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Advancements in deep learning (DL) and machine
learning (ML) have improved the ability to model
complex, nonlinear relationships, such as those en‑
countered in complex material inverse problems.
However, the effectiveness of these methods often
depends on large datasets, which are not always
available. In this study, the incorporation of domain‑
specific knowledge of the mechanical behaviour of
material microstructures is investigated to evaluate the
effect on the predictive performance of the models in
data‑scarce scenarios. To overcome data limitations, a
two‑step framework, learning latent hardening (LLH),
is proposed. In the first step of LLH, a deep neural
network (DNN) is employed to reconstruct full stress–
strain curves from randomly selected portions of the
stress–strain curves to capture the latent mechanical
response of a material based on key microstructural
features. In the second step of LLH, the results of
the reconstructed stress–strain curves are leveraged
to predict key microstructural features of porous
materials. The performance of six DL and/or ML
models trained with and without domain knowl‑
edge are compared: convolutional neural networks
(CNNs), DNN, extreme gradient boosting (XGBoost),
K‑nearest neighbours (KNN), long short‑termmemory
(LSTM) and random forest (RF). The results from the
models with domain‑specific information consistently
achieved higher R2 values compared to models
without prior knowledge. When the models did not

© 2025 The Authors. Published by the Royal Society under the terms of
the Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and source
are credited.
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include domain knowledge, meaningful patterns in the model result, such as the link between
stress–strain behaviour and underlying microstructural changes not being recognized,
while those enhanced with domain knowledge insights showed better feature selection, in
which they identified key stress–strain characteristics that are most relevant for predicting
microstructure. These findings reveal the critical role domain‑specific knowledge can provide
in guiding DL models, further highlighting the need to combine domain expertise with data‑
driven approaches to achieve reliable and accurate outcomes in materials science and related
fields.
This article is part of the theme issue ‘Frontiers of applied inverse problems in science and

engineering’.

1. Introduction
Porous materials play a vital role in daily life. From the bones in human bodies to the geological
materials below the Earth’s surface, the distinct mechanical properties of each material are inher‑
ently linked to the internal microstructures. However, establishing a clear understanding of the
relationship between mechanical behaviour and heterogeneous microstructures remains a signif‑
icant challenge. The analysis of porous materials is further complicated by subtle variations in
microstructures, making predicting properties, such as mechanical strength, particularly difficult
[1]. In engineering design, forward problems can be used to predict structural responses from
known parameters while inverse problems infer material properties from observed behaviour.
This approach is particularly useful for analysing porousmaterials with complexmicrostructures,
aligning with established inverse problem methodologies [2].

In the 1990s, researchers investigated material inversion through mathematical modelling by
utilizing amodified Levenberg–Marquardtmethod [3]. This technique aimed to capture the latent
discrepancies between the finite element method (FEM) and unknown material parameters. By
minimizing these differences, the method enabled the determination of the elastic properties of
the material interfaces [3]. Traditional methods, such as destructive mechanical strength testing
and finite element analysis (FEA), have been effective tools to characterize mechanical behaviour.
However, both techniques can be inefficient and difficult to generalize, particularly when applied
to large‑scale or complex systems where variations in microstructure influence the mechanical
response in non‑trivial ways [4].

To overcome these challenges, researchers frommany scientific disciplines are turning to deep
learning (DL) and machine learning (ML) methods. Interpretable ML models have been shown
to improve predicting material properties. For example, a convolutional neural network (CNN)
was developed to link microstructural evolution and mechanical behaviour in dual‑phase steel
with an accuracy of 94% while improving computational efficiency. It is important to note that
CNNs are a specialized type of artificial neural network (ANN) designed to process spatial data,
such as images or microstructures, using convolutional layers, whereas ANNs more broadly re‑
fer to networks that learn patterns in data without explicit spatial processing. In addition, ML
encompasses a wide range of algorithms that learn from data, while DL specifically refers to
ML methods that utilize multi‑layered neural networks to model complex patterns and repre‑
sentations. By either emulating model behaviour for Bayesian calibration or directly predicting
material parameters, these ANN‑based approaches offer efficient solutions for inverse modelling
in engineering applications [5]. DL models have been applied to subsurface resistivity estimation
which has enabled real‑time predictions and bypassed computational limitations of traditional
gradient‑based methods [6]. Recent studies also highlight the role of uncertainty quantification
to study microstructures by addressing both forward and inverse problems in process–structure
and structure–property relationships [7]. Hybrid DL architectures with integrated dimensionality
reduction and adjoint‑based optimization have been used to efficiently predict spatial‑temporal
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CO2 saturation fields which has improved subsurface monitoring while significantly reducing
computational costs [8]. Similarly, ML‑driven methods have improved four‑dimensional print‑
ing by enabling accurate prediction and design of complex architectures, using Residual Neural
Network (ResNet) for forward modelling and evolutionary algorithms for inverse design [9].

The case of inverse problems is a new frontier to leverage the capabilities of DL to efficiently
process large datasets. ML‑based inverse methods have been developed to extract mechanical
properties of heterogeneous membranes from full‑field strain distributions, achieving speed im‑
provements compared to traditional inverse FEA approaches [10]. Similarly, physics‑informed
information field theory has been introduced to integrate physical laws with measurement data
while remaining independent of numerical discretization, enabling robust uncertainty quantifi‑
cation [11]. More recently, the FlowPaths numerical inverse method, which employs a graph‑
theoretical approach, was developed to estimate hydraulic conductivity fields in porous materi‑
als using specific discharge data [12]. By enhancing numerical stability and robustness, DL/ML
approaches may contribute to more reliable structural inferences in engineering applications.

The objective of the present study is to solve the inverse problem from recent work [13] where
DL was used to predict the stress–strain curves using a large dataset of high resolution, X‑ray
micro‑computed tomography (CT) scans of porous materials [14]. While most models focus on
predicting material properties from structure, the objective of the present work is to reverse the
process by predicting the underlying microstructure based on mechanical behaviour. This in‑
verse approach contributes to design, as it enables the reconstruction of material architectures
from observed mechanical responses. To test this objective, learning latent hardening (LLH), a
customized deep neural network (DNN), was introduced to address the inverse problem by re‑
constructing the full stress–strain curve before predicting themicrostructure. LLH leveragesDL to
infer missingmechanical responses, ensuring thematerial characterization is based on a complete
representation of stress–strain behaviour rather than fragmented or partial data. By first recon‑
structing the stress–strain curve, LLH provides a more comprehensive input for microstructural
prediction, capturing latent hardening effects otherwise lost in incomplete datasets. Through this
framework, the potential of DL/ML in solving inverse problems and the effect of incorporating
domain knowledge on predictive performance are explored.

2. Methods
This study introduces a systematic framework called LLH to predict microstructural character‑
istics and reconstruct full stress–strain curves from partial data using DL/ML techniques. The
LLH workflow consists of two main stages: (i) a DNN employed to reconstruct the full stress–
strain curve based on incomplete stress–strain data to capture the latent mechanical response
of the material and (ii) the reconstructed stress–strain curves were then utilized to predict the
underlying microstructural features to enable an effective inverse mapping between mechani‑
cal properties and material microstructure. A carefully prepared dataset was used alongside five
DL/ML methods—CNNs, K‑nearest neighbours (KNN), long short‑term memory (LSTM), ran‑
dom forest (RF) and extreme gradient boosting (XGBoost)—to test the feasibility of applying
DL/ML to solve the inverse problem. In this study, incorporating domain‑specific knowledge
to enhance model accuracy and improve the reliability of key microstructural feature predic‑
tions was also examined. Model performance was evaluated using established metrics to ensure
a thorough assessment of predictive capabilities.

(a) Data preprocessing
The dataset for this study was from the forward model developed by Lindqwister et al. [13],
which provided outputs for 35 features derived from multiple X‑ray micro‑CT scans of various
geological, cement‑based andwoodmaterials. Each of the 35 features corresponds to amicrostruc‑
tural characteristic of the samples processed using an open‑source FEM tool, multiphysics object
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Figure 1. Five randomly selected examples of stress–strain curve results from the 654 different microstructures [13,14]:
(a) original data and (b) masked partial data. The samples from highest to lowest Effective Stress are: 163, 535, 552, 152, and
459.

oriented simulation environment (MOOSE) [15,16], and open source MorphoLibJ plugin in Im‑
ageJ software [17,18]. In addition to these 35 microstructural characteristics, the corresponding
stress–strain data were used as pre‑information to train each DL/ML models. Before utilizing
the stress–strain data for model training, a preprocessing step was applied where a portion of
each stress–strain curve was randomly masked (as shown in figure 1). This masking process re‑
moved parts of the stress–strain curve obtained from the forward model and created incomplete
inputs that required the first step of the LLH model to infer the missing mechanical response.
The masked regions were randomly chosen along the strain axis (i.e. x‑axis) to ensure variability
across the dataset and prevent themodel from learning trivial patterns. The percentage ofmissing
data was varied between the stress–strain curve data to introduce robustness in the learning pro‑
cess and to allow the model to generalize effectively between different material behaviours. Once
the masking was applied, the modified dataset was structured into input–output pairs, where the
masked stress–strain curves served as inputs and the corresponding unmasked data provided
the reference output. This structured preparation was used to ensure the dataset retained essen‑
tialmechanical informationwhile enhancing the ability of themodel to extract latent relationships
from incomplete stress–strain data.

Importantly, Guevel et al. [19] identified four microstructural features—porosity, surface area,
mean curvature and Euler characteristic—which were sufficient to capture the relationship between
material microstructure and mechanical behaviour under uniaxial compression. Guided by these
findings, these four features were used as the target outputs for the prediction. To visualize the
four features in this study, figure 2 presents one example microstructure of beech wood and the
properties derived from the dataset published by Peloquin et al. [14], which served as the basis
for the present analysis. Porosity represents the proportion of voids relative solid based on the
total volume, indicating the openness of the structure. Surface area corresponds to the bound‑
ary length between voids and solids, reflecting edge complexity. Mean curvature captures the
smoothness or roughness of the edges by describing the curvature of the boundaries. Finally, the
Euler characteristic, a topological metric, quantifies the connectivity of the structure by account‑
ing for the number of voids compared to discreet (unconnected) enclosed voids. By focusing on
these four key features, the inversion process became more efficient and accurate, as the models
were trained to predict the microstructural aspects most relevant to understanding material be‑
haviour. Before applying these four features, a pre‑evaluation step was performed to ensure data
quality. Outliers in the original dataset were identified using the interquartile range (IQR)method
[20], a widely accepted statistical approach used to detect values significantly deviating from the
majority of the data. This method computes the first quartile (Q1) and third quartile (Q3) for each
feature, then calculates the IQR asQ3 −Q1. Any data point falling belowQ1 − 1.5 × IQR or above

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 O

ct
ob

er
 2

02
5 



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

383:
20240043

.........................................................................................................................

Figure 2. Original data before outliers were removed: (a) porosity; (b) surface area; (c) mean curvature; (d) Euler characteris-
tic.

Figure 3. Examplemicrostructure [14] to generate stress–strain curves in previous work [13] and images showing each of the
four main functionals used in this work.

Q3 + 1.5 × IQR is considered an outlier. As this approach does not assume a specific data distri‑
bution, it is well‑suited for detecting anomalies in structural features such as porosity, surface
area, mean curvature and Euler characteristic. These outliers are visually highlighted in the plots
with red markers for clarity (see figure 3). To ensure a clean and consistent dataset, an additional
filtering strategy was adopted: if a sample exhibited an outlier in any one of the four features,
the entire sample was removed. As a result, 65 samples were discarded, and the remaining clean
dataset (now 589 samples) was used for model training.

(b) Models
The LLH workflow consisted of two steps: (i) stress–strain curve reconstruction and (ii) mi‑
crostructure prediction (illustrated in figure 4). The objective of this workflow was to first re‑
construct the complete stress–strain response from partial masked data and subsequently utilize
the reconstructed data to evaluate the feasibility of DL/ML models for microstructure prediction.
The masked data contained only partial stress–strain information from the full curve data [13]
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Figure 4. The architecture of the LLH workflowmodel.

and required an interpolation or prediction process to reconstruct the complete curve. This re‑
construction was performed using data‑driven approaches to ensure the inferred stress–strain
behaviour aligned with the underlying material response. Once the complete stress–strain curves
were obtained, themicrostructure prediction step followed. In this stage, variousDL/MLmethods
were applied to assess the effectiveness of different predictive models in establishing a relation‑
ship between the mechanical properties and the underlying microstructure. By integrating these
two steps, the LLH workflow aimed to enhance both the accuracy of stress–strain curve recon‑
struction and the predictive capability of DL/ML models in microstructure characterization. The
following subsections provide a detailed discussion of each step in the workflow. All codes were
run in Python using an NVIDIA RTX 4090 GPU.

(i) Stress–strain curve reconstruction

In the LLH framework, the first step focused on reconstructing the full stress–strain curve from
partial data, to improve the accuracy of characterizing mechanical behaviour before microstruc‑
tural predictions. This problem was addressed using an optimized fully connected DNN, which
learnt the underlying nonlinear relationships between incomplete and full stress–strain responses.
The reconstruction process was used to ensure the missing mechanical information was inferred
effectively to enable downstream tasks to operate on a complete dataset. The input dataset con‑
sisted of masked stress–strain curves, where a portion of the stress–strain response was missing,
and the corresponding complete stress–strain curves, which served as the ground truth. To ensure
robust model training, several preprocessing steps were applied. First, missing values in the in‑
put data were filled usingmean imputation [21] to fill in incomplete sections while preserving the
overall distribution. Second, the data were scaled using MinMax normalization [22] to verify all
features fell within a fixed range, and prevent any feature from dominating the learning process
and improving numerical stability. Finally, the dataset was split into training (80%), validation
(10%) and test (10%) sets to facilitate model training, hyperparameter tuning and final evalua‑
tion. The validation set was used to monitor model performance and adjust hyperparameters,
while the test set assessed the generalization capability of the trained model on unseen data.

The model was structured as a fully connected neural network with multiple layers designed
to extract and refine features from the input data. The input layer took in the preprocessedmasked
stress–strain data, which was passed through a series of fully connected hidden layers with neu‑
ron sizes 1024, 512, 256 and 128, progressively reducing dimensionality while retaining critical
stress–strain features. Each hidden layer was followed by layer normalization, which stabilized
training by reducing internal covariate shifts, ensuringmore consistent and efficient learning. The
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model employs LeakyReLU activation [23] with a negative slope coefficient of 0.01 in all layers,
allowing for better gradient flow and preventing vanishing gradient issues. To enhance gener‑
alization and prevent overfitting, dropout regularization with a probability of 20% was applied
after each hidden layer, randomly deactivating neurons to force the network to learn more robust
features. Finally, the output layer reconstructed the full stress–strain curve, effectively inferring
the missing sections from the partial input. The model was trained using the mean‑squared‑error
loss function, which measures the discrepancy between the predicted and actual full stress–strain
curves. Optimizationwas performed using theAdamoptimizer [24], with a learning rate of 0.0003
and weight decay of 1 × 10−4, ensuring stable convergence while preventing overfitting. In addi‑
tion, a step learning rate scheduler was implemented to reduce the learning rate by a factor of 0.5
at every 50 epochs, allowing finer adjustments as training progressed. The model was trained for
500 epochs using a batch size of 32, balancing training efficiency and performance.

Model evaluation was conducted using the coefficient of determination (R2 score), provid‑
ing a quantitative assessment of reconstruction accuracy. Once trained, the model was applied
to reconstruct full stress–strain curves from new, unseen masked inputs, effectively recovering
missing mechanical information. These reconstructed curves then served as inputs for the second
stage of the LLH framework, where four key microstructural features were predicted based on
the recovered mechanical response.

(ii) Microstructure prediction

To perform the inversion of predicting microstructural properties from stress–strain data, five
DL/ML models were selected to test the unique strengths and suitability of the input data in the
second step of the LLH model. The input dataset was structured such that each row was a set
of data points from a stress–strain curve while the corresponding output reflected specific mi‑
crostructural properties. This organization enabled themodels to learn complex relations between
stress–strain behaviour and microstructural features directly. The dataset was divided into train‑
ing, validation, and test subsets according to a split of 90% for training, 5% for validation and 5%
for testing, ensuring sufficient data for model training while providing appropriate amounts for
validation and performance evaluation. Unlike the first stage, where stress–strain curves were re‑
constructed using a fully connected DNN, the second stage focuses on predicting microstructural
features from reconstructed stress–strain data. The models employed for this task include CNN,
KNN, LSTM networks, RF and XGBoost. These DL/ML models were chosen to handle different
data structures while leveraging different abilities of each method, ranging from sequence‑based
DL (LSTM) to tree‑based ensemble learning (RF and XGBoost) to allow for a comprehensive eval‑
uation of different ML paradigms in microstructural inference. A brief summary of each of the
five DL/ML models is included below:

— CNN [25,26] was chosen to detect spatial patterns and extract features from structured
data. For this study, CNNs were adapted to utilize stress‑strain data to identify local
dependencies or patterns which may be predictive of microstructural properties.

— LSTM, a type of recurrent neural network [27,28], was selected to test its ability to work
effectively with sequential data. Given stress–strain curves were inherently sequential,
LSTMwas particularly suited to capture temporal dependencies in the data and provide
a nuanced understanding of how input variations affect microstructural outcomes.

— KNN [29,30] was included as a straightforward, instance‑based learning method to pre‑
dict outcomes based on proximity in the feature space. While simple, KNN serves as a
benchmark for understanding how well the microstructure can be predicted based on
feature similarity alone, without relying on complex learnt patterns.

— RF [31] was chosen to test the robust tree‑based learningmethod and its ability to handle
complex and nonlinear relationships between input features and outputs. Its ability to
reduce overfitting by averaging over multiple decision trees ensures reliability, making
it a solid baseline for comparison.
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— XGBoost [32,33] was selected for its ability to iteratively combineweak learners and focus
on reducing prediction errors. It excels at capturing subtle relationships between input
features, making it highly effective in tasks where nuanced patterns significantly affect
outcomes. Its regularization techniques also help prevent overfitting to ensure themodel
generalizes well to unseen data.

Each model was trained on the reconstructed full stress–strain curves as input, with the corre‑
sponding microstructural properties as output labels. The training objective was to minimize
prediction error, allowing the models to extract latent patterns in stress–strain behaviour which
correlate with microstructural attributes. Performance was assessed using standard evaluation
metrics, including R2, to ensure accurate and robust predictions. The effect of incorporating do‑
main knowledge, particularly through the reconstructed stress–strain curves from the first stage,
was also examined by comparing model performance with and without the reconstructed data.
By integrating these two stages, stress–strain curve reconstruction andmicrostructural prediction,
the LLH framework effectively bridges mechanical response and microstructural inference, of‑
fering a data‑driven approach to material characterization. This two‑step methodology enhances
predictive accuracy by leveraging domain knowledge in mechanical behaviour while providing
a robust framework for material property prediction in data‑limited scenarios.

Following the work of Guevel et al. [19], which highlights the relationship between material
strength and essential microstructural features using Minkowski functionals, the functional rela‑
tionship in the present inverse problem was based on Hadwiger’s theorem, where the strength
of porous materials was linked to microstructural attributes through the strength law shown in
equation (2.1):

𝜎 = 𝜎∗e𝛼1M0+𝛼2M1+𝛼3M2+𝛼4M3 , (2.1)

where 𝜎 represents the stress corresponding to each set of input features, with 𝜎∗ serving as a ref‑
erence stress value set to 1. The parameters M0,M1,M2, and M3 correspond to porosity, surface
area, mean curvature and Euler characteristic, respectively, while the coefficients 𝛼1, 𝛼2, 𝛼3 and
𝛼4 were derived empirically from the dataset. Specifically, these coefficients were optimized in an
initial step using the dataset from Lindqwister et al. [13], which contains the four extracted fea‑
tures obtained from X‑ray micro‑CT scanned data. The micro‑CT data consist of material samples
scanned using a micro‑CT machine, where the scan slices were analysed and processed to extract
the features. The strength law equation guided the optimization process, whereM0 toM3 served
as the input features. The optimized values of𝛼1–𝛼4were then substituted into the equation, yield‑
ing an updated strength law formulation. During the pretraining step, the refined equation was
used to adjust the feature weights, allowing the model to learn which features should be given
higher importance. This stepwas introduced to ensure themodel effectively captured the relation‑
ship between the microstructural features and the strength of the material. These features were
integrated into the inversion model to enhance the understanding of the relationship between
input variables and the predictive output.

Building upon the insights gained from the comparative analyses, a specialized DNN leverag‑
ing the optimized strength law was developed. Specifically, coefficients within the strength law
were optimized by minimizing the squared difference between predicted and actual log strength
values obtained from micro‑CT scanned samples. The resulting strength predictions were then
normalized to the [0,1] range for numerical stability. These normalized predictions, combined
with base features from previous neural network predictions and 35 additional numerical fea‑
tures, formed the dataset used for training the model. The dataset was partitioned into 80%
training and 20% testing subsets, standardized using StandardScaler [23], and converted into Py‑
Torch tensors, with DataLoader [23] facilitating efficient mini‑batch training. The designed DNN
architecture consisted of four primary blocks. The first block comprised a fully connected layer of
512 neurons, followed by batch normalization, dropout regularization (20%), and a LeakyReLU
activation [23] function. The second block was similarly structured with another 512‑neuron
layer, batch normalization, 20% dropout, and LeakyReLU activation with an additional residual
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connection to improve gradient propagation and to mitigate vanishing gradients. This residual
branch was composed of an auxiliary fully connected 512‑neuron layer with batch normaliza‑
tion. The third block reduced dimensionality to 256 neurons and applied batch normalization,
a 25% dropout, and an ELU activation [23] function to enhance the learning of nonlinear fea‑
ture interactions. The fourth block further reduced dimensionality to 128 neurons, incorporating
batch normalization and another LeakyReLU activation. Finally, the network concluded with an
output layer predicting the four Minkowski functionalsM0,M1,M2,M3. The training utilized the
AdamW optimizer [23] with an initial learning rate of 10−3 and weight decay of 10−5, alongside a
dynamic learning rate scheduler (ReduceLROnPlateau) and an early stopping criterion based on
validation performance to prevent overfitting.

(c) Evaluation metric
To assess the performance of the models to predict microstructural properties, the coefficient of
determination (R2) was used as the primary evaluationmetric. The R2 score measures the propor‑
tion of variance in the target variable whichwas explained by the input features, providing a clear
indicator of the predictive accuracy of the models. The formula for calculating R2 is expressed as
shown in equation (2.2):

R2 = 1 −
∑n

i=1(yi − ŷi)2
∑n

i=1(yi − ȳ)2
, (2.2)

where yi represents the actual values of the target variable, ŷi represents the predicted values, ȳ
is the mean of the actual values and n is the number of observations. In this formula, the numer‑
ator,

∑n
i=1(yi − ŷi)2, represents the sum of the squared residuals (errors), and the denominator,

∑n
i=1(yi − ȳ)2, represents the total variance in the actual data. An R2 value of 1 indicates a perfect

prediction, meaning the model explains all the variance in the data. Conversely, an R2 value of
0 suggests the predictions of each model were equivalent to simply using the mean of the actual
values. Using R2 as the evaluation metric ensured a standardized and interpretable measure of
the performance of themodels to enable a direct comparison of the ability of eachmodel to predict
microstructural properties.

3. Results
In this study, the aimwas to assess the effect of incorporating the strength law equation (equation
(2.1)) into an inversemodelling framework to assist in predicting the four criticalmaterial features:
porosity (M0), surface area (M1), mean curvature (M2) and Euler characteristic (M3). To evaluate
the influence of the strength law equation, five different predictive models were tested both with
and without equation (2.1) as input information. Before evaluating the inverse prediction of mi‑
crostructural features, the first stage of the LLH framework was analysed to assess the accuracy
of the stress–strain curve reconstruction. The performance of DNN was examined by comparing
the reconstructed stress–strain curves with the expected ground truth data. Figure 5 presents a
direct comparison between the DNN‑reconstructed and actual stress–strain curves for the same
five samples shown in figure 1, illustrating the ability of the model to capture key mechanical
features such as yielding behaviour and strain hardening effects. The results clearly demonstrate
a strong correspondence between the reconstructed curves and the actual data points across mul‑
tiple randomly selected samples. The ground truth curves, shown in solid, coral lines, and the
predicted curves, depicted as dashed, teal lines, closely align with one another, highlighting the
precision of the model in replicating the original mechanical response. In addition, the masked
input data, illustratedwith bold, purple lines, emphasizes the regions used for predictions. Quan‑
titatively, the accuracy of the reconstructed stress–strain data was evaluated using the coefficient
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Figure 5. Representative test data and results comparing the ground truth, masked training data and predicted (DNN-
reconstructed) stress–strain curves.

Table 1. Comparison of R2 and runtime for different models with and without domain knowledge.

model without function with function

R2 runtime (s) R2 runtime (s)

CNN 0.2500 0.8 0.5617 7.5

KNN 0.1456 1.1 0.4129 1.2

LSTM 0.2879 1.7 0.4867 2.2

RF 0.1866 8.3 0.6240 2.6

XGBoost −0.0894 1.7 0.4619 3.9

of determination, which achieved a test R2 score of 0.9851 further emphasizing the robustness of
the DNN model to accurately predict stress–strain behaviours.

With the reconstructed stress–strain curves established, the effect of the results on microstruc‑
tural property predictions was evaluated. The second stage of the LLH framework utilized these
reconstructed stress–strain curves as input to predict microstructural properties to assess how
well the inferred mechanical response enhanced predictive accuracy. Model performance was
assessed using the R2 score as a quantitative metric to determine how closely the predicted mi‑
crostructural features aligned with the ground truth values. This analysis highlights the extent to
which incorporating the strength law equation and reconstructed mechanical response improved
predictive accuracy within the inverse modelling framework.

The results are summarized in figure 6, which illustrates the predictions of CNN, KNN, LSTM,
RF, and XGBoost for porosity. In this figure, the red dotted line indicates the best match, the
coral‑coloured (light) points represent the predictionswithout the domain function,while the teal‑
coloured (dark) points correspond to the predictions with the domain function. Figure 6 presents
a comparison of the porosity predictions with and without the incorporation of the stress func‑
tion during model training. The surface area, mean curvature, and Euler characteristic results are
included in electronic supplementary material.

A more straightforward summary is listed in table 1, including the runtime. The coefficient of
determination (R2) is calculated as an average across all microstructural predictions, providing
an overall assessment of model performance. The R2 values indicate the potential for improved
predictive accuracy when the stress function is included in the model.
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Figure 6. Comparison of the predicted porosity values from the fivemodels with andwithout the inclusion of the strength law
equation: (a) CNN, (b) KNN, (c) LSTM, (d) RF and (e) XGBoost.

4. Discussion and conclusions
The objective of this studywas to utilize outputs from an existing forward problem combinedwith
prior knowledge as inputs into DL/ML models to predict microstructural features. Specifically,
the model developed in the present study termed LLHwas designed to first reconstruct complete
stress–strain curve responses (i.e. mechanical response under uniaxial compressive loading) from
partial segments of the actual (ground truth) stress–strain data and then utilize the reconstructed
curves to predict four key microstructural features of porous material microstructures [13,19]:
porosity (M0), surface area (M1), mean curvature (M2) and Euler characteristic (M3).

Driven by the encouraging results presented in the previous sections, DNN was explored to
improve microstructure prediction. Figure 7 includes a comparison of the prediction results ob‑
tained using the DNN and the RF models for the four key structural parameters (results without
domain knowledge are included in electronic supplementarymaterial). Across all examinedprop‑
erties, the DNN outperformed the RF model. Specifically, the predictions from the DNN closely
follow the ground truth reference, suggesting a robust ability to accurately capture complex rela‑
tionships within the data. For example, the surface area and mean curvature predictions from the
DNN exhibit less deviation from the ground truth, aligning closely with the central reference line,
whereas the RF predictions display greater scatter and reduced accuracy. These results highlight
the robustness and effectiveness of the DNNmodel in capturing intricate patterns and delivering
reliable predictions across all the evaluated structural parameters.

The improved performance of the DNN compared to the RF model arises primarily from the
inherent ability of DNN to handle highly nonlinear relationships within stress–strain data. Unlike
RF, which relies on discrete splits and hierarchical decision boundaries, the DNN leverages mul‑
tilayered architectures which can more effectively capture subtle patterns and continuous feature
interactions present in data such as the complex stress–strain curves used in the present study.
Consequently, the DNN approach provides superior generalization and accuracy (R2 value of
0.9936 as listed in table 2), particularlywhen predicting intricatemicrostructural properties which
depend on subtle variations inmechanical response data. This inherent capabilitymakes theDNN
beneficial for applications requiring detailed characterization and precise predictions of mate‑
rial behaviour from stress–strain relationships, further supporting its application in advanced
material science, design and related fields.

In conclusion, incorporating domain knowledge improved the prediction of microstructural
properties from stress–strain data, leading to notably higher R2 values compared to models lack‑
ing such knowledge. Specifically, the domain‑informed models demonstrated a superior ability
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Figure 7. Comparison of prediction results between the DNN and RF models for different parameters: (a) porosity, (b) surface
area, (c) mean curvature and (d) Euler characteristic.

Table 2. R2 and runtime for DNNmodel with and without domain knowledge.

model without function with function

R2 runtime (s) R2 runtime (s)

DNN 0.1005 2.0 0.9936 7.7

to accurately capture underlying material behaviours, as evidenced by better alignment between
predicted and actual values in the evaluation metrics, supported by visualizations that showed
reduced prediction error. The findings demonstrate that when domain‑specific information is in‑
tegrated to guide the model, the performance of the DL/ML models is enhanced, particularly in
fields such as geomechanics and material engineering, where the underlying physical relation‑
ships are complex and governed by the laws of physics. By bridging the gap between DL/ML
and material science, this approach shows the potential to uncover refined relationships between
mechanical behaviour and microstructural features, ultimately improving model accuracy and
interoperability. The capability of LLH to accurately reconstruct and subsequently utilize the
stress–strain behaviour further emphasizes the strength of this integrated approach. The inte‑
gration of domain‑informed features not only improved the predictive power of the models but
also demonstrates how thesemodels can be applied to practical engineering problems. The results
underscore the importance of a multidisciplinary approach combining computational techniques
with foundational knowledge of material behaviour.

Data accessibility. The dataset is published and openly available to interested researchers: [14]. The Learning
Latent Hardening (LLH_model) code is available on GitHub at [34].

Supplementary material is available online [35].
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