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A B S T R A C T

Aiming at modelling the mechanical behaviour of soil-rock mixtures accurately and efficiently, a coupled MPM- 
DEM formulation combining the material point method (MPM) and the discrete element method (DEM) is 
proposed. It is solved concurrently via the contact force linking the two individual methods. Specifically, the soil 
is modelled with MPM as continuums to avoid handling the contacts between fine particles. The rocks are 
modelled by DEM to capture the contact characteristics of rocks. This method is validated with ball impacting 
and block sliding tests first for the contact between material points and DEM particles. Its capability in describing 
the mechanics of soil-rock mixtures is thereafter proved by comparing the simulation results with pure DEM 
simulations of binary mixtures and laboratory tests of soil-rock mixtures. It is demonstrated that MPM-DEM can 
reproduce the stress–strain response of soil-rock mixtures and capture the influence of rock contents and rock 
sizes. In addition, a coarse-graining modelling scheme is implemented, i.e., representing the soil particles with 
fewer material points, which significantly increases the efficiency compared with pure DEM. Our proposed 
method provides a novel way to model soil-rock mixtures with reasonable computational efforts, which sheds 
light on simulating large-scale soil-rock mixtures in nature or engineering.   

1. Introduction

Soil-rock mixtures are abundant in geotechnical engineering and
have complex physical and mechanical characteristics such as hetero-
geneity and nonlinearity. (Hu et al., 2018). The complexity of the soil- 
rock mixture is mainly due to the difference in size and physical prop-
erties between its two components, i.e., soil and rock (Xu and Zhang, 
2021). Accurately reproducing and predicting the behaviour of soil-rock 
mixtures is a difficult scientific problem and is also of great importance 
in the early warning and protection of natural disasters, such as debris 
flows and landslides (Iverson, 1997; Schuster and Highland, 2007). 

Due to the presence of the large-size rock blocks and small-size soil 
particles that make up the unique meso-structural characteristics of the 
soil-rock mixture, it poses a huge threat to numerical modelling. In 
particular, when the particle size ratio between rock and soil is large, the 
heterogeneity and nonlinearity caused by the mechanical behaviours 
from different scales are enlarged, causing the description to diverge 
from reality. Generally, three kinds of methods, i.e., continuous, discrete 
and hybrid modelling schemes, can be used to study soil-rock mixture 

problems (Ren et al., 2022). 
In continuum mechanics methods, such as the finite element method 

(FEM) (Ye et al., 2005; Yang et al., 2012; Cen et al., 2020), finite dif-
ference method (FDM) (Li and Chu, 2019; Gao et al., 2020; Nasiri and 
Hajiazizi, 2020), finite volume method (FVM) (Valiani et al., 2002; 
Serrano-Pacheco et al., 2009) and meshfree methods (Dong and Grabe, 
2018; Navas et al., 2018; Wang et al., 2020; Li et al., 2022), the soil-rock 
mixture is normally assumed to be a continuous medium. The me-
chanical behaviour of the soil-rock mixture is normally described with a 
phenomenological macro constitutive model, while the micro mecha-
nism cannot be modelled. In some cases, soil-rock mixtures are treated 
as homogeneous materials in continuous methods to reduce the 
complexity of the numerical models, where the rocks and soils are 
distinguished easily by assigning different properties (Xu et al., 2008; 
Zhao et al., 2021). Meanwhile, the random field theory (Zhu and Zhang, 
2013; Dyson and Tolooiyan, 2019a) is also introduced in some research 
to consider the heterogeneity of soil-rock mixture behaviour, such as the 
random finite element method (RFEM) (Huang et al., 2010; Dyson and 
Tolooiyan, 2019b) and the random material point method (RMPM) 
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(Remmerswaal et al., 2021). However, in this scheme, the interface 
between soil and rock is considered inseparable, and it overestimates the 
cohesion and friction between soil and rock. In summary, the simplifi-
cations in continuum mechanics methods make it an efficient approach 
to solving soil-rock mixture problems, but the microscopic interaction 
between soil and rock is neglected, making it difficult to describe and 
capture the micro mechanisms of soil-rock mixtures in detail. 

In terms of discrete methods such as the DEM (Xu et al., 2016; Ji 
et al., 2022; Yao et al., 2022), soil and rock are modelled as individual 
particles (or blocks). There is no doubt that the microscopic interaction 
between particles of different grain sizes can be described in detail using 
discrete methods. However, when the particle size ratio between the 
rock and soil is large, the number of soil particles can be extremely large, 
which makes simulations impractical. On the other hand, if the particle 
size is too small, the time interval must be reduced to be very small to 
ensure stability, thereby making the simulation very time-consuming. 
Therefore, to ensure the accuracy and efficiency of the DEM in terms 
of simulating soil-rock mixtures, a reference particle size needs to be 
preset. However, it is normally much larger than the physical size of soil 
particles, thereby making the simulations diverge from reality. 
Furthermore, the parameters of a single soil particle, which may influ-
ence the mechanical behaviour of the soil-rock mixture, are usually 
difficult to determine through physical experiments. 

Hybrid methods, such as smooth particle hydrodynamics and 
discrete element method coupling scheme (SPH-DEM) and MPM-DEM, 
have also been developed in recent years. To our knowledge, MPM- 
DEM coupling scheme is mainly developed in two directions. Firstly, 
MPM-DEM hierarchical multi-scale simulations, where a bunch of DEM 
particles are incorporated to represent a MPM particle, in order to 
connect the micro and macro soil behaviors (Wang et al., 2022; Wang 
et al., 2023). More specifically, the microscopic mechanism at the grain 
level can be obtained by the DEM, and the macroscopic mechanical 
behaviour can be obtained by continuous methods such as SPH and 
MPM. Secondly, MPM-DEM mixed simulations (Liu et al., 2018; Yue 
et al., 2018; Chen et al., 2021; Jiang et al., 2022; Ren et al., 2022, Singer 
et al., 2022), where DEM particles and MPM particles are basically 
placed in a unified framework, but representing different materials, 
which may differ in particle sizes or properties, e.g., rocks and soils. 

Some simulations of debris flows have been attempted using the SPH- 
DEM method (Trujillo-Vela et al., 2020; Luo et al., 2022). However, in 
the existing simulations, the DEM is only used to simulate some boulders 
scattered in the SPH debris slurry. In view of the small number of 
boulders, the debris slurry and boulders are still two individual parts 
rather than a mixture, and the gradation characteristics existing in the 
debris flow are ignored. 

Therefore, we propose a coupled MPM-DEM method to simulate soil- 
rock mixtures in which soils are treated with continuum methods and 
rocks are modelled by the DEM. As for the novelty of the paper, we 
would like to emphasize its successful applications in modelling soil- 
rock mixtures with gradation characteristics. Due to the utilization of 
the contact force coupling scheme, material points will be converted to 
DEM particles with a ghost radius in the scheme, so that the contact 
force between the DEM particles and material points can be calculated 
based on DEM contact models. Meanwhile, since the ghost radius is 
given to each material point, the gradation characteristics of the mixture 
can then be reflected. As compared to the pure DEM simulations, due to 
the applications of MPM (continuum method) for modelling the 
numerous fine (soil) particles, the computational efficiency can thereby 
be greatly improved. Moreover, like the coarse-graining modelling 
scheme utilized in DEM, we applied the coarse-graining modelling 
scheme to the MPM part in this method, where a few small MPM par-
ticles are replaced by a large MPM particle, aiming to model soil-rock 
mixtures with extremely large particle size ratios, and further 
reducing computational resource requirements. Finally, GPU- 
accelerated MPM code based on the compute unified device architec-
ture (CUDA) is developed to enhance its efficiency and tackle the 
computational cost associated with numerous material points’ me-
chanical behaviours. Note that, the DEM part in our current MPM-DEM 
simulation is developed based on CPU without accelerating strategies, 
and it is expected that a GPU-accelerated DEM will be carried out in the 
near future, thereby making a unified GPU-accelerated environment for 
the whole simulation, and leading to a more realistic and large-scale 
problem description finally. 

The whole paper is organized as follows: The basic theories of the 
MPM and DEM are provided first in Section 2.1, and the key idea, for-
mulations and implementation procedures of the MPM-DEM are illus-
trated in Sections 2.2-2.4. Then, two simple examples, namely, ball 
impacting and block sliding, are introduced to illustrate the accuracy of 
the normal and tangential contact models, respectively, in Section 3. 
Afterwards, a comparative study between the MPM-DEM and DEM is 
provided in Section 4.1, demonstrating the effectiveness of the MPM- 
DEM in terms of simulating granular materials with gradations via a 
series of triaxial tests of binary granular mixtures. Thereafter, a coarse- 
graining modelling scheme based on the operation of replacing a set of 
small particles with one larger material point is proposed in Section 4.2 
and validated using triaxial models simplified from DEM samples with a 
particle size ratio of 1:10. Finally, a set of laboratory medium-sized 
triaxial tests are simulated using the proposed coarse-graining model-
ling scheme to demonstrate its capacity to solve soil-rock mixture 
problems in Section 5. In Sections 6 and 7, some discussions and con-
clusions about the proposed MPM-DEM method are provided. 

Fig. 1. Standard MPM process.  

Fig. 2. 2-order B-spline basis function and its derivative.  
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2. Construction of the coupled MPM-DEM method 

To improve the readability of the paper, the MPM and DEM theories 
are introduced first in this section. Some variables shared by the MPM 
and DEM are distinguished by the superscripts mpm and dem. 

2.1. Basic theory of the MPM and DEM 

2.1.1. Formulation of the MPM 
In continuum mechanics, mass conservation and momentum con-

servation can be written as two partial differential equations (PDEs) as 
follows: 

Mass conservation: 

ρ̇+ ρ∇⋅u̇ = 0 (1) 

Momentum conservation: 

ρü = ∇⋅σ + f b (2)  

where ρ is the density of the material, ρ̇ is the change rate of density with 
time, u̇ is the velocity, ü is the acceleration, σ is the stress and f b is the 
body force. 

For mass conservation, a simple treatment in the MPM is to give a 
mass that does not change with time to each material point, so it is not 
detailed here. In terms of momentum conservation, the equation can be 
transformed into a weak form, as shown in Eq. (3) using the Galerkin 
method as follows: 
∫

Ω
δu :σdΩ+

∫

Ω
δu⋅fbdΩ+

∫

Γ
δu⋅fΓdΓ =

∫

Ω
δu⋅ρüdΩ (3)  

where δu is the visual displacement, Ω is the problem domain, Γ is the 
boundary of the problem domain, f b refers to the body force and f Γ is the 
surface traction acting on the boundaries. 

To calculate the integrations in Eq. (3) using MPM, a background 
mesh is needed, as shown in Fig. 1. Generally, three basic steps can be 
summarized in the standard MPM. First, the information on the material 
points is mapped to the grid nodes to form the discrete momentum 
conservation equations. Second, the equations on the grid nodes are 
solved, and the information is mapped back from the grid nodes to the 
material points. Finally, variables, such as the positions and velocities of 
the material points, are updated. Some details may be different due to 
the stress and velocity updating scheme. In this work, the MUSL stress 
updating scheme (Kan et al., 2021) and FLIP velocity updating scheme 
(Brackbill and Ruppel, 1986; Brackbill et al., 1988) are adopted; see 
Section 2.4 for details. The discrete form of the momentum conservation 
equation can be written as Eq. (4), which is established following a 
similar process as that of the standard FEM (Zhang et al., 2001): 

Fext+Fint = MÜ (4) 

where Fext and Fint are the global external force vector and internal 
force vector, respectively, M is the mass matrix and Ü is the global ac-
celeration vector. If a lumped mass matrix (Wu, 2006) is used, Eq. (4) 
can be solved on each grid node individually, which is shown in Eq. (5) 
as follows: 

Fig. 3. Normal and tangential force calculation scheme.  

Fig. 4. MPM-DEM treatment for soil-rock mixtures.  

Fig. 5. Contact force coupling scheme.  

J. Li et al.                                                                                                                                                                                                                                         
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f I,ext+f I,int = mI üI (5) 

where f I,ext and f I,int are the external and internal forces on grid node 
I, respectively, and mI and üI refer to the mass and acceleration of grid 
node I, respectively. f I,int and f I,ext can be calculated by Eqs. (6)–(7) using 
a particle-to-grid scheme by introducing the shape functions, which are 
defined as follows: 

f I,int = −
∑

p,p∈gNeighbor
σp⋅BIpVmpm

p (6)  

f I,ext =
∑

p,p∈gNeighbor
f mpm

p NIp + f I,Γ (7) 

Similarly, the nodal mass and nodal velocity can also be calculated in 
this way and are expressed as follows: 

mI =
∑

p,p∈gNeighbor
mmpm

p NIp (8)  

u̇I =
1

mI
⋅

∑

p,p∈gNeighbor
mmpm

p u̇mpm
p NIp (9) 

where σp, Vmpm
p ,f mpm

p mmpm
p and u̇mpm

p are the stress, volume, body force, 
mass and velocity on material point p, respectively, and f I,Γ is the surface 
traction applied on grid node I calculated by surface integration. N and B 
are the weighting function and the vector of its spatial partial derivative, 
and gNeighbor represents the neighbour particle list of the concerned 
grid node. A 2-order B-spline (Gan et al., 2018) basis function (as shown 
in Fig. 2) is used in this paper to form the weighting functions to reduce 
the cell-crossing error (Yamaguchi et al., 2021) and is defined in Eq. (10) 
as follows: 

Fig. 6. Implementation procedure of the coupled MPM-DEM.  

J. Li et al.                                                                                                                                                                                                                                         
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w(ζ) =

⎧
⎨

⎩

0.75 − |ζ|2 0⩽|ζ| < 0.5
0.5⋅(1.5 − |ζ|)2 0.5⩽|ζ| < 1.5

0 1.5⩽|ζ|
(10)  

where ζ is the local coordinate of a material point, and the weighting 
function can be formed by the B-spline basis functions w(ζ) as follows: 

N = w(ζx)⋅w
(
ζy
)
⋅w(ζz) (11)  

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂w(ζx)

∂x
⋅w
(
ζy
)
⋅w(ζz)

w(ζx)⋅
∂w
(
ζy
)

∂y
⋅w(ζz)

w(ζx)⋅w
(
ζy
)
⋅
∂w(ζz)

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)  

where ζx, ζy and ζz are the local coordinates of the material point in 
three directions. 

2.1.2. Formulation of the DEM 
In the DEM, for each particle, mass conservation is clearly satisfied 

because its mass is a constant. The momentum conservation can be 
expressed as shown in Eqs. (13)–(14), which are expressed as follows: 

f dem
p + τdem

p + f dem,b
p = mdem

p üdem
p (13)  

Tdem
p +Trolling

p = Ipθ̈
dem
p (14)  

Tdem
p =

∑

q,q∈pContact

(

rdem
p −

‖δn‖

2

)

n × τdem
p (15)  

Fig. 7. Momentum exchange process in ball impacting example.  

Table 1 
The parameters and the initial settings of the ball impacting example.  

Parameters and initial settings Single DEM - Single 
MPM 

Single DEM - Multiple 
MPM 

DEM ball MPM ball DEM ball MPM ball 

Total mass (kg) 0.3351 
Young’s modulus (GPa) 1.0 
Poisson’s ratio 0.2 
Friction coefficient 0.8 
Time interval (s) 1.0e-6 
Total time (s) 1.6 
Initial velocity (m/s) − 5.0 0.0 − 5.0 0.0 
Particle number 1 1 1 4224  

J. Li et al.                                                                                                                                                                                                                                         
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where fdem
p , mdem

p and üdem
p are the normal contact force, mass and ac-

celeration of the DEM particle p, τdem
p is the tangential contact force, 

f dem,b
p is the body force, e.g., gravity, n is the unit normal vector, Tdem

p is 
torque from other DEM particles, Trolling

p is the torque caused by rolling 
friction, rdem

p is the radius of particle p, δn is the normal overlap between 
two contacted particles, and Ip and θ̈p are the moment of inertia and the 
angular acceleration of particle p, respectively. The contributions from 
all contacted particles should be considered in the calculation of fdem

p and 
τdem

p , which are as follows: 

f dem
p =

∑

q,q∈pContact
f dem

pq (16)  

τdem
p =

∑

q,q∈pContact
τdem

pq (17)  

where fdem
pq and τdem

pq are the contact forces between particles p and q in 
the normal and tangential directions, respectively, and they can be 
calculated using the Hertz-Mindlin contact theory (Goniva et al., 2012). 
pContact denotes the contacted particle list of the concerned particle p. 
As shown in Fig. 3, the normal contact force is solved based on the 
normal overlap between the two particles, and the tangential force is 
calculated by the relative tangential displacement of the contact point 
and Coulomb’s friction law. 

f dem
pq = − knδn − ηnor

p u̇nor,dem
pq (18)  

τdem
pq =

⎧
⎪⎨

⎪⎩

−

∫ t

tc,0
ktu̇tan,dem

pq dt − ηtan
p u̇tan,dem

pq ,

⃦
⃦
⃦τdem

pq

⃦
⃦
⃦⩽μ

⃦
⃦
⃦fdem

pq

⃦
⃦
⃦

− μ
⃦
⃦
⃦f dem

pq

⃦
⃦
⃦t,
⃦
⃦
⃦τdem

pq

⃦
⃦
⃦ > μ

⃦
⃦
⃦f dem

pq

⃦
⃦
⃦

(19)  

where kn and kt are elastic constants in the normal and tangential di-
rections, respectively, and they can be calculated following Eqs. (20)– 
(21). ηnor

p and ηtan
p are the normal and tangential viscoelastic damping 

constants, t is the tangential unit vector and μ is the friction coefficient. 
u̇nor,dem

pq and u̇tan,dem
pq are normal and tangential relative velocities, 

respectively. 

kn =
4
3
‖δn‖

1
2

⎛

⎜
⎝

1 −
(

vdem
p

)2

Ep
+

1 −
(

vdem
q

)2

Eq

⎞

⎟
⎠

− 1

⋅

(
rdem

p + rdem
q

rdem
p ⋅rdem

q

)− 1/2

(20)  

kt = 4‖δn‖
1
2

⎛

⎝

(
2 − vdem

p

)
⋅
(

1 + vdem
p

)

Ep
+

(
2 − vdem

q

)
⋅
(

1 + vdem
q

)

Eq

⎞

⎠

− 1

⋅

(
rdem

p + rdem
q

rdem
p ⋅rdem

q

)− 1/2
(21)  

where vdem
p and vdem

q are Poisson’s ratios of particles p and q, respectively, 
Ep and Eq are Young’s moduli, and rdem

p and rdem
q represent the radii. 

2.2. MPM-DEM scheme for soil-rock mixtures 

According to the characteristics of soil and rock, continuous and 
discontinuous methods can be used to model soil and rock, respectively. 
The soil mass is composed of many soil particles and exhibits the char-
acteristics of a continuous medium. It is difficult to obtain the properties 
of a single soil particle using laboratory tests, but it is easy to obtain its 
macroscopic mechanical response to describe its mechanical behaviour 
through a constitutive model using continuous methods. Rocks are 
scattered in the soil mass, which usually has higher strength compared 
with the soil mass. They are distinct from soil and other rocks, which can 
be described with discrete methods. 

As shown in Fig. 4, the MPM and DEM are used to construct this 
hybrid continuous-discrete scheme to model soil-rock mixtures. The soil 
mass is treated as a continuous medium and discretized into a series of 
material points, of which the mechanical properties can be described 
with a constitutive model. The rocks are modelled with DEM particles 
for simplicity. Various shapes of DEM particles (Zhao and Zhao, 2019) 
make it possible to model rocks with almost any shape, and the conve-
nient contact theory makes it suitable for describing the interaction 
between multiple rocks. If the strength of rocks is very high and only 
small deformation occurs during the whole physical process, a rock can 

Fig. 8. Velocities of two ball impacting cases with time.  

Fig. 9. Schematic diagram of the block sliding example.  
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be modelled with only one DEM particle, while if the rock is broken, it 
can be modelled with multiple DEM particles with the particle breakage 
theory (Zhou et al., 2020; Wang et al., 2021; Ni et al., 2022). For 
simplicity, spherical DEM particles are used in the simulations of this 
paper, and particle breakage is not considered. 

The interactions between rock and soil, including the frictional and 
cohesive characteristics, can be described by the contact between these 
two components. In our MPM-DEM scheme, various contact models 
approved in the DEM can be used to calculate the contact force between 
rock and soil. However, a material point cannot directly interact with 
DEM particles, and a scheme converting material points in contact with 
DEM particles into ghost DEM particles is proposed; see Section 2.3 for 
details. 

2.3. Formulation of the MPM-DEM 

The coupling of the two methods is based on the laws of mass con-
servation and momentum conservation. The mass conservation is 
automatically satisfied because the model can be simplified to a series of 
particles with constant masses in both the MPM and DEM. Based on 
momentum conservation, the contact force is used to link the two 
methods (see Fig. 5). Because the contact force is a pair of forces with 
equal magnitude and opposite directions and the force transmission 
process is also accompanied by momentum transmission, the contact 
force coupling scheme thereby automatically meets the momentum 
conservation. 

As shown in Fig. 5, the key idea of the contact force coupling scheme 
is to treat the material points in contact with DEM particles as ghost 
DEM particles to calculate the coupling contact force and then apply the 

Fig. 10. Superquadric particles with different parameters.  

Fig. 11. Position of the block on the plane at different times.  
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coupling contact force as an external force to the DEM and MPM. It can 
be summarized into three basic steps. First, a ghost radius rmpm→dem

p is 
introduced to check whether a material point is in contact with any DEM 
particles. Thereafter, the contacted material points are converted into 
ghost DEM particles, and the coupling contact force is calculated using 
the Hertz-Mindlin contact theory. Finally, the ghost DEM particles are 
converted back to material points, the coupling contact force is applied 
to the MPM and DEM parts, and the two parts then enter their own 
calculation process. It is worth noting that the material points that are 
not in contact with the DEM particles do not participate in the coupling 
process, leading to very low computational effort. 

For convenience, the ghost radius can be directly calculated from the 
volume of the source material point by Ren et al. (Ren et al., 2022), 
while a different scheme that introduces the porosity is used in this 
work. The radius of a ghost DEM particle can be calculated as shown in 
Eq. (22), which is expressed as follows: 

rmpm→dem
p =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3

4π⋅Vmpm
p ⋅

(
1 − κp

)3

√

(22)  

where κp is the porosity of material point p. This scheme allows the 
MPM-DEM model to be directly constructed by classical DEM modelling 
schemes, such as the volume expansion method. This ensures that there 
is a reasonable degree of initial overlap, without introducing contact 
gaps, and helps to establish the model under a correct initial stress state. 

The total normal and tangential coupling contact force acting on the 
DEM particle and the contacted material points can be calculated as 
shown in Eqs. (23)–(24), which are expressed as follows: 

f mpm− dem
p =

∑

q,q∈pContact
f mpm− dem

pq (23)  

τmpm− dem
p =

∑

q,q∈pContact
τmpm− dem

pq (24)  

where f mpm− dem
pq and τmpm− dem

pq are the normal and tangential coupling 
contact forces on DEM particle p from material point q, respectively, 
which can be calculated by Eq. (18) and (19). 

By applying f mpm− dem
p and τmpm− dem

p as external forces to DEM particle 
p, the coupling form of the momentum conservation equation of the 
DEM can be obtained as follows: 

f dem
p + τdem

p + f mpm− dem
p + τmpm− dem

p + f dem,b
p = mdem

p üdem
p (25)  

Tdem
p +Tmpm− dem

p +Trolling
p = Ipθ̈

dem
p (26)  

Tmpm− dem
p =

∑

q,q∈pContact

(

rmpm→dem
p −

‖δn‖

2

)

n × τmpm− dem
p (27)  

where Tmpm− dem
p is the torque caused by the material points in contact 

with the current particle. A similar treatment can be applied to the MPM 
momentum conservation equation, so a new governing equation of the 
MPM can be obtained as follows: 

f I,ext+f I,int = mI üI (28)  

where f I,ext can be calculated as follows: 

f I,ext =
∑

p,p∈gNeighbor

(
f mpm

p − f mpm− dem
p − τmpm− dem

p

)
⋅NIp + f I,Γ (29) 

Note that the contact coupling scheme only changes the external 
force boundary conditions of the MPM and DEM, and the introduction of 
ghost DEM particles does not affect their own solution process, which 
means that the governing equations can be solved concurrently. This 
process will be illustrated in detail in Section 2.4. 

Fig. 12. Velocities and displacements of the block with time.  
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2.4. Implementation procedure of the coupled MPM-DEM 

To solve the coupling governing equations of the MPM and DEM, a 
central difference time integration scheme (Berzins, 2022) has been 
introduced. The MUSL stress update scheme and FLIP velocity update 
scheme are used in this research to ensure the conservation of energy. 
The calculation procedure of the MPM-DEM is summarized in this sec-
tion and simplified in a diagram in Fig. 6. 

The detailed implementation procedure of the coupled MPM-DEM is 
as follows:  

(1) Preprocessing. 

Establish the numerical model using a series of particles and deter-
mine their parameters. Macro-parameters can be determined through 
triaxial tests, while micro-parameters should be determined through 
some calibration simulations.  

(2) Form and solve the governing equations. 

Formulate the coupling governing equations using Eqs. (25)–(26) 
and (28), and subsequently solve the MPM nodal acceleration and DEM 
particle acceleration.  

(3) Update the velocities and positions of particles.  
a. Velocities of material point is updated using FLIP scheme: 

u̇n+1/2,mpm
p = α

∑

I,I∈pNeighbor

Nn
Ip⋅un+1/2

I +(1 − α)
(

u̇n− 1/2,mpm
p

+ Δt⋅
∑

I,I∈pNeighbor

Nn
Ip⋅ün

I

)

(30) 

where pNeighbor is the neighbour grid node list of material point p, α 
is the PIC damping. 

Velocities of DEM particles are updated directly: 

u̇n+1/2,dem
p = u̇n− 1/2,dem

p +Δt⋅ün,dem
p (31)  

θ̇
n+1/2,dem
p = θ̇

n− 1/2,dem
p +Δt⋅θ̈

n,dem
p (32)    

b. Positions of MPM and DEM parts are updated as follow: 

un+1,mpm
p = un,mpm

p +Δt⋅
∑

I,I∈pNeighbor

Nn
Ip⋅u̇n+1/2

I (33)  

un+1,dem
p = un,dem

p +Δt⋅u̇n+1/2,dem
p (34)  

θn+1,dem
p = θn,dem

p +Δt⋅θ̇
n+1/2,dem
p (35)    

(4) Update the stress of material points. 

The try stress is updated with MUSL scheme: 

mn+1
I =

∑

p,p∈gNeighbor
Nn+1

Ip mmpm
p (36)  

u̇n+1/2
I =

1
mn+1

I
⋅

∑

p,p∈gNeighbor
Nn+1

Ip mmpm
p u̇n+1/2

p (37) 

After the nodal velocity is recalculated following Eqs. (36)–(37), the 
strain and spinor can be determined using a grid to particle scheme. The 
try stress is calculated using an elastic constitutive considering the 
Jaumann stress rate, and then corrected to fit the Drucker-Prager yield 
surface. 

Fig. 13. Relative error of the maximum velocity and displacement.  

Fig. 14. Grading curves of binary granular mixture triaxial samples.  

Table 2 
The number of particles in binary granular mixtures.  

Coarse 
particle 
content 

Confining 
pressure 

Number of 
fine particles 

Number of 
coarse 
particles 

Total number 
of particles 

0% 50 kPa 512,000 0 512,000 
20% 50 kPa 431,054 127 431,181 
40% 50 kPa 326,236 232 326,468  
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Incidentally, to ensure the numerical stability, the Raleigh time in-
terval is employed in this study. 

ΔtRalrigh =
πrmin

0.163ν + 0.877

̅̅̅̅
ρ
G

√

(38)  

where rmin minimum radius of particles, G is the shear modulus.  

(5) Check if the number of steps has reached the limit. 

If it reaches a critical number of steps, then end the calculation 
process; otherwise, go back to step (2) and continue the cycle. 

3. Validation of the contact model 

As stated in Sections 2.3 and 2.4, the coupling between the MPM and 
DEM occurs through the contact force. Therefore, two simple bench-
mark examples are carried out first to verify the correctness of the 
normal and tangential contacts. 

3.1. Ball impacting for normal contact verification 

The accuracy of momentum exchange between two balls is important 
to check the correctness of the normal contact for the MPM-DEM 
method. In this section, a simple ball impacting example is presented. 
In this example, a DEM ball moves towards an MPM ball with a constant 
velocity, and the momentum exchange is recorded for the whole colli-
sion process. Moreover, to make the validation more rigorous, two cases 
of MPM balls are considered: one is composed of a single material point 
(Fig. 7a), and the other involves multiple material points (Fig. 7b). 

A linear-elastic constitutive model is used in the MPM part to avoid 
potential energy loss due to plasticity. Moreover, to show the 

momentum exchange between the MPM and DEM more intuitively, the 
masses of the MPM and DEM particles are set to be the same. The same 
time interval shared by the MPM and DEM, and the material properties 
and initial settings are provided in Table 1. 

As shown in Fig. 7, in the two cases, i.e., single DEM – single MPM 
and single DEM – multiple MPMs, the DEM ball impacts the MPM ball 
after approximately 0.8 s. After the impact, the DEM ball’s velocity is 
instantly reduced to zero, while on the contrary, the MPM ball inherits 
its velocity spontaneously. 

The curves of the velocities with time for the MPM and DEM balls are 
provided in Fig. 8 using a quantitative approach. It can be clearly seen 
that the momentum exchange between the MPM and DEM finished in a 
very short time and that the momentum conservation is well satisfied. 
Therefore, the normal contact model between the MPM and DEM is 
correct and reliable. 

3.2. Block sliding for tangential contact verification 

For the purpose of verifying the correctness of the tangential contact 
model, an example of a block sliding on an inclined frictional plane is 
described in this section (see Fig. 9). The block has a size of 0.3 m × 0.15 
m × 0.15 m. Two cases are modelled: the DEM block sliding on the MPM 
plane and the MPM block sliding on the DEM plane. The dip angle of the 
plane is 45◦, and the width is 0.15 m. A series of scenarios with different 
friction coefficients is considered, where the friction coefficient varies 
from 0.1 to 0.5 at an interval of 0.1. 

To simulate the block and the inclined plane using a DEM particle, 
the superquadric nonspherical particle is introduced, and its surface can 
be described using Eq. (39). 

f (x) =
(⃒
⃒
⃒
x
a

⃒
⃒
⃒

n2
+

⃒
⃒
⃒
y
b

⃒
⃒
⃒

n2 )n1/n2
+

⃒
⃒
⃒
z
c

⃒
⃒
⃒

n1
− 1 = 0 (39)  

where x, y and z are the spatial coordinates, x = (x, y, z)T , a, b and c are 
the shape parameters representing the half-length of the particle along 
its three directions, and n1 and n2 are the blockiness parameters 
belonging to interval [2,+∞); when n1 and n2 are set to 2, it becomes a 
spherical particle. Fig. 10 demonstrates how to control its shape using 
the parameters in the superquadric surface equation. The shape pa-
rameters are set according to the size of the block and the plane, and the 
block parameters are set as n1 = n2 = 20.0 in this work. 

Driven by a vertically downwards acceleration with a magnitude of 
10

̅̅̅
2

√
m/s2, the block slides along the plane. The Young’s modulus, 

Poisson’s ratio and density are set to be the same for both the MPM and 
DEM, which are 80.0 MPa, 0.3 and 2000.0 kg/m3, respectively. The 
ghost radius of the material point, which is necessary for the calculation 
of the contact force with the DEM particles, is calculated under the 
assumption of a zero void ratio. The time step is chosen as 1.0e-5 s, and a 
total physical time of 0.5 s is simulated. 

Fig. 15. Samples with a particle size ratio of 1:10 for pure DEM simulations.  

Fig. 16. Curves under different coarse particle contents.  
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The motion of the block on the inclined frictional plane can be 
described by Newton’s second law, and its velocity and displacement 
along the plane with time obey Eqs. (40) and (41), respectively. 

vtangent = (g⋅sinθ − μ⋅g⋅cosθ)⋅t (40)  

stangent =
(g⋅sinθ − μ⋅g⋅cosθ)⋅t2

2
(41)  

where g is the vertically downwards acceleration, θ is the dip angle of the 
inclined plane and μ is the friction coefficient of the plane. 

Different configurations of the block are given in Fig. 11, and curves 
of the velocities and displacement with time are shown in Fig. 12. The 
simulation results agree well with the analytical solutions for both cases. 
Both the linear increase in velocity and parabolic increase in displace-
ment can be effectively described by the MPM-DEM method. 

To quantitatively illustrate the accuracy of this coupling scheme, a 
detailed comparison of the maximum velocities and displacements 
under different friction coefficients is shown in Fig. 13. The errors of the 
velocities in all of these cases are all less than 0.3%, and the errors of 
displacement are all less than 0.06%, which shows the reliability of this 
scheme. Moreover, it is found that the error is less when the block is 
treated as a DEM particle, which can provide a reference for the chosen 
modelling schemes to ensure the simulation accuracy. 

4. Comparative studies between the MPM-DEM and DEM 

4.1. Validation of binary granular mixture triaxial tests 

Before applying the proposed MPM-DEM method to soil-rock 
mixture problems, a comparative study between this method and the 
pure DEM is described in this section. As a simplification of the soil-rock 
mixture, a binary granular mixture is chosen to verify the correctness of 
the MPM-DEM as a benchmark example. In the binary granular mixture, 
the particles are divided into coarse particles and fine particles, and the 
gradation is discontinuous (Zhou et al., 2018), which makes it easy to 
implement numerically. 

A set of binary granular mixture samples for triaxial tests with a 
particle size ratio of 1:10 under different coarse particle contents and 
confining pressures is generated and simulated using a pure DEM code. 
The particle size ratio refers to the ratio between the mean size of the 
fine particles and the mean size of the coarse particles, and it is intro-
duced to describe the gradation. The mean particle sizes are set to 0.01 
m and 0.001 m for coarse and fine particles, respectively. The coarse 
particle content, which is called the rock content in soil-rock mixture 
problems, is measured by the percentage of the mass of coarse particles 
in the sample, and three levels of 0%, 20%, and 40% coarse particle 
contents are considered in this section. First, a series of triaxial tests are 
carried out under a confining pressure of 50 kPa for each sample, and 
two additional confining pressures of 100 kPa and 150 kPa are then 
implemented using the 0% coarse particle content sample for macro- 
parameter calibration for the MPM-DEM simulation. In addition, a 
uniformly distributed gradation in the range of 0.95 to 1.05 times the 
preset particle size is introduced for fine and coarse particles to avoid 
crystallization. Fig. 14 shows the particle grading curves of different 
samples. 

The volume expansion method, which is widely-used in DEM simu-
lations, is used in conjunction with our ghost radius calculating scheme 
to generate the triaxial samples. First, particles with diameters 1/5 times 
the target grain size are generated in a domain slightly larger than the 
sample size. Then, the diameters of the particles expand to the target 
grain size at a very slow rate. After the expansion process, the samples 
are compacted until the preset confining pressure is reached for triaxial 
tests. By adopting this method, reasonable initial overlaps can be ob-
tained in the numerical models, which ensures the samples are estab-
lished at a correct initial stress state. Samples with a side length of 
approximately 0.075 m are generated under different confining pres-
sures, and the number of particles in each sample is presented in Table 2. 
Three of the samples with coarse particle contents of 0%, 20% and 40% 
under a confining pressure of 50 kPa are depicted in Fig. 15. 

First, three triaxial tests of different coarse particle contents under a 

Fig. 17. Strain – stress curve and Mohr stress circles of DEM pure fine parti-
cle samples. 
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confining pressure of 50 kPa are carried out using the pure DEM to 
explore the influence of the coarse particle content on mechanical be-
haviours. The micro-parameters used in the pure DEM simulations are as 
follows: the Young’s modulus of the fine and coarse particles are both set 
as 0.8 GPa, the Poisson’s ratios are both set to 0.12, and the densities are 
both selected as 2600.0 kg/m3. The friction coefficients between fine 
particles, between coarse particles and between fine particles and coarse 
particles are all set to 0.35. The loading velocity is set to 0.002 m/s, 
which satisfies the requirement of the inertia index (Jop et al., 2006), as 
shown in Eq. (42). The time interval is set to 1.0e-6 s, and a total of 6.4 
million steps have been simulated. 

I = ε̇⋅d⋅
̅̅̅
ρ
P

√

⩽10− 3 (42)  

where ε̇ is the axial strain rate, d is the mean grain size of the sample, ρ is 
the density and P is the confining pressure. 

As shown in Fig. 16, the axial strain-shear stress curves of the sam-
ples under 50 kPa confining pressure present a trend of hardening first 
and softening thereafter. The peak shear stress increases with increasing 
coarse particle content, while the residual shear stresses are shown to be 
the same independent of the coarse particle content. It is also found that 
the hardening and softening phenomena become faster with increasing 
coarse particle content. 

In the MPM-DEM scheme, the fine particles are simulated by the 
MPM, and macro-parameters of a set of fine particles are thereby 
needed. Two additional triaxial tests involving pure fine particle sam-
ples under 100 kPa and 150 kPa confining pressures are then carried out 
using the DEM. The axial strain – shear stress curves of these tests are 
shown in Fig. 17(a). 

The cohesion and friction angle of fine particles can be determined 
by the Mohr stress circles, as shown in Fig. 17(b) and (c). In addition, 
Young’s modulus and the dilatancy angle are determined by the result of 
fine particles under a 50 kPa confining pressure. All of the macro- 
parameters for the simulation are summarized in Table 3. It should be 
noted that the friction angle and cohesion are slightly lower than those 
obtained from the Mohr circles because the outer circle of the Drucker- 
Prager yield surface is used in this simulation. These macro-parameters 
remain unchanged in the following MPM-DEM simulations and are not 
affected by the coarse particle content. 

To describe the phenomenon of the hardening and softening 
behaviour shown in the pure fine particles, a cubic hardening function 
and an exponential softening function are introduced in Eq. (43), which 
is expressed as follows: 

φ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φe, εp = 0
aε3

p + bε2
p + cεp + d, 0 < εp⩽εpeak

p

φr +
(
φp − φr

)
e− H(εp − εpeak

p ), εp > εpeak
p

(43)  

where εp is the cumulative equivalent plastic strain at the current time, 
εpeak

p is the cumulative equivalent plastic strain when the shear stress 
reaches the peak value and is set to 0.022 in this work, φr and φp are the 
residual friction angle and peak friction angle, respectively, and φe is the 
friction angle used in the elastic stage, which is chosen to be the same as 
φr in this simulation. a, b, c, and d are the coefficients of the hardening 
function, which are set to 1075.64, − 407.93, 16.39 and 0.32, respec-
tively. H is a coefficient related to the softening rate and is set to 50.0 
here. 

To incorporate the constitutive model, a pure MPM triaxial test 
under 50 kPa is simulated using the proposed MPM-DEM method. The 
fine-particle sample used in the DEM simulation is used directly to 
construct the MPM model to obtain an initial overlap between the ma-
terial points and loading plates to maintain the same confining pressure 
as the pure DEM test. The result is shown in Fig. 18, where the DEM 
result is also provided as a comparison. It can be seen from the figure 
that the result of the MPM-DEM is in good agreement with the DEM 
result, which indicates that our constitutive model can effectively 
describe complex soil behaviour, including both the hardening and 
softening processes. Therefore, the effectiveness of the proposed MPM- 
DEM method can be preliminarily demonstrated, and the idea of 
replacing DEM particles with material points is shown to be reliable in 
successfully capturing soil behaviours. Thereafter, two triaxial tests with 
coarse particle contents of 20% and 40% are also simulated using the 
MPM-DEM with the above macro and micro-parameters under a 
confining pressure of 50 kPa, and the results are shown in Fig. 19. 

It can be seen from the figure that the MPM-DEM results are 
consistent with the DEM solutions. The hardening and softening phe-
nomenon at different coarse particle content levels can be effectively 
described. Moreover, the influence of the coarse particle content on the 
peak shear stress and the rate of hardening and softening discovered in 
the DEM simulations can also be effectively reproduced. In summary, 

Table 3 
Macro-parameters of fine particles in binary granular mixtures.  

Density (kg/m3) Young’s modulus 
(MPa) 

Poisson’s 
ratio 

Peak cohesion 
(Pa) 

Residual cohesion 
(Pa) 

Peak friction 
angle (◦) 

Residual friction 
angle (◦) 

Dilatancy angle 
(◦) 

Determined by porosity of 
each sample  

4.6  0.12  0.0  0.0  28.6  18.6  16.0  

Fig. 18. Curves of MPM-DEM pure fine particle samples under 50 kPa 
confining pressure. 

Fig. 19. Results of the MPM-DEM under different coarse particle contents.  
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the mechanical behaviour of the complex mesoscale system composed of 
coarse and fine particles can be effectively captured by our method. 
Therefore, the MPM-DEM is demonstrated to be reliable in the simplest 
soil-rock mixture problem, that is, the binary granular mixture problem. 

Fig. 20 showcases the failure process of the sample containing 60% 
coarse particles. Evidently, plastic strain accumulates in the vicinity of 
the rocks, especially in denser regions, as observed in prior studies on 
soil-rock mixtures (Gong and Liu, 2017; He et al., 2021). From the 
continuous perspective, this phenomenon results from the high strength 
of rocks, which limits plastic zone propagation and leads to strain 
accumulation around the rocks. From the discrete perspective, the area 
around the rocks is more prone to non-woven deformation. It is worth 
noting that the sparse distribution of material points around several 
rocks in Fig. 20 is not caused by contact gaps, but rather by the 
perspective chosen when creating the cross-sectional view in the post- 
processing software. 

4.2. A coarse-graining modelling scheme based on the MPM-DEM 

As mentioned in Section 4.1, a small-sized triaxial test using a DEM 
simulation with a large particle ratio of 1:10 will result in millions of 
particles. The computational cost is extremely high, and only super-
computing clusters can be used. Coarse-graining modelling scheme is a 
widely-used simplification technique in DEM simulations to tackle the 
large particle size ratio problem, where a set of small size particles is 
replaced by one large size particle. Likewise, in our simulation, we 

applied this technique to the MPM part. Due to the ghost radius assigned 
to each MPM particle, it basically inherits both the MPM and DEM 
particles characteristics. When the contact force is calculated, it behaves 
as a DEM particle; while for updating the stress and strain of the soils, it 
acts following the continuum mechanics. Therefore, akin to increasing 
the mesh size in FEM, coarse-graining modelling scheme in the MPM 
part essentially refers to the increase of MPM particle size, so that the 
computational efficiency can be improved as the number of MPM par-
ticles is reduced. By doing so, it can eliminate the need for an excessive 
number of particles, given the condition that the stress state within the 
continuum part is correct, thereby making the modelling more effi-
ciently. The benefit of this coarse-graining modelling scheme is partic-
ularly noticeable when the particle size ratio is extremely large. 

To demonstrate the effect of the coarse-graining scheme, a series of 
coarse-graining MPM-DEM triaxial samples with a particle size ratio of 
1:5 (Fig. 21) are generated to reproduce the results of the pure DEM 
under the particle size ratio of 1:10 simulated in Section 4.1. The 
constitutive model and the parameters used here are the same as those in 
Section 4.1. The information of these triaxial tests is presented in 
Table 4, where the particle reduction scale is introduced to describe the 
simplified degree of a sample, which is defined as the ratio of the total 
number of particles between the current sample and the corresponding 
sample with a 1:10 particle size ratio. As shown in Table 4, the particle 
reduction scale of these samples is approximately 1:8, that is, approxi-
mately 8 fine particles are replaced by one material point in the coarse- 
graining models. 

Fig. 20. The plastic zone of 1:10 particle size ratio sample under 60% coarse particle content.  

Table 4 
Information on the coarse-graining MPM-DEM triaxial samples.  

Sample 
number 

Particle size 
ratio 

Coarse particle 
content 

Confining 
pressure 

Number of material 
points 

Number of coarse DEM 
particles 

Total number of 
particles 

Particle reduction 
scale 

1 1:5 0% 50 kPa 64,000 0 64,000 1:8 
2 1:5 20% 50 kPa 53,884 114 53,998 1:8 
3 1:5 40% 50 kPa 40,773 224 40,997 1:8  

Fig. 21. Coarse-graining MPM-DEM samples with a particle size ratio of 1:5.  
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The results under each coarse particle content are depicted in Fig. 22. 
The mechanical characteristics of hardening and softening can be 
effectively described with the coarse-graining MPM-DEM samples. 
Moreover, the influence of the coarse particle content on the peak shear 
stress and the rate of softening and hardening can also be effectively 
reflected. The mechanical behaviour of binary mixtures can still be 
effectively described even if there are fewer particles in the simplified 
samples, indicating that our simplification with a particle reduction 
scale of 1:8 is within a reasonable range. Considerable computational 
resources are saved by this simplification. There is no doubt that the 
results under a 1:5 particle size ratio with a particle reduction scale of 
1:8 are reliable, which means that at least 87.5% of the computational 
resources can be saved. In fact, the contacts between fine particles do not 
need to be handled in the MPM-DEM, and the time interval can be 
increased by using a larger material point size; foreseeably, far more 
than 87.5% of the computational cost can be reduced. 

In addition, the failure process depicted in Fig. 23 demonstrates that 
the sample with a particle size ratio of 1:5 accurately reproduces the 
same failure mode observed in the sample with a particle size ratio of 
1:10, further validating its accuracy. 

Finally, factors affecting the time cost are analysed detailly. As 
shown in Table 5, A high content of coarse particles generates more 

ghost particles, resulting in a higher number of contact pairs and elon-
gated pair time. However, the pair time only accounts for a small pro-
portion of the computational time (lower than 20% in tested samples). 
The other process, including MPM calculation and neighbor list con-
struction times are more time-consuming, which may significantly 
decrease with smaller number of fine particles. Therefore, the total time 
cost decrease with higher coarse particle content due to the decrease in 
total number of particles, indicating that higher coarse particle content 
does not reduce the computational efficiency of our proposed method. 

Based on the MPM-DEM method, a coarse-graining modelling 
scheme is proposed in this section; this approach is a computational 
resource-conserving scheme that can greatly increase the efficiency. Its 
ability to solve the large particle size ratio problem is validated using a 
series of coarse-graining simplified triaxial tests of binary granular 
mixtures, which indicates that this method can be used to simulate soil- 
rock mixture problems. 

5. Reproduction of the mechanical behaviour of soil-rock 
mixtures 

To further illustrate the feasibility of the application of this method 
to soil-rock mixture problems, a series of laboratory medium-sized 
triaxial tests with 50% rock content implemented by Fan et al. (Fan 
et al., 2014) are simulated in this section. The rocks used in these triaxial 
tests are pebbles and gravel, and the soil mass is low liquid limit clay 
with sand. Three types of samples with rock sizes of 0.005–0.010 m, 
0.010–0.016 m and 0.016–0.020 m are constructed and compressed 
under confining pressures of 200 kPa, 400 kPa and 800 kPa, respec-
tively. The gradations of the samples are presented in Table 6. 

Cylindrical samples were directly prepared in a triaxial pressure 
chamber with dimensions of 0.101 m × 0.2 m (diameter × height). First, 
the sample was consolidated to the specified confining pressure, and 
then, an axial displacement boundary condition was applied to begin the 
triaxial test. 

To simulate these triaxial tests, the particle size of the soil particle 
should be set to at least 1.0e-3 m for the pure DEM, which may result in a 
large computational cost. However, in the MPM-DEM method, the 
coarse-graining modelling scheme based on MPM-DEM mentioned in 
Section 4.2 can be used to increase the size of the material points. In this 

Fig. 22. Results of the MPM-DEM with a particle size ratio of 1:5.  

Fig. 23. The plastic zone of 1:5 particle size ratio sample under 60% coarse particle content.  

Table 5 
Time costs of triaxial tests.  

Sample 
number 

Coarse 
particle 
content 

Number of 
material 
points 

Number of 
ghost 
particles 

Pair 
time 
(CPU) 

Total time 
(CPU +
GPU) 

1 0% 64,000 0 0 s 34951 s 
2 20% 53,884 6978 3428 s 33160 s 
3 40% 40,773 12,257 6022 s 29119 s 

Note: The MPM code runs on the GPU (NVIDIA 3060Ti GPU), while DEM is 
calculated on the CPU (Intel @ Xeon (R) W-2133CPU @ 3.60 GHz CPU) using 
single core. 

Table 6 
The gradation of the physical triaxial samples.  

Grain Size (m) Gradation 1 Gradation 2 Gradation 3 

0.016–0.020 50% 0% 0% 
0.010–0.016 0% 50 0% 
0.005–0.010 0% 0% 50% 
0.5e-3–1.0e-3 0.6% 0.6% 0.6% 
0.25e-3–0.5e-3 1.3% 1.3% 1.3% 
0.075e-3–0.25e-3 14.1% 14.1% 14.1% 
< 0.075e-3 34.0% 34.0% 34.0%  
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section, the size of the material points is set to 2.0e-3 m, which is two 
times the maximum grain size of the soil particles. The sizes of the nu-
merical models are slightly different from those of the tests, which are 
modelled as cuboid with a size of 0.1 m × 0.1 m × 0.2 m to facilitate the 
application of the boundary conditions, as shown in Fig. 24. In other 
words, we used a true triaxial stress state to represent a biaxial stress 
state, which ensures the reliability of our simulated mechanical behav-
iour. A characteristic particle size method proposed by Du et al. (Du 
et al., 2017) is used here to simplify the MPM-DEM models; in this 
method, the diameter of rocks in the range of 0.005–0.010 m is replaced 
by the characteristic particle size of 0.010 m. Similarly, rocks in the 
ranges of 0.010–0.016 m and 0.016–0.020 m are treated in the same 
way, with characteristic particle sizes of 0.015 m and 0.020 m, respec-
tively. Similar to the triaxial tests of binary granular mixtures, the vol-
ume expansion method is used to generate the numerical samples. The 
numbers of particles in samples with different rock sizes are listed in 
Table 7. 

Using the proposed MPM-DEM method, the soil mass is treated as a 
set of material points with macro-parameters, and the rocks are treated 
as DEM particles with micro-parameters. The macro-parameters of the 
soil used in the simulation are listed in Table 8 for clarity. The micro- 
parameters of the rock are set as follows: the density is 2700 kg/m3, 
the Young’s modulus is 50 GPa and Poisson’s ratio is 0.20, referred from 
the work of Du et al. (Du et al., 2017). Because the micro-parameters of a 
single soil particle are not mentioned in related studies on this test, the 

micro-parameters of the soil particle are assumed to be the same as those 
of the rock for simplicity. The interaction between rock or rock-soil 
particles is considered purely frictional, and the cohesion effect is 
neglected. The interparticle frictional coefficient between the rock and 
rock-soil contacts is 0.3. The Drucker-Prager yield criterion and a linear 
hardening function are used here to describe the hardening phenome-
non in the triaxial tests. 

The simulation results of the MPM-DEM are presented in Fig. 25 and 
compared with the results from the tests. The simulation results under 
different confining pressures and rock sizes are generally consistent with 
the test results. The difference between simulations and tests can be 
explain as the samples in simulations cannot be exact as in tests. 
Regardless, these results demonstrate the potential of our approach to 
address soil-rock mixture problems with a reasonable accuracy. 

Moreover, by analysing the curves for different rock sizes, it can be 
easily discovered that the influence of rock size can be effectively 
captured by the proposed MPM-DEM method. The axial strain – shear 
stress curves are typical hardening curves without obvious peak values. 
The mechanical behaviour is greatly affected by the rock size; with 
increasing rock size, the peak value decreases, and the hardening phe-
nomenon becomes more obvious, especially under higher confining 
pressure. This phenomenon means that the influence mechanism of rock 
size on the mechanical characteristics of soil-rock mixtures has been 
correctly reflected. 

As shown in Fig. 26, the plastic zone distributions at different time 
steps reveal that the primary driver of soil failure lies in the substantial 
plastic deformation within the zone containing dense rocks. Ultimately, 
the connected plastic zones culminate in the formation of a shear zone, 
which triggers sample failure. 

In summary, the MPM-DEM is a suitable method for simulating soil- 
rock mixtures. It can effectively reproduce and predict mechanical 
behaviour, especially the influence of rock size. Therefore, it is a reliable 
method and can be applied to soil-rock mixtures. 

Fig. 24. MPM-DEM models of the laboratory medium-sized triaxial tests.  

Table 8 
The macro-parameters of soil used in the MPM-DEM simulation.  

Confining 
pressure 
(kPa) 

Density (kg/m3) Young’s modulus 
(MPa) 

Poisson’s 
ratio 

Cohesion (kPa) Friction angle (◦) Dilatancy angle 
(◦) 

200 kPa Determined by the porosity of each 
sample  

3.0 0.3 Linear Hardening from 
20.5 kPa 

Linear Hardening from 
30.0◦

5.0 
400 kPa  4.8 
800 kPa  8.5  

Table 7 
The numbers of particles of different MPM-DEM soil-rock mixture samples.  

Rock 
size 

Particle size 
ratio 

Number of 
material points 

Number of coarse 
DEM particles 

Total number 
of particles 

0.010 
m 

1:5 185,505 1486 186,991 

0.015 
m 

1:7.5 186,540 451 186,991 

0.020 
m 

1:2 186,793 199 186,992  
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6. Discussions 

It is worth noting that the proposed MPM-DEM coupling method 
does have constraints and limitations in some circumstances. When the 
models are oversimplified using the coarse-graining modelling scheme, 
the simulation results become distorted. Following the study in Section 
4.1, the models with a particle size ratio of 1:10 are further simplified to 
a particle size ratio of 1:2.5, as shown in Fig. 27. One material point in 
these models represents approximately 64 fine particles, and the triaxial 
tests are carried out under the same conditions mentioned in Section 4.1. 

As shown in Fig. 28, the hardening and softening phenomenon, the 
trend of peak shear stress and the rate of hardening and softening 
increasing with the coarse particle content can still be effectively 
described. However, the errors of the peak shear stresses are significantly 
higher, especially under higher coarse particle contents. A possible reason 
for this phenomenon is that when the size of the material points is too 
large, the flow of material points in the gap between the coarse DEM 
particles is blocked, and the coarse-graining simplified model can no 
longer describe its mechanical behaviour. Another reason may be that the 
coupling contact force in the MPM is calculated on the material points 
first and then mapped to the grid nodes to solve the governing equations 
thereafter. The coupling contact force on a grid node is the summation of 
its neighbour particle list, which is different from the initial coupling force 
on material points. Because of this difference, errors may occur when 
reflecting the mechanical behaviour of the soil-rock interaction, espe-
cially when the background mesh is very coarse. 

Another limitation is that the proposed MPM-DEM scheme may lose 
accuracy in soil-rock mixtures with large coarse particle contents. The 
premise of using material points with a continuum constitutive model to 
describe the mechanical behaviour of fine particles is that there are a 
sufficient number of fine particles in the gap between coarse particles, so 
the soil shows the characteristics of continuum media. 

Basically, our MPM-DEM method is proposed mainly for solving soil- 
rock mixtures with large particle size ratios. Compared to the traditional 
DEM simulations, it has advantages of computational efficiency because 
the fine particles are treated as a continuum. So far, to our experience, 
we have found that the accuracy can be guaranteed when the particle 
size ratio is greater than 1:5. This is because when the particle size ratio 
is larger, the tracking of the contact boundary is more accurate. How-
ever, two things are worthy to be mentioned. 1) When particle size ratio 
is very large, computational resources will be still very high, causing a 
great many of particles in the system. That is also the reason we incor-
porate the coarse-graining scheme for reducing the number of MPM 
particles. 2) When dealing with small particle size ratios (less than 1:5) 
and exceedingly high rock contents, the reliability of our method may 
degrade, and in these situations, using a pure DEM modelling scheme 
may be more appropriate. 

7. Conclusions 

In this paper, a coupled MPM-DEM method is proposed to simulate 
soil-rock mixtures with large particle size ratios. The soil particles are 
treated as material points, while the rocks are treated with the DEM. To 
calculate the coupling contact force, that is, the linking of the MPM-DEM 
method, a scheme based on ghost particles is introduced. Moreover, a 
coarse-graining modelling scheme based on the MPM-DEM is proposed 
to model soil using fewer material points with larger particle sizes. By 
using this scheme, the number of particles can be greatly reduced, and 
the time interval can be further increased, which significantly reduces 
the computational cost during simulation. 

Four examples are introduced in this paper to validate this method. 
The accuracy of the normal contact and tangential contact model are 
first proven by the ball impacting example and the block sliding 
example. Then, a series of triaxial tests of binary granular mixtures are 
simulated using both the same models as pure DEM simulations and 
coarse-graining simplified models. The results indicate that the MPM- 
DEM method can reproduce the results of the pure DEM under the 
same numerical model and can effectively describe the mechanical 
behaviour of materials with a large particle size ratio using the coarse- 
graining modelling scheme. Finally, a series of laboratory triaxial tests 
of soil-rock mixtures are simulated to prove the validity of this method. 
The results show that the mechanical behaviour of soil-rock mixtures 
can also be effectively described, and the influence of rock size is also 
captured. In summary, the proposed MPM-DEM method is an efficient 
and accurate method for solving soil-rock mixture problems, and it also 
has broad prospects in other fields of geotechnical engineering. 

Fig. 25. Axial strain – shear stress curves under different confining pressures.  
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Fig. 26. Cumulative equivalent plastic strain of Gradation 2 under 800 kPa confining pressure.  

Fig. 27. Binary granular samples of the MPM-DEM with a particle size ratio of 1:2.5.  

Fig. 28. Results of the MPM-DEM for a particle size ratio of 1:2.5.  
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