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Phenomenological models for rubber elasticity have the distinct advantage of being
relatively easy to implement in numerical analyses of large strain problems. However,
they bear no relationship to the actual deformation mechanisms on the macromolecular
level. For this purpose, non-Gaussian network models for rubber elasticity are re-
quired.

If the number of links N in a molecular network is large, the orientation distribution of
the individual links with respect to the end-to-end vector has been given by Kuhn and
Grun (1942) analytically. Furthermore, a closed-form solution for the molecular chain
orientation distribution function (CODF) has been derived by Wu and Van der Giessen
(1993). Therefore, it is possible to obtain analytically a so-called Link Orientation Dis-
tribution Function (LODF), which would be expected to contain the complete informa-
tion of the orientation distribution of molecular links at any stage of the deformation.

Kuhn, W. and Grun, F. (1942). Kelloidzeitschrift 101, 248-271.
Wu, P.D. and Van der Giessen, E. (1993). J. Mech. Phys. Solids 41, 427-456.

The constitutive model available for large strain viscoplastic deformation of amor-
phous glassy polymers assumes that the orientations of the individual chains affect
plasticity only indirectly by introducing a back stress tensor. The predicted flow poten-
tial surface maintains its shape during the deformation. However, several observed
plasticity phenomena exhibit changes of the shape of this surface during the deforma-
tion process. For the description of this phenomena, a network model for polymer plas-
ticity, which accounts accurately for the actual spatial orientation distribution of
chains, is required.

To some extent, a researcher in mechanics is a translator who translates the knowledge
(usually at a microscopic level) provided by material scientists and physicians into
mathematical language by developing a constitutive model.

In the context of polymer engineering there are different definitions of plasticity. Fol-
lowing G’Sell (1986), we call plastic deformation the component of the total deforma-
tion which is not recovered after the material has been unloaded during a time
equivalent to the loading duration. This definition is valid provided the time scales for
other mechanisms (such as physical aging) are irrelevant to the time scale for plasticity.
G’Sell, C. (1986). In Strength of Metals and Alloys. (Edited by H.J. McQueen
et al.), pp. 1943-1982, Pergamon Press, Oxford.
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A torsion test seems to be ideally suited for the experimental determination of material
parameters in the range of large strains. The behaviour in torsion is sufficiently sensi-
tive to the constitutive assumptions of the analysis to be capable of discriminating
among candidate constitutive models.

The elegant simple shear test carried out by G’Sell and co-workers [see e.g. G’Sell and
Gopez, 1985] showed initiation and propagation of a shear band. The intrinsic soften-
ing is the driving force to promote initiation of the shear band and its propagation in
the shear direction, while the orientation hardening is the driving force for widening of

the shear band.
G'Sell, C. and Gopez, A.J. (1985). J. Mat. Sci. 20, 3462-3478.

In a tensile test, orientation hardening is the driving force to promote neck propagation
along the specimen; the intrinsic softening is a sufficient condition for necking, but not
necessary.

Not all complicated mechanical problems have to be solved by using complicated
tools. The most important thing is that a solver understands his problem and has a very
clear physical picture of his problem in his mind.

Finding a good student for mechanics is even more difficult than mechanics itself.
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SUMMARY

This thesis considers two subjects concerning constitutive modelling of large-strain behaviour
of polymeric materials, namely large-strain elastic deformation of rubbers and large-strain in-
elastic deformation of amorphous glassy polymers.

Three-dimensional molecular network theories are studied which use a non-Gaussian sta-
tistical mechanics model for the large strain extension of molecules. Invoking an affine defor-
mation assumption, the evolution of the network—consisting of a large number of molecular
chains per unit volume, which are initially randomly oriented in space—is shown to be gov-
erned by a balance equation in orientation space. Eulerian and Lagrangian type formulations of
these balance equations are given, and the closed-form analytical solution for the so-called
Chain Orientation Distribution Function is derived. This full network model is then used to de-
scribe the large-strain elastic hehaviour of rubbers. Detailed comparisons with experimental re-
sults and with two approximate models, namely the classical three-chain model and a very
recently proposed eight-chain model, are provided for different types of deformation and rub-
bers.

Furthermore, the full network model for rubber elasticity is re-formulated in a more effi-
cient and more micromechanics motivated manner. Based on such a full network description,
a so-called full network model for rubber photoelasticity is proposed, by introducing direction-
al polarizabilities into the individual links of the idealized randomly-jointed chain. This optical
theory can be used to study the optical properties or birefringence-strain behaviour of rubbers
in arbitrary 3-D deformation states. Detailed comparisons with two approximate models,
namely the classical three-chain model and a so-called eight-chain model for rubber photoelas-
ticity, which is also developed in this thesis, are provided for different types of deformation.
The predicted numerical results are compared with experimental data found in the literature.

The network model is further applied to describe the orientation hardening in amorphous
glassy polymers caused by stretching of the entanglement network. A 3-D constitutive model
is then developed to describe the large strain inelastic deformation behaviour of amorphous
glassy polymers, featuring time-, temperature- and pressure-dependent yield, softening and
subsequent orientational hardening.

Large-strain elastic-viscoplastic torsion of circular tubes and solid bars of glassy polymers
is investigated under fixed-end as well as free-end conditions. The solution of the problem is
obtained numerically by means of simple, special purpose finite elements. The differences be-
tween free-end and fixed-end torsion are emphasized. Numerical results predicted by the model
are compared with experimental results for polycarbonate found in the literature.

Neck propagation, or commonly termed cold drawing, is a standard technique used to ori-
ent the molecular chains of the polymers and thereby harden the polymer products. Finite ele-
ment analysis is used to numerically simulate plane strain tension, focussing attention on
necking and neck propagation. The effects of initial imperfection, strain softening, orientation
hardening, strain-rate as well as the geometry and boundary conditions are discussed in detail.



The mechanisms of necking and neck propagation are discussed in some detail based on the
detailed parameter study.

Similar to the well-known neck propagation phenomenon, shearing of polymer materials
often reveals the initiation and subsequent propagation of a shear band. Finite element analysis
is used to numerically simulate large plane strain, simple shear tests, focussing attention on the
initiation and propagation of the shear band. The mesh sensitivity and effects of initial imper-
fection, strain softening, orientation hardening, strain-rate as well as the edge effects are dis-
cussed in detail. It appears that the intrinsic softening is the driving force to promote initiation
of the shear band and its propagation in the shear direction, while the orientation hardening is
the driving force for widening of the shear band. The predicted numerical results are compared
with experimental data for polycarbonate found in the literature.
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Chapter 1

General Introduction

Many industrial and commercial products manufactured from polymers are done so in the solid
state by relatively ‘cold” mechanical forming processes such as extrusion, deep drawing and
blow molding. These processes involve large to very large local deformations in the solid state
which give rise to a very significant texture in the final product. This allow us for the manufac-
turing of so-called self-reinforced polymers. The design of such a forming process for a certain
product is usually based on an expensive and time-consuming trial-and-error procedure. The
main reason for this is that the material behaviour of the polymers used at large deformations
is not yet adequately understood or characterized for 3-D deformation processes. A mathemat-
ical description of such behaviour in terms of constitutive models which include the effects of
texture development is essential for a reliable simulation of the forming processes as well as
for the prediction of the mechanical properties of the final product.

Discussions of the mechanical properties of solid polymers often contain two interrelated
objectives. The first of these is to obtain an adequate macroscopic model of the particular aspect
of polymer behaviour under consideration. The second objective is to seek an explanation of
this behavior in molecular terms, which may include details of the chemical composition and
physical structure.

It is difficult to classify polymers as particular types of materials such as a glassy solid or
a viscous liquid, since their mechanical properties are so dependent on the conditions of testing,
e.g. the rate of application of load, temperature, amount of strain. In fact, a polymer can show
features of a glassy, brittle solid or of an elastic rubber or of a viscous liquid depending on the
temperature and time scale of measurement. Polymers are usually referred to as viscoelastic
materials, but it should be realized that this is only a generic term which emphasizes there in-
termediate position between viscous liquids and elastic solids. At low temPeraturcs or high
strain rates, a polymer may be glass-like with a Young’s modulus E of 10°-10'° Nm ™2 and will
break or flow at strains of around 5%. At high temgeratures or low strain rates, the same poly-
mer may be rubber-like with a modulus of 10°-10" Nm withstanding large extension with-
out permanent deformation. At still higher temperatures, permanent deformation occurs under
load, and the polymer behaves more like a highly viscous liquid. In an intermediate temperature
range, commonly called the glass transition range, the polymer is neither glassy nor rubber-
like. It shows an intermediate modulus, is viscoelastic and may dissipate a considerable amount
of energy during straining.



In terms of microstructure, polymers can be divided into amorphous and semi-crystalline
solids. The amorphous ones are glassy up to a temperature called the glass transition tempera-
ture T , whereupon they change into a rubbery material, the viscosity of which falls as the tem-
perature is raised further. Amorphous polymers are usually considered to be a random tangles
of molecules. Polycarbonate (PC), Polymmethyl Methacrylate (PMMA), Polystyrene (PS) and
Polyvinyl Chloride (PVC) are the most popular amorphous polymers. Semi-crystalline poly-
mers can be regarded as two phase materials, with an amorphous phase, and a crystalline phase
with a melting temperature T,,. Polyethylene (PE) is a typical semi-crystalline polymer.

Although semi- crystallme polymers are of considerable industrial interest, their properties
are those of composite materials and thus depend, in a complex way, on the elementary prop-
erties of their constitutive phases, which are necessary to be first characterized separately. The
aim of this study was originally was the constitutive modelling of large plastic deformations of
amorphous polymers. Such constitutive modelling has a dual significance. On one hand, the
search for basic plastic deformation mechanisms in amorphous polymers is of conceptual im-
portance. In contrast to crystalline materials where the relation between plasticity and crystal
lattice dislocations is well established and in many cases can be observed directly, the defor-
mation mechanisms in amorphous solids are not yet well understood. On the other hand, large
to very large local plastic deformations are involved in many mechanical forming processes
and it is of considerable importance to determine the intrinsic constitutive equations for large
plastic deformation of polymers.

During the study of large plastic strain behaviour of amorphous polymers, we have become
deeply involved in the development of network models for rubber elasticity. The effort is ani-
mated by two lines of motivations. On one hand, the distortion of the microstructure of an ini-
tially isotropic amorphous polymer during large plastic deformations is very similar to that of
rubber. The so-called orientation hardening behaviour observed in large plastic deformations
of amorphous glassy polymers could be simulated in terms of the network models for rubber
elasticity as suggested by Harward and Thackray (1968). On the other hand, the available net-
work models for rubber elasticity at that time were not able to pick up some aspects of large
strain behaviour observed experimentally.

This thesis considers two subjects concerning constitutive modelling of large-strain behav-
iour of polymeric materials, namely large-strain elastic deformation of rubbers and large-strain
inelastic deformation of amorphous glassy polymers. For a general discussion of deformation
of polymers we refer to Treloar (1975), Ferry (1980), Ward (1983) and Struik (1990).

Each chapter of this thesis, except for this chapter, is an independent paper, which has been
published or submitted to an international journal for publication. However, we shall use a uni-
form layout and referencing system throughout the thesis, with all references collected at the
end.

1.1. NETWORK MODELS FOR RUBBER ELASTICITY AND RUBBER PHOTOELASTICITY

Rubber elasticity has been studied extensively for more than 100 years. Various constitu-
tive models have been proposed. Most of them are phenomenological models, which have been
successfully used in engineering designs (see e.g. Ogden, 1984). Phenomenological models
have the distinct advantage of being relatively easy to implement in numerical analyses of large



strain problems. However, they bear no relationship to the actual deformation mechanisms on
the macromolecular level. For this purpose, non-Gaussian network models for rubber elasticity
are required.

L.1.1. Network models for rubber elasticity

The present understanding of mechanical behaviour of amorphous polymers owes much
to early advances in the network theory of rubber elasticity [see e.g. Kuhn and Grun, 1942; Tre-
loar, 1975]. These theories are based upon the concept of a network of chains of randomly ori-
ented rigid links that are connected at junction points which in rubber-like materials are
provided by the chemical cross-links between macromolecules (see Fig. 1.1). Furthermore,
these network theories use a so-called affine deformation scheme, which is based on two key
assumptions: (i) Statistical fluctuations of the position of the junction points about their mean
position can be neglected, (if) the end-to-end vector of a chain between junction points co-de-
forms with the local deformation of the continuum it is embedded in. According to this scheme,
as deformation progresses each chain stretches while rotating towards a preferred direction. At
all stages each chain attempts to maximize its entropy by disorienting the elements or random
links, subject only to the constraints imposed by the end-to-end vectors. Another important as-
sumption involved in these network models is that intermolecular interactions are negligible in
comparison to intramolecular effects. The overall properties of the network are then obtainable
by simply summing the contributions of the individual chains. Furthermore, the exact non-
Gaussian treatments of a single chain, both for mechanical and optical behaviour, are available
(developed originally by Kuhn and Grun, 1942; and James and Guth, 1943). However, exact
treatment of the transition from an individual chain to network behaviour is very difficult owing
to its mathematical complexity. In principle, this transition (through an averaging process)
needs the orientations of the individual chains of the network, which was not available for ar-
bitrary 3-D deformations until very recent (see Chapter 2).

junction points

end-to-end vector

Fig. 1.1. Schematic representation of a macromolecular network of rubbers.

Various simplified averaging procedures to obtain the network response have been pro-
posed (see Chapter 2). Among these simplified models, the so-called three-chain model, orig-
inally suggested by James and Guth (1943), has become the most widespread and almost



standard non-Gaussian network model for rubber elasticity. This model assumes that a network
containing n chains per unit volume is equivalent to three independent sets of n/3 single
chains in three orthogonal directions (see Fig. 2.3a). Thus, the actual spatial distribution of
chains is sampled in three orthogonal orientations. Similarly, Treloar (1946) proposed the idea
of a four-chain Gaussian network representation (Flory and Rehner, 1943) to sample four spa-
tial chain orientations. Very recently, Arruda and Boyce (1991, 1993a) proposed a so-called
eight-chain model, which considers a set of eight chains connecting the central junction point
and each of the eight corners of the unit cube (see Fig. 2.3b). Obviously, these models are but
approximate representations of the actual spatial distribution of molecular chains. All these
models can be regarded to sample a set of particular directions among all possible orientations.
As a consequence, the three-chain model would overestimate the contribution of the chain col-
lection oriented along the direction of major principal extension, while the eight-chain model
would underestimate the stiffness of the network (Dahoun et al., 1993). The four-chain model
does not exhibit the symmetry required of the principal strain space (Arruda and Boyce, 1991).
Furthermore, the accuracy of these approximations has not been established until very recently
(see Chapter 2).

The full network formulation to be presented in Chapter 2 accounts accurately for the ac-
tual spatial orientation distribution of molecular chains. Treloar and Riding (1979a) had already
developed a rubber elasticity theory based on such a full network description, but their consid-
erations were limited to deformations with biaxial extension along fixed axes under plane stress
conditions. The model proposed in Chapter 2 extends the theory of Treloar and Riding (1979a) -
to a general formulation valid for 3-D deformation processes. The modelling centres around a
general treatment of the orientation distribution of molecular chains and their evolution as de-
formation progresses. This description utilizes the idea of Chain Orientation Distribution Func-
tion (CODF), which is governed by balance equations that express physically well-understood
conservation features. Assuming the network to deform affinely with the deformation of the
continuum it is embedded in, closed-form solutions are derived for this CODF, which thus con-
tain the complete information of the orientation distribution of molecular chains at any stage of
the deformation. This solution is then used to develop the rubber elasticity model by averaging
out the contribution to the free energy of individual chains over all chain orientations. The mod-
el has been found to be able to pick up the mechanical behaviour of rubbers at various different
large deformations (see Chapter 2; Dahoun, 1992; Wu et al., 1993). Furthermore, it has been
demonstrated that, the stress response predicted by the full network model is for the same val-
~ ues of the material parameters N and c? always in between that predicted by the three-chain
model and eight-chain model, respectively (see Wu and Van der Giessen, 1992a and Chapter 2).

In Chapter 3, we re-formulate the full network model for rubber elasticity in a more effi-
cient and more micromechanics motivated manner. The so-derived equations are mathemati-
cally equivalent to those given in Chapter 2. But, the new representation of the model allows
us to avoid calculating principal stretches and principal directions of deformations. Further-
more, this micromechanics motivated new derivation will turn out to be convenient for further
development of the so-called full network model for rubber photoelasticity as demonstrated in
Chapter 3.

The limitations of the network models for rubber elasticity are also discussed in some de-
tail in Chapter 2.



1.1.2. Network models for rubber photoelasticity

The development of molecular chain segment orientation in rubber-like materials under
deformation has been extensively studied experimentally, often by the optical anisotropy or bi-
refringence [see e.g. Treloar, 1975; Brown and Windle, 1984; Mitchell et al., 1985].

It is well-known that many materials show the phenomenon of double refraction, which
arises from the fact that they are optically anisotropic. In other words, they have different re-
fractive indices, or polarizabilities in different directions. The refractive index of a material is
a function of its response to the electric field in the light wave, or, more specifically, of its po-
larizability, which is defined as the induced dipole moment per unit field strength. Rubber-like
materials are usually assumed to be random in their structure and isotropic in their physical
properties; such materials do not show double refraction in the initial undeformed state. But in
the deformed state, their structures are no longer random; they cease to be isotropic and begin
to show double refraction or birefringence.

Usually, the development of a network model for rubber photoelasticity follows closely the
lines taken in the treatment of the corresponding network model for rubber elasticity. The ac-
tual macromolecule is replaced by a chain of randomly jointed equal links. The optical proper-
ties are introduced by assuming that each link has a polarizability ¢, in the direction of its
length and a mean polarizability ., in the transverse directions. Suppose each chain, having n
links each of length /, be held with its ends separated by a end-to-end vector distance r. The
resultant polarizability 7y, in the direction of its end-to-end vector and the mean polarizability
Y, in the transverse directions, for a whole chain, can be calculated from the statistical distri-
bution of link angles. Finally, the so-called total polarizability tensor B of the network is ob-
tained by averaging out over all chains.

The polarizabilities of a material may be efficiently represented by a polarizability ellipsoid
whose principal axes represent the values of the three principal polarizabilities, l}i, or alterna-
tively, by a refractive index ellipsoid, whose principal axes are similarly oriented and represent
the three principal refractive indices ﬁi. The conversion of polarizabilities B; (per unit volume)
to refractive indices ﬂi makes use of the Lorentz-Lorenz relation

u,‘—l _4_75&
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A so-called non-Gaussian full network model for rubber photoelasticity is proposed in
Chapter 3 where the actual averaging out over all chains is carried out in terms of the CODF.
Again, Treloar and Riding (1979b) had already developed a non-Gaussian optical theory based
on such a full network description; but, just as for the mechanical properties, their consider-
ations were limited to deformations with biaxial extension along fixed axes under plane stress
‘conditions. Our model extend the theory of Treloar and Riding (1979b) to a general formulation
valid for 3-D deformation processes. For the purpose of comparison, we also give two simpli-
fied optical theories corresponding to the so-called three-chain model [see e.g. Wang and Guth,
1952] and eight-chain model (Arruda and Boyce, 1993a) originally for rubber elasticity.



1.2. CONSTITUTIVE MODELLING OF AMORPHOUS GLASSY POLYMERS

Before discussing the modelling of viscoplastic deformation in glassy polymers, it is
worthwhile to consider more closely the term plasticity in polymer physics, since the nonelastic
deformation is known to cover a variety of deformation mechanisms in polymers. Following
G’Sell (1986), we call plastic deformation the component of the total deformation which is not
recovered after the material has been unloaded during a time equivalent to the loading duration.
In that sense, it distinguishes itself from viscoelastic component of the deformation which re-
covers to a major extent under the same conditions.

}

shear band

A
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\

Fig. 1.2. Schematic representation of crazes and shear bands in an amorphous glassy polymer.

Another important distinction is between “discontinuous” and “continuous” forms of plas-
tic deformation. Discontinuous plastic deformation is quite specific to polymers and is repre-
sented by the phenomenon of crazing, which has been identified by a locally confined mode of
extensional plasticity accompanied by a decohension of the polymer. The damaged regions
have the shape of flat lenses similar to flaws whose surfaces would be connected by plastically
drawn fibrils. This kind of irreversible deformation is particularly favoured by hydrostatic pres-
sure and the crazes are oriented perpendicular to the major principal stress axis (see Fig. 1.2).
The other mode of irreversible deformation is plastic shear, which is characterized by the con-
servation of material continuity (no void formation). Due to the very slow diffusion rate of
glassy polymer chains, the only deformation mode which is compatible with the continuity re-
quirement is the plane simple shearing of the structure along favourably oriented surfaces. In
uniaxial tension or compression, it was observed that plastic deformation tends to localize into
oblique shear bands (see Fig. 1.2) in which the local plastic shear Yopl is very high, while the
shear strain YMpl in the rest of the matrix remains nearly zero. In the present thesis, we will
consider only this continuous plastic deformation mode and we shall do so within a macroscop-
ic framework. In effect, we shall employ a continuum description in which the microscopic
shearing is “smeared out” in the continuum sense, assuming that a material element represents
a sufficiently large sample of polymer to allow for statistical averaging to be meaningful.

The microstructure of an initially isotropic amorphous polymer is usually assumed to con-
sist primarily of long molecular chains, which are randomly coiled in space. Side groups pro-
trude from the backbone chains at various locations and, in conjunction with overall chain
trajectory, can act as nodes, or points of physical entanglement. This results in a network-like
structure much like that of rubber (see Fig. 1.1), but with the chemical crosslinks replaced by



physical entanglements.

The yield of initially isotropic glassy polymers has been found to depend on pressure,
strain rate, and temperature. After yielding, glassy polymers often strain soften and subsequent-
ly strain harden. Following the pioneering work of Haward and Thackray (1968), it is assumed
that a glassy polymer must overcome two physical distinct sources of resistance before large
strain inelastic flow may occur. Below the glass transition temperature, prior to initial yield, the
material must be stressed to exceed its intermolecular resistance to segment rotation. Once the
material is free to flow, molecular alignment occurs, resulting in an anisotropic internal resist-
ance to further inelastic deformation, which is called orientational hardening.
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Fig. 1.3. A typical true stress-strain curve of polycarbonate under uniaxial compression.
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" Fig. 1.4. Schematic representation for a 1-D analog to the polymer deformation model.

Figure 1.3 shows a typical stress response to uniaxial compression of polycarbonate at
room temperature. To describe these yielding and postyield phenomenon of amorphous glassy
polymers, a model requires three elements. These are illustrated schematically in Fig. 1.4. for
a 1-D analog to the polymer deformation model. It describes the stress-strain curve in terms of
three elements:

(1) A linear spring, which is used to characterize the initial elastic response;



(2) A viscous dashpot, which is used to represent rate and temperature dependent yield and
to account for an isotropic resistance to chain segment rotation;

(3) A nonlinear rubber elasticity Langevin spring, which is used to account for the aniso-
tropic resistance to chain alignment.

1.2.1. Modelling of plastic flow

Some early attempts to model the plasticity of glassy polymers were based on modifica-
tions of the concepts of viscoelasticity. Thus, the plastic deformability of polymers was first at-
tributed to the heat generated accompanying the deformation which was assumed to raise the
temperature above the glass transition temperature. Alternatively, it was suggested that stress-
induced free volume would produce the same molecular mobility existing at the glass transition
temperature.

One of the earliest quantitative models used to describe the flow of polymers is that due to
Eyring (1936). This model assumes that molecular segments are vibrating over an energy bar-
rier (of height £,) and that the effect of the applied stress is to reduce the height of the barrier
for a jump in the forward direction and to increase it for a jump in the reverse direction. It is
further assumed that the macroscopic strain rate of the sample is proportional to the net jump
rate of the segments in the forward direction.

—_——

Fig. 1.5. Schematic representation of the different positions of four adjacent atoms in the backbone.

Robertson (1966) has developed a slightly more elaborate version of the Eyring viscosity
theory. In a sense, this model is an attempt to express quantitatively the idea that the applied
stress causes the molecules to seek a new, more rubber-like conformation and that yield occurs
when the conformation becomes similar to that at the glass transition. This model is based on
the assumption of a thermodynamic statistical distribution of inflexed and flexed bonds (zrans
and cis rotational conformations, respectively): at any time the molecular segments making up
the polymer are distributed between a population of cis (high energy) and a population of irans
(low energy) conformations (the different positions of four adjacent atoms in the backbone, see
Fig. 1.5). The population of cis segments in equilibrium at the glass transition temperature is
frozen-in the glassy state; and the effect of applied stress is to cause certain segments to change
over from the trans to the cis conformation, increasing the population of cis sufficiently for
yield to occur. The model has been extended by Duckett ez al. (1970) to incorporate the effect
of the hydrostatic component of the stress tensor on the yield stress. They suggest that a pres-



sure will increase the energy difference between the cis and trans conformations because a seg-
ment in a cis conformation is likely to pack less efficiently and to occupy a larger volume. By
making adjustments to all parameters in the modified theory they are able to obtain an excellent
fit to yield stress data on PMMA and PET, while keeping the magnitudes of all parameters rea-
sonable. However, in the Robertson theory only intramolecular forces are taken into account;
as, in the glassy state, the cohesion of the matter is due to intermolecular forces, it seems nec-
essary to call for models attributing the plastic resistance to intermolecular force.

Argon (1973) has used Li and Gilman’s (1970) results to calculate the height of the energy
barrier that opposes the flipping-over of a segment of a molecular chain from one position to
the next. The two kinks in the chain which form to permit this motion are treated as a pair of
disclinations and the energy necessary to form them is calculated (see Fig. 1.6). The resistance
to such a double kink formation in a molecule results from the elastic interaction of the mole-
cule with its neighbours, i.e. from intermolecular forces. Later, Boyce et al. (1988) have gen-
eralized the idealized intermolecular deformation resistance to account for both pressure
sensitivity and the true strain softening associated with localized microscopic shear-banding
and transient dilation. It should be noted, nevertheless, that the Argon model essentially regards
yielding as a nucleation controlled process, analogous to the stress-activated movement of dis-
locations in a crystal produced by the applied stress, aided by thermal fluctuations. The appli-
cation of the Eyring theory on the other hand, implies that yield is not concerned with the
initiation of the deformation process, but only that the rate of deformation is changed upon
stressing until it equals the imposed rate of change of strain (nonlinear viscoelastic model).
However, as discussed in detail by Ward (1983), the two approaches of Argon and Eyring can-
not be clearly distinguished at the level of fitting to an experimental curve.
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Fig. 1.6. Schematic representation of a pair of disclinations in a molecule.

It could be argued that the Eyring as well as the Robertson model are likely to be appro-
priate at high temperatures i.e close to 7, whereas the Argon model is most relevant to the be-
haviour at low temperatures. Results by Perez (1982) clearly show that a better fit is obtained
‘with the Argon model and the Robertson model at lower and higher temperature, respectively.
This corresponds to the evidence that, at low temperature, intermolecular energy barriers,
which are at the origin of the cohesion of the glassy solid, are the most important barriers to be
overcome; on the other hand, when the temperature approaches Tg, intramolecular forces be-
come more and more dominant.

To sum up, models to describe the yield behaviour of polymers are not yet as firmly based
as are, say, models describing the yield strength of metals where the mechanism (dislocation
motion) by which changes in the local atomic conformation occur on deformation is well es-



tablished and in many cases can be observed directly. Models have been proposed that are ca-
pable of describing different aspects of the yield behaviour, but so far no accepted uvnified
quantitative treatment exists that can explain all aspects. A more detailed discussion on the
above-mentioned models has been given by Wu and Van der Giessen (1991b).

1.2.2. Modelling of orientation hardening

Once the material is stressed to the point of overcoming intermolecular barriers to chain
motion, the molecular chains will tend to align along the direction of principal plastic stretch
[see e.g. Haward and Thackray (1968) and Argon (1973)]. This action decreases the configu-
rational entropy of the system which, in turn, creates an internal network stress. This process
of network distortion is very similar to that of rubber network, and Haward and Thackray
(1968) suggested to describe this for uniaxial extension by means of a back stress determined
through a Langevin spring (see Fig. 1.4), as suggested by non-Gaussian network theory. Boyce
et al. (1988) extended this approach to general three-dimensional plastic deformations by in-
troducing a back stress tensor B which is taken to be coaxial with the plastic left stretch tensor.
Originally, Boyce et al. (1988) adopted the classical so-called three-chain model. However,
very recently Arruda and Boyce (1991, 1993b) found that the three-chain non-Gaussian net-
work model was not capable of picking up the strain hardening observed experimentally in .
polycarbonate (PC) and polymethylmetacrylate (PMMA). At the same time, they suggested to
model the network by eight equivalent chains instead of three, and obtained more close agree-
ment with their experimental results for PC and PMMA.

In Chapter 2, the full network model for rubber elasticity is used to model the orientation
hardening behaviour in large strain deformations of amorphous glassy polymers.

Alternatively, Vest et al. (1987) used the phenomenological Mooney-Rivlin rubber elas-
ticity formulation to model the strain orientation hardening. However, the Mooney-Rivlin mod-
el is not able to capture the three dimensionality of the strain hardening response of rubber
materials at large strains (Arruda and Boyce, 1993a).

1.3. LARGE-STRAIN BEHAVIQUR OF AMORPHOUS GLASSY POLYMERS

To assess the accuracy of the constitutive models, a number of deformation processes in
the large strain region are studied numerically and compared with experimental data in Chap-
ters 4-6. Besides the homogeneous uniaxial compression and plane strain compression studied,
particular attention is paid to large-strain torsion and localization phenomena such as shear
band propagation and neck propagation.

1.3.1. Large-strain torsion

Torsion of cylindrical solid bars in the region of large plastic deformations is of consider-
able practical interest. In particular, a torsion test seems to be ideally suited for the experimental
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determination of material parameters in the range of large strains. The major advantage for this
purpose over tensile tests is that deformations during torsion remain homogeneous in axial di-
rection until fracture, without showing strain localization in necks etc. A second, slightly more
academic interest in large strain torsion relates to recent attempts to incorporate deformation-
induced anisotropy into large strain plasticity models. Experiments on polycrystalline metals
have shown that texture development, which is the prime source of anisotropy in most materi-
als, leads to elongation of the specimen in the case of free ends or leads to compressive axial
stresses in specimens with fixed ends. The prediction of these axial second-order phenomena
depend strongly on the constitutive model—in particular the description of anisotropic harden-
ing [see e.g. Neale and Shrivastava, 1990; Van der Giessen et al., 1992a; Harren et al. 1989;
Wu and Van der Giessen, 1993b]. Thus, the torsion test seems to provide a simple yet effective
means for assessing the adequacy of such constitutive models.

Large strain elastic-viscoplastic torsion of circular cylindrical tubes and solid bars under
fixed-end as well as free-end conditions is analyzed in Chapter 4, using a numerical method
based on a simple, special purpose finite elements. The predicted response of a tube under
fixed-end torsion is compared with available experimental data for polycarbonate. The numer-
ical method developed in Chapter 4 is capable of simulating large strain torsion of tubes with
any ratio of inner radius to outer radius. Furthermore, it is fairly easy to incorporate other vis-
coplastic constitutive models into this special finite element program. Therefore, it provides a
useful tool to interpret experimental torsion results on thick-walled tubes or solid specimens,
and thus to determine the material parameters appearing in the constitutive models.

1.3.2. Plastic instabilities

Localization instabilities in the form of shear bands appear to be almost inevitable when a
ductile solid undergoes large plastic flow. Such plastic instabilities have a dual significance; as
a precursor to fracture and as a mechanism for further deformation. Developing the ability to
predict their onset, evolution and subsequent failure is essential for the control of a variety of
manufacturing processes and for the design of material microstructures.

It is now widely acknowledged that glassy polymers exhibit plastic deformation below the
glass transition temperature mainly through the activation of microscopic shear bands (see Sec.
1.2). Macroscopic strain localization in polymers can be very different from that in metals due
to the dramatic stiffening of polymers at large strains, which is associated with molecular
chains orienting and stretching during the deformation process. While plastic instabilities like
necks or shear bands in metals almost invariably tend to localize progressively until failure in-
tervenes, necks and macroscopic shear bands in polymers typically do not continue to localize
but tend to propagate along the specimen [see e.g. G’Sell et al. (1983), Neale and Tugcu (1985),
and Buisson and Ravi-Chandar (1990)]. The propagation of localized deformation is funda-
mental to the processing of polymers since the permanently oriented state generally has en-
hanced properties, but can also affect subsequent failure. However, the quantitative
understanding of thermal-viscoplastic localizations in polymers is still in its infancy.

In Chapter 5, a 2-D finite element analysis has been used to simulate large simple shear
tests of amorphous glassy polymers carried out by Gopez and G’Sell (1985), focusing attention
on the initiation and propagation of the shear band. The mesh sensitivity and the effects of in-
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itial imperfection, strain softening, orientation hardening, strain-rate as well as the edge effects
have been discussed in detail. The mechanism of initiation and propagation of the shear bands
are discussed in some detail.

Neck propagation, or commonly termed cold drawing, is a standard technique used to ori-
ent the molecular chains of the polymers and thereby harden the polymer of products such as
fibres (axisymmetric deformation) and magnetic tape and sheet materials (plane strain defor-
matjons). The phenomenon of neck propagation is in essence a mechanical one, and therefore
the problem is usually considered as a quasi-static deformation problem under isothermal con-
ditions. _

In Chapter 6, the modified 3-D constitutive model for large strain inelastic deformation of
amorphous glassy polymers is incorporated in finite element simulations of the plane strain ten-
sion, focusing attention on the initiation of necking and neck propagation along the specimen.
The mechanism of necking and neck propagation is discussed based on the detailed analysis of
the numerical results.

1.4. THERMODYNAMIC CONSIDERATIONS

Since the deformation mechanisms of rubbers and amorphous polymers are quite different
from those of polycrystalline metals and others, the thermodynamic analysis of these materials
provides some special features which need to be emphasized here. For the general thermody-
namic analysis of deformed solids we refer for instance to Ziegler (1977) and Besseling and
Van der Giessen (1993).

1.4.1. Thermodynamics of rubber elasticity

Assume the Helmholtz free energy W per unit mass to be a function of the Lagrangian
strain tensor E and the temperature 7, implying that the thermodynamic state of the material
can be determined by the current values of a set of state variables @ = {E, T} . The entropy
. and the Cauchy stress 6 are determined through the well-known relations

ow
XET) = -SWET,  oE D = pFopF. (1.1)

In above equations p is the density of the material after deformation, the superscript 7 denotes
transposition, and F is the deformation gradient tensor. The internal energy e, again measured
per unit mass, is defined as function of E and T by e(E, T) = W+ T. The elimination of W
between (1.1) and the definition of e gives
de 1 oY o1
= oF—F' - pTF=2 1.2

¢ = pFspF - pTF-pF, (1.2)
where it is to be recalled that the partial derivatives with respect to E are taken at constant tem-
perature. In this form, it is clear that part of the stress in an elastic material arises from changes
of internal energy in response to deformation and the remainder from changes of entropy.
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In a wide range of solids with ordered microstructure the stress is primarily due to the dis-
tortion of the intermolecular potential fields, resulting in a change of internal energy. The right-
hand side of equation (1.2) is then dominated by the first term. In contrast, intermolecular forc-
es in high density polymer are substantially unaffected by isochoric deformation and the stress
arises mainly from the tendency of the chain molecules to randomize the conformations avail-
able to them so as to maximize the entropy (see Sec. 1.1.1). The right-hand side of (1.2) is then
governed by the second term. The resulting model of material behaviour is known as the en-
tropic model, a full discussion of which can be found in Chadwick and Creasy (1984). The net-
work models for rubber elasticity discussed in this thesis are of this form. Under the assumption
of mechanical incompressibility, the stress tensor in a network model for rubber elasticity is
then determined by

9

6 =- p‘TFa—EFT—pI, ' (1.3)

where p must be determined from the boundary conditions.

1.4.2. Thermodynamics of inelastic deformation in glassy polymers

The concept of an intermediate configuration or relaxed configuration is a well-understood
tool in finite deformation plasticity theories. Different precise definitions and interpretations
aside, the deformation gradient may be multiplicatively decomposed into elastic and plastic
parts, F = F°FP, so that FP represents the mapping from the initial to the relaxed configura-
tion. The plastic properties in the relaxed configuration may be subject to change during the
deformation process as monitored by a set Q° of appropriate hidden state variables. The chang-
es with respect to the relaxed configuration being characterized by the set Q° = {E°, T} here
E° is the elastic Lagrangian strain tensor. The actual current thermodynamic state is then de-
fined by the union Q° U QP . Since thermoelasticity and inelasticity are of a physically totally
different nature, we will regard them as uncoupled processes specified by disjunct sets Q° and
QP . The free energy in the relaxed configuration is not zero, but has a value that is at any instant
determined by the past inelastic deformation history as represented by QF . Confining attention
to the free energy representation, this value is termed the stored plastic energy, WP . The free
energy in the current state is now given by

W= WSES, )+ WP, (1.4)

Generally, the stored plastic energy WP is not a point function of the state variables in QP but
merely depends on the path history represented by QP . Therefore, WP is usually defined
through its evolution during the deformation process (Besseling and Van der Giessen, 1993).
However, the plastic properties (such as orientational hardening) of amorphous glassy poly-
mers can be determined from the current plastic stretches through a network model for rubber
elasticity [see e.g. Haward and Thackray (1968) and Argon (1973)]. Therefore, we assume the
plastic stored energy WF to be a function of C° (CP = F°TF) and temperature T, i.e.
WP = WP(CP, 7). Note that C? is invariant under rigid-body rotations. We further compose
the total entropy into thermal entropy xt and configurational entropy x°,i.e. x = x' +%°. The
rate of change of W° and WF can be written as
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respectively, where DP is the plastic strain rate tensor, B is the so-called back stress tensor act-
ing on the Langevin spring (see Fig. 1.4),and ( - ) denotes the scalar product.

From the first law of thermodynamics (stating the law of conservation of energy), using
the second law in the form known as the Clausius-Duhem inequality and taking into account
the equilibrium equations, we arrive at the local inequality for the so-called rate of energy dis-
sipation:

Tpo = —gradT-h+6-D-p(W+Ty) 20, (1.6)

where o is the nonnegative entropy production density, D is the strain-rate tensor, and h is the
entropy velocity field (see e.g. Besseling and Van der Giessen, 1993). Using equations (1.4),
(1.5) and the relation D = D° + DP, the local inequality (1.6) can be further arranged as

) we .
Tp(»:—gradT-hH:-De—pa——oEe+o-Dp
OE? 1.7).

—-B-Dp—-pT(x+%i;f) >0.

The inequality in (1.7) has to hold at any instant for any velocity field and so for any local
continuum strain-rate D, for any entropy velocity field h and for any thermodynamic state.
Noting the relation E° = FTD°F®, we obtain

ow® ow
6 = pF*_F°T, =27,
PO r=or (1.8)

Tpw=-gradT-h+ (¢~B) -D° >0.

It is clear that the total rate of local energy dissipation Tp® is composed of two independent
contributions. Firstly, —grad 7 - h is the rate of energy dissipation accompanying the entropy
flux h at a temperature gradient grad 7. Secondly, (¢ — B) - DP is the dissipation rate resulting
from the plastic strain-rate DP in the ‘dashpot’ at a driving force 6 — B and (¢ — B) - D’ may
be termed the dissipation rate due to irreversible deformation process.

As we mentioned before, intermolecular forces in high density polymer are substantially
unaffected by isochoric deformation and the back stress B arises mainly from the tendency of
the chain molecules to randomize the conformations available to them so as to maximize the
configurational entropy %P . Therefore, we have

WP = WP(CP, T) = -TxP. (1.9)
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Chapter 2

On Improved Network Models for Rubber Elasticity and
their Applications to Orientation Hardening in Glassy
Polymers

Abstract—Three-dimensional molecular network theories are studied which use a non-Gaus-
sian statistical mechanics model for the large strain extension of molecules. Invoking an affine
deformation assumption, the evolution of the network—consisting of a large number of molec-
ular chains per unit volume, which are initially randomly oriented in space—is shown to be
governed by a balance equation in orientation space. Eulerian and Lagrangian type formula-
tions of these balance equations are given, and the closed-form analytical solution for the so-
called Chain Orientation Distribution Function is derived. This full network model is then used
to describe the large strain elastic hehaviour of rubbers. Detailed comparisons with experimen-
tal results and with two approximate models, namely the classical three-chain model and a very
recently proposed eight-chain model, are provided for different types of deformation and rub-
ber. Finally, the network model is applied to describe the orientational hardening in amorphous
glassy polymers, and confronted with experimental data for polycarbonate. The inherent phys-
ical limitations of the network theory for both applications are discussed.

2.1. INTRODUCTION

The constitutive description of rubber elasticity by application of macromolecular network
models dates back to as early as the 1940’s. Treloar (1975) gives an excellent comprehensive
treatment of the subject. These theories are based on the concept of a network of chains of ran-
domly oriented rigid links that are connected at junction points which in rubberlike materials
are provided by the chemical cross-links between macromolecules. The stiffness of such a net-
work is associated with the changing configurational entropy of the network chains. The first
statistical mechanics considerations of long chains assumed Gaussian statistics for the possible
chain configurations, and it was found that the response of the entire network consisting of n
randomly oriented chains per unit volume is identical to that of three independent sets of »/3
single chains in three orthogonal directions (see e.g. James and Guth, 1943). Non-Gaussian sta-
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tistics were employed subsequently to single chain configurations (Kuhn and Grun, 1942)
which takes into account the finite extensibility of molecular chains. However, the implemen-
tation of such a more accurate statistical theory for a single chain into a theory for the entire
network of chains is far more complex than in the Gaussian theory. For uniaxial extension,
James and Guth (1943) suggested to develop an approximate network model based on the sim-
plifying assumption that the property of the Gaussian network of being equivalent to three in-
dependent sets of chains may be taken over in the non-Gaussian theory (see also Wang and
Guth, 1952). Thus, the actual spatial distribution of chains is sampled in three orthogonal ori-
entations. Similarly, Treloar (1946) proposed to use the idea of a four-chain Gaussian network
representation (Flory and Rehner, 1943) to sample four spatial chain orientations. Somewhat
later, Treloar (1954) formulated a full network theory for simple uniaxial extension which ac-
counts for the actual spatial distribution of chain orientations, but this remained virtually dor-
mant for about 25 years until Treloar and Riding (1979a) extended the theory to biaxial tensile
deformations along fixed axes and actually carried out the averaging procedure. Such a full net-
work theory can only be handled numerically, however, and therefore the simplest three-chain
model has become the most widespread and almost standard non-Gaussian network model.

Network theories have also found application in the constitutive description of non-rub-
berlike materials, such as amorphous polymers below their glass transition temperature. When
subjected to large strains, and after plastic flow has been initiated, such materials exhibit very
strong strain hardening, which is primarily the result of straightening out of polymer chains be-
tween physical entanglements and the associated orientation of molecular chains. Haward and -
Thackray (1968) suggested for a one-dimensional model that this orientation hardening could
be modelled by application of a non-Gaussian chain theory. Recently, Boyce et al. (1988) ex-
tended this to a general three-dimensional model (which we shall term the BPA model) by
adopting the three-chain network model. This model turned out to be able to predict some of
the well-known phenomena during large strains of polymers rather well, but it was found very
recently by Arruda and Boyce (1991) to be unable of capturing the dependence of strain hard-
ening on the state of deformation found experimentally in their large strain experiments on
polycarbonate (PC). At the same time, they proposed to model the network by eight equivalent
chains instead of three.

A detailed study of that eight-chain model for rubber elasticity in comparison with exper-
iments on various kinds of rubber has appeared very recently (Aruda and Boyce, 1993a), and
much better agreement with experiments was obtained than with the traditional three-chain
model. A study of the orientation hardening in glassy polymers by the same authors has re-
vealed similar trends (Arruda and Boyce, 1993b). Obviously, the three-chain as well as the
eight-chain model are but approximate representations of the actual spatial distribution of mo-
lecular chains. Among all possible orientations these models can be regarded to sample a set of
particular directions. However the accuracy of these approximations has not been established.

The purpose of this chapter is to assess the accuracy of the three- and eight-chain model
by comparison with a model which accounts accurately for the actual spatial orientation distri-
bution of molecular chains. Treloar and Riding (1979a) have aiready developed a rubber elas-
ticity theory based on such a full network description; but, their considerations were limited to
deformations with biaxial extension along fixed axes under plane stress conditions. In the
present chapter we extend their work to a general formulation valid for 3-D deformation proc-
esses. In the first part, we focus attention to rubber networks deforming affinely with the con-
tinuum deformation [a few preliminary results have been reported by Wu and Van der Giessen
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(1992a)], and in the second part we discuss the application of the network theory to describe
the anisotropic strain hardening in amorphous polymers. The modelling centers around a gen-
eral treatment of the orientation distribution of molecular chains and their evolution as defor-
mation progresses. This description utilizes the idea of Chain Orientation Distribution Function
(CODF), which is governed by balance equations that express physically well-understood con-
servation features. The authors are not aware of any comparable such treatment for networks.
Assuming the network to deform affinely with the deformation of the continuum it is embedded
in, closed-form solutions are derived for this CODF, which thus contain the complete informa-
tion of the orientation distribution of molecular chains at any stage of the deformation. This so-
lution is then used to develop the rubber elasticity model by averaging out the contribution to
the free energy of individual chains over all chain orientations. In a modified form, similar to
the work of Boyce et al. (1988), this full network model is used to model orientation hardening
in glassy polymers. The full network model requires numerical integration; an approximation
based on the three- and eight-chain representations turns out to be very accurate over the entire
range of strains. Verification with some experimental results from the literature is provided both
for the elastic behaviour of a few rubber materials and for the plastic response of a typical
glassy polymer like polycarbonate.

2.2. IMPROVED NETWORK MODELS FOR RUBBER ELASTICITY

The development of molecular orientation in rubber-like materials under deformation, has
been extensively studied, often by measuring the optic anisotropy or birefringence. Various de-
formation schemes have been proposed, based on the standard conception of a vulcanized rub-
ber as an assembly of molecules linked together at well-defined junction points (points of
vulcanization or cross-linking). One of the simple schemes is the so-called affine model, which
is based on two key assumptions: i) statistical fluctuations of the position of the junction points
about their mean position can be neglected, ii) the end-to-end vector of a chain (between junc-
tion points) co-deforms with the local deformation of the continuum it is embedded in. Accord-
ing to this scheme, as deformation progresses each chain stretches while rotating towards a
preferred direction. At all stages each chain attempts to maximize its entropy by disorienting
the elements or random links, subject only to the constraints imposed by the end-to-end vectors.

It is to be noted here that in the traditional application to purely elastic rubber-like mate-
rials, the affine deformation assumption literally implies that the end-to-end vectors deform as
material lines on the continuum. In this paper we shall also be concerned with the application
to molecular networks in glassy polymers in which case the network distortion will not follow
the continuum deformation exactly. Nevertheless, there will be a connection between the two,
but in order to keep the discussion concise, we may, for the time being, distinguish between the
deformations of the network and the continuum, respectively, thus allowing for these deforma-
tions to be instantaneously different. The precise link between the two depends on the applica-
tion of the network model; this will be further discussed for rubbers in Sec. 2.2.3 and for glassy
polymers in Sec. 2.3.2.
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2.2.1. Single Chain Behaviour

We start out by briefly recapitulating the well-known non-Gaussian considerations for a
single molecular chain (see, e.g., Treloar, 1975). Consider a single chain between two junction
points, with its end-to-end vector r in the initial state being specified by angular coordinates
8, and @, 0<6,<™m, 0<p,=2m, wnth respect to some initial frame of reference defined by
the set of orthonormal base vector e (see Fig. 2.1). If the chain contains N links of length /,
the length 7, of the unstrained free cham is given by the root-mean-square value JNI. Further-
more, consider some strained state of the chain in which the end-to-end vector r has length r
and is oriented at angles 8 and @ with respect to some current orthonormal set {e;} . In our
considerations in the present and the next subsection, the two frames of references can be cho-
sen arbitrarily; in Sec. 2.2.3 and subsequent discussions, we shall dcal with the kinetics of the
deformation of chains and we shall make specific identifications for e and e, respectively. For
now, it suffices to note that the stretch of the end-to-end vector in the stramed stateis A = r/ ro-

By considering the statistical distribution of possible link angles at a given vector length r,
Kuhn and Grun (1942) were the first to derive the configurational entropy Y of the stretched
chain. Their non-Gaussian chain statistics approach accounts for the finite extensibility of the
chain and hence is valid for large stretches up to the limiting stretch A, = JN, even for short
chains with a small value of N. Furthermore, they showed that the Helmholtz free energy w for
a single chain at stretch A (at constant absolute temperature 7) is determined by the configura-
tional entropy % through w = —T, and hence is given by

-1 A
~Wp B=L(7—K]

w = kNT(J. B+In ﬁnﬁ) ), 2.1)

(; 6, / ry
/4"’(’;\
e} (a)

Fig. 2.1. A single chain in unstrained (a) and strained (b) state; definition of geometric quantities.

where wy, is an arbitrary constant,  is Boltzmann’s constant and L is the Langevin function
defined by

L(B) = cothp-1/B.
The work-rate of stress per unit volume is 6€ with € = A/ A, so that for purely elastic, isother-
mal deformation processes we find G€ = w = (dw/dA) A. Hence

ow
= A5r
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2.2.2. The Chain Orientation Distribution Function

Now consider a network of molecular chains with a random distribution of the orientation
of their end-to-end vector r in the unstrained state. Each individual chain is described as dis-
cussed above. The deformation of the network is assumed to be homogeneous in the sense that
all chains are assumed to be subjected to the same network deformation tensor. The adjective
“network” is used here, as mentioned before, to emphasize that in this subsection we shall be
concerned only with the network and not with the continuum it is embedded in.

We will assume that the number of the chains per unit volume, #, is large. In effect, for
characterizing the distribution of the chain orientations and stretches, we will make the transi-
tion to a continuum-like network model by considering the limiting case of an infinite number
of chains. Hence, we can identify a continuous distribution of chain orientations. A so-called
molecular Chain Orientation Distribution Function (CODF), denoted by C (6, ®;?) , is now in-
troduced such that the relative density of molecular chains whose r-vector orientation at some
instant 7, falls in the range between (0,¢) and (0+dO,9+d¢) is given by
C(6,;1)sin08d 0d @. Note that sin0d 0d ¢ is the area on a unit sphere spanned by the interval

(d0,d¢) and that ¢ is a time-like parameter. The actual number of chains between (0,¢) and
(6+d8,0+do) thenis

dr = C(8,0;1)sin0d8d . 2.3)

For a virgin, unstrained material the orientation of network chains can usually be considered to
be distributed in a random fashion initially; then C will be independent of 6 and ¢, and the
material’s response is instantaneously isotropic. When the material is deformed all chains are
stretched and, at the same time, rotated as will be shown in detail later. Hence, the CODF will
develop into a nonuniform distribution, which may be quite severe, as will also be demonstrat-
ed later. Thus, texture development in the sense of molecular chain distributions is described
in this model in terms of this CODF.
By definition,

n 2

HC(e,cp;t) sin6d8do = 1, (2.4)

00
so that a uniform distribution, corresponding to isotropic properties, is characterized by
Cc(0,0;t) = Cy = 1/4m. During the deformation process of the network, the CODF is sub-
ject to continuous change and this evolution is governed by a continuity equation in orientation
space which we will now derive.
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Fig. 2.2. A surface region £ with boundary I" on a unit sphere in orientation space. The increase of
the volume fraction of chains per unit time within €2 must be balanced with the outflow
over the boundary I [see (2.5)].

Consider an arbitrary surface region Q of a unit sphere bounded by the curve I, fixed in
space (see Fig. 2.2.). The conservation law is expressed in the form that the rate at which
the chains contained in Q increases is equal to the rate at which chains enter into € over its
boundary I':

‘”é-(iaslfﬂded(p+§(Csin9)v-ndF =0, 2.5).
Q 4 r

where 9 (Csin®) /0t is the rate of increase of Csin® at a fixed point in 2, v denotes the vector
(8,%) in (8, 0) -space, n denotes the outward unit normal to I' and a - denotes the inner prod-
uct of vectors. Rewriting the contour integral and applying Green’s theorem gives

§ (Csind) v-ndl = [[ (a(czigee) + a(czi"eq’) )ded(p. (2.6)
r Q ¢

Combining (2.5) and (2.6), we obtain the continuity equation for the CODF by a standard ar-
gument:

d(Csin®)  9(Csin68) 9(CsinB) _
T T 0

Equation (2.7) describes the change in the CODF at a given point in orientation space at
which a number of chains is moving in orientation space. Using standard terminology of con-
tinuum mechanics, the derivation above can be referred to as an Eulerian formulation. Alterna-
tively, we can give a Lagrangian treatment in which we follow the motion of one and the same
set of chains through orientation space.

By applying the standard transformation procedure in multidimensional integration, the
left-hand side of (2.4) can be written in terms of the initial orientation (8,,9,) as

2.7

T 2R n2rn

[ [ csinodede = | [ c@.9;nsin81d8,do,,
00 00

where in the right-hand side,
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0=000,90,0,  ¢=00,0y0,

_ #0000 -

J =199
(85, 9,)

On the other hand, we may also assume a given initial orientation distribution C,,, so that
from the balance law (2.4) we have,

n2n n2n
[ [ csinodede = [ | Cysin0,d8,de,.
00 00

Therefore, we obtain the relationship

CB.0 1) = sin@)0 i
0,01 ‘Comf- 2.9)

The Eulerian and Lagrangian interpretations of the motion of chains in orientation space
can be made more explicit by defining a convective time derivative D /D¢ in addition to the
local derivative d/dt appearing in (2.5) and (2.7). By analogy to the convective or material
time derivative in continuum mechanics, we define

D _90.,60 19
B = a:*eae“"acp’ (2.10)
so that for any arbitrary quantity f,
D A
DI(6, 931) = 2 718(8,,0,:0), 98 031)50) @11

The convective derivative Df/D1 can be interpreted simply as the rate of change of the quan-
tity f as measured by an observer travelling with the chains in orientation space. With this def-
inition, the local continuity condition (2.7) for the CODF can be rewritten as

D (Csin9)

.38 9p
5 +c5m9(3_é+3(_p)_o, (2.12)

while the integral condition (2.5) becomes

%‘U;Csined()d(p = 0.

Recalling the definition of C, the total value F of some quantity f associated with individual
‘chains in some orientation is given by

F = [[fCsin8dede.
Q
For future reference, we note that the rate of change of F can be conveniently expressed as

DF _ ¢(Df ..
Br = J.SJ;D—ICsdeGd(p (2.13)
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in terms of the convective derivative. The proof is fully similar to that of Reynolds’ transport
theorem in continuum mechanics and will not be elaborated on further.

2.2.3. Full Network Model—Eulerian Form

In this section, we shall further elaborate on the network in rubber-like materials, where
the network deformation can be regarded to coincide at each moment with the continuum de-
formation in which it is embedded. Thus, when the material is subject to some three-dimen-
sional deformation process represented by the deformation gradient tensor F, each chain’s end-
to-end vector r is taken to be distorted (i.e. strained) and rotated to the vector r in an affine
manner, i.e. r = Fr;. The associated principal stretches A, (i =1, ...,3) as well as the cor-
responding Lagrangian principal directions e? in the undeformed configuration and the Eule-
rian principal directions e; in the current deformed configuration are defined through

Ce? = 2%  (nosum), C=FF (2.14)

1 i

and

Be. = A%,  (nosum), B = FF', (2.15)
i (] }

respectively. Here, C and B are the usual right and left Cauchy-Green tensors, respectively. In
the sequel it will be extremely convenient to identify the frames of reference for the chain ori-
entations (6,,¢,) and (0,9) in the initial and strained state, by these Langrangian and Eu-
lerian triads e; and e;, respectively.

It is assumed that no volume change takes place during deformation of the network and
hence of the continuum. Furthermore, intermolecular interactions and changes in internal en-
ergy are neglected during the deformation. Accordingly, the total free energy W for the network
is given simply by the sum of the free energies w of the individual chains, i.e.

W = den,

with w according to (2.2) and dn being the actual number of chains whose r-vector orientation
falls in the range of (8,¢) and (6 +d6,¢+d@) . According to (2.3), W can be expressed in
the terms of the CODF as given by

n2n
W= nj [wc®,¢:nsinbdede. (2.16)
00

Here, we have substituted the principal stretches as the time-like parameter ¢ in the previous
expressions for the CODF. This is possible since, as a consequence of the affine deformation
assumption, the distortion of the network is independent of the rate of deformation, so that ¢
only needs to be some monotonic parameter. Identifying ¢ with A, will turn out to be convenient
for further development.

Expression (2.16) shows that due to the affine deformation assumption and the isotropy of
the initial orientation distribution of the chain vectors r,, the total free energy W for the net-
work can be expressed solely as a function of the principal stretches 2. By a standard argument
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(see, e.g. Ogden, 1984), it then follows that the principal axes of the Cauchy stress tensor @,
coincide with the Eulerian triad {e;}, so that

6=30,(e®e¢) (2.17)

with the principal stresses 6, required to sustain the imposed deformation being determined by
the gradient of Win A -space. Recalling the exposition in the previous subsection, the convec-
tive derivative D /D¢ is the appropriate rate of change of any chain-associated quantity. After
identifying r with Li again, the appropriate gradient in this paper is D /DA, so that we obtain

. = ?»DW

; le -p (nosum) . (2.18)

Here, p is an additional hydrostatic pressure which is left indeterminate by the free energy func-
tion because of incompressibility, A, A,A; = 1, but which is determined from the boundary
conditions. With the total free energy W being given by (2.16), we obtain according to (2.13)

g;f’ ”m Csin08d0d¢. (2.19)

We now proceed by deriving the expressions for w and the CODF C as a function of the
principal stretches that need to be substituted into (2.19). To that end, we consider the distortion
of an initial chain end-to-end vector r; into the end-to-end vector r in the current state. The
components of the associated unit direction vectors m = r/r = mge; in current state, and
m, =r,/r, = moe in the initial state are (see Fig. 2.1)

m, = sinBcosQ, m, = sinBsing, m; = cos0, (2.20)

and

0_ .. 0_ . . 0_
m; = smeocoscpo, my = smeosm(po, my = cos(—)o, (2.21)

respectively. Invoking the affine deformatlon assumption, r = Fr, and the well-known con-
tinuum mechanics relationship Fe = ?» ¢, (no sumy), the components of the unit direction vec-
tors m and m,, on the Langranglan and Eurlerxan bases respectively, are interrelated by

)\’i 0
m = im (2.22)

or

A A A
sin@cos@ = x’sineocostpo, sinBsing = W’sineosin(po, cosf = T’cosﬁo. (2.23)

Furthermore one may invoke r = Fr, so as to eliminate r from the expression
A2 =/ r0 (r-r)/ (ry-rg),such that the stretch A canbewrltten as A% = m, - C-m,.
Introducing then the components of m on the Langrangian triad e gives, with the aid of
(2.14),
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A= T md)’A;. (2.24)

This expression determines the stretch A of a single chain as a function of its initial orientation,
ie. A 1s found as a function A8y, @ ;A). Similarly, by starting out from
A% = ri/r* = (ry-1y)/(r ), one finds

2= Ymi/n, (2.25)

which governs the stretch as a function of the current chain orientation, i.e. A(8, ;A,).
With either one of these relations for A as a function of A, the free energy function w to
be substituted into (2.19) can be formally constructed. However, one may note that

Dw _ owDA
DA, 0ADA;

where 9w /9 is immediately given by (2.2) and where, according to the definition of the de-
rivative D/DA,, the term DA/DA, is the partial derivative of A as a function M8, 93 A).
This function is detennmed by (2. 25) and after differentiation and elimination of m by means
of (2.22), one finds DA/DA, = (A/1) m . Hence,

nan 2

__nkajch ([

D7, sin 0déde,
and the principal stresses, according to (2.18), can be written as

n2n

o, —CRJXIHCL (-~ )xm sin@d8de - p, (2.26)

=

where C® = nkT is known as the rubber modulus.

The final step now is the derivation of the solution for the CODF C = C(6,9; 7‘;')' With
the help of (2.20), (2.23), (2.25) and (2.8), the CODF can now be explicitly determined from
(2.9) by a very long but straightforward calculation, which results in the following general ex-
pression:

CO.9:1) = CA'0,0:1), 2.27)

where C, = 1/4n is the initial uniform distribution and where M8, 9; A,) is to be solved from
(2.25). Substituting (2.27) into (2.26), we finally obtain the principal stresses as

n2n

CRJJTJHCL (—)7\.4m2sin6d9d(p p (2.28)

=

Once these principal stresses are evaluated, the stress tensor ¢ itself is constructed by applica-
tion of (2.17).
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2.2.4. Full Network Model—Lagrangian Form

The full network model we derived in the above can also be developed in the initial con-
figuration, i.e. in a Lagrangian form. There are two different ways to arrive at this. One is an
approach based on the initial, uniform chain orientation distribution as demonstrated by Wu
and Van der Giessen (1992a). The other, which we will now derive, employs a transformation
of (2.28).

The principal stresses in the form (2.26) can be directly transformed to the initial configu-
ration:

TR 0,2

S, —CRIHCL (T)x ( 2 inosdo 4@, —p

with J according to (2.8). By noting (2.9) or Csin8J = Cysin8) = (1/4n) sin6,, we finally
obtain

n2n A xz( 0)2
6. _—ckjﬁij (T — " 5in8d0,de,—p (2.29)

with A = A(8,, (pogli) calculated from (2.24).

Equations (2.29) are exactly as derived previously by the authors (Wu and Van der Gies-
sen, 1992a). As pointed out in that paper, the equations (2.29) are similar to that given by Tre-
loar and Riding (1979a). However, Treloar and Riding limited their attention to i) biaxial
deformation, and ii) to deformations with fixed principal axes of stretching so that the Eulerian
and Lagrangian triads retained fixed orientations in space. The present formulation is valid for
arbitrary three-dimensional deformations; for the biaxial deformations mentioned, the model
reduces to that in Treloar and Riding (1979a).

It will be noted that in this Lagrangian approach, the CODF is not needed at all for the com-
putation of the network stresses. This is an obvious advantage when one is only interested in
the stress-strain response. But, the CODF in itself is an essential source of information about
the actual orientation distribution of molecular chains at any stage of a general three-dimen-
sional state of deformation, which the authors have not found before in the literature.

2.2.5. Simplified models

. In the present paper, we shall consider two simplified network models that have been proposed
in the literature, namely the three-chain model and eight-chain model. The three-chain model
was originally suggested by James and Guth (1943) and assumes that a network containing n
chains per unit volume is equivalent to three independent (non-interacting) sets of n/3 chains
per unit volume parallel to the Eulerian principal axes as shown in Fig. 2.3a. The principal val-
ues of the stress tensor according to this model are
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) (2.30)

€ €
(a) (b)

Fig. 2.3. Schematic representation of the three-chain model (a) and the eight-chain model (b).

The eight-chain model was proposed by Arruda and Boyce (1991, 1993a) and considers a set
of eight chains connecting the central junction point and each of eight corners of the unit cube
as shown in Fig. 2.3b. The principal values of the stress tensor according to this model are given
by

¥ = CRJJT/ L (T 2.31)

with

2= IYA
i

Comparing these three- and eight-chain samplings with the actual 3-D initial random dis-
tribution of molecular chains, we expected that the three-chain model would be likely to over-
estimate the actual stiffness of the network, while the eight-chain representation would
probably give a lower bound (Wu and Van der Giessen, 1992a). Indeed, as will be demonstrated
in the next section, the stress response predicted by our full network model (2.28) or (2.29) is
for the same value of N and C* always in between that predicted by the three-chain model] and
eight-chain model, respectively. However, the integrations involved in (2.28) and (2.29) re-
quire a rather time-consuming numerical procedure (see Sec. 2.2.6), which is certainly not ap-
pealing when one wishes to incorporate the model in for instance finite element computations.
All these observations motivated us to search for an approximation of the full integration by
combining the three-chain and eight-chain models. One possibility is a simple linear combina-
tion,

o,= (1-po " +pa®, (2.32)

H

where the parameter p may be a constant or related to some other physical quantity which is
for instance related to the deformation process. In our previous paper (Wu and Van der Giessen,
1992a), p was proposed to be related to the maximal principal stretch A_, - = max(A, A,, A,)
by

p=085r_ /JN (2.33)
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where the factor 0.85 was chosen to give the best correlation with full integration of (2.28) or
(2.29). In this way, the eight-chain contribution in (2.32) becomes increasingly important when
kmax approaches the limit stretch LL = /Nofa single chain.

2.2.6. Results

Before considering the stress responses according to the network models described in the
above, we shall first study the distortion of the network during a few deformation processes in
terms of the CODF. As mentioned before, the CODF gives the precise spatial distribution of
the chain orientations for an arbitrary three-dimensional deformation, and thus provides key in-
formation about the anisotropy of chain associated quantities. Also, this will provide important
hindsight to appreciate the simplified network models later on.

Fig. 2.4. Three-dimensional plot of the CODF during uniaxial tension along the €, direction for a
stretch of A = 1.5. The vertical bars indicate the orientation of the chain in the eight chain
model.

Equation (2.27) is the general expression for the CODF in the current orientation space
(8, @) relative to the Eulerian triad at given values of the principal stretches A;, with the func-
tion A(0, ©; Ki) to be solved from (2.25). Figures 2.4 and 2.5 show the CODF during uniaxial
extension at various stages of the applied stretch A. In that case, the Eulerian triad retains fixed
directions in space and the principal stretches are A, = A, A, = A, = A2, The three-di-
mensional plot in Fig. 2.4 gives a complete picture of the spatial chain orientation at a stretch
of A = 1.5. The molecular texture created during this deformation due to the stretching out and
simultaneous rotation of the chains is clearly seen as two distinct peaks in the CODF in the
stretching direction e,,i.e. ¢ = 0,8 = 0 or 6 = 7. As stretching continues, these peaks be-
come increasingly intense, as shown in Fig. 2.5 in a two-dimensional section of the CODF in
the e,-e, plane (6 =m/2) for various stretches. It will appear to be instructive to compare
the actual spatial chain distribution with the three- chain and eight-chain approximations. In the
three-chain model of Fig. 2.3a, the network is represented by three effective chains along the
three principal directions, where the one along the tensile stretch direction e, will have to carry
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the tensile stress. Thus, this single chain should represent the actual cloud of chains around this
preferred direction as shown in Figs. 2.4 and 2.5, a large fraction of which do not quite have
that preferred direction and will contribute less to the axial stiffness. Shown explicitly in Fig.
2.4 is the orientation of the eight chains in the eight-chain model of Fig. 2.3b at the current
stretch level, which is readily obtained from the expressions (2.23), (2.24). It is seen that these
orientations have rotated towards the actual CODF peaks with ongoing deformation, but are
considerably off the ideal orientation. This implies that any chains that are oriented close to the
ideal orientation, and which therefore will carry most of the load, are not taken into account in
the eight-chain model.

15.0

— | A=15 J{
10,0

|
I I U A =20

:.‘.‘-‘ - A =25 //
5.0 ) 4

n/2 ¢ n

c/C,

Fig. 2.5. Plane section of the CODF at & = m/2 during uniaxial tension (cf. Fig. 2.4) at various
levels of the stretch A.

Next, we consider the case of simple (and not pure) shear, where the deformation gradient
is given by the components

1 v O
Fl=1o 1 0
0 0 1

with respect to some global Cartesian basis {g;} . In this case, the Eulerian strain triad {e;}
does not retain a fixed orientation in space, but the e, -e, axes are inclined with respect to the
g,-8, axes at an angle o = (w/4) + (1/2)arctan (7/2). The actual spatial orientation in
the g,-g, plane is therefore given by the angle ® = o+ ¢, and this angle is used to plot the
section of the CODF in that plane (8 = m/2) as shown in Fig. 2.6. It is observed that molec-
ular orientation effects now lead to the development of strong CODF peaks at the principal
stretch orientations (i.e. for ¢ = 0) which, in addition, rotate towards the final orientation
@ = o = O for the shear y — .
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Fig. 2.6. Plane section of the CODF at 6 = m/2 during plane simple shear at two stages of the defor-
mation.
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Fig. 2.7. Predicted load vs. stretch diagram for uniaxial tension according to different network models
with N = 75 and C° = 0273 MPa.

We shall now proceed by considering the stress-strain response according to the models
discussed above. The principal stresses according to the full network model are given by either
the Eulerian expression (2.28) or the Lagrangian form (2.29). At each stage of the deformation,
the double integrals in these expressions are evaluated by first noting that due to symmetry only
the intervals 8 € [0, /2], ¢ € [0, m/2] need to be considered, then subdividing that area into
a number of cells and integrating within each cell using Gaussian quadrature. This procedure is
basically equivalent to that described by Treloar and Riding (1979a). Recursive refinement is ap-
plied for each cell until the integral is obtained within a relative error of 107 The Eulerian and
Lagrangian expressions (2.28) and (2.29), respectively, are mathematically equivalent, but it
turns out that the evaluation of the integrals in the Eulerian expression is much more time-con-
suming than the Lagrangian one because the integrand is a significantly more nonlinear function
of 8 and ¢.
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Figure 2.7 shows the predicted response to uniaxial extension in the €, direction with prin-
cipal stretches A, = A, A, = A, = A1, as discussed above. The principal tensile stress is
o, =0, while the conditions G, =0, = 0 are used to determine the unknown pressure p in
the constitutive relations (2.28)-(2.31). Contrary to Wu and Van der Giessen (1992a) who pre-
sented the results in terms of the true stress ¢, we here show the nominal stress f or load per
unit undeformed area, which is in this case simply given by f = 6A,A, = ¢/A. Figure 2.7
shows the results according to the full network model as well as the simplified three-chain and
eight-chain models. The values N = 75 and CR = 0.273 MPa were used for all three models;
they were simply used as representative values of N and Xk, and were given by Treloar (1975)
for uniaxial tension of a vulcanized rubber. All models considered correctly predict a typical S-
shaped load vs stretch curve exhibited by rubber materials. What this result clearly shows is
that relative to the full network model, the three-chain approximation tends to overestimate the
stiffness at large stretches, while the eight-chain model tends to underestimate. There is no sig-
nificant difference up to stretches of A = 3 (or roughly 30% of the limit stretch). The difference
at larger stretches seems to be associated with the different limit stretches of the complete net-
work. The stretching according to the three-chain model is limited directly by the limit tensile
stretch 4, = JN of the chains parallel to the tensile direction, while the overall network lim-
iting stretches for the eight-chain model exceeds }‘L . It is seen that the approximate expression
(2.32) for the full network response is indeed very accurate up to very large stretches.

A more important aspect appears to be the description of the network response under dif-
ferent states of deformation. Indeed, the primary motivation for the introduction of the eight--
chain model by Arruda and Boyce (1991) was the observation that the standard three-chain
model could not pick up the dependence of the state of deformation observed experimentally
in rubber materials. In order to assess the accuracy with which the three- and eight-chain mod-
els can account for the state of deformation dependence, Arruda and Boyce (1993a) took the
following procedure. For a given model, the network parameters N and for a certain mate-
rial are fitted from uniaxial tension or compression data, and are then used to predict other de-
formation processes like equi-biaxial tension or plane strain compression. Here, we shall
follow a similar procedure but now for the simplified models in comparison with the full net-
work model. Our procedure will be slightly different in the sense that we shall not fit C® and
N independently, but we shall use one value of C® for all three models. The motivation for this
is that the small strain behaviour is governed primarily by C®, while the network models vir-
tually coincide at these strains (and in fact approach the Gaussian network model). The various
network predictions differ essentially only at relatively large strains, and the values of N will
be fitted in that range. We shalt apply this for two materials and two classes of deformations,
as shown in Figs. 2.8 and 2.9, respectively.

Figure 2.8 shows results for uniaxial and biaxial tension of a natural-rubber gum as report-
ed by James et al. (1975). The (equi-) biaxial stretching is characterized by the principal
stretches A, = X, = 4, &, = A along fixed directions, while the material is in a state of
plane stress, i.e. 6, = 0. The figures show the loads in the stretching directions, i.e. f = ¢,/ A
for uniaxial tension and f = ¢,/A = ¢,/A for biaxial tension. The Figs. 2.8a to ¢ show re-
sults for the three-chain, eight-chain and full network models, respectively, where in each case
the value C* = 0.4 was used while the value of N was fitted for each model to the uniaxial
data. It is observed that the three-chain model (see Fig. 2.8a) cannot predict the significantly
different behaviour in biaxial tension, especially at larger stretches. The eight-chain model does
predict a stiffer response in biaxial tension at larger stretches, but still underestimates the ex-
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perimental data (see Fig. 2.8b). Notice that the value of N for the eight-chain model is about
three times smaller than that for the three-chain model. These conclusions are similar to those
found by Arruda and Boyce (1993a) using similar data from Treloar (1944) for another mate-
rial. Figure 2.8c shows the results for the full network model, and it is seen that the predicted
response for biaxial tension is significantly lower than the experimental data and in fact is
slightly lower than that according to the eight-chain model.

The second set of cases, shown in Fig. 2.9, is concerned with uniaxial and plane strain com-
pression of a silicone rubber as investigated also by Arruda and Boyce (1993a). Uniaxial com-
pression in the e; direction is characterized by principal stretches 7&1 =A<,
Ay =RA, = A 2 while plane strain corgEression is determined by A, =A<1, &, = 1,
Ay = AL, For all three models the value = (.435 is used, and the value of N is for each
model fitted to the uniaxial data. It is seen in Fig. 2.9a that the three-chain model overestimates
the stiffness during plane strain compression for compressions 1/ larger than about 2, while
the eight-chain model is found to slightly underestimate the stress response in that regime (see
Fig. 2.9b). The plane strain compression prediction for the full network shown in Fig. 2.9¢
agrees well with the experimental results up to 1/ = 2.5 but for continued compression a soft-
er response was found experimentally.
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Fig. 2.8. Load vs. stretch diagram for uniaxial and equi-biaxial tension of a natural-rubber gum for
the three-chain (a), the eight-chain (b) and the full network model (c). The experimental
data is taken from James et al. (1975) and Ct = 0.4 MPa.

At this point, it should be recalled that the three- and eight-chain models are both based on
approximate descriptions of an affine network model, and that our full network theory is based.
on the exact treatment of that concept. As suggested also by Arruda and Boyce (1993a) one
would expect that the full network model provides a better description of real rubber behaviour.
However, we do not find that the full network model’s predictions are necessarily in better
agreement with experimental results than the predictions of the eight-chain model. Especially
the biaxial tension results of Fig. 2.8 are captured best by the eight-chain model. This does not
imply however that the eight-chain model is a better model per se. There are several assump-
tions that underly the present network concept, and which can act as potential sources of dis-
crepancy with experiments. First of all, there are several so-called network defects, such as
unstable crosslinks and interlooping of chains or entanglements, as suggested already by Flory
(1944), which may have a very significant effect. One of the key assumptions is that the junc-
tion points in the network provide permanent nodes in the network; however, molecular chains
may also slide relative to each other at so-called sliplinks (see, e.g., Ball et al., 1981). All these
network defects will tend to lower that the actual stiffness of the network. Furthermore, the af-
fine assumption is known to hold with high accuracy at low deformations, but it has been sug-
gested that as the deformation increases, the behaviour of a real network approaches the so-
called phantom network in which the junction points move independent of the continuum (see
e.g. Mark and Erman, 1988). Also it cannot be ruled out that at large deformations, when chains
are rotated towards a common axis to such an extent that they become ligned up, intermolecular
interactions are no longer negligible. Molecular dynamics simulations (Gao and Weiner, 1991)
seem to indicate that this may be a significant effect already at relatively small deformations in
the Gaussian regime, and it may be expected to be even more important at the large strain levels
considered here, leading to a more diffuse CODF than predicted here. In conclusion, if the eight
chain model seems to effectively pick up all these effects in an average sense, this is more due
to sheer coincidence than to more accurate modelling.
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Fig. 2.9. Load vs. stretch diagram for uniaxial and plane strain compression of a silicone rubber gum
for the three-chain (a), the eight-chain (b) and the full network model (c). The experimental

data is taken from Arruda and Boyce (1993a) and C* = 0.435 MPa.
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2.3. A LARGE INELASTIC DEFORMATION MODEL FOR GLASSY POLYMERS

We start by briefly recapitulating the so-called BPA model developed by Boyce, Parks and
Argon (1988). In the BPA model, the microstructure of an isotropic amorphous polymer is as-
sumed to consist primarily of long molecular chains, which are randomly coiled in space. Side
groups protrude from the backbone chains at various locations and, in conjunction with overall
chain trajectory, can act as nodes, or points of physical entanglement. This results in a network-
like structure much like that of rubber as discussed in Sec. 2.2, but with the chemical cross-
links replaced by physical entanglements.

Following the work of Haward and Thackray (1968), it is further assumed that a glassy pol-
ymer must overcome two physically distinct sources of resistance before large strain inelastic
flow may occur. Below the glass transition temperature, prior to initial yield, the material must
be stressed to exceed its intermolecular resistance to segment rotation; this will be discussed
first. Once the material is free to flow, molecular alignment occurs, resulting in an anisotropic
internal resistance to further inelastic deformation, which is called orientational hardening; this
shall be discussed in Sec. 2.3.2.

The intermolecular resistance to plastic flow is due to the impedance imposed by neigh-
bouring chains on the ability of a chain segment to rotate either individually or in a cluster. Ar-
gon (1973) developed an expression for the plastic shear strain rate, ¥°, which ensues once the
isotropic barrier to chain segment rotation has been overcome:

A 5/6 .
1P = J4exp [——S—[ - (3) ﬂ 2.34)

where ¥, is a pre-exponential factor, A is proportional to the activation volume/Boltzmann’s
constant, T is the absolute temperature and t is the applied shear stress. Furthermore,

= 0.077u/ (1 — V) is the athermal shear strength, 1 is the elastic shear modulus, v is Pois-
son’s ratio. Boyce et al. (1988) extended this expression to include the effects of pressure and
strain softening. They used s + ap instead of s, where p is the pressure and « is a pressure
dependence coefficient. Furthermore, s is assumed to evolve with plastic straining via
$=h(l-s/sg) 7P, where h is the rate of resistance drop with respect to the plastic strain
and s, is the assumed saturation value of s.

2.3.1. Three-dimensional representation

Consider the homogeneous deformation of an initially isotropic body loaded so that its de-
formation gradient at a subsequent time is F. The deformation gradient may be multiplicatively
decomposed into elastic and plastic parts, F = F°F? . Following Lee (1969) and others, Boyce
et al. (1988) take F® to be symmetric, so that F® represents the relaxed configuration obtained
by unloading without rotation (in the polar decomposition sense). Hence, F? can be decom-
posed as F? = VPR with the plastic stretch VP and the total stretch V in polar decomposition
F = VR being related by V = F®V?. The rate quantities corresponding to this decomposi-
tion consist of the velocity gradient L,
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L=FF'=D+W=FF ' +FLPF"

where D is the rate of deformation, W is the spin, and L? = DP + WP = EPF =1 is the ve-
locity gradient in the relaxed configuration. With the adopted symmetry of F°, the skewsym-
metric part WP is algebraically given as W plus a term dependent on F° and D + DP (see
Boyce et al., 1988). The rate of change of shape of the relaxed configuration, DP, must be con-
stitutively prescribed. In the BPA model, the magnitude of D? is taken to be given by the plastic
shear strain rate, y¥, according to (2.34) while the tensor direction of DP is specified by N, so
that

DP = vPN, (2.35)

where the direction N is the deviatoric part of the driving stress, normalized by the effective
equivalent shear stress 7T:

1 - 1., ~
N=—¢', 1= [z6"-0’ (2.36)
J2 2
The driving stress @ itself is defined by
G =0- %FEBF‘: (2.37)

where ¢ is the Cauchy stress tensor and B is the back stress tensor due to the strain hardening
resulting from molecular alignment. The corresponding effective stress T is taken to be the
driving force in the plastic flow equation (2.34). The Cauchy stress is taken to be given by the
elastic constitutive law (Anand, 1979) '

¢ = - (L, InF) (2.38)

=

where L is the fourth-order isotropic elastic modulus tensor. The theory needs to be comple-
mented with constitutive equations for the back stress B. In all computations to be presented
later, the elastic strains remain small and all geometric nonlinearities associated with elastic de-
formations such as in (2.37) are neglected (see also Boyce et al., 1988).

2.3.2. Orientation hardening

. Once the material is stressed to the point of overcoming intermolecular barriers to chain
motion, the molecular chains will be stretched and will tend to align along the direction of prin-
cipal plastic stretch. This action decreases the configurational entropy of the system which, in
turn, is responsible for the internal resistance to continued flow. This process of network dis-
tortion is very similar to that of rubber network, and Haward and Thackray (1968) suggested
to describe this for uniaxial extension by means of a back stress determined through the Lan-
gevin expression (2.2). Boyce et al. (1988) extended this approach to general three dimensional
plastic deformations by introducing a back stress tensor B which is taken to be coaxial with the
plastic stretch tensor VP Thus, if €} are the unit eigen vectors of V¥, corresponding to a plastic
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stretch 7»:.’, the back stress B is constructed as
B =B (ef ®ef)
i

from the principal components B;. Boyce et al. (1989) presented an extended version of their
model to accounted for initial anisotropy; but, here we will assume that the initial network
structure of the polymer is isotropic.

According to the three-chain implementation of Boyce et al. (1988), the principal compo-
nents of B can be determined from equations (2.30), where the A, are now replaced by Xf’, the
principal values of the left plastic stretch tensor VP. Since plastic flow according to (2.35),
(2.36) is affected only by the deviatoric part of @, we stipulate B to be deviatoric, so that the
principal components of the back stress tensor according to this three-chain non-Gaussian net-
work mode] are

B _ CRA/N[}VpL (~)__2 AP L -1( pﬂ (2.39)

j=1

However, very recently, Arruda and Boyce (1991) found that the three-chain non-Gaussian net-
work model was not capable of picking up the strain hardening observed experimentally in
polycarbonate (PC). These findings seem to have triggered their suggestion to model the net-
work by eight equivalent chains instead of three, and very recently presented a detailed discus-
sion and comparison with experimental results for PC and polymethylmethacrylate (PMMA)
(Arruda and Boyce, 1993b). The principal, deviatoric components of the back stress tensor ac-
cording to this eight-chain non-Gaussian network model are (cf. eq. (2.31))

2
son _ Lo ot (A ' -we w= 1y 2.40
R A e e L 240

On the basis of our considerations in the previous section for rubber-like materials, we
can now also consider the full network model, in which full account is given of the orientation
distribution of the individual chains in the network. According to this model, the principal back
stresses are given by (cf. eq. (2.29))

2 ~A7/3

AP m
CRA/}VJ' J.L [ﬁ\l_)-—l—p_— sin0,d0,do,,

2 _ 0,2 A p2
APT = ; (mj) A", (2.41)
with m? defined by (2.21) and with AP being defined similar to (2.24). Here, the averaging is
carried out in the initial configuration. Alternatively, B;can be identified in the Eulerian form
(cf. eq. (2.28))

36



n2n

- H [

)(?J’) (m —~)sm6d9d(p, A = me/x}?z, (2.42)
J

JN

with m; defined by (2.20) and with AP according to a similar expression as (2.25). Similar to
(2.32) for rubber-like materials, an approximation of the full network predictions can be sought
in the form of a combination of the three-chain and eight-chain models through

= (1-p,) B
thus avoiding the time-consuming integration involved in (2.41) and (2.42). Here, p_ is con-
sidered to be related to the maximal principal plastic stretch AP~ = max(Af, A5, Af) via
P, = 0.85AF ./ JN. Assuming that the actual physically entanglcd molecular chams behave
sufficiently close to a perfect non-Gaussian network, this full network model should give a
more accurate description than the approximate three- and eight-chain models. In this spirit, the
full network model will now be used to assess the adequacy of the simplified hardening expres-
sions (2.39), (2.40).

+p, B, (2.43)
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Fig. 2.10. Simulated true stress vs. true strain curve for compression of PC at room temperature ac-
cording to the three-chain (a), the eight-chain (b) and the full network model (c) for the ori-
entation hardening. The experimental results are from Arruda and Boyce (1993b) and the
material parameters used in the numerical simulation are E = 2300 MPa, v = 0.3,
Yo = 2X 107 s-1, A = 240 K/MPa, s, = 97 MPa, 5,/5, = 0.79, h = 500 MPa,
o = 0.08 and C* = 12.8 MPa.

2.3.3. Results

Arruda and Boyce (1993b) give a detailed discussion of the predictions of the above men-
tioned constitutive models using either the three-chain or the eight-chain network model in
comparison with experimental results on PC and PMMA. In particular, they study the accuracy
with which the orientational hardening in these materials can be predicted with these simplified
models under different states of deformation, viz. uniaxial compression and plane strain com-
pression. Here we wish to reconsider one of their series of tests in order to assess the deviation
of these approximate network models based on expressions (2.39), (2.40) from the more exact
full network description contained in (2.41), . These tests relate to uniaxial or plane strain com-
pression of PC at room temperature (7 = 23°C), which are specified by the following veloc-
ity gradient components with respect to a global Cartesian basis:

£ 0 0 - 0 0
uniaxial compression [Lij] =10 € 0 planestrain compression [Lij] =10 ¢ 0
0 0 € 0 0 0

The applied strain-rate was taken as € = 0.01/s, and the transverse strain-rate € is determined
from the boundary conditions 6,, = 05, = 0 and 6,, = 0 for uniaxial and plane strain com-
pression, respectively. The stress response in terms of the compressive stress ¢ = —G,, versus
the logarithmic strain € is obtained by numerically integrating the BPA constitutive equations
(2.34)-(2.38) in an incremental manner. The back stresses are at each increment computed from
the current plastic stretch; in the case of the full network model, we used the expressions (2.41)
and applied the same numerical integration scheme as in Sec. 2.2.6.
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The values of the elastic and viscoplastic material parameters to be used in the simulation

are based on tensile experiments on PC (Boyce and Arruda, 1990). Following Arruda and
Boyce (1993b), the parameters C and N that deter- mine the orientational hardening are fitted
for all three network models to the uniaxial compression data. However, as opposed to Arruda
and Boyce (1993b), we have chosen to use the same value of CR for all three models, for the
reason that C} governs the network hardening at small plastic strains, while at that stage there
is no conceivable difference yet between the various network models (see also Sec. 2.2.6). With
the parameters thus obtained, the plane strain compression response is simulated and compared
with the experimental results shown in Fig. 2.10. It is seen that the uniaxial responses is picked
up very accurately with each of the models with the chosen value of N; but these values cannot
be determined very accurately because the maximum plastic stretches attained before failure
are still far off the limit stretch. The various predicted plane strain responses exhibit the same
tendency as found in the foregoing for rubber elasticity in Fig. 2.9: the plane strain responses
according to the three- and eight-chain models provide upper bound and lower bounds, respec-
tively, to the full network predictions. The best agreement with experiments is obviously ob-
tained in this case with the eight-chain model.
As a further assessment of the adequacy of these network models, we will now consider the
deformation of PC (at room temperature) by simple shear. This is a significantly different de-
formation process than the tension or compression tests, and has not been studied in this context
before. The problem analyzed is that of homogeneous simple shear in the x| -x, plane, as de-
termined by the velocity gradient components L, = v, L,.j = 0 otherwise, implying a plane
strain condition in the x,-direction. Using a special test setup, G’Sell and Gopez (1985) were
able to produce this state of deformation in a relatively large part of their specimen with good
accuracy. In accordance with their room temperature experiments on PC, we consider a shear
rate y = 3 X 105" The material constants are taken to be the same as in the above compres-
sion cases.
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0
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Fig. 2.11. Shear stress response to large simple shear of PC at room temperature at a shear strain-rate
of ¥ = 3x107% s7!. The experimental data is estimated from the macroscopic load and
shear strain data from G’Sell and Gopez (1985), and the material parameters used for the
simulation are identical to those listed in Fig. 2.10.

Figure 2.11 shows the shear stress G, as a function of the shear strain y. Also shown are
a number of experimental points taken from G’Sell and Gopez (1985). This data is obtained
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from the measured overall shear force on the specimen and the macroscopic shear strain, and
is expected not to give a very accurate estimate of the actual stress state associated with pure
simple shear because of the observed shear band propagation and end effects (work that con-
siders these effects in detail is currently in progress). Focusing attention here to the post-yield
behaviour, it is seen that the actual orientational hardening remains much less than that predict-
ed by the BPA model for any of the network models. In agreement with the above findings, the
eight- chain model predicts the lowest hardening, but beyond a shear strain of y= 1 the limit
stretching feature of the network theory becomes noticeable, while the actual response shows
rather little hardening anyway.

The secondary normal stresses ¢, and G, during simple shear are mainly due to the de-
velopment and the subsequent rotation of the induced anisotropy. It is well-known that the pre-
diction of these phenomena generally shows a rather strong dependence on the constitutive
models—in particular the description of anisotropic hardening; for large strain metal plasticity,
this has been studied in detail by e.g. Van der Giessen et al. (1992a). Figure 2.12 now shows
the predicted normal stress ©,, as a function of the shear strain y according to the present con-
stitutive model. In all cases, the normal stress is rather small up to ¥y = 1. For larger shears, the
3-chain model predicts very large compressive stresses that are associated with the stretching
of the net- work affinely with the plastic deformation. Initially, the principal directions of the
plastic stretch are oriented at roughly 45° relative to the x, -x, axes, and this orientation slowly
rotates towards the final “ideal” x,-x, directions with ongoing shearing. But the limit stretch-
ing of the network is attained long before such final orientations are reached, thus explaining:
the very substantial normal stress. The full network model predicts roughly the same normal
stress development, but when using the 8-chain model, we see that the magnitude of the normal
stress reduces drastically. Unfortunately, we have not been able to find any experimental data
on normal stress development during simple shear of PC in order to compare these predicted
results with experiments. Nevertheless, it seems unlikely that the very large values for y> 1
are realistic.

100
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Fig. 2.12. Development of compressive stress during large simple shear of PC at room temperature.
Strain-rate and material parameters are as in Fig. 2.11.

We have repeated the above mentioned analyses for PMMA using the material constants
given by Boyce et al. (1988). The trends in shear stress and normal stress development were
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found to be qualitatively completely similar to the above results, and we shall therefore not dis-
cuss this further.

After this discussion of the accuracy of the various network representations, it is very per-
tinent to briefly point out that our predictions may be strongly dependent on a number of as-
sumptions in the constitutive model. In particular one needs to realize that the idea of using an
affine network theory to model the stretching of the molecular network assumes that the junc-
tion points in the network remain in tact. However, it has been suggested in the literature (see,
e.g., Raha and Bowden, 1972; Botto et al., 1987) that physical entanglements in amorphous
polymers are being pulled out during deformation. In terms of our network model this would
mean that the number of chains »n reduces in the course of the deformation process, while the
number of links N per chain increase, thus reducing the stiffness of the network. This aspect
absolutely requires further study. Furthermore, there is the particular way of incorporating de-
formation-induced anisotropy by means of the effective stress concept in (2.36). This is prob-
ably rather important in the above simple shear considerations, where the stress history is
nonproportional and significant rotations of the principal axes occur. A different approach may
be found in e.g. Batterman and Bassani (1990).

2.4. CONCLUSION

We have carefully considered the so-called non-Gaussian affine network models for mo-
lecular networks, and their application to modelling rubber elasticity and the orientation hard-
ening in glassy amorphous polymers. Our considerations have extended Treloar and Riding’s
(1979a) analysis for uniaxial and biaxial extension of rubber networks to general three-dimen-
sional deformation processes. Our full network model fully accounts for the spatial distribution
of the orientation of the chain end-to-end vectors. The purpose of studying this model here in
some detail is to assess the accuracy of two approximate models in which the network response
is modelled by sampling a few particular chain orientations, namely the classical three-chain
model first suggested by James and Guth (1943), and the eight-chain model proposed very re-
cently by Arruda and Boyce (1991, 1993a).

The general tendency of the predictions of these simplified models compared with the
more exact full network theory is that with the same network parameters, the three-chain model
overestimates the stiffness of the network at large strains, while the eight-chain model under-
estimates the stiffness. At small strains the models are indistinguishable. Another important as-
pect is the capability of the different models to capture the dependence of the network response
to the state of deformation. It turns out that the three-chain model is not capable of picking-up
this dependence, whereas the eight-chain tends to overestimate the dependence of the state of
.deformation as compared with the full network model.

The predictions of the network models both for rubber elasticity and for orientation hard-
ening in glassy polymers are compared with available experimental results. In studying the de-
pendence of the state of deformation in rubber-like materials it was found that the full network
gave a much better quantitative agreement with experiments than the classical three-chain
model. On the other hand, the eight-chain model performed even better sometimes, although
this is an approximation of the full network model. It thus seems that this performance is not
an inherent feature of the eight-chain model; rather, this reminded us of the constitutive as-
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sumptions involved in the affine network theory. It has been noted that further improvement of
this physically based model for rubber elasticity requires a better understanding of the role of
various kinds of network defects in rubber-like materials that are not taken into account at
present. The application to glassy polymers is based upon even stronger assumptions. We have
also discussed that one of the most important phenomena that has been neglected in the present
modelling is the pulling out of entanglements in such polymers. The present results employing
the full network model indicate that this may give rise to a significantly softer response than
expected on the basis of the perfect network model. However, most of these matters are not well
understood yet, and are among the outstanding problems in polymer physics.

In addition to a complete description of the stress-strain response during network deforma-
tion, the present study has contributed in a more general sense to the understanding of the ev-
olution of molecular orientation in 3D during large deformations. General balance equations
have been derived in both Eulerian and Lagrangian formulations, and together with the affine
deformation assumption this has led to a description of molecular re-orientation in a continuous
sense in terms of what we called the CODF. This CODF gives the volume fraction of the mo-
lecular chains in a certain orientation in space. The general solution has been derived in closed
form for 3D network distortions that are affine with the continuum stretch. Apart from its key
role in the development of the stress-strain relations, this solution may turn out to be useful for
constitutive formulation of anisotropic behaviour connected with the orientation distribution of

molecular chains.
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Chapter 3

On Network Descriptions of Mechanical and Optical
Properties of Rubbers

Abstract—The non-Gaussian full network model for rubber elasticity is re-formulated in a
more efficient and more micromechanics motivated manner. Based on such a fuil network
description, a so-called full network model for rubber photoelasticity is proposed, by
introducing directional polarizabilities into the individual links of the idealized randomly-
jointed chain. This optical theory can be used to study the optical properties or birefringence-
strain behaviour of rubbers in arbitrary 3-D deformation states. Detailed comparisons with two
approximate models, namely the classical three~chain model and a so-called eight-chain model
for rubber photoelasticity, which is also developed in this paper, are provided for different types
of deformation. The predicted numerical results are compared with experimental data found in
the literature.

3.1. INTRODUCTION

The present understanding of mechanical behaviour of amorphous polymers owes much to ear-
ly advances in the network theory of rubber elasticity [see e.g. Kuhn and Grun (1942) and Tre-
loar (1975)]. These theories are based upon the concept of a network of chains of randomly
oriented rigid links that are connected at junction points which in rubber-like materials are pro-
vided by the chemical cross-links between macromolecules. Furthermore, these network theo-
ries use a so-called affine deformation scheme, which is based on two key assumptions: (V)
Statistical fluctuations of the position of the junction points about their mean position can be
neglected, (ii) the end-to-end vector of a chain between junction points co-deforms with the lo-
cal deformation of the continuum it is embedded in. According to this scheme, as deformation
progresses each chain stretches while rotating towards a preferred direction. At all stages each
chain attempts to maximize its entropy by disorienting the elements or random links, subject
only to the constraints imposed by the end-to-end vectors. Another important assumption in-
volved in these network models is that intermolecular interactions are negligible in comparison
to intramolecular effects. The overall properties of the network are then obtainable by simply
summing the contributions of the individual chains. Furthermore, the exact non-Gaussian treat-
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ments of a single chain, both for mechanical and optical behaviour, are available (developed
originally by Kuhn and Grun, 1942; and James and Guth, 1943). However, exact treatment of
the transition from an individual chain to network behaviour is very difficult owing to its math-
ematical complexity. In principle, this transition (through an averaging process) needs the ori-
entations of the individual chains of the network, which was not available for arbitrary 3-D
deformations until very recent (Wu and Van der Giessen, 1993a).

Various simplified averaging procedures to obtain the network response have been pro-
posed (see Wu and Van der Giessen, 1993a). Among these simplified models, the so-called
three-chain model, originally suggested by James and Guth (1943), has become the most wide-
spread and almost standard non-Gaussian network model for rubber elasticity. This model as-
sumes that a network containing n chains per unit volume is equivalent to three independent
sets of n/3 single chains in three orthogonal directions. Thus, the actual spatial distribution of
chains is sampled in three orthogonal orientations. Similarly, Treloar (1946) proposed the idea
of a four-chain Gaussian network representation (Flory and Rehner, 1943) to sample four spa-
tial chain orientations. Very recently, Arruda and Boyce (1991, 1993a) proposed a so-called
eight-chain model, which considers a set of eight chains connecting the central junction point
and each of the eight corners of the unit cube. Obviously, these models are but approximate rep-
resentations of the actual spatial distribution of molecular chains. All these models can be re-
garded to sample a set of particular directions among all possible orientations. More precisely,
the three-chain model would overestimate the contribution of the chain collection oriented
along the direction of major principal extension, while the eight-chain model would underesti-
mate the stiffness of the network (Dahoun et al., 1993). The four-chain model has the major
draw-back that it does not exhibit the symmetry required of the principal strain space (Arruda
and Boyce, 1991).

The full network formulation by Wu and Van der Giessen (1992a, 1993a) accounts accu-
rately for the actual spatial orientation distribution of molecular chains. Treloar and Riding
(1979a) had already developed a rubber elasticity theory based on such a full network descrip-
tion, but their considerations were limited to deformations with biaxial extension along fixed
axes under plane stress conditions. Our model extend their theory to a general formulation valid
for 3-D deformation processes.The modelling centres around a general treatment of the orien-
tation distribution of molecular chains and their evolution as deformation progresses. This de-
scription utilizes the idea of Chain Orientation Distribution Function (CODF), which is
governed by balance equations that express physically well-understood conservation princi-
ples. Assuming the network to deform affinely with the deformation of the continuum it is em-
bedded in, closed-form solutions has been derived for this CODF, which thus contain the
complete information of the orientation distribution of molecular chains at any stage of the de-
formation. This solution is then used to develop the rubber elasticity model by averaging out
the contribution to the free energy of individual chains over all chain orientations. The model
has been found to be able to pick up the mechanical behaviour of rubbers at various different
large deformations (Dahoun, 1992; Wu and Van der Giessen, 1993a); and has been successfully
used to mode] the orientation hardening behaviour of large inelastic deformations of amor-
phous glassy polymers (see e.g. Wu and Van der Giessen, 1993a, b, c¢). G’Sell and Dahoun
(1993) and Dahoun et al. (1993) used the full network model to describe the amorphous phase
responses in their composite model for large plastic deformation of semi-crystalline polymers.

In Section 3.2, we re-formulate the full network model for rubber elasticity in a more effi-
cient and more micromechanics motivated manner. The so-derived equations are mathemati-
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cally equivalent to those given in Wu and Van der Giessen (1993a). But, the new representation
of the model allows us to avoid calculating principal stretches and principal directions of de-
formations.

The development of molecular chain segment orientation in rubber-like materials under
deformation has been extensively studied experimentally, often by the optical anisotropy or bi-
refringence [see e.g. Treloar, 1975; Brown and Windle, 1984; Mitchell et al., 1985]. In Section
3.3, a so-called non-Gaussian full network model for rubber photoelasticity is proposed. The
derivation of this optical theory proceeds along lines parallel to the treatment of the full net-
work model for rubber elasticity. The essential modification is the introduction of directional
polarizabilities into the individual links of the idealized randomly-jointed chain. Again, Treloar
and Riding (1979b) had already developed a non-Gaussian optical theory based on such a full
network description; but, just as for the mechanical properties, their considerations were limit-
ed to deformations with biaxial extension along fixed axes under plane stress conditions. Our
model extend their theory to a general formulation valid for 3-D deformation processes. For the
purpose of comparison, we will also give two simplified optical theories corresponding to the
so-called three-chain model [see e.g. Wang and Guth, 1952] and eight-chain model (Arruda and
Boyce, 1993a) originally for rubber elasticity. The full network model for rubber photoelastic-
ity requires numerical integration; an approximation to the numerical results will be given,
which is based on the three-chain and eight-chain representations. Verification with some ex-
perimental results from literature is provided both for the mechanical and for optical behaviour
of a few rubber materials.

Tensors will be denoted by bold-face letters. The tensor product is denoted by ® and the
following operation for second-order tensors applies (a = a,.¢;® e, b = b, € ®e e being
a Cartesian basis): ab = aikbkjei ® €. Superscripts T and —1 denote the transverse and in-
verse of a second-order tensor, respectively. The trace is denoted by tr. The three principal val-
ues of a are denoted by a; where the superposed ~ reminds one of the principal value of the
quantity.

3.2. THE FULL NETWORK MODEL FOR RUBBER ELASTICITY

In (Wu and Van der Giessen, 1993a) we introduced a so-called molecular Chain Orienta-
tion Distribution Function (CODF), denoted by C(6, ¢; ), such that the relative density of mo-
lecular chains, at some instant ¢, whose r-vector orientation falls in the range between (6,9)
and (8+d6,0+dg is given by C(8,¢;#)sin0d0d¢. Note that sin6d6d ¢ is the area on a
unit sphere spanned by the interval (d6,d@) and that ¢ is just a time-like parameter. With n
denoting the number of chains per unit volume, the actual number of chains between (8,9)
and (0+d6,¢+d@) thenis

dn = nC(0,9;H)sinB8d0d ¢. 3.1)

For a virgin, unstrained material the orientation of network chains can usually be considered to
be distributed in a random fashion; then C will be independent of 8 and ¢, and the material’s
response is instantaneously isotropic. When the material is deformed, all chains are stretched
and, at the same time, rotated. Hence, the CODF will develop into a nonuniform distribution,
which can be quite severe as has been demonstrated in Wu and Van der Giessen (1993a). Thus,
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texture development in the sense of molecular chain distributions is described in this model in
terms of this CODF.

Assuming the network to deform affinely with some three dimensional deformation pro-
cess represented by the deformation gradient tensor F of the continuum it is embedded in, each
chain’s end-to-end vector r in the initial state is taken to be strained and rotated to the vector
r in the current state in an affine manner, i.e. r = Fr;. It can be shown (Wu and Van der Gies-
sen, 1993a) that in an arbitrary state of deformation, the CODF for an initially random network
can be expressed as follows:

C= C()A'S(B:(p’kl), . (32)

where C, = 1/4m is the initial uniform distribution, and where 7»2 (0,9;1) is the stretch of an
individual chain whose r-vector has an orientation (0,¢) with respect to the Eulerian triads
e? (i.e. the principal stretch directions in the current configuration), and A, are the principal
stretches. Here, we have substituted the principal stretches as the time-like parameter ¢ in the
previous expressions for the CODF. This is possible since, as a consequence of the affine de-
formation assumption, the distortion of the network is independent of the rate of deformation,
so that ¢ only needs to be some monotonic parameter. Identifying ¢ with Ki will turn out to be
convenient for further development (Wu and Van der Giessen, 1993a). For a detailed derivation
of (3.2) we refer to Wu and Van der Giessen (1993a). It is clear that the Eulerian triads them-
selves rotate during the deformation process. Therefore, we have to re-calculate the principal
stretches A, and the corresponding principal directions ef at each stage of the deformation pro- '
cess. Before proceeding it is noted that since we assume the network to be incompressible, the
deformation gradient tensor satisfies detF = 1.

1t is noted that the CODF in (3.2) is directly related to the stretch of an individual chain and
is determined completely through the deformation ellipsoid, which is independent of the coor-
dinate system used. Therefore, we can rewrite (3.2) in the form

C = CyA(©,;F), (3.3)

where (©,®) is the orientation of the r-vector of an individual chain in the current state with

respect to a fixed triad e; (see Fig. 3.1.), and where F is the deformation gradient tensor. The
chain stretch A can be obtained from F by

-1

A2 =m(FF') m. (3.4)

c

me; (r = [Ir|l) along the end-to-end vector r, in the

Here, m is the unit vector m = r/r
current deformed state with components

m; = sin@cos®, m, = sinOsin®, m; = cosO. 3.5

The actual number of chains between (©,P) and (O +d©,d +dP) thenis

dn = nCOkz(G,tb;F)sin@d@dcb. (3.6)
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(a) e (0

Fig. 3.1. A single chain in unstrained (a) and strained (b) state; definition of geometric quantities.

In order to represent the mechanical properties, let us consider a single chain between two
junction points, with its end-to-end vector r in the current state being specified by angular co-
ordinates © and @ with respect to some fixed frame of reference defined by the set of orthonor-
mal base vectors e; (see Fig. 3.1.). We further assume that this single chain has a given stretch
A in current state. If the chain contains N links of length /, the length of the unstrained free
chain r,, is given by the root-mean-square value A/IV /. By considering the statistical distribution
of possible link angles at a given stretch }»c , Kuhn and Grun (1942) were the first to derive the
well-known non-Gaussian relationship between force f_ and stretch A for the stretched chain
in the form

kT -1 e
=0 |-= | .
o803
where k is Boltzmann’s constant, T is absolute temperature and L is the Langevin function de-
finedby £ (B) = cothf~1/f.Bynoting that r = A_ry = XCJITII, while 1/7 is the volume
per chain and 1/ (nr) is the cross section area of the chain in the current state, the equation

(3.7) can be transformed into a relationship between the Cauchy stress o, defined by
G, = f.rn,acted on the continuum in which the chain is embedded and the stretch in the form

A
o, = CR/Nr L™ (ch) (3.8)

where CR = nkT is known as the rubbery modulus. Now, introduce a so-called micro-stress
tensor ¢ by

6. =0, (m®m) -pi, 3.9

Cc

which can be interpreted as the contribution of the single chain to the stress of the network. The
hydrostatic pressure p is included because of incompressibility. The overall or macro-stress
tensor ¢ of the network is then obtained by simply averaging the micro-stress tensor e, of the
individual chains, i.e.

1
¢ = ;J’ccdn. (3.10)

With dn being given by (3.6) and the CODF by (3.3), we find
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T 2n
1 .
o = EJ’jcclzsm@d@dCD—pl; (3.11)
00

and with (3.8) and (3.9), we finally obtain for the Cartesian stress components, ¢ = c,€; e,

n2n
1A
o, = %CRJITJJ‘ [heL ‘(ﬁ)mimjsinede)dmpsij (3.12)
00
with XC determined from (3.4) as a function of the deformation  gradient tensor F and the ori-
entation (©, @) . The hydrostatic pressure p is left unspecified by the constitutive equations
and is to be determined from the boundary conditions.

The equations (3.12) are mathematically equivalent to those given in Wu and Van der Gies-
sen (1993a). But, the new representation of the model allows us to avoid calculating principal
stretches and principal stretch directions for arbitrary 3-D deformation. Furthermore, this mi-
cromechanics motivated new derivation will turn out to be convenient for further development
of the so-called full network model for rubber photoelasticity in the next section.

3.3. IMPROVED NEWORK MODELS FOR RUBBER PHOTOELASTICITY

It is well-known that many materials show the phenomenon of double refraction, which
arises from the fact that they are optically anisotropic. In other words, they have different re-
fractive indices, or polarizabilities in different directions. The refractive index of a material is
a function of its response to the electric field in the light wave, or, more specifically, of its po-
larizability, which is defined as the induced dipole moment per unit field strength. Rubber-like
materials are usually assumed to be random in their structure and isotropic in their physical
properties; such materials do not show double refraction in the initial undeformed state. But in
the deformed state, their structures are no longer random; they cease to be isotropic and begin
to show double refraction or birefringence.

Usually, developing a network model for rubber photoelasticity follows closely the lines
taken in the treatment of the corresponding network model for rubber elasticity. The essential
modification is the introduction of directional polarizabilities into the individual links of the
idealized randomly-jointed chain. First, the optical properties of the single chain are deter-
mined as a function of its length or stretch. Next, the contribution of an individual chain to the
polarizability of the network is determined. Finally, the total polarizability of the network is ob-
tained by integration over all the chains.

3.3.1. Full network model—Eulerian form

Consider a single chain at a given stretch A_ in the current deformed state, with its unit
vector m being specified by angular coordinates © and & with respect to the base vectors e;
(see Fig. 3.1.). Kuhn and Grun (1942) had shown that a stretched chain can be characterized by
polarizabilities , in the direction of m and ¥, in directions 1 and n perpendicular to m. These

48



are given by
27\,C / [—N )

Y =N(a—(a -0, ———————
1 1 1 le(kC/Jﬁ)

A/ N
—_T——J (3.13)
L (A /N

in terms of the polarizabilities &, and a., parallel and perpendicular to the link direction re-
spectively. The optical anisotropy or difference of principal polarizabilities may be written as

Y, = N(a2+ (0‘1‘0‘2)

3, /JN
'YI_Y2=N((11—(12)P(}\-C), P()\'c) = 1—‘—_1_— . 3.14)
L (A /N

The contribution of an individual chain to the polarizability of the network can be deter-
mined by introducing a so-called chain polarizability tensor B, in the form

B, =ym®m+y,n®n+7,I®I

= (7,-v,)m®m+y,l (3.15)

The overall polarizability tensor B of the network is then readily obtained by simple summing
the chain polarizability tensor B, of the individual chains, i.e.

B = [B.dn. . (3.16)

With dn by (3.6) and the CODF according to (3.3), we obtain
n 2N
n 3 .
B = EJ. J‘ Bckcsm@d@dqt 3.17
00

Using (3.13) and (3.15), we find for the Cartesian polarizability tensor components,
B = Bye, e,

nm

n 3 .

B, = HJ.I X (Y~ Y,) mm;sin ®d®d¢+n725ij (3.18)
00

with A being given by (3.4) and m; by (3.5). The normalized differences of polarizabilities in

two orthogonal directions i and j are then given by

B.-B.
S
Bi=B; = ———2

n(oc1 —ocz)

n 2
N .
= Et-” 7\.3CP(7\.C) (m‘-m‘-—mjmj ) sin@d@d®, (nosum) (3.19)
00
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with P (A_) being givenin (3.14b).

3.3.2. Full network model—Lagrangian form

The full network model for rubber photoelasticity derived above, can also be developed in
the initial state, i.e. in a Lagrangian form instead of in the foregoing Eulerian form. The
Lagrangian form can be obtained in a rather straightforward matter by employing a direct trans-
formation of (3.17). Without going into the details, we give only the result in the form

n2n
n .
B;= EJ [ (=) FiuFyymopmsin ©,d ©,d & + m/28ij (3.20)
0

with F; being the Cartesian components of the deformation gradient tensor F. Here, the inte-
gra’uons are performed in the initial orientation space (0,®,); and my = sin®,cos®,
mg, = sin@ sin®; and my = cos®, are the components of the unit vector
m, = ry/rg = mOkek along the end- to-end vector I, in the initial state (see Fig. 3.1). It is not-
ed that the chain stretch 7L in (14) should in this case be determined in the initial state accord-
ing to 7» = m, (FTF) m0

Itis noted that from (3.20) we can easily obtain the normalized differences of polarizabil- .
ities ﬁ B (no sum), which are similar to those given by Treloar and Riding (1979b). How-
ever, Treloar and Riding (1979b) limited their attention to 2-D deformations with fixed
principal axes of stretching. Our formulation is valid for arbitrary 3-D deformations; for the 2-
D deformations mentioned, the Lagrangian form of our full network model reduces to that in
Treloar and Riding (1979b). It is also noted that in the Lagrangian approach, the CODF is not
needed at all for the computation of the polarizability tensor of the network. However, the
CODF in itself is an essential source of information about the actual orientation distribution of
molecular chains at any stage of a general 3-D state of deformation (Wu and Van der Giessen,
1993a).

3.3.3. Simplified models

In this paper, we shall consider two simplified network models for rubber photoelasticity,
namely the three-chain model and eight-chain model. The three-chain model was originally
suggested by James and Guth (1943) for rubber elasticity and assumes that a network contain-
ing n chains per unit volume is equivalent to three independent sets of 7/3 chains per unit vol-
ume parallel to the Eulerian principal axes e . Using the notation B;  for the principal
network polarizabilities, we thus have

3
~3-ch
B = 5 B (ef ®el) (3.21)

i=1
The normalized differences of the principal network polarizabilities had been given in the form
(see e.g. Treloar and Riding, 1979b)
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~3-ch ES-ch
i T B _ 1 B
nlo—oy 3P (A) -P(R) 1, (3.22)

where A, are the principal stretches. The,Cartesian components, B = B?j'Che ®e;, can be

detelmmed from the principal values B;  and principal directions e by a standard tensor
transformation argument. However, the results cannot be represented by general mathematical
formulae for arbitrary 3-D deformations.

The eight-chain model for rubber elasticity was proposed by Arruda and Boyce (1991,
1993a) and considers a set of eight chains connecting the central junction point and each of
Cl%ht corners of the unit cube. The polarizability tensor according to the eight-chain model,

, is found as
(V=71
B*" = n L 2 FF 4yl (3.23)
3\
C
with
o= [LoFE 3.24
e = 3t ( ). (3.24)
The tensor B¥*" can be represented as B = B?]TCh e; ® ¢;. It may be shown that
8-ch 8-ch
péch _ e _ B; -Bj
i ij no, - ocz)
- Npo)(F,F for iand
= —’5? (M) (Fy Fy— ]k jk) (nosumforiandj). (3.25)

c

3.3.4. Approximation of the full network model

Comparing the three- and eight-chain samplings with the actual three-dimensional initial
random distribution of molecular chains, we expected that, as in the network models for rubber
elasticity (Wu and Van der Giessen, 1993a), the three-chain model would overestimate the ac-
tual optical anisotropy of the network, while the eight-chain model would probably give a low-
er bound. Indeed, as will be demonstrated in the next section, the optical response predicted by
our full network model (3.18) or (3.20) is, for the same values of N and n, always in-between
that predicted by the three-chain model and eight-chain model, respectively. However, the in-
tegrations involved in (3.18) and (3.20) require a rather time-consuming numerical procedure.
All these observations motivated us to search for an approximation of the full integration by
combining the three-chain and eight-chain models. One possibility is a simple linear combina-
tion,

= (1-p)B*" +pB*", (3.26)

where the parameter p may be a constant or related to some other physical quantity which is,
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for instance, related to deformation process. In this paper, we consider p to be related to the
maximal principal stretch A_ = max (A ,A,,A;) by

A
p=062—= (3.27)
N
where the factor 0.62 was chosen to give the best correlation with full integrations of (3.18) and
(3.20). In this way, the eight-chain contribution in (3.23) becomes increasingly important when
),max approaches the limit stretch JITI . The form (3.26) is similar to our previous proposition
for the full network stress in rubber elasticity in relation to that according to three- and eight-

chain models (Wu and Van der Giessen, 1993a).

3.3.5. Calculation of birefringences

In an optical anisotropic medium the properties are represented by the refractive index el-
lipsoid, the principal axes of which represent the three principal indices ﬁi in three mutually
perpendicular directions. This in turn is related to the polarizability ellipsoid, whose axes cor-
respond to the principal polarizabilities B;, and coincide in direction with the axes of the re-
fractive index ellipsoid. The conversion of polarizabilities B (per unit volume) to refractlve
indices u makes use of the Lorentz-Lorenz relation

B-1 4
= B, (3.28)

%)

M +2
Since the differences of refractive index relative to the mean value 1, are generally small, it
may be shown that,

~2 ~2

-1 -1 T T
2 I ) - 2 o Fi
Wi+2 [ Ho+2  (ui+2) (o+2)

so that
W, = ApyB;— M, (3.29)
with

2
_am(HgrT ) (D) -6k
Bo = R 07 :

2
(He+2)

Applying the relationship (3.29) for all three principal directions, we find that the polarizability
tensor B and the refractive index tensor u, formed from the principal values ;,Ii, are related
through

= ApgB - ML (3.30)

52



Since the polarizability ellipsoid is coaxial with the refractive index ellipsoid, the birefringence
for propagation of light along any direction is determined by the polarizabilities in the two
transverse directions (directions of electric vector). Therefore, for instance, propagation along
e, involves the difference of polarizabilities By, - B,,. Using (3.30), we obtain equations in
the form

2 2
4n (Hg+2)
u, - ujj = ?W (Bii—Bjj), (nosum), (3.3D
or
K= Hjj = A“'N (B,-,"' B]j) » (nosum) (3.32)
with ’
2
oy Am (H5+D)

Here, p,; are the components of the refractive index tensor p defined by p = M€ ®e;.

3.4. RESULTS

The full network model for rubber elasticity has been used to describe the large strain elas-
tic behaviour of rubber-like materials (Wu and Van der Giessen, 1993a). Detailed comparisons
with experimental results and with two approximate models have been provided for different
types of deformation and rubbers (Wu and Van der Giessen, 1993a). As an additional example
of the application of the model, we study the mechanical responses to uniaxial tension and pure
shear of a vulcanized rubber reported by Treloar (1944), but, according to the new derivation
of the full network model given in section 3.2. This also serves a numerical check on the present
network formulation compared to the previous one (Wu and Van der Giessen, 1993a). At each
stage of the deformation, the double integral in the full network relation (3.12) is evaluated by
first noting that due to symmetry only the intervals © € [0,/2], ® € [0,] need to be consid-
ered, then subdividing that area into a number of cells and integrating within each cell using
Gaussian quadrature. Recursxvc refinement is applied for each cell until the integral is obtained
with a relative error of 107

As pointed out by Wu and Van der Giessen (1993a), the full network model as well as the
simplified three-chain model and eight-chain model are able to reproduce experimental rubber

“stress-strain data for a certain deformation and material by selecting the material parameters N
and C® for the given model. However, a more important aspect appears to be the description
of the network response under different states of deformation. In order to assess the deforma-
tion dependence, we take the following procedure [see also Arruda and Boyce (1993a), Wu and
Van der Giessen (1993a)]. The network parameters N and CR are fitted from uniaxial tension
data, and are then used to predict pure shear. Figure 3.2 shows results for uniaxial tension in
terms of the nominal stress f or load per unit undeformed area as a function of the uniaxial
stretch A. The values of N = 62 and CX = 0.3MPa were found to give the best correlation
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with the uniaxial tension data (Treloar, 1944). The predicted results of pure shear using these
values of the parameters are given in Fig. 3.3. The pure shear is characterized by the principal
stretches A, = A, A, = 1, A; = 1/ along fixed directions, while the material is in a state of
plane stress, i.e. Oy = 0. The figure shows the load in the stretching direction, i.e.
[ = o,/A. Itisobserved that the full network model predicts the different behaviour in pure
shear well over the entire experimental range.

6

f[MPa]

St O data
—— simulation

0 I I 1 1 i L
2 3 47»5 6 7 8

Fig. 3.2. Load vs. stretch diagram for uniaxial tension of a vulcanized rubber according to the full
network model for rubber elasticity with N = 62 and C* = 0.3 MPa. The experimental
data is taken from Treloar (1944).

We proceed by studying the optical properties of rubbers in terms of the full network model
as well as the simplified three-chain and eight-chain models for rubber photoelasticity. The nu-
merical procedure of the integrations (3.18) and (3.20) involved in the full network model is
similar to that in the mechanical description Appendix (3.12) of the full network given above.
However, the integrals in equations (3.18) and (3.20) are ‘well-behaved’ over the whole of the
specified ranges (Treloar and Rinding, 1979b). This is due to the fact that whereas the tensile
stress G, on the single chain tends to infinity as its stretch A, approaches the limit stretch N
[see Eq. (3.8)], the optical anisotropy of the chain remains finite and reaches the value
n{o, —a,) [see Egs. (3.14)]. As a result, the amount of computation required to achieve any
degree of accuracy is notably less for the optical than for the mechanical problem.

Figure 3.4 shows the predicted difference in polarizability for uniaxial tension in the e, di-
rection with principal stretches A| = A, A, = A, = A%, The value N = 25 was used for all
three models; it was simply used as a representative value of N. What this result clearly shows
is that relative to the full network model for rubber photoelasticity, the simplified three-chain
model tends to overestimate the optical anisotropy at large stretches, while the eight-chain ap-
proximation tends to underestimate it. It is also observed that all models give virtually identical
predictions for small stretches up to A = 2.5 (or roughly 50% of the limit stretch). The differ-
ence at large stretches seems to be associated with the different limit stretches of the complete
network. The stretching according to the three-chain model is limited directly by the tensile
stretch A, = JN of the chains parallel to the tensile direction, while the overall network lim-
iting stretch for the eight-chain model exceeds A, . It is seen that the approximation (3.26) for
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the full network optical response is indeed very accurate up to very large stretches.
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Fig. 3.3. Load vs. stretch diagram for pure shear of a vulcanized rubber according to the full network
model for rubber elasticity with N = 62 and * = 0.3 MPa. The experimental data is

taken from Treloar (1944).
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Fig. 3.4. Predicted normalized optical anisotropy vs. stretch diagram for uniaxial tension according

to different network models for rubber photoelasticity with N = 25.

Next, we consider the case of simple (and not pure) shear, where the deformation gradient
tensor F is given by F = I+Te, ®e,. In contrast to uniaxial tension where the principal
stretch directions are fixed in space, the principal stretch directions in simple shear rotate con-
stantly during the deformation process. As a result, the prediction of the optical anisotropy in
simple shear is much more involved than in the deformations with fixed principal stretch direc-
tions. Figure 3.5 shows the predicted optical anisotropy of simple shear according to the full
network model, three-chain and eight-chain network models for rubber phtoelasticity. The dif-
ferences in predicted normalized optical anisotropy B, — B3 5 between the network models are
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similar to those presented in Fig. 3.4 for uniaxial tension. Compared with the CODF in simple
shear presented in Wu and Van der Giessen (1993a), it is found that all models support the ob-
servation that molecular chains rotate towards the shear direction. Again, the approximation
(3.26) for the full network optical response in terms of B, ~ B, is very accurate up to very
large shear strains.
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Fig. 3.5. Predicted normalized optical anisotropy [, — B,; vs. shear strain diagram during simple -
shear according to different network models for rubber photoelasticity with N = 25.
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Fig. 3.6. Development of secondary optical anisotropy B,, — B,, during simple shear according to
different network models for rubber photoelasticity with N = 25.

It is well-known that the secondary normal stresses 0, and ©,, during simple shear are
mainly due to the development and subsequent rotation of the induced anisotropy; and that the
prediction of these mechanical phenomena generally shows a rather strong dependence on the
constitutive models [see e.g. Wu and Van der Giessen (1993a, c)]. It is expected that the sec-
ondary order effects in optical anisotropies such as B, — B,; will also strongly depend on the
constitutive models for rubber photoelasticity. Figure 3.6 shows the predicted secondary opti-
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cal anisotropy P,,~PB,, during simple shear. Although the predicted absolute values of
B,, — B;; are much smaller than those of B, —B.,, the relative differences in predicted
B,, — B,; between the network models are much larger than those in predicted B,, ~ By;-In
fact, according to the eight-chain model, §,, — i, = 0 during simple shear [see Egs. (3.25)].
This fact is also the reason why the approximation (3.26) for the full network optical response
in terms of [322 - B33 is not very good in this special case.
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Fig. 3.7. Load response to uniaxial tension of a vulcanized styrene-butadiene rubber (SBR) accord-
ing to the full network model for rubber elasticity with N = 75 and " = 0.3 MPa. The
experimental data is taken from Doherty et al. (1980).
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Fig. 3.8. Predicted birefringence in uniaxial tension of a vulcanized styrene-butadiene rubber (SBR)
according to the full network for rubber photoelasticity with N = 75 and
Apy = 3.6 x 107, The experimental data is taken from Doherty ez al. (1980).

Doherty et al. (1980) made simultaneous measurements of stress and birefringence for a
vulcanized styrene-butadiene rubber (SBR) under uniaxial tension. The values of N = 75 and
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C® = 0.3MPa according to our full network model for rubber elasticity are determined; the
fit is shown in Fig. 3.7. The so-determined value of N = 75 is then used to predict birefrin-
gence according to our full network model for rubber photoelasticity. For that purpose, a value
for the intrinsic birefringence AuN must be estimated for a quantitative prediction. The simu-
lated birefringence-stretch curve is presented in Fig. 3.8, where a value for the intrinsic bire-
fringence Apy = 3.6 X 107 was chosen to give the best correlation with the experimental
data. The value of Al seems to be reasonable (see e.g. Treloar, 1975). It is observed that the
full network model for rubber photoelasticity is able to capture the optical behaviour, at least
qualitatively.

3.5. DISCUSSION AND CONCLUSION

In this chapter, the full network model for rubber elasticity has been re-formulated in a
more efficient and more micromechanics motivated manner. The equations are mathematically
equivalent to those given in Wu and Van der Giessen (1993a). But, the new representation of
the model allows us to avoid calculating principal stretches and principal stretch directions of
deformations. The predicted numerical results have been compared with experimental data for
a vulcanized rubber under uniaxial tension and pure shear. The comparison further supports our
conclusion (Wu and van der Giessen, 1993a): the full network model for rubber elasticity does
pick up the dependence of the state of deformation observed experimentally in rubber materi-
als.

We have developed a so-called full network model for rubber photoelasticity. The deriva-
tion of this optical theory follows similar lines as the treatment of the full network model for
rubber elasticity. The essential modification is the introduction of directional polarizabilities
into the individual links of the idealized randomly-jointed chain. Our full network optical the-
ory has extended Treloar and Rinding’s (1979b) analysis for biaxial extension with fixed prin-
cipal stretch directions to general three-dimensional deformation processes. We have also
presented a so-called eight-chain network optical theory and have considered the classical
three-chain network optical theory. The three-chain model and eight-chain model are both
based on approximate descriptions of an affine network model, while our full network theory
is based on an exact treatment of that same concept. The purpose of studying the full network
model for rubber photoelasticity here in some detail is to assess the accuracy of the three-chain
and eight-chain model. The general tendency of the predictions of these simplified models
compared with the more exact full network theory is that with the same network parameters,
the three-chain model overestimates the optical anisotropy of the network at large strains, while
the eight-chain model underestimates the optical anisotropy. At small strains the models are in-
distinguishable.

In general, the form of the relations between polarizabilities and applied strains is very sim-
ilar to that for the corresponding stresses. However, the specific non-Gaussian features are
quantitatively less pronounced. This is due to the fact that whereas the tensile stress G, on a
single chain tends to infinity as its stretch A, approaches the limit stretch JN, the polanzablhty
of the chain remains finite throughout. As a result, the amount of computation required to
achieve any degree of accuracy is notably less for the optical than for the mechanical problem.
It is noted that the relative differences between various network models in predicted optical
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properties are smaller than in predicted mechanical properties at large strains, using the same
value of N. Furthermore, the factor 0.62 was used in the approximation of the full network
model in the description of optical properties [see (3.26) and (3.27)], while the factor 0.85 in
the description of mechanical properties gave the best correlation with the full network model
(see Wu and Van der Giessen, 1993a). From numerical point of view this also has to be attrib-
uted, to some extent, the fact that the specific non-Gaussian features are quantitatively less pro-
nounced in the optical behaviour of rubbers.

The predicted numerical results according to the full network optical theory have been
compared with experimental data for a vulcanized styrene-butadiene rubber under uniaxial ten-
sion. Although a value for the intrinsic birefringence Apy was estimated, the full network op-
tical theory was found to be able to capture the optical behaviour of rubbers, at least
qualitatively. A quantitative comparison needs more experimental data for different types of
deformation and materials. However, experiments for optical properties are much less available
than for mechanical properties of rubbers. Furthermore, theoretical and experimental studies
on optical properties presented in the literature have been limited to 1-D or 2-D deformations
with fixed principal stretch directions in space, as far as the authors aware. Analysis of optical
anisotropy in deformations including arbitrary rotations of the principal strain axes is of theo-
retical and practical importance. Obviously, large simple shear is a typical large strain and large
rotation problem. The present study of optical anisotropies under simple shear has shown that
the full network as well as the three-chain network and eight-chain network optical theories
correctly predict that the molecular chains rotate continuously towards the shear direction. A
more important aspect seems to be that the prediction of the secondary optical anisotropy,
Bzz - B, during simple shear is strongly dependent on the constitutive models. Thus, the sim-
ple shear test seems to provide a simple yet effective means for assessing the adequacy of non-
Gaussian network models for rubber photoelasticity.

Finally, it is well-known that if the number of links N is large, the orientation distributions
of the individual links with respect to the end-to-end vector has been given by Kuhn and Grun
(1942) analytically. Furthermore, a closed-form solution for molecular chain orientation distri-
bution function (CODF) has also been derived by Wu and Van der Giessen (1993a). Therefore,
it is possible to obtain analytically a so-called Link Orientation Distribution Function (LODF),
which would be expected to contain the complete information of the orientation distribution of
molecular links at any stage of the deformation.

This paper is mainly concerned with the formulation of network optical theories and their
constitutive differences. Further refinement of the models and detailed comparisons with ex-
perimental data are in progress and will be reported elsewhere.
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Chapter 4

On Large-Strain Inelastic Torsion of Glassy Polymers

Abstract—Large-strain elastic-viscoplastic torsion of circular tubes and solid bars of glassy
polymers is investigated under fixed-end as well as free-end conditions. The analysis employs
a large inelastic deformation model for glassy polymers that incorporates a recently proposed
constitutive law for the so-called orientational hardening, which is identified to play a key role
in the description of the deformation-induced anisotropy in glassy polymers. The solution of
the problem is obtained numerically by means of simple, special purpose finite elements. Re-
sults are presented in terms of predicted torque vs twist curves for all cases. Furthermore, we
present axial force vs twist curves for fixed-end torsion or elongation vs twist curves for free-
end torsion, both phenomena being associated with anisotropic hardening. In some cases, the
predicted stress distributions are also given. The differences between free-end and fixed-end
torsion are emphasized. Numerical results predicted by the model are compared with experi-
mental results for polycarbonate found in the literature.

4.1. INTRODUCTION

Torsion of a circular bar in the range of large plastic strains has recently been the subject of
numerous investigations. One of the main reasons for that is that the torsion test provides an
excellent means for obtaining experimental data for the constitutive behaviour of elastic-plastic
solids at large to very large deformations. The major advantage over the standard tensile test is
that deformations of a solid bar in torsion remain axially homogeneous up to final failure with-
out giving rise to strain localization phenomena such as necking and shear banding. Evidently,
torsional deformations are inhomogeneous in the radial direction, but this multiaxiality is lower
and better tractable than the three-dimensional state inside necks, etc. This has been shown be-
fore for large strain torsion of metals in [see e.g. Neale and Shrivastava, 1985, 1990; Wu and
Van der Giessen, 1991a; Van der Giessen et al., 1992a, 1992b] by means of a numerical meth-
od, and will be demonstrated here for glassy polymers.

Although torsion of a circular bar may appear to be a simple deformation process, the so-
called Swift effect of notable axial extensions during large strain torsion of a metal bar with
axially free ends—studied first by Swift (1947) is a fascinating and complex phenomenon. At
room temperature, most initially isotropic metals tend to elongate during torsion when the spec-
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imen’s ends are axially free [see also Bailey et. al., 1972; Billington, 1977]. An analogous ef-
fect is the development of an axial force when the ends of the bar are axially fixed. It has been
firmly established that these axial effects at large plastic strains in polycrystalline metals are
due to the development of texture [e.g. Gil-Sevillano et al., 1975; Harren et al. 1989]. Now, the
constitutive modelling of the macroscopic behaviour of elastic-plastic solids where proper ac-
count is given of the induced anisotropy associated with texture development is currently con-
sidered one of the most challenging areas in continuum plasticity theory and has attracted a
great deal of interest recently. It has been shown that the predictions of the axial effects show
a remarkably strong dependence on the constitutive relations adopted [see e.g. Neale and
Shrivastava, 1990; Van der Giessen et al., 1992a; Harren et al. 1989]. Thus, the torsion test
seems to provide a simple yet effective means for assessing the adequacy of such constitutive
models.

It has been found that the axial extension effect is more pronounced in thin-walled tubes
than in solid bars (Billington, 1977). In fact, many experimentalists have preferred torsion ex-
periments on tubes over solid bars [see e.g. White et al., 1990]. Reducing the wall thickness of
a tube will reduce the nonuniformity of the deformation, and if the tubes are extremely thin then
the deformation can be approximated to be homogeneous so that the experimental results can
be easily interpreted. In fact, many experimental procedures based on torsion have used thin-
walled specimens for which the state of the deformation has been assumed to be completely
uniform and, for fixed- end torsion, to be a state of simple shear [see e.g. White et al., 1990].
Unfortunately, in order to avoid buckling in a finite deformation torsion experiment on a hollow
tube, it is necessary that the thickness of the tube be at least 10-15% of the mean radius (Khen
and Rubin, 1992). Therefore, these hollow tubes cannot really be considered to be thin and the
deformation is not really homogeneous. In addition to this, a thin hollow tube is much more
difficult to be manufactured and gripped than a solid bar, so that in view of various experimen-
tal problems, thin-walled tubes seem to be of less practical importance at large strains. Conse-
quently, the numerical simulation of both solid bars and (thick-walled) tubes under large strain
torsion, accounting accurately for nonuniform states of deformation is of considerable practical
significance.

It is expected that axial phenomena occur also in large strain torsion of glassy polymers
{see e.g. Wu and Turner, 1973]. The first finite element simulation of large strain torsion of
glassy polymers was developed very recently by authors (Wu and Van der Giessen, 1993b). In
that preliminary study, we have considered the solid bar torsion of polycarbonate (PC) based
on a constitutive framework developed by Boyce, Parks and Argon (1988). Their constitutive
model incorporates rate and temperature dependent plastic flow, softening and subsequent ori-
entational hardening, which are generally considered as a key phenomena. We have compared
the predictions of the axial effects for three different orientation hardening models namely the
three-chain model (Wang and Guth, 1952), the eight-chain model (Arruda and Boyce, 1991,
'1993) and full network model (Wu and Van der Giessen, 1992a, 1993a). It was found that the
predictions of the axial effects are sensitive to the orientation hardening relations adopted (Wu
and Van der Giessen, 1993b).

In this chapter, a numerical analysis of combined torsion and tension of circular solid bars
as well as tubes is presented, focusing on both fixed-end and free-end torsion as limiting cases.
The approach is based on special purpose, ring- shaped finite elements. These elements are ef-
fectively one-dimensional and allow for an efficient analysis of such problems. Differences be-
tween the behaviour in free-end and in fixed-end torsion are emphasized. Furthermore, the
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differences in behaviour of solid bars and of tubes are discussed. Numerical results predicted
by the model are compared with experimental results for thick-walled polycarbonate tubes
found in (Wu and Turner, 1973).

Tensors will be denoted by bold-face letters. The tensor product is denoted by ® and the
following operations for second and fourth-order tensors apply (a = a;e;®e,
b=b0®e, A= ﬂijk,e[ ®e;® e, ®e, e being a Cartesian basis): ab = a, b e;®e;,
a-b = a;b, and Ab = A, b, Superscripts T and ~1 denote the transverse and inverse of
a second-order tensor, respectively. A superposed dot denotes the material time derivative or
rate. Matrix or column matrix (vector) will be denoted by a large size letter in the finite element
formulation.

4.2. CONSTITUTIVE EQUATIONS

‘We start by briefly recapitulating the model for large inelastic deformations of glassy pol-
ymers developed by Boyce, Parks and Argon (1988), which will be referred to henceforth as
the BPA model. The BPA model is developed within an internal variable framework, but at the
same time is to a large extent based on the micro- mechanics and orientation behaviour associ-
ated with the molecular chain network structure of polymers and its affine deformation charac-
teristics. In the BPA model, the microstructure of an initially isotropic amorphous polymer is
assumed to consist primarily of long molecular chains, which are randomly coiled in space.
Side groups protrude from the backbone chains at various locations and, in conjunction with
overall chain trajectory, can act as nodes, or points of physical entanglement. This results in a
network-like structure much like that of rubber, but with the chemical crosslinks replaced by
physical entanglements.

Following the pioneering work of Haward and Thackray (1968), it is assumed that a glassy
polymer must overcome two physical distinct sources of resistance before large strain inelastic
flow may occur. Below the glass transition temperature, prior to initial yield, the material must
be stressed to exceed its intermolecular resistance to segment rotation. Once the material is free
to flow, molecular alignment occurs, resulting in an anisotropic internal resistance to further in-
elastic deformation, which is called orientational hardening; this will be discussed in Sec.
4.2.2. The intermolecular resistance to plastic flow is considered to be due to the impedance
imposed by neighbouring chains on the ability of a chain segment to rotate either individually
or in a cluster. Based upon the assumption that plastic flow occurs by double-kinking of mo-
lecular chains, Argon (1973) developed the following expression for the plastic shear strain

rate, y°:

5/6

¥ = Yoexp [—’isi’ (1 - () ﬂ @.1)

T 50

where ¥, is a pre-exponential factor, A is proportional to the activation volume/Boltzmann’s
constant, T is the absolute temperature and T is the applied shear stress. Furthermore,
sy = 0.077p/ (1 -v) is the athermal shear strength, pu is the elastic shear modulus, v is Pois-
son’s ratio. Boyce et al. (1988) extended this expression to include the effects of pressure and
strain softening. They used s+ op instead of sy, where p is the pressure and o is a pressure
dependence coefficient. Furthermore, s is assumed to evolve with plastic straining via
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$=h(1-s/s5) ¥P, where & is the rate of resistance drop with respect to the plastic strain
and s is the assumed saturation value of s.

4.2.1. Three-dimensional representation

Consider the homogeneous deformation of an initially isotropic body loaded so that its
deformation gradient at a subsequent time is F. The deformation gradient may be multiplica-
tively decomposed into elastic and plastic parts, F = FCF . Following Lee (1969) and others,
Boyce et al. (1988) take F° to be symmetric, so that F® represents the relaxed configuration
obtained by unloading without rotation (in the polar decomposition sense). Hence, F? can be
decomposed as F? = VPR with the plastic stretch VP and the total stretch V in polar decom-
position F = VR being related by V = F°VP. According to this decomposition, the velocity
gradient is decomposed as:

L=FF'=D+W = FFFF +FLPF!

where D is the rate of deformation, W is the spin, and LP = D? + WP = FPFP ! is the ve-
locity gradient in the relaxed configuration. With the adopted symmetry of F°, the skewsym-
metric part WP is algebraically given as W plus a term dependent on F® and D + DP (see
Boyce et al., 1988). Since the elastic strains will remain small, we can neglect geometry differ-
ences between current and relaxed configurations, F® = I. When this approximation is carried
through consistently, the constitutive equations can be simplified significantly, as discussed by
Boyce et al., (1988). In particular it is noted that W? = W and D = D° + D?, with D° the sym-
metric part of FCF¢™!. ‘

The rate of change of shape of the relaxed configuration, DP , must be constitutively pre-
scribed. In the BPA model, the magnitude of DP is taken to be given by the plastic shear strain
rate, ¥, according to (4.1) while the tensor direction of D is specified by N, so that

D? = PN, 4.2)

where the direction N is the deviatoric part of the driving stress, normalized by the effective
equivalent shear stress T:

1 - e, -
N=—¢', 1= (-6’ ¢’ 4.3)
J2r 2
The driving stress ¢ is itself defined by
G =0-B (4.4)

where @ is the Cauchy stress tensor and B is the back stress tensor due to the strain hardening
resulting from molecular alignment as will be further discussed in the next section.

In (Boyce ef al., 1988), the Cauchy stress is taken to be given by the elastic constitutive
law (Anand, 1979)
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6 = - (L,InF) (4.5)

ol -

where £, is the fourth-order isotropic elastic modulus tensor:

L. = Lgklei®ej®ek®e,,
ik E ikgil | silsik 2V okl
L -——-Z(HV)[(S ¥+ 85 + =588 ] 4.6)

with £ = 2 (1 +v) 1 being Young’s modulus and J = detF®. Although a different imple-
mentation is briefly mentioned in (Boyce et al., 1988) to solve boundary value problems, we
here wish to adopt a more typical viscoplastic rate formulation as will be discussed in detail in
the next section. As a consequence, we need the rate form equivalent of the elasticity equations
(4.5)-(4.6). Since the elastic strains are assumed to remain small, we may replace the hypere-
lastic law (4.5) with the hypoelastic rate form:

v

6= LD° 4.1
in terms of the same modulus tensor L. and employing the Jaumann stress rate,
6 = 6 - Wo + oW to retain objectivity. The constitutive equations (4.7) can be finally ar-
ranged in the following form:

¢ =LD-o, (4.8)

where 6, = Ler acts as an instantaneous stress rate term that represents the viscoplastic
contribution.

4.2.2. Orientation hardening

Once the material is stressed to the point of overcoming intermolecular barriers to chain
motion, the molecular chains will tend to align along the direction of principal plastic stretch
[see e.g. Haward and Thackray (1968) and Argon (1973)]. This action decreases the configu-
rational entropy of the system which, in turn, creates an internal network stress. This process
of network distortion is very similar to that of rubber network, and Haward and Thackray
(1968) suggested to describe this for uniaxial extension by means of a back stress determined
through a Langevin spring, as suggested by non-Gaussian network theory. Boyce et al. (1988)
extended this approach to general three-dimensional plastic deformations by introducing a
back stress tensor B which is taken to be coaxial with the plastic left stretch tensor VP . Thus,
if ef are the unit eigen vectors of VP, corresponding to a plastic stretch lf’ , the back stress B
is constructed as

B =3B (e ®e)



from the principal components B,. Originally, Boyce et al. (1988) adopted the classical so-
called three-chain model for Wthh the principal components B ~h of the back stress tensor
are given in terms of the plastic stretches 7»}’ by (Wang and Guth 1952)

3ch _ 1 R (M (M
BI*" = 3¢ JNIAPL (_va) ZAPL [JIV) (4.9)

j—l

Here, C® is known as the rubbery modulus, N is a statistical network parameter related to the
network locking stretch and L is the Langevin function defined by £(B) = cothf - 1/B.

However, very recently Arruda and Boyce (1991, 1993b) found that the three-chain non-
Gaussian network model was not capable of picking up the strain hardening observed experi-
mentally in polycarbonate (PC) and polymethylmetacrylate (PMMA). At the same time, they
suggested to model the network by eight equivalent chains instead of three, and obtained more
close agreement with their experimental results for PC and PMMA. The principal components
of the back stress tensor according to this eight-chain non-Gaussian network model are:

xP —XP }JJZ 1 3 }&2
Jﬁj AP ’ 3,; ;. (4.10)

Both the three-chain and eight-chain model are based on approximate representations of
the actual spatial distributions of molecular chains by “lumping” their orientations in three and
eight specific directions, respectively. Very recently, the authors developed the so-called full
network model in which full account is taken of the 3-D orientation distribution of the individ-
ual chains in the network (Wu and Van der Giessen, 1992a, 1993a). This model is a 3-D gen-
eralization for arbitrary deformation paths of the 2-D model for proportional deformations
proposed by Treloar and Riding (1979a). The principal back stresses according to this model
can be given in two equivalent ways, depending on whether one considers the chain orientation
distribution in the undeformed isotropic state or in the current deformed state; here, we only
reiterate the expression according to the first point of view because it is more convenient for
applications, i.e.

BY = CR N (

e L

Here, the mi are the components of the unit vector m? in orientation space (0, ¢,) defined
by:

3
2 2 o2
sinB,d0,dy, AP~ = 3 AP °m] @.11)
j=1

0 _ o 0 _ o . 0 _
my = sinf,cosq,, my = sinf,sinQ,, my = cosb,

where 8 and ¢, measure the orientation of molecular chains relative to the principal stretch
directions in the undeformed configuration. Furthermore, an accurate approximation of the full
network predictions according to (4.11) has been found (Wu and Van der Giessen, 1992a) in
the form of a combination of the three-chain and eight-chain model predictions (4.9), (4.10)
through

B, = (1-pP)B>X" 4+ pppdeh, (4.12)

1]
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Excellent agreement with full integration is obtained by taking pP to be related to the max-
imum principal plastic stretch AP = max(Af, A, A%) via pP = 0.85AF  / JN. All compu-
tations to be reported here have used the expression (4.12).

4.3. PROBLEM FORMULATION AND METHOD OF SOLUTION

We consider a uniform circular cylindrical tube of initial outer radius R, initial inner
radius Ry, and initial length L, which is subjected to a twist ¢ due to an applied torque M.
Also, the bar may be subjected simultaneously to an axial force F associated with an axial dis-
placement U. The end faces of the bar are constrained such that they remain plane and perpen-
dicular to the axial direction, and it is assumed that in fact any cross-section of the bar remains
plane. The lateral surfaces of the bar are traction-free and all properties are assumed to be ax-
isymmetric and homogeneous along the axial direction. Although deformation-induced anisot-
ropy may occur, the behaviour remains axisymmetric and is further assumed to remain uniform
in the axial direction. Thus, we neglect the formation and propagation of macroscopic circum-
ferential shear bands that may develop [see, e.g. Wu and Turner, 1973; Wang et al., 1982]. Con-
sequently, the bar remains circular cylindrical, and at the current deformed state has an outer
radius R, an inner radius R;, and a length L. This problem and the adopted numerical method
are a natural extension of the solid bar problem studied in (Wu and Van der Giessen, 1991a;
Van der Giessen et al., 1992a, 1992b) within the context of metal plasticity. In the sequel we
give a brief but complete summary of the governing equations.

(b)

Fig. 4.1. The finite element used here are cylindrical tubes with inner radius | and outer radius r,;
(a) definition of nodal points (®); and (b) material sampling points (X).

All governing equations will be referred to a spatially fixed cylindrical coordinate system
X = (r, 8, z) with orthonormal base vectors e;. These base vectors are associated with the
current state, so that the various tensor components to be used in the sequel represent the re-
spective physical components. However, due account must be given of the fact that the base
vectors are spatially fixed so that their material time derivative will generally not vanish since
the coordinate system is curvilinear (Van der Giessen, 1991a).

The kinematics of the problem is readily established. The deformations are such that if the
in_itial coordinates of a material point are xa = (rg, 60, Zg) » its current coordinates are
x' = (r,0,z), where

r=rirgt). 8 =80 +0(z, z= ez (4.13)

with # a monotonic time-like parameter. Here, @ = /L is the twist per unit initial length of
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the bar and e = L/Ly = 1+ U/L, is the extensional stretch in axial direction. The compo-
nents of the velocity vector v = v,e; are then given by

. IO zé
(v) = (r’_e—’?) »

and the components of D = D e, ®e; and W = W;je; ® ¢; are found to be given by:

1r®d

P = v Dyy=5—. Dy =D;3=0;

or
{0\ 1r®

W, =—-— ) =0 9 = 5 ‘
12 > Wi Wa =357, (4.14)
Regarding the stress state inside the bar, axisymmetry and axial homogeneity imply that the
stress components of Cauchy stress ¢ = Gi.ei®ej satisfy 0, = 6, = 0 while

o, = Gl.j(r;t) otherwise. The resultant torque, M, and the axial tensile force, F, are given by

R R

M=2n[roudr, F=2nfro.dr. (4.15)
R, R.

i i

while the lateral surfaces are traction-free, ¢,, (R;) = Oand 6, (R;,) = 0. Free-end torsion
is analyzed by specifying the boundary condition F = 0, while fixed-end torsion follows from
the condition é = 0.

It is observed that for the present axisymmetric problem, the pertinent quantities depend
only on the radial coordinate r. This problem can be dealt within an efficient way by means of
special purpose finite elements in the radial direction as demonstrated in (Wu and Van der Gies-
sen, 1991a). As shown schematically in Fig. 4.1a, the elements used are circular cylindrical
tubes, with inner radius r, and outer radius r, in the current configuration. Such an element is
geometrically one-dimensional along the r-axis, with twonodes at r = r; and r = r,, respec-
tively (see Fig. 4.1b). In addition to the overall axial displacement U and the angle of twist ¢,
the degrees of freedom of the element are the radial nodal displacments. It is numerically con-
venient to take the element’s vector V of degrees of freedom as

T

v=[ﬂ oo, f’} (4.16)

" ) € e

in terms of the radial nodal velocities 7| and #,. The radial velocity at any radius within the
.element is determined by assuming a linear interpolation of 7/ r between the nodal values. The
element’s force vector F dual to V, such that F TV is the rate of work of the loads on the element,
is then given by

T
F=[nry nF, M LF .17

where F,; and F, are the radial forces on the inner and outer surfaces of the element, respec-
tively, and where M and F are the torque and the axial force, respectively, that act on the el-
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ement. The total torque M and the total axial force F acting on the bar are obtained by
summation over all elements:

M=YM, F=YF.

The governing FE equations are formulated within a framework using the concept of ma-
terial sampling points and this leads to the element equilibrium equations of the form

D’z = F (4.18)

where X is a vector containing the sampling point stress components and D is a matrix depend-
ing on the current geometry (see Appendix). Since the lateral surfaces of the bar are traction-
free, not only all internal nodal radial forces F,; must vanish, but also the radial force at the
outmost node at r = R and at the innermost node r = R; . The rate equilibrium conditions at
the current instant are obtained by straightforward time differentiation. After elimination of the
stress rates by means of the constitutive equations (4.8), the following finite element equations
for the unknown V are obtained:

KV = F +F,

(see Appendix). Here, F , acts as an additional force rate that represents the viscous terms and
is calculated from @, appearing in (4.8). .

The deformation process is then analysed employing a linear incremental solution proce-
dure, based on a time step At, with simultaneous updating of the configuration. At each incre-
ment, the twisting increment A® = ®A? and the stretching increment Ae = éAt as well as the
nodal radial displacement increments are obtained from the equations

K (AV) = At(F +F ) - (D'E-F), (4.19)

assembled for the entire bar. The equilibrium conditions (4.18) are included in the right hand
side in order to prevent drifting of the solution away from the true equilibrium path. Finally,
the increments of the sampling point stresses are evaluated by A6 = At and similarly for the
other pertinent quantities, except for the back stress B which can be computed from the current
plastic state of deformation instantaneously.

4.4. RESULTS

The torsion problem described in Sec. 4.3 involves a number of nondimensional groups,
and therefore we introduce the following quantities:

R
r=<p_]f'9, -E=____3ﬂ___ (;:___F.__. (4.20)
0

73 ; 7 2
2n(Ryy — Rip) 5o T (Ry — Rip) 5o

These quantities, along with the overall axial logarithmic strain € = Ine can be used to effi-
ciently present the overall response of the specimen irrespective of its exact geometry. To en-
able a direct comparison with experimental data for PC (Wu and Turner, 1973) we have taken
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thc actual dimensions to be the same as in (Wu and Turner, 1973), i.e. R, = 3.175 mm and

= 6.35, while the initial inner radius is R;; = 1.5875 mm for the tube. All numerical cal-
culaﬂons were camed out at a constant twist rate ¢ = 0.02rads” corresponding to a shear
rate I’ = 0.01s”

At room temperature (T = 294 K), the following values of the parameters that determine
the stress-rate, temperature dependence and softening behaviour for PC are used:
Yo = 2x 1057, A = 240K/MPa, s, = 111 MPa, s, /s, = 0.92, h = 500MPa and
o = 0.08, while Young’s modulus and Poisson’s ratio are taken as E = 2623 MPa and

= 0.3, respectively. Most of this data has been taken from the experiment carried out by
Boyce and Arruda (1990); but, the value of the shear strength has been fitted with the yield
point observed in the torsion experiments (Wu and Turner, 1973), while the saturation value
s, has been chosen to fit the softemng behaviour observed during simple shear of PC by G’ Sell
(]986) The parameters CR and N that govern the orientation hardening are taken as
CR = 3.7MPa and N = 6, which are reasonable compared with experimental values [see Ref-
erence 27 in (G’Sell, 1986)]. Admittedly, the material parameters have been compiled from dif-
ferent sources involving different experiments on material that is likely to be not exactly the
same, but because of lack of sufficient experimental data this was the best we could do. In any
case, with the exception of the yield point, the torsion results to be presented here provide an
independent comparison with the experiments in (Wu and Turner, 1973).
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Fig. 4.2. Stress distributions inside the tube in fixed-end torsion for I' = 2 using different meshes

(note the reduction of the radii of the tube; see also Fig. 4.5).

Fig. 4.3. The finite element mesh used for the tube, comprising 15 elements.

In Wu and Van der Giessen (1991a), the predicted stress distributions for an incompressi-
ble elastic solid bar in fixed-end torsion were compared with the analytical solution available
when the torsion angle is small. Even with only five elements the stress distribution was repre-
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sented with sufficient accuracy. Further checks were performed for an incompressible elasto-
plastic material by comparison with highly accurate results from a semi-analytical method, and
again it was found that sufficiently accurate results were obtained by using only five elements
(Van der Giessen et al., 1992a). However, for a tube one cannot expect to get highly accurate
results using only five elements, because of the intrinsic properties of the special element and
the additional lateral inner boundary condition 6, (R;) = 0 involved. In order to obtain suf-
ficiently accurate results, we use a somewhat refined mesh near the lateral surfaces (especially
near the inner surface) where high strain gradients are expected. Numerical experiments show
for a tube that the computed torque and axial force as well as the shear stress distributions are
not sensitive to the number of elements; but, the second order effects, such as the radial stress
distribution, are indeed rather sensitive to the number of elements used. Figure 4.2 shows a typ-
ical stress distribution for a twist corresponding to I = 2, using three different meshes con-
sisting of 5 equally sized elements, 100 elements or 15 elements with a local refinement as
shown in Fig. 4.3 (the stress distributions are plotted by linear interpolation between sampling
point values). Clearly, the differences in predicted shear stress are very small, but the radial
stress distribution near the inner radius with a uniform mesh comprising only 5 elements is very
poor. Since this paper primarily focuses on the overall characteristics of torsion (torque, axial
force, elongation, etc.) which are not very sensitive to deviations from the actual stress state, it
was decided that the mesh shown in Fig. 4.3 for the tube would be sufficiently accurate. A sim-
ilar mesh is used for the solid bar.

4.4.1. Fixed-end torsion

We first study the fixed-end torsion of PC specimens. This corresponds to invoking the
axial boundary conditions ¢ = U = 0 in and will lead to the development of an axial force F.
Figure 4.4 shows the torque responses to fixed-end torsion of the tube and of the solid bar
in terms of the torque M and the twist ¢. Later on, in Fig. 4.7, the torque responses are plotted
in terms of the nondimensional torque T and the shear strain I defined in (4.20). It is found that
the overall trends obtained for the torque in fixed-end torsion is similar to the evolution of the
shear stress in simple shear as studied e.g. in (Wu and Van der Giessen, 1993a). The response
is characterized by i) an initially elastic response which ends at the yield point when the torsion
angle ¢ is about 0.3 rad (I = 0.15); ii) a small but significant torque drop after plastic defor-
mation has been initiated, which at the current levels of strain must be attributed to the material
softening; iii) a gradual hardening starting around @ = 2 rad (I" = 1) and which ends when the
maximum plastic stretch at the outer radius approaches the locking stretch JN of the macro-
molecular chain network. Also shown are a number of experimental points taken from Wu and
Turner (1973). It is found that the constitutive model, together with the numerical tool used
here, is capable of capturing a number of the major characteristics of the plastic torsion behav-
iour in a qualitatively reasonable way. The small strain viscoelastic effect observed in the ex-
periments, as indicated by the deviation from the linear elastic response prior to yield, is not
accounted for in the constitutive model.
Although axial loads were not monitored during their experiments, Wu and Turner (1973)
stated that no axial force is expected during twisting of a tube made from an isotropic material
if it does not undergo a volume change; if the material tends to change its volume an axial force
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may develop. Before presenting the axial loads found in our simulations, we first consider the
volume changes predicted here. Figure 4.5 presents the evolution of the outer radius R, and
inner radius R; during torsion of the tube. It is clear that both R and R, decrease monotoni-
cally while the length of the specimen is kept fixed. It is also found from Fig. 4.5 that the thick-
ness of the tube slowly increases. At the maximum twist, I' = 2.2, the wall thickness has
changed by about 4%, corresponding to a reduction in volume of the tube of only about 0.2%.
It is emphasized that according to the constitutive model of Sec. 4.2, this volume reduction is
entirely due to elastic deformations.
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Fig. 4.4. Torque responses in fixed-end torsion for the solid bar (R, =0) and for the tube
(Riy/ Ry =0.5) . The experimental data for the tube are taken from Wu and Turner
(1973).
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Fig. 4.5. Evolution of the outer radius R, and the inner radius R; during fixed-end torsion.

The predicted axial forces for the tube and for the solid bar are presented in Fig. 4.6. It is
found that in terms of the dimensionless force G, the tube and the solid bar exhibit a similar
axial response. The prime characteristic of the response is that the axial force developed during
twisting is compressive. There appears to be a rapid initiation during the first elastic stage of
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the deformation, followed by a stage of little change after yielding and softening, while the ax-
ial force increases rapidly again during the strain-hardening stage. The value of the axial force
attained prior to yielding is consistent with the dilatation of 0.2% mentioned above. In the mod-
el used here, volume changes are attributed to elastic deformations only, and with a value of
the bulk modulus of B = E/ [3(1-2v)] = 2186 MPa, the compressive axial load agrees
with that shown in Fig. 4.6. Obviously, this argument cannot explain the subsequent three-fold
increase with ongoing plastic deformation. The latter phenomenon must be attributed to the de-
formation-induced anisotropy associated with the deformation of the entangled molecular net-
work in glassy polymers.
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Fig. 4.6. Development of compressive axial forces in fixed-end torsion.
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Fig. 4.7. Normalized torque responses to fixed-end torsion in comparison with the shear stress re-
sponses to homogeneous simple shear.

-

As has been demonstrated in Fig. 4.2, the stress distributions in tube or solid bar are quite
nonuniform. For practical purposes, it may be of interest however to have an approximate tool
to link the twisting of a tube or solid bar to homogeneous simple shear. If the shear stress dis-
tribution is approximated to be constant across the entire cross-section, this shear stress is read-
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ily found to be related to the applied torque M through the quantity Ts,, defined in (4.20). To
assess the accuracy of this approximation, we replot in Fig. 4.7 the torque responses found for
tube and solid bar in comparison with the shear stress response to homogeneous simple shear
to a shear strain I obtained by direct straightforward integration of the constitutive equations
[see Wu and Van der Giessen, 1993a). It is seen that the simple representation in terms of T
gives a reasonable estimate of the simple shear behaviour up to moderately large strains of the
order of 1, but that at larger strains the stress inhomogeneity in the actual specimen become too
large to give an adequate agreement.
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Fig. 4.8. Stress distributions in the solid bar in fixed-end torsionat I’ = 2.
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Fig. 4.9. Stress distribution in a thin-walled tube (R,,/R, =19/20) in fixed-end torsion at
r=2.

To assess the difference between the behaviour of the tube and the solid bar, we present the
stress distributions across the solid bar when I" = 2 in Fig. 4.8. Comparing with the results for
the tube shown in Fig. 4.2, the shear stress in the tube is much more uniform than in the solid
bar. The reason is that in the solid bar the material close to the axis of the bar remains in small
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deformation state up to the moment that the maximum plastic stretch at the outer surface ap-
proaches the limit stretch of the network.

Reducing the wall thickness of a tube, will reduce the nonuniformity of the deformation.
In fact, many experimental procedures based on torsion have used thin- walled specimens for
which the state of deformation has been assumed to be completely uniform and, for fixed-end
torsion, to be a state of simple shear [see, e.g., White ef al., 1990]. In order to check this hy-
pothesis, we present the stress distributions in such a tube with R;; = 19/20 R, in fixed-end
torsion in Fig. 4.9. It is observed that the shear stress, the axial normal stress and radical normal
stress are indeed uniform across the wall thickness with fair accuracy, but the hoop stress still
exhibits a significant variation. '

4.4.2. Free-end torsion

We proceed by studying the torsion of the same tube and the same solid bar as in the
previous subsection, but under conditions of axially free ends. These conditions are obtained
by imposing the opposite axial boundary condition as in the previous case of fixed-end torsion,
i.e. F = 0 in (4.16), thus allowing for an axial elongation e.
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Fig. 4.10. Torque responses in free-end torsion for the solid bar and for the tube (R;;/Ry, = 0.5) .

Figures 4.10 and 11 present the torque responses and the accompanying axial elongation
development in the tube and in the solid bar during free-end torsion. The difference between
the tube and the solid bar in predicted torque is similar to that in fixed-end torsion. The torque
responses found during free-end torsion differ rather little from those found in fixed-end torsion
(Fig. 4.4); careful inspection shows that the free-end tests exhibit less strain hardening at the
final stages of deformation.

Figure 4.11 shows that the axial strains that develop during free-end twisting may attain
quite significant values of up to 6%. The axial strain is found to increase almost linearly up to
I' = 1 while growing increasingly fast for larger twists. Figure 4.11 also shows a significant dif-
ference in elongation between the tubular and the solid specimen. Furthermore, it is interesting
to note that the axial strain develops in a distinctly different manner than the axial forces during
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fixed-end torsion (Fig. 4.6), and does not display a long-range plateau of very small apparent
slope. Nevertheless, both second-order effects are attributed to the same feature of the materi-
al’s response, namely deformation-induced anisotropy.
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Fig. 4.11. Axial elongations in free-end torsion of tube or solid bar.

Wang et al. (1982) give some experimental results for free-end torsion of solid specimens
made of various types of polymers, including a PC. Their torque response is qualitatively sim-
ilar to that shown in Fig. 4.10, be it the maximum shear strain attained in their experiments was
only about 0.4, i.e. well in the softening regime. The particular type of PC used in those exper-
iments is rather different from that assumed in the computations: the value of s, estimated from
the torque at yield is only about 90 MPa. Data for elongation and volume changes are only giv-
en in (Wang et al., 1982) up to yield, and thus represent only the elastic behaviour.

The predicted stress distributions across the tube are shown in Fig. 4.12.
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Fig. 4.12. Stress distributions in the tube in free-end torsion at I' = 2.
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4.5. CONCLUSION

In this chapter, we have analysed the large strain elastic-viscoplastic torsion of circular
cylindrical tubes and solid bars under fixed-end as well as free-end conditions using a numer-
ical method based on a simple, special purpose finite elements.

The predicted response of a tube under fixed-end torsion has been compared with availa-
ble experimental data for polycarbonate, based on material properties taken (with one excep-
tion) from independent sources. The calculation stopped at I' = 2.2. when the maximum
plastic stretch approached the locking stretch of the macromolecular chain network. Generally
speaking, the agreement is reasonable, even though our simulations cannot reflect the initiation
and propagation of macroscopic shear bands observed experimentally. Preliminary numerical
studies of shear band propagation in simple shear with the same constitutive model (Wu and
Van der Giessen, 1992b) seem to support the approximation involved: the results suggest that
the torque response during propagation is affected only slightly, while the response after prop-
agation has completed is identical to that when the deformation is presumed to remain uniform
during the entire process. A number of features in the experimental results are not picked up by
the constitutive model. We shall return to this later.

As expected, stress distributions in a tube are more homogeneous than in a solid bar (see
Fig. 4.2 and Fig. 4.8). For the tube considered here, the variations through the thickness of the
tube are small for the shear stress but can be large for the other stress components. It has been
verified that if the tubes are very thin, then the deformation can be approximated as being ho-
mogeneous with fair accuracy and experimental results for torsion can be easily interpreted;
but, such a specimen is known to be unstable at large strains (torsional buckling is a primary
mode of failure for such a specimen). On the other hand, the numerical method developed here
is capable of simulating large strain torsion of tubes with any values of Ry,

(0L R,y/R,, < 1) . Furthermore, it is fairly easy to incorporate other viscoplastic constitutive
models into this special finite element program. Therefore, it provides a useful tool to interpret
experimental torsion results on thick-walled tubes or solid specimens, and thus to determine
the material parameters appearing in the constitutive models.

The axial force in fixed-end torsion and the axial elongation in free-end torsion are mainly
due to the development and the subsequent rotation of the induced anisotropy. For the amor-
phous polymers considered here, this anisotropy is associated with the stretching of the entan-
gled molecular chain structure. It is well-known that the prediction of such second-order
phenomena generally shows a rather strong dependence on the constitutive models—in partic-
ular the description of anisotropic hardening. For large strain torsion of a solid bar of polycar-
bonate, this has been studied by Wu and Van der Giessen (1993b) by considering in addition to
the full network model, the simplified three- and eight-chain model. It is observed that all three
orientation hardening models discussed in Sec. 4.2 give virtually identical axial force predic-
tions up to I" = 1 (Wu and Van der Giessen, 1993b). For large twists, the three-chain model pre-
dicts very large compressive axial forces, but when using the eight-chain model, the magnitude
of the axial force reduces drastically. The predicted axial force by the full network model is in
between that predicted by the three-chain model and eight-chain model, respectively. Similar
phenomena have been observed for the predicted axial elongations during free-end torsion. Un-
fortunately, we have not been able to find any experimental data on axial force or elongation
development during torsion of PC in order to compare these predicted results with experiments
[Wang et al. (1982) only gives such data prior to yield].
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One of the most important differences between simulated and experimental response to
fixed-end torsion is that our simulations tend to overestimate the strain hardening at large plas-
tic strains. This is intimately connected with the affine network theory used here to model ori-
entational hardening. As discussed in some detail by Wu and Van der Giessen (1993a), the idea
of using an affine network theory to model the stretching of the molecular network assumes that
the junction points in the network remain in tact. However, it has been suggested in the litera-
ture [see e.g. Raha and Bowden, 1972; Botto et al., 1987] that physical entanglements in amor-
phous polymers are being pulled out during deformation. In terms of our network model this
would mean that the number of chains n reduces in the course of the deformation process, while
the number of links N per chain increases, thus reducing the stiffness of the network.

Furthermore, especially the axial effects predicted here may depend sensitively on the par-
ticular way of incorporating deformation-induced anisotropy by means of the effective stress
concept in (4.3). This is likely to be rather important in the above torsional problem, where the
stress history is non-proportional and significant rotations of the principal axes occur. A totally
different approach to modelling orientational hardening has been adopted by Batterman and
Bassani (1990). All these constitutive aspects require further study. The formulation of im-
proved models and their implications for large strain torsion are in progress and will be reported
elsewhere.
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Chapter 5

Analysis of Shear Band Propagatidn in Amorphous
Glassy Polymers

Abstract—Similar to the well-known neck propagation phenomenon, shearing of polymer
materials often reveals the initiation and subsequent propagation of a shear band. Finite
element analysis is used to numerically simulate large plane strain, simple shear tests,
focussing attention on the initiation and propagation of the shear band. The mesh sensitivity
and effects of initial imperfection, strain softening, orientation hardening, strain-rate as well as
the edge effects are discussed in detail. It appears that the intrinsic softening is the driving force
to promote initiation of the shear band and its propagation in the shear direction, while the
orientation hardening is the driving force for widening of the shear band. The predicted
numerical results are compared with experimental data for polycarbonate found in the
literature.

5.1. INTRODUCTION

Localization instabilities in the form of shear bands appear to be almost inevitable when a duc-
tile solid undergoes large plastic flow. Such plastic instabilities have a dual significance; as a
precursor to fracture and as a mechanism for further deformation. Developing the ability to pre-
dict their onset, evolution and subsequent failure is essential for the control of a variety of man-
ufacturing processes and for the design of material microstructures.

The shear localization phenomenon has been widely studied since the early 1970’s, pri-
marily for metals [the proceedings edited by Zbib et al. (1992) gives a state-of-the-art over-
view]. It is well-known that localization of plastic flow is strongly directionally sensitive and,
therefore, is severely influenced by the evolution of hardening anisotropy that develops with
large plastic strains (Rice, 1977). Examples of anisotropic hardening include slip system hard-
ening in metatlic single crystals , and the strain-induced molecular orientational hardening that
occurs during the drawing of polymers. Commonly, anisotropic hardening has a first-order ef-
fect on predictions of localization when compared to an isotropic analysis. More precise and
quantitative predictions of localization therefore require improved descriptions of evolving an-
isotropy.

78



Although advances in the understanding of plastic instabilities appear to come primarily
from researches on polycrystalline metals and soils, a number of characteristic aspects of local-
ization instabilities in polymers begins to be assessed [see e.g. Bowden (1973) and G’Sell
(1986)]. It is now widely acknowledged that glassy polymers exhibit plastic deformation below
the glass transition temperature mainly through the activation of microscopic shear bands.
Macroscopic strain localization in polymers can be very different from that in metals due to the
dramatic stiffening of polymers at large strains, which is associated with molecular chains ori-
enting and stretching during the deformation process. While plastic instabilities like necks or
shear bands in metals almost invariably tend to localize progressively until failure intervenes,
necks and macroscopic shear bands in polymers typically do not continue to localize but tend
to propagate along the specimen [see e.g. G’Sell ef al. (1983), Neale and Tugcu (1985), and
Buisson and Ravi-Chandar (1990)]. The propagation of localized deformation is fundamental
to the processing of polymers since the permanently oriented state generally has enhanced
properties, but can also affect subsequent failure. However, the quantitative understanding of
thermal-viscoplastic localizations in polymers is still in its infancy. In part, this is due to the
fact that appropriate constitutive equations have been developed only fairly recently. In this
study, we focus on a particular type of macroscopic shear localization in amorphous glassy pol-
ymers.

Experiments carried out by G’Sell and co-workers have shown that shear band propaga-
tion may indeed occur during simple shear of an amorphous polymer such as polycarbonate
(e.g. G’Sell and Gopez, 1985). In those experiments, special specimens were used which were
designed to create a uniform state of plane simple shear in the gauge section. However it was
found that due to some inhomogeneity in the material, a highly localized shear band appeared
near the center of the specimen, which subsequently grew and widened in the direction perpen-
dicular to the shear direction. Grenet and G’Sell (1990) also performed an approximate analy-
sis, using a 1-D constitutive model proposed by G’Sell and Jonas (1979), by means of a simple
finite difference method. As a first approximation, they took into account only the shear com-
ponent of the strain tensor. Recently, Arruda and Boyce (1992) presented a fully three-dimen-
sional finite element analysis of the test in order to address the effects of edge distortion and
material drawn in from the grip sections. Although the predicted nominal shear stress-strain
curve was found to accurately capture the observed test data, their analysis did not show the
formation of a shear band in the center of the specimen.

In this chapter, we first briefly recapitulate the Boyce ez al. (1988) 3-D constitutive model
of large inelastic deformations of amorphous glassy polymers. The yield of initially isotropic
glassy polymers has been found to depend on pressure, strain rate, and temperature. After
yielding, glassy polymers often strain soften and subsequently strain harden. Adopting a con-
stitutive framework with internal variables, the molecular chain network structure of polymers
and its affine deformation attributes particular features to the constitutive formulation. A full
network model of rubber elasticity (Wu and Van der Giessen, 1992a, 1993a), which is capable
of capturing the deformation dependence of hardening, is used to develop a tensorial internal
state variable model of evolving anisotropic polymer response. This fully 3-D constitutive
model has been found to be able to predict many aspects of the large plastic strain behaviour of
glassy polymers observed experimently (Wu and Van der Giessen, 1993a, 1993b, 1993c). In a
recent study, a finite element simulation of shear band propagation in glassy polymers was car-
ried out (Wu and Van der Giessen, 1992b). In that preliminary study, we considered the simple
shear of a polycarbonate specimen of infinite length in the shear direction, based on the fully
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3-D constitutive model. Although the problem we solved (Wu and Van der Giessen, 1992b)
was effectively a one-dimensional problem across the width of the slab, the results showed that
the shear band propagation phenomenon could be, at least qualitatively, captured by the type
of constitutive models available at the present moment. However, edge effects could not be tak-
en into account in such a 1-D simulation. Based on detailed experimental observations, G’Sell
(1986) suggested that a plane strain type 2-D simulation should be able to reproduce the main
features of the experiment. In the present chapter, the constitutive model is incorporated in fi-
nite element computations of the plane simple shear test, focusing attention on the initiation
and propagation of the shear band. Numerical results predicted by the model are compared with
experimental results for polycarbonate found in the literature.

Tensors will be denoted by bold-face letters, The tensor product is denoted by ® and the
following operations for second and fourth-order tensors apply (a = a;e;®e,

iy

b=be®e, A=A i ®e®e Oe, e being a Cartesian  basis): ab
= a,kbk]e ®e and 4b = /‘7[ k,bk, Superscripts T and —1 denote the transverse and inverse
ofa second—order tensor, respectlvely The trace is denoted by tr, and a superposed dot denotes

the material time derivative or rate.

5.2. CONSTITUTIVE EQUATIONS

The yield of initially isotropic glassy polymers has been found to depend on pressure,
strain rate, and temperature. After yielding, glassy polymers often strain soften and subsequent-
ly strain harden. Here, we briefly recapitulate the model for large inelastic deformations of
glassy polymers developed by Boyce, Parks and Argon (1988), which will be referred to hence-
forth as the BPA model. The BPA model is developed within an internal variable framework,
but at the same time is to a certain extent based on the micromechanical considerations of the
molecular chain network structure of polymers. In the BPA model, the microstructure of an in-
itially isotropic amorphous polymer is assumed to consist primarily of long molecular chains,
which are randomly coiled in space. Side groups protrude from the backbone chains at various
locations and, in conjunction with overall chain trajectory, can act as nodes, or points of phys-
ical entanglement. This results in a network-like structure much like that of rubber, but with the
chemical crosslinks replaced by physical entanglements.

Following the pioneering work of Haward and Thackray (1968), it is assumed that a
glassy polymer must overcome two physical distinct sources of resistance before large strain
inelastic flow may occur. Below the glass transition temperature, prior to initial yield, the ma-
terial must be stressed to exceed its intermolecular resistance to segment rotation; this will be
discussed in Sec. 5.2.1. Once the material is free to flow, molecular alignment occurs, resulting
in an anisotropic internal resistance to further inelastic deformation, which is called orienta-
tional hardening; this will be discussed in Sec. 5.2.2.

5.2.1. Intermolecular resistance

The intermolecular resistance to plastic flow is considered to be due to the impedance im-
posed by neighbouring chains on the ability of a chain segment to rotate either individually or
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in a cluster. Based upon the assumption that plastic flow under an applied shear stress T occurs
by double-kinking of molecular chains, Argon (1973} developed the following expression for
the resulting plastic shear strain rate y*:

- . ASO T 5/6
Y = YooXP T [1‘(—) ﬂ 6D

Here, ¥, is a pre-exponential factor, A is a material parameter that is proportional to the activa-
tion volume/Boltzmann’s constant, T is the absolute temperature and s, is the athermal shear
strength, which in Argon’s model is given by s, = 0.0771/ (1 —v) in terms of the elastic
shear modulus | and Poisson’s ratio v. Boyce et al. (1988) extended this expression to include
the effect of pressure and strain softening. They used s + ap instead of s, where p is the pres-
sure and 0. is a pressure dependence coefficient. Furthermore, s is assumed to evolve with plas-
tic straining via

§=h(l-s/5s,) 7" (5.2)

where A is the rate of resistance drop with respect to the plastic strain and s is the assumed
saturation value of s. The incorporation of this expression (5.1) into a 3-D constitutive model
for rate-dependent plastic flow was also proposed by Boyce et al. (1988); for completeness, we
give a brief recapitulation in Sec. 5.2.3.

5.2.2. Anisotropic internal resistance

Once the material is stressed to the point of overcoming intermolecular barriers to chain
motion, the molecular chains will tend to align along the direction of principal plastic stretch
[see e.g. Haward and Thackray (1968) and Argon (1973)]. This action decreases the configu-
rational entropy of the system which, in turn, creates an internal network stress. This process
of network distortion is very similar to that of rubber network, and Haward and Thackray
(1968) suggested to describe this for uniaxial extension by means of a back stress determined
through a Langevin spring, as suggested by non-Gaussian network theory. Boyce ez al. (1988)
extended this approach to general three-dimensional plastic deformations by introducing a
back stress tensor B which is taken to be coaxial with the plastic left stretch tensor VP (the pre-
cise definition of VP will be given in Sec. 5.2.3. Thus, if €] are the unit eigen vectors of V7,
corresponding to a plastic stretch Xf , the back stress B is constructed as

B = Y B;(ef ®¢e]) (53)

from the principal components B;. Originally, Boyce et al. (1988) adopted the classical so-
called three-chain model for Wthh the principal components B N of the back stress tensor
are given in terms of the plastic stretches kf by (Wang and Guth 1952)
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AP AP
B?"’h = %CRJN{L}.’L—I (JI%I) j;l AP L (JIT/)] (no sum over #), (5.4)

where CR is known as the rubbery modulus, N is a statistical network parameter related to the
network locking stretch and L is the Langevin function defined by £{B) = cothp —1/p.
More recently however, Arruda and Boyce (1991, 1993b) found that the three-chain non-
Gaussian network model was not capable of picking up the strain hardening observed experi-
mentally in polycarbonate (PC) and polymethylmetacrylate (PMMA). At the same time, they
suggested to model the network by eight equivalent chains instead of three, and obtained more
close agreement with their experimental results for PC and PMMA. The principal components
of the back stress tensor according to this eight-chain non-Gaussian network model are given

by

2 2
L (AP NAP AP
B¥ = % cRNL (}‘ . (no sum over i), (5.5

5

where AP is defined through

3
1
LA

Both the three-chain and eight-chain model are based on approximate representations of
the actual spatial distributions of molecular chains by “lumping” their orientations in three and
eight specific directions, respectively. Very recently, the authors developed the so-called full
network model in which full account is taken of the 3-D orientation distribution of the individ-
uval chains in the network (Wu and Van der Giessen, 1992a, 1993a). This model is a 3-D gen-
eralization for arbitrary deformation paths of the 2-D model for proportional deformations
proposed by Treloar and Riding (1979a). The principal back stresses according to this model
can be given in two equivalent ways, depending on whether one considers the chain orientation
distribution in the undeformed isotropic state or in the current deformed state; here, we only
reiterate the expression according to the first point of view because it is more convenient for
applications, i.e.

2R 2 2 2
AP\AP m; —AP /3
B, = —CRJNJ IL (JIV) : T sin® ,d6,d@,, (no sum over i). (5.6)
Here, AP is defined by
2 a2 o2
AP = 2”’ m;]
i=1

and m? are the unit vector components in orientation space defined by
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in terms of the angles 6, and ¢, which measure the orientation of molecular chains relative to
the principal stretch directions in the undeformed configuration. The numerical evaluation of
the integral in (5.6) is rather time-consuming, but an accurate approximation of the full network
predictions according to (5.6) has been found (Wu and Van der Giessen, 1992a) in the form of
a combination of the three-chain and eight-chain model predictions (5.4), (5.5) through

B, = (1-pP)B)" 4 ppp¥eh, (5.7)

4

Excellent agreement with full integration is obtained by taking pP to be related to the maxi-
mum principal plastic stretch AP = max (A}, A3, A%) via pP = 0.85AF  / JN. All compu-
tations to be reported here have used the expression (5.7).

5.2.3. Three-dimensional representation

Boyce et al. (1988) developed the 3-D constitutive relations on the basis of the multipli-
cative decomposition of the deformation gradient F into elastic and plastic parts, F = F°FP.
Following Lee (1969) and others, the elastic part F° is taken to be symmetric, so that F® rep-
resents the relaxed configuration obtained by unloading without rotation (in the polar decom-
position sense). Hence, F? can be decomposed as F* = VPR with the plastic stretch VP and
the total stretch V in polar decomposition F = VR being related by V = F°VP . According
to this decomposition, the velocity gradient L is decomposed as

L=FF'=D+W = FFFF +FLPF*!

where D is the rate of deformation, W is the spin, and L? = D°P + WP = F PEP™! is the ve-
locity gradient in the relaxed configuration. With the adopted symmetry of F°, the skewsym-
metric part WP is algebraically given as W plus a term dependent on F® and D +DP (see
Boyce et al., 1988). Since the elastic strains will remain small, we can neglect geometry differ-
ences between current and relaxed configurations, F® = I. When this approximation is carried
through consistently, the constitutive equations can be simplified significantly, as discussed by
Boyce et al. (1988). In particular it is noted that in this case W? = W and D =~ D® + DP, with
D° the symmetric part of F°F° ™.

The rate of change of shape of the relaxed configuration, D, must be constitutively pre-
scribed. In the BPA model, the magnitude of D® is taken to be given by the plastic shear strain
rate, Yp, according to (5.1) while the tensor direction of DP is specified by N, so that

DP = PN, (5.8)

where the direction N is the deviatoric part of the driving stress, normalized by the effective
equivalent shear stress 1:

N

1"/
= —0
J21

83



¢=ga«v (5.9)

Based on the suggestion by Haward and Thackray (1968), the driving stress ¢ itself is defined
by

¢ =¢6-B (5.10)
where ¢ is the Cauchy stress tensor and B is the back stress tensor, according to (5.3) and (5.6)—
(5.7), due to the strain hardening resulting from molecular alignment, as discussed in Sec.
5.2.2. Consistent with the approximation F® = I, the plastic principal stretches k? to be substi-
tuted into (5.4)—(5.6) are approximated by the principal values of V = VP,
In Boyce et al. (1988), the Cauchy stress is taken to be given by the elastic constitutive
law (Anand, 1979)

¢ = - (L,InF%) (5.11)

-

where L, is the fourth-order isotropic elastic modulus tensor:

ijkl
(]

L = e,®e Qe e,

i E kil silsjky 2V sijskl
L, ‘T(TIT)[(S 8’+6&)+m85 } (5.12)

with E = 2 (1 +v) i being Young’s modulus and J = detF®. On the basis of these relations,
Boyce et al. (1988) briefly discuss a possible implementation for the solution of boundary value
problems, we here wish to adopt a more typically viscoplastic rate formulation as will be dis-
cussed in detail in the Sec. 5.3. As a consequence, we need the equivalent rate form of the elas-
ticity equations (5.11)~(5.12). Since the elastic strains are assumed to remain small, we may
replace the hyperelastic law (5.11) with the hypoelastic rate form

vy
¢ = LD (5.13)
ié‘ terms of the same modulus tensor L  and employing the Jaumann stress rate,

6 = 6— Wa + oW to retain objectivity. The constitutive equations (5.13) can be finally ar-
ranged in the following form:

v .
6=LD-g, (5.14)

where 6, = LCDP acts as an instantaneous stress rate term that represents the viscoplastic
contribution.

5.3. PROBLEM FORMULATION AND METHOD OF SOLUTION

The simple shear deformation of a parallelepiped solid of initial length 2B, and width 24,
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can be basically defined, as illustrated in Fig. 5.1, by the homogeneous relative glide of parallel
planes along the shear direction. The amount of shear is commonly expressed by the ratio
T = U/ (24,), where U is the relative displacement of the opposite faces of the parallelepi-
ped. In order to impose a constant shear rate I' = U/ (24,) , the opposite faces are displaced
ataconstant velocity U = T’ (2A,) . Variations of the thickness during the deformation are rel-
evant only to second order terms in the strain tensor and may be neglected to a first approxima-
tion (G’ Sell, 1986); thus, this deformation mode is of a 2-D plane strain type. The conventional
nominal shear stress and normal stress are defined by F/ (2B,)) and F| / (2B,) , respectively,
where F and F, are the applied shearing force and the force required to maintain the width
of the specimen, respectively.

24,

2B,

Fig. 5.1. Schematic definition of the specimen under the plane strain simple shear.

In the experiments carried out by Gopez (1983) and by G’Sell and Gopez (1985), speci-
mens were used which were designed to create a uniform state of plane simple shear in the
gauge section. However it was found that due to some inhomogeneity in the material, a highly
localized shear band appeared near the center of the specimen, which subsequently grew and
widened in the direction perpendicular to the shear direction. To trigger the initiation of such a
macroscopic shear band at the center of the specimen in our 2-D analysis, we assume here an
initial imperfection of the shear strength s, of the form

(5.15)

(x=By)?+ (By/Ag) 2 (y—Ap) 2
Asy = Csgexp [— 55— jl
0.01 (B5+4p)

such that the initial shear strength is s, — As,;, where { determines the intensity.
A numerical analysis is performed by employing a finite element scheme in a manner sim-

ilar to that described by Needleman and Tvergaard (1984). When the elastic-viscoplastic con-
stitutive law (5.14) is employed, the time-dependent terms &, affect only the nodal traction-
rate vector. No contribution to the stiffness matrix arises from the variations of plastic defor-
mation rate since these do not explicitly depend on stress rates. We use quadrilateral elements,
each built up of four linear velocity, triangular subelements arranged in a ‘crossed triangle’
configuration. An equilibrium correction procedure is employed to avoid drifting away from
the true equilibrium path during the incremental procedure. Integrations with respect to time
are computed using an explicit Euler integration method. Since the elements of the stiffness
matrix are of the order of the elastic moduli, as given by (5.12), very small time steps have to
be employed to achieve satisfactory convergence in the early stages of viscoplastic flow; how-
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ever, at later stages of well-developed viscoplastic flow, much large steps may be used. For this
reason we use an adaptive time stepping method proposed very recently by Van der Giessen
and Neale (1993), in which the time step size At to be used for each increment is determined
adaptively through an automatic procedure consisting of three key parts:

Part 1: The first two steps are performed with very small time steps such that any plastic defor-
mation is excluded. The size of the time step is defined as a small fraction of a reference time
scale ¢

R

6/5

s, 7P
At =108, 1 = —95[1+1—£—1n [7—)] ,
by 0

which, in a loose sense, relates the viscoplastic shear rate ¥¥ according to Eq. (5.1) with the
elastic shear rate I" under the same stress.

Part 2: At the beginning of the third time step, the time increment is determined on the basis of
a prescribed work rate per unit volume, W = (F,UAt) / (4A,B,) , during that step. The ap-
plied work rate is estimated on the basis of the ‘elastic’ stress state determined as discussed
above, and W is scaled with the elastic shear modulus 1, i.e. W= gy, |t. Thus, the time incre-
ment is obtained from

4uA,B,
EU

At = gy,

and its size is controlled by the parameter €, .

Part 3: During all subsequent increments, a maximum allowable time step At is determined
as the maximum value of A#’ computed from each of the following criteria:

s

Ar<e —
k|1~ 5/5,| 7P

AyP
AY < ¥ max X (5.16)

'Y'P

The first criterion ensures that the shear stress drop during a time increment At* does not ex-
ceed a fraction g, of the current shear strength. The second criterion ensures that the plastic
shear strain increment during a time increment At” does not exceed a maximum shear incre-
ment AyP_ . If at the end of the increment, Az, is smaller than the current time step At , the
time step of the next increment is taken equal to Az ; if Az, exceeds At for a number of con-
secutive increments (say, five), At is increased by a factor 1.5.

As pointed out by Van der Giessen and Neale (1993), the procedure is rather heuristic, but
extremely simple to implement in an incremental code. This adaptive time step selection pro-
cedure involves three parameters, the values of which have to be determined empirically. The
results to be presented in the next two sections have all been obtained with the following val-
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ues: £y, = 107871, AYP . = 0.0025, &= 0.01. These values have been found to ensure
numerical stability in all cases to be presented. Several cases have been repeated with half of
the above values, and in each case the differences in the global response quantities (shear and
normal stresses) remained smaller than 0.1%.

We would like to note that powerful forward gradient approaches for the time integration
of viscoplastic constitutive equations have been proposed in the literature (e.g. Peirce et al.,
1984). However, these methods are very difficult to apply to the present set of constitutive
equations because of the structure of the back stress equations (5.3)~(5.7). By employing the
afore-mentioned, simple adaptive time stepping scheme we have been quite efficient in obtain-
ing stable solutions with acceptable numbers of increments.

5.4. PARAMETER STUDY

The problem described in Sec. 5.3 involves a number of dimensionless groups, and there-
fore we introduce the following nondimensional quantities:

A U Fy F, T
1 = — = =, ==, —; .
oading 74, o, 3B,s, c, 2Bys, T 6.17
geometry: Bj/Ag; (5.18)
K As,
material: £, 2% 20 ko N, C (5.19)
sy 8 T I s

The overall response of the specimen can be conveniently presented in terms of the applied
shear strain I", and the normalized nominal shear stress and normal stress, o, and o, respec-
tively.

5.4.1. A typical result

Figure 5.2 shows the predicted response to plane strain simple shear, using a regular mesh
with 12 X 60 elements (12 equally sized elements in the direction perpendicular to the shear
direction, 60 in the shear direction). The specimen dimensions are specified by B,/A, = 15,
and the following values of the material parameters were used: I'/ Yo = L.5X 10_18,
E/sy = 938, 5,/5q = 092, Asy/T = 792, h/s5 = 928, v = 0.3, 00 = 0.08, N = 6.3,
load 5o = 0.06. These values, except the value E/ s, , were primarily used as representative
values of the parameters, but are reasonable for polycarbonate among other amorphous glassy
polymers. In the BPA model, the value of E/s is determined uniquely by Poisson’s ratio.
However, here we consider it to be an independent material parameter. The reason for this is
that the constitutive model described in Sec. 5.2 cannot account for the small strain viscoelastic
behaviour observed in experiments, resulting in a nonlinear stress-strain response prior to
yielding. Now, since we are mainly interested in large plastic deformations, these viscoelastic
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effects need not be considered in detail, and we shall simply characterize the behaviour prior
to yielding by an appropriate value of E . The intensity § of the initial imperfection (see Eq.
(5.15)) is assumed to be 0.01. We will use these values of the parameters throughout Sec. 5.4,
except were noted otherwise.
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Fig. 5.2. Typical predicted simple shear behaviour for a specimen with By/A, = 15, & = 0.01 and
for the following values of the material parameters: I/ Yo = 15X 10718, E/5, = 9.38,
5,./8g =092, Asy/T =792, h/sy=928, v=03 o=008 N =563
ct/ 5o = 0.06. Stages a—f correspond to the plots shown in Fig. 5.3.

The four successive stages of the experimental shear stress—shear strain curve distin-
guished by G’Sell and Gopez (1985) are picked up qualitatively by the simulation (Fig. 5.2):
(D) the elastic response ending at a yield strain of about 0.12; (II) a small but significant shear
stress drop, spreading over a strain range from 0.12 to 0.3; (III) a plastic domain with a very
small apparent slope, spreading over a strain range from 0.3 to about 0.8; (IV) large plastic flow
of the sample with enhanced hardening. The calculation ended when the maximum plastic
stretch approached the locking stretch JN of the macromolecular chain network at some point
in the specimen.

Figure 5.2 also shows the development of the normal stress 6, during simple shear. The
compressive normal stress increases up to an applied strain of 0.18, where it approaches its
maximum of about 0.027. From that point on, the normal stress starts to increase increases mo-
notonically towards a constant positive value. The normal stresses remains compressive up to
an applied strain of about 0.5, and then becomes tensile.

G’Sell and Gopez (1985) showed that the four stages in the shear stress—shear strain be-
haviour can be partly attributed to the intrinsic material behaviour, and partly to the occurrence
of a macroscopic shear band. In order to clearly show the initiation and propagation of the shear
band, Fig. 5.3 shows contour plots of the plastic shear strain 7P normalized by the “applied
plastic strain”

TP = T-F,/ (2By),

at different stages of the deformation (the stages a—f correspond to the points marked a—f in Fig.
5.2). As the shear stress passes through its maximum at " = 0.12, a region of enhanced shear
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appears at the location of the initial imperfection (see Fig. 5.3.a). It is noted that in addition,
two regions of enhanced shear are found near the free edges. During continued deformation,
these regions quickly grow into shear bands: the shear band initiated at the center elongates in
the shear direction while the other two propagate towards the center of the specimen (see Fig.
5.3.b) until they link up with each other and form a single shear band at around I' = 0.30 (see
Fig. 5.3.c). Then the so-formed single shear band gradually widens (Fig. 5.3.d and Fig. 5.3.¢).
As observed in experiments, the local plastic shear strain within the shear band continues to
increase at a very slow rate during band widening. Figure 5.3.f shows the contour plots when
the band occupies the whole specimen.

(a)

(b)

(d)
1.13333
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0.666667
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Fig. 5.3. Contours of normalized plastic shear strain y*/I"* under simple shear predicted with the
12 X 60 mesh at various shears: (a) I = 0.12, (b) T = 020, (¢c) T’ = 030, (d)
=033,(e)T = 051,(H T = 0.80.

The physical cause for shear band propagation is evident from the evolution of the shear
stress. When the band of increased plastic flow is initiated near the center, the local shear stress
drops sharply as a consequence of the intrinsic softening. With continued applied shearing, ori-
entation hardening starts to develop in the shear band, causing the neighbouring material to
reach the local shear resistance and initiate substantial plasticity. This process continues until
most of the specimen is well in the plastic, strain hardening regime.

5.4.2. Influence of the mesh

Shear band localization phenomena are notorious for sometimes exhibiting a pathological
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mesh sensitivity. However, as put forward unequivocally by Needleman (1988), this is not nec-
essarily the case for the problem under consideration here since the material response accord-
ing to the constitutive model of Sec. 5.2 is intrinsically rate-dependent. Nevertheless, the
selection of a proper mesh does require attention. Numerical experiments have shown that the
overall response of the specimen, in terms of the overall shear stress and normal stress are not
sensitive to the mesh; but it turned out that details of shear band formation and propagation are
indeed rather sensitive to the mesh used. In order to obtainsufficiently accurate results, we have
to use somewhat fine mesh.
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Fig. 5.4. Shear and normal stress responses under simple shear predicted with different finite element
meshes.

Figure 5.4 shows the predicted responses to plane strain simple shear, using three different
regular meshes consisting of 6 X 30, 12 x 16 and 16 x 80 elements. In all these calculations,
we have used the same parameters as given in Sec. 5.4.1.

Figure 5.5 gives the contour plots of plastic shear strain at various stages of the deforma-
tion with the mesh (16 x 18) . It is clear that the contour plots with mesh (16 x 80) are al-
most identical to these with mesh (12 x 60), which have been discussed in detail before.
However, when the crude mesh (6 x 30) is used (see Fig. 5.6), we do not observe the thin
shear band at the location of the initial imperfection up to shear strains about 0.3 (stages a and
b of Fig. 5.6). The reason for this is that the width of a shear band at the early stages is very
small; if it is smaller than the element size of the mesh, it will not be picked up in the analysis.

Further detailed studies of the distributions of plastic shear strain and stresses reveal that
the edge effects are very strong. Indeed, the maximum plastic stretch always approaches the
locking stretch of the macromolecular chain network at a location near the edges. On the other
hand, the extent of the stress concentration is sensitive to the mesh used. Using a crude mesh
tends to reduce the stress concentration. Actually, the most important difference between the
crude and the fine meshes in Fig. 5.4 is that the maximum plastic stretch formed with the fine
mesh (16 x 80) approaches the locking stretch at an applied shear strain of about only 0.8,
while in the crude mesh (6 x 30) the locking stretch is not reached prior to I' = 1.6. Based
on all those observations, we decided that the relatively fine mesh (12 x 60) would be suffi-
ciently accurate. We will use this mesh in the rest of this paper, except where noted otherwise.
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Fig. 5.5. Contours of normalized plastic shear strain y»/T"? for the 16 X 80 mesh at various defor-
mation stages: (a) I’ = 0.12,(b) I' = 0.20,(c) I = 0.30.
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Fig. 5.6. Contours of normalized plastic shear strain ye/T"? for the 6 X 30 mesh at various deforma-
tion stages: (@) ' = 0.12,(b) ' = 0.20,(c) " = 0.30.

5.4.3. Effects of initial imperfection

To check the influence of the initial imperfection on the localization results, we have used
different imperfection shapes and sizes. It was found in all cases that, within the strain-range
considered, the overall response is not sensitive to the initial imperfection. In fact, we hardly
see the effect of the initial imperfection on the overall response from the predicted shear and
normal stresses. We have also studied the normalized plastic shear strain distribution by using
the same imperfection shape, given by Eq. (5.15), but with different intensities £ ranging from
0.005 to 0.02: the differences were found to be very small.

Nevertheless, it is interesting to consider the limiting case of an idealized specimen with-
‘out initial imperfection (§ = 0). Figure 5.7 shows the normalized plastic shear strain distribu-
tion in this case. As opposed to Fig. 5.3, there is no shear band initiated at the centre of the
specimen. However, we do observe the two regions of intense shear near the free edges (Fig.
5.7.a), which propagate towards the center of the specimen during softening (see Figs. 5.7.b,c)
until they join each other and form a single shear band at an applied shear strain about 0.33.
Then the so-formed shear band gradually widens until it occupies the entire area of the speci-
men (see Fig. 5.7.d). From that point on, the differences in plastic shear strain distribution be-
tween the specimens with and without an initial imperfection are no longer distinguishable.
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(d)

Fig. 5.7. Contours of normalized plastic shear strain y?/I'? in an idealized specimen without an ini-
tial imperfection at various deformation stages: (a) I' = 0.12, (b) T = 0.19, (¢}
I' = 030,(d) T = 0.80.

5.4.4. Effects of material properties

It is generally agreed that the yield and postyield behaviour of glassy polymers exhibit true
strain softening [see e.g. Haward (1980)]. In the BPA model, the effects of softening are de-
scribed in terms of the evolution equation of the athermal yield strength (5.2). We study the ef-
fects of softening on shear band initiation and propagation by considering different intensities
of softening, by taking s, /s, = 0.92 and 0.79, respectively. The associated value of the pa-
rameter h, the slope of the yield drop with respect to plastic strain, is adjusted in such a way
that the initial slope of softening, & (1 —s,/s,,) , remains constant. We also include the limit-
ing case of no softening by assuming s /s, = 1.

Figure 5.8 shows the effects of softening on the predicted shear and normal stress respons-
es. As expected, the parameter s /s, determines the extent of softening. Detailed considera-
tion of the plastic shear strain distributions for the various cases indicates that there is no
evidence of initiation and propagation of a shear band in the limiting case of no intrinsic sof-
tening. Discussion on the distributions of normalized plastic shear strain predicted with
s5../55 = 0.79 will be given later.

The parameters N and c? govern the orientation hardening through the non-Gaussian net-
work model for rubber elasticity (5.6). Here, we study the effect of orientation hardening by
first using the same value of N (N = 6.3) but different values of loatR oav4 sy = 0.06,0.12 and
0.18, respectively. Furthermore, we include a limiting case of no orientation hardening by tak-
ing CR /sy = 0. In all these calculations, the intensity of softening is assumed to be

s/ 5o = 0.79. The numerical results are presented in Fig. 5.9. It is clear from the predicted
shear stresses that a larger value of loaV 8o mcreases the stiffness of the network and therefore
increases the orientation hardening. The value of cr/ 54 is observed to affect the apparent over-
all yield stress too. The reason for this is that at the yield strain I = 0.12, significant plastic de-
formation has already occurred at some locations due to the intrinsic inhomogeneity of
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deformation. If CX is large, orientation hardening would be already significant at that moment,
resulting in a noticeable increase of the yield stress. The normal stress responses with different
values of C}/ 8, give virtually identical predictions up to I' = 0.2, where they approach the
maximum compressive stresse. From that point on, the normal stress for little (cr/ sy = 0.06)
or no hardening (CR /sy = 0) increases monotonically and becomes tensile at an applied shear
strain of 0.25. As opposed to this result, the normal stress response for larger values of c?/ L
of 0.12 or 0.18 is not monotonic but reaches a maximum and then drops monotonically again.
In the case of C~/ 5 = 0.18 the normal stress response maintains compressive during the en-
tire deformation process.
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Fig. 5.8. Influence of the softening parameter s,,/s, on the predicted shear and normal stress re-
sponses under simple shear. Al other parameters are as in Fig. 5.2.

026—5707 05 03 - 10 12 14 16
Fig. 5.9. Influence of the orientation hardening parameter -/ s, on the predicted shear and normal
stress responses under simple shear. Softening is characterized by s /s, = 0.79, and all

other parameters are as in Fig. 5.2.

The distributions of the normalized plastic shear strain predicted with relatively large val-
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uesof C}/ 5 (0.12 or 0.18) are found to be similar to those shown in Fig. 5.3. The distributions
of normalized plastic shear strain obtained with loaV 53 = O (i.e. no orientation hardening) are
given in Fig. 5.10. We did not observe a shear band at small strains up to I = 0.16. During con-
tinued deformation, the shear band initiated at the center (see Fig. 5.10.a) elongates in the shear
direction while the other two, initiated near the free edges, propagate towards the center of the
specimen (see Fig. 5.10.b) until they link up each other and form a single shear band (see Fig.
5.10.c). It is found that the so-formed shear band does not widen as we observed in the cases
with a positive value of R/ sg.but localizes with further shearing (Figs. 5.10.d~¢). The strain
is concentrated in the shear band, as is seen from the profiles of the specimen in Figs. 5.10.d-
e, while strains outside the band remain almost constant or even slightly decrease. This is also
the reason why the predicted shear stress continues to decrease at large strains, as shown in Fig.
5.9. Eventually, the maximum plastic shear strain approachesthe limit value JN at the surface
of the shear band near the center of the specimen. In the case of small orientation hardening
(CR /s, = 0.06), the shear band is found to widen but very slowly.
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Fig. 5.10. Contours of normalized plastic shear strain y»/I'? for ct/ sy = 0 at various deformation
stages: (@) T = 0.16,(0) T = 0.18,(c) T = 022, (d) T = 034,(e) T = 0.77.

We proceed by studying the effects of orientation hardening by using the same value of c?
(CR /s, = 0.06) but different values of N: N = 3.0, 6.3 and 9.0. The results are presented in
Fig. 5.11. The effects of N on the overall response of the simple shear test are not very strong,
except for the fact that the limit stretches being reached at different strain levels.

Flow in amorphous glassy polymers appears to be a viscous process and the yield stress is
strongly strain-rate dependent. Figure 5.12 shows the overall responses to simple shear defor-
mation at normalized applied strain-rates ['/ Y, ranging over several orders of magnitude. The
increase of the plastic flow stress due to an increase of the strain rate is seen to be small, about
7% for one decade of strain-rate. It seems that the main effect of strain-rate is to shift the shear
stress strain curve vertically without changing its shape, while the normal stress is insensitive
to the shear rate. The differences in plastic shear strain distributions under different strain-rates
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are found to be small, so that it is concluded that shear band initiation and propagation are not
sensitive to strain-rate within the range considered.
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Fig. 5.11. Influence of the orientation hardening parameter N on the predicted shear and normal
stress responses under simple shear for a material with cts s = 0.06. All other parame-
ters are as in Fig. 5.2.
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Fig. 5.12. Influence of the normalized applied strain-rate r/ Y, on the predicted shear and normal
stress responses to simple shear.

5.4.5. Edge effects

As mentioned before, the simple shear test carried out by G’Sell and co-workers is a highly
inhomogeneous deformation process due to mainly the free edge effects. G’Sell et al. (1983)
observed that the free edges of the specimen were curved and had a convex (bulging) curvature
(see also the profiles of the specimen in Fig. 5.3). They explained these observations by, on one
hand, the constraint effect of the grips, which react against the rotational moment imposed by
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the couple of the shearing forces, and on the other hand by the departure from the ideal simple
shear condition in which the ends of the specimen must also carry appropriate tractions, in gen-
eral normal to and parallel to the end surfaces.
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Fig. 5.13. Predicted shear and normal stress responses to homogeneous, 1-D (By/A, — «°) and 2-D
(By/Ag = 15) simple shear deformations, respectively. The material parameters are as in
Fig. 5.2.

In a preliminary study, Wu and Van der Giessen (1992b) have considered the simple shear
of a polycarbonate specimen of infinite length in the shear direction, i.e. By/Ag— . The
problem solved (Wu and Van der Giessen, 1992b) was effectively a one-dimensional problem
across the width of the slab. In that analysis, the deformation inhomogeneity was reduced sub-
stantially because of the absence of free edges. To further assess the edge effects, we also cal-
culated the stress response to homogeneous simple shear to a shear strain I' by direct
straighforward integration of the constitutive equations. The numerical results of these three
different cases (referred to as homogeneous, 1-D and 2-D simple shear deformations, respec-
tively) are presented in Fig. 5.13. Generally, the differences in predicted shear stress are small.
This is further substantiated by Fig. 5.14 which shows the shear and normal stress distributions
over the boundary a-b in the specimen (see Fig. 5.1) in the 2-D analysis at an applied shear
strain of 0.6. It is seen that the shear stress distribution is relatively uniform over the boundary.
Perhaps the only noteworthy difference in predicted shear stress response is that the 1-D calcu-
lation somewhat underestimates the strain softening (see Fig. 5.13). The reason for this is that
in the 1-D analysis we essentially neglect the shear band propagation in the shear direction,
while during those stages the shear stress should drop according to the experimental observa-
tion (G’Sell and Gopez, 1985). Once the shear band is complete at an applied strain of about
0.80, the shear stress response found in the 2-D case is virtually identical to that in the 1-D case.
The very small systematic differences in predicted shear stress between the homogeneous case
and the finite element calculations is probably due to the initial imperfection assumed in the
latter.

Quite remarkably, the differences seen in Fig. 5.13 among the three cases in predicted
overall normal stress are much larger than in the predicted shear stress. The calculations of all
cases give virtually identical predictions of the compressive normal stress for applied strains
up to T' = 0.12. From that point on, the normal stresses in the homogeneous and 1-D cases
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evolve monotonically and remain compressive, whereas the overall normal stress found in the
2-D analysis becomes tensile eventually. Figure 5.14 now shows that the predicted normal
stresses in the 2-D case along a-b are small and quite uniformly distributed over most of the
boundary except at the corners b and a, where, high compressive and very high tensile stresses
were found, respectively. The resulting average normal stress turns out to be tensile.
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Fig. 5.14. Shear and normal stress distributions over the boundary a—b of the specimen (see Fig. 5.1)
at an applied shear strainof I' = 0.6.

Furthermore, G’Sell et al. (1983) reported that the perturbation in strain distribution

caused by the free edges was significant in end zones of length equal to the width A, of the
specimen. This means that the edge effects themselves depend on the aspect ratio By/A,, and
that the larger the value of B,/A,, the smaller the edge effects. While By/A, = 15 in previous
computations, Fig. 5.15 shows the predicted shear and normal stress responses of a specimen
with B,/A; = 7.5. In this calculation, we used a regular mesh consisting of 24 x 60 elements.
It is found that the shear stresses in the thick specimen (By/A, = 7.5) are slightly lower than
these in the slender specimen (B,/A, = 15); this is probably due to the fact that in all calcu-
lations we use the same initial imperfection shape (5.15), so that the average value of the initial
shear strength (s, — Asy) in the thick specimen is then slightly smaller than that in the slender
specimen. At large strains, the predicted tensile normal stresses in the thick specimen are much
higher than that in the narrow specimen. Furthermore, the calculation for the thick specimen
stopped at I~ 0.71 when the maximum plastic stretch approached the locking stretch JN of
the network, while for the narrow specimen the locking stretch was not reached prior to
I' = 1.2. These observations clearly show that the edge effects increase with the thickness of
the specimen. This is consistent with the conclusion of G’Sell et al. (1983).
' To assess the influence of the geometry on the initiation and propagation of the shear band,
Fig. 5.16 shows contour plots of the normalized plastic shear strain in the wide specimen at var-
ious stages of the deformation. Comparing with Fig. 5.3, it is clear that the velocity of the shear
band propagation in the shear direction is much faster in the wide specimen than in the slender
specimen; furthermore, the velocity in the thickness direction is lower in the wide specimen
than in the slender specimen. Finally, the plastic strain concentration at the corner a of the wide
specimen is much higher than that in the slender specimen.
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Fig. 5.15. Influence of the geometry parameter B,/ A, on tge predicted shear and normal stress re-
sponses under simple shear.
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Fig. 5.16. Contours of normalized plastic shear strain y?/T'® for the specimen with By/A, = 7.5 at
various deformation stages: (a) T = 0.12, (b)) T’ = 020, (c) ' = 030, (d) I = 0.71.
The material parameters are as in Fig. 5.2.

5.5. AN EXAMPLE FOR POLYCARBONATE

To enable a direct comparison with experimental data for polycarbonate (PC) by Gopez
(1983) we have taken the actual dimensions to be the same as in (Gopez, 1983), i.e. 24, = 4

98



mm and 2B, = 60 mm (see Fig. 5.1). The opposite faces are dlsplaced ata constant velocity
U=12x 10 ‘m/s corresponding to an applied shear rate of I' = 3 X 10” 37!
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Fig. 5.17. Predicted overall shear and normal stress response to simple shear for polycarbonate. The
dots (®) are experimental data points from Gopez (1983). The open circles (O) are the ex-
perimental values for the average normal stress s, multiplied by a factor 7.

At room temperature (T = 294 K), the following values of the parameters that determine
the stress-rate, temperature dependence and softening behaviour for PC are used:
Yo = 2x 107!, A = 240K/MPa, s, = 97 MPa, s5,/s, = 092, h = 500MPa and
o = 0.08, while Young’s modulus and Poisson’s ratio are taken as E = 910MPa and
v = 0.3, respectively. Most of this data has been taken from the experiment carried out by
Boyce and Arruda (1990); but, the saturation value s, has been chosen to fit the softening be-
haviour observed during large strain plastic torsion of PC by Wu and Turner (1973) (sce also
Wu and Van der Giessen, 1993c), while Young’s modulus is chosen smaller than the experi-
mental value of £ = 2300MPa for reasons discussed in the previous section. The parameters
CR and N that govern the orientation hardening are taken as CR = 57MPa and N = 63,
which are reasonable compared with experimental values [see Reference 27 in (G’ Sell, 1986)].
Admittedly, the material parameters have been compiled from different sources involving dif-
ferent experiments on material that is likely to be not exactly the same, but because of lack of
sufficient experimental data this was the best we could do. We shall simply employ these pa-
rameters, bearing in mind that the major purpose of this paper is to numerically study the ini-
tiation and propagation of shear bands.

Figure 5.17 shows the predicted stress responses to plane strain simple shear, along with
the experimental data by Gopez (1983). The characteristics of the predictions have already
been discussed following Fig. 5.2, in which the numerical results were presented in terms of
the nondimensional shear stress 6 and normal stress 6, defined in (5.17). The predicted shear
stress is in a good agreement with the experimental data, but the predicted normal stress is
found to be about 6 times larger in magnitude than the experimental data. For the prupose of a
qualitative comparison with the experimental data, the figure also shows the experimental nor-
mal stress results multiplied by 7. It is seen that the shape of the predicted normal stress curve
is quite unusual but similar to that observed experimentally in polycarbonate (Gopez, 1983).
The contour plots of plastic shear strain at various deformation stages have been presented in
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Fig. 5.3. The predicted initiation and subsequent propagation of the shear band is found to be
in good agreement with experimental observations (G’Sell and Gopez, 1985). Therefore we
conclude that the constitutive model, together with the numerical tool used here, is capable of
capturing the major characteristics of the large simple shear behaviour in a qualitatively rea-
sonable way.

5.6. DISCUSSION AND CONCLUSION

In this chapter, 2-D finite element analysis has been used to simulate large simple shear
tests of amorphous glassy polymers, focussing attention on the initiation and propagation of the
shear band. The mesh sensitivity and the effects of initial imperfection, strain softening, orien-
tation hardening, strain-rate as well as the edge effects have been discussed in detail.

The predicted numerical results have been compared with experimental data for polycar-
bonate, based on material properties taken from independent sources. In general, the agreement
is reasonable, and the initiation and propagation of shear bands is predicted well. However, a
number of features in the experimental results are not picked up by the analysis.

Although the variations of thickness of the specimen are relevant to second-order terms in
the strain tensor and may be neglected to a first approximation as suggested by G’Sell (1986),
the simple shear test is in fact a three-dimensional problem. As reported by G’Sell and Gopez.
(1985), phenomena as cracking and the drawing of the material from outside the gauge section
significantly affect the overall response at large strains. These 3-D effects can not be taken into
account in the 2-D simulation. Therefore, the decrease in hardening slope, due to the microc-
racking and the drawing-in of material from the grip section at very large strains, is not picked
up by the analysis (see Fig. 5.17). However, a constitutive model for describing the microcrack-
ing phenomenon is not available, while full 3-D analyses still impose severe computational re-
quirements. On the other hand, these 3-D effects become critical only at very large strains
(G’Sell et al., 1983). Therefore, a proper plane strain type simple shear analysis should be of
practical use.

The experiment carried out by Gopez (1983) showed increased hardening in the nominal
shear stress-shear strain curve at strains beyond I" = 1.2 (see Fig. 5.17). In the homogeneous
and 1-D simple shear deformations, the predicted shear stresses go up rapidly when the maxi-
mum plastic stretches approach the locking stretch JITI of the molecular chain network (see Fig.
5.13). However, our plane strain type 2-D analysis did not reveal similar effects (see Fig. 5.13
or Fig. 5.17). This too is due to the inhomogeneity resulting from the edge effects. Actually, the
local shear stress near the free edges does show accelerated hardening when the local maximum
plastic stretch approaches JN. However, the maximum plastic stretch in locations away the
free edges is still much less than JN, so that the resulting average shear stress does not exhibit
this enhanced hardening.

We have demonstrated that a sufficiently fine mesh is needed in order to resolve the shear
band. In a 3-D simulation of simple shear, Arruda and Boyce (1992) did not observe a shear
band at the location of the initial imperfection. It is likely that this is caused by the fact that their
mesh, which used only 6 elements in the direction perpendicular to the shear direction, was not
fine enough. Our plastic shear strain distributions obtained with a sufficiently fine mesh clearly
show the initiation and propagation of the shear band (see Fig. 5.3 or Fig. 5.5), which is in good
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agreement with the experimental observations (G’Sell and Gopez, 1985). However, it is worth-
while to point out that —perhaps unexpectedly— the predicted shear band is not a straight line
parallel to the shear direction (see Fig. 5.3.c or d). G’Sell and co-workers have not clearly in-
dicated the shape of the shear band in their experimental observations, but the experiments car-
ried out very recently by Meijer and co-workers (1993) at Eindhoven University of Technology
strongly support our predicted shear band shapes.

As pointed out by Grenet and G’Sell (1990), an important problem in polymer science is
to understand what are the driving factors that control the kinetics of shear band propagation.
Our numerical results indicate that there is no evidence of initiation and propagation of a shear
band in the limiting case of no intrinsic softening. Thus, it appears that the intrinsic softening
is the driving force to promote initiation of the shear band and its propagation in the shear di-
rection. The effects of orientation hardening on initiation and propagation of shear band have
also been studied. In the limiting case of no orientation hardening, the fully elongated shear
band will localize (see Fig. 5.10) and the applied strain will concentrate entirely in the band.
Therefore we conclude that orientation hardening is the driving force for widening of the shear
band.

The secondary normal stress during simple shear is mainly due to the development and
subsequent rotation of the induced anisotropy. For the amorphous polymers considered here,
this anisotropy is associated with the stretching of the entangled molecular chain structure. It
is well-known that the prediction of such second-order phenomena generally shows a rather
strong dependence on the constitutive models —in particular the description of anisotropic
hardening—and thus provide an effective means for assessing the adequacy of such constitu-
tive models. Although advances in the understanding of second-order effects appear to come
primarily from researches on metals (see e.g. Harren er al., 1989; Van der Giessen et al.,
1992a), a number of characteristic aspects in amorphous glassy polymers now begins to be as-
sessed (see e.g. Wu and Van der Giessen, 1993a, 1993b, 1993c). Figure 5.17 shows that al-
though the normal stress predicted with the present constitutive model is much larger than the
experimental data, its shape is similar to that observed experimentally. As we mentioned be-
fore, the unrealistically large normal stress is likely to be due in part to the high stress concen-
tration at the corners (see Fig. 5.14). Taking into account the effects of microcracking and the
drawing-in of the material from outside the gauge section, will reduce the stress concentration,
and the resulting nominal normal stress will be improved significantly.

We have discussed the effects of initial imperfections in some detail. It was found that,
within the strain-range considered, the overall response in terms of nominal shear and normal
stresses is not sensitive to the initial imperfection. This supports the approximation involved in
previous numerical simulations of the large strain plastic torsion test (Wu and Van der Giessen,
1993c): the overall response is only affected slightly by the shear band propagation process.
This is particularly convenient when such tests are to be used for the determination of material
parameters. It thus seems that the torsion test provides an excellent means for obtaining exper-
imental data for the constitutive behaviour of elastic-plastic solids at large to very large defor-
mations. The major advantage over the simple shear test is that deformations of a solid bar in
torsion remain axially homogeneous up to final failure without having to give attention to shear
banding (Wu and Van der Giessen, 1993c).

Concerning the constitutive aspects, it is noted that we used the affine network theory to
model orientational hardening. The idea of using an affine network theory to model the stretch-
ing of the molecular network assumes that the junction points in the network remain in tact.
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However, it has been suggested in the literature [see e.g. Raha and Bowden (1972) and Botto
et al. (1987)] that physical entanglements in amorphous polymers are being pulled out during
deformation. In terms of our network model this would mean that the number of chains 7 re-
duces in the course of the deformation process, while the number of links N per chain increases,
thus reducing the stiffness of the network. This would reduce the predicted normal stress level,
and at the same time extend the numerical simulation to larger strains by increasing the limit
stretch. Furthermore we note that especially the normal stress predicted here may depend sen-
sitively on the particular way of incorporating deformation-induced anisotropy by means of the
Mises type effective shear stress concept in (5.9). This is likely to be rather important in the
above simple shear problem, where the stress history is non-proportional and significant rota-
tions of the principal axes occur. A totally different approach to modelling orientational hard-
ening has been adopted by Batterman and Bassani (1990). All these constitutive aspects require
further study. The formulation of improved models and their implications are in progress and
will be reported elsewhere.
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Chapter 6

On Neck Propagation in Amorphous Glassy Polymers
under Plane Strain Tension

Abstract—Unlike metals, necking in polymers under tension does not lead to further lo-
calization of deformation, but to propagation of the neck along the specimen. Finite ele-
ment analysis is used to numerically study necking and neck propagation in amorphous
glassy polymers under plane strain tension during large strain plastic flow. The constitutive
model used in the analyses features strain-rate, pressure and temperature dependent yield,
softening immediately after yield and subsequent orientational hardening with further plas-
tic deformation. The latter is associated with distorting the underlying molecular network
structure of the material, and is modelled here by adopting a recently proposed network the-
ory developed for rubber elasticity. Previous studies of necking instabilities have almost in-
variably employed idealized prismatic specimens; here, we explicitly account for the
unavoidable grip sections of test specimens. The effects of initial imperfections, strain soft-
ening, orientation hardening, strain-rate as well as of specimen geometry and boundary
conditions are discussed. The physical mechanisms for necking and neck propagation, in
terms of the present constitutive model, are discussed on the basis of a detailed parameter
study.

6.1. INTRODUCTION

Necking and neck propagation are typical examples of plastic instability phenomena in
amorphous glassy polymers. Although our understanding of plastic instabilities appears to
come primarily from researches on polycrystalline metals and soils, a number of character-
istic aspects of localization instabilities in polymers begins to be assessed [see e.g. Bowden
(1973), G’Sell (1986), Boyce et al., (1989), Wu and Van der Giessen (1993d)]. It is now
widely acknowledged that glassy polymers exhibit plastic deformation below the glass
transition temperature mainly through the activation of microscopic shear bands. On the
macroscopic scale, it is well-known that macroscopic strain localization in polymers can be
very different from that in metals due to the dramatic stiffening of polymers at large strains.
While plastic instabilities like necks or shear bands in metals almost invariably tend to lo-
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calize progressively until failure intervenes, necks and macroscopic shear bands in poly-
mers typically do not continue to localize but tend to propagate along the specimen [see e.g.
G’Sell et al. (1983), Neale and Tugcu (1985), Buisson and Ravi-Chandar (1990), Tomita
(1993), Wu and Van der Giessen (1993d)].

Neck propagation, or commonly termed cold drawing, is a standard technique used to
orient the molecular chains of the polymers and thereby to harden the polymer of products
such as fibres (axisymmetric deformation) and magnetic tape and sheet materials (plane
strain deformations). Cold drawing has been studied experimentally for instance by G’ SELL
and co-workers [see e.g. G’Sell and Jonas (1979), Marquez-Lucero et al. (1989), and
G’Sell et al. (1992)]. Except under conditions of very slow neck propagation, frictional
heating of the polymer undergoing large deformations brings thermodynamic considera-
tions into the problem. However, the phenomenon of neck propagation is in essence a me-
chanical one, and therefore the problem is usually considered as a quasi-static deformations
under isothermal conditions.

Coleman (1983) and Hutchinson and Neale (1983) consider the ideal steady-state
phase of neck propagation. For a nonlinear elastic solid described by J, deformation theo-
ry, Hutchinson and Neale (1983) determined the states on both sides of the neck from the
jump conditions (across the neck) that result from conservation of mass, momentum and
energy. An approximate solution was given for an elastic-plastic solid described by J, flow
theory that was based on introducing a parameterized stream function into a variational
principle. Subsequently, full finite element analyses have been carried out for axisymmetric -
neck propagation [Neale and Tugcu (1985), Tomita et al. (1990)] and for plane strain neck
propagation [Fager and Bassani (1986), Tugcu and Neale (1987a)]. The effects of strain
rate sensitivity (Tugcu and Neale, 1987a, b, 1988), and kinematic hardening (Tugcu and
Neale, 1987a) on neck propagation behaviour have been also investigated.

The constitutive models used in the above mentioned studies are rather simple and en-
tirely phenomenological. In most studies, the hardening response was simply chosen to fit
the characteristic uniaxial stress-strain response of highly deformable, (semi-)crystalline
polymers. Potentially more accurate constitutive models, based on detailed micromechan-
ical considerations, have appeared very recently. In this paper we focus on the class of
amorphous glassy polymers for which, on the one hand, the more phenomenological con-
stitutive models used in previous necking studies do not apply, and for which on the other
hand more physically based models have appeared recently. Using the 3-D constitutive
model for amorphous glassy polymers proposed by Boyce et al. (1988), Boyce and Arruda
(1990) studied the large strain tensile response of glassy polymers. Although the predicted
true stress-strain curve was found to accurately capture the observed test data, the kinetics
of necking and neck propagation was not discussed in their paper.

The fully 3-D constitutive model for amorphous glassy polymers, proposed originally
by Boyce et al. (1988) and modified by Wu and Van der Giessen (1993a), has been found
to be able to predict many aspects of the large plastic strain behaviour of glassy polymers
observed experimentally (Wu and Van der Giessen, 1993a, 1993b, 1993c). In a recent study,
a finite element simulation of shear band propagation in glassy polymers during plane strain
simple shear was carried out (Wu and Van der Giessen, 1993d), focusing attention on the
initiation and propagation of the shear band. The numerical results showed that the shear
band propagation phenomenon could be captured by the type of constitutive models avail-
able now. In this chapter, the constitutive model is incorporated in finite element simula-
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tions of the plane strain tension of amorphous glassy polymers, focusing attention on the
initiation of necking and neck propagation along the specimen. Results are given for the
overall load-elongation response and the thickness reduction-elongation response of the
specimen. In some cases the deformed meshes and the distributions of plastic strain rate at
various deformation stages are provided. Based on the detailed parameter analyses, the
mechanisms of necking and neck propagation are discussed in some detail.

Tensors will be denoted by bold-face letters. The tensor product is denoted by ® and
the following operations for second and fourth-order tensors apply (a = a;e; ®e o
b=>be®e, A=A,e®e®e e, e being a Cartesian basis): ab
= ayb,e; ® e;and b = ﬂijklbkl. Superscripts T and —1 denote the transverse and in-
verse of a second-order tensor, respectively. The trace is denoted by tr, and a superposed
dot denotes the material time derivative or rate. The deviatoric part of a second-order tensor
a is denoted by a prime, i.e. a” = a — (tra/3) I, with I being the unit tensor.

6.2. CONSTITUTIVE EQUATIONS

In this section, we briefly recapitulate the constitutive framework we are going to adopt
throughout this paper, mainly for the purpose of definition and notation. For details we refer
to Boyce et al., (1988) and Wu and Van der Giessen (1993a). It is assumed that before large
strain inelastic flow may occur a glassy polymer must overcome two physical distinct
sources of resistance: (a) an intermolecular resistance to segment rotation; and (b) an ani-
sotropic internal resistance due to molecular alignment.

Argon (1973) has developed a relatively simple model for plastic flow made possible
by the cooperative rotation of segments. According to this model, the plastic shear strain
rate ¥P due to an applied shear stress T is given by

P = qgenp| 22 (12 &y 6.1)
Y YO p T s() . .

Here, 7, is a pre-exponential factor, A is a material parameter that is proportional to the ac-
tivation volume/Boltzmann’s constant, T is the absolute temperature and s, is the athermal
shear strength, which in ARGON’s model is given by 5, = 0.077u/ (1 — V) in terms of the
elastic shear modulus . and Poisson’s ratio v. BOYCE et al. [1988] extended this expression
to include the effect of the pressure p by using s + ap instead of s,, where ot is a pressure
dependence coefficient. Furthermore, they accounted for intrinsic softening by assuming s
to evolve with plastic straining via

$=h(l-s/sg )y (62)

where A is the rate of resistance drop with respect to the plastic strain and s, is the assumed
saturation value of s.

During continued plastic flow, the molecular chains will tend to align along the direc-
tion of principal plastic stretch [see e.g. Haward and Thackray (1968) and Argon (1973)].
This molecular ‘texture’ development tends to decrease the configurational entropy of the
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system which, in turn, creates an internal network stress. This process of network distortion
is very similar to that of rubber network, and Haward and Thackray (1968) suggested to
describe this for uniaxial extension by means of a back stress determined through a Lan-
gevin spring, as suggested by non-Gaussian network theory. Boyce et al. (1988) extended
this approach to general three-dimensional plastic deformations by introducing a back
stress tensor B which is taken to be coaxial with the plastic left stretch tensor VP Thus, if
e? are the unit eigen vectors of VP, corresponding to a plastic stretch lf.’, the back stress
B is constructed as

B =Y B(ef ®e) | (6.3)

from the principal components B;. Originally, BOYCE et al. (1988) adopted the classical so-
called three-chain model for which the principal components B? ~ of the back stress ten-
sor are given in terms of the plastic stretches Xf by (see Wang and Guth, 1952)

BXh = Ter jﬁ{xg Lt (ﬁ] _1 i ALt (ﬁ H (no sum over i), (6.4)
3 W) 3 N

where C® is known as the rubbery modulus, N is a statistical network parameter related to
the network locking stretch and L is the Langevin function defined by L(B)
= cothf - 1/.

Later, Arruda and Boyce (1991, 1993b) found that the three-chain non-Gaussian net-
work model was not capable of picking up the strain hardening observed experimentally in
polycarbonate (PC) and polymethylmetacrylate (PMMA). They suggested to model the
network by the so-called eight-chain model which considers a set of eight chains connect-
ing the central junction point and each of the eight corners of the unit cube. The principal
components of the back stress tensor according to this eight-chain non-Gaussian network
model are given by

2 2
AP \AP = AP )y 13

Obviously, the eight-chain model is but on approximate representations of the actual
spatial distributions of molecular chains by “lumping” their orientations in eight specific
directions. More precisely, the eight-chain model would underestimate the stiffness of the
network because of the excessive freedom of the central junction point in the unit cube (Da-
houn et al., 1993). Very recently, the authors developed the so-called full network model in
which full account is taken of the 3-D orientation distribution of the individual chains in the
network (Wu and Van der Giessen, 1992a, 1993a). The principal back stresses according to
this model can be given by

BEh = %c“ JNL“(

n2n 2 02 ap2

1 R —1 (AP }“F m; -1
B, = LR N[ [ L (_]
4n o0 JN

7P sin8,d6 d@, (no sum over J). (6.6)
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Here, AP is defined by

and mi0 are the unit vector components in orientation space defined by

m(,) = sinB;cosq,, mg = sinfsinq,, mg = cosf,,.

in terms of the angles 8) and ¢, which measure the orientation of molecular chains relative
to the principal stretch directions in the undeformed configuration. The numerical evalua-
tion of the integral in (6.6) is rather time-consuming, but an accurate approximation of the
full network predictions according to (6.6) has been found (Wu and Van der Giessen,
1992a) in the form of a combination of the three-chain and eight-chain model predictions
(6.4), (6.5) through

B, = (1-pP)BrN 4 pppieh, 6.7)

il

Excellent agreement with full integration is obtained by taking p® to be related to the max-
imum principal plastic stretch AP = max(AP, A5, A%) via pP = 0.85AF  / JN. All
computations to be reported here have used the expression (6.7).

The complete tensorial form of the constitutive model has been developed by Boyce et
al., (1988), in which the deformation gradient F is multiplicatively decomposed into elastic
and plastic parts, F = F°FP. With no loss of generality, the elastic part F° is taken to be
symmetric, so that FP represents the relaxed configuration obtained by unloading without
rotation (in the polar decomposition sense). According to this decomposition, the velocity
gradient L is decomposed as

L=FF'=D+W=FF~ +FLPF"

where D is the rate of deformation, W is the spin, and L? = DP + WP = FPFP™! is the
velocity gradient in the relaxed configuration. With the adopted symmetry of F°, the
skewsymmetric part WP is algebraically given as W plus a term dependent on F° and
D + DP (BoYCE et al., 1988). Since the elastic strains will remain small, we can neglect ge-
ometry differences between current and relaxed configurations. Thus, the constitutive equa-
tions can be simplified significantly. In particular it is noted that in this case WP ~ W and
D = D° + DP, with D° the symmetric part of F°F® ! (see BOYCE et al., 1988).

The magnitude of the strain rate DP (the rate of shape change of the relaxed configu-
ration) is taken to be given by the plastic shear strain rate, ¥, according to (6.1) while the
tensor direction of DP is specified by N, so that

DP = PN, 6.8)

where the direction N is the deviatoric part of the driving stress, normalized by the effective
equivalent shear stress T:
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| I~, ~
N=-—¢', 1= /z0"-0" 6.9
e 2 (6.9)
The driving stress @ itself is defined by
¢ =0-B (6.10)

where ¢ is the Cauchy stress tensor and B is the back eress tensor, according to (6.3) and
(6.6) or (6.7). By observing that vi=Fe (Vp) (F®)" it is seen that, consistent with ne-
glecting the elastic geometry changes (F° = I), the plastic principal stretches AP to be sub-
stituted into (6.4)—(6.6) are approximated by the principal values of V = VP,

The Cauchy stress is taken to be given by the elastic constitutive law with the hypoe-
lastic rate form and employing the Jaumann stress rate, ¢ = 6 — Wo + oW to retain ob-
jectivity,

= LD° (6.11)

where [, is the fourth-order isotropic elastic modulus tensor:

iki
L = LU ®e ®e, ®e,

~Te

ijkl _ E ik ojl il ojk ij okl .
L _Z(HV)[(S §'+ 815 + 185 } (6.12)
with E = 2 (1 + v) pu being Young’s modulus. The constitutive equations (6.11) can be fi-
nally arranged in the following form:

= LeD""'v (6.13)

~

where 6, = L, DP acts as an instantaneous stress rate term that represents the viscoplastic
contribution.

6.3. PROBLEM FORMULATION AND METHOD OF SOLUTION

We consider a tensile test specimen with grips as shown in Fig. 6.1, which has a gauge
section with a rectangular cross-section. Contrary to most necking studies found in the lit-
eratures, we do not just consider the prismatic gauge section, but also include the thicker
grip sections. The reason for doing so is that after substantial neck propagation, the neck
will approach the end of the gauge section and may then interact with the grips used to load
the specimen. At that stage, velocity or strain fields at the interface between gauge section
and grips become distorted, and it would be very difficult to accurately determine the
boundary conditions for the gauge section.

In the initial configuration, the gauge section has a length 2B, and a thickness 24,. A
Cartesian coordinate system with x; = x, x, = y, x3 = z is used as a reference, in which
x is associated with the loading direction, while y refers to the thickness direction. The tran-
sition from the gauge section thickness 24, to the grip thickness 2H|, occurs over a length
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L., and is for simplicity described analytically by

L.+By—x
arctan(QT—)

y = Ag+ (Hy—Ap) | 1- arctanQe . BySx< (By+L,),

where the parameter Q determines how steep the transition is. The elongation in the gauge
section is commonly expressed by the ratio € = U g/ By, where the gauge section displace-
ment U, is determined as the average displacement over the section x = B, in the initial
configuration. The specimen is deformed by imposing the displacement rate U in the x di-
rection at the free end without restraining the lateral movement so that the rate boundary
conditions at x = L, become

Tyy) =0, alyy=U, (6.14)

where 77 is the nominal traction vector component in y direction. Thus the loading is dis-
placement controlled and the grip surface x = L, is shear free. From symmetry about
x = 0, we have

T7(0,y) = 0, u,(0,y) = 0. 6.15)

The strain rate in the gauge section is approximately defined by € = U/ B The lateral sur-
faces of the specimen are taken to be stress-free. Variations of the width (in z direction) dur-
ing the deformation are neglected; thus, the deformation is plane strain. The conventional
nominal stress or engineering stress is defined by F,/ (24,) , where F is the applied ten-
sile force. Furthermore, we define a thickness-reduction ratio Kk = Ay /A at the minimum
section, which for the present problem always coincides with x = 0. Because of the sym-
metry with respect to the mid-planes x = 0, y = 0, only one quadrant of the symmetry
specimen needs to be analysed (see Fig. 6.1).

L

Ay e

B, J
H,

AO
0 B
LO
Fig. 6.1. Schematic definition of the plane strain tension specimen under (only one quadrant is
shown).

In most experiments and perhaps all numerical simulations [see e.g. G’Sell and Jonas
(1979), Neale and Tugcu (1985)], an initial ‘geometric’ imperfection was used to trigger
the initiation of the neck. However, in the experiments carried out by G’Sell et al. (1992)
and G’Sell and Marquez-Lucero (1993), a predeformation defect was introduced centrally
in each specimen by folding and defolding the specimen locally. It was shown that such a
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‘mechanical’ defect acts as an efficient neck initiator in those cases where a neck is likely
to be formed (G’Sell and Marquez-Lucero, 1993). To trigger the initiation of the neck at the
mid-plane x = O of the specimen in our numerical analysis, we assume here an initial me-
chanical imperfection of the shear strength s, of the form

Asy = Csocosg (6.16)

0

such that the actual initial shear strength is s, — As,, where { determines the intensity of
the imperfection. . .

A numerical analysis is performed by employing a finite element scheme in 2 manner
similar to that described by Needleman and Tvergaard (1984). We use quadrilateral ele-
ments, each built up of four linear velocity, triangular subelements arranged in a ‘crossed
triangle’ configuration. The initiation and propagation of the shear bands has been observed
during large strain deformations in amorphous glassy polymers [see e.g. Wu and Turner
(1973), G’Sell and Gopez (1985)], while the element size defines the minimum possible
thickness of the shear band. Therefore, an analysis with a fine mesh could resuit in a nar-
rower shear band. The shear band will form along element boundaries. The quadrilateral
element mesh formation provides a greater freedom for the deformation to localize because
of the large number and direction of element boundary (Tvergaard et al., 1981). An equi-
librium correction procedure is employed in this analysis to avoid drifting away from the
true equilibrium path during the incremental procedure. Integrations with respect to time’
are computed using an explicit Euler integration method. Since the elements of the stiffness
matrix are of the order of the elastic moduli, very small time steps have to be employed to
achieve satisfactory convergence in the early stages of viscoplastic flow; however, at later
stages of well-developed viscoplastic flow, much large steps may be used. For this reason
we use an adaptive time stepping method proposed very recently by Van der Giessen and
Neale (1993) and used in the numerical simulations of shear band propagation at large
plane strain simple shear by Wu and Van der Giessen (1993d), in which the time step size
At to be used for each increment is determined adaptively. The procedure uses a number of
criteria which ensure that the shear stress drop and the plastic shear strain increment during
a time increment remain within user-defined bounds. The procedure is rather heuristic, but
extremely simple to implement in an incremental code. By employing this simple adaptive
time stepping scheme we have been quite efficient in obtaining stable solutions with accept-
able numbers of increments. For further details concerning the finite element method, we
refer to Wu and Van der Giessen (1993d).

6.4. RESULTS

The probiem described in Sec. 6.3 involves a number of dimensionless groups, and
therefore we introduce the following nondimensional quantities:

U, F Ay &

X

=-t o=, x= —, —; (6.17)
B, 2445, Aq ﬁyﬂ

loading: &€
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geometry: By/A,, Ly/B,, L./Ly, Hy/Ay, Q; (6.18)

. E S, As

material: =, %, 2 ﬁ v, o, N, —Cf (6.19)
S5 S T s, 5o

The overall response of the specimen can be conveniently presented in terms of the applied

strain €, and the normalized nominal stress G and the thickness-reduction ratio k at the

minimum section (x = 0).

6.4.1. A typical result

1.0
o,K K

0.8 f

\» L
o —d e
0.6 . )
0.4
|
0.2 i v

1 02 03 04 a0f5 06 0.7

0

Fig. 6.2. Typical predicted plane strain tension behaviour for a specimen with By/A, = 4,
Ly/By=2,L./Ly=1/4, Hy/Ay=2,0 =172, = 0.0l and for the following
values of the material parameters: é/(ﬁ“{o) = 2.89 x 10_18, E/sy = 9.38,
h/sy = 515, s,/55 =079, Asy/T =792, v=03, oo=008 N=28,
R/ sy = 0.132. Stages a—f correspond to the plots shown in Fig. 6.3 and Fig. 6.4.

Figure 6.2 shows the predicted response for specimen dimensions specified by
By/Ay=4,Ly/By=2,L./Ly=02,Hy/Ay = 2, Q = 7.2. The following values of
the material parameters were used: €/ (ﬁ'y'o) = 2.89 x 10"18, E/sy = 9.38,
S /Sy =079, Asy/T =792, h/sq=3515 v=03, o=008 N=28,
éﬁ /5o = 0.132. These values, except for the value of E/s, were primarily used as rep-
resentative values of the parameters, but are quite reasonable for polycarbonate among oth-
er amorphous glassy polymers. In Argon’s (1973) model, the value of E/ s is determined
uniquely by Poisson’s ratio. However, here we consider it to be an independent material pa-
rameter, since the constitutive model described in Sec. 6.2 cannot account for the small
strain viscoelastic behaviour observed in experiments, which results in a nonlinear stress-
strain response prior to yielding. Now, as we are mainly interested in large plastic deforma-
tions, these viscoelastic effects need not be considered in detail, and we shall simply char-
acterize the behaviour prior to yielding by an appropriate mean value of E (see also Wu and
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Van der Giessen, 1993d). The intensity & of the initial imperfection (see Eq. (6.16)) is as-
sumed to be 0.01. We will use these values of the parameters throughout Sec. 6.4, except
were noted otherwise. It should be noted that the gauge section displacement U ¢ in (6.17)
is determined as the average displacement over the section which was located at x = B, in
the initial configuration.
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Fig. 6.3. Deformed meshes under plane strain tension at various deformation stages: (a)
£ =0.09,0b)e = 013,(c)e = 0.16,(d) € = 0.30, () € = 0.54, () € = 0.60.
All figures are scaled to the same apparent specimen length. The parameters are given
in Fig. 6.2.

The four successive stages of the experimental force-elongation curve distinguished by
Buisson and Ravi-Chandar (1990) are picked up qualitatively by the simulation (Fig. 6.2):
(I) the elastic response ending at € of about 0.10; (II) a significant force drop, spreading
over a strain range from 0.10 to 0.16; (III) a plastic domain with a very small apparent
slope, spreading over a strain range from 0.16 to about 0.54; (IV}) large plastic flow of the
sample with enhanced hardening. The calculation ended when the maximum plastic stretch
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approached the locking stretch JN of the macromolecular chain network at some point in
the specimen.

The process of neck localization and stabilization is also illustrated in Fig. 6.2, where
the thickness-reduction ratio X = Ay /A, at the minimum section (x = 0)is plotted as a
function of the elongation € = U,/ B, Here we see a rapid decrease in section thickness
at the maximum axial force state, and thus represent the onset of localized necking. With
further elongation this curve reaches a plateau indicating the stabilization of necking in the
minimum section followed by neck propagation along the specimen. In the final stage with
enhanced hardening, a somewhat faster decrease in section thickness is found.

The development of the neck is further depicted in Fig. 6.3 as a series of consecutive
deformation states (deformed mesh), which clearly show the various stages of neck initia-
tion (Fig. 6.3b), stabilization of neck and initiation of neck propagation (Fig. 6.3c) until
locking up (Fig. 6.3f). Details of the process of neck propagation are illustrated in Fig. 6.4
which shows the contours of normalized plastic strain rate 3 defined by

By+ U, B £

S

In both Fig. 6.3 and Fig. 6.4 each state corresponds with states labelled (a) through (f) in
the normalized force-elongation curve indicated in Fig. 6.2. The normalized plastic strain
rate distributions indicate where in the specimen plastic flow is currently localized.

When the load reaches its maximum, a region of enhanced plastic flow occurs in the
center of the specimen. This indicates the initiation of necking (Fig. 6.4a), although no neck
is visible yet (see profile of the specimen in Fig. 6.4a and the deformed mesh in Fig. 6.3a).
While the nominal stress decreases during stage I1, a region of intense plastic strain rate de-
velops, spread out over a region of finite extent (Fig. 6.4b). This is also demonstrated by
the deformed mesh in which we observe that a finite region about the middle of the gauge
section (x = 0) necks down more or less uniformly (Fig. 6.3b). A neck is visible at
£~0.13 (Fig. 6.3b and Fig. 6.4b). In Fig. 6.4c the plastic strain rate distribution indicates
two crossed, banded region of enhanced plastic flow. Although these regions do not exhibit
all features of a shear band in the sense of a material instability, we shall refer to them as
‘shear band’ for simplicity. Note that there are two crossed sets of shear bands in the spec-
imen, and the main band orients with the tensile loading axis at an angle of about 54° (rath-
er than 45°). The neck stabilizes as orientation hardening starts to develop in the shear
bands. This causes the neighbouring material to reach the local shear resistance and initiate
substantial plasticity indicating neck propagation (Fig. 6.4d-f). This process continues until
most of the specimen is well in the plastic, strain hardening regime (Fig. 6.4e and f). In this
last stage, an apparent hardening also appears in the nominal stress-elongation curve (Fig.
6.2). During the process of neck propagation, the main shear band clearly indicates the front
of the propagating neck. The maximum plastic strain rate always takes place at the symme-
try line. Furthermore, the main shear band rotates from 54° to 64° with respect to the ten-
sile axis during neck propagation (Fig. 6.4c-f). The reason for this rotation is perhaps the
geometry of the specimen used here. When the shear band reaches the right end of the
gauge section where the thickness of the specimen is smoothly increasing, the material on
the right-hand side of the shear band will force the band to rotate away from the tensile axis.

Quite remarkably, our predicted neck is found to be very diffuse (See Fig. 6.3). This is
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in qualitative agreement with the experimental neck profiles for a typical amorphous poly-
mer like polycarbonate (see eg. Buisson and Ravi-Chandar, 1990). However, it is noted that
very sharp neck profiles have been observed for e.g. polyethylene (see e.g. G’Sell and Jo-
nas, 1979), which is a semi-crystalline material.
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Fig. 6.4. Contours of normalized plastic strain rate ¥P under plane strain tension at various de-
formation stages: {(a) € = 0.09, (b) € = 0.13, (c) € = 0.16, (d) € = 0.30, (e)
e = 0.54, (f) ¢ = 0.60. All figures are scaled to the same apparent specimen length.
The parameters are given in Fig. 6.2.

There are several other different ways to further demonstrate the initiation of necking
and neck propagation. We have also depicted the stress and strain distributions across min-
imum section (x = 0) and along mid-plane (y = 0) at various stages of the deformation
process. The numerical results are similar to those in Tugcu and Neale (1987).

At this point it is worthwhile to discuss very briefly the selection of the mesh. Since
the material response according to the constitutive model of Sec. 6.2 is intrinsically rate-
dependent, the mesh sensitivity frequently observed in computational modelling of plastic
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instability phenomena is not necessarily relevant for the problem under consideration here
(see e.g. Needleman, 1988). However, the selection of a proper mesh does require attention
because the element size defines the minimum possible thickness of the shear band which
has been observed. We have used different meshes to simulate neck propagation under
plane strain tension. Numerical experiments have shown that the overall response of the
specimen, in terms of the overall nominal stress ¢ and the thickness-reduction ratio x at
the minimum section (x = 0) are not sensitive to the mesh. However, in order to clearly
show the front of the propagating neck, a more or less fine mesh is needed. Based on a de-
tailed analysis of the numerical experiments, we decided that a relatively fine mesh with
10 x 60 elements (10 equally sized elements in y direction, 60 in x direction) would be suf-
ficiently accurate. We will use this mesh, as shown in Fig. 6.3a, except where noted other-
wise.

6.4.2. Effects of initial imperfection
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Fig. 6.5. Influence of an initial imperfection { on the predicted nominal stress response and
thickness-reduction ratio under plane strain tension. All other parameters are as in Fig.
6.2.

To check the influence of the initial imperfection on necking and neck propagation, we
have used different imperfection shapes and sizes in terms of the initial shear strength [cf
(6.16)]. It was found in all cases that, within the strain-range considered and using the same
relative imperfection size (§), the overall response is not sensitive to the initial imperfec-
tion shape. In fact, we hardly see the effect of the initial imperfection shape on the overall
response from the predicted normalized load and thickness reduction. However, the initia-
tion of necking is highly influenced by the amplitude of the initial imperfection. Figure 6.5
shows the predicted results by using the same imperfection shape, given by Eq. (6.16), but
with different intensities & ranging from O to 0.02. It is found that, decreasing the initial
imperfection increases the level of overall elongation at the onset of localization, and that
an increasing defect amplitude has the effect of making the descending portion of the nor-
malized load-elongation curve more abrupt (so that the propagation stages begins earlier).
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After the neck has propagated far away from the central section, the influence of the initial
imperfection on the overall responses in terms of ¢ and  is no longer distinguishable. De-
tailed comparisons of deformed meshes using different initial imperfections at various stag-
es of the deformation indicated also that the influence of initial imperfection is very small
at large elongations. Furthermore, it should be noted that the specimen we used can be con-
sidered as a prismatic specimen having an intrinsic geometric imperfection caused by the
grip sections. Therefore, it is not necessary with our specimen to apply an additional initial
imperfection for triggering the initiation of necking. As is well-known, in the case of an ide-
alized prismatic specimen (no initial imperfection) with shear free ends there is no evidence
of necking and neck propagation. ' ’

6.4.3. Effects of material properties
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Fig. 6.6. Influence of the softening parameter s /s, on the predicted nominal stress response
(a) and thickness-reduction ratio (b) to plane strain tension. All other parameters are as

in Fig. 6.2.
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It is generally agreed that the yield and postyield behaviour of glassy polymers exhibit
true strain softening [see e.g. Haward (1980)]. In the BPA model, the effects of softening
are described in terms of the evolution equation of the athermal yield strength (6.2). We
study the effects of softening on the initiation of necking and neck propagation by consid-
ering different intensities of softening, by taking s, /s, = 0.79 and 0.92, respectively. The
associated value of the parameter 4, the slope of the yield drop with respect to plastic strain,
is adjusted in such a way that the initial slope of softening, 2 (1 —s,/s_) , remains con-
stant. We also include the limiting case of no intrinsic softening by assuming s. /s, = 1.

Figure 6.6a shows the effects of softening on the predicted normalized nominal stress
©. Although the value of the parameter s, /s, determines the extent of intrinsic softening,
it is noted that the apparent softening observed in the normalized force-elongation curve in
plane strain tension is partly attributed to the intrinsic material behaviour (intrinsic soften-
ing), and partly to the occurrence of a reduction of the cross sectional area (geometric sof-
tening). With the values of the orientation hardening parameters C® and N used here, the
assumption of no intrinsic softening results in no apparent softening in the normalized load-
elongation curve (see Fig. 6.6a).
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Fig. 6.7. Contours of normalized plastic strain rate *P in the case of no intrinsic softening nor
permanent softening under plane strain tension at various deformation stages: (a)
e = 0.09, (b) € = 0.38, (c) € = 0.53, (d) € = 0.60. All figures are scaled to the
same apparent specimen length.

The effect of intrinsic softening on the initiation of necking and neck propagation is
more evident from the predicted thickness-reduction ratio k at the minimum section x = 0
shown in Fig. 6.6b. Although almost the same minimum thickness-reduction ratio
K., = 0.66 is obtained, the evolution curves of k are quite different between specimens
with different values of intrinsic softening. An increasing intrinsic softening amplitude
tends to accelerate the process of neck localization. Detailed comparisons between the plas-
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tic strain rate distributions and that in Fig. 6.4 shows that, although neck propagation begins
later, the pattern of necking and neck propagation in the specimen with less intrinsic sof-
tening (s,,/s, = 0.92) is similar to that in Fig. 6.4. In the case of no intrinsic softening,
the thickness-reduction ratio x is a nearly linear function of applied elongation €. Detailed
analysis of the deformed profiles of the specimen at various stages of the deformation proc-
ess indicates that there is no clear evidence of initiation of necking nor of neck propagation
in this limiting case of no intrinsic softening (nor apparent softening). The contours of nor-
malized plastic strain rate at various deformation stages in this case are presented in Fig.
6.7 and will be discussed later.
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Fig. 6.8. Influence of the orientation hardening parameter loa¥ s, on the predicted nom-
inal stress response (a) and thickness-reduction ratio (b) under plane strain ten-
sion. All other parameters are as in Fig. 6.2.

The parameters N and loa govern the orientation hardening through the non-Gaussian
network model (6.6). In Fig. 6.8, we study the effect of orientation hardening by first using
the same value of N (N = 2.8) but different values of loatlon: /sy = 0.066, 0.132, and
0.198, respectively. Furthermore, we include a limiting case of no orientation hardening by
taking R/ 5o = 0.1Itis clear from the predicted nominal stress response that a larger value
of C*/ 5, increases the stiffness of the network and therefore increases the orientation hard-
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ening. The value of c®/ s is observed to affect the maximum load too. The reason for this
is that when the specimen reaches the maximum load state at an applied elongation € = 0.1,
significant plastic deformation has already occurred at some locations due to the intrinsic
inhomogeneity of deformation. If cRis large, orientation hardening will be already signif-
icant at that moment, resulting in a noticeable increase of the maximum load.

The effect of orientation hardening on the initiation of necking and neck propagation
is also illustrated in Fig. 6.8b in terms of the predicted thickness-reduction ratio x at the
minimum section x = 0. It is observed that the larger value of loaV} 5, the smaller the min-
imum normalized thickness x_. . It seems that the main effect of orientation hardening on
neck localization and neck propagation shown in Fig. 6.8b is to shift the normalized thick-
ness elongation curve vertically without changing its shape.

The predicted deformed meshes at various deformation stages with large value of
loaVs sy = 0.198 are found to be similar to those shown in Fig. 6.3. The deformed meshes
at various deformation stages obtained with cr/ sy = 0 (i.e. no orientation hardening) are
given in Fig. 6.9. It is found that the initiated neck does not propagate as we observed in the
cases with a positive value of cr/ 50, but localizes progressively with further elongating
(Figs. 6.9b and c). The strain is concentrated in the neck area, as is seen from the deformed
meshes in Figs. 6.9b and c, while strains outside the neck region remain almost constant or
even slightly decrease. This is also the reason why the predicted nominal stress continues
to decrease at large elongations, as shown in Fig. 6.8a. Contour plots of plastic strain rate
at various stages of the deformation also show no evidence of shear bands in the limiting
case of no orientation hardening. In the case of small orientation hardening
(CR /s = 0.066), the neck is found to propagate along the specimen but very slowly. All
these results indicate that the orientation hardening is the driving force to promote neck
propagation along the specimen. -

@
H
=
HH g8
EES: : I
b z
(b) = E=: ’
SSEEs H #
Eagas o o
st H
© e
HH 225
2 HH
=

Fig. 6.9. Deformed meshes for CR/ 5o = 0 at various deformation stages: (a) € = 0.13, (b)
e = 0.19,(c) € = 0.28. All figures are scaled to the same apparent specimen length.

We have also studied the effects of orientation hardening by using the same value of
o (CR /8 = 0.132) but different values of N: N = 2.8,4.2 and 5.6. It was found that the
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effect of N on the overall response to plane strain tension of amorphous glassy polymers is
not very strong, except for the fact that the limit stretches are reached at different elongation
levels.

So far, we have studied the effect of intrinsic softening by using the same values of ori-
entation hardening parameter /s 5o = 0.132 and N = 2.8 but different values of the in-
trinsic softening parameter s, /s,; and the effect of orientation hardening by using the
same value of intrinsic softening parameter s,/s, = 0.79 but different values of the ori-
entation hardening parameters loaVs 5o and N. However, it is well-known that both intrinsic
softening and geometric softening (reduction of the cross sectional area) affect the soften-
ing observed in the load-elongation curve in plane strain tension. Furthermore, the value of

/¢ is observed to affect the apparent softening too. In order to further determine the
effect of intrinsic softening on necking and neck propagation, we will consider here a ma-
terial without intrinsic softening, but with different values of orientation hardening:
loaV4 so = 0.033, and 0.132. The predicted overall responses are presented in Fig. 6.10 in
terms of nominal stress G and the thickness-reduction ratio x. It is found that, as also dem-
onstrated in Fig. 6.6a, in the case of larger orientation hardening (CR /5 = 0.132), the ori-
entation hardening effect suspends the geometric softening effect and excludes the apparent
softening in the nominal stress-elongation curve. In this case there is no clear evidence of
necking nor of neck propagation along the specimen as demonstrated before; also there is
no indication of shear bands (see Fig. 6.7). In the case of smaller orientation hardening
(CR /sy = 0.033), there is an apparent softening in the nominal stress-elongation curve. -
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Fig. 6.10. Influence of the orientation hardening parameter CR /s, on the predicted nominal
stress response and thickness-reduction ratio under plane strain tension for a material
without intrinsic softening (s,,/s,=1) . All other parameters are as in Fig. 6.2.

Figure 6.11 shows the distributions of normalized plastic strain rate in the specimen
with smaller orientation hardening (CR /sy = 0.033) at various stages of the deformation.
Comparing Fig. 6.11 with Fig. 6.4 and Fig. 6.7, it is seen that, at low elongations, the con-
tours in the case without intrinsic softening but with a small apparent softening in nominal
stress-elongation curve (Fig. 6.11) are similar to those in the case of no intrinsic softening
nor apparent softening (Fig. 6.7); while at high elongations, the plastic strain rate distribu-
tion in the case without intrinsic softening but with a small apparent softening (Fig. 6.11)
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is roughly similar to that in the case with both intrinsic and apparent softening (Fig. 6.4).
At large elongations and with apparent softening, the precise shear band patterns are differ-
ent when comparing the cases with intrinsic softening (Fig. 6.4) and without intrinsic sof-
tening (Fig. 6.11). First of all, it is noted that the localization of deformation into what we
call shear bands, in the case without intrinsic softening is significantly less pronounced than
in the case with intrinsic softening. Furthermore, the main shear band in the case without
intrinsic softening is oriented at an angle large than 90° with respect to the loading direc-
tion.
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Fig. 6.11. Contours of normalized plastic strain rate 2P in the case of no intrinsic softening but
with an apparent softening under plane strain tension at various deformation stages: (a)
e = 0.09, (b) € = 0.16, (c) € = 0.30, (d) € = 0.43. All figures are scaled to the
same apparent specimen length.

It is well-known that flow in amorphous glassy polymers is a viscous process and the
yield stress is strongly strain-rate dependent. Figure 6.12 shows the overall responses to
plane strain tension deformation at normalized applied strain-rates €/ (JZ;YO) ranging over
several orders of magnitude. The increase of the maximum load due to an increase of the
strain rate is seen to be small, about 7% for one decade of strain-rate. It seems that the main
effect of strain-rate is to shift the nominal stress elongation curve vertically without chang-
ing its shape, while the thickness-reduction ratio x is found to be insensitive to the strain
rate. The differences in deformed meshes and the distributions of normalized plastic strain
rate under different strain-rates are found to be small, so that it is concluded that the initia-
tion of neck and neck propagation are not sensitive to strain-rate within the range consid-
ered.
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Fig. 6.12. Influence of the normalized applied strain-rate €/ (ﬁy’o) on the predicted nominal
stress response under plane strain tension. All other parameters are as in Fig. 6.2.

6.4.4. Effects of geometry and boundary condition
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Fig. 6.13. Influence of the aspect ratio B;/A, of the specimen’s gauge section on the predicted
nominal stress response and the thickness-reduction ratio under plane strain tension.
The material parameters are as in Fig. 6.2.

From the point view of experiments, detailed analysis of the effects of specimen ge-
ometry and boundary conditions on the overall stress strain response and on the necking
behaviour is of practical importance. We first study the effect of geometry of the specimen
on the overall response in terms of nominal stress ¢ and thickness-reduction ratio k. The
numerical results with B,/A, = 4 and 6.67 but with the same values of L,/ By, L./ L,
Hy/Ag and Q are presented in Fig. 6.13. In the case of By/A, = 6.67 a regular mesh con-
sisting of 16 x 90 elements is used. We have also analysed neck localization and propaga-
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tion in terms of deformed meshes. It is observed that the effect of geometry on the initiation
of necking and neck propagation is very small within the considered range of By/A,.

Figure 6.14 shows the predicted overall responses to plane strain tension with different
boundary conditions, namely shear-free ends and gripped ends. For the specimen with
gripped ends, the rate boundary conditions at x = L, become

wLyy) =U, uflyy) =0 (6.20)

instead of (6.14) and the boundary conditions at x = 0 are same as in (6.15), while the lat-
eral surfaces of the specimen are also taken to be stress-free.

We have also plotted the deformed meshes and distributions of plastic strain rate at var-
ious deformation stages. It is found that with the shape of the specimen considered here,
boundary conditions have a negligible effect on necking and neck propagation. In fact, we
hardly see the effect of boundary condition on the overall response in terms of nominal
stress ¢ and thickness-reduction ratio K in Fig. 6.14. It is obvious that this is not true for a
prismatic specimen.

1.0
g,K
K
0.8 z
0.6
04
shear free ends
0.2 o gripped ends
0 . . i 1 1
0.2 0.4 06 ¢ 0.8

Fig. 6.14. Influence of the boundary conditions on the predicted nominal stress response and
thickness-reduction ratio under plane strain tension. The material parameters are as in
Fig. 6.2.

6.5. DISCUSSION AND CONCLUSION

In this chapter, 3-D constitutive model for large strain inelastic deformation of amor-
phous glassy polymers has been incorporated in finite element computations of a plane
strain tension, focusing attention on the initiation of necking and neck propagation along
the specimen. Results have been given for the overall load-elongation response and the
thickness reduction-elongation response of the specimen. The effects of initial imperfec-
tion, strain softening, orientation hardening, strain-rate as well as the influences of geome-
try and boundary condition have been discussed in detail.

The predicted results have shown that the constitutive model is able to pick up quali-
tatively the four successive stages of the experimental force-elongation curve. The experi-
mentally observed initiation of necking and neck propagation have also been predicted well
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qualitatively.

An important problem in polymer science and technology is to understand what are the
driving factors that control the kinetics of necking and neck propagation. By incorporating
the 3-D constitutive model of 6.2 in finite element simulations of the plane strain tension of
amorphous glassy polymers, the parameter study performed here should be helpful in im-
proving the understanding of the mechanisms of necking and neck propagation. In the sim-
ulations of shear band propagation in simple shear tests, Wu and Van der Giessen (1993d)
concluded that the intrinsic softening is the driving force to promote initiation of the shear
band and its propagation in the shear direction, while the orientation hardening is the driv-
ing force for widening of the shear band. The results presented here lead to concluding that
for the adopted constitutive model, the orientation hardening is the driving force to promote
neck propagation along the specimen. Is the intrinsic softening the driving force to promote
the initiation of necking in plane strain tension too?

Details aside, it is well-known that necking in elastoplastic prismatic plane strain bars
essentially coincides with a maximum in the load (or nominal stress) versus elongation
curve. Even though our specimen is not prismatic, our results support the conclusion that a
maximum followed by apparent softening in the nominal stress-elongation curve is neces-
sary and sufficient for the initiation of necking. Our numerical results also demonstrate that
intrinsic softening, geometric softening and orientation hardening determine, in a compet-
itive way, whether or not apparent softening appears. In one of the cases presented, there
was no intrinsic softening, but apparent softening occured; this supports the conclusion that
intrinsic softening is a sufficient condition for necking, but not necessary.

For all material parameter combinations where we found necking, we observed what
we called ‘shear bands’ in the propagating necked region. It is of interest to note that these
bands were also observed in the absence of intrinsic softening, even though shear bands are
commonly associated with a true material instability. However, the localization of defor-
mation in those bands was less intense than when the material showed intrinsic softening,
so that the terminology ‘shear band’ becomes somewhat questionable. All these aspects re-
quire further study, both experimentally and numerically, and both macroscopically and mi-
croscopically.

Concerning the constitutive aspects, it is noted that we used the affine network theory
to model orientational hardening. The idea of using an affine network theory to model the
stretching of the molecular network assumes that the junction points in the network remain
in tact. However, it has been suggested in the literature [see e.g. Raha and Bowden (1972)
and Botto et al. (1987)] that physical entanglements in amorphous polymers are being
pulled out during deformation. In terms of our network model this would mean that the
number of chains n reduces in the course of the deformation process, while the number of
links N per chain increases, thus reducing the stiffness of the network. Also it cannot be
ruled out that at large deformations, when chains are rotated towards a common axis to such
an extent that they become lined up, intermolecular interactions are no longer negligible.
Molecular dynamics simulations (Gao and Weiner, 1991) seem to indicate that this may be
a significant effect already at relatively small deformation of the molecular chains in the
Gaussian regime, and it may be expected to be even more important at the large strain levels
in cold drawing considered here. All these constitutive aspects require further study.
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Appendix

Here we give a brief summary of the central governing equations of the special element used
in the torsion analysis in Chapter 4 (see Fig. 4.1b).
The radial velocity at a point § € [—1, 1] within the element is determined by a linear in-
terpolation of 7/r:
"-
- (A1)

P SO
7= 5(1‘5)714"2'(1"'&)72

r=%(1—§)r[+%(l+§)r2 (A2)

Within each element, two sampling points (Van der Giessen, 1987) are introduced at locations
specified by &I = —ﬁ/ 3 (r=r) and EH = f3/3 (r= ry) » respectively (these locations
coincide with the 1-D Gaussian integration points). Each sampling point is attributed a volume
fraction v = r/ (r; +r,), and we define the vectors of generalized element strain-rates and
stresses by,

T
R IR TN SRS SRR RN SN | QU | G
E = [Dll Dj, 2D53 D3y Dy Dy 2Dy D33:l , (A3)
T
el I I I 1 1 1l I
=V [1’1611 V093 V1 0p3 V1033 VyOqy VO VO D11(’33} ’ (Ad)

where V© = nt (r% - r%) L. For quasistatic deformations, the principle of virtual power states
for each of these elements in the current configuration that:

velve; - D —v 6, -Dyl = £'E = F'v.
It then follows from (A4) with (4.14), along with the principal of virtual power, that:

E =D'v, D'E=F, (A5)

where

D = [DI DH]T, (A6)
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Dy = ; K=1LI, (A7)

2
0 0 ri/L 0

withb = ry—r,.

The rate equations are derived by straightforward time differentiation of the equilibrium
conditions (A5). Here it may be noted that due to the particular interpolation of the radial ve-
locity field through (A1), the sampling points do not coincide with material points; but this dif-
ference may be neglected when the elements are sufficiently small and the total change of the
radius of the bar remains small as compared with the initial outer radius R . After elimination
of the stress rates which appear after differentiation by means of the constitutive relations (4.8),
followed by elimination of the strain-rates by means of (AS5), the finite element equations are
found of the form

KV = F +F, (A8)
with

K = D'SD +G, (A9)

F, =D'E,. (A10)

Here, the matrix S is determined by the elastic moduli in the constitutive law (4.8). Due
to symmetry of these moduli, the matrix is 8 symmetric. The matrix G contains contributions
from the geometry dependence of the matrix D in the equilibrium equations (AS5) as well as a
contribution from the convective terms appearing in the Jaumann derivative of @, in (4.7) or
(4.8). It is noted that this G matrix and, as a consequence, the K matrix are nonsymmetric;
however, the final simple structure of the matrix K allows for a simple and efficient solution
procedure. Furthermore, in (A10), ) , is defined in terms of the stress-rate ¢, completely sim-
ilar to X. :
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SAMENVATTING

Dit proefschrift handelt over twee onderwerpen op het gebied van de constitutieve modelvorm-
ing van het gedrag van polymeermaterialen bij grote vervormingen, in het bijzonder grote elas-
tische vervormingen van rubbers en grote niet-elastische vervormingen van amorfe glasachtige
polymeren.

Allereerst worden theorieén voor drie-dimensionale molecuulnetwerken beschouwd die
voor het elastische gedrag van de molecuulketens gebruik maken van modellen uit de niet-
Gaussische statistische mechanica. Onder de aanname van affiene deformaties van het mole-
cuulnetwerk wordt aangetoond dat de evolutie van het netwerk —bestaande uit een groot aantal
molecuulketens per eenheid van volume met initieel willekeurige oriéntaties—wordt bepaald
door een balansvergelijking in de orientatie-ruimte. Zowel Euler als Lagrange formuleringen
van de balansvergelijking worden gegeven, en de analytische oplossing voor de zgn. Keten
Orientatie Distributie Functie wordt afgeleid in gesloten vorm. Dit netwerkmodel wordt ver-
volgens gebruikt voor de constitutieve beschrijving van grote elastische vervormingen van rub--
bers. De resultaten worden voor verschillende typen vervormingen in detail vergeleken met
experimentele gegevens, en tevens met twee benaderingsmodellen, t.w. het klassieke drie-ke-
ten model en het zeer recent voorgestelde acht-keten model.

Vervolgens wordt het netwerkmodel voor rubberelasticiteit opnieuw geformuleerd op een
efficiéntere en meer micromechanica-gemotiveerde manier. Op basis van dit laatste netwerk-
model wordt een netwerkmodel voorgesteld voor foto-elastische rubbers waarin de individuele
onvervormbare schakels in de keten gepolariseerd kunnen worden. Deze optische theorie kan
gebruikt worden voor onderzoek naar de optische eigenschappen of naar de invloed van grote
vervormingen op de dubbelbrekingsindex van rubbers in willekeurige driedimensionale ver-
vormingstoestanden. De resultaten worden weer voor verschillende soorten vervormingen in
detail vergeleken met experimentele gegevens, alsmede met het klassieke drie-keten model en
het in dit proefschrift voorgestelde acht-keten model voor photoelastische rubbers.

Het netwerkmodel wordt vervolgens toegepast voor de modellering van het verstevigings-
gedrag van amorfe glasachtige polymeren na vloei t.g.v. verstrekking van het entanglementnet-
werk. Een driedimensionaal constitutieve model wordt voorgesteld voor het het niet-elastisch
vervormingsgedrag van amorfe glasachtige polymeren bij grote vervormingen, waarbij tijds-,
temperatuur- en drukafhankelijke vloei in rekening wordt gebracht, alsmede softening gevolgd
door versteviging.

Eén van de toepassingen betreft de elastisch-viscoplastische torsie van cilindrische buizen
bij grote vervormingen, zowel met ingeklemde als met vrije uiteinden. De oplossing van het
probleem wordt numeriek verkregen door middel van eenvoudige, speciale eindige elementen.
In het bijzonder wordt aandacht geschonken aan de verschillen in gedrag bij ingeklemde res-
pectievelijk vrije uiteinden. De met behulp van het model berekende numerieke resultaten wor-
den vervolgens vergeleken met experimentele waarden voor polycarbonaat uit de literatuur.

Koudtrekken, waarbij zich een insnoering door het materiaal voortplant, is een gangbare
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manier om polymeren te verstevigen. Eindige-elementenanalyse wordt toegepast voor de simu-
latie van éénassige trek bij vlakke vervorming, waarbij vooral aandacht wordt besteed aan de
insnoering en de voortplanting ervan. De invloed van initi€le imperfecties, intrinsieke softe-
ning, versteviging, vervormingssnelheid alsmede de geometrie en randvoorwaarden worden in
detail besproken. Resultaten worden gegeven in de vorm van de algehele belastings-verlen-
gingskromme en de diktereduktie- verlengingskromme van de responsie van het proefstuk. In
enkele gevallen worden tevens de vervormde eindige elementen mazen en/of de verdelingen
van de plastische reksnelheden gegeven. De mechanismen van het ontstaan van een insnoering
en de voortplanting ervan worden in detail besproken op basis van een gedetailleerd parame-
teronderzoek.

Niet alleen bij trekbelasting doch ook bij afschuiving wordt vaak het ontstaan en de voort-
planting van een afschuifband waargenomen. Eindige-elementenanalyse wordt toegepast voor
de simulatie van eenvoudige afschuiving bij vlakke vervorming, waarbij weer vooral aandacht
wordt besteed aan de afschuifband en de voortplanting ervan. De afhankelijkheid van de ein-
dige-elementenmesh, initi€le vormafwijkingen, softening, versteviging, reksnelheid alsmede
de invloed van vrije randen van het proefstuk worden in detail besproken. Het blijkt dat de af-
schuifband en de voortplanting ervan in de richting van de afschuiving wordt veroozaakt door
de inherente softening, terwijl de versteviging verantwoordelijk is voor de verbreding van de
afschuifstrook loodrecht op de afschuifrichting. De numerieke resultaten worden weer verge-
leken met experimentele waarden voor polycarbonaat uit de literatuur.
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