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Summary

Public safety and emergency response agencies increasingly consider the deployment of
mobile robots as mounting climate-related disasters and security challenges place human
personnel at higher risk and stress. Mobile robots, such as drones, are a promising strategy
to respond to these challenges: They can navigate difficult, hazardous terrain, gather real-
time situational data, and conduct search or reconnaissance tasks without putting humans
at direct risk. However, the currently practiced teleoperation of robots is challenging
for such complex missions since the simultaneous navigation, situation assessment, and
search tasks can overload human cognitive abilities. Therefore, autonomous planning and
decision-making algorithms are required to enable robots to explore and search unknown
environments for targets such as missing persons or hazardous materials.

Moving towards this goal, this thesis addresses two core problems. First, local mo-
tion planning must carefully account for information gained from sensor observations as
well as collision avoidance and the robot’s dynamics while moving through cluttered, un-
known areas. Second, global exploration planning must strategically select where in the
environment to explore to find the target quickly—especially when the environment is
large or complex. Given that human operators often possess semantic knowledge about
likely target locations, we hypothesize that incorporating such guidance by observed se-
mantic features (e.g., object or room types) into the exploration planning is crucial for
time-efficient autonomous search. We address these two core problems by making the
following contributions.

The first contribution of the thesis is an informative local motion planning approach
that generates safe, collision-free trajectories around obstacles while minimizing uncer-
tainty about the target locations. The critical challenge is to achieve computationally ef-
ficient planning of trajectories that maximize information gain under the robot’s kinody-
namic constraints. In the proposed approach, a model predictive control (MPC) motion
planner is guided by a learned viewpoint policy. The policy is trained via deep reinforce-
ment learning (DRL) to maximize long-term information gain by providing a local subgoal
to the MPC. The MPC follows the subgoal and ensures that the motion plan remains fea-
sible and collision-free. Therefore, the robot can rapidly replan safe and informative local
trajectories online. Simulation experiments demonstrate that the method achieves com-
petitive performance in locating targets compared to a computationally expensive state-
of-the-art planner using Monte Carlo Tree Search (MCTS), while allowing for significantly
faster execution and replanning.

While local informative planning is crucial for exploring cluttered spaces, it often be-
haves myopically and inefficiently with respect to large and complex environments. There-
fore, the second contribution introduces a global target search planner that balances di-
rected search towards semantically promising areas with complete search space coverage.
This planner extends the idea of frontier exploration - focusing observations on the bound-
aries between explored and unexplored regions - to target search, where different frontiers
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are assigned a semantic priority. This priority represents the semantic relationships be-
tween the target and nearby objects. To minimize target search time, the target search
planner schedules high-priority frontiers earlier by solving a custom combinatorial opti-
mization problem to determine the visitation order. By integrating coverage gains into
the frontier priorities, the planner ensures that the robot explores the environment effi-
ciently while focusing on semantically relevant areas. We demonstrate this approach in
two studies outlined below.

Large, high-quality datasets for learning target-specific semantic relationships are
scarce in many real-world scenarios, especially in search and rescue. The third contri-
bution addresses this limitation by proposing a method to learn semantic priority models
from expert feedback. Rather than collecting massive amounts of labeled data, the ap-
proach exploits an expert operator’s sparse guidance inputs in a few target search scenar-
ios. This expert guidance selects a frontier to explore next, which is stored in a training
dataset together with the frontier’s semantic features. An expert model is then trained to
approximate a priority function that predicts how relevant each frontier is for the expert.
By incorporating this learned priority function into the global target search planner, the
robot can autonomously prioritize semantically relevant areas according to the expert’s
semantic knowledge. Experiments show that using a small number of expert demonstra-
tions is sufficient for the robot to significantly improve its search efficiency and reduce
travel distance until the target is found.

Lastly, the thesis extends semantic target search to three-dimensional environments
by integrating it into a 3D planning pipeline for micro aerial vehicles (MAV). The pipeline
first detects objects in the environment using onboard vision and associates them with pri-
ority values computed from pre-trained large language model (LLM) embeddings. These
priorities are then propagated into frontiers in a 3D voxel map, indicating frontier regions
that are most likely to contain the target. This enables the evaluation of frontier view-
points for their information gain that accounts for both semantic priority and volumetric
coverage. The viewpoint gains are then used in the combinatorial target search planner
to prioritize the viewpoints that most likely lead to the target while ensuring efficient
coverage of the environment. By integrating the MAV’s kinodynamic constraints into the
planning costs, the system ensures smooth, feasible trajectories in real-time. Simulation
studies reveal that semantically guided exploration leads to faster and more reliable tar-
get discovery than different purely coverage-based exploration baselines. Experiments
with a real MAV in the lab confirm the approach’s ability to autonomously navigate an
MAV through complex 3D environments to a target, exploiting semantic cues, maximizing
coverage, and avoiding collisions.

In summary, this thesis demonstrates how planning and learning techniques can be
combined for autonomous target search and exploration. These techniques enable mo-
bile robots to navigate unknown environments efficiently and safely while searching for
targets and collecting required information. Crucially, our proposed method for semanti-
cally guided frontier planning bridges the gap between recent learning-based navigation
approaches and established planning-based approaches suitable for real-world robotic sys-
tems. By integrating semantic knowledge into robotic exploration, the proposed methods
can reduce human operator cognitive load and, therefore, facilitate robot deployment in
scenarios such as search and rescue or reconnaissance missions.
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Samenvatting

Openbare veiligheids- en hulpdiensten overwegen steeds vaker de inzet van mobiele ro-
bots, omdat toenemende klimaatgerelateerde rampen en veiligheidsuitdagingen menselijk
personeel aan grotere risico’s en stress blootstellen. Mobiele robots, zoals drones, zijn
een veelbelovende strategie om op deze uitdagingen te reageren: ze kunnen navigeren op
moeilijk, gevaarlijk terrein, realtime situatiegegevens verzamelen en zoek- of verkennings-
opdrachten uitvoeren zonder mensen in direct gevaar te brengen. De huidige teleoperatie
van robots is echter een uitdaging voor dergelijke complexe missies, omdat het gelijktij-
dig uitvoeren van navigatie-, situatiebeoordelings- en zoektaken de cognitieve vermogens
van mensen kan overbelasten. Daarom zijn autonome plannings- en besluitvormingsalgo-
ritmen nodig om robots in staat te stellen onbekende omgevingen te verkennen en te
doorzoeken op zoek naar doelwitten zoals vermiste personen of gevaarlijke stoffen.

Om dit doel te bereiken, behandelt dit proefschrift twee kernproblemen. Ten eerste
moet lokale bewegingsplanning zorgvuldig rekening houden met informatie die is verkre-
gen uit sensorwaarnemingen, evenals met het vermijden van botsingen en de dynamica
van de robot tijdens het bewegen door rommelige, onbekende gebieden. Ten tweede moet
bij de planning van de globale verkenning strategisch worden gekozen welke delen van de
omgeving moeten worden verkend om het doel snel te vinden, vooral wanneer de omge-
ving groot of complex is. Aangezien menselijke operators vaak semantische kennis heb-
ben over waarschijnlijke doellocaties, veronderstellen we dat het opnemen van dergelijke
begeleiding door waargenomen semantische kenmerken (bijv. object- of kamertypes) in
de verkenningsplanning cruciaal is voor een tijdsefficiénte autonome zoektocht. We pak-
ken deze twee kernproblemen aan door de volgende bijdragen te leveren.

De eerste bijdrage van het proefschrift is een informatieve lokale bewegingsplannings-
aanpak die veilige, botsingsvrije trajecten rond obstakels genereert en tegelijkertijd de on-
zekerheid over de doellocaties minimaliseert. De cruciale uitdaging is om een rekenkundig
efficiénte planning van trajecten te realiseren die de informatieverzameling maximaliseren
binnen de kinodynamische beperkingen van de robot. In de voorgestelde aanpak wordt
een bewegingsplanner op basis van model predictive control (MPC) geleid door een aan-
geleerde policy. De policy wordt getraind via deep reinforcement learning (DRL) om de
informatieopbrengst op lange termijn te maximaliseren door een lokaal subdoel aan de
MPC te geven. De MPC volgt het subdoel en zorgt ervoor dat het bewegingsplan haalbaar
en botsingsvrij blijft. Daardoor kan de robot snel veilige en informatieve lokale trajec-
ten online herplannen. Simulatie-experimenten tonen aan dat de methode concurrerende
prestaties levert bij het lokaliseren van doelen in vergelijking met een rekenkundig dure
state-of-the-art planner die gebruikmaakt van Monte Carlo Tree Search (MCTS), terwijl
de uitvoering en herplanning aanzienlijk sneller verlopen.

Hoewel lokale informatieve planning cruciaal is voor het verkennen van rommelige
ruimtes, werkt deze vaak kortzichtig en inefficiént in grote en complexe omgevingen.
Daarom introduceert de tweede bijdrage een globale doelzoekplanner die een evenwicht
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vindt tussen gericht zoeken naar semantisch veelbelovende gebieden en volledige dekking
van de zoekruimte. Deze planner breidt het idee van grensverkenning — waarbij observa-
ties worden gericht op de grenzen tussen verkende en onverkende gebieden — uit naar
doelzoekopdrachten, waarbij aan verschillende grenzen een semantische prioriteit wordt
toegekend. Deze prioriteit vertegenwoordigt de semantische relaties tussen het doel en
nabijgelegen objecten. Om de zoektijd naar het doel te minimaliseren, plant de planner
grenzen met hoge prioriteit eerder in door een aangepast combinatorisch optimalisatie-
probleem op te lossen om de volgorde van bezoeken te bepalen. Door dekkingswinst te
integreren in de grensprioriteiten, zorgt de planner ervoor dat de robot de omgeving ef-
ficiént verkent en zich tegelijkertijd concentreert op semantisch relevante gebieden. We
demonstreren deze aanpak in twee studies die hieronder worden beschreven.

Grote, hoogwaardige datasets voor het leren van doelgerichte semantische relaties zijn
schaars in veel praktijksituaties, vooral bij zoek- en reddingsoperaties. De derde bijdrage
pakt deze beperking aan door een methode voor te stellen om semantische prioriteitsmo-
dellen te leren op basis van feedback van experts. In plaats van enorme hoeveelheden gela-
belde gegevens te verzamelen, maakt deze aanpak gebruik van de schaarse begeleiding van
een deskundige operator in een paar doelzoekscenario’s. Deze deskundige selecteert een
grensgebied om vervolgens te verkennen, dat samen met de semantische kenmerken van
het grensgebied wordt opgeslagen in een trainingsdataset. Vervolgens wordt een model
getraind om een prioriteitsfunctie te benaderen die voorspelt hoe relevant elke grens voor
de deskundige is. Door deze aangeleerde prioriteitsfunctie op te nemen in de globale doel-
zoekplanner, kan de robot autonoom semantisch relevante gebieden prioriteren op basis
van de semantische kennis van de deskundige. Experimenten tonen aan dat het gebruik
van een klein aantal demonstraties door deskundigen voldoende is om de zoekefficiéntie
van de robot aanzienlijk te verbeteren en de afgelegde afstand tot het doel te verkleinen.

Ten slotte breidt het proefschrift het semantisch zoeken naar doelen uit naar 3D om-
gevingen door het te integreren in een planningpijplijn voor micro aerial vehicles (MAV),
oftewel kleine luchtvaartuigen. De pijplijn detecteert eerst objecten in de omgeving met
behulp van beeldverwerking en koppelt deze aan prioriteitswaarden die zijn berekend op
basis van embeddings van een vooraf getraind large language model (LLM). Deze prioritei-
ten worden doorgegeven aan grenzen in een 3D-voxelkaart, waarmee de grensgebieden
worden aangegeven die het meest waarschijnlijk het doel bevatten. Dit maakt het moge-
lijk om grensgebieden te evalueren op hun informatiewinst, waarbij zowel rekening wordt
gehouden met semantische prioriteit als volumetrische dekking. De waarde van mogelijke
uitzichtpunten wordt gebruikt in de combinatorische doelzoekplanner om prioriteit te ge-
ven aan de grensgebieden die het meest waarschijnlijk naar het doel leiden, terwijl een
efficiénte dekking van de omgeving wordt gegarandeerd. Door de kinodynamische beper-
kingen van de MAV te integreren in de planningskosten, zorgt het systeem voor soepele,
haalbare trajecten in realtime. Simulatiestudies tonen aan dat semantisch gestuurde ver-
kenning leidt tot snellere en betrouwbaardere doelontdekking dan verschillende alleen op
dekking gebaseerde verkenningsbaselines. Experimenten met een echte MAV in het lab
bevestigen verder het vermogen van de aanpak om een MAV autonoom door complexe
3D-omgevingen naar een doel te navigeren, waarbij semantische aanwijzingen worden
gebruikt, de dekking wordt gemaximaliseerd en botsingen worden vermeden.

Samenvattend laat dit proefschrift zien hoe planning- en leertechnieken kunnen wor-
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den gecombineerd voor het autonoom zoeken naar en verkennen van doelen. Deze tech-
nieken stellen mobiele robots in staat om efficiént en veilig door onbekende omgevingen
te navigeren terwijl ze naar doelen zoeken en de benodigde informatie verzamelen. Cruci-
aal is dat onze voorgestelde methode voor semantisch gestuurde grensplanning de kloof
overbrugt tussen recente, op leren gebaseerde navigatiebenaderingen en gevestigde, op
planning gebaseerde benaderingen die geschikt zijn voor roboticasystemen in de praktijk.
Door semantische kennis te integreren in robotica-exploratie, kunnen de voorgestelde me-
thoden de cognitieve belasting van menselijke operators verminderen en daarmee de inzet
van robots in scenario’s zoals zoek- en reddingsacties of verkenningsmissies vergemakke-
lijken.
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Introduction

This chapter motivates the presented research from the societal context, emphasizing how au-
tonomous robots can support public safety agencies to face mounting challenges and protect
their personnel. Focusing on search and rescue use cases, we identify two core challenges for
safe and efficient autonomous robot planning in unknown environments: Informative local
motion planning and semantically-driven global exploration planning. The chapter further
outlines our approach to these challenges in relation to existing methodologies and summa-

rizes the contributions of this thesis.




2 1 Introduction

Public safety and emergency response agencies face mounting challenges due to the in-
creasing frequency and severity of climate change-related natural disasters, such as floods,
storms, and wildfires. At the same time, they must contend with complex human-made
threats to society, including terrorism and organized crime. These developments place law
enforcement officers and emergency responders at high risk and strain, requiring them to
operate intensively in hazardous, dangerous environments and threatening their physi-
cal and mental health. Human physical limitations can constrain the effectiveness of the
response to these scenarios. Naturally, there is a reluctance to deploy humans into haz-
ardous conditions, which potentially delays a response to time-critical situations. More-
over, human capabilities are limited, for example, in navigating tight or unstable terrains
and in rapidly searching large, cluttered spaces. Finally, demographic change will reduce
the availability of human responders, exacerbating many of the mentioned challenges.

With recent advances in robot hardware and control [1, 2], computer vision [3-5],
and embodied artificial intelligence [6-8], autonomous robots promise a new avenue for
public safety agencies to respond to these challenges. Deploying autonomous robots in
these scenarios can alleviate human limitations and enable more successful missions, as
they can access difficult terrains and gather information from large, complex scenes while,
most importantly, not putting humans at risk. For example, micro aerial vehicle (MAVs)
equipped with onboard cameras can be small enough to search collapsed buildings for
survivors but can also rapidly cover large outdoor areas to locate missing persons. More-
over, MAVs, wheeled robots, or legged robots can take over repetitive, resource-intensive
tasks, such as securing sensitive locations, which frees up human responders for other,
non-automatable tasks.

In this thesis, we focus on the use of autonomous robots for search and rescue and
reconnaissance missions, where the robots are tasked with exploring an unknown envi-
ronment. Specifically, we consider that the mission goal is to locate one or more targets of
interest in the scene, such as missing persons or hazardous materials. Such target search
missions are characterized by the need for the robot to safely and efficiently navigate
through environments with many obstacles and complex structures while gathering infor-
mation about the scene to locate the target. However, current robot deployments in such
missions rely on skilled human operators to teleoperate the robots. Facing the challenges
of unknown environments and uncertainty about the scenario, the human operator must
guide the robot safely through the scene while simultaneously interpreting the robot’s
camera images to assess the situation and locate the target. The complexity and variety of
these cognitive tasks have the potential to overwhelm the human operator, constraining
the efficiency and effectiveness of robot deployment in complex missions. Therefore, there
is a need to equip robots with the autonomous capabilities required in search missions to
reduce the cognitive load on human operators.

1.1 Problem Overview

To operate autonomously in a target search mission, a robot must be able to perceive its
environment, plan its next actions, and control its motion. The focus of this thesis is on
the robot’s planning methodologies, that reason about where and how to move in the en-
vironment to find the target quickly. Planning in autonomous target search missions in
unknown environments is challenging due to the uncertainty about the scene’s geometric
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structure and the location of the target. Leveraging partial information, the robot must
plan its actions to reduce this uncertainty by gathering information about the scene. This
thesis addresses two main planning problems within these challenges: Local motion plan-
ning that considers the information gained along the trajectory, and global exploration
planning that efficiently searches the environment for the target.

Local motion planning generates collision-free trajectories that adhere to the robot’s
kinematic constraints. As the robot makes observations when moving along the trajec-
tory, the trajectories should lead to informative observations that efficiently reduce the
uncertainty about the scene. Moreover, when moving around obstacles in densely clut-
tered areas, planning to gather information from occluded areas is crucial. Considering
collision avoidance, the robot’s dynamics and possible future observations are especially
challenging with limited onboard computational resources.

When searching large and complex environments, such local planning methods alone
are likely to lead to inefficient behavior, and the robot requires a global planning strategy
that decides where to explore next to find the target quickly. Importantly, exploration
should be directed toward the most promising areas for the search of the target. While
pure exploration strategies [9-11] efficiently cover the entire environment, a human op-
erator would steer the robot towards areas where the target is likely to be found. Human
operators can leverage semantic information, such as detected objects or room types, as
well as their experience, to reason about the target’s likely location. For example, dan-
gerous chemicals are more likely to be found in a storage room than in an office. When
handing over control to the robot, human operators expect the robot to incorporate such
human semantic priors into its planning strategy. However, such reasoning is challenging
due to the uncertainty about the scene and the semantic relationships that can indicate the
target’s location. Hence, it is crucial that while exploration should be directed, it must also
be efficient by avoiding redundant observations and covering all parts of the environment.

In summary, the goal of this dissertation is to develop planning methodologies that en-
able autonomous robots to efficiently and safely explore unknown environments to search for
targets of interest, while leveraging expert knowledge.

1.2 Approach

This section provides an overview of the approaches and concepts developed in this thesis
to address the mentioned challenges in planning for autonomous target search missions.
Planning a sequence of future actions is a key capability for autonomous navigation, as it
allows robots to perform consistent behaviors in complex scenarios instead of relying on
inefficient reactive or greedy strategies. However, planning in unknown environments
is challenging due to the partial observability of the problem, i.e., critical information
for reasoning about future actions, such as the environment’s structure and semantic fea-
tures, are not fully known. Explicit planning under partial observability needs to search
through and evaluate many possible future states, leading to a combinatorial explosion in
the search space, which is computationally infeasible for real-time operation. This moti-
vates a central theme of the approaches presented in this thesis: Guiding planning meth-
ods with learning-based reasoning about higher-level tasks, such as information gathering
or semantic scene understanding, can improve the robot’s reasoning capabilities in unknown
environments.
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1.2.1 Informative Local Motion Planning
Informative local motion planning generates feasible trajectories that guide the robot
around nearby obstacles, avoiding collisions while maximizing the information gained
from the environment. Maximizing future information gain means optimizing poses in
the planned trajectories such that observations from those poses are expected to achieve
the highest possible reduction in uncertainty about the environment. Evaluating infor-
mation gain from future observations must take into account the robot’s sensor model,
observed obstacles to avoid occlusions, and earlier observations to avoid redundant infor-
mation. The approach presented in this thesis aims to alleviate the high computational
burden of evaluating future information gains by learning a policy that guides the local
motion planner toward informative poses. Local motion planning is realized using Model
Predictive Control (MPC), and the policy is trained using Reinforcement Learning (RL).
Model Predictive Control (MPC) generates control inputs by solving a constrained
optimization problem at each step, ensuring feasibility under the robot’s dynamics and
collision avoidance requirements. The objective is typically to track a reference path or
goal position, with only the first input applied before re-optimizing based on updated
robot and environment states. The advantage of MPC is its ability to generate smooth
trajectories respecting safety constraints crucial for real-world deployment and to replan
at each time step to account for changing environmental conditions [12-14]. Its limitation
for autonomous search and exploration is that complex optimization objectives, such as
maximizing the information gain, are too computationally expensive for the large number
of evaluations necessary in sampling-based or gradient-based optimization methods.
Reinforcement Learning (RL) enables an agent to learn a policy that maximizes a
reward signal by training on a dataset of prior experiences. The policy, often represented
by neural networks, maps observations to actions, allowing for fast online execution after
training. The key advantage of RL is that the computational burden of potentially high-
dimensional optimization, such as in MPC, is shifted to the training phase. Additionally,
RL maximizes rewards over an infinite time horizon, allowing for learning policies that
pursue long-term objectives. RL is often used for decision-making problems under partial
observability [6, 13, 15] since the policy is trained to infer the best action just from obser-
vations, implicitly reasoning about the environment’s hidden state, such as the target loca-
tion. Deep learning models, such as convolutional neural networks (CNNs) or graph neu-
ral networks (GNNs), have enabled RL to learn complex policies from high-dimensional
observations, such as images or time series data [6, 16].

1.2.2 Global Exploration Planning for Target Search
In time-critical scenarios such as search and rescue missions, long-horizon planning is
required to efficiently explore and search complex environments. Conversely, planning
methods such as MPC are computationally limited to short-term horizons, resulting in lo-
cally optimal trajectories that may lead to inefficient exploration behavior, such as repeat-
edly visiting the same area or missing important regions of the environment. RL-based
methods, on the other hand, can deal with long horizons, but their generalization abilities
are constrained by the availability of training data, which is naturally scarce for highly
dynamic and uncertain public safety scenarios.

Efficient target search also requires reasoning about observed semantic information,
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such as detected objects, to guide exploration towards promising areas. Such directed
search can be achieved using learning-based methods, capturing the complex semantic
relationships [6-8, 16]. However, these methods are also limited by the availability of
training data for the targeted scenarios. Faced with unseen scenarios, learned semantic
reasoning models may generate suboptimal behavior, such as incomplete exploration, thus
lacking robustness for sensitive missions. To maintain robust but directed exploration, this
thesis explores guiding long-horizon combinatorial exploration planning with learning-
based prediction of target locations from semantic information.

Combinatorial Exploration Planning A classical approach for exploring large un-
known environments is frontier-based exploration [17], where the robot moves to the
nearest frontier, i.e., the boundary between explored and unexplored areas. As this greedy
choice can lead to inefficient behavior, planning over a set of frontier locations is a pop-
ular approach for exploration [9-11, 18]. Here, the continuous frontiers are discretized,
usually by clustering or sampling, and a planner determines the optimal visitation order
of the frontiers. The first frontier in the plan is chosen as the next goal for downstream
planning, and a new plan is generated once new frontiers are found. Finding an efficient
visitation order for a set of locations is a combinatorial problem known as the Traveling
Salesman Problem (TSP) and its variants. While these problems are NP-hard, efficient
heuristics exist to find near-optimal solutions and allow for real-time planning. This way,
long-horizon reasoning can be achieved by planning over a discrete set of relevant obser-
vation locations. Combinatorial frontier planning has enabled robust real-world deploy-
ment of autonomous robots, e.g., MAVSs, for exploration tasks [9, 11]. While this approach
can efficiently cover the environment, it lacks reasoning about semantic information that
could guide exploration toward promising areas for target search.

Semantically Guided Target Search Learning the semantic relationships between
observed objects and the target is an effective method to guide a robot toward a target in
an unknown environment. Using data from interaction with the environment, guidance
policies [6, 16] or cost-to-go functions [19, 20] can be trained to direct the robot toward the
target. Alternatively, foundation models such as large language models [21, 22] can lever-
age their general internet-scale training data to infer promising search locations [7, 8, 23].
However, for highly specialized scenarios such as search and rescue, we cannot expect that
sufficient training data is available to learn the semantic relationships. As human opera-
tors hold the necessary knowledge about scenario-specific semantics, this thesis explores
learning a model of semantic priorities from human inputs. Using techniques from reward
learning [24, 25], a priority model can be learned from a few human demonstrations, such
that it can guide the robot towards promising areas for target search.

1.3 Contributions and Outline
In the following, the main scientific contributions of this thesis are summarized:

(1) An informative local motion planning approach to generate safe robot trajecto-
ries maximizing information gain about an unknown environment. An MPC-based
local motion planner guarantees the safety and feasibility of the generated trajec-
tories, constraining the motion plans to obstacle-free space around the robot. A
viewpoint policy is trained using deep RL to guide the MPC planner with a refer-
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ence subgoal, such that mutual information from observations along the trajectory
is maximized. The policy is modeled using multiple CNN encoders to process 2D
map representations of surrounding obstacles and environment uncertainty. The
approach is evaluated in simulation, showing competitive performance compared
to an information-maximizing planner based on Monte Carlo Tree Search (MCTS),
while requiring significantly less online execution time.

(2) A semantically-guided frontier exploration planner for target search that

prioritizes promising frontiers for finding the target while ensuring efficient and
complete exploration of complex environments. Given a semantic priority model
and a discrete set of exploration frontiers, the planner generates a visitation order
that schedules semantically promising frontiers early in the plan. Specifically, the
planner solves a priority-weighted minimum latency problem, penalizing arrival
times at frontiers weighted by their priority. By combining semantic priority and
coverage information gain in the priority weights, the planner can effectively guide
the robot toward the target while ensuring efficient exploration of the environment.
This approach has been applied with two different methods of computing priority
weights, each tested in a different experimental setting:

(a) Semantic priorities learned from expert inputs that can guide the robot
towards areas where the expert expects the target. Assuming that the expert
leverages its knowledge and experience about the scenario when guiding the
robot by choosing the next frontier to explore, this thesis proposes to learn a
semantic model from recorded inputs. An expert model of frontier choices is
devised, where a semantic priority function encapsulates the expert’s semantic
knowledge about the environment, scoring frontiers based on their semantic
relevance to the target. Training this function such that the model fits recorded
data allows leveraging of the semantic priority function to semantically guide
the robot without expert guidance. Simulation experiments in 2D environ-
ments with the combinatorial exploration planner show that consistent target
search outperforming coverage exploration can be achieved by learning only
from a few expert inputs.

(b) A 3D target search pipeline for MAVs that can evaluate the semantic pri-
ority of 3D frontier viewpoints for guiding the target search frontier planner.
In this work a semantic priority model based on LLM word embeddings is
used, evaluating the semantic relationship between any observed object and
the target. To scale the target search planner to 3D environments and explo-
ration using a MAV with an onboard camera constrained by its limited field of
view, a pipeline to propagate object semantic priorities to frontier viewpoint
priorities is developed. To this end, object priorities are diffused into a 3D
priority voxel map, and sampled frontier viewpoints are evaluated based on
the priority-weighted sum of visible frontier voxels, ensuring that both target
search and coverage exploration are pursued. The proposed pipeline is vali-
dated in both simulation and hardware experiments, showing that the explo-
ration planner can efficiently guide the MAV through complex environments
toward semantically relevant 3D viewpoints that lead to the target.
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Chapter 2 presents the developed method for informative local motion planning, as
well as the corresponding simulation results. Chapter 3 introduces the method for learn-
ing semantic priorities from expert inputs and the first variant of the combinatorial target
search planner and provides the simulation results for the combination of both methods.
Chapter 4 presents the 3D target search pipeline for MAVs, including the viewpoint evalua-
tion method and a variation of the target search planner, and the simulation and hardware
experiments with a MAV. Finally, Chapter 5 concludes the thesis and its key findings and
provides an outlook on future research directions.







2

Learning Viewpoint
Recommendations for
Informative Trajectory
Planning

Informative local motion planning is crucial for ensuring safe autonomous navigation
through cluttered spaces while maximizing the information about the environment gained
from the robot’s onboard sensors. Crucially, a safe and efficient approach needs to replan
quickly based on new observations and guarantee collision avoidance. This chapter presents a
hierarchical planning framework, where a learned policy network provides short-term view-
point recommendations that guide an MPC-based trajectory planner. The policy is trained
with deep reinforcement learning to provide viewpoint recommendations that maximize cu-
mulative information gain, ensuring non-myopic, efficient information gathering. The MPC
planner aims to follow the provided viewpoint and enforces collision-free, dynamically fea-
sible motions. In simulation tests in previously unseen 2D environments, our method con-
sistently outperforms greedy next-best-view policies and achieves competitive performance
compared to Monte Carlo Tree Search in terms of cumulative information gain and coverage
time, with a reduction in execution time by three orders of magnitude.

This chapter is based on: M. Lodel, B. Brito, A. Serra-Gomez, L. Ferranti, R. Babuska, J. Alonso-Mora, "Where
to Look Next: Learning Viewpoint Recommendations for Informative Trajectory Planning”, 2022 IEEE International
Conference on Robotics and Automation (ICRA).
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2.1 Introduction
2.1.1 Motivation

Autonomous robots can play a fundamental role in gathering information in critical and
dynamic scenarios, such as search and rescue [26, 27] or environmental monitoring [28,
29]. For example, robots can support human emergency responders to locate victims in
challenging or dangerous terrain. In such scenarios, environments are often unknown,
and autonomous navigation methods must continuously replan actions that maximize the
information gathered over long horizons. Moreover, these trajectories must be efficient
with respect to time or energy costs.

Long horizon, or non-myopic, path planning methods for information gathering and
map exploration [28, 30-37] suffer from high computational cost and thus long planning
times, particularly in complex, obstacle-rich environments. To enable fast online exe-
cution, recent works have approached information gathering using deep reinforcement
learning (DRL) [15, 27, 38-42]. In these methods, a policy learns in offline training to se-
lect an action that maximizes the expected information gain of future observations. The
policy is usually modeled as a deep neural network that reasons about high-dimensional
observations of the agent’s surroundings (e.g., obstacles), or its current belief about the
environment. However, DRL-based information gathering methods do not explicitly con-
sider constraints for collision avoidance and do not account for the robot’s dynamics.

In uncertain or dynamic scenarios, it is advantageous to employ an optimization-based
local motion planner such as model predictive control (MPC), to generate dynamically fea-
sible and collision-free trajectories and thus safe robot motion [12, 43]. The recent work
of [13] combined MPC with a learned subgoal policy for navigation among interacting
agents. In this paper, we propose a hierarchical framework, depicted in Figure 2.1, for ex-
ploring unknown, obstacle-rich environments. Building on the idea of [13], we enhance
a local motion planner with a guidance policy trained using DRL. By training in different
simulated environments, the DRL agent learns a guidance policy that maximizes informa-
tion gains from future sensor observations. In particular, the policy is trained to combine
its belief about the environment with local observations of obstacles and the robot state for
guiding an MPC-based motion planner by recommending a subgoal reference. This view-
point reference, i.e., a subgoal leading towards informative observations, is then used by the
MPC planner to generate low-level control commands while ensuring collision avoidance
and kinodynamical feasibility of the trajectory.

2.1.2 Related Work

Planning for Information Gathering

Informative path planning (IPP) methods plan future observation poses that are expected
to reduce uncertainty about the environment as efficiently as possible, generally at the
expense of computation time. Generally, myopic and non-myopic IPP methods can be
distinguished. Myopic methods capitalize on the submodularity property of common IPP
objectives such as maximizing mutual information [44]. These methods select their actions
greedily either by considering the next best viewpoint at the current time step [45-47],
or by finding a trajectory leading to the best reachable next viewpoint [48]. While their
computation times are generally low, these methods sacrifice efficiency in terms of time or
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Figure 2.1: Conceptual overview of the proposed informative trajectory planning framework. A DRL policy
recommends a viewpoint reference to a local planner, based on the robot’s current belief about the environment,
and local sensory information. The local planner generates a feasible trajectory and executes control commands,
leading the robot (depicted in blue on the right-hand side) to reduce the uncertainty about the environment.

energy required to gather information about the environment due to their short planning
horizon.

Non-myopic planning methods, in contrast, attempt to find long-horizon plans that
maximize an information-related objective quantifying the cumulative information gain.
These methods often rely on tree search algorithms [30-34], such as Monte Carlo Tree
Search (MCTS) [30-32], or global optimization [28, 37]. While being able to find near-
optimal paths over long horizons, they suffer from high computational costs due to re-
peated predictions of possible future observations. This is particularly exacerbated by
computationally expensive visibility checks in obstacle-rich environments. The resulting
long re-planning times make them unpractical for time-constrained and fast-paced dy-
namic scenarios. These computational issues are partially addressed by [34, 35], but as the
aforementioned methods, they simplify or do not consider the kinodynamic constraints
of the robot.

Local motion planners can ensure dynamic feasibility and collision avoidance, but this
might result in a trajectory deviating from the planned informative path. Maximizing
an information-theoretic objective directly in local trajectory optimization has been pro-
posed for SLAM [49, 50] and grid mapping [36]. This approach requires a differentiable
information gain model and is computationally expensive for long planning horizons.

Our proposed framework, in contrast, combines fast online execution times with non-
myopic reasoning and explicit dynamic feasibility and is flexible with respect to observa-
tion and information model design choices. This is enabled by combining local motion
planning with DRL.

DRL for Information Gathering

Thanks to their fast execution times and ability to choose actions conditioned on the recent
history of observations, DRL-based approaches have the potential to find a suitable trade-
off between quickly reacting to new observations and efficient information gathering. A
common component of previous DRL-based information gathering approaches [15, 27,
38-42, 51] is that the agent’s current incomplete knowledge about the environment is
formulated as an observation to reason about where informative sensor measurements
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can be taken. The methods differ in the type of actions being selected, and thus the way
the policy interacts with the robot. A common approach is to select from a discrete set of
motion primitives [15, 38, 41] for a simplified first-order dynamic model, and directly apply
them to the robot. In other works, the learned policy makes higher-level decisions (e.g.,
by choosing the next frontier [27], subgoal [42], subregion [39] or graph vertex [40, 51] to
observe). In [27, 39, 42], that action is executed by a lower-level path planner.

However, none of the mentioned works does explicitly account for how the actions
chosen by the DRL agent can result in dynamically feasible, collision-free trajectories. Our
method trains a policy to give a high-level local subgoal, or viewpoint reference, to a lower-
level MPC trajectory planner that can ensure the satisfaction of the robot’s constraints. In
contrast to the global subgoal policy in [42], the subgoals in our method are restricted to
the robot’s local surroundings and continuously guide a dynamics-aware trajectory plan-
ner. Similar to [15], we use the current knowledge of the global map and local observations
as inputs to our policy, but also include the robot’s dynamical state to allow for reasoning
about the behavior of the underlying MPC.

2.1.3 Contribution
The main contributions of this work are the following:

«+ An informative trajectory planning hierarchical framework combining a viewpoint
recommendation policy with receding-horizon trajectory optimization. Our method
plans safe and dynamically feasible trajectories while navigating the robot to infor-
mative observations.

« A method for training a DRL agent together with a local motion planner, such that
the policy learns to guide the motion planner in an obstacle-rich environment and
to maximize the cumulative information-theoretic reward.

We present simulation results comparing our method with an MCTS planner and a
greedy policy, in terms of the execution time and information gathering performance.
We aim at significantly faster execution than MCTS, with little loss of performance, and
substantially better performance than with the greedy policy. Additionally, we present
qualitative results demonstrating the exploration behavior of our method.

2.2 Preliminaries

2.2.1 Problem Formulation
Consider a robot that has to explore an unknown 2D environment WV c R? in order to
find an unknown number of targets in this environment. The dynamics of the robot are
described by a discrete-time model x;,{ = f(x;,u;) where x; is the state of the robot, and
u; is the control input applied at time step t. We assume that x; is observed, e.g., using
onboard sensing. We denote the position of the robot in W at time t by p; = [x;,y;:]7
p: € W. The area covered by the robot at time ¢t is denoted by O;. The robot must avoid
collisions with static obstacles Opst = W.

When moving in the environment, the robot builds, from sensor observations, a map
about possible target locations in the environment. We model this target map as a proba-
bilistic occupancy grid map [52], represented by the random variable M (see Section 2.2.2).

5
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The observation vector is modeled as a random variable Z;, with a realization denoted by
z;. At each time step t the robot makes an observation Z; about nearby targets at its cur-
rent position p;, and updates its belief about the target map M. Subsequently, the control
inputs are computed that move the robot to its next observation pose p;,1-

The objective of the robot is to reduce the uncertainty in the target map M by making
informative observations Z;. We formalize this objective as maximizing the cumulative
mutual information (MI) between the robot’s prior about M at time step ¢, and the latest
measurement Z;, given the history of measurements until the last time step, zy.;_1. The
MI quantifies the reduction in uncertainty by making observation Z;, and it is denoted by
IM; Zy| 29 4-1) [53]-

The informative trajectory planning problem then is to maximize the cumulative MI
while ensuring a collision-free, kinodynamically feasible trajectory over a horizon L (the
total time-budget for the mission) and given an initial state X, and an initial observation
Zy:

L
max ZI(M;ZAZ(H_I) (2.1a)
Wo:l-1 =1
st xp = f(xy_1,u4q) (2.1b)
O;nOghst =@ (2.1¢)
Zy = h(xy), (2.1d)
x;€X,u €U, (2.1e)
t=1,..,L

where (2.1b) is the constraint on the robot dynamical model (Section 2.2.3), (2.1c) is the
collision avoidance constraints, and X,{ are the admissible sets of robot states and control
inputs, respectively. Equation (2.1d) is the observation model, described in Section 2.2.2.

2.2.2 Belief Map and Observation Model

Belief Map
The target map M is a discretization of W in n grid cells, associated with independent
Bernoulli random variables M; € {0,1}, Vi € {1,...,n}, with 1 indicating target occupancy,
and 0 otherwise. The robot’s belief about the map M is described by probabilities of target
occupancy in each cell i, denoted by P, ; := P(M; = 1|zj.,), and initialized with a uniform
prior of P(M; = 1) = 0.5. Given a new observation z;, the Bayesian update of P, ; using log
odds [52] is:

I(Milzo: 1) = UMl 29 1) + I(Mj|z,), (2:2)

where I(M;|z;) is an inverse sensor model [52].

Observation Model

To make observations Z;, the robot is equipped with a sensor that can detect targets up to
a distance dy,x from the robot and within a field-of-view of 360° and associate it with a cell
in the map M. The set of cells visible from position p; is denoted by Z,. It only includes
cells for which the visibility of its center point is not occluded by obstacles O,p,;. The
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observation made at each time step is a vector composed of the individual cell observations
of target occupancy, namely Z, € {0, 1}Xl. Equation (2.2) is only applied to the cells in Z,
after each observation. The mutual information between the prior about the target map
M and an observation Z; is equal to the reduction of the conditional entropy in M by
observation Z; [53, 54]:

I(M; Z4|zg.1-1) = HM|2g. ;1) - HM|Z;, 29 1-1) (2.3)

where HM) = Z?:l H(M;) is the entropy of the target map and H(M;) are the respective
cell entropies.

2.2.3 Robot Dynamics

We consider the robot to be modeled by a second-order unicycle model [55]

Pveosy Vow Jo ”
y=vsiny = u,.

which is discretized with sampling time Tg. Thus the state of the robot is described by
x = [x,y,¥,v, a)]T, where ¢ the heading angle in a global frame, v denotes the robot’s
longitudinal velocity, and w = i/ the angular velocity. The control input u = [ug, u,]”
consists of the robot’s linear and angular acceleration, respectively.

2.3 Method

We hierarchically solve the problem in (2.1) by separating it into a high-level sequential
decision-making problem and a local trajectory planning problem. The first aims at de-
termining a reference viewpoint, such that future information gains are maximized based
on the current belief following from past observations (Section 2.3.1). The local trajectory
planning problem aims at moving the robot towards the recommended viewpoint while
ensuring kinodynamic feasibility and collision avoidance (Section 2.3.2). The concept of
the proposed framework is depicted in Figure 2.1. Our proposed approach builds on [13],
extending its task and environment scope for information gathering in obstacle-rich envi-
ronments.

2.3.1 Reinforcement Learning of Viewpoint Recommendations

Our method learns, via reinforcement learning, a policy 7 that recommends every N,
timesteps a reference position pief in the robot’s neighborhood (the reference viewpoint)
to an MPC motion planner, such that the resulting trajectories of the robot lead to obser-
vations that maximize rewards, and eventually result in near-complete coverage of the

available information in the environment.

Observation

The goal is to learn a policy that uses the robot’s own belief about M, and local observations
about nearby obstacles O; € O} Both inputs are visualized in Figure 2.2. The local
obstacle observation O; is a binary grid map of obstacles around the robot, given as an
m x m image, centered at the robot’s position and aligned with its orientation [15, 56].
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Figure 2.2: Proposed policy and value function network, with two encoders processing an ego-centric obstacle
grid map O; and a two-channel image representing the belief [H;,X;], respectively. The entropy map H; is
depicted as a grayscale image, with darker shades corresponding to lower uncertainties. The second channel X,
is visualized by a red grid cell marking the current agent position. The encoder structure and hyperparameters
are as in [56], h is the LSTM hidden state, and FC refers to a fully-connected layer.

Such an egocentric observation improves generalization across different environments.
The robot’s belief about M is represented by a map of cell entropies H(M;), denoted by Hy,
that informs the agent about uncertainties in different map regions. An indicator function
map X, for the agent’s position in the map is appended as a second channel to H, [27, 39].
Hence, at time step t the RL observation vector s; is

]T

s = [H, X, 00%] (2.5)

where x; is the robot’s state defined in Section 2.2.3.

Action
The RL action a; € A c R? is defined as the relative position &, of the viewpoint reference
with respect to the robot’s current position,

ar =6 ~ m(aylsy)

ref (2.6)
P; =P+ Oy

The position increment is constrained inside a square around the robot, such that the

continuous action space of our RL method is A = { §; € R? | [ 8], = Smax}-

Reward Function

The main objective of the informative trajectory planning problem (2.1) is to maximize the
information gains. Hence, we define an information-theoretic reward function using the
mutual information gained through the observation Z;, , made N, steps after the last
action a;. Moreover, we add a term r,,e,, penalizing each time step, incentivizing the agent
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to achieve the coverage goal, terminating the episode, as soon as possible. The reward
function is defined as

r(sp.ar) = IMM; ZN, |20 1) + Tpen- (2.7)

Policy Network Architecture

Figure 2.2 depicts our proposed policy network architecture. We employ two CNN models
using the architecture and hyperparameters proposed in [56] to encode spatial informa-
tion in the two image inputs [H;,X;] and O;. These encoder networks are each trained
by gradients coming from both the policy update loss (Section 2.3.3) and a reconstruction
loss generated using a decoder network reversing the encoder operations [56]. Thus, com-
pressed latent representations of spatial features in the local obstacle grid and the entropy
map are learned, which the policy can exploit to learn actions that guide the robot around
nearby obstacles and to map regions with high uncertainties. The two latent feature vec-
tors are concatenated with the state x; of the robot’s dynamical model, so that the policy
can learn how to guide the MPC planner using viewpoint references with respect to its
closed-loop dynamical behavior.

After feeding the full feature vector into two fully-connected (FC) layers, an LSTM
layer [57] models the time-dependencies between previous states and the current state.
The hidden state of the LSTM is fed to the final actor and critic heads modeled as FC
linear layers. We model the policy 7 as a diagonal Gaussian distribution, i.e. my(as|s;) =
N (i, 0%), such that &; ~ mg(a,|s,). The distribution’s mean y and log-standard-deviation
log o are learned by the actor head. The critic head estimates the state-value function
Vi(sy) =E, [Zzo ytr(st,at)] of the current policy, where y is the discount factor. The
subscript 6 denotes the current network parameters.

2.3.2 Local Planner
We rely on receding-horizon trajectory optimization to generate control commands for the
robot satisfying dynamic and collision constraints. For dynamic constraints we employ a
second-order unicycle model as defined in Section 2.2.3.

For the collision constraints, we assume the robot’s space, Oy, to be a circle with radius
r, and each obstacle’s space is defined as a polygon. To ensure collision-free motions, first,
we compute a linear constraint to ensure that the robot’s space does not overlap with static
obstacle’s space, i.e., Oy (x;) n Ogpst = D, at planning step k defined as
o oT

¢ = nk] Pr=bj-r, (2.8)

where nij is the normal vector at the closest point p? on the surface of the j/th obstacle

and b; = —nzj Tpoj . To limit the complexity of the optimization problem, we only consider
a set of n,p, constraints for the closest obstacles. The distance between the robot’s position
and the j-th linear constraint is computed as:
T
N nZJ Pk +b;
el - —=o— @9)
In¢
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The DRL policy provides a reference position pzef (viewpoint) guiding the robot to
maximize future rewards. Similarly to [13], we define a terminal cost enabling the robot
to reach the provided viewpoint reference:

f
Pi+N — P}
]N(XHN,P?f) = ’ —retf (2.10)
Pt~ pt Oy

where p;, N is the robot’s terminal position (at planning step N) and Qn = diag(qn, gn) is
the terminal cost matrix. To generate smooth trajectories, we employ a quadratic penalty
on the control commands as a stage cost for planning step k:

Je () = fuly, (2.11)

where Q, = diag(q,, q,) is the stage cost matrix.
At every time step ¢, a non-convex optimization problem is solved with planning hori-
zon N under the kinodynamic and collision constraints, given the initial state x; € X:

t+N-1
min ) JHue) +In(xpans D)

Y. p4N-1 k=t

st Xpe = f(xg,ug), (2.12)
0; .
e = bj-r Vi E€{L, . nghsh,
up €U, x5, €X, VEE{L, ...t + N-1}

The equality constraint is the discrete-time model of the continuous dynamics model pre-
sented in (2.4).

2.3.3 Training Procedure

First, we warm-start the policy training with behavior cloning updates, using the one-
step greedy policy outlined in Section 2.4.2, which outputs pzef, in combination with MPC
(2.12) as the expert policy. We define the expert reference viewpoint as a; = p; - p;, where
p)y is the last position in the MPC-generated trajectory. For the first Ny policy steps of
the training, we apply aj as the agent’s action and use it as a label to perform supervised
learning of the policy g, as described in [13]. Subsequently, the policy is trained with
DRL using Proximal Policy Optimization (PPO) [58] until reaching Ni,,;, policy steps. One
policy step yielding a new viewpoint corresponds to N, timesteps, and MPC is executed at
every time step t with the last sampled viewpoint reference. The PPO horizon is S = L/N,
policy steps.

Training and testing are performed in randomly generated environments as depicted in
Figure 2.3, with the agent initialized at a random position. Random rectangular obstacles
are generated and environments, where obstacles block the agent from reaching the entire
free space, are omitted. We employ curriculum learning during training [59], increasing
the number of obstacles Nyt from one to three.

Episodes are terminated after the completion of the information gathering task, or if a
maximum number of time steps t.y is reached (failure). The task is completed when, at
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Figure 2.3: Examples of the random environments used in training.

time ¢, the conditional entropy of the belief about the map cells in the free space W\ Opst,
denoted by Mmfree s smaller than a predefined ratio of the entropy of the initial belief prior.
That is, when H (Mfree|z(): D=1-pH (Mfree), where B €10,1) is the share of information
that should be gathered by the robot, defining the coverage goal.

2.4 Results

In this section, we present quantitative and qualitative simulation results of the proposed
method. We compare the performance metrics of our method against two baseline ap-
proaches (Section 2.4.3) and analyze the behavior of the informative trajectory planning
method (Section 2.4.4). The baselines are introduced in Section 2.4.2, and the simulation
setup for training and testing is outlined in Section 2.4.1.

2.4.1 Simulation Setup

The training procedure described in Section 2.3.3 builds upon the open-source PPO2 imple-
mentation provided by the Stable Baselines framework [60]. The nonlinear optimization
problem (2.12) is solved using the Forces Pro solver [61]. Simulations are run in the envi-
ronment provided by the open-source "gym-collision-avoidance” package [62]. We train
the policy mg with Njy;oc processes for rollouts on a desktop computer with an AMD Ryzen
9 CPU and 64 GB of RAM. Table 2.1 presents the hyperparameters used.

2.4.2 Baselines

We compare the performance against two baseline approaches: one myopic and one non-
myopic informative path planning method. Similar to our approach, we use both baselines
to compute a reference viewpoint pief for the MPC.

Myopic Greedy Viewpoint Selection

As a myopic baseline, we use a one-step next-best-view planner similar to [46]. At each
time step, we uniformly sample N,;, = 30 points p;,Vi = 1,...,N,, in the policy’s action
space A, and evaluate the objective I(M; Z(P;)|zy.;) for expected observations Z(p;) at
these viewpoints. The point with the highest reward is chosen and passed as pief to the
MPC. This greedy method is also used for warm-starting the training, as explained in
Section 2.3.3.

Non-Myopic Monte Carlo Tree Search (MCTS)

We use an MCTS planner [30-32] as a baseline to find finite-horizon sequences of view-
points that maximize cumulative information rewards. We build on an open-source Python
implementation of Dec-MCTS [31], and use it for single-robot planning. The planner uses



2.4 Results 19

Table 2.1: Hyperparameters.

MPC
Horizon N 15 Tg 0.1s | qn 50 | q, 0.003
Qe 0.003 | - - |- - |- -
Training
Learning rate 10* | Horizon S 128 | Cliprange 0.2 | y 0.99
Nirain 2-107 Nepochs 2 Nproc 16 N, 5
Smax [m] 4 tmax 640 | rpen -0.1 | Ng; 100
MCTS Baseline [31]
Niree 100 Nsim 10 | Hmcts 4 ‘ Trnp [s] 1.2
u, [m/s] {0,1,3} | Cycs 20 | u, [rad/s]  {-7/4,-7/10,0,7/10, 7/4}
Table 2.2: Performance results, aggregated over 100 random maps with n € {1,2,3} obstacles.
Metric MCTS Greedy Viewpoint Policy (ours)
Avg. episode rewards (mean * std)
Nopst = 1 19.60 + 1.99  18.98 + 2.25 19.41 + 0.89
Nobst = 2 1824 £1.09 17.50 + 2.65 18.03 + 1.17
Nopst = 3 16.79 + 2.00  15.64 + 3.75 16.49 + 1.41

Failed episodes [%]

NObSt =1 1 6
Nobst = 2 2 1
Npst = 3 2 8 1

Time until completion [s]

Nopst = 1 46.8 56.7 53.6
Nobst = 2 50.7 61.6 55.8
Nopst = 3 51.7 65.7 59.6
Avg. Runtime [s] 2.486 0.046 0.004

a simplified first-order kinematic model of the robot dynamics and a small set of motion
primitives as discrete action space. The motion primitives are combinations from different
velocity and angular velocity inputs, u, and u,, as given in Table 2.1, with a length of N,
timesteps. The planning horizon is Hycts, for each replanning, Ni.e MCTS iterations are
performed, and each new leaf node is evaluated with N;,, rollouts. The first position in
the best plan is passed as pief to the MPC. We replan at every time step ¢, but the planning
time does not affect the simulated time due to the sequential implementation. Thus the
robot does not have to stop for replanning. Furthermore, our MCTS implementation has
access to the global obstacle map for computing rewards of possible future positions.
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(a) t =225s (b) t =30s (c)t=71s

Figure 2.4: Trained policy behavior in an unstructured environment of higher complexity than in training, with
three timesteps of an episode displayed. The agent effectively explores all areas of the environment and manages
to enter and leave the narrow dead-end corridor. The upper-right grid next to each map shows the ego-centric
local obstacle observation O, of the agent, and the lower-right grid the belief map of the probabilities P, ; of the
current belief (Section 2.2.2). The colors in the belief map range from dark blue P, ; = 0 to dark red P;; = 1, with
the green areas indicating P;; = 0.5 (the initial value).

L]

Figure 2.5: Trained policy behavior in a structured environment of higher complexity than in training, with three
timesteps of an episode displayed. The three snapshots show that the robot is effectively guided into and out of
a room-like structure, without visiting areas twice. The setup of the figures is as described in Figure 2.4.

|

(a) t =30.5s (b) t =48s (c) t=53s

2.4.3 Performance Results
This section presents the quantitative performance results of our method and the two
baselines. The results, summarized in Table 2.2, are aggregated over a set of random en-
vironments for three map complexity levels defined by the number of sampled obstacles.
For each number of obstacles, 100 random scenarios are simulated for each of the methods.
In each episode, the agent has a maximum of #.,,, to reach the coverage goal of f = 0.9
before it is considered a failure. We quantify the performance by the average cumulated
reward over an episode, the percentage of failure episodes, the average travel time, and
the average runtime (excluding the MPC) of the three viewpoint recommending methods.
Our method outperforms the greedy next-best-view baseline in terms of average
episode rewards, completion time, and failures for all map complexities. The greedy
method exhibits a large number of failures because it cannot reason about unexplored
areas outside the local surroundings. Thus the robot often revisits already explored areas
multiple times instead of moving to unexplored areas to complete coverage. Moreover,
our method achieves the lowest percentages of failure episodes and the lowest execution
times. Failures of the MCTS planner occur when it determines viewpoint references that
are unreachable for the MPC, which our method avoids by training with the MPC. The
long runtimes of MCTS are caused by the expensive computation of the set of visible cells
Z; (Section 2.2.2) for a large number of viewpoint candidates during planning, necessary
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to evaluate their information gain. In contrast, our trained policy & can infer a promising
viewpoint reference only from currently available observations. This comes at the cost of
suboptimal average rewards and completion time compared to the MCTS planner. Note,
however, the MCTS planner’s advantageous assumptions (Section 2.4.2), as the long run-
time does not affect performance and the global obstacle knowledge enable evaluating
rewards for distant positions during planning.

2.4.4 Qualitative Analysis

This section analyzes the behavior of our proposed method in two scenarios not used dur-
ing training and with higher complexity than the training scenarios, in terms of obstacle
placement and an increased coverage goal of = 0.95. Figures 2.4 and 2.5 show the agent
path for three different time steps with the recommended viewpoint, the local observa-
tion, and belief map of the agent for each scenario. In Figures 2.4a to 2.4c, the viewpoint
reference leads the agent into the most promising unobserved areas and enables it to enter
and leave a narrow dead-end corridor at the top of the map. While not globally optimal,
the behavior exhibits an efficient strategy of guiding the robot towards unobserved ar-
eas, maximizing information gains, and dealing with difficult environment structures. In
Figures 2.5a to 2.5¢, the robot is able to enter and leave a room-like structure. The policy
guides the robot to observe inside the room when reaching the entrance, instead of mov-
ing further, and decides to leave the room as soon as almost all available information has
been gathered. Subsequently, it guides the robot into the remaining unobserved areas.

2.5 Conclusions and Future Work

In this paper, we introduced a navigation policy capable of guiding a local trajectory plan-
ner towards maximizing the information gathered in an unknown environment. We em-
ployed reinforcement learning to learn the information-gathering policy using only lo-
cally available observations and previously gathered information. The policy learns to
maximize information-theoretic rewards by providing a viewpoint reference that an MPC-
based local motion planner uses to generate trajectories respecting the robot’s safety con-
straints. The results show that the learned policy is able to effectively guide the robot
through unseen environments, and achieve quantitative performance comparable to an
MCTS planner. Moreover, our method can be run at a rate three orders of magnitude
faster than the MCTS planner, allowing for quick reactions in dynamic scenarios. Future
work will consider a limited field of view and experiments on a real robotic platform.
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Learning Semantic Priorities for
Autonomous Target Search

The use of semantic features can improve the efficiency of target search in unknown environ-
ments for robotic search and rescue missions. Current target search methods rely on training
with large datasets of similar domains, which limits the adaptability to diverse environments.
However, human experts possess high-level knowledge about semantic relationships neces-
sary to effectively guide a robot during target search missions in diverse and previously un-
seen environments. In this chapter, we propose a target search method that leverages expert
input to train a model of semantic priorities. By employing the learned priorities in a frontier
exploration planner using combinatorial optimization, our approach achieves efficient target
search driven by semantic features while ensuring robustness and complete coverage. The pro-
posed semantic priority model is trained with several synthetic datasets of simulated expert
guidance for target search. Simulation tests in previously unseen environments show that
our method consistently achieves faster target recovery than a coverage-driven exploration
planner.

This chapter is based on: M. Lodel, N. Wilde, R. Babuska, . Alonso-Mora, "Learning Semantic Priorities for Robotic
Target Search Planning’, under review.
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3.1 Introduction

Autonomous robots that can explore unknown environments efficiently by searching for
objects of interest (OOI) are promising tools in applications such as search and rescue,
inspection, and environmental monitoring. Efficient search typically relies on reasoning
about semantic information in the scene and consequently determining where to search
next. For example, search and rescue in an industrial site likely focuses on zones frequently
used by workers, such as offices and storage rooms, that can be identified by characteristic
objects like desks or shelfs.

By leveraging semantic priors of typical object arrangement, recent works [6-8, 16,
19, 20, 23, 63] have demonstrated this semantic exploration paradigm and achieved effec-
tive autonomous search behavior. However, these methods either train on large domain-
specific datasets [64, 65] or use foundation models trained on internet-scale datasets, lead-
ing to common-sense reasoning capabilities [7, 23, 63].

However, domain-specific training data may not always be available for highly un-
predictable and specific environments. Moreover, foundation models require extensive
computational resources that are infeasible for onboard deployment. On the contrary,
pure coverage exploration methods [18, 35, 66] that effectively search everywhere can be
deployed independently of domain priors but can take a long time to find OOIs.

Specialized human operators, such as first responders in search and rescue, often have
high-level knowledge about promising search locations based on observed semantic fea-
tures, such as relevant objects. However, increasing autonomy in exploration can be pref-
ereable over teleoperation, as it reduces the operator’s workload and is less reliant on
robust communication. Hence, we aim to leverage expert inputs to learn semantic pri-
ors for autonomous target search. Independent of semantic information, coverage-driven
exploration methods [18, 35, 66] can guarantee target discovery. Therefore, a reliable se-
mantic search approach must ensure that efficient exploration of the entire environment
continues independently of semantic features and their learned priorities.

In this paper, we present a hierarchical exploration framework (Figure 3.1), that can
learn semantics target search strategies from expert inputs. Our paper makes the following
contributions:

« We introduce a framework for learning a semantic priority function that models the
knowledge driving expert interventions, instead of imitating the expert.

« We present a novel exploration planner leveraging these priorities to prioritize promis-
ing frontiers.

In simulation experiments, we show that our framework achieves more efficient target
search than coverage exploration after learning from only a small set of expert interven-
tions. Moreover, our approach exhibits robust target search performance when learning
from different simulated expert behaviors.
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Figure 3.1: Conceptual overview of the proposed framework. During data collection, an expert generates in-
terventions into the planner’s goal output, prioritizing certain semantically relevant objects (depicted by stars).
These are used to train a semantic model, which outputs priorities for each exploration frontier that, in turn,
guide the exploration planner. The exploration planner outputs the next frontier viewpoint to navigate to.

3.2 Related Works

In this section, we discuss existing approaches and how they relate to our work, focussing
on semantic target search, learning human objective functions and coverage exploration.

Semantically-informed Target Search

Semantically informed target search exploits environmental semantic features to acceler-
ate target localization. Several works address object search in unknown environments by
learning semantic object relations from large-scale datasets [64, 65]. Reinforcement learn-
ing (RL) approaches [6, 16] train target search policies directly in simulation, whereas
other methods [19, 20] predict the cost-to-go of different positions, demonstrating better
data efficiency than RL. Conversely, zero-shot object search [7, 23, 63] show that founda-
tion models trained on internet-scale data can be used to predict likely object locations
from semantic context in common indoor environments. The authors of [8] distill seman-
tic knowledge from a large language model (LLM) into a smaller model for online inference
of target probabilities. In our paper, we learn a model of semantic priorities, similar to the
prediction approaches [19, 20]. We learn semantic knowledge from expert inputs unlike
prior work using environment data [6, 16, 19, 20], comparable to distilling LLM common
sense reason in [8].
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Learning Human Objectives

Learning a priority model from human feedback involves learning the human’s objective
function. In most works, this is formalized as learning a reward function [24, 25, 67] or
action-value function [68, 69]. Offline feedback methods [24, 25, 68] query the human for
choice of different precomputed system behaviors [24, 25] or with states requiring a goal
demonstration [68]. However, generating such queries is challenging in uncertain long-
horizon tasks like exploration. With online feedback [67, 69], the human chooses when to
provide inputs as he interacts with an agent executing some baseline behavior. Such online
inputs can be binary feedback [67] or interventions with low-level demonstrations [69].
Our method considers online feedback in the form of expert interventions, similar to [69],
demonstrating the preferred exploration frontiers. We propose to learn an exploration
priority model of different frontiers, similar to learning a value function over planning
goals [68]. Moreover, we employ a stochastic model of expert actions, as in [25].

Coverage-driven exploration

Coverage-driven exploration methods maximize the expected area coverage in order to
build an occupancy map without considering semantic features. Recently proposed meth-
ods employ combinatorial planning to visit all exploration frontiers [18, 35, 66, 70], or
navigation policies trained to maximize future coverage rewards using RL [27, 71]. Com-
binatorial planners repeatedly compute tours over all frontiers, allowing reasoning over
long horizons and efficient navigation across frontiers. These approaches have proven to
work robustly in challenging real-world experiments [18, 35, 66, 70]. We build on this con-
cept and employ a combinatorial planner over frontiers, but consider semantic features for
target search in the planner. To this end, we propose a planner formulation that, similar
to [18], can schedule frontiers based on a priority measure but prioritizes based on both
semantics and coverage.

3.3 Problem Formulation

We consider the usecase where an autonomous robot searches for a target object in an
unknown environment W c R? with obstacle-free space Wy < W. The robot’s position
at time ¢ is denoted by x; € Wy, and it starts exploring from an initial position x,. The
robot moves incrementally with actions a € R? bounded by [a] < 8¢, Where .y is the
maximum distance per time step. An action a can only be applied if the new position is
in free space, ie., x;+a € Wy. A more complex dynamic model can be considered, for
example, by tracking the reference a with a model predictive controller, as in [71].

Occupancy Map

From range observations with sensing range r until time ¢, the robot builds an occupancy
map M, of the environment. The occupancy map is represented as a grid, where cells
correspond to evenly spaced positions x € M, M < W, and are in one of three discrete
states: unexplored (0), free (1), or occupied by obstacles (-1), i.e., M € {-1,0,1}™ ™ with
grid size m.
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Semantic Features

The robot observes objects of different semantic classes S when exploring the environment.
An object is denoted as o = (0?, 0°), defined by its position o € W and its semantic class
0° € §. We assume that the robot’s sensors can detect objects around the robot within
radius r that are not occluded by obstacles. The set O, denotes the objects observed up to
time t. We further assume that semantic relationships between objects of different classes
exist, i.e., the presence of certain objects can indicate an increased or reduced likelihood
of other objects being present close by.

Expert Input

We further assume the availability of an expert with knowledge of semantic relationships
relevant to the search task. Leveraging this knowledge, the expert can infer likely target
locations from the observed objects O, and guide the robot to the target with waypoint
inputs h € Wy that follow some expert policy p, i.e., h; ~ u(h|O;). From this expert inter-
action, a dataset D of expert inputs h; with associated observations M, O; is recorded.

Problem Statement

Given a dataset of human-guided target search trajectories D, the problem is to find a
navigation policy 7p controlling the robot with a; = #p(M;, O,), that minimizes the dis-
tance traveled until discovering a target object o,, using the map and object memory as
current knowledge about the environment. With H as the final time step, the problem is
formulated as

H-1
7ip = argmin Y [Xp.1 -]
t=0
st ok -xpl<r (3.1)

X; =X q +7T(Mt,(9t), MRS {1,...,H},

where the first constraint indicates target discovery at time H.

3.4 Method

Exploring an unknown environment to search for a target object requires continually solv-
ing two subproblems: Semantic scene understanding, or where is it promising to explore,
and planning, or where to go next, given a set of regions to explore. We choose to solve
these two problems in a hierarchical framework depicted in Figure 3.1 to obtain a data-
efficient approach robust to unseen scenarios.

Both subproblems are solved using the concept of frontier exploration [72], which
we formalize for our method in Section 3.4.1. The first problem of semantic scene under-
standing is formalized as evaluating different frontiers with a semantic priority function.
Specifically, we present an approach to learning such a semantic priority function from
expert interventions in Section 3.4.2. To solve the second problem of efficient navigation,
we devise a combinatorial target search planner leveraging the learned semantic priority
function. Specifically, the planner determines a visitation order such that semantically
promising frontiers with increased probability of target discovery are prioritized, thus ap-
proximately solving Problem (3.1).
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3.4.1 Frontier Exploration

In this section, we describe how our approach formalizes the concept of frontier explo-
ration, drawing inspiration from recent works [18, 66]. Frontiers are the boundaries be-
tween explored and unexplored space in M; and are used to derive a discrete set of can-
didate positions for observing unexplored space, called frontier viewpoints, that enable
efficient exploration planning. To obtain such frontier viewpoints f € F;, F; « Wy and
efficient paths between them, a topological graph G, = (V;,&;) is gradually constructed in
the free space of M;. At every timestep, the graph is expanded using a sampling-based
method from [18], ensuring sparsity. We consider every node v; € V; as a potential frontier
viewpoint if sufficient unexplored area is visible from v;. To this end, we define a cover-
age gain function Z(v;) : V +— R that denotes the gain in map coverage when observing
frontiers from v;. Specifically, the coverage gain approximates the expected gain in the
covered area by casting a fixed number of equally spaced rays from v; and averaging the
number of visible unexplored cells on each ray. The set of frontier viewpoint nodes F;
are those with Z(v;) > Zipyes, referred to as frontiers f € F,. We further assume that M,
is clustered into regions, e.g., rooms in a building, using a method such as [73], and each
frontier is associated with a region.

3.4.2 Modeling Expert Frontier Choices

This section formulates a model of expert behavior that will be used to train the semantic
priority model. When collecting data, the expert can intervene in the robot’s exploration
behavior at any time ¢ by determining the next waypoint that the robot will navigate to.

Semantic Priority Function

The expert considers each available frontier f € F; as a potential intervention waypoint,
and evaluates how likely exploring a frontier f leads to the target object, based on nearby
objects and the expert’s semantic knowledge. This evaluation is formalized as a semantic
priority function p(f,w). We model this function with a weighted sum where w € [0,1]"
are weights on n different features, such as semantic classes. These features form a se-
mantic feature vector ¢(f) for each frontier f. Thus, the priority function can be written
as,

p(f.w) =wlg(f) (3.2)

which is common in preference learning [24, 74] to allow learning from a small number
of expert interventions. The weight vector w used by the expert is unknown and will be
estimated from expert inputs.

Semantic Feature Vector

The feature vector ¢(f) consists of two parts: Semantic features ¢ and an auxiliary re-
gion novelty feature ¢,, ie, ¢(f) = [, (f), Pn( 1T, Semantic features ¢, describe the
occurrence of different semantic classes around the frontier node f. Each semantic fea-
ture needs to capture the presence of the semantic class in the vicinity and in the region of
the frontier. Both effects are part of the semantic feature vector: A binary local semantic
vector ¢ S, (e {0, 1}‘8‘ indicating if a class is visible within a small radius around f, and a

binary region semantic vector ¢_ (f) €{0, 1}l indicating if a class is present in the same
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region as f. We combine both as ¢ (f) = A¢ (f)+(1- D¢ ,(f) with A as hyperparam-
eter. The region novelty feature ¢, captures the expert’s interest in observing semantic
information in unexplored regions, and remains 1 unless a small number of objects are
observed in the region of frontier f.

Expert Intervention Model

When providing online waypoint interventions, the expert’s capability to quickly plan
over multiple frontiers is limited. Hence, we model the expert behavior with a greedy al-
gorithm for choosing the next frontier. This greedy choice is modeled by a utility function
u(f) assigned to each frontier f € F;. The expert is also interested in coverage exploration
to guarantee search success without relying only on semantic priorities. Furthermore, the
expert aims at minimizing the traveled distance until discovering the target object (Prob-
lem (3.1)), which is modeled by discounting the semantic priority by the traveling costs to
the frontier. We propose a greedy choice model, maximizing a utility u(f,w), that com-
bines the semantic priority p(f, w) with the coverage gain Z(f) and the distance to the
frontier, given by

u(f,w.wr) = 5(F)(p(f.w) + wrZ(f)). (3.3)

Here 6(f) is the distance-based discounting function, defined as
O(f) = 1-(d(Nimaxprer, di(f)) + € (3.4)

with d;(f) expressing the traveling distance from the current position x; to f through G,
and e defining the minimum discounting factor. The utility model in Equation (3.3) adds a
coverage term weighted by the learnable parameter wy to the semantic priority p and dis-
counts this extended priority by a factor §( f) decreasing with distance to the frontier. Nor-
malizing distances in 6(f) ensures consistent utility values across different frontier sets F.
Finally, the utility function can be written as a linear model u(f,w, wr) = u(f, W) = WTE( i)

with augmented weights W = [w, w7 | and features 5(f) = 5(f)[¢(f), I(f)] T.

Pairwise Choice Model

Next, we derive a probabilistic model of the expert’s frontier choice to learn the expert
weights from noisy expert intervention data. We model the expert preference for a fron-
tier f, € F; as pairwise choices between f, and all other available frontiers. Hence, the
expert prefers frontier f, if its utility is higher than of all other available frontiers, i.e., if
u(f,, W) = u(f,w), Vf € F;\{f,}. The Bradley-Terry model [25, 75] defines the probability
of choosing f; over f;, denoted by P(f; > f;), as a logistic sigmoid function o of their utility
difference, i.e., P(f; > f;) = o(B(u(f;) - u(f;))). Here, B is the rationality parameter mod-
eling uncertainty in the expert’s decision-making process. However, this model assumes
that probabilities converge to 0 or 1 for large utility differences. We choose to modify this
model to account for a residual error probability independent of the utility difference and
B, considering cases where the utility model cannot capture potentially complex expert
reasoning. Inspired by [24], we define p € [0,0.5] as a lower bound on the probability of
wrong choice independent of the utilities, used to formulate a scaled and shifted sigmoid
function o,:

o,(x) = (1-2p)o(x) +p. (3.5)
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Then, the probability that the expert chooses f, over any f € F;\{f,}, given weights W, is
modeled as

P(f, > fI#) = a,(B WT(B(f.) - $(F)). (3.6)

Here, f and p are tunable hyperparameters. This proposed model captures noisy expert
waypoint interventions based on the semantic priority function p(f, w).

Learning Expert Weights

The final step of the expert model is learning the expert weights from recorded interven-
tion data. Given a set of N choices C = {( £}, f1),..., (fgv, fN)} from the expert and assuming
a uniform prior, we obtain the maximum likelihood estimate of the expert weights given
the expert choices using gradient-based optimization, solving

Whle =argmin ), [-logP(f, > fIW)], (3.7)
W (fef)EC

3.4.3 Frontier Planning for Priority-Aware Exploration
In this section, we introduce a global planning method for target search given a semantic
priority model (Section 3.4.2).

Target Search as Combinatorial Optimization

We extend coverage-maximizing exploration methods that leverage combinatorial plan-
ning over frontier viewpoints [18, 35, 66, 70], by incorporating semantic priorities. The
combinatorial planner generates a visitation order, or tour, through all known frontier
viewpoints. For effective target search, promising frontiers should be scheduled earlier in
the tour, such that the distance to the target object is minimized (Equation (3.1)). Conse-
quently, we need to minimize the total distance traveled to frontiers with high semantic
priority values p(f,w), which are expected to be close to the target. We frame target
search as a variant of the Minimum Latency Problem (MLP) [76], denoted as weighted
MLP (WMLP), where the planned visitation latencies of the frontiers are weighted using
the learned semantic priority model p(f,w).

Planner Formulation

We formulate the planning problem over a subset of nodes in the topological graph G,
composed of the the frontier nodes F; and the robot’s current node v; € V;, denoted as
F| = Fru{w}. A distance matrix D contains the lengths of the shortest paths through G,
between all pairs of nodes in 7. The tour T is a sequence of all nodes in 7] describing the
planned visitation order, always starting with the robot node v;. We denote that frontier
node f; is scheduled at position j in the tour as T(j) = f; for j > 0, while T(0) = v;. Let
P(f) be a priority function that assigns each node in F; a priority weight, and m = |F]|,
then the WMLP objective is

m-1 i
min 7 P(T() Y D(T(j~ 1), T()). (3.8)
i=1

j=1
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Algorithm 1: Prioritized exploration planning

Input:Semantic priority model weights w,,;,
1 Init G; «— @, F; < @, and unexplored map M
2 foreach time step t from 1 until t,;q do

3 M;, G;, F;, v; < PERCEPTIONUPDATE()

4 if Target found or F; = @ then

5 L break

6 if F, # F;_1 or Z(f) changed for any f € F, then

P < FRONTIERPRIORITIES(F}, W /) > Computes vector with
Equation 3.9)Vf € F;

8 T < LNSsoLVER (G;, F;, v, P)

9 fe e T() > Set goal node to next in tour
10 else

11 if v;=f, then

12 L fg < next frontierin T

13 P «— SHORTESTPATH(G}, vy, fg)

14 Move to next vertex in P

Assuming a unit velocity, this problem minimizes a priority-weighted sum of the visita-
tion latencies of each frontier, favoring earlier visits to high-priority frontiers. The pri-
ority function P(f) leverages the learned semantic priorities p(f,w ) to prioritize re-
gions that likely lead to the target. Combining semantic priorities with expected coverage
gain ensures robust exploration when the semantic priorities are ambiguous or incorrect,
e.g., when encountering unseen states. Instead of the weighted sum model used in Equa-
tion (3.3), we propose a heuristic priority function P(f) that always pursues coverage
but is biased to semantically important frontiers, which we found more robust for the
WMLP planner. Let p’(f) = P(fYppax; be the normalized semantic priority of frontier f

with ppax = maxser, p(f), then P(f) is given by

P(f) = (p'(f Wie) + @) - Z(f). (3.9)

Here, a € [0,1] is a hyperparameter controlling the trade-off between semantic priority
and coverage gain. Note that while we learn the weight vector W, = [Wpe WI,mle]Ts
we only use w ,;, for inferring frontier priorities, and discard the learned weight wr ;. of
the coverage gain. This allows for tuning the balance between target search and coverage
to reflect confidence in the learned semantic priority. The normalization of p(f) addresses
states where an important frontier only has a single non-zero feature or low feature acti-
vations in ¢(f), which can lead to a low-valued semantic priority p(f). By normalizing
p(f) by the maximum value in the current state, the combination of semantic priorities
and coverage gains proposed in Equation (3.9), with a fixed « across different scenarios,
becomes more robust.
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Plan Execution and Control

We now explain how the exploration planner navigates the robot through the environ-
ment, which is summarized in Algorithm 1. At every time step, the perception module
updates the topological graph, the frontier set, and the robot’s position. The tour is re-
planned whenever the current frontier set F; or their coverage gains change (Algorithm 1).
In that case, the priorities of all current frontiers are updated, and then a new tour T is
found by minimizing Equation (3.8) using a large neighborhood search (LNS) algorithm
[77]. In each iteration, our custom LNS algorithm uses random destruction of up to 30%
of the tour and reconstructs it using the cheapest insertion heuristic [78] follwed by a
2-opt swapping search [79]. Given a new tour, the next frontier in the tour is chosen as
the subgoal f; = T(1). If the tour is not recomputed and the subgoal f, has been reached
(Algorithm 1), the next node in T is set as the goal. Otherwise, f, stays the same. The
shortest path to f, is planned using A" [80] through G;, and the robot moves to the first
node in the path v, ; €V, applying a = | v, ; - .

Under the assumption of a perfect perception module that will correctly detect all fron-
tiers within its range, our planning approach will eventually visit every frontier becoming
available, independent of the priority function. Since only graph nodes with a minimum
coverage gain are considered frontier viewpoints, tours will not include already visited
frontiers, guaranteeing that the robot always moves towards unexplored spaces. There-
fore, our planner can ensure complete exploration of the environment.

3.5 Experiments
3.5.1 Experimental Setup

Experiments are conducted in a Python-based 2D simulator with simplified sensing and
navigation [62, 71]. Important aspects of the experiments are detailed below.

Scenario Setup

We use ProcThor [81] to sample multi-room indoor floorplans and realistic object place-
ments with 4 different room categories (kitchen, bathroom, living room, bedroom). We
generate environments with 3 kitchens, 3 bathrooms, 1 living room, and 1 bedroom, ar-
ranged with constrained connectivity (bedroom only accessible from the living room, bath-
rooms to the living room via the kitchens). We configure two scenario setups with a dif-
ferent target object and starting room type, detailed in the following sections. Top-down
maps and object data are extracted for the simulator, and additional small objects are
sampled to increase semantic feature density. Scenarios are curated to ensure challenging
tasks where semantic features offer an advantage for target search. Both setups use 30 sce-
narios for generating intervention datasets and 34 scenarios for obtaining the evaluation
results.

Oracle-based Data Generation

For training the semantic priority model, we generate synthetic interaction datasets by
simulating expert interventions with an oracle model based on the expert model in Sec-
tion 3.4.2. The oracle assigns priorities based on room types, favoring frontiers in target
rooms or exploring unseen rooms. Rooms are classified using a list of characteristic object
classes for each room category. We also generate a dataset with an exponential distance
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Table 3.1: Model and oracle parameters.

Parameter Oracle Value Model Value
Irrational choice probability p 0.0 0.1
Rationality parameter B 25.0 10.0
Min. distance discounting factor € 0.2 0.1
Room feature vector weight A - 0.7
Exponential distance dicounting factor Y 0.1 -
Oracle intervention threshold T 0.05 -

discounting model, that is §(f) = exp(-yd;(f)), as well as datasets with varied f§ and

to evaluate the robustness of our method to different expert behaviors (see Section 3.5.3).

Finally, we vary the number of episodes N in the intervention dataset to evaluate the
data efficiency of our method. The model parameters of the oracle are given in Table 3.1.

Training

The weights of the semantic priority model are trained using Adam [82] minimizing the
negative log-likelihood of the observed expert choices (Equation (3.7)) for 2000 epochs
with learning rate 0.01. For each dataset, the training uses 10 different random seeds.

3.5.2 Overview of Experiments
We evaluate the performance of our method in two task setups (see Section 3.5.1) and
present both qualitative and quantitative results. A coverage baseline, similar to [18],

uses the planner proposed in Section 3.4.3, but with the priority function P(f) = I(f).

For both task setups, we first present qualitative results to illustrate an example scenario
and the behavior of our method and the baseline. Second, we evaluate the target search
performance of our method using quantitative metrics and compare it to different oracle
methods, serving as upper bounds for the search performance. Using the same metrics, we
evaluate the robustness of our method to different expert datasets by varying the number
of interventions and parameters of the oracle model in the first scenario setup.

Metrics
We evaluate target search performance using the following metrics:

« Path Length Ratio to Coverage (PLR): The episode-wise ratio of the path lengths [ until
target discovery between the compared method and the coverage planner, i.e., PLR =

lsem/lcov- The compared method reaches the target faster than coverage exploration
for PLR < 1.

« Success weighted by Path Length (SPL): The ratio of the traveled and shortest path to
the target. A value of 1 indicates the shortest possible path to the target.

While the SPL metric is common in object search [83], the PLR metric is proposed as the
main metric to evaluate the efficiency of our method compared to the coverage planner as
it quantifies the relative advantage over coverage per scenario.
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(a) Learned Priority Model (b) Coverage Exploration
SPL = 0.784, PLR = 0.226 SPL =0.177, PLR = 1.0

Figure 3.2: Top-down views of an example scenario of the first task setup comparing coverage-driven exploration
with our learned semantic priority model. Frontier nodes of the topological graph are colored black, and others
are gray. Blue edges visualize the path taken by the robot; the larger blue circle is the robot’s position at target
discovery time, and the smaller blue circle is the initial position. The red rectangles are target objects. Object
instances are visualized as small squares colored according to semantic class.

Oracle Methods
In our performance evaluation, we compare our method to the following oracle methods:

« Oracle Interventions waypoint interventions from the oracle model overwrite the
coverage baseline behavior

« Oracle Priorities guides the planner with the semantic priorities from the oracle
model.

« Linear Oracle uses a linear expert model (as Equation (3.2)) with hand-tuned weights
to obtain semantic priorities.

3.5.3 Primary Scenario Results

In the primary scenario setup, the target object is a bed in the bedroom, and the robot
is initialized in one of the kitchens. Therefore locating the living room first and then the
door to the bedroom is necessary.

Qualitative Results

Figure 3.2 compares the paths taken by the coverage planner and our target search planner
with learned priorities in an example scenario (dataset N, = 30). The target object is in the
bedroom (lower left) the robot starts in a kitchen (top right) and a large living room at the
center connects the bedroom and kitchens. Figure 3.2 shows that our framework can guide
the robot to the target object using a substantially shorter path than the coverage planner.
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Figure 3.3: Performance results in the primary target search task: Comparison of our method to oracle methods,
displaying the episode-wise path length ratio (PLR) to the coverage baseline (dashed line) as boxplots.

Initially, the robot navigates to the living room instead of exploring the other doorway
below, as observed objects in the living room are prioritized. The robot discovers a higher
density of relevant objects in the lower part of the living room in turns in that direction.
The robot also prioritizes door objects to search for the bedroom, leading the robot to the
correct target room. Finally, discovered bedroom objects yield the highest priority and
lead the robot to the target object. Conversely, the coverage planner prioritizes frontiers
only based on coverage gain and first explores the large open spaces in the living room
and, subsequently, the smaller rooms, ignoring semantic features. These exemplary results
illustrate that our framework can leverage semantic features in the environment to achieve
better target search efficiency than coverage-driven exploration.

Performance Results

We evaluate the target search performance of our method using Ny = 30 in multiple test
scenarios. The 340 episode results (10 training seeds and 34 test scenarios) are visualized
as boxplot in Figure 3.3. The orange boxplot shows that our method significantly outper-
forms the coverage planner (dashed line) in most scenarios (median PLR = 0.644), up to
a best-case performance of PLR = 0.11. In 88% of episodes, our method is more efficient
than the coverage planner, and in 97% of the episodes, PLR is smaller than 1.3, indicat-
ing that cases where our method misguides the robot are rare. Moreover, our approach
matches the linear oracle and is only slightly outperformed by the non-linear oracle guid-
ance. These results show that our approach learned the underlying semantic priorities
of the oracle expert and effectively leverages them in multiple unseen scenarios. That is,
by incorporating the learned priorities in the cost function of the planner, it prioritizes
exploration frontiers likely to lead to the target. Table 3.2 additionally reports the SPL
metric indicating a strong advantage in absolute target search performance over coverage
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Table 3.2: Comparison of our method with the coverage baseline and oracle methods across different metrics,
defined in Section 3.5.2

Method SPL (Task Setup 1) SPL (Task Setup 2)
Coverage Priorities 0.406 = 0.196 0.341 £ 0.313
Oracle Priorities 0.704 + 0.202 0.564 + 0.275
Oracle Intervention 0.712 £ 0.206 0.529 + 0.281
Linear Oracle Priorities 0.650 + 0.207 0.520 + 0.271
Learned Priorities (ours) 0.627 + 0.225 0.520 + 0.313
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Figure 3.4: Comparison of different dataset sizes and oracle behaviors used for training, displaying PLR perfor-
mance of the resulting priority models.

exploration and competitive performance compared to oracle methods.

Robustness to Data Variation

Next, we analyze the robustness of our method to different dataset sizes Nps and expert
behavior by varying the oracle parameters. For each dataset, semantic priority models
are trained and tested as described in Section 3.5.3. Figure 3.4 shows the resulting PLR
boxplots. The left subplot shows the results for a reduced number of training episodes,
(Neps = 30 is the same as in Figure 3.3). It is evident that with all 4 datasets, similar PLR
performance is achieved. However, performance drops from N = 30 to N, = 20, but
further reduction up to Ne,s = 5 does not affect the performance. Note that our method can
achieve strong target search efficiency with only N; = 23 expert interventions (N = 5).
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(a) Learned Priority Model (b) Coverage Exploration
SPL = 0.509, PLR = 0.530 SPL =0.270, PLR = 1.0

Figure 3.5: Top-down views of an example scenario of the second task setup comparing the behavior of coverage-
driven exploration and our learned semantic priority model. Visuals follow the same conventions as in Figure 3.2.

A substantial improvement with more training data is only observed at N,,s = 30, which
likely results from highly informative data points that only occur in this dataset, indicat-
ing that additional data can lead to further performance gains. The right subplot shows
the results for 4 different oracle variations: exponential distance discounting instead of
linear (Equation (3.3)), reduced expert rationality § (increased noise, Equation (3.6)), and
increased expert intervention threshold (less engaged, more selective expert), all with
Neps = 30. Our method is robust to these changes and yields similar results across all
variations. The lowest performance occurs for 7 = 0.2, since a less engaged expert might
miss providing some informative interventions.

3.5.4 Secondary Scenario Results

The secondary scenario setup uses the same maps as the primary, but the target object is
a toilet in one of the three bathrooms, and the robot starts in the living room. Here, the
robot must first prioritize finding any of the kitchens that will lead to the bathrooms and
the target object. In this setup it is harder to leverage semantic features as two kitchen-
bathroom pairs might attract the robot but do not yield the target.

Qualitative Results

Figure 3.5 presents an example scenario of the secondary target search task, comparing
the coverage planner with our planner guided by learned priorities. The target object
is in the bathroom on the right side, and the robot starts in the bottom branch of the
living room. The living room connects to a large bedroom in the center and 3 kitchen-
bathroom pairs at the top of the map. The coverage robot incurs much performance loss
when exploring the bedroom, while the learned semantic priorities favor continuing in the
living room. Both remaining paths in the upper part of the map are very similar, as the
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Figure 3.6: Performance results in the secondary target search task: Comparison of our method to oracle methods,
displaying the episode-wise path length ratio (PLR) to the coverage baseline as boxplots.

semantic features cannot strongly favor one direction over the other; all small rooms are
semantically promising. This example scenario indicates that the advantage of semantic
over coverage exploration is less pronounced in this scenario setup, as only the bedroom
is a clearly semantically irrelevant area, while the remaining rooms are all prioritized.

Performance Results

Quantitative performance results in the secondary task setup are presented in Figure 3.6,
analogous to Section 3.5.3. While our method outperforms the coverage planner (PLR < 1)
in most episodes, the mean PLR of 0.853 is closer to 1 than in the primary task setup. This
indicates more similar behavior of our method to the coverage planner, possibly as se-
mantic priorities are less informative for target search. This is also supported by the PLR
boxplots of the oracle methods, showing that more episodes perform similar to coverage
than in the primary setup. Moreover, this task setup features a larger median gap between
our approach and the oracle methods This shows that the difficulty of this task setup is ex-
acerbated when using potentially noisy learned semantic priorities, giving more influence
to the coverage gains in the tour cost function (Equation (3.9)). However, while some sce-
narios do not provide much room for improvement over coverage, the results show that
our approach substantially improves target search efficiency in many other scenarios.

3.6 Conclusion

In this paper, we presented a novel approach to target search in unknown environments,
combining semantic priorities learned from expert guidance with a global exploration
planner. We trained the semantic priority model weighting exploration frontiers based
on semantic features, such that a derived expert model matches a dataset of expert in-
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terventions. The combinatorial exploration planner prioritizes frontiers based on seman-
tic priority and expected coverage gain, ensuring robust exploration independent of the
learned model. The results show that the exploration planner guided by the learned pri-
ority model exhibits efficient target search behavior and outperforms a purely coverage-
driven planner variant across different scenarios and simulated expert datasets. Future
work will consider more realistic environments with complex semantic relationships and
learning from real human data.
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Semantic Target Search and
Exploration using MAVs in
Cluttered Environments

Autonomous target search is crucial for deploying Micro Aerial Vehicles (MAVs) in emergency
response and rescue missions. Existing approaches either focus on 2D semantic navigation in
structured environments, which is less effective in complex 3D settings, or on robotic explo-
ration in cluttered spaces, often lacking the semantic reasoning needed for efficient target
search. This chapter overcomes these limitations by proposing a novel framework that uti-
lizes semantic reasoning to minimize target search and exploration time in unstructured 3D
environments using an MAV. Specifically, the open vocabulary inference capabilities of Large
Language Models are employed to embed semantic relationships in segmentation images. An
active perception pipeline is then developed to guide exploration toward semantically rele-
vant regions of 3D space by biasing frontiers and selecting informative viewpoints. Finally, a
combinatorial optimization problem is solved using these viewpoints to create a plan that bal-
ances information gain with time costs, facilitating rapid location of the target. Evaluations
in complex simulation environments show that the proposed method consistently outperforms
baselines by quickly finding the target while maintaining reasonable exploration times. Real-
world experiments with an MAV further demonstrate the method’s ability to handle practical
constraints like limited battery life, small sensor range, and semantic uncertainty.

This chapter is based on: N. Sethi*, M. Lodel”, L. Ferranti, R. Babuska, J. Alonso-Mora, "STEM: Semantic Target
Search and Exploration using MAVs in Cluttered Environments”, under review. *Indicates equal contribution.

Statement of Contribution: Max contributed the initial idea of extending existing frontier-based MAV exploration
methods with semantic priorities and developed the target search planner. Under Max’s supervision, Nikhil de-
veloped and implemented the pipelines for semantic priority masking and viewpoint evaluation. Max and Nikhil
jointly contributed to the experiments and writing of the paper. Laura, Robert, and Javier provided discussions
and feedback on the results and the manuscript.
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4.1 Introduction

Micro Aerial Vehicles (MAV) are a promising tool to effectively search and explore com-
plex unknown environments in domains such as search and rescue, inspection, and envi-
ronmental monitoring. To relieve human operators from the challenging task of guiding
MAVs through uncertain environments, methods for autonomous search of target objects
are critical to improve the efficiency and effectiveness of such MAV missions.

In large and cluttered environments with many occlusions, the time efficiency of the
search strategy is crucial due to limited available flight time and onboard sensor capabil-
ities. Humans can efficiently search unknown spaces by leveraging their experience as
well as semantic information, such as observed objects, to reason about the target’s likely
location. For example, dangerous chemicals are more likely to be found in a storage room
than in an office. Building on this idea, recent work [16, 19, 20, 84-89] has shown that
learning such semantic priors can significantly reduce the target search time by guiding
the robot toward promising regions. However, as semantic observations or priors can
be uncertain or unavailable in many real-world scenarios, purely relying on such seman-
tic guidance may lead to inefficient behavior. Therefore, a robust target search strategy
should balance semantic search and coverage-maximizing exploration to ensure an effi-
cient and successful search.

Existing works on semantically-guided target search [16, 19, 20, 84-89] have focused
on ground robots moving in 2D, while MAVs’ 3D capabilities remain underexplored. In
particular, MAVs can overcome occlusions in cluttered environments by changing their
altitude and, therefore, improve search efficiency. Moreover, these target search methods
rely on inferring semantic relationships from large pre-trained models [85], potentially
generalizing poorly across highly specific scenarios, such as in disaster response. This un-
derlines the need for integrating and balancing semantic search with efficient coverage-
maximizing exploration approaches such as [9-11]. These methods achieve high coverage
efficiency by leveraging long-horizon combinatorial planning techniques, but ignore se-
mantic information that could guide the search towards the target.

In this work, we present STEM, a framework for Semantic Target Search and Explo-
ration for MAVs. By building on recent advances in exploration planning and semantics-
driven navigation, our framework enables both semantically guided and efficient explo-
ration in complex 3D environments.

4.1.1 Related Work

In this section, we discuss existing approaches and how they relate to our work, start-
ing with planning approaches for pure coverage exploration, and then focusing on target
search approaches that leverage semantic information.

Exploration Planning

The problem of navigating a robot autonomously through an unknown environment to

build a complete map from sensor observations has been investigated using a variety of dif-

ferent approaches. The fundamental idea of most approaches is to choose robot actions or

plans such that future viewpoints efficiently minimize unknown space in the environment.

Viewpoints are poses in 3D space from which the robot can observe the environment.
Sampling-based approaches randomly sample viewpoints in free space and evaluate



4.1 Introduction 43

their potential information gain about the map. Rapidly Exploring Random Trees (RRT)
have been used to plan a local tree of informative viewpoints [90-93], with [93] integrat-
ing object search by prioritizing salient objects in the environment. However, the high
computational costs limit the planning horizon, leading to greedy and inefficient explo-
ration.

Frontier-based exploration methods focus on observing the boundary between known
and unknown space, the frontiers, to incrementally reduce the unknown space. While
early methods [17] just choose the closest frontier as the next observation target, recent
work shows that selecting frontiers to maintain high flight speed improves exploration
efficiency [94]. Similarly to sampling-based approaches, these methods lack long-horizon
planning capabilities.

Recent works have shown that combining elements of both sampling-based and
frontier-based exploration with planning can improve exploration efficiency. The ap-
proaches in [9-11, 95, 96] sample viewpoints around different frontiers, and then find a
time-optimal global plan that connects these viewpoints using combinatorial planning.
Following this approach, [9-11] plan over frontier viewpoints by solving a Travelling
Salesman Problem (TSP). Specifically, the FUEL framework [9] considers drone dynamics
in the TSP cost matrix to achieve efficient and agile exploration. In FAEL [95], a version of
the Minimum Latency Problem (MLP) is used for planning that prioritizes frontier view-
points with high coverage gains. Such approaches can be scaled to large environments
using coarse global planning [11, 96].

The authors of FUEL [9] show that their approach achieves efficient and robust explo-
ration performance on a real-world MAV platform in varying, complex 3D environments,
due to an effective integration of global and local planning. As we are interested in 3D
semantically-guided exploration with MAVs, we build on the FUEL framework [9] as ex-
ploration baseline, extending it with 3D semantic representations and planning to enable
semantic target search. Our target search planner uses an MLP-based formulation simi-
lar to FAEL [95] and integrates semantic information to guide exploration toward target-
relevant objects.

Target Search

Autonomously searching for a target object in an unknown environment has been pri-
marily investigated in the domain of indoor structured environments such as apartments,
where clear semantic relationships between objects exist [16, 19, 20, 84-89].

These approaches differ in the source of learned semantic priors and the planning strat-
egy used to guide the robot toward the target. In earlier works, domain-specific environ-
ment datasets are used for training navigation policies using reinforcement learning (RL)
[16, 84] and training cost-to-go functions using self-supervised learning [19, 20]. Con-
versely, recent works [85-89] use foundation models such as Vision-Language Models
(VLM) [97, 98] or Large Language Models (LLM) [21] trained on internet-scale data. The
works [85-88] demonstrate zero-shot VLM/LLM-based target search in indoor environ-
ments using embedding similarity scores to choose exploration frontiers. In [85, 87, 88],
the frontier selection is facilitated by propagating similarity scores into 2D [85, 87] or 3D
[88] map representations. SEEK [89] proposes to distill semantic knowledge from an LLM
into a lightweight model for efficient online inference.
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The planning strategies used in most of these works are either based on learned navi-
gation policies [16, 84] or greedy frontier selection [19, 20, 85, 86]. In contrast, [89] uses a
Bayesian network prediction model and value iteration planning to choose the best region
to search.

The main limitation of these methods is that they only consider greedy decision-
making in 2D and structured indoor environments. We aim to fully make use of the
MAV’s 3D capabilities and address semantic uncertainty in unstructured environments.
Our method builds on [86], owing to its simple approach to obtaining LLM-based quanti-
tative semantic relationships, and extends it to a 3D planning pipeline that balances target
search and exploration. That is, we propagate the semantic similarity scores into 3D space,
similar to [88], and use a combinatorial planner that prioritizes viewpoints covering fron-
tiers with high semantic similarity to the target.

4.1.2 Contribution

The main contribution of this paper is an active perception pipeline that can embed se-
mantic priorities in 3D, generating a rich set of viewpoints with balanced coverage and
semantic information gains. Using a combinatorial target search planner, efficient global
plans through these 3D viewpoints are created that minimize the expected search time.
Building on the FUEL framework [9], we provide a method for semantic frontier eval-
uation and a novel planner formulation that prioritizes viewpoints likely leading to the
target based on semantic information. We conduct extensive experiments in both simu-
lation and real-world environments using a Micro Aerial Vehicle (MAV) that validate the
effectiveness of our approach. Our quantitative results show that our method consistently
outperforms exploration-only baselines in terms of target search time and success rate.

4.2 Preliminaries

4.2.1 Problem Formulation

An MAV is tasked with exploring a previously unseen 3D environment represented as
bounded volume W < R? to find a target object in minimum time. The MAV’s pose in
the environment at time instant ¢ is defined as x; € SE(3), and we assume that fast and
accurate 3D position and attitude controllers are available, such that the robot can follow
a trajectory by tracking pose increments [99]. It has a maximum linear velocity vp,qy.,
maximum acceleration a,,,,, and maximum yaw rate w,,,,. The robot is equipped with
an RGB-D camera that provides a local observation of the environment. At each time
instance t the robot receives a measurement tuple z; = (x4,Z.,Z;), where Z, and Z; are
the RGB and depth images, respectively.

Using the RGB images, the robot can perform semantic segmentation to identify ob-
jects in the environment. A set S of possible objects of interest (OOIs) represented by
natural language semantic labels is available for segmentation. Importantly, it is assumed
that the objects in S have semantic relationships defined by a function F : § xS — R*,
that quantifies how semantically related two objects in S are. It can be exploited to guide
the robot towards a target object 0" € S. A target is considered found when its relative
semantic segmentation area in the robot’s field of view crosses a threshold A,,;,,.
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Problem Statement: Given a target object 0", a bounded volume W, and the robot’s
initial configuration x,, find a collision-free global plan ¢ through WV at each time instant
t such that 0" is discovered in minimum time, using the history of observations z,.; and
the semantic relationship function F.

4.2.2 Background

Frontier Exploration Planning

The goal of robotic exploration is to efficiently build an occupancy map M of a bounded
volume W using local range observations such as depth images. This map is a 3D volu-
metric grid of voxels, with each voxel my € M storing the probability of occupancy Pg.
These probabilities are updated using an inverse camera sensor model, and Bayesian Infer-
ence [100]. Building an occupancy map of an unknown environment requires the robot
to reduce the unexplored space in M.

Frontier-based exploration is an effective approach for reducing unknown space,
which first detects a set F of frontiers, i.e., boundary voxels between known and unknown
space. Then, it directs the robot to observe these frontiers efficiently. In this work, we
build on the recent frontier-based MAV exploration method FUEL presented in [9], which
is introduced briefly hereinafter.

To maintain efficiency, frontiers are clustered into groups of voxels using a region-
growing algorithm, leading to a set of clusters ', each with a minimum size F,;,. That
is, a cluster K; € K with K; c F is only valid if |Kj| = Fp,;, Around these clusters, a set
V of viewpoints is sampled, which are poses in free space that can 'view’ the frontiers.
Viewpoints are further filtered using a minimum information gain I,,,;,, considering only
those that view at least I,;,;;, frontier voxels. Unknown space in V can be reduced by find-
ing the most efficient path through high-quality viewpoints. Recent frontier exploration
methods such as FUEL [9] and FAEL [95] use combinatorial optimization methods to plan
a non-myopic global path through the viewpoints in V.

Semantic Relationships

Semantics are labels or categories that humans use to classify objects. Humans use ac-
cumulated semantic knowledge to derive relationships between objects of interest when
looking for targets. For instance, when searching for a 1aptop, we first look for a table as
opposed to a toilet because the former is more correlated with the target object. These
relationships are formalized by the semantic relationship function F that maps a set S of
semantic classes represented by language labels to scalar-valued similarity scores.

Large language models (LLM) or vision-language models like CLIP [101] or BERT [21]
can use their contextual understanding to infer such relationships. These models use a
neural network to first transform the text input to vector embeddings, which are real-valued
representations of the text in a high-dimensional feature space. Objects that often occur
close to each other often have similar vector embeddings, as they appear in similar contexts
in the training data. Therefore, the cosine similarity score can be used to approximate
the semantic relationship function F between two labels, obtained by calculating the dot
product of their vector embeddings a and b:

a-b

F(a,b) =
lalb]

(4.1)
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Such similary scores have been employed for target search in [85, 86].

4.3 Methodology

4.3.1 Overview

To motivate our method, consider how humans search for important objects. We infer
target-object relations from the environment context, create a mental map of interesting
objects, and then search near these OOISs to find the target. For instance, we might search
near a wardrobe to find clothes or under a table to locate a person during an earthquake
(see Fig. 4.1). Our method follows the same approach: To quickly find a target, it is
essential to minimize unknown space near objects of interest that are conceptually and
spatially related to the target object. Therefore, we prioritize search in specific regions, un-
like coverage-based exploration, which tries to minimize all unknown space. Additionally,
balancing both tasks is necessary to ensure that the method works even under semantic
uncertainty and does not incur significant costs in exploration time. Our pipeline consists
of three components.

« Semantic Priority Masking: This module processes the RGB image to segment
objects, ranks them using an LLM, and compresses the segmentation image into a
2D priority mask (see Section 4.3.2 and Figure 4.1).

« Active Perception: This module uses the generated priority mask, the depth image,
and the drone’s state to (a) sample a set of 3D frontier viewpoints in free space, and
(b) evaluate the semantic information gain of each viewpoint (Section 4.3.3).

« Target Search Planner: This module solves a combinatorial optimization problem
over the 3D viewpoints to create a global plan that prioritizes high-gain viewpoints,
minimizing the expected search time (Section 4.3.4).

Figure 4.2 visualizes the active perception and planning parts of the pipeline.

4.3.2 Semantic Priority Masking

The goal of this module is to use the RGB image 7, to generate a priority mask image
7, that has pixel-wise discrete priority values for each object of interest. A semantic
segmentation image Z; and a set S; € S of currently visible classes are generated using
7. at time t. The user-defined set S consists of a variety of relevant objects that can be
encountered in the present scenario. In this work, we assume the existence of a learning-
based method, such as Mask-RCNN [102] or Fast-SAM [103], that can generate Z; and
S;.

Instead of using Z directly, we compress the semantic segmentation image into a pri-
ority mask Z,,. This image contains pixel-wise discrete integers for each class, indicating
their relative importance to the target class. The process to generate this mask is demon-
strated in Fig. 4.1. A priority mapping function r : § — IN* is derived offline as detailed
below, and then queried online. The priority mask Z, is created at runtime by replacing
each pixel in Z; with its corresponding priority value.

Offline Priority Inference: First, situational context about the scenario is added to
the target object label in the set S, using the formulation: [1abel] [preposition] [context],
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Figure 4.1: Semantic priority masking pipeline. Red arrows and blue arrows represent online and offline opera-
tions, respectively. At runtime, the priority of each class in S; is queried from a pre-computed priority vector to
create the priority mask Z,,.

e.g., human in earthquake. This helps to derive more accurate relationships between
the target object and other environment objects. Second, each class in S is tokenized
and passed through the LLM (bert-large-uncased [21]) to produce an output tensor of
embeddings, which is averaged along the sequence dimension, resulting in 7 of size |S| x
n,. Here, each row represents a class in the embedding space. The target embedding vector
is 7*. To obtain cosine similarity scores for each class, each vector in 7 is compared to 7
using Equation (4.1), producing values between 0 and 1. Finally, the similarity scores are
scaled to integer values within the range [1, pyay]. Here the maximum priority value py.y
is a tunable parameter controlling the sensitivity of the semantic search. The resulting
priority mapping function r from the set of classes to integer-valued priorities is stored
offline, and then queried online with the set S;.

4.3.3 Active Perception
The goal of the active perception module is to use the priority mask 7, the depth image
74, and robot pose x; to create a set of viewpoints V in free space and corresponding
information gains I for each viewpoint.

Section 4.3.3 provides a method for mapping of semantic priorities in 3D and Section
4.3.3 describes a method to diffuse semantic priorities to neighboring frontiers. Section
4.3.3 describes the process of generating viewpoints in free space and Section 4.3.3 de-
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Figure 4.2: Active perception and planning pipeline. The blue blocks are from the FUEL framework [9], and
Subfigure (b) is inspired by [9]. In (d), the priority map voxels are cubes, and frontier voxels are spheres.

scribes our procedure to calculate information gain for each sampled viewpoint. Figure
4.2 shows an overview of the complete active perception pipeline.

Priority Map
The goal of this module is to represent the priority values in Z,, in 3D space where the
drone will subsequently navigate and collect new observations. The priority mask Z,, the
depth image 7, and robot pose x; are used to create a 4D position-intensity point cloud
observation Q. Each point Qj = [q,,,p,,]” in this point cloud is represented by the 3D
position in the world frame q., = [x,y, V1, Z,,] | and the priority value p,, as the intensity
channel. Let d; = [u;,v;]” be a pixel in the depth image Z, with depth value z; = Z;(d;)
and p,, = Z,(d;) be the corresponding priority value. The point cloud Q is generated using
standard projective transformations using the camera’s intrinsic and extrinsic parameters.
The point cloud is also post-processed using voxel-grid filtering and statistical outlier
removal. The priority value p,, at each 3D point k in Q is then used to update a discrete
volumetric grid P at the corresponding voxel py € P using a simple weighted update (Eq.
4.2)

pr<— (-a)p+ap, Vke{l,.,|Q} (4.2)

Here « is a learning rate that updates the map progressively and prevents noise from
being integrated, and |Q| is the size of the point cloud. Finally, a local section P; < P of
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the priority map centered around the drone is retrieved to keep the computational load

bounded.

Frontier Diffusion
The motivation for this section directly draws from the goal of minimizing unknown space
near objects of interest (Section 4.3.1). If frontiers can have increased importance near
objects of interest, we can refine the search to interesting regions of the environment and
find the target faster.

This idea is implemented by diffusing the priority values from the local map section
‘P; into neighboring frontier voxels using a 3D partial convolution. We use a partial con-
volution for the diffusion process as it normalizes over only the valid (non-empty) voxels
in the sparse frontier structure [104]. A Gaussian kernel with spread o, and size W is
used, thus making it a 3D Gaussian filter. Fig. 4.2 shows a simulation example from RViz,
where the diffusion process is applied to 3D frontiers. The diffusion process is applied
to each frontier voxel in a local region surrounding the drone to maintain computational
efficiency.

The frontier diffusion module thus results in semantic priorities attached to each fron-
tier voxel, that is, a frontier priority function D : F — [1,ppax]- Which can further be
used for downstream tasks like informative path planning.

Viewpoint Sampling

The goal of this section is to generate a set of viewpoints } which are candidate poses
sampled in free space to *view’ the frontiers in F. This module directly uses the approach
from the FUEL framework [9], which we briefly describe here.

The viewpoint generation is based on the frontier clusters X introduced in Section 4.2.2.
Since even small regions of space can hold significance in semantic target search, we set
the minimum cluster size threshold used in FUEL to F;, = 0. Frontier viewpoints v €
are generated by uniformly sampling free-space poses in a cylindrical coordinate system
around the centroid of each frontier cluster (see Figure 4.2c). The yaw angle of each view-
point is set to maximize the sensor coverage of the frontier cluster. For more details, see

[9].

Viewpoint Evaluation

This section describes a heuristic for computing a balanced coverage and semantic infor-
mation gain for a viewpoint v € V, using the diffusion-based frontier priorities D(f) of
each frontier voxel f € F.

Consider Figure 4.2d, where the frontier voxels are colored based on their priorities.
Rays are cast from a candidate viewpoint v toward the voxels in F to determine the pri-
ority value at the ends of valid rays. A ray is considered valid when it is unobstructed by
occupied or unknown space in M. Voxels at the end of valid rays create a new visible fron-
tier set F,, ¢ F for each viewpoint v € V. The frontier priority value D(f) for each f € F,
is then passed through a transfer function ® and summed up to give the total information
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gain I(v) of the viewpoint v, as in

®(f) = max{exp (y(D(f) - 1).1} (4.3)
I(v)= ), o(f), (4.4)
feF,

where y € R" is a tuning parameter for the balance between semantic and coverage explo-
ration.

To demonstrate this, consider high-priority frontier voxels near semantic objects (as
in Figure 4.2d), which are exponentially weighted by the transfer function ®. Thus view-
points oriented towards semantically meaningful regions of the 3D space achieve a high
information gain I, and can be prioritized in semantic target search. Conversely, con-
sider a frontier f far from semantically interesting objects with the lowest priority value,
i.e., D(f) = 1, resulting in a volumetric coverage gain ®(f) = 1. The parameter y controls
the greediness towards semantic priorities: a higher y increases the difference between
semantically relevant and irrelevant areas, while a lower y shifts the objective towards
coverage exploration. For y = 0, the viewpoint gain equals the number of covered voxels,
ie, I(v) = |F,|

The described method for information gain evaluation can integrate semantic priorities
with volumetric coverage and uses a tunable exponential weighting function to ensure that
semantically relevant viewpoints are prioritized.

4.3.4 Target Search Planner

The goal of the global target search planner is to use the set of viewpoints V and their
respective information gains I generated in the active perception module together with
the drone’s state x; to plan a global path that minimizes the time to find the target object.

Our approach extends the idea of combinatorial planning between different viewpoints
[9, 95] to determine their optimal visitation order. While FUEL [9] uses a traveling sales-
man problem (TSP) that minimizes the total traveling distance, semantic target search
needs to prioritize viewpoints with high semantic information gain, which are expected
to be close to the target. To this end, we propose to formulate the combinatorial target
search problem as a variant of the Minimum Latency Problem (MLP) [76] that minimizes
the average waiting time, or latency, of multiple tasks, which in our case are the viewpoints.
Specifically, our weighted MLP (WMLP) formulation prioritizes minimizing the latency of
semantically promising viewpoints, using the information gains I(v) as weights for each
viewpoint v € V.

The WMLP is formulated over a modified set of viewpoints V*: Firstly, we only con-
sider viewpoints with a minimum information gain I;,, i.e.,, V' ={v € V1 I(v) = L},
similar as done in [9]. Secondly, we add the drone’s current pose x;, i.e., V' = V' u{x;},
planning over N = [V’| poses. The tour T describes a visitation order of the viewpoints
v €V, where T(i) = v denotes the i'" viewpoint in the tour being v;, for i, j € {0,---,N - 1}.
By definition, T(0) = x;, as each tour starts at the drone’s current pose. Let C € RN*N be
a cost matrix quantifying the traveling time between viewpoints, where C;; is the time
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required to move from viewpoint v; to v;. Then the WMLP is formulated as

N i
min Z I(T()) Z Cr(j-1),1())> (4.5)
i=1 j=1

where the inner sum computes the latency until visiting the ith viewpoint T(i), and the
tour cost function is a weighted sum of these latencies using the viewpoints’ informa-
tion gains I(T(i)). This formulation extends the classical MLP with uniform weights to
weighted task latencies.

Solving the problem in Equation (4.5) means that viewpoints v with higher information
gain I(v) get scheduled earlier in the tour. Since the information gain was calculated by
balancing coverage and semantic priorities in Section 4.3.3, this objective pursues both
coverage and target search, and is thus more robust to semantic uncertainty.

While defining the cost matrix C using Euclidean distances is common in TSP formu-
lations and robotic exploration [11, 95], it does not account for the complex dynamics of
MAVs. Thus, we use the kinematic cost function from [9] to compute the traveling times
in the cost matrix C. Cj; is then defined as the minimum time required to switch between
two viewpoints v;, Vv; € V.

lengthi v-p,vP v}p—vfp
= max gthCy; ]),|l i (4.6)

Vmax Wmax

C

ij

Here, ];p is the 3D position, length(vlp, v]p) computes the path length between vlP and v}’ ,

and v; is the yaw angle of the it" viewpoint from set V"

The objective in Equation (4.5) is approximately solved using a large neighborhood
search (LNS) algorithm [77] that iteratively destroys and reconstructs the tour 7. In each
iteration, the custom LNS algorithm randomly removes up to 30% of the tour and then
reconstructs it using the cheapest insertion heuristic [78] follwed by a 2-opt swapping
search [79].

In summary, the tour T minimizes the time to arrive at regions of the environment
that are semantically important with respect to the target object, thus approximately min-
imizing target search time.

4.4 Experimental Setup

4.4.1 Simulation Environments
Two realistic simulation environments were used to evaluate the algorithm in the PX4-
Gazebo SITL simulator®. The Earthquake is a custom environment (Fig. 4.3), and the Cave
(Fig. 4.4) is a section of the ’Cave Circuit 02’ world from the DARPA SubT Challenge®.

A common superset of objects was used as semantic clues for both environments. This
set combines object classes from the DARPA SubT challenge and common sense objects
that are expected near a human target in search and rescue situations. We also included

'docs.px4.io/main/en/simulation/ros_interface.html
*https://www.darpa.mil/program/darpa-subterranean-challenge
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Figure 4.4: Cave environment (Gazebo).
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Table 4.1: Parameter values for experiments. Note: (e.q. = earthquake).

Parameter Value ‘ Parameter Value
Priority update rate a 0.9 Max. velocity Vmax 0.5m/s
Max. acceleration Amax 0.5 m/s? | Max. yaw rate Omax 0.7 rad/s
Image height h 480 Image width w 848
Kernel spread o 2 Kernel size w 5
Semantic greediness factor Y 4 Max. priority DPmax 8

Min. viewpoint information gain I,,;, 10 Detection threshold A,,;, 0.01
Number of object classes IS 22 Min. frontier size Foin 0

unimportant distractor objects like toy and plant to evaluate whether the planner prior-
itizes semantically relevant objects rather than any observed object. Both environments
contain a trapped human as the target, sufficiently occluded to make the problem chal-
lenging.

We use ArUco markers as a proxy for 2D image segmentation because existing de-
tection pipelines performed poorly in a non-photo-realistic simulator like Gazebo. These
markers were placed near their respective semantic objects, and the 2D segmentation im-
age then contains a pixel-wise label for each marker o € S.

Both environments were made sufficiently large to ensure realistic exploration, and
the start pose was chosen to be far from the target to observe the effect of semantic ex-
ploration. Since we evaluate the experiments on the absolute time-to-target metric rather
than a relative metric (see Section 4.5.1), starting from random start poses in a relatively
small environment will not give comparable results. However, it was observed that there
is substantial variance in the SITL simulation (Section 4.4.2), primarily caused by non-
deterministic communication between different software nodes, resulting in different ob-
served trajectories for multiple runs with the same start pose. Therefore, we ran the same
experiment multiple times for quantitative evaluation in each environment instead of vary-
ing the start pose.

4.4.2 Software Architecture

Our software stack is based on the Robotics Operating System (ROS) and integrates our
target search method described in Section 4.3 with the modified FUEL exploration pipeline
[9]. The architecture is demonstrated in Fig. 4.5. A key capability of the software is
that we use the same pipeline for both hardware and software experiments, with the only
difference being the source of the measurement tuple z;. For simulation, this measurement
comes from the Gazebo simulator, whereas for hardware experiments, this measurement
comes from the onboard camera and motion-capture-based odometry. The parameters
used by the planning pipeline are summarized in Table 4.1.

4.4.3 Hardware Setup

Hardware experiments were performed with a custom-built Micro Aerial Vehicle (MAV)
previously used in [105] and modeled for the Gazebo simulation experiments. The MAV
is equipped with an Intel Realsense D455 camera and an Nvidia Jetson Xavier NX on-
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Figure 4.5: Software architecture. *A modified version of FUEL [9] is used for mapping and local planning.

board computer. A HolyBro Kakute F7 V2 flight controller was used with PX4 autopilot
software. The MAV was localized in the environment via a Vicon motion capture system.
ArUco markers were placed in the environment as semantic objects of interest, and the ex-
periments were conducted in sufficiently cluttered configurations with screens and boxes
as obstacles. Note that in the hardware experiments, we do not use LLM-based priority
inference (see Section 4.3.3) but instead provide a handcrafted priority function r, to focus
the experiments on the active perception and planning pipeline rather than the priority
inference. Figure 4.6 shows a potential environment for the experiment.
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Figure 4.6: Lab environment for hardware experiments with example scenario.

4.5 Simulation Results

In this section, we present and discuss the results of our proposed method STEM on the sim-
ulation environments from Section 4.4.1. Evaluation metrics are proposed in Section 4.5.1,
and two baselines are compared in Section 4.5.2. We provide the primary performance
comparisons with baselines in Section 4.5.3, which are further supported using qualitative
results in Section 4.5.4. Finally, we also conduct an ablation study to analyze the impor-
tance of the proposed target search planner in Section 4.5.5.

4.5.1 Evaluation Metrics
We employ the following metrics:

Success %: This metric calculates the percentage of episodes when the target was
successfully found in a total of n trials. An object o is considered found when the fraction
of object pixels A, crosses a threshold A,,;, in the segmentation image, with A, defined as
Ao = B/(wh). Here, f is the number of pixels belonging to the object’s ArUco marker, and
w and h are the segmentation image width and height, respectively. The parameter A,,;,
depends on the environment complexity and camera intrinsics. For example, a value of
Ao = 0.02 means that the marker occupies 2% of the field of view in the image plane.
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Table 4.2: Comparison study with baselines in the Earthquake and Cave environments. Two baselines from
Section 4.5.2 were compared to our method on Success %, Time to target ¢+, and exploration time .

‘ Target search ‘ Exploration

Env ‘ Method ‘ Success % Time t* (s) ‘ Time 7 (s)
FUEL-original 5% 79.8+ 0.0 107.3+17.3

Earthquake | FUEL-complete 100% 76.6 +33.5 129.4+12.9
STEM (Ours) 100% 56.9+22.8 139.9+11.9
FUEL-original 40% 65.0+14.8 93.6+30.7

Cave FUEL-complete 90% 95.3+26.6 166.4£31.5
STEM (Ours) 90% 64.1+20.3 130.7+19.8

Time to target: A commonly used metric for ObjectNav tasks is Success weighted
by Path Length (SPL) [106]. A notable drawback of this metric is that it only considers
travel distance in SE(3), and for robots with complex dynamics (like MAVs), the completion
time is recommended [107]. Thus, we record the first time instant when a target 0" was
successfully detected (i.e., A, = A,,;,) and call this metric as the Time to target ¢*.

Exploration time: Since balancing exploration and target search is a secondary goal
for our method, we also measure the exploration time ty in seconds. An environment is
considered explored when no wvisible frontier can be found for 10 consecutive iterations.
For a frontier to be considered visible, it must have (1) at least F,,;, number of clustered
voxels, and (2) at least one viewpoint with minimum information gain I,,,;,. These condi-
tions are also used by the authors of FUEL [9].

4.5.2 Baselines

Our method is compared to two versions of the FUEL exploration pipeline [9], differ-
ing by the two parameters F,,;, and I,,;,: The FUEL-original baseline uses the original
parametrization with F,,,;, = 100 and I,,,;,, = 20 as proposed in [9]. For the FUEL-complete
baseline, these parameters were tuned to maximize target search success, as we noticed
that finding the target in small regions depended strongly on these parameters. For the
Earthquake scenario, F,;;, = 0 and I,;,;, = 5 were used, and for the Cave scenario, F,;;, =0
and I,,;, = 0. Additionally, frontier down-sampling (see [9]) was turned off due to the nar-
row passages and small frontier sizes in the Cave environment. The sensor range R,
for both baselines was kept the same as our method to make comparisons fair.

4.5.3 Performance Results
This section presents the performance results of our method compared to the two baselines
introduced in Section 4.5.2 using the metrics from Section 4.5.1. Table 4.2 summarises
results for both the Earthquake and Cave simulation environments. The data was gathered
over 20 trials for each method and environment. The results are discussed hereinafter.
STEM consistently finds the target faster than all methods and is as successful as the
FUEL-complete baseline, which is tuned for high success rates. Moreover, it keeps the
exploration times within reasonable bounds. The fast target search times and high suc-
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cess rates have been achieved by the combination of the semantic viewpoint evaluation
and the combined target search planner. The viewpoint evaluation based on semantic
frontier priorities diffused from relevant objects and subsequent filtering of viewpoints
using I,,;, leads to a viewpoint set biased towards viewing regions of high likelihood of
target presence. This allows our method to find the target consistently. The combinatorial
target search planner schedules high semantic gain viewpoints earlier, such that the MAV
quickly reaches regions where the target is likely to be found. Conversely, FUEL-complete
does not use semantic information to guide search, and explores irrelevant regions first,
therefore taking more time to find the target while still achieving high success rates.

The performance difference between FUEL-complete and STEM underlines the impor-
tance of the viewpoint gain threshold I,,,;,: A lower I,,,;,, retains viewpoints for small fron-
tier clusters in tight spaces, and therefore enabling a high success rate for FUEL-complete.
However, this also means that many small but unimportant regions are covered, leading
to inefficient and slow target search and exploration, as reflected by the exploration time
results of FUEL-complete. This emphasizes the advantage of evaluating the semantic rele-
vance of frontiers, as it allows retaining and prioritizing viewpoints in small but important
regions while ignoring small, unimportant regions.

FUEL-original rarely finds the target due to its increased minimum frontier size F,,;,
and viewpoint threshold I,;;,. This causes frontier clusters or viewpoints in tight spaces
that lead to the target being ignored. However, this baseline consistently completes explo-
ration faster, since the clustering and thresholding facilitate more stable viewpoint sets
) and more consistent global plans, allowing the MAV to maintain high speeds through-
out the episode. Furthermore, FUEL-original solves a metric TSP using the LKH heuristic
solver, generating robust and efficient global plans.

4.5.4 Qualitative Results
In this section, the behavior of our proposed method compared to the baselines is visual-
ized to support the quantitative results from Section 4.5.3.

Figure 4.7 shows a qualitative comparison of the trajectories produced by the three
methods in the Earthquake environment until the target is found or exploration is com-
pleted. The results show that STEM finds the target quickly without taking large detours,
while FUEL-complete explores large parts of the environment before finding the target,
and FUEL-original does not find the target. STEM achieves these results by focussing ex-
ploration on regions semantically related to the target, while both FUEL methods only
aim at maximizing coverage gains. The trajectory of FUEL-complete shows, that it came
close to the target and highly relevant semantic cues (blood objects) but does not react to
these cues and continues exploring irrelevant regions.

Comparing FUEL-complete and FUEL-original emphasizes the effect of the thresholds
Fin and I,;, discussed in Section 4.5.3. When FUEL-original does not find any suffi-
ciently large frontiers or viewpoints and completes exploration, there are still several small
regions of the map left unexplored. FUEL-complete, however, is more thorough in its ex-
ploration but explores the environment less efficiently, as evidenced by more directional
changes in its trajectory.

Figure 4.8 further shows keyframes of our algorithm performing target search in the
earthquake environment. The MAV starts at a disadvantaged position and starts to explore
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(a) STEM

(b) FUEL-complete (c) FUEL-original

Figure 4.7: Qualitiative comparison with baselines for the Earthquake environment. Episodes were recorded
until ¢ or t¢, whichever comes first. The reconstructed point cloud from RViz is shown along with the drone’s
trajectory (in blue). The camera FOV is shown in red, and the latest RGB camera image is displayed.

first to gather information. When it comes across semantically relevant objects such as
rubble or blood, it samples informative viewpoints covering the nearby frontiers. Plan-
ning a path through such viewpoints continually using the target search planner allows
the MAV to find the hidden target quickly.

Figure 4.9 presents the trajectories of our method and the two baselines in the cave
environment. The results show that STEM is able to handle a complex 3D environment
with many occlusions and tight spaces, which underlines its ability to balance exploration
and semantic target search. After exploring initially, the MAV comes across objects such
as radio and dog in the right arm of the cave, which STEM uses to guide the robot to the
target quickly. Conversely, FUEL-complete misses the semantic cues and first explores the
left arm of the cave before eventually discovering the target. FUEL-original coincidentally
explores the right arm of the cave first but does not find the target due to its thresholding
of frontier clusters and viewpoint gains.

4.5.5 Planner Ablation Study
In this section, we evaluate the importance of the combinatorial target search planner
in our method. We compare our full method with the WMLP-based planner from Sec-
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Figure 4.8: Key frames of target search using STEM in the Earthquake environment. The snapshots show the
recorded RGB point cloud, the camera FOV in red, the trajectory in blue, and the current RGB image.

Exploration .completed

Table 4.3: Quantitative results of the planner ablation study, with two simplified variants of our WMLP-based
planner: a greedy planner and a TSP-based planner. The metrics are the same as in Table 4.2.

‘ Target search ‘ Exploration

Env ‘ Method ‘ Success % Time, t*(s) ‘ Time, tf(s)
Greedy 100% 71.1+£39.1 210.5+25.8

Earthquake | TSP-LKH 100% 65.3+26.7 128.5+10.8
WMLP (STEM) 100% 56.9£22.8 139.9+11.9

Greedy 50% 64.9+18.1 175.8+35.8

Cave TSP-LKH 85% 93.7+19.9 134.1+23.5
WMLP (STEM) 90% 64.1+20.3 130.7+19.8

tion 4.3.4 with two simplified variants that use the same viewpoint sampling, evaluation,
and filtering methods using semantics but replace the planner. The first variant uses a
greedy viewpoint choice, planning to the viewpoint with the highest information gain I,,.
The second variant uses the TSP planner from [9] to plan a path through the viewpoints
in V, deploying the LKH heuristic to solve the optimization problem. The quantitative
results are shown in Table 4.3.

The results show that STEM with the WMLP planner outperforms both the TSP and
greedy planners on target search metrics in both environments. In the earthquake envi-
ronment, all three variants achieve a 100% success rate, while in the cave environment, the
success rate of the greedy planner is substantially lower than that of WMLP and TSP. This
indicates that the complex geometry of the cave environment requires more consistent and
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(b) FUEL-complete (c) FUEL-original

Figure 4.9: Qualitiative comparison with baselines for the cave environment. Episodes were recorded until t* or
t¢, whichever comes first. The reconstructed point cloud from RViz is shown along with the drone’s trajectory
(in yellow). The camera FOV is shown in red, and the latest RGB camera image is displayed.

efficient behavior of the combinatorial planners than the simpler earthquake environment.
The average target search times t* show significant differences between the planners
in both environments. In the earthquake environment, the TSP planner is 15% slower, and
the greedy planner is 25% slower in finding the target than the WMLP planner. This un-
derlines that the WMLP planner prioritizing semantically relevant viewpoints contributes
substantially to STEM’s target search performance. However, it also shows that the per-
formance gap between FUEL and STEM (Section 4.5.3) is only partially caused by the plan-
ning algorithm, and that the semantic diffusion-based viewpoint evaluation and filtering
are also critical elements of the target search strategy. In the cave environment, the greedy
planner achieves equally fast search times as WMLP when successful, while the TSP plan-
ner is 46% slower. This indicates that in some cases, the semantic viewpoint gains used
by the greedy planner help to find the target quickly (when relevant cues are observed),
while the TSP planner is only optimizing for efficiently covering the given viewpoints.
While WMLP and TSP show very similar exploration times, the greedy planner is
significantly less efficient in covering the volume. This is due to the greedy planner’s ten-
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dency to oscillate between viewpoints with high information gain, leading to long detours
and inefficient exploration paths.

In summary, this ablation study shows that combinatorial planning contributes to
more consistent performance for both target search and exploration and that both the
semantic viewpoint evaluation and the WMLP planner contribute substantially to the tar-
get search performance of STEM.

4.6 Real-world experiments

This section presents the results of real-world experiments conducted using the software
architecture from Section 4.4.2 and the hardware setup from Section 4.4.3.

The results are visualized in Figures 4.10 to 4.12, showing our algorithm performing
simultaneous target search and exploration in complex 3D environments set up in the lab-
oratory. Figure 4.10 shows a scenario where the drone starts from the bottom right corner
in the top-down view, and explores the environment searching for the target and relevant
objects, represented by ArUco markers. The target is hidden behind a screen and a lower
wall in the upper left section of the lab. The onboard camera images in Figure 4.10 show
how the drone first discovers a high priority object on top of the wall, and therefore pri-
oritizes the unknown area behind the wall due to the diffusion method (see Section 4.3.3).
In image 2 a high relevance object is detected behin the wall, creating additional high pri-
ority frontiers around the pillar in the upper left corner, which leads the WMLP planner
to prioritize exploring the area behind the wall and screen further. Therefore the drone is
able to discover the target quickly and without large detours in image 3. Following target
discovery, the framework guides the drone to further explore the environment efficiently,
facilitated by the viewpoint evaluation method combining coverage and semantic informa-
tion gain (see Section 4.3.3). This scenario underlines how our framework is able to search
for a target using semantic clues in a cluttered 3D environment, guiding the drone to fly
over obstacles (the wall close to viewpoint 2) to explore important hidden areas behind it.

Figures 4.11 and 4.12 show two additional scenarios, where the drone is able to find the
target quickly using the AruCo marker objects as semantic clues, as described above. Both
experiments show how our framework is able to guide the drone through different clut-
tered environments, handling occlusions and narrow passages, and to efficiently explore
the environment after finding the target.

In summary the real-world experiments proved that our method is able to handle noisy
onboard depth and RGB camera images, and still efficiently guide the drone towards se-
mantically important areas. This enables the drone to find the target quickly in three dif-
ferent complex 3D environments, and to explore the environment efficiently after target
discovery.
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R
Until target discovery

Figure 4.10: Hardware experiment 1 in the laboratory. Above two top-down views are shown, on the left with
the trajectory until target discovery, on the right with the full trajectory until exploration is completed. The
color of the trajectory indicates the height z of the drone. Below images from the onboard RGB camera from
three time instances are shown, which are marked by position and orientation in the left top-down view. The
red circles in the onboard images indicate the high priority objects detected by the framework, that guide the
drone towards the target. The last onboard image shows the moment the target is discovered.

Until target discovery ? Until exploration completed

Figure 4.11: Hardware experiment 2 in the laboratory, with the same format as Fig. 4.10.
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Figure 4.12: Hardware experiment 3 in the laboratory, with the same format as Fig. 4.10.

4.7 Conclusion

In this paper, we introduced STEM, a novel framework for semantically-guided target
search and exploration with Micro Aerial Vehicles (MAVs) in complex, cluttered 3D en-
vironments. The core contribution of this work is the integration of learned semantic
reasoning for target search with active perception and planning techniques commonly
used in coverage exploration. The key idea of our approach is to prioritize exploration
around semantically relevant objects when planning over all available exploration fron-
tiers. Balancing semantic and coverage objectives in this way, efficient behavior for both
target search and exploration is achieved.

Quantitative evaluation in two challenging simulation environments demonstrates
that STEM achieves consistently higher success rates of more than 90 % and up to 32%
faster target discovery times compared to coverage-maximizing baseline methods. Real-
world experiments further validate the practical applicability of our approach, proving
that our approach can exhibit effective target search with noisy camera inputs and realis-
tic drone dynamics.

Future work will investigate how uncertainty about semantic object detection and
semantic relationships can be propagated into the active perception pipeline, and how
foundation models can be used to infer semantic priorities beyond embedding similarities.
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Conclusions and Future Work

The final chapter of this thesis summarizes and concludes on the developed methods, the
presented results, and the key findings. Subsequently, we discuss the limitations of our work
and the open challenges and questions left for future research, focusing on multi-robot target
search, semantic uncertainty, and modeling human expert knowledge.
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5.1 Conclusions

This thesis presents planning algorithms that enable mobile robot navigation in search and
reconnaissance missions. Specifically, the problem of autonomously searching for a tar-
get in an unknown environment is addressed at the local and global planning levels. The
first goal of the thesis was to develop an informative local motion planner that can nav-
igate the robot safely through cluttered environments while minimizing the uncertainty
about target locations using sensor observations. Local motion planning is limited by its
planning horizon, which can lead to inefficient behavior in large, complex environments.
Therefore, the second goal was to develop a global path planner that can guide the robot
to search the entire environment efficiently. Such a planner must also account for the
human operator’s understanding of the scene as represented by semantic features and di-
rect the search toward relevant regions. Consequently, the third goal was to develop a
method for learning a model that predicts the semantic priority of different regions from
user feedback to improve the efficiency of the global planner. Finally, the fourth goal was
to demonstrate the global target search planner on a UAV platform, extending the planner
to handle 3D cluttered environments and limited sensing capabilities.

5.1.1 Informative Local Motion Planning

Chapter 2 presented an informative trajectory planning framework that produces safe lo-
cal motion plans such that sensor observations maximize the information about the target
locations. The main challenge addressed in this work is the computational complexity of
sampling future sensor observations for many candidate trajectories, which is infeasible
for real-time planning. Prior approaches either resort to short-horizon, myopic planning
or non-myopic but coarse path planning without kinodynamic feasibility. Therefore, we
proposed a hierarchical framework where a viewpoint policy guides the robot towards
informative observations, and an MPC-based motion planner ensures safe and feasible
trajectories. The policy is trained using DRL to produce local 2D reference viewpoints
that maximize cumulative mutual information about potential target locations. The MPC
planner then generates a trajectory towards the reference viewpoint that adheres to kin-
odynamic and collision avoidance constraints. Crucially, the viewpoint policy is trained
with the MPC planner as part of the environment dynamics, enabling the policy to specifi-
cally learn how to effectively guide the MPC planner. We trained and tested the proposed
framework in simulation and evaluated its performance by time until completion in pre-
viously unseen environments. The results in the most challenging scenarios showed that
our viewpoint policy outperformed a greedy viewpoint selection baseline with 9.4 % faster
completion. This indicated the advantage of the policy’s learned non-myopic reasoning.
However, our approach was outperformed by a non-myopic MCTS baseline (13.3 % faster
completion) that has privileged access to the global map. Despite this advantage, our ap-
proach achieved a lower number of failed episodes than both baselines. Importantly, infer-
ence of the viewpoint policy can be run at a rate three orders of magnitude faster than the
MCTS planner, allowing for quick reactions to new observations and real-time operation.

5.1.2 Learning Semantic Target Search from Expert Guidance
Chapter 3 presented a framework for global target search planning prioritizing seman-
tic features preferred by an expert. Previous semantics-driven target search approaches
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depend on large domain-specific datasets typically unavailable for tasks like search and
rescue, while efficient coverage exploration planners neglect semantic information. We
proposed to guide a combinatorial exploration planner with a semantic priority function
that predicts how likely exploring a region will lead to the target. The semantic prior-
ity function is learned from recorded exploration waypoints provided by an expert, mod-
eling the expert choices based on semantic features. The semantic priority predictions
then guide the exploration planner, formulated as a weighted minimum latency problem.
The planner aims to minimize the time to visit frontiers with both high semantic prior-
ity and coverage gain. We evaluated the proposed framework in randomly generated 2D
multi-room simulation environments with different objects in each room and generated
synthetic datasets of expert inputs using an oracle model. We compared the performance
of the proposed framework and of the oracle model with a coverage exploration planner
that does not consider semantic features. The results showed that our method reached
the target faster in around 8 out of 10 episodes, and in the best case, achieved a traveling
distance nine times shorter than the coverage baseline. Moreover, the performance has
been competitive with the oracle model, which has access to the true semantic priorities.
Our method has also been robust to variations in the dataset of expert inputs, specifically
for small amounts of input data, increased noise, and different expert behavior.

5.1.3 3D Semantic Target Search with MAVs

Chapter 4 presented a framework for semantic target search and exploration using MAVs
in cluttered environments. This chapter bridges the gap between prior work on semantics-
driven target search on the one hand and the results achieved by 3D exploration planners
for MAVs on the other. Existing target search methods lack the ability for viewpoint plan-
ning in 3D environments, and existing 3D exploration planners do not consider semantic
features. Moreover, this chapter proposed an alternative to learning a priority model from
user inputs (as in Chapter 3) and instead uses a pre-trained LLM to predict semantic priori-
ties using embedding similarities. Our framework propagates the semantic priorities of ob-
served objects into nearby frontier voxels and aggregates these frontier priorities by eval-
uating the information gains of sampled frontier viewpoints, combining semantic priority
and coverage gain. The viewpoint gains are used in a combinatorial exploration planner
similar to Chapter 3, prioritizing viewpoints covering many high-priority frontier voxels.
Therefore, the time to find the target is minimized while maintaining efficient exploration.
Efficient and smooth planning for MAVs is achieved by considering the kinodynamic con-
straints of the robot in the planner cost matrix. We evaluated the proposed framework
in Gazebo simulations and real-world experiments. Simulations were performed in two
unstructured 3D environments, where multiple semantic cues are available to guide the
MAV towards the target. We evaluated our framework quantitatively by comparing the
target search time and success rate to two coverage-only exploration baselines tuned for
thorough and rapid exploration behavior, respectively. Compared to the thorough explo-
ration baseline, we achieved an equal success rate but 25-32% faster target discovery, while
compared to the rapid exploration baseline, we observed a 2.5-20 times higher success rate.
At the same time, our framework does not sacrifice exploration efficiency, achieving simi-
lar or better full exploration times than the thorough exploration baseline. We conducted
real-world experiments in three cluttered scenarios in a lab environment, where the MAV
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is tasked to find a hidden target object using available semantic features. The recorded be-
havior of our framework emphasizes its ability to direct the search towards semantically
promising regions while using the MAV’s 3D motion capabilities to efficiently search and
explore the environment.

5.2 Future Work

This thesis contributed to navigation methods for searching and exploring unknown en-
vironments with mobile robots, combining planning and learning approaches. Neverthe-
less, there are a number of open challenges and opportunities for future research in this
area that could improve the feasibility and effectiveness of deploying autonomous mo-
bile robots in sensitive search missions. This section presents several potential research
directions that can extend the work presented in this thesis.

5.2.1 Multi-Robot Target Search

When exploring large environments, speed and battery range can become limiting factors
for deploying a single robot in a time-critical mission. Dividing the exploration task among
multiple robots is, therefore, a common approach for efficient coverage exploration [108-
110], but leveraging semantic features in multi-robot search is an open challenge. Given
that the approaches presented in Chapter 3 and Chapter 4 separate the problems of seman-
tic reasoning and efficient planning, a simple, centralized extension to multiple robots can
be achieved by only modifying the planning part. As the current approach uses a com-
binatorial approach to planning tours across frontiers, the problem can be extended to a
variant of the vehicle routing problem (VRP), where each robot’s tour covers a subset of
the frontiers, prioritizing frontiers with high semantic importance.

A shortcoming of this naive multi-robot extension is that the exploration workload is
not shared efficiently between robots since only assigning viewpoints to robots does not
consider the amount of area to be explored behind each frontier. Recent works [108, 109]
effectively address this issue by partitioning the full unknown space, assigning the re-
sulting subregions to robots in a higher-level planner, and then performing single-robot
viewpoint planning inside partitions. To extend this approach to semantic target search,
a key challenge is how to propagate and aggregate semantic information over subregions
to prioritize those most relevant to the task. Moreover, in a decentralized multi-robot set-
ting, sharing semantic information between robots is a challenge, as semantic voxel maps
are memory-intensive. Both challenges can be addressed by developing suitable seman-
tic environment representations. Semantic scene graphs, such as Hydra [111], enable a
semantic representation of the environment at different levels of abstraction, such that
object-level semantic information can be aggregated to a room or general subregion level.
Then, only the relevant abstraction level needs to be shared between robots, reducing the
memory requirements for communication.

Future work should investigate how to devise multi-level scene representations that
can be effectively used for multi-robot target search and exploration planning, and how
semantic priorities of subregions can be inferred from aggregated semantic information.
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5.2.2 Semantic Uncertainty

All results presented in this thesis make significant simplifying assumptions about the
environment and the robot’s sensors and capabilities. Specifically, Chapters 2 and 3 show
only simulation results with perfect object detection, and Chapter 4 shows experiments
with a real drone but in a controlled lab environment using AruCo markers as objects. An
open problem for real-world deployment is to explicitly model and handle uncertainty in
the semantic features and relationships used in reasoning and planning for target search.

Both methods using semantic features in Chapters 3 and 4 rely on methods for se-
mantic scene understanding, such as using RGB images for object detection and semantic
segmentation. However, these methods are sensitive to noise in the sensor data, such as
lighting conditions, occlusions, and motion blur [112-114]. As semantic features can be
critical for effective target search, uncertainty in these features should be handled in both
the created environment representations and derived planning algorithms for robust tar-
get search. On the side of representations, this problem is extensively investigated in the
field of semantic mapping and semantic SLAM [111, 115], where semantic voxel maps or
scene graphs can store information about the uncertainty of semantic labels. On the side of
planning, Chapter 2 and various prior works [36, 116, 117] shows how uncertainty can be
explicitly minimized in the planning problem by optimizing for an information-theoretic
objective.

Future research should investigate how to integrate such an active classification ob-
jective into the target search planning problem, for example, by sampling additional view-
points close to relevant and uncertain objects and including an additional information
gain term for classification in the viewpoint evaluation. Moreover, such active scene un-
derstanding can extend to labels of the subregions (e.g., rooms) mentioned in the previous
section.

5.2.3 Foundation Models and Expert Knowledge
In Chapters 3 and 4, we have proposed two different approaches to obtain a semantic
priority model for guiding the target search planner. In Chapter 3, the semantic priority
model is learned from expert inputs, while in Chapter 4, the semantic priority is derived
from similarities between word embeddings produced by an LLM. The expert user model
is only trained for a specific target search task to keep the number of required user in-
puts low. The LLM-based predictions depend on the availability of a large amount of text
data relevant to the target search task during training. The major advantage of founda-
tion models, such as LLMs, is that they have common-sense knowledge [118] from being
trained on a wide range of human-made text and preference data. Common-sense knowl-
edge is relevant even for highly specific tasks (e.g., knowing that blood stains might lead
to an injured victim in a search and rescue scenario). However, it is not sufficient to make
informed decisions in complex scenarios, as they lack domain-specific knowledge and op-
erator preferences. Therefore, a critical challenge for future work to address is how the
common-sense knowledge of foundation models can be leveraged while adapting them to
specific tasks using expert inputs. A fundamental question here is which user input modal-
ities are most effective both for the user to communicate their intentions and preferences
and for the model to adapt to these inputs.

A possible approach to extend the concept of expert inputs by waypoint guidance in
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Chapter 3 toward leveraging foundation models is to use an LLM to generate common-
sense guidance inputs and pre-train a light-weight model on these inputs, similar to [89].
This model can then be fine-tuned for specific tasks using expert inputs and used for online
inference to guide the target search planner.

Another approach is to use natural language instructions to specify task-specific
knowledge, i.e., the user describes the scenario and his objectives and reasoning. When
querying the model with observations in the environment, both the instructions and the
query are used to predict where the target is most likely to be found. While [119] uses such
an approach to greedily guide the robot from the language output, the approach employed
in Chapter 4 uses embedding similarities to predict the semantic priority of different re-
gions. Both approaches are limited in effectively capturing the model’s reasoning to guide
a planner.

Future work should investigate if an approach similar to [118], where a custom out-
put layer for the LLM is trained to predict a semantic priority score given the language
input, can be adapted for guiding a target search planner such as proposed in this thesis.
Open questions for such an approach also include how to enable online inference with
the typically computationally expensive LLMs and how to feed information about the en-
vironment from structured representations, such as scene graphs [120], into the LLM to
reason about the environment and the target search task.
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