
 
 

Delft University of Technology

Tutorial on memristor-based computing for smart edge applications

Gebregiorgis, Anteneh; Singh, Abhairaj; Yousefzadeh, Amirreza; Wouters, Dirk; Bishnoi, Rajendra;
Catthoor, Francky; Hamdioui, Said
DOI
10.1016/j.memori.2023.100025
Publication date
2023
Document Version
Final published version
Published in
Memories - Materials, Devices, Circuits and Systems

Citation (APA)
Gebregiorgis, A., Singh, A., Yousefzadeh, A., Wouters, D., Bishnoi, R., Catthoor, F., & Hamdioui, S. (2023).
Tutorial on memristor-based computing for smart edge applications. Memories - Materials, Devices, Circuits
and Systems, 4, Article 100025. https://doi.org/10.1016/j.memori.2023.100025

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.memori.2023.100025
https://doi.org/10.1016/j.memori.2023.100025


Memories - Materials, Devices, Circuits and Systems 4 (2023) 100025

T
A
R
a

b

c

d

A

K
E
M
C

1

t
h
p
w
(
t
i
i
$
i
d
m
a
m
o
m
t

N

w

h
R

2
(

Contents lists available at ScienceDirect

Memories - Materials, Devices, Circuits and Systems

journal homepage: www.elsevier.com/locate/memori

utorial on memristor-based computing for smart edge applications✩

nteneh Gebregiorgis a,∗, Abhairaj Singh a, Amirreza Yousefzadeh b, Dirk Wouters c,
ajendra Bishnoi a, Francky Catthoor d, Said Hamdioui a

Computer Engineering Lab, Delft University of Technology, Delft, The Netherlands
IMEC, The Netherlands
RWTH Aachen University, Germany
IMEC, Belgium

R T I C L E I N F O

eywords:
dge-AI
emristor
omputation-In-Memory

A B S T R A C T

Smart computing on edge-devices has demonstrated huge potential for various application sectors such as
personalized healthcare and smart robotics. These devices aim at bringing smart computing close to the source
where the data is generated or stored, while coping with the stringent resource budget of the edge platforms.
The conventional Von-Neumann architecture fails to meet these requirements due to various limitations
e.g., the memory-processor data transfer bottleneck. Memristor-based Computation-In-Memory (CIM) has the
potential to realize such smart edge computing for data-dominated Artificial Intelligence (AI) applications by
exploiting both the inherent properties of the architecture and the physical characteristics of the memristors.
This paper discusses different aspects of CIM, including classification, working principle, CIM potentials and
CIM design-flow. The design-flow is illustrated through two case studies to demonstrate the huge potential
of CIM in realizing orders of magnitude improvement in energy-efficiency as compared to the conventional
architectures. Finally future challenges and research directions of CIM are covered.
. Introduction

Edge computing has emerged as a potential alternative to tradi-
ional server and cloud computing which rely on powerful computing
ardware such as GPU [1]. Edge computing enables new types of ap-
lications (such as personalized healthcare, autonomous driving, etc.)
ith the advantage of implementing the required Artificial Intelligence

AI) solutions as close as possible to the data sources and personalized
o the end-user [2]. Consequently, the market share of edge AI has
ncreased tremendously, and it is expected to grow further [3,4]. For
nstance, the market value of edge computing hardware will exceed
200 billion by the year 2025 and the demand for edge computing will
ncrease in volume and use case, creating significant opportunities in
ifferent sectors. For example, Fig. 1 shows the U.S. edge computing
arket size for different components (Hardware, Software, Service

nd Platforms). The boom in edge computing market value is driven
ainly by the increase in connectivity of devices that produce gazillions

f data and increasing demand for real-time processing and decision
aking. Thus, these two factors are increasingly pushing computing

owards edge devices which ultimately drives the rise in the edge

✩ This work was supported in part by the EU H2020 grant ‘‘DAIS’’ that has received funding from the ECSEL Joint Undertaking (JU) under grant agreement
o 101007273.
∗ Corresponding author.
E-mail addresses: A.B.Gebregiorgis@tudelft.nl (A. Gebregiorgis), A.Singh-5@tudelft.nl (A. Singh), Amirreza.Yousefzadeh@imec.nl (A. Yousefzadeh),

outers@iwe.rwth-aachen.de (D. Wouters), R.K.Bishnoi@tudelft.nl (R. Bishnoi), Francky.Catthoor@imec.be (F. Catthoor), S.Hamdioui@tudelft.nl (S. Hamdioui).

hardware market. However, the conventional Von-Neumann based ar-
chitectures (such as CPU, GPU and TPU) are suffering from the three
well-known architectural walls such as the so-called memory-wall [5];
not to mention the three technology walls CMOS technology (used
to implement such architectures) is facing such as static power [6].
As a result, excessive time and energy are spent in moving massive
amount of data between the memory and data paths, which makes such
architectures to be extremely energy-inefficient [7–9]. These challenges
are therefore hindering the widespread application of edge computing.
Both architectural and technological walls are making the design of
efficient edge computing engines extremely difficult. Therefore, there
is a clear demand for alternative architectures and/or technologies to
realize resource and energy-efficient computing engines for edge-AI
applications.

Existing works on alternative architectures can be classified on those
based on traditional CMOS [10–14], and those based on emerging
device technologies such as memristors [15–18]. The first class consists
of computing engines that go beyond Von-Neumann, but fully imple-
mented using volatile CMOS technologies; examples are neuromorphic
engines such as IBM TrueNorth [13], Intel Lohi [10,11], Morphic [19],
ttps://doi.org/10.1016/j.memori.2023.100025
eceived 7 November 2022; Received in revised form 7 December 2022; Accepted

773-0646/© 2023 The Author(s). Published by Elsevier Ltd. This is an open acces
http://creativecommons.org/licenses/by-nc-nd/4.0/).
13 January 2023

s article under the CC BY-NC-ND license

https://doi.org/10.1016/j.memori.2023.100025
https://www.elsevier.com/locate/memori
http://www.elsevier.com/locate/memori
http://crossmark.crossref.org/dialog/?doi=10.1016/j.memori.2023.100025&domain=pdf
mailto:A.B.Gebregiorgis@tudelft.nl
mailto:A.Singh-5@tudelft.nl
mailto:Amirreza.Yousefzadeh@imec.nl
mailto:wouters@iwe.rwth-aachen.de
mailto:R.K.Bishnoi@tudelft.nl
mailto:Francky.Catthoor@imec.be
mailto:S.Hamdioui@tudelft.nl
https://doi.org/10.1016/j.memori.2023.100025
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Gebregiorgis, A. Singh, A. Yousefzadeh et al. Memories - Materials, Devices, Circuits and Systems 4 (2023) 100025

h

B
c
(
p
a
o
m
c
t
t
h
o
m
t
t
a
e

t
c
t
s
S
P
(
r
d
p
s
a
q
C
n
a
t
a
a
c

d
s
f
a
s
t
d
i

p

Fig. 1. Projection of edge computing market growth in U.S. divided among edge
ardware, software, services and platforms from the year 2017–2028.

rainScales [20], and SpiNNaker [12]. Hence, their architectures face
ommon challenges [7,8,21]; e.g., they are power hungry, expensive
mainly targeting cloud and data-centres), suffer from high leakage
ower (due to volatile CMOS nodes), occupy large silicon area, as huge
mount of memory is distributed among multiple processors (neurons)
n a single chip and the SRAMs used for synapses require six or
ore transistors per synapse, communication with the off-chip memory

onsumes huge memory bandwidth, etc. All these challenges make
hem unsuitable for edge applications which are too demanding e.g., in
erm of energy-efficiency (order of ≈0.1fJ/op) and cost. On the other
and, the second class makes use of alternative architectures based
n emerging non-volatile device technologies, commonly known as
emristor-based Computation-In-Memory (CIM). CIM has the potential

o break the aforementioned challenges (due to the inherent nature of
he architecture and the devices used to realize it) and deliver energy
nd cost-efficient implementations of computing engines suitable for
dge-AI applications [22–24].

Such memristor-based CIM architectures use non-volatile devices
o store data while exploiting their inherent capability to perform
omputation on the stored data which enables them to circumvent
he costly data movement of the conventional Von-Neumann based
ystems [25]. Emerging non-volatile memory technologies, such as
pin-Torque Transfer Magnetic Random Access Memory (STT-MRAM),
hase-Change Memory (PCM), and Resistive Random Access Memory
RRAM) serve as the building blocks in realizing CIM [26]. As a
esult, different CIM-based accelerators have been developed to target
ifferent domains, applications and kernels such as neuromorphic com-
uting [27–31]. Although these works have demonstrated (at the small
cale) the potential of CIM in realizing energy-efficient computing,
chieving the maximum attainable potential of CIM is still an open
uestion. For instance, using an appropriate holistic approach to design
IM accelerator for a dedicated application could significantly improve
ot only the overall energy-efficiency, but also result in cost-effective
nd robust hardware implementation [32]. Therefore, understanding
he targeted application, identifying the critical kernels to be acceler-
ted, selecting the best CIM microarchitecture for the critical kernels
nd applying proper design methodology are examples of aspects which
ontribute to the overall CIM efficiency.

This paper presents a holistic design-flow that is essential for the
esign of efficient CIM accelerator and demonstrates it on two case
tudies. The paper first discusses the CIM concept, including its classi-
ication and its potential in realizing energy-efficient computing. Then,
detailed discussion on CIM design-flow is presented by starting from

ystem level design all the way down to circuit design and device
echnology selection. Finally, the paper presents two case studies to
emonstrate the potential of CIM in accelerating data and computation
ntensive applications.

The remainder of the paper is organized as follows. Section 2
resents the background of CIM such as the working principle, CIM
2

Fig. 2. Classification of CIM architectures.

classification, device technologies for CIM, and potential CIM applica-
tions. Section 3 presents the design-flow of CIM accelerator. Sections 4
and 5 present the CIM case studies using database query and image
classification applications, respectively. Finally, Section 6 discusses the
challenges and future directions of CIM.

2. What is CIM all about?

This section first presents the basic concept and classification of CIM
architecture followed by the discussion of device technologies used for
CIM. Then, a high level memristor-based CIM architecture is presented
together with its benefits. Finally, the potential applications of CIM are
discussed.

2.1. CIM basics and classification

Computation-In-Memory (CIM) is a computing paradigm which in-
tegrates the computation and storage in the same physical location.
The integration of computation and storage location enables CIM to
overcome the data transfer bandwidth challenge of conventional archi-
tectures and unlock new potential for efficient computing. It is worth
stressing the fact that CIM architectures perform computations within
the memory core. As this consists of a memory array and the peripheral
circuits, CIM architectures can be divided into two basic sub-classes
depending on where the result of the computation is produced [25]
as shown in Fig. 2; these sub-classes can be also combined into many
hybrid combinations.

• CIM-Array (CIM-A): the computation result is produced within
the memory array. CIM-A architectures require always a redesign
of cells to support logic or arithmetic operations, as the con-
ventional memory cell dimensions and their embedding in the
bit- and wordline structure are optimized only for storage and
typical read/write accesses. Examples of CIM-A architectures are
presented in [33–35].

• CIM-Periphery (CIM-P): in CIM-P class, the computation result is
produced within the peripheral circuit. CIM-P architectures re-
quire significant design changes in the memory peripheral circuits
and these may typically contain dedicated circuits such as cus-
tomized sense amplifiers. Typical examples of CIM-P architectures
contains logical operations and vector matrix multiplications [36–
38].

Moreover, both classes can be further classified into: (1) basic architec-
tures requiring design changes only inside the memory array (CIM-Ab)
or only in the periphery (CIM-Pb), and (2) hybrid where in addition
to major changes in the memory array minimal to medium changes are
required in the peripheral circuit (CIM-Ah) or vice versa (CIM-Ph) [39].



A. Gebregiorgis, A. Singh, A. Yousefzadeh et al. Memories - Materials, Devices, Circuits and Systems 4 (2023) 100025
Table 1
Comparison of bit-cell design metrics for various CIM flavours.
Source: Data obtained from [47,48].

Metrics CIM flavors with various memory technology

SRAM DRAM Flash RRAM MRAM PCM
CIM CIM CIM CIM CIM CIM

Size (𝐹 2) 120–150 10–30 10–30 10–30 10–30 10–30
Volatility Yes Yes No No No No
Write energy ∼fJ ∼10 fJ ∼100 pJ ∼1 pJ ∼1 pJ ∼10 pJ
Write speed ∼1 ns ∼10 ns 0.1–1 ms ∼10 ns ∼5 ns ∼10 ns
Read speed ∼1 ns ∼3 ns ∼100 ns ∼10 ns ∼5 ns ∼10 ns
Endurance 1016 1016 104 − 106 107 1015 1012

Scalability Medium Medium Medium High High High

2.2. Device technologies for CIM

CIM can be realized using both conventional and emerging memory
technologies. The memory technologies used for CIM can be broadly
classified as charge-based memories and non-charge-based memories.
In charge-based memories such as, Dynamic Random Access Memory
(DRAM), Static Random Access Memory (SRAM) and Flash, information
is stored through the presence of charge. Whereas, the non-charge-
based memories include different types of storage elements distin-
guished by their physical mechanism; these includes resistive [40],
magnetic memories [41,42], or even phase change memories [43]. The
unique characteristics associated with each device technology for CIM
are illustrated in Table 1.

2.2.1. CIM using charge-based memories
The volatile SRAM and DRAM memories can be used to build CIM

architecture. An SRAM-based architecture has the benefit of speed due
to faster SRAM accesses [44], while DRAM based CIM has a significant
advantage in terms of density [45]. Due to their volatility, both SRAM
and DRAM based CIM flavors face serious power dissipation problems.
On the contrary, Flash based CIM has a non-volatile memory that uses
a floating gate transistor which has a charge trapping mechanism. Flash
based CIM has density benefit over DRAM based CIM as Flash uses only
a single transistor. However, it requires high voltage and considerably
long duration to write a value [46].

2.2.2. CIM using non-charge-based memories
CIM implementation based on non-charge-based memories com-

monly known as memristors. Memristor-based CIM flavors store the
information in the form of resistance states, which can be in a high
resistance or a low resistance states [6]. The resistance state can be
changed using reset or set electrical pulses [49]. Non-charge-based
memory technologies (memristor-based CIM) have several key ad-
vantages over charge-based memory technologies such as, zero leak-
age, non-volatility, density and scalability. However, non-charge-based
memory technologies have relatively higher write energy and longer
read and write latency than their charge-based counterparts [47,48].

Due to its different advantages CIM using non-charge-based memo-
ries outperforms CIM using charge-based memories, at least in terms of
energy efficiency and cost [50]. Therefore, in the rest of this paper we
will focus on CIM using non-charge-based memories, or the so called
memristor-based CIM.

2.3. Memristor-based CIM

Fig. 3 shows a high level micro-architecture of memristor based
CIM. The storage and computation are integrated together in a crossbar
array structure where memristor device is used at each crossbar junc-
tion. The communication to the crossbar is realized with the support
of peripheral circuits which perform different functions depending on
the targeted CIM architecture; for example input/output data format
conversion may require row decoding equipped with Digital-to-Analog
3

Fig. 3. CIM core architecture concept.

Conversion (DAC). Reading the memory array during the operation ex-
ecution may require Analog-to-Digital Conversion (ADC) or dedicated
sense amplifiers, etc. The control block is responsible for the overall
control of the CIM core operation.

Memristor-based CIM has many features that make it feasible to
realize ultra-low power and energy-efficient computing:

• Practically zero leakage computing: The non-volatile nature of the
resistive devices enables CIM to maintain the stored values in a
leakage free manner when it is not operating, which solves the
leakage bottleneck of SRAM-based architectures.

• Massive parallelism: CIM provides high parallelism as typically all
columns in a crossbar can be accessed concurrently, leading to
maximal parallelism. Moreover, the scalability of memristor tech-
nology enables to increase the number of columns per crossbar,
which in turn increases the degree of parallelism CIM can offer.

• Near zero data bandwidth requirement: Integration of storage and
computation in the same physical location circumvents the band-
width bottleneck associated with the traditional computation cen-
tered systems, which need significant data movement between the
memory and processing units.

2.4. Potential CIM applications

CIM has a wide application range as it overcomes the shortcomings
of conventional technologies and architectures. Some representative ap-
plications that can benefit from CIM acceleration are discussed below.
However, it is worth mentioning that the applications which can benefit
from CIM acceleration are not limited to these applications.

• Pattern matching with automata processor: Pattern matching
with automata processor has binary Vector Matrix Multiplication
(VMM) as its kernel. Such application can be easily accelerated
using memristive-based CIM by mapping the binary VMM kernel
to a CIM crossbar array [51,52].

• Database: Database queries require bit-wise operations such as
OR, AND, and XOR. These operations can be accelerated with
CIM, in this case the CIM-P is the right architecture for this
application as it is less demanding from design and technology
point of view [51,52].

• Compressed sensing and recovery: This requires multilevel vector-
matrix multiplication, which can be easily implemented and ac-
celerated in CIM architecture [53].

• LIght Detection And Ranging (LIDAR) image enhancement using
guided image filtering: Guided image filtering is an image pro-
cessing technique in which an input image is smoothed based on a
guidance image, while preserving edges [54]. The guidance image
serves as a filter for the convolution (VMM) operation. This can
be easily accelerated with CIM.



A. Gebregiorgis, A. Singh, A. Yousefzadeh et al. Memories - Materials, Devices, Circuits and Systems 4 (2023) 100025

3

t
c
o
a
s
a
f
a

3

m
T

3

s
t
w
(
h

o
r
b
k
M
w
a
e
k
t
a
i
k

3

c
v
c
n
c
k
o
a

3

n
a
t
m
t
c
d
m
w
r
w
a
m
C
c
b
m
c
s
b
a
w
c
m

4

d
p
i
e
o

Fig. 4. Illustration of CIM design-flow.

• Image recognition and classification with deep neural networks:
Image recognition and classification using deep neural networks
can benefit from CIM as its kernel operation (VMM) can be
mapped and accelerated using CIM crossbar array [55].

• Hyper-Dimensional Computing (HDC): HDC involves manipula-
tion and comparison of large patterns within memory [56]. HDC
is highly memory-centric application and it can be easily imple-
mented in CIM.

• Sparse coding: Sparse coding reduces the complexity of the input
signals and enables more efficient processing to improve feature
extraction and pattern recognition functions [57]. Sparse coding
can be mapped and accelerated by CIM-based neural network
implementations.

• Associative memory: An associative memory compares input data
with the data stored in the CIM array and finds the address of
the data with the closest match to the input data [58]. Thus, the
comparison logic operation kernel can be accelerated with CIM.

• Physically Unclonable Function (PUF): PUF can be viewed as
a computational unit that returns an output response, r = f(c),
where c is an input challenge and f describes the unique in-
ternal stochastic property of the PUF. A stronger PUF can be
implemented using CIM crossbar array by exploiting the broad
distribution of memristive resistance values [59].

. CIM design-flow

The design of CIM accelerator is strongly application dependent;
he kernels/functions that should be accelerated for one application
ould be different from those of other applications. Delivering an
ptimized and cost-effective CIM accelerator implementation requires
holistic approach in which the whole design stack in its entirety

hould be addressed. Fig. 4 illustrates the holistic approach for CIM
ccelerator design. The remainder of this section discusses CIM design-
low from system level design aspect to circuit level design of CIM
rchitectures.

.1. System level design

The system level design aspect of CIM design-flow involves two
ain steps which are crucial for developing efficient CIM architecture.
hese steps are discussed below.

.1.1. Application profiling for critical kernel identification
Application profiling is the process of determining the execution

peed and resource utilization of the internal functions of an applica-
ion. Profiling enables the identification of the critical functions/kernels
hich have the most significant impact on the performance metrics

e.g., energy, latency) of an application execution. These critical kernels

ave to be then accelerated by CIM in order to speed-up the execution

4

f the application and reduce the overall energy consumption. As al-
eady mentioned, different applications may require different kernels to
e accelerated while minimizing the data movement. For example, the
ernels of a classifier based on neural networks (NN) is Vector Matrix
ultiplication (VMM) [60], the kernels of data-base application are bit-
ise logic operations [52], the kernel of a matching application using
n automata processor is the binary vector matrix multiplication [61],
tc. Note that depending on an application, the operands needed by the
ernel/function to be accelerated my reside both in memory (like it is
he case of data-base query) or only one operand resides in the memory
nd the other one has to be fed to the CIM core through the external
nput (as it is the case for VMM used in NNs). Hence, the nature of the
ernel contributes to the definition of the CIM (micro)architecture.

.1.2. Accelerator configuration definition
Defining appropriate CIM configuration is critical before starting the

ircuit design. Different configurations are possible including CIM-A
ersus CIM-P, on-chip (resides in the same physical chip with the main
ore) versus off-chip, etc. Each of these have their own pros and cons
ot only in terms of energy-efficiency, but also in terms of cost and
omplexity. Obviously, the size of the problem/ application and the
ernels that need to be accelerated have a large impact on the selection
f the appropriate configuration. Performing some design exploration
t this stage while considering some trade-offs is quite important.

.2. Circuit level design

Once the kernels and suitable CIM architecture are identified, the
ext step is designing the circuit as shown in Fig. 4. Since CIM devices
re consisting of memory array and peripheral circuits (see Fig. 3),
he design of both parts has to be considered. The design of the
emory array has two aspects: the technology, and the structure. The

echnology refers to the memristive device type to be selected, which
ould be RRAM, PCRAM, STT-MRAM, etc. The choice of the technology
epends on, but not limited to, the number of bits needed per the
emory cell (e.g., PCRAM and RRAM can support multi-level storage
hile STT-MRAM is binary), the selected CIM architecture (e.g., CIM-A

equires higher endurance than CIM-P), etc. The structure refers to the
ays both the array e.g., dual bit line arrays [62], common-source line
rray [63], crossbar array [64] and the cell (e.g., the one-transistor-one-
emristor (1T1R)) are organized. On the other hand, the peripheral
MOS circuits include two parts: analog/mixed signal and digital cir-
uits. The analog/mixed circuits are mainly required for conversions
etween analog and digital domains; they might be also used for
ultiplexing signals in analog domain. Examples are digital-to-analog

onverters (DACs) and analog-to-digital converters (ADCs), customized
ense amplifiers (SA), etc. The choice of analog circuits depends on,
ut not limited to, the kernel and the architecture; e.g., performing
nalog VMM with CIM-P requires at least the relatively expensive ADCs,
hile performing OR function with CIM-P architecture requires only

ustomized SAs. The digital CMOS circuits are mainly required for the
emory controller and temporary storage (i.e., registers).

. CIM-based Boolean Binary Logic for database query

This section presents a database query application case study to
emonstrate the importance of the CIM design-flow presented in the
revious section. The section first presents a system-level profiling to
dentify the critical kernel of database query application for CIM accel-
ration. Thereafter, the circuit-level design to realize a CIM accelerator
f the critical kernel is illustrated followed by simulation results.



A. Gebregiorgis, A. Singh, A. Yousefzadeh et al. Memories - Materials, Devices, Circuits and Systems 4 (2023) 100025

a

4

4

a
c
s
t

Fig. 5. (a) Boolean binary logic operations involved in a database query application,
nd (b) its implementation using scouting logic design [65].

.1. System-level profiling

.1.1. Binarized database query
Query operations can be performed on databases that are structured

s collections of features, associated with different entries. A query is
onsidered to be satisfied if the features associated with the selected
et of entries met the predefined constraints. It is possible to formulate
he queries on feature vectors as bulk Boolean Binary Logic (BBL)

operations if the databases are represented in a bitmap representation;
i.e., vectors of the logical ‘‘0’’ and ‘‘1’’ as shown in Fig. 5a. This binary
representation of data favors the utilization of memristor-based CIM
architecture for accelerating bulk BBL operations as the key kernel to
solve database queries.

4.1.2. Kernel identification for acceleration
Many database applications involve queries with series of BBL op-

erations. Note that any query can be expressed as the sum of products
(SOP) (for example (𝑎1 ⋅𝑏1)+(𝑎2 ⋅𝑏2)), or the product of sums (POS) (for
example (𝑎1+𝑏1)⋅(𝑎2+𝑏2)) where sum and product operators correspond
to logical OR and logical AND operations, respectively. However, their
occurrence is instructed by the query and is not necessarily alternated
OR and AND operations. Hence, an arbitrary query function 𝐹 (𝐴) can
be expressed as a combination of POS and SOP as given by:

𝐹 (𝐴) = 𝐹 (𝑆1) ∗ 𝐹 (𝑆2) ∗ ... ∗ 𝐹 (𝑆𝑝) (1)

where 𝐹 (𝑆𝑖) = 𝑎𝑖 ∗ 𝑏𝑖, ∗ is an OR or AND operator, and p depends on
the query length.

Database applications usually involve several query functions,
where each query function contains multiple logical OR and/or logical
AND (BBL) operations. The amount of BBL operation per database
increase exponentially with increase in a query, incurring significant
energy and latency overhead. Therefore, BBL operation is a critical
kernel of database applications which can be benefited from CIM
acceleration.

4.1.3. Mapping of the database kernel into CIM
The underlying principle of solving database query using CIM ar-

chitecture is to store the database entries in arrays of memristive
devices using their conductance as the logic state variable. Therefore,
we exploit the non-volatile binary storage capability of the memristive
devices and the inherent parallelism that the CIM provides. For ex-
ample, 0 and 1 values can be represented by the memristive devices
Low Conductance State (LCS) and High Conductance State (HCS),
respectively. The operands of a product or a sum (e.g., 𝑎𝑖 and 𝑏𝑖) are
aligned within a single column; hence, data alignment is needed. It
is clear that BBL operation for database query operation, such as the
example shown in Fig. 5a, can be easy mapped to CIM crossbar.
5

4.2. Circuit-level design

4.2.1. PCM-based 1R bitcell design
PCM is one of the most attractive resistive memory technology [66]

and is being massively explored for CIM implementations [67]. Re-
cently proposed projected PCM device [65] based on 𝑆𝑏2𝑇 𝑒3 consists
of a segment of a non-insulating projection material, in parallel to the
phase-change material segment. Programming such a device requires
adequate power to melt the phase-change material and sufficiently
abrupt to quench the molten volume to the low conducting amorphous
phase (RESET operation) or a low-amplitude slow melting to switch to
the high conducting crystalline phase (SET operation). The projected
layer takes advantage of the highly non-linear current–voltage (𝐼-𝑉 )
characteristics of amorphous phase change materials to decouple the
read and write processes. The low sheet resistance of the projection
material allows the current to bypass the highly resistive amorphous
phase during the low-field read operation and flows through it only
during the high-field write operation. In this manner, the read signal be-
comes negligibly affected by the non-ideal electronic properties of the
amorphous phase, which makes the projected PCM device remarkably
immune to conductance variations arising from structural relaxation,
1∕𝑓 noise and temperature variations [65]. Each cross-point in the CIM
memory unit consists of a selector-less projected PCM device (1R) with
a series resistance for regulating abrupt current fluctuations. Although
this 1R structure with a crossbar without selectors suffers inherently
from current sneak-paths [68], special biasing schemes are used for
each operation in [52] to limit this effect and make the selector-less
crossbars functional.

4.2.2. CIM-based logic design
Since the database systems store data-bits in the memory unit, non-

stateful-based CIM-P class of logic designs can be used to perform
bulk BBL operations. Efficient CIM-P based read-assisted logic scheme
such as scouting logic [38] is deployed where the logical operands are
stored as conductance values in the crossbar, while the result of the
logical operation is produced in the peripheral circuit (through current
sensing). The operands are only read during the operation and the
devices does not to be (re)programmed during the evaluation of the
logical operation; hence less impact on the device endurance.

Fig. 5b shows the realization of BBL using scouting logic. By simul-
taneously activating multiple rows,it is possible to implement logical
operations such as AND and OR using customized sense amplifiers (SAs)
providing appropriate choice of reference currents during the operation
execution. Hence, enabling the execution of the basic building blocks of
the database query operations. Example queries are shown in Fig. 5a
that determines the entries satisfying ‘‘C’’ OR ‘‘D’’ and ‘‘A’’ AND ‘‘E’’.
The features are activated by biasing simultaneously the associated
crossbar rows corresponding with a read voltage 𝑉𝑅. In a CIM core,
the resulting read current 𝐼𝑅 along each column is the summed con-
ductance of the memristive devices according to Kirchhoff’s laws. The
logical output is obtained by comparing the resulting current with
predefined reference currents via a SA per column. The query is per-
formed on the entire CIM core, executing simultaneously up to 𝐶 BBL
operations where 𝐶 is the number of column in the crossbar; thus,
achieving high parallelism with O(1) time complexity.

4.2.3. Cascaded logic design for a series of BBL operations
Real-world database queries consist of a multitude of sub-queries

with associated logical operations rather than a single query. Solv-
ing such a query with a scouting logic shown in Fig. 5 could yield
an inefficient system as it requires an additional memory unit for
temporary storage of intermediate results, additional expensive pro-
gramming cycle and subsequently fetching for further processing along
with the next set of logical outputs. Recently proposed cascaded logic
computing system [52] performs a logical operation both in-memory
and near-memory simultaneously, thus avoiding temporary storage,



A. Gebregiorgis, A. Singh, A. Yousefzadeh et al. Memories - Materials, Devices, Circuits and Systems 4 (2023) 100025

s
i

4

t
o
t
o
T

b

t
t

𝑊

f

5

t
(
M
B
o
t

Fig. 6. Cascaded logic design to perform series of bulk BBL operations for high
throughput [52].

Table 2
Design parameters.

Parameters Specifications

PCM device Sb2Te3 [65]
𝑅𝑜𝑓𝑓 1 MΩ
𝑅𝑜𝑛 20 kΩ
Read voltage 0.1 V with ±10% variations
CMOS technology 65 nm TSMC
Database size 41 × 303
Simulation environment Synopsis HSPICE

programming operation and subsequent fetching. While an in-memory
analog computation using scouting logic is executed, a near-memory
digital logic operation is carried out at the periphery of the memory
array using conventional CMOS-based gates (see Fig. 6). Since these
analog and digital computing steps are performed in parallel, a 2X
throughput gain is achieved.

4.3. Results

4.3.1. Simulation setup
Simulations are performed using Sb2Te3 based Phase-Change Mem-

ory (PCM) device [65] that is assembled in a 1R crossbar structure.
The two stable high and low resistive states chosen for our simulations
are 1 MΩ and 20 kΩ, with R𝑜𝑓𝑓 /R𝑜𝑛 of 50. Table 2 presents the
imulation setup used to evaluate the performance efficiency of CIM
mplementation of database query.

.3.2. Simulation results
In order to demonstrate the efficiency of the BBL operations mapped

o CIM crossbar, an example query comprising of 11 OR and AND
perations is chosen, out of which 6 logical operations are performed in
he analog domain (using scouting logic), while the remaining 5 logical
perations are performed in the digital domain (using cascading logic).
he simulation results are presented using a database of size 41 × 303,

where a maximum of 2 operations are performed at each clock period
(6 ns) which means that the total time required for a single query with
11 logical operations is 36 ns. The total power consumption of the
system is 558 μW and the total required energy for the fully cascaded
query is 20 pJ (3.3 pJ/cycle). These numbers refer explicitly to the core
components, which means that the control unit and any post-processing
circuits are excluded from the calculation. The achieved throughput
was 92.6 GOPS and the energy-efficiency reached 166 TOPS/W. In
other words, each logic operation consumes less than 10fJ of energy.

5. CIM-based Binary Neural Network (BNN) for image classifica-
tion

This section presents an image classification using CIM implemented
Binary Neural Network (BNN) case study to demonstrate the applicabil-
ity of CIM design-flow. The section first presents the system-level design
 t

6

Fig. 7. Mapping of BNN weights to crossbar array illustrating weight mapping and
MAC operation for each neuron.

aspect by presenting the system-level profiling for kernel identification.
Then, the section discusses the circuit design aspect to realize the CIM
acceleration of the critical kernel. Finally, the simulation results are
presented.

5.1. System-level profiling

Binary Neural Network (BNN) is a simplified version of Artificial
Neural Networks (ANN) which reduces memory and computation cost
of ANN, and enables to deploy deep models of ANN on resource-
constrained platforms such as edge-platforms [69]. The concept behind
BNN is simply to represent each weight value and input using binary
values +1 and −1 so that the storage and computation can be performed
in 1-bit instead of full precision [69,70]. Therefore, BNNs can perform
various tasks such as image recognition and classification in a resource-
efficient manner than their ANN counterparts. Due to their binary
storage and computation, BNNs can be easily realized with CIM.

5.1.1. BNN working principle
BNNs operate similar to the full-precision ANNs, where the neurons

in every layer calculate the weighted sum of the binary input vector
and binary weights, and then pass it through an activation function to
get the output as shown in Eq. (2).

𝑂𝑖 = 𝑓 (
∑

𝑊𝑖,𝑗 ⋅𝑋𝑖) (2)

where O𝑖 is the output, 𝑓 is the activation function (Sigmoid function in
this case), ∑𝑊𝑖𝑗 ⋅𝑋𝑖 is the weighted sum of the binary input (X𝑖) and
inary weight (W𝑖,𝑗).

Unlike ANNs, BNNs need to binarize the floating point weights of
he network. Therefore, the floating-point weight values are converted
o binary values using the signum (Sign) function as shown in Eq. (3).

𝑏 = 𝑆𝑖𝑔𝑛(𝑥) =

{

+1, if 𝑥 ≥ 0
−1, otherwise

(3)

where W𝑏 is the binary weight, Sign is the signum function and 𝑥 is the
loating-point weight.

.1.2. BNN critical kernel identification
To accelerate BNNs on crossbar array the core operation needs

o be identified. In this case the weighted sum, Multiply Accumulate
MAC), operation given in Eq. (2) is the costly operation. Thus, the
AC operation can be easily identified as the kernel operation of
NNs for two main reasons: (i) the size of the MAC (Vector matrix
peration (VMM)) per neuron increases linearly with the increase in
he number of inputs. (ii) every neuron in the network have to perform
he operation and increasing the number of neurons in a BNN increases



A. Gebregiorgis, A. Singh, A. Yousefzadeh et al. Memories - Materials, Devices, Circuits and Systems 4 (2023) 100025

t
l
p
m
i

5

a
a
−
n
a
i
(
i
a
i
c
c
t
e

5

a
t
t
o
i
o
e
t

5

(
e
t
i
s
V
s
t
s
r
s
c
t
s
s
p

Fig. 8. Schematic of ReRAM array and output current sensing circuit based on a VCO-based ADC [71].
he required MAC operations significantly. For example, a simple two
ayer fully-connected BNN with 10 neurons in each layer and 10 input
ixels needs 20 MAC units performing in total 380 operations (200
ultiplications and 180 additions). Therefore, the MAC operation is

ndeed the critical kernel which should be be accelerated using CIM.

.1.3. Mapping BNN kernel to CIM crossbar
Mapping the BNN kernel operation, MAC/VMM, into a CIM crossbar

rray is straightforward. The binary weights of the BNN can be encoded
s resistance states of the memristors where HRS and LRS represent
1 and +1 weights, respectively. Similarly, the binary inputs of the
eurons can be represented by binary voltages. For a 1T1R (1 transistor
nd 1 resistor) based crossbar, the binary voltages can be used as an
nput directly without the need to have Digital to Analog Converter
DAC), as the transistor can be easily turned on/off according to the
nput voltage. Fig. 7 shows the mapping of a single BNN layer into

1T1R based CIM crossbar. The binary weights of the layer shown
n Fig. 7(a) are mapped as resistance states of the memristors in the
rossbar. As shown in Fig. 7(b), each column in the CIM crossbar
orresponds to a single neuron and the number of columns is equivalent
o the number of neurons, while the number of rows of the crossbar is
qual to the number of inputs to the layer.

.2. Circuit-level design

It is worth mentioning that Analog to Digital Converter (ADC) is not
lways necessary to map BNNs into a CIM crossbar. For a BNN where
he neurons are implemented as a threshold logic, ADC is not required as
he neuron output can be easily determined by comparing the column
utput current with a reference value. Since the BNN given in Fig. 7
s based on Sigmoid function neurons, ADC is required to convert the
utput currents of the crossbar columns into digital values. Therefore,
fficient 1T1R bit-cell and ADC circuit designs are needed to implement
he CIM crossbar structure presented in Fig. 7(b).

.2.1. 1T1R bit-cell design
A RRAM device is fabricated by sandwiching a metallic oxide

commonly HfO𝑥, or TiO𝑥) between the two regions, i.e., the doped top
lectrode and undoped bottom electrode. RRAM operation is based on
he reversible formation or disruption of the Conductive Filament (CF)
n a resistive layer leading to a high or low resistance state. When a
ufficiently high positive voltage (higher than the set threshold voltage,
𝑠𝑒𝑡) is applied, a CF is formed and the device will have a low resistance
tate. On the contrary, when a negative voltage (<V𝑟𝑒𝑠𝑒𝑡) is applied,
he CF breaks down which leads to high resistance state. In the 1T1R
tructure the transistor (1T) is mainly required to program and verify
ead of the individual conductance values in each cell. Moreover, it
olves the sneak paths problem which is common in a 1R bit-cell based
rossbar [72]. Sneak path leads to deviation of results, especially, in
he analog computation. Besides solving the sneak path problem, 1T1R
tructures enable analog programming for the memristors with low
tandard deviation [73], as it enables accurately measurement of the
rogrammed values.
7

Table 3
Measurement and simulation setup.

Parameters Specifications

RRAM device ZrO2∕Ta [74]
𝑅𝐻𝑅𝑆 30 kΩ
𝑅𝑜𝑛 3 kΩ
Read voltage 0.9 V with ±10% variations
CMOS technology 28 nm TSMC
Workload application Binary Neural Network (BNN)
Behavioral simulation Python
Circuit level simulation SPICE

5.2.2. ADC design
ADCs are used whenever an analog signal is needed as an input for

digital modules. In this work a Voltage Controlled Oscillation (VCO)
based ADC [71] (see Fig. 8) is adopted to convert the analog MAC
result of the crossbar into digital values, which will be an input to the
neurons. The VCO-based ADC presented in Fig. 8 has three stages. The
first stage transforms the analog bit-line current into an analog voltage.
The analog voltage is then transformed into pulses with the help of the
VCO at the second stage. Finally, the third stage counts the generated
pulses with a counter and mapped it to the corresponding digital signal
with the help of Lookup Table (LUT). The output of the third stage is
equivalent to a digital signal and it can be processed by digital modules.

The VCO-based ADC is chosen as it have various advantages over
the state-of-the-art ADCs. These advantages include: (i) its compact
design consumes less area and allows to assign one ADC per column for
higher resolution. (ii) satisfies the RRAM devices requirements such as
variability in their resistive states and the restriction on the maximum
voltage across the device.

5.3. Measurement and simulation results

5.3.1. Measurement results
Before mapping the BNN to a RRAM crossbar array, we investigated

the factors that determine the output current with an experimental
study for a single column with 8 rows of RRAM devices fabricated
based on the setup given in Table 3. In the experiment, the different
(mean) output current levels are determined by the values of the input
vector and the conductance values of the 8 RRAM devices in the
column. Fig. 9, shows the current measurement results of the column
where 4 devices are programmed to LRS, while the other 4 devices
are programmed to HRS. The measured output current is plotted for
all 256 possible input vector combinations ranging from (0 0 0 0 0 0
0 0) to (1 1 1 1 1 1 1 1). They are grouped in 5 different ‘‘groups’’;
each group corresponds to the same number of selected LRS and HRS
devices; for example, the group indicated with ‘‘1 LRS device’’ presents
the 32 measurements of the 32 (from 256) possible inputs for which
the number of selected cells with LRS is just 1. The variability in the
observed currents is due to the number of selected HRS devices per
input combination (indicated as 1 in Fig. 9), and to the selection of
one LRS from the four LRS devices (indicated as 2 in Fig. 9). Most LRS
resistances are found to be lower than the target value, resulting in an
increasing vertical deviation from the expected current (indicated as 3

in Fig. 9).



A. Gebregiorgis, A. Singh, A. Yousefzadeh et al. Memories - Materials, Devices, Circuits and Systems 4 (2023) 100025
Fig. 9. VMM using RRAM crossbar array: Current measurements for a single column
in a 8 × 8 array.

5.3.2. Simulation results
The performance metrics such as energy and latency of the MAC

operation in RRAM crossbar are investigated by mapping BNN wights
to 8 by 8 crossbar array simulated based on the setup given in Table 3.
Besides the memristor array, the current sensing ADC plays critical role
for the performance metrics. The investigation uses the VCO-based ADC
(shown in Fig. 8) to convert the MAC operation result into a digital
value [71]. The energy consumption of a MAC operation shown in
Fig. 10 is extracted using the setup circuitry shown in Fig. 8. The energy
results shown in Fig. 10 confirm the major role of the ADC output
circuit, as the energy dissipation in the array may be as low as 30%.

6. Discussion and future directions

Edge devices need energy-efficient, compact and reliable hardware
for the execution of NN applications. Fig. 11 shows the energy ef-
ficiency with respect to their performance for various hardware ar-
chitectures and energy efficiency potential of CIM. NNs require a lot
of multiple and accumulate (MAC) operations, which is resource and
energy intensive. In recent years, specialized hardware (like Tensor
processor units) have been developed to accelerate AI computations
which can do more calculations per second than GPUs, while con-
suming the same amount of power, as shown in the figure. However,
these specialized hardware accelerators are costly to be deployed in
resource-constrained edge platforms as they are not energy-efficient.

Clearly, the demand of energy-efficiency cannot be full-filled by the
existing hardware for the edge applications. CIM-based computation
architectures using memristive devices have potential to improve the
performance, energy and area efficiency compared to these traditional
computing systems. This is due to the fact that these memristive devices
have several advantageous features such as non-volatility, scalability,
high density, CMOS compatibility, etc. Additionally, the nature of mem-
ristor state dynamics, make CIM more suitable for edge applications by
addressing the architectural and technological walls of the conventional
architectures.

Despite many advantages of memristor-based CIM architectures,
they face several challenges at various abstraction levels, starting
from materials and device-level to all the way to the architecture and
compiler-level.

• Material/Technology: These devices use new materials and are
subjected to new technology related issues. For instance, mem-
ristor devices can have several non-ideal characteristics such as
variations, defects, limited low to high resistance ratios, stochastic
write behavior etc. These non-ideality issues can influence the
8

Fig. 10. Energy consumed in an 8 × 8 array during MAC operation, as function of
number of selected columns and LRS devices.

Fig. 11. Illustration of energy efficiency for various hardware and CIM energy-
efficiency potential [75].

overall accuracy of the architecture [49,76–80]. Additionally,
memristors have limited endurance and require high program-
ming current to program them.

• Circuit/Architecture: In addition to the device level non-idealities,
CIM architectures also face circuit-level non-idealities. For in-
stance, non-ideal Digital-to-Analog Converters (DAC) and Analog-
to-Digital Converters (ADC), which are the two main compo-
nents of CIM architecture, can significantly impact the accu-
racy [81,82]. Moreover, inaccuracies due to driver resistances,
wire resistances and other parasites can contribute to accuracy
reduction.

• Tools/Compiler: Previous challenges can add complications for
profiling and tool development activities, that can impact the
kernel identification as well as CIM accelerations tasks. This will
influence the design space exploration, that is essential to guide
optimal design options as well as exploration of various trade-off
scenarios.

Therefore, addressing the aforementioned challenges plays an instru-
mental role in harnessing the full potential of CIM for realizing AI
application on resource-constrained edge platforms. In spite of these
challenges, CIM implementations are demonstrating their promising
potential towards achieving targeted energy-efficiency for edge com-
puting (fJ/op). Nevertheless, more research is needed to address the
aforementioned challenges and unlock the full potential of CIM.



A. Gebregiorgis, A. Singh, A. Yousefzadeh et al. Memories - Materials, Devices, Circuits and Systems 4 (2023) 100025
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] M. Satyanarayanan, The emergence of edge computing, Computer (2017).
[2] W. Shi, S. Dustdar, The promise of edge computing, Computer (2016).
[3] J. Chabas, et al., New Demand, New Markets: What Edge Computing Means for

Hardware Companies, Tech. Rep, McKinsey & Company, New York, NY, USA,
2018.

[4] Edge Computing Market Share & Trends Report, 2021–2028, 2020,
https://www.grandviewresearch.com/industry-analysis/edge-computing-market,
accessed: 2020-11-29.

[5] D.A. Patterson, Future of computer architecture, in: Berkeley EECS Annual
Research Symposium (BEARS), College of Engineering, UC Berkeley, US, 2006.

[6] S. Hamdioui, et al., Memristor for computing: Myth or reality? in: DATE, 2017.
[7] H. Amrouch, et al., Towards reliable in-memory computing: From emerging

devices to post-von-Neumann architectures, in: VLSI-SoC, 2021.
[8] S. Diware, et al., Accurate and energy-efficient bit-slicing for RRAM-based neural

networks, TETCI (2022).
[9] A. Singh, et al., Cim-based robust logic accelerator using 28 nm stt-mram

characterization chip tape-out, in: AICAS, 2022.
[10] A. Lines, et al., Loihi asynchronous neuromorphic research chip, in: IEEE ASYNC,

2018.
[11] M. Davies, Taking neuromorphic computing to the next level with loihi 2, 2021.
[12] E. Painkras, et al., SpiNNaker: A 1-W 18-core system-on-chip for massively-

parallel neural network simulation, IEEE J. Solid-State Circuits (2013).
[13] M.V. DeBole, et al., TrueNorth: Accelerating from zero to 64 million neurons in

10 years, Computer (2019).
[14] K. Rocki, et al., Fast stencil-code computation on a wafer-scale processor, in:

SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis, 2020.

[15] I. Kataeva, et al., Towards the development of analog neuromorphic chip
prototype with 2.4 M integrated memristors, in: ISCAS, 2019.

[16] F. Cai, et al., A fully integrated reprogrammable memristor–CMOS system for
efficient multiply–accumulate operations, Nat. Electron. (2019).

[17] W.-H. Chen, et al., CMOS-integrated memristive non-volatile computing-in-
memory for AI edge processors, Nat. Electron. (2019).

[18] C.-X. Xue, et al., A CMOS-integrated compute-in-memory macro based on
resistive random-access memory for AI edge devices, Nat. Electron. (2021).

[19] C. Frenkel, et al., MorphIC: A 65-nm 738k-synapse/mm2 quad-core binary-weight
digital neuromorphic processor with stochastic spike-driven online learning,
Trans. Biomed. Circuits Syst. (2019).

[20] J. Schemmel, et al., Live demonstration: A scaled-down version of the brainscales
wafer-scale neuromorphic system, in: ISCAS, 2012.

[21] A. Yousefzadeh, et al., Energy-efficient in-memory address calculation, Trans.
Archit. Code Optim. (TACO) (2022).

[22] Hsu, et al., AI edge devices using computing-in-memory and processing-in-sensor:
From system to device, in: IEDM, 2019.

[23] Z. Zhou, et al., Edge intelligence: Paving the last mile of artificial intelligence
with edge computing, Proc. IEEE (2019).

[24] S. Hamdioui, et al., Applications of computation-in-memory architectures based
on memristive devices, in: DATE, 2019.

[25] A. Gebregiorgis, et al., A survey on memory-centric computer architectures, JETC
(2022).

[26] S. Rai, et al., Perspectives on emerging computation-in-memory paradigms, in:
DATE, 2021.

[27] A. Shafiee, et al., ISAAC: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars, ACM SIGARCH Comput. Archit. News (2016).

[28] L. Song, et al., Pipelayer: A pipelined reram-based accelerator for deep learning,
in: International Symposium on High Performance Computer Architecture, HPCA,
2017.

[29] X. Qiao, et al., Atomlayer: a universal reram-based cnn accelerator with atomic
layer computation, in: DAC, 2018.

[30] S. Gupta, et al., Nnpim: A processing in-memory architecture for neural network
acceleration, IEEE Trans. Comput. (2019).

[31] F. Chen, et al., Regan: A pipelined reram-based accelerator for generative
adversarial networks, in: ASP-DAC, 2018.

[32] H.A.D. Nguyen, et al., A computation-in-memory accelerator based on resistive
devices, in: Proceedings of the International Symposium on Memory Systems,
2019.

[33] J. Borghetti, et al., ‘Memristive’switches enable ‘stateful’logic operations via

material implication, Nature (2010).

9

[34] S. Kvatinsky, et al., Memristor-based IMPLY logic design procedure, in: ICCD,
2011.

[35] Kvatinsky, et al., MAGIC—Memristor-aided logic, TCAS II (2014).
[36] M. Hu, et al., Hardware realization of BSB recall function using memristor

crossbar arrays, in: DAC, 2012.
[37] S. Li, et al., Pinatubo: A processing-in-memory architecture for bulk bitwise

operations in emerging non-volatile memories, in: DAC, 2016.
[38] L. Xie, et al., Scouting logic: A novel memristor-based logic design for resistive

computing, in: ISVLSI, 2017.
[39] A. Singh, et al., Low-power memristor-based computing for edge-AI applications,

in: ISCAS, 2021.
[40] G.S. Sandhu, Emerging memories technology landscape, in: Non-Volatile Memory

Technology Symposium (NVMTS), 2013 13th, 2013.
[41] M. Radosavljević, et al., Nonvolatile molecular memory elements based on

ambipolar nanotube field effect transistors, Nano Lett. (2002).
[42] A. Gebregiorgis, et al., Spintronic normally-off heterogeneous system-on-chip

design, in: DATE, 2018.
[43] M. Le Gallo, A. Sebastian, An overview of phase-change memory device physics,

J. Phys. D: Appl. Phys. (2020).
[44] M. Ali, et al., IMAC: In-memory multi-bit multiplication and accumulation in 6T

sram array, IEEE TCAS I (2020).
[45] S. Li, et al., Drisa: A dram-based reconfigurable in-situ accelerator, in: 50th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO, 2017.
[46] S.K. Gonugondla, et al., Energy-efficient deep in-memory architecture for NAND

flash memories, in: ISCAS, 2018.
[47] S. Salahuddin, et al., The era of hyper-scaling in electronics, Nat. Electron.

(2018).
[48] F. Oboril, et al., Evaluation of hybrid memory technologies using SOT-MRAM for

on-chip cache hierarchy, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
(2015).

[49] R. Bishnoi, et al., Special session–emerging memristor based memory and CIM
architecture: Test, repair and yield analysis, in: 2020 IEEE 38th VLSI Test
Symposium, VTS, 2020.

[50] E.C. Apollos, et al., Memristor-based CiM architecture for big data era, in:
International Conference on Electronics, Computer and Computation, ICECCO,
2019.

[51] M. Imani, et al., NVQuery: Efficient query processing in nonvolatile memory,
IEEE TCAD (2018).

[52] I. Giannopoulos, et al., In-memory database query, Adv. Intell. Syst. (2020).
[53] A. Sebastian, et al., Temporal correlation detection using computational

phase-change memory, Nature Commun. (2017).
[54] K. He, et al., Guided image filtering, IEEE Trans. Pattern Anal. Mach. Intell.

(2012).
[55] M. Komar, et al., Deep neural network for image recognition based on the Caffe

framework, in: International Conference on Data Stream Mining & Processing,
DSMP, 2018.

[56] P. Kanerva, Hyperdimensional computing: An introduction to computing in
distributed representation with high-dimensional random vectors, Cogn. Comput.
(2009).

[57] P.M. Sheridan, et al., Sparse coding with memristor networks, Nature
Nanotechnol. (2017).

[58] R. Karam, et al., Emerging trends in design and applications of memory-based
computing and content-addressable memories, Proc. IEEE (2015).

[59] P. Koeberl, et al., Memristor PUFs: a new generation of memory-based physically
unclonable functions, in: DATE, 2013.

[60] A. Haron, et al., Parallel matrix multiplication on memristor-based computation-
in-memory architecture, in: International Conference on High Performance
Computing & Simulation, HPCS, 2016.

[61] J. Yu, o. Du Nguyen, Memristive devices for computation-in-memory, in: DATE,
2018.

[62] X. Dong, et al., Nvsim: A circuit-level performance, energy, and area model for
emerging nonvolatile memory, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. (2012).

[63] Y. Sato, et al., Sub-100-𝜇A reset current of nickel oxide resistive memory through
control of filamentary conductance by current limit of MOSFET, IEEE Trans.
Electron Devices (2008).

[64] L. Zhao, et al., Constructing fast and energy efficient 1tnr based reram crossbar
memory, in: 2017 18th International Symposium on Quality Electronic Design
(ISQED), 2017.

[65] I. Giannopoulos, et al., 8-bit precision in-memory multiplication with projected
phase-change memory, in: IEDM, 2018.

[66] G. Burr, et al., Recent progress in phase-change memory technology, IEEE J.
Emerg. Sel. Top. Circuits Syst. (2016).

[67] A. Sebastian, et al., Computational phase-change memory: Beyond von Neumann
computing, J. Phys. D: Appl. Phys. (2019).

[68] H.D. Lee, et al., Integration of 4F2 selector-less crossbar array 2Mb ReRAM
based on transition metal oxides for high density memory applications, in: 2012
Symposium on VLSI Technology, VLSIT, IEEE, 2012.

[69] H. Qin, et al., Binary neural networks: A survey, Pattern Recognit. (2020).
[70] X. Sun, et al., XNOR-RRAM: A scalable and parallel resistive synaptic architecture
for binary neural networks, in: DATE, 2018.

http://refhub.elsevier.com/S2773-0646(23)00002-6/sb1
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb2
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb3
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb3
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb3
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb3
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb3
https://www.grandviewresearch.com/industry-analysis/edge-computing-market
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb5
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb5
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb5
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb6
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb7
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb7
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb7
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb8
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb8
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb8
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb9
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb9
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb9
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb10
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb10
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb10
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb11
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb12
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb12
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb12
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb13
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb13
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb13
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb14
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb14
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb14
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb14
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb14
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb15
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb15
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb15
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb16
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb16
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb16
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb17
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb17
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb17
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb18
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb18
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb18
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb19
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb19
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb19
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb19
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb19
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb20
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb20
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb20
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb21
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb21
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb21
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb22
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb22
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb22
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb23
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb23
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb23
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb24
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb24
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb24
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb25
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb25
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb25
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb26
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb26
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb26
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb27
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb27
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb27
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb28
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb28
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb28
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb28
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb28
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb29
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb29
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb29
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb30
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb30
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb30
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb31
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb31
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb31
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb32
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb32
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb32
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb32
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb32
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb33
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb33
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb33
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb34
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb34
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb34
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb35
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb36
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb36
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb36
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb37
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb37
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb37
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb38
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb38
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb38
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb39
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb39
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb39
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb40
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb40
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb40
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb41
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb41
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb41
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb42
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb42
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb42
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb43
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb43
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb43
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb44
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb44
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb44
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb45
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb45
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb45
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb46
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb46
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb46
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb47
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb47
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb47
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb48
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb48
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb48
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb48
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb48
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb49
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb49
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb49
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb49
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb49
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb50
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb50
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb50
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb50
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb50
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb51
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb51
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb51
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb52
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb53
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb53
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb53
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb54
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb54
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb54
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb55
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb55
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb55
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb55
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb55
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb56
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb56
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb56
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb56
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb56
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb57
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb57
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb57
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb58
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb58
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb58
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb59
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb59
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb59
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb60
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb60
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb60
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb60
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb60
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb61
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb61
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb61
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb62
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb62
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb62
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb62
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb62
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb63
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb63
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb63
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb63
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb63
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb64
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb64
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb64
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb64
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb64
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb65
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb65
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb65
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb66
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb66
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb66
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb67
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb67
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb67
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb68
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb68
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb68
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb68
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb68
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb69
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb70
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb70
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb70


A. Gebregiorgis, A. Singh, A. Yousefzadeh et al. Memories - Materials, Devices, Circuits and Systems 4 (2023) 100025
[71] M. Mayahinia, et al., A voltage controlled oscillation based ADC design for
computation-in-memory architectures using emerging ReRAMs, JETC (2021).

[72] H. Zheng, et al., Reducing forming voltage by applying bipolar incremental step
pulse programming in a 1T1R structure resistance random access memory, IEEE
Electron Device Lett. (2018).

[73] X. Sheng, et al., Low-conductance and multilevel CMOS-integrated nanoscale
oxide memristors, Adv. Electron. Mater. (2019).

[74] A. Hardtdegen, et al., Improved switching stability and the effect of an internal
series resistor in HfO 2/TiO x Bilayer ReRAM cells, IEEE Trans. Electron Devices
(2018).

[75] A. Gebregiorgis, et al., Dealing with non-idealities in memristor based
computation-in-memory designs, in: VLSI-SoC, 2022.

[76] I. Chakraborty, et al., Geniex: A generalized approach to emulating non-ideality
in memristive xbars using neural networks, in: DAC, 2020.
10
[77] S. Jain, et al., RxNN: A framework for evaluating deep neural networks on
resistive crossbars, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (2020).

[78] S. Diware, et al., Unbalanced bit-slicing scheme for accurate memristor-based
neural network architecture, in: AICAS, 2021.

[79] M. Fieback, et al., Testing scouting logic-based computation-in-memory
architectures, in: IEEE European Test Symposium, ETS, 2020.

[80] T. Ketkar, S. Sahay, Impact of non-idealities in RRAMs on hardware spiking neu-
ral networks, in: IEEE Electron Devices Technology & Manufacturing Conference,
EDTM, 2021.

[81] A. Singh, et al., SRIF: Scalable and reliable integrate and fire circuit adc for
memristor-based cim architectures, TCAS I (2021).

[82] C. Münch, et al., A novel oscillation-based reconfigurable in-memory computing
scheme with error correction, IEEE Trans. Magn. (2020).

http://refhub.elsevier.com/S2773-0646(23)00002-6/sb71
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb71
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb71
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb72
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb72
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb72
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb72
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb72
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb73
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb73
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb73
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb74
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb74
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb74
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb74
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb74
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb75
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb75
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb75
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb76
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb76
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb76
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb77
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb77
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb77
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb78
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb78
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb78
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb79
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb79
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb79
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb80
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb80
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb80
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb80
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb80
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb81
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb81
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb81
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb82
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb82
http://refhub.elsevier.com/S2773-0646(23)00002-6/sb82

	Tutorial on memristor-based computing for smart edge applications
	Introduction
	What is CIM all about?
	CIM basics and classification
	Device technologies for CIM
	CIM using charge-based memories
	CIM using non-charge-based memories

	Memristor-based CIM 
	Potential CIM applications

	CIM design-flow
	System level design
	Application profiling for critical kernel identification
	Accelerator configuration definition

	Circuit level design

	CIM-based Boolean Binary Logic for Database Query
	System-level profiling
	Binarized database query
	Kernel identification for acceleration
	Mapping of the database kernel into CIM

	Circuit-level design
	PCM-based 1R bitcell design
	CIM-based logic design
	Cascaded logic design for a series of BBL operations

	Results
	Simulation setup
	Simulation results


	CIM-based Binary Neural Network (BNN) for image classification
	System-level profiling
	BNN working principle
	BNN critical kernel identification
	Mapping BNN kernel to CIM crossbar

	Circuit-level design
	1T1R bit-cell design
	ADC design

	Measurement and simulation results
	Measurement results
	Simulation results


	Discussion and future directions
	Declaration of Competing Interest
	Data availability
	References


