minimized iteratively, as it
concerns a non-convex problem. The kernel can be tuned to
determine the smoothness of the time-variation and the amount
of regularization that is applied. [21]

C. Ensemble impulse response function

Ensemble methods make use of the assumption that each
realization has the same experimental and time-varying condi-
tions, as can be seen in Fig. 1. The assumption that the system
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and experimental conditions do not change across realizations
allows for the application of time-invariant identification tech-
niques for each time step. The ensemble impulse response
function (eIRF) method makes use of this assumption. For each
time step during the repeated movement an impulse response
function is calculated from the realizations. A downside of
this method is that it requires many realizations to make an
accurate estimate of the impulse response functions. [22]
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Fig. 1. Graphical representation of ensemble (left) and short data segments
(right) methods. Ensemble methods assume that for each realization the time-
variation is the same for each point in time (red line). Short data segment
methods not only assume that for each realization the time-variation is the
same for each point in time, but also for a small window (red bar) surrounding
the point in time, averaging over more data and thus needing less data.

D. Basis impulse response function

The basis impulse response function (bIRF) method makes
use of the same principle as the eIRF method, creating a
time-varying impulse response function from ensemble data.
After the time-varying impulse response function has been
calculated, it is approximated by a linear combination of basis
functions. The basis functions create smooth time-varying
behaviour, which reduces the effect of noise on the estimate.
Less realizations of the movement are needed in comparison
to the eIRF. [17]

E. Short data segments

The (short data segments) SDS method is again very
similar to the eIRF method. Here the assumption is made that
not only the realizations have the same time-variation for each
time step in each realization, but also for a small window
surrounding this time step, see Fig. 1. The impulse response
function is thus computed using a sliding window over the
whole time variation, effectively using each point multiple
times for the estimate. Therefore for each point in the time-
variation more samples are used to calculate the impedance
when compared to the eIRF method, reducing the effects of
noise. The size of the window is a trade-off between the
smoothness of the estimate and the amount of noise being
rejected. [18]

F. Ensemble spectral method

The ensemble spectral method (ESM) and multitaper en-
semble spectral method (mESM) are also making use of short

data segments. For each realization and for each point in time
the auto- and cross-spectral density are computed using a
small window surrounding the point in time. For each point
in time the spectral densities are Welch averaged over the
realizations. The averaged cross-spectral densities are then
divided by the averaged auto-spectral densities to compute
the mean FRF for each point in time. The combined FRFs
create a time-varying non-parametric description of the system.
The difference between the ESM and mESM is that before
calculating the spectral densities smoothing is applied. For
the ESM a Hanning window is applied [25]. For the mESM
method the multitaper method is applied [26].

III. SIMULATION STUDY

A. Model

A time-varying causal open-loop mass-spring-damper sys-
tem as shown in Fig. 2a was simulated. The simulation repre-
sents an experimental setup where a human subject performs
a force task while position perturbations are applied. The
position perturbations u are applied through a manipulator,
and the torque responses y are measured. The human typically
controls the time-varying torque using visual feedback.

Kc

Hjoint(t)

u(t)

−

T (t) y(t)

v(t)

θ(t)

(a) Model scheme

1

Hjoint(t)

u(t) T (t) y(t)

v(t)

(b) Identification scheme

Fig. 2. Schematic representation of the (a) time-varying causal simulation
model and (b) identification scheme following Equation (3). u(t): angular
input perturbation, T (t) true output torque, y(t): measured output torque,
v(t): measurement noise, θ(t): joint angle, Hjoint(t): time-varying joint
dynamics, and Kc: manipulator gain.

The simulations were carried out using Simulink (The
Mathworks Inc.). Mathematically the model is represented as
follows:

y(t) =
Kc

1 +KcHjoint(t)
u(t) + v(t) (1)

=
1

1
Kc

+Hjoint(t)
u(t) + v(t) (2)

Where u(t) is the angular input perturbation, y(t) is the
measured output torque, v(t) is the measurement noise, θ(t)
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is the joint angle, Hjoint(t) contains the time-varying joint
dynamics, and Kc is the manipulator gain.

The system is in closed-loop, however the gain of the
manipulator Kc was set to 20000 causing the system to
approximate an open-loop system as described in Equation
(3). This allowed for the usage of an open-loop identification
scheme as can be seen in Fig. 2b.

If:
Kc � 0

Then:
y(t) =

1

Hjoint(t)
u(t) + v(t) (3)

The measurement noise v(t) is modelled as Gaussian white
noise low-pass filtered at 40Hz using a 2nd order Butterworth
filter. The joint dynamics are modelled as a second-order
model with a time-varying stiffness and damping represented
in the following equation:

T (t) = I
d2θ(t)

dt2
+B(t)

dθ(t)

dt
+K(t)θ(t) (4)

where T (t) is the torque acting on the joint, θ(t) is the an-
gle of the joint, I is the inertia of the joint, and B(t) and K(t)
are the time-varying joint viscosity and stiffness, respectively.
This is a common representation of joint impedance [18]. In
the simulation the inverse of joint impedance, joint admittance,
was used in order for the simulation to be causal. In the
Laplace domain joint admittance is represented as follows:

Hjoint(s, t) =
Θ(s)

T (s)
=

1

Is2 +B(t)s+K(t)
(5)

where Hjoint is joint admittance, Θ(t) and T (s) are the
input angle and the output torque in the Laplace domain,
respectively and s is the Laplace operator.

The inertia I of the simulated joint was set to be 0.02 kgm2.
The joint viscosity was varied with time using a triangle wave
between 1.2 and 3.2 Nms/rad and the stiffness was varied using
a square wave between 50 and 150 Nm/rad. Both the damping
and the stiffness varied with a constant frequency of 1 Hz.
A 1Hz time-variation was chosen as the frequency of human
gait lies between 0.5Hz and 2Hz. The varying stiffness and
damping is visualized in Fig. 3. These time-varying properties
were chosen to test the limits of the algorithms. The abrupt
changes in dynamics will provide information on how fast the
algorithms are able to track changes.

B. Simulations

The simulations were run using a fixed time step of 0.001s.
The simulation time, perturbation signal, SNR, and time-
variation were varied systematically. This is summarized in
Table II.

The three position perturbation signals used are:

• A Gaussian white noise signal (FGWN) to which a
2nd order low-pass Butterworth filter was applied at
5Hz. [18]
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Fig. 3. Visual representation of time-varying stiffness (solid) and damping
(dashed).

TABLE II. VARYING CONDITIONS USED IN THE SIMULATIONS.

Conditions

Perturbation signal FGWN PRBS Multisine

Simulation time [s] 25 50 100 200 400

SNR [dB] -10 0 10 20

Time-variation - B K KB

Where ”-” is no time-variation, B is time-varying damping, K is time-varying stiffness,
and KB is time-varying stiffness and damping. The underlined and bold conditions
define the baseline conditions used in Table III to expose the effects of the varying
conditions independently.

• A pseudorandom binary sequence (PRBS) with a
switching rate of 147ms. [18]

• A multisine signal containing the following frequen-
cies: [0.1:0.8:20] Hz. [27]

All three input signals were generated at 1000Hz and low-pass
filtered using a 4th order Butterworth filter at 40Hz and then
scaled to have the same standard deviation. The variance of the
noise v(t) was scaled to control the SNR of the simulations.

The simulation time was varied between 25, 50, 100, 200,
and 400 seconds. To study the effect of noise four SNR levels
were simulated (-10, 0, 10, and 20 dB). The time-varying
dynamics were varied between a time-invariant system, only
varying stiffness, only varying damping, and vary both stiffness
and damping.

All combinations of varying perturbation signals, simula-
tion time, SNRs and time-variations were simulated leading
up to a total of 240 simulations. Before using the system
identification algorithms, the data were decimated to 100Hz
to reduce the amount of computational memory needed. The
simulation still needed to run at 1000Hz to make sure the
simulation did not become unstable.

C. Performance analysis

The quality of the estimates was assessed on their ability
to estimate the stiffness of the system. The stiffness parameter
was chosen because no assumption had to be made on the
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order of the system. The root mean square error (RMSE) of
the stiffness is calculated, Equation (6). This is then normalized
to the root mean square (RMS) of the stiffness so the results
are expressed as a percentage error, Equation (7).

RMSE(K̂) =

√√√√ N∑
i=1

(Ki − K̂i)2

N
(6)

%Error = 100
(RMSE(K̂)

RMS(K)

)
% (7)

where RMSE(K̂) is the RMSE of the stiffness, Ki and K̂i

are the true and estimated stiffness at time step i respectively,
and N is the total number of samples. When K̂ perfectly
follows K Equation (6) will be equal to zero, resulting in a
0% error. When K̂ is constant, e.g. no time-variation, Equation
(7) will result in an error of approximately 100%, given that
the algorithm is correct on average.

D. Results of simulation study

The results of the simulations are summarized in Table
III. To summarize the results for each perturbation signal the
median of the error of all simulations with the respective
perturbation signal was calculated, also displayed in Fig. 4.
The median was chosen, because for some conditions the LPV
method would become unstable and would get a very high
error which would dominate the average.
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Fig. 4. Bar plot of the median error of the estimated stiffness in the simulation
study for each algorithm for each perturbation signal.

A visual representation of the estimated stiffness is shown
in Fig. 5. The LPV method shows a similar shape as the
varying stiffness, with a small offset. The KBR method is
able to track the right frequency and amplitude of the varying
stiffness for the FGWN perturbation, albeit very smooth. The
eIRF method shows a highly noisy estimate of the stiffness.
This noisy result, however, is for just 50 repetitions while this
method typically needs hundreds of repetitions to achieve an

TABLE III. RESULTS OF SIMULATION STUDY, NORMALIZED ERROR OF
ESTIMATED STIFFNESS [%].

Normalized error of stiffness [%
LPV KBR eIRF bIRF SDS ESM mESM

FG
W

N

Si
m

ul
at

io
n

tim
e

[s
] 25 16.4 41.2 117.7 14.8 23.6 23.1 23.1

50 14.3 41.7 40.5 11.2 17.9 20.3 23.1
100 16.6 40.2 26 10.8 14.3 17.3 22
200 - - 17.7 9.4 13.2 16 18.4
400 - - 12.2 9.3 12.5 15.6 18.9

SN
R

[d
B

]

-10 15.3 74.5 95.9 28.1 29.9 19.3 21
0 14.3 41.7 40.5 11.2 17.9 20.3 23.1

10 14.2 34.5 15.3 9.6 13.5 16.3 18.7
20 14.2 35.6 7.9 9.4 12.9 17.8 21.1

Ti
m

e-
va

ri
at

io
n N 16.1 35.2 41.5 10.4 10.4 8.9 10.1

B 14.8 28 37.2 6.7 9.7 12 13.5
K 14.3 41.7 40.5 11.2 17.9 20.3 23.1

KB 22.5 41.6 40.2 11.8 15.7 17.3 18.1

Median 17.9 70.7 17.4 9.3 12.5 15.3 17.5

PR
B

S

Si
m

ul
at

io
n

tim
e

[s
] 25 16.8 34.1 65 18 15.6 16.9 22.7

50 16.3 34.5 30.5 16.1 13.9 15.3 21.9
100 17.8 34.9 20.1 16.2 13.6 15.9 22.3
200 - - 15 15.9 13.7 16.4 19.4
400 - - 12.3 15.5 12.9 16.2 18.7

SN
R

[d
B

]

-10 19.2 66.3 84.6 25.7 24.3 20.1 25.4
0 16.3 34.5 30.5 16.1 13.9 15.3 21.9

10 16 28.2 11.1 15.1 12.5 15.5 18.8
20 15.9 27.6 7 15 12.3 15.7 19

Ti
m

e-
va

ri
at

io
n N 13.5 25.3 32.3 13.8 6.6 6.1 6.2

B 14.7 25.4 32.9 13.8 6.6 6 6
K 16.3 34.5 30.5 16.1 13.9 15.3 21.9

KB 18.3 34.5 30.8 16.1 13.9 15.3 22

Median 18.3 67.6 13.9 15.3 12.3 15.6 17.1

M
ul

tis
in

e

Si
m

ul
at

io
n

tim
e

[s
] 25 23.1 48.8 108.4 21.2 24.5 20.8 23.8

50 18.5 48.2 97 22.8 20.8 22.5 20.6
100 18.8 48.2 93.3 21.5 16.4 22.5 21.5
200 - - 93.3 21.1 16.4 23 21.7
400 - - 92.9 20.2 15.2 21.6 23.1

SN
R

[d
B

]

-10 27.4 98.1 132.7 31.1 58.5 54.4 47.5
0 18.5 48.2 97 22.8 20.8 22.5 20.6

10 18.7 37.6 87.9 22 18.8 21.5 23.8
20 21.4 37.2 66.3 17.5 18.7 30.2 26.4

Ti
m

e-
va

ri
at

io
n N 37 34.3 103.6 24.4 20.6 19.5 22

B 32.7 34.7 125.6 25.9 17.7 17 21.2
K 18.5 48.2 97 22.8 20.8 22.5 20.6

KB 26.1 45.9 91.9 23.1 19.7 23.2 26

Median 34.9 79.9 88.6 20.9 18.1 21.7 22.8

For each type of perturbation signal a baseline was defined to study the effects of the
conditions while keeping all other conditions constant. The baseline used was a
simulation time of 50 seconds, a SNR of 0 dB, and variation of only the stiffness. The
results of the baseline are indicated in bold. A visual representation of the results can
be seen in Fig. 5. Note that not all the results of the 240 simulations are displayed. The
LPV and KBR method required too much memory to make an estimate for a certain
amounts of samples. These failed estimates are marked in the table with a ”-”.

accurate result. The bIRF, SDS, ESM, and mESM show a
reasonable estimate of the stiffness.

The lowest median error for the LPV method is 17.9%
when used with FGWN perturbations. The estimate of joint
stiffness did not improve with longer simulations. It did
improve with a higher SNR. The time-varying conditions do
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Fig. 5. Visual representation of the estimated stiffness in the simulation study for each perturbation signal and the baseline conditions; 50s simulation time,
SNR of 0dB, and only varying stiffness. The true stiffness is shown as a black dashed line.

not have an influence on the estimates.

The lowest median error for the KBR method is 67.7%
when used with PRBS perturbations. This is the highest
overall median error when estimating stiffness. The estimate of
joint stiffness did not improve with longer simulations. It did
improve with a higher SNR. The algorithm was able to make
a better estimate of the stiffness when it was not varying.

The lowest median error for the eIRF method is 13.9%
when used with PRBS perturbations. The estimate of joint
stiffness improved the most with longer simulations and a
higher SNR. The time-varying conditions do not have an
influence on the estimates.

The lowest median error for the bIRF method is 9.3% when
used with FGWN perturbations. The estimate of joint stiffness
improved with longer simulations and a higher SNR. The time-
varying conditions do not have an influence on the estimates.

The lowest median error for the SDS method is 12.3%
when used with PRBS perturbations followed closely by a
median error of 12.5% for FGWN perturbations. The estimate
of joint stiffness improved with longer simulations and a higher
SNR. The algorithm was able to make a better estimate of the
stiffness when it was not varying.

The lowest median error for the ESM method is 15.3%
when used with FGWN perturbations. The estimate of joint
stiffness improved with longer simulations and a higher SNR.
The algorithm was able to make a better estimate of the
stiffness when it was not varying.

The lowest median error for the mESM method is 17.1%
when used with PRBS perturbations. The estimate of joint
stiffness improved with longer simulations and a higher SNR.
The algorithm was able to make a better estimate of the
stiffness when it was not varying.

Overall the performance of the algorithms is similar for
both the FGWN and PRBS signal. The estimates with a
multisine perturbation structurally have a higher error than the
other two input signals.

E. Main observations simulation study

• The best results were achieved using FGWN and
PRBS perturbations.

• The stiffness estimates improved with longer simula-
tion times for the short data segment methods (SDS,
mESM, and ESM) and ensemble methods (eIRF and
bIRF).

• The methods that are smoothed due to their algorithm
(SDS, ESM, mESM, KBR and, bIRF) had more
trouble estimating the abrupt changes of the stiffness.

• The bIRF and short data segment methods seem to
make a reasonable trade-off between smoothing and
accuracy.

• The error of all methods decreased with a higher SNR,
except for the LPV method where the error increased,
suggesting that the method has a bias.

• The KBR structurally has the highest error, except
for the multisine perturbation where the eIRF has a
slightly higher error.

• The eIRF method is the only method to truly track the
fast changes as the method calculates joint impedance
for each independent time step. However, in order to
accurately track the fast changes the method requires
hundreds of repetitions.

• The SDS and bIRF perform the best, where SDS is
the most robust, bIRF has the lowest median error.

• The ESM and mESM are two very similar methods,
however the ESM is able to structurally achieve a
lower error than the mESM.

IV. EXPERIMENTAL STUDY VARIABLE STIFFNESS DEVICE

A. Variable stiffness device

The variable stiffness device (Fig. 6 and 7) consists of a
rod to which two springs are attached at one end (right side),
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and to which perturbations are applied to the other end (blue
arrow on the left). In the middle of the rod the combination of a
rotational and linear bearing acts as a rotational point (red). In
the variable stiffness device the actual stiffness of the springs
in the system does not change, but rather the rotational point
(red) moves, effectively changing the moment arm on either
side. This makes that the stiffness on the left outer end of
the device changes when the position of the rotational point
changes, making it time-varying.
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Scheduling

Fig. 6. Schematic of variable stiffness device

The rotational point is actuated using a lead screw driven by
a DC motor. The position of the rotational point was measured
by a linear potentiometer and controlled using a PID controller
running on an Arduino Uno.

Fig. 7. Photo of the completely assembled variable stiffness device

A mapping of the true stiffness of the mechanical system
was extracted by several time-invariant trials over the full
range of motion. The estimated stiffness of the time-invariant
trials were then interpolated to create a mapping over the
full range of motion of the device. This process was repeated
for both FGWN and PRBS perturbations. The details of the
time-invariant trials and mapping there-off can be found in
Appendix VIII-B. The theoretical and estimated stiffness is
presented in Fig. 8.
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Fig. 8. Theoretical and estimated stiffness interpolated between time-invariant
trials for both FGWN and PRBS perturbations.

B. Method of experimental study variable stiffness device

Perturbations were applied to the variable stiffness device
by a linear motor. Position, force, and scheduling variable data
was recorded at 2500Hz. For each condition 1000 seconds of
data was collected.

A total of eight time-varying experiments were run, testing
different perturbation signals and time-varying behaviours. The
experimental time used for identification was varied as well,
leading up to a total of 40 datasets. The used conditions are
displayed in Table IV.

TABLE IV. VARYING CONDITIONS FOR THE MECHANICAL
EXPERIMENT.

Experimental time [s] 24 50 100 200 400

Perturbation signal FGWN PRBS

Time-variation 0.5Hz square 0.5Hz sine 1Hz sine 2Hz sine

The PRBS signal had an amplitude of 5mm and a switching
rate of 147 ms. The FGWN signal is white noise signal to
which a 2nd order low-pass Butterworth filter was applied at
5Hz and was scaled to have a standard deviation of 2mm. Both
signals were low-pass filtered with a 4th order Butterworth
filter at 40Hz. The amplitude of the time-varying behaviour
is the same for all experiments. The collected data were
decimated to 100Hz before the identification algorithms were
applied.

C. Results of experimental study mechanical system

Position, torque, and scheduling data are presented in Fig. 9
for both perturbations. The FGWN input had a mean of 0mm
with a standard deviation of 20mm. The PRBS input had a
mean of 25mm with a standard deviation of 24mm.

All results of the 40 data sets are displayed in Table V. For
both perturbation signals the median of the normalized error
was calculated.
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Fig. 9. Visual representation of the input, output, and scheduling of the 1Hz
sine wave experiments on the variable stiffness device.

The lowest median error for the LPV method is 25% when
used with FGWN perturbation. The algorithm has lower errors
with the FGWN perturbation for each condition. The estimate
of the stiffness did not improve with longer simulations.

The lowest median error for the KBR method is 41.9%
when used with FGWN perturbations. This is the highest
overall median error when estimating stiffness. Overall the
algorithm performed better with FGWN perturbations for each
condition. The estimate of the stiffness did not improve with
an increased experimental time. When used with FGWN per-
turbations the algorithm was able to track the frequency of the
time-variation, this was not the case for PRBS perturbations.

The lowest median error for the eIRF method is 15.4%
when used with FGWN perturbations. The algorithm obtains
better estimates with the FGWN for each condition. The
estimate of the stiffness improved with an increased exper-
imental time for all experiments. The results for the PRBS
perturbations contain more noise than the results with the
FGWN perturbations.

The lowest median error for the bIRF method is 11.7%
when used with FGWN perturbations. The algorithm has the
lowest error with the FGWN perturbation for each condition.
The estimate of the stiffness improved with an increased
experimental time for most experiments. The algorithm has
the highest error for the 0.5Hz sine time-variation for both
perturbation types.

The lowest median error for the SDS method is 12.1%
when used with FGWN perturbations, followed closely by
the PRBS perturbation with a median error of 12.5%. This
algorithm also has the lowest error when used with a PRBS
perturbation for all conditions. The estimate of the stiffness
improved with an increased experimental time for most exper-
iments. The algorithm has the highest error for the 0.5Hz sine
time-variation for both perturbation types.

The lowest median error for the ESM method is 22.6%
when used with FGWN perturbations. Overall the algorithm

obtains better estimates with the FGWN perturbations. The
estimate of the stiffness improved with an increased experi-
mental time for only some of the experiments. The algorithm
has the highest error for the 0.5Hz sine time-variation for both
perturbation types.

The lowest median error for the mESM method is 22.8%
when used with FGWN perturbation. Overall the algorithm
obtains better estimates with the FGWN perturbations. The
estimate of the stiffness improved with an increased experi-
mental time for only some of the experiments. The algorithm
has the highest error for the 0.5Hz sine time-variation for both
perturbation types.

TABLE V. RESULTS OF EXPERIMENTAL MECHANICAL STUDY,
NORMALIZED ERROR OF ESTIMATED STIFFNESS DISPLAYED AS % ERROR.

Normalized error of stiffness [%
LPV KBR eIRF bIRF SDS ESM mESM

FG
W

N

0.
5H

z
sq

ua
re 24 14.5 40.8 60.2 17.2 22.1 48.4 51.4

50 22.7 39.9 38.4 12.8 12.1 40.6 54.7
100 20.1 40.8 13.7 11.2 9.2 35.6 43.9
200 - - 9.7 9.6 5.7 18.8 21.1
400 - - 8.3 8.8 5.6 11.9 14.6

0.
5H

z
si

ne

24 28.2 33.2 98.3 18 23.6 45.8 45.8
50 21.5 31.2 46.4 12.1 17.9 26.6 22.9

100 26.3 33.4 22.5 13.9 18.3 24.7 22.4
200 - - 24.8 18.2 21 36.4 39.4
400 - - 22.6 17.1 20.3 35.4 38.8

1H
z

si
ne

24 17.7 38.2 48.5 12.1 11.6 16.9 11.4
50 19.5 41.2 17.9 7.1 10.9 12.5 9.3

100 24.9 42.9 15 7.2 10.9 21 22.2
200 - - 13.3 6.7 10.5 22 25.4
400 - - 11.9 6 9.6 29.5 20.5

2H
z

si
ne

24 17.5 56.7 15.8 21.3 9.2 10 10.1
50 25.2 56.1 14.6 13.3 12.4 19.6 10.1
100 23.8 55.1 14.3 9.2 12.1 19.7 22.6
200 - - 14. 9.1 12.7 23.1 25.2
400 - - 13.6 7.6 12.6 19.1 22.7

Median 25 41.9 15.4 11.7 12.1 22.6 22.8

PR
B

S

0.
5H

z
sq

ua
re 24 33.5 48.6 357.1 26.1 12.4 41.5 47.5

50 33.4 49.5 48.2 23.6 13.7 40.4 47
100 35.5 49.6 32.2 23 12 42.6 49.2
200 - - 27.8 21.7 12.2 43 50.7
400 - - 26.1 21.7 12.7 48.1 52.8

0.
5H

z
si

ne

24 53.1 36.2 161.6 33.1 17.9 59.8 63.4
50 61.3 38.1 53.3 31.2 17.2 66.3 69.7

100 64.7 39.3 24.3 32.7 16.3 64.9 68
200 - - 15.6 33.9 14.9 66.6 70
400 - - 12.1 34.1 14.4 69.9 73.2

1H
z

si
ne

24 29.7 46.9 50.1 19.5 15.5 39.2 40
50 29.6 50.1 36.3 19.2 14.2 39 40.5

100 29.5 46.3 30.7 19.7 12.7 37.8 40
200 - - 27 20.4 10.1 39.5 41.8
400 - - 25.3 20.7 9.5 41.4 43.8

2H
z

si
ne

24 33.1 59.5 23.6 24.3 8.9 38.9 40.7
50 46.4 55.6 22.1 24.3 7.5 37.3 39.9
100 32.6 57.5 21.4 25.5 6.8 40.7 42.2
200 - - 19.9 26.4 6.4 41.5 44.5
400 - - 19.1 26.9 6.7 44.6 46

Median 41.3 49.6 26.5 24.3 12.5 41.5 46.5

The LPV and KBR method required too much memory to make an estimate for certain
amounts of samples. This is marked in the table with a ”-”.
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Fig. 10. Visual representation of the estimated stiffness for the mechanical study for each perturbation signal and time-variation. These estimates are made
using 100 seconds of data.
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Fig. 11. Visual representation of the median error between the true and
estimated stiffness for the mechanical study for both perturbation signals.

D. Main observations mechanical experiment

• The mapping of estimated true stiffness have different
ranges for the two perturbation signals.

• All methods have a lower median error for FGWN per-
turbations than for PRBS perturbations, even though
the FGWN signal has a lower SNR.

• Results of 0.5Hz sine converged to a different value
than the estimated true value.

• The LPV method created a larger error with more data,
indicating that it has a bias, similar to the simulation
study.

• The KBR method structurally has the highest error,
similar to the simulation study.

• The bIRF method is able to achieve the lowest error,
but only for the FGWN perturbation, similar to the
simulation study.

• The SDS method is the most robust with a low
error regardless of perturbation signal, similar to the
simulation study.

• The ESM structurally performs better than the mESM,
similar to the simulation study.

• The normalized error generally went down with an
increased experimental time for short data segment
methods and ensemble methods.

V. EXPERIMENTAL STUDY HUMAN JOINT

A. Subjects

Six healthy participants (2 men, 4 women), 24±1 years,
with no self-reported history of neurological or orthopedic
leg problems, participated in the experiment. One participant
was left legged, all other participants were right legged, this
was self reported. The study was approved by human research
ethics committee (HREC) of the Delft University of Technol-
ogy. All participants provided written informed consent before
participating.
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B. Experimental setup

Participants were seated in a car seat and asked to place
their left foot on the pedal of a haptic manipulator resembling
a car’s gas pedal (the ’Achilles’ - MOOG, Nieuw-Vennep,
the Netherlands), see Fig. 12. The foot of the participant was
strapped to the pedal using Velcro to ensure a firm connection
to the device. The car seat was adjusted so that the knee of the
participant was in an angle of 90 degrees. A screen in front
of the participant provided a target trajectory representing the
torque the subject had to exert. A cursor provided visual feed-
back of their current torque levels (0.6Hz low-pass filtered).
During all trials the torque on the pedal and position of the
pedal were measured, sampled at 1024Hz. Electromyographic
(EMG) responses of the gastrocnemius medialis muscle were
measured at 1024Hz. The EMG signal was measured using
the TMSi Porti7 in a bipolar configuration using Ambu Blue
Sensor N silver chloride surface electrodes.

Fig. 12. Picture of a participant attached to the Achilles haptic manipulator.

C. Measurement protocol

All participants completed 20 trials, 10 trials of two dif-
ferent perturbation signals. Prior to the trials the maximum
voluntary contraction (MVC) was determined. During the
measurement of the MVC, the backrest of the car seat was
removed to ensure that the exerted force was coming from the
foot. The backrest was placed back comfortably during the
trials. The trials required the participant to apply a varying
voluntary torque. The participants were asked to track a
0.5Hz sine wave between 5 and 50% MVC on the screen
while ignoring the continuous angular perturbations applied
by the ankle manipulator. A frequency of 0.5Hz was chosen
as this frequency is controllable by a human and close to
the frequency of human gait. Each trial lasted 70s including
5s at the start and end of each trial without perturbations.
The participants were allowed 3 practice trials to get used
to the perturbations for each perturbation. The two types of
perturbation signals used were; A filtered Gaussian white noise
(FGWN) signal (5Hz 2nd order low-pass Butterworth filtered),
and a pseudorandom binary sequence (PRBS) signal with a
switching rate of 147ms. Both signals were low-pass filtered
with a 4th order Butterworth filter at 40Hz, and scaled to have
a standard deviation of 0.0089 rad.

D. Data analysis

The measured voluntary time-varying torque applied by the
participants is needed to ensure time-varying joint properties,
but is not relevant for the estimators For this reason the
0.5Hz time-varying voluntary torque was removed by fitting
and subtracting a low-frequency polynomial function, before
performing system identification. The measured output and
output used for identification are displayed in Fig. 13. All
data were decimated to 128Hz before performing system
identification.

The EMG data was high-pass filtered at 20Hz using a 2nd
order filter. Then the signal was rectified followed by a 2nd
order low-pass filter at 20Hz. Both filters were zero-phase
digital filters.

E. Results of experimental study human joint

The MVC of the participants was 41.6±7.2 Nm. Position
and torque data are presented in Fig. 13 for both perturbations.
The mean and standard deviation of the torque are presented
at the bottom of Fig. 13. The torque data shows the voluntary
torque applied by the participant on top of the torque in
response to the perturbations. For a representative participant
the mean standard deviations of the measured output torque
of the FGWN and PRBS signals were 1.91 Nm and 3.30 Nm,
respectively, showing more variability in the force produced
for the PRBS perturbation. The participants reported that for
the trials with PRBS signal it was harder to track the voluntary
torque.
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Fig. 13. The input and output represent the measured input and output,
respectively. The mean output shows the mean and standard deviation of
the output signal. The ID output shows the output of which the voluntary
component has been removed, and which has been used for identification.

The estimated stiffness by each algorithm for both pertur-
bation signals is presented in Fig. 14. The bottom figures show
the mean and STD normalized EMG of the gastrocnemius.
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Intrinsic stiffness is known to increase with contraction
levels [9]. For this reason it is expected that the estimated
stiffness would have a similar trend as the normalized EMG
signal. The eIRF, bIRF SDS, ESM, and mESM show this sim-
ilar trend, especially visible for the FGWN perturbation, albeit
with different offsets. The KBR shows the same frequency of
varying stiffness with changing amplitudes.

The normalized EMG signal for the PRBS perturbations
has a higher standard deviation of 17.4% compared to the
FGWN perturbation 12.6%. This is similar to the torque mea-
surements and the estimated stiffness, as can be seen from the
bottom row of Fig. 15 where six out of seven algorithms have
a higher mean standard deviation of the estimated stiffness.

The top row of Fig. 15 shows the mean of the estimated
stiffness. The estimated stiffness was first averaged over 100
seconds of data and then averaged over the participants, for
each algorithm. The top figures shows little variation in mean
estimated stiffness between participants, meaning that the
participants had a similar ankle stiffness. The bottom row of
Fig. 15 shows the standard deviation of the estimated stiffness.
The standard deviation was first calculated for 100 seconds
of data and then averaged over the participants. The bottom
figures show that for the PRBS signal the estimated stiffness
has a higher variance.

F. Main observations of experimental study human joint

• For the PRBS perturbation the measured torque out-
put, normalized EMG signal, and estimated stiffness
have a larger standard deviation.

• The LPV method does not show a similar trend as the
EMG signal.

• The KBR has the same frequency as the normalized
EMG trend, with varying amplitudes.

• The stiffness estimate with the short data segment
methods (SDS, mESM, and ESM) and ensemble meth-
ods (eIRF and bIRF) all have the same trend similar
to the EMG signal, with different offsets.

• The stiffness estimated with the short data segment
methods overlap.

• The standard deviation of the mean estimated stiffness
over participants is relatively low, meaning that the
stiffness does not vary much between participants.

VI. DISCUSSION

The objective of this study was to compare seven time-
varying identification methods on their ability to estimate joint
impedance.

A. Signal-to-noise ratio

In the simulation study the stiffness estimates of all meth-
ods, except the LPV method, improved with a higher SNR.
It is as expected that the methods are able to achieve a more
accurate estimate when less noise is present. The fact that this
is not the case for the LPV method indicates that the method
suffers from a bias.
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Fig. 14. Visual representation of the estimated stiffness by each system
identification algorithm. The LPV and KBR are estimated using 100 seconds
of data, the other algorithms using 400 seconds of data. The bottom figures
show the EMG signal of the gastrocnemius muscle, where the solid red trace
shows the mean of the signal and the red area shows the standard deviation
of the signal.

The method that suffered most from a low SNR is the
KBR. Reason for this is that the method does not make
any assumptions on repetitions, either through a scheduling
variable or ensemble averaging. The method therefore has the
highest benefit from a higher SNR.
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B. Number of samples

The estimates for both the ensemble (eIRF and bIRF)
and short data segment (SDS, ESM, and mESM) methods
improved when using more data both in simulation as for
the mechanical experiment. This is in accordance with the
expectations, as the methods have more realizations over which
can be averaged and thus reduce the effect of noise.

The LPV and KBR did not improve when used with more
data. For the KBR method this can be explained by the absence
of a scheduling function or ensemble data. The effect of noise
cannot be removed when used with more data. This is an
advantage and a disadvantage as it will provide a constant
estimate for more and less samples.

The LPV method, however, was expected to have a more
accurate estimate of the stiffness when more data is used. By
exploiting the scheduling variable it should be able to reduce
the effect of noise. In the simulation study the LPV method was
given perfect scheduling variables, being the normalized shape
of the time-varying stiffness and damping. The estimate of the
stiffness moved away from the true value when the algorithm
was given more samples, similar as for the increased SNR. This
combined information indicates that the method suffers from
a bias. In the mechanical study the position of the rotational
point was given as the scheduling function. Similar behaviour
to the simulation study was found, with more data the estimate
of the stiffness did not converge to the true value.

The eIRF is able to make the most accurate result being
able to track abrupt time variations. However, the method re-
quires hundreds of repetitions to achieve this. In the simulation
study and the mechanical study the eIRF method requires
around 200 repetitions to achieve the same error as the bIRF
and short data segment methods with 25 to 50 repetitions.
However, this is observed during a case where all realizations
perfectly aligned. While experimenting on human subjects
the realizations vary considerably. During human experiments
the bIRF and short data segment methods require between
200 and 400 repetitions of the same movement to make
a reasonable estimate, and the eIRF a few hundred more.

Alignment methods exist to reduce the amount of repetitions
needed [28].

C. Time-variation

The shape of the time-varying properties of the system
had an effect on the ability of the algorithms to estimate the
stiffness. In the simulation study the algorithms that result
in more smooth estimates, being the SDS, ESM, mESM,
bIRF, and KBR, had more trouble estimating the abruptly
changing stiffness, where the KBR method was considered
too smooth. The LPV method experienced influence of the
damping scheduling variable, causing the estimated stiffness
to incorrectly incorporate the shape of the damping.

For the mechanical system, the ability to estimate the stiff-
ness of the algorithms changed for different time-variations.
Most notable is that for the 0.5Hz sine time-variation the error
was the highest for 5 algorithms for PRBS and 6 algorithms
for FGWN perturbations. This is not in correspondence with
the expectation that a slow time-variation is easier to track.
An explanation can be found in the order in which the
experiments were conducted. The first experiments done were
the time-varying 0.5Hz sine wave for both the PRBS and
FGWN perturbations. Then some trials not described in this
study were performed. Then the time-varying experiments
were conducted in the following order; 1Hz sine PRBS, 1Hz
sine FGWN, 2Hz sine FGWN, 2Hz sine PRBS, 0.5Hz square
PRBS, 0.5Hz square FGWN. After the time-varying trials,
the time-invariant trials were conducted from which the true
stiffness was calculated. It could be that during the trials in
between the system changed, for example the friction of the
lead screw changed or a bolt loosened, effectively changing
the stiffness of the device. This could explain the inconsistent
results of the 0.5Hz sine wave time-variation.

Following the same reasoning the results from the 0.5Hz
square time-variation should have the smallest error, as the
time-invariant trials were performed immediately after. The
results confirm this by showing the best results for 5 of the 7
algorithms.

In the human study the participants were asked to vary
the contraction of their ankle to induce a time-variation. The
estimated stiffness was expected to follow a similar trend as
the recorded EMG signal, as intrinsic stiffness varies with
contraction levels [9]. The results from the human study
confirm this by showing a similar trend for 5 of the algorithms.
The effect is most pronounced for the FGWN perturbation
type, presented in Fig. 16. The figure shows that the short
data segment methods (SDS, ESM, and mESM) are very close
together. The eIRF and bIRF have an offset from the short data
segment methods. Which of the algorithms is closest to the true
value remains unknown as well as the reason for the offset.

D. Perturbation signal

In the simulation study the results for the FGWN and PRBS
perturbation were similar. The median error for the multisine
perturbation however was the highest for all algorithms. Rea-
son for this could be that the signal did not contain enough
higher frequencies for the algorithms to produce accurate
results, or due to the periodicity of the signal.
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Fig. 16. Top figure is a visual representation of the estimated stiffness
in the human experimental study using FGWN perturbations. Bottom figure
represents the normalized EMG signal of the gastrocnemius muscle.

For the mechanical system all methods had a lower median
error for the estimated stiffness when used with a FGWN
perturbation compared to the PRBS perturbation. This can be
attributed to the fact that the input signals had a different mean
and standard deviation. Surprising is that the FGWN input had
a lower standard deviation than the PRBS input, effectively
giving the trials with a PRBS input the benefit of a higher
SNR.

For the human study the FGWN and PRBS perturbations
did have an equal mean and standard deviation, but produced
different results. All participants reported that they found it
more difficult to track the desired torque trajectory for the trials
with the PRBS perturbation. The EMG and measured torque
signals confirm this by showing a higher variance for the PRBS
perturbation. The estimated stiffness also shows smoother
time-varying behaviour for the FGWN perturbations. Reason
for this is that due to the more abrupt PRBS perturbations a
stronger response of the muscle was triggered causing a higher
stiffness. The means of the estimated stiffness for the different
perturbations signals, however, are quite similar.

The different ranges of the true stiffness of the mechanical
system for the two perturbation signals had an effect on the
results. The error is scaled to the RMS of the true stiffness,
which is lower for the PRBS perturbation than the FGWN
perturbation. The absolute error could be smaller while the
percentage error would be larger when comparing between
perturbation signals, creating a bias in the results.

E. True stiffness of the mechanical system

When looking at the results of the true stiffness in Fig. 8
it can be seen that the stiffness estimated using the FGWN
and PRBS perturbations are different. This difference can
be attributed to multiple causes. The main cause for the
differences is the fact that the system is highly nonlinear,
as the connections and bearings have some play allowing for
some movement, rotation, and bending of the rotational point.

The different properties of the two perturbation signals, such
as amplitude, mean, and standard deviation, combined with
the nonlinearity of the system cause the springs to extend
differently for both signals and thus have a different stiffness.

F. Limitations

A limitation for the simulation study is the fact that it uses
ensemble data that is perfectly lined up. The dynamics of the
simulated system are exactly the same for each realization,
something that is not possible when experimenting on humans.
Even when the time-variation is imposed on a human subject,
the contractions and reflexes will never be the exact same
[29]. This results in an advantage for the ensemble and short
data segment methods and allows them to achieve better
estimates than they would with real experimental data. To
allow for a more fair comparison between ensemble and
non-ensemble methods the dynamics of the model could be
randomly changed and the phase could randomly shift for each
realization.

A limitation of the variable stiffness device study is that
the true stiffness is approximated by interpolating the results
of time-invariant trials. It could be argued that the dynamics
of a system are different under static and dynamic conditions.

Furthermore, for the mechanical system, the time-variations
were computer controlled. This resulted, similar to the simula-
tion study, in the dynamics of the system to be similar for each
realization, again giving the ensemble and short data segment
methods a slight advantage.

For the human study the PRBS perturbations were expe-
rienced as being too fierce by the participants, and they had
trouble following the desired trajectory. This may have caused
a more variable response to the perturbations and the estima-
tions may not be as accurate. However, the PRBS perturbations
had the same standard deviation as the FGWN perturbation
which the participants were able to reject properly. This would
indicate that the FGWN perturbations are preferable as a
higher SNR can be achieved with this perturbation signal when
experimenting on humans.

G. Methods

The LPV method appears to have a bias in both the
simulation and mechanical study as the estimated stiffness
moved away from the true value with an increased SNR and
more samples. For the human study the estimated stiffness
does not follow the same trend as the measured EMG signal,
even though this was expected. This could be caused by the
fact that the underlying scheduling variable is hard to measure,
and the EMG signal of just one muscle was measured.

The eIRF method was able to achieve a low error and
converge to the true stiffness and track fast changes, for both
the simulation study and mechanical study. It however needs
hundreds of realizations of the same movement to do so.

The bIRF method was able to estimate the stiffness with
the lowest error for both the simulation study and mechanical
study with a FGWN perturbation. The algorithms is able to
achieve reasonably low errors for PRBS perturbations.
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The SDS method is most robust as it was able to struc-
turally achieve low errors in the estimated stiffness for all per-
turbation signals in both the simulation study and mechanical
study.

The mESM and ESM methods are very similar and gen-
erally able to achieve good results. However, the ESM is
structurally able to achieve lower errors than the mESM for
both the simulation study and mechanical study. In simulation
the methods are able to achieve good results for all perturbation
signals, but during the mechanical study the error of the
estimated stiffness for the FGWN perturbation were much
lower.

The KBR method has the highest overall error for both the
simulation study and the mechanical study. For the FGWN per-
turbation the method was generally able to track the frequency
of the time-variation. Reason for the relatively poor results
could be that the identification parameters can be tuned, while
in this study the algorithm was left to decide the value of the
γ parameter. Furthermore, the method allows for the use of
Leave-two-out (LTO) cross validation [21] possibly enhancing
the results found in this paper.

VII. CONCLUSIONS

Seven algorithms were used and tested to compare their
ability to estimate joint stiffness using three data sets. A
simulation study, an experimental study on a mechanical
device with a known true stiffness, and an experimental study
on human ankles.

From the simulation study it became clear that the algo-
rithms had better performance using the FGWN and PRBS per-
turbation signals, compared to the multisine perturbation sig-
nal. For the mechanical study the true stiffness was estimated,
but appeared to vary between perturbation signals, because the
device is nonlinear. Overall the FGWN perturbations resulted
in lower estimation errors compared to the PRBS signal.

Following the results of the simulation and mechanical
study it was found that the SDS method was most robust by
structurally estimating the stiffness with low error. The bIRF
was able to estimate the stiffness with the lowest error when
FGWN perturbations were used. The LPV appears to suffer
from a bias. The mESm and ESM methods are very similar
to eachother, but the ESM method was structurally able to
estimate with lower errors compared to the mESM method.
The KBR method structurally estimated with higher errors
compared to the other methods, but might be able to get better
results when tuned better and using LTO cross validation.

During the human study the participants found the PRBS
signal to be too forceful, which was also visible in the results.
The torque measurements and EMG signal, for the PRBS
perturbations, had a higher variance which could also be
seen in the estimated stiffness. The results for the FGWN
perturbation were smoother. The SDS, mESM, ESM, bIRF and
eIRF methods followed the same trend as the normalized EMG
signal, albeit with an offset between the methods. The reason
for the offset is unknown, and because the true underlying
values of the human stiffness is not known, there is no way to
know which method is correct.

When the time-varying realizations are perfectly lined up,
the eIRF can make a reasonable estimate using 200 repetitions.
The bIRF and short data segment methods can achieve a
similar result with around 50 repetitions of the same move-
ment. However, humans are generally incapable of producing
this many perfectly lined up repetitions. In order to achieve
reasonable results the bIRF and short data segment methods
require between 200 and 400 repetitions, where the eIRF
requires hundreds more.

In order to advance and evaluate the system identification
algorithms for identifying joint impedance the evaluation pro-
cedure should be standardized. This includes the availability
of simulation data, a mechanical system with known values,
and the standardization of experimental procedures on human
joints. This allows for the comparison of algorithms and
demonstrate the strengths and weaknesses of each algorithm.
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VIII. APPENDIX

A. Time-varying system identification methods

1) LPV: The non-causal LPV subspace identification
method has the following form:

xck+1 = Akx
c
k +Bckuk +Kc

kyk causal part, (8)
Ekx

ac
k+1 = xack −Back uk −Kac

k yk anti-causal part, (9)

yk = [Cc Cac]

[
xck
xack

]
+Duk + ek (10)

where the superscripts c and ac indicate the causal and
anti-causal part, respectively, uk is the input, yk is the output,
xk is the state, ek is the innovation sequence, k is the time
step, and Ek, Ak, Bk,K,C, and D are the system matrices of
the generalized state space description. Note that Ek, Ak, Back ,
and Bck are time-varying.

Ek =

m∑
i=1

µ
(i)
k E(i) (11)

µk =
[
1 µ

(2)
k ... µ

(m)
k

]T
(12)

where µk is the scheduling variable consisting of m local
models. The identification procedure for identifying the system
matrices is beyond the scope of this paper and details can be
found in [13].

2) eIRF:

y(i) = ∆t

M2∑
j=M1

u(i− j)h(t, j) (13)

where y is the output, u is the input, h is the impulse
response function, i is the sample time, j is the lag of the
impulse response function, ∆t is the sampling increment, and
M1 and M2 are the maximum and minimum lag, respectively
[18]. The IRF h(t, j) can be computed as follows:

h(t, j) = ∆t−1Φ−1
xxΦxy (14)

where

Φxy = [φxy(t,M1) · · · φxy(t,M2)] (15)

and

Φxx =

 φxx(t−M1, 0) · · · φxx(t−M2,M1−M2)
...

. . .
...

φxx(t−M1,M2−M1) · · · φxx(t−M2, 0)


(16)

where

φxy(t, k) =
1

R

R∑
r=1

x(t− k, r)y(t, r) (17)

where r is the realization number and R the total number
of realizations.

More details about this method can be found in [30].

3) bIRF:
θ(i) = θ0(i) + θp(i) (18)

where θ0(i) is the movement trajectory and θp(i) is the
position perturbation.

TQ(i) = TQ0 + TQp(i) (19)

where TQ0 is a constant torque, produced by passive mecha-
nisms due to θ0, and by active mechanisms due to the constant
muscle activation. TQp(i) is a perturbation torque, produced
by the excitation of intrinsic and reflex mechanisms given by

TQp(i) = TQI(i) + TQR(i) + TQ∆(i) (20)

where TQI(tk) and TQR(tk) are the torques produced by
the intrinsic and reflex mechanisms, which cannot be measured
directly.

where TQ(tk) is an additional torque due to difference
in passive and voluntary torques during the perturbed and
unperturbed experiments.

TQI(i) =

τ=L∑
τ=−L

hI(τ, i)θp(i− τ) (21)

The TV IRF will be approximated by a linear combination
of basis functions as

hI(τ, i) =

j=nλ∑
j=0

λτ,jΛj(i) (22)

where {λj(i)}j=nλj=0 are a set of time-varying basis func-
tions and λτ,j the corresponding coefficients.

The reflexive component was not taken into consideration
in this paper.

More details about this method can be found in [17].

4) SDS: It is calculated the exact same way as the Ensem-
ble IRF by Robert Kearney, except for the different calculation
of auto- and cross-correlation:

φxy(t, k) =
1

NR

R∑
r=1

i=t+N/2∑
i=t−N/2

x(i− k, r)y(i, r) (23)

where t is the time in the middle of each short data segment
and N number of samples in each segment.

More details about this method can be found in [18].
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5) ESM & mESM: The FRF is calculated using the mean
spectral densities.

H(k) =
S̄yu(k)

S̄uu(k)
(24)

Where H(k) is the FRF at time-step k, k = L/2...N−L/2
where L is the size of the window, S̄yu(k) is the mean cross-
spectral density, and S̄uu(k) is the mean auto-spectral density
calculated using equation (25).

S̄yu(k) =
1

L

L/2∑
i=−L/2

Syu(k + i) (25)

where Syu(k) is the cross-spectral density at time-step k.

Syu(k) =
1

L
Yh(k)Uh(k)∗ (26)

where Uh and Yh are the Fourier transforms of each
realization of the input uh and output yh, respectively, to which
a Hanning windows has been applied.

yh(k) =

y1(k − L
2 ) · · · y1(k + L

2 )
...

. . .
...

yn(k − L
2 ) · · · yn(k + L

2 )

◦[w(k − L
2 ) . . . w(k + L

2 )
]

(27)

where yn is the output of realization n, and w is the
Hanning window computed using equation (28).

w(k) =
1

2
(1− cos

( 2πk

L− 1

)
) (28)

6) KBR: The system’s input and output signals, u(t) and
y(t), are assumed to satisfy the linear differential equation:

y(t) = −
Na∑
n=1

an(t)
dny(t)

dtn
+

Nb∑
n=0

bn(t)
dnu(t)

dtn
(29)

where an(t) and bn(t) are the time-varying coefficients
which are smooth functions of t. These coefficients are esti-
mated via kernel-based regression. In essence, the estimate is
defined as the following minimizer:

ân, b̂n = argmin
∑
k∈Kint

|E(k, an, bn)|2

σ̂2
E(k, an, bn)

+

∑
n=1

aTnK
−1an +

Nb∑
n=0

bTnK
−1bn (30)

where E is the DFT of the equation error (the difference
between the left and right hand side of (29)), evaluated in
Kint, the bins corresponding to the frequency band of interest.

an and bn are obtained by vectorising an(t) and bn(t) in
t = 0, Ts, ..., (N − 1)Ts. Note that (30) is a non-quadratic
(and in general non-convex) problem, due to the division by
σ̂E . This is solved via an iterative convex relaxation, where
σ̂E initialized to 1 and, for the mth iteration, is computed
as σ̂2

E,m(k) ← σ̂2
E(k, ân,m, b̂n,m), with ân,m−1, b̂n,m−1 the

estimates obtained at the (m − 1)th iteration. The kernel
matrix K is semi-positive definite and symmetric, and imposes
structure on the estimated parameters. K is obtained from the
squared exponential radial basis function:

K(t, t′) = γe
−(t−t′)2

σ2 , t, t′ = 0, Ts, ..., (N − 1)Ts (31)

In which σ determines the smoothness of the estimated
time-varying coefficients. γ represents the inverse of the
amount of regularisation applied, defining a bias versus vari-
ance trade-off of the estimated coefficients. Details can be
found in [21].
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B. Extraction and mapping of true stiffness of mechanical
variable stiffness device

To assess the stiffness estimates of the time-varying system
identification algorithms, the true stiffness of the device was
extracted. Five time-invariant trials at different positions of
the rotational point were performed for both perturbations.
The stiffness was then estimated using a time-invariant system
identification method for each point. A quadratic curve was
then fitted to these points to create a mapping for the whole
range of motion of the rotational point. This was done for both
FGWN and PRBS perturbations.

1) Time-invariant trials: Each time-invariant trial lasted for
60 seconds and was sampled at 2500Hz. For the PRBS signal
an amplitude of 5mm and a switching rate of 147ms was
used. The FGWN signal was low pass filtered using a 2nd
order Butterworth filter at 5Hz and had a standard deviation
of 2mm. Both signals were low pass filtered using a 4th order
Butterworth filter at 40Hz.

2) Stiffness calculation: The stiffness was extracted by
estimating the frequency response function for each trial.

Ĥyu(f) =
Ŝyu(f)

Ŝuu(f)
(32)

where Ĥyu(f) is the estimated frequency response func-
tion, and Ŝyu(f) and Ŝuu(f) are the cross- and auto-spectral
densities, respectively. The spectral densities are calculated as
follows:

Ŝyu(f) =
1

N
Y (f)U∗(f) (33)

where Y (f) is the Fourier transform of the output signal
y(t), U∗(f) is the complex conjugate of the Fourier transform
of the input signal u(t), and N is the number of samples used
for identification.

The stiffness was then determined by calculating the static
gain for each trial. The static gain was calculated by averaging
over the magnitudes between 0.1 and 2.5Hz of the estimated
FRF. The stiffness was expected to change quadratically with
the position of the rotational point, because whenever the
rotational point moves the part removed from the moment
arm on one side gets added to moment arm on the other side,
causing the ratio to shift quadratically, Equation (34).

K1 =
(r − r1)2

r2
1

K2 (34)

where K1 is the stiffness at the point of perturbation, K2

is the true stiffness of the combined springs, r1 is length of
the bar on the left of the rotational point, and r is the total
length of the bar.

To create a mapping of the stiffness a quadratic function
was estimated to interpolate between the results of the static
trials. Fig. 17 displays the results from the estimated and
theoretical stiffness.
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Fig. 17. Theoretical and estimated stiffness interpolated between time-
invariant trials for both FGWN and PRBS perturbations.
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C. Identifcation parameters of time-varying methods

The parameters used for identification during the simula-
tion study, mechanical experimental study, and human exper-
imental study can be found in Table VI.

TABLE VI. PARAMETERS USED IN THE METHODS USED FOR SYSTEM
IDENTIFICATION

LPV
Pend Maximum system order to optimize VAF 3

KBR
Na Order of TV coefficient 1
Nb Order of TV coefficient 3
σ Smoothing parameter Number of samples in 1 realization
γ Hyperparameter to apply regularisation Determined by the optimWLS function

eIRF
Nlags Number of lags to estimate IRF 4

bIRF
Nlags Number of lags to estimate IRF 4
Pmax Maximum number of iterations to optimize the VAF 3

SDS
Nlags Number of lags to estimate IRF 4
Nwindow Number of samples over which the system averaged 10

mESM
Nw Spectral smoothing parameter 1
L Range of window over which to optimize VAF 30...60

ESM
L Range of window over which to optimize VAF 30...60
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