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Abstract
Learning curves are used to shape the performance
of a Machine Learning (ML) model with respect to
the size of the set used for training it. It was com-
monly thought that adding more training samples
would increase the model’s accuracy (i.e., they are
monotone), but recent works show that may not
always be the case. In other words, some learners
on some problems show non-monotonic behaviour.
To this extent, we introduce a new method to
identify non-monotonicity in empirical learning
curves by approximating the curve’s slope through
regression around the discrete points it is defined
on. This paper formalises this metric and then eval-
uates its accuracy through different experiments.
Finally, we run the proposed metric on a subset of
the extensive Learning Curve Database (LCDB) by
Mohr et al. to gain better insights into the problem
of non-monotonicity of learning. We found that the
metric can identify non-monotonicity in learning
curves well (98% experimental accuracy) and does
not consider small increases due to measurement
error as non-monotonicity in the curve. Finally,
we have identified that non-monotonicity may
be a property of some classifiers, such as Linear
Discriminant Analysis. Moreover, we identified
that non-monotonicity is frequently observed in
datasets with faster training times.

Keywords: learning curve · non-monotonicity ·
meta-learning · LCDB · Machine Learning

1 Introduction
Learning curves outline the evolution of model performance
with respect to increasing the training set size. They can point
out how large the sample set needs to be through extrapola-
tion to achieve the desired predictor accuracy. By estimating
the input data size, organisations can forecast training costs
for a model [1].

An interesting property to discuss on the topic of learn-
ing curves is monotonicity. Intuition would point out that
learning curves are monotone: by increasing the number of
samples in the dataset, we lower the error rate of the predic-
tion algorithm. In other words, we strive for ”well-behaved
learning curves”[2]. Monotonicity ensures that we can ex-
pect a lower error rate in prediction by enlarging the training
set, which can better predict the training costs for ML classi-
fiers. In their work [3], Marco Long et al. showed that even
standard learners, such as least squares regression or linear
models trained with the hinge loss, show non-monotonic be-
haviour, which counters this initial belief. These findings set
the foundation for a new possible research direction, i.e., un-
derstanding how many learning curves are non-monotone and
what factors could influence the monotonicity of curves. This
research paper aims to answer the following question:

How many learning curves are non-monotone, and what
influences this?

This paper will propose a heuristic for identifying non-
monotone learning curves that needs to also account for and
handle noise in the data. Then, a qualitative analysis of
this heuristic will be conducted to showcase its effective-
ness. Thirdly, using this method to identify non-monotone
learning curves, an analysis of the LCDB database[1] will be
conducted to find how large the subset of curves that show
non-monotone behaviour is. Finally, we will draw some con-
clusions on why some learning curves show non-monotonic
behaviour, as well as discuss the limitations of the proposed
heuristic.

The paper will follow this structure. Section 2 discusses re-
lated work from existing literature. Section 3 introduces the
methodology of the research, followed by Sections 4 and 5,
which go into detail about the experimental setup and results,
respectively. Section 6 discusses interpretations of the exper-
imental results, while Section 7 outlines the responsible as-
pect of the research. The final section draws the conclusions
of this work and points to future possible research directions.

2 Related Work
Viering et al. mentioned in [4] that the monotonicity of learn-
ing is an open problem yet to be explored and tackled. Other
works, such as [5], concluded that studying the monotonicity
of meta-learning is not a trivial task. Even though it is desired,
the property of monotonicity may not always be present in
learning curves (LCs). In their review [2], authors pointed out
that many works assume that the curves will be well-behaved,
i.e., smooth and having monotonically non-decreasing perfor-
mance [6]. In other words, it is commonly considered that the
model’s error rate does not increase with adding more train-
ing samples.

Previous works also proposed metrics to make learners
more monotone [5], but none try to identify non-monotonicity
in LCs.

The Learning Curve Database (LCDB) paper proposes a
metric to study the non-monotonicity of learning curves by
looking at the maximum function increase of an overall-
descending learning curve (maximum violation) [1]. This
metric evaluates how large the monotonicity violation is,
which can be effectively used to rank learning curves based
on how large the violation is. Using this metric, authors dis-
covered that it is useful to study monotonicity past a certain
minimum training set size due to an increased measurement
imbalance. However, it is unclear where the line is drawn
between what is considered measurement noise and what is
considered actual non-monotonicity in the curve using this
metric. Thus, using this metric to judge the monotonicity of
curves as a classification problem is challenging.

The LCDB paper also discusses another phenomenon
called peaking (or sample-wise double descent/ascent), usu-
ally encountered in neural networks, which describes a small
region of monotonicity violation in an otherwise monotonic
curve. The authors propose a different metric to identify
peaking, which performs a binary classification of whether
a curve observes this phenomenon. Peaking is just a special
form of non-monotonic behaviour in learning curves.

Based on the review by Viering et al. [2], many academics



assume learning curves to be monotonic. Thus, little work
has been performed to study the non-monotonicity of learning
curves. Analysing non-monotonic behaviour in LCs could
answer whether the monotonicity in learning curves is a prop-
erty of the model learner, of the dataset, of both or neither.
Understanding this behaviour could lead to better extrapo-
lating the training costs for a model or aiding in the model
selection process of a problem [7].

Authors of [8] defined the term anchor point to denote the
performance of the ML model on a certain training sample
size (i.e., the point on the learning curve), which we will also
use henceforth.

3 Methodology
We propose the following setup to answer the question of the
non-monotonicity of learning curves. Section 3.1 will intro-
duce a new heuristic to identify non-monotonicity in empir-
ical learning curves. Section 3.2 outlines the setup of two
evaluation techniques to perform a qualitative analysis of the
metric. Section 3.3 describes the setup of a quantitative study
on a subset of the LCDB, an extensive collection of learning
curves.

3.1 Identifying Non-monotonicity
The first step in studying the non-monotonicity property of
learning curves is to define a metric that classifies the LCs as
monotonic. For this purpose, we outline the following algo-
rithm. For every anchor point on the learning curve, 20 points
are chosen closely around it. The model is then retrained on
training set sizes equal to these points to calculate the model’s
error rate on these, respectively. On these 20 points and the
model errors associated with them, approximate the slope of
the LC around the respective anchor point using a Linear Re-
gression model. Repeat this process with different train set
sampling seeds and average the slopes obtained from differ-
ent measurements. If two consecutive anchor points have a
positive slope (i.e., increasing LC), we classify the learning
curve as non-monotonic. This metric is formally described in
Algorithm 1.

The algorithm receives as input the list N of an-
chor points that define the discrete LC, two lists,
outer seeds and inner seeds that are used to randomise the
train/test/validation splits, the dataset features and target at-
tribute, X and Y , respectively, as well as the model to learn
the dataset. The proposed metric approximates the slope of
a learning curve at all anchor points by first retraining the
model 20 times, with different training set sizes, in the prox-
imity of the anchor point (lines 7-10). The errors obtained
from retraining the classifiers at these points are used to train
a Linear Regression model (LR) to approximate the slope of
the learning curve on the respective anchor points (lines 11-
12). This number of points (20) was chosen as a good tradeoff
between runtime speed and accuracy for training the LR, as
this number highly influences the time complexity of running
the metric. This process is repeated on different randomisa-
tion seeds for splitting the dataset into training, validation
and testing sets. The slopes obtained are averaged to reduce
the LR approximation error. If the slopes are positive at two

Algorithm 1 Identifying non-monotonicity through anchor
point slope approximation

Input: N ▷ List of anchor points
Input: outer seeds ▷ Random seeds for (train,val) and test split
Input: inner seeds ▷ Random seeds for train validation split
Input: X ▷ Dataset features
Input: Y ▷ Target attributes
Input: model ▷ The classifier the curve is modelling
Input: final slopes←[]

1: for all k in N do
2: points←[k-10,k-9,...,k+10]
3: slopes←[]
4: for all s1 in outer seeds do
5: for all s2 in inner seeds do
6: errors←[]
7: for all p in points do
8: error ←Train(model, p, s1, s2, X, Y )
9: errors.append([p, error])

10: end for
11: lin reg ←LinearRegression(errors)
12: slopes.append(GetSlopeFromModel(lin reg))
13: end for
14: end for
15: final slopes.append(Mean(slopes))
16: end for
17: for all i = 0 until |N | − 1 do
18: if final slopes[i] > 0 && final slopes[i+ 1] > 0 then
19: return True
20: end if
21: end for
22: return False

consecutive anchor points on the LC, then the curve is con-
sidered to be increasing on the interval between these two
anchors and thus classified as non-monotonic (lines 17-22).

3.2 Metric Evaluation
This subsection describes the method for evaluating the algo-
rithm introduced in Section 3.1 through two qualitative stud-
ies.

Accuracy Analysis
This experiment will look into the classification power for
learning curves. In other words, the results shall yield the
accuracy rate of the proposed metric for the non-monotonic
learning curves. The experiment will use the following struc-
ture. Firstly, artificial learning curves will be generated
from parameters known to yield either a monotonic or non-
monotonic curve. These will act as the ground truth of the
experiment. Then, the proposed metric is run on these curves,
and predictions will be compared to the ground truth label.

Ablation Study
The second experiment will answer whether it is necessary
to consider a learning curve as non-monotonic if the slopes in
two consecutive anchor points are positive or if it is enough to
consider only one anchor point at each step. It is also impor-
tant to evaluate the performance of the algorithm proposed to
effects such as peaking. As described in Section 2, peaking
represents a small region where the learning curve exhibits



a slight increase while decreasing everywhere else on its do-
main.

This study will be performed in two steps. Step 1 will com-
pare the algorithm’s accuracy under the two conditions de-
scribed above, by running the metric in both scenarios. Step
2 will measure which of the two setups better handles the
peaking phenomena in learning curves by introducing peak-
ing at an anchor point in a monotonic learning curve and then
running the algorithm under both scenarios.

3.3 Evaluating non-monotonicity in the LCDB
The LCDB is an extensive collection of learning curves con-
taining 20 classifiers and over 240 datasets. Thus, it offers
a wide variety of learning curves to be analysed, the perfect
setting for understanding how large the set of learning curves
that exhibit non-monotonic behaviour is and the causes that
may influence this. This experiment aims to assess the non-
monotonicity of empirical learning curves in the LCDB by
running Algorithm 1 on a subset of it. We aim to identify the
ratio of non-monotonic learning curves to monotonic ones.
We also strive to understand whether monotonicity is a prop-
erty of the learner, of the dataset, of both or none.

4 Experimental Setup
This section details the setup of the three experiments con-
ducted on the introduced metric and the general environment
in which the studies are conducted.

4.1 Environment
The studies described in this paper, as well as the metric
to evaluate non-monotonicity, are written in Python1 and
run through Jupyter Notebooks2. All experiments interface
with the LCDB API3 to retrieve meta-data about the learn-
ing curves, such as the list of anchor points, training times,
retrieving the datasets, as well as some plotting utility func-
tions. In turn, the LCDB uses Scikit Learn [9] to implement
the classifiers and OpenML [10] to source the datasets.

All source code and results produced are available publicly
in a GitHub4 repository at [11].

4.2 Experiment 1: How accurate is the introduced
metric?

The first qualitative study performed on the proposed metric
is an accuracy test. The experiment generates artificial learn-
ing curves based on the exp3 [2] parametric model, outlined
in Equation 1. Parameters a, b and c are variables that are
tuned when the model is fitted to a learning curve.

exp3(x) = a · e−bx + c+ ε (1)

d

dx
exp3(x) = −ab · e−bx (2)

The exp3 parametric model has been chosen for this ex-
periment as it was found to be a good modeller for LCs [2].

1https://www.python.org/
2https://jupyter.org/
3https://github.com/fmohr/lcdb
4https://github.com/

The ε parameter represents noise added to the learning curve
function to simulate the measurement error, as in real learn-
ing curves. This parameter is sampled from a standard nor-
mal distribution with a mean of 0 and a standard deviation
of 0.002. This standard deviation value was chosen to keep
the noise small enough not to introduce drastic changes in
the function but large enough to simulate real measurement
noise.

Equation 2 gives the first derivative (slope) of the para-
metric model used for this experiment. The sign of the first
derivative indicates the monotonicity of the learning curve.
If the slope is negative, the LC decreases, while a positive
first derivative means the LC will be ascending. By adding
more training samples to the classifier, we aim to minimise
the learning error. Thus, the learning curve should ideally
be decreasing. This is the definition we used for monotonic
learning curves. Thus, a monotonicity violation would mean
that the curve has a region on its domain where it is increas-
ing.

Equation 2 highlights that the value combinations of pa-
rameters a and b determine the sign of the first derivative
of the exp3 function. Parameter c is not present in the first
derivative formula, and thus its values do not influence the
slope.

• a < 0, b > 0 - Positive derivative (ascending exp3);

• a > 0, b < 0 - Positive derivative (ascending exp3);

• otherwise - Negative derivative (descending exp3).

The experiment was run on 3769 different learning curves
with different values for parameters a,b and c. The parameter
values were sampled from curve fits on the exp3 model, pre-
viously computed by authors of the LCDB. On top of this, the
ε parameter was added for modelling data noise and to make
the experiment more realistic. In the LCDB, these curves rep-
resent fits on real problems that try to approximate the real,
unknown learning curve, which is impossible to calculate.
However, not all these fits are representative, as some have
poor fit accuracy. In order to ensure the reliability of this
study, only half of the fits were considered, i.e., those with
the minimum Mean Squared Error on the last anchor point.
Finally, the experiment learning curves were split as:

• 3179 Non-monotonic LCs;

• 590 Monotonic LCs.

4.3 Experiment 2: Ablation study - Is it necessary
to consider two consecutive anchor points?

This experiment aims to identify whether using two consecu-
tive anchor points to judge non-monotonicity is necessary or
if one is enough (step 1). It also studies whether the metric
can handle curve peaking (step 2).

Step 1. Experiment 1 is rerun with the slope sign condition
changed to one anchor point instead of two consecutive ones
to judge non-monotonicity. We hypothesise that using only
one anchor point is insufficient to clearly indicate whether the
empirical LC is non-monotonic due to noise in data and/or
measurements. Thus, we perform this experiment to validate
this hypothesis.

https://www.python.org/
https://github.com/fmohr/lcdb
https://github.com/


Step 2. The 590 monotonic LCs from Experiment 1 were
slightly modified by introducing an artificial peaking around
the anchor at index 5, such that the model error at anchor 5
is higher than the error at anchor index 4. This peaking is
only observed around anchor index 5. The added peaking is
randomly sampled from the same normal distribution as the
ε parameter from Equation 1. The rest of the learning curve
remained unchanged. The algorithm was executed on these
modified LCs under both conditions, the initial method and
the ablation of the second positive slope condition, to identify
which scenario better identifies these peakings. We expect
that the algorithm will manage to correctly identify it since
peaking is a monotonicity violation phenomenon.

4.4 Experiment 3: How many learning curves are
non-monotonic in the LCDB?

The LCDB is an extensive collection of learning curves and,
thus, is perfect for evaluating non-monotonicity. Due to its
size and the long time it takes to run the metric from Algo-
rithm 1, only a subset of the LCDB will be used for this exper-
iment. In [1], authors have identified that some learners, such
as Linear Discriminant Analysis (LDA), Quadratic Discrimi-
nant Analysis (QDA), or Stochastic Gradient Descent (SGD)
show peaking (sample-wise double descent/ascent) [12], a
phenomenon encountered in neural networks, where model
performance decreases after an initial increase, followed by
another increase afterwards.

This experiment aims to identify the set size of LCs that
show non-monotonic behaviour by running the metric pro-
posed in this research on a subset of the LCDB. Of the 20
learners currently supported by LCDB, only 11 will be con-
sidered for this experiment. Based on previous findings in [1],
we sampled classifiers for this experiment that showed either
highly increased or decreased chance of being non-monotonic
or to contain peaking. The time necessary to train a clas-
sifier varies from model to model while also depending on
the dataset. Some learners take very long to train on certain
problems. For example, the SGD classifier took almost two
hours to learn the dataset with openmlid 1567 on a personal
machine. Thus, running the experiment on the entire LCDB
is unfeasible within the timeframe of this research project.
To this extent, the datasets were chosen based on how fast
the 11 chosen classifiers learned them. Given the relatively
short time to perform this study, we have decided to sample
the 20% fastest datasets by training time, to include as many
learning curves as possible in this evaluation.

Not all classifiers can learn all datasets. For example, we
identified experimentally that LDA could not be used to learn
a target attribute that does not contain more than one sample
for a certain value, as the covariance is ill-defined. Thus, the
datasets that were unsuited for use were filtered out. More-
over, some datasets chosen for this study have a small number
of samples, some having less than 256 or even less than 64.
For this reason, the number of LCs that will be analysed in
this experiment is smaller at starting anchors 64 and 256, re-
spectively, compared to 16.

5 Experimental Results
This section describes in-depth the results of the three exper-
iments described in Section 3.

5.1 Experiment 1: Accuracy of introduced metric

Table 1: Accuracy Test Results. The brackets describe the percent-
age of correctly classified curves from the total number of mono-
tonic or non-monotonic LCs, respectively.

Actual
Non-monotonic

Actual
Monotonic

Predicted
Non-monotonic 3140 (98.77%) 36 (6.10%)

Predicted
Monotonic 39 (1.23%) 554 (93.90%)

Table 1 describes the results from the accuracy test exper-
iment. The introduced method has correctly identified non-
monotonic LCs with a high accuracy of 98.77% and mono-
tonic LCs with 93.9% accuracy. The experiment outlines the
performance of the metric and represents a good indication
that it has the potential of correctly classifying real learning
curves as well.

5.2 Experiment 2: Ablation Study
Table 2 describes the results from Step 1 of the ablation
study. Compared to the accuracy study described in Exper-
iment 1, we can see a slight increase (+0.82%) in the non-
monotonicity prediction accuracy. On the other hand, there
is a large decrease (−31.87%) in the monotonicity prediction
performance. During this experiment, the metric failed to cor-
rectly classify around 4 out of every 10 monotonic learning
curves. This means that when considering only one anchor
point to decide on monotonicity, the metric tends to classify
a learning curve as non-monotone at the slightest increase.
This could happen due to noisy measurements in a mono-
tonic learning curve, thus leading to misclassification. The
results of this ablation study reaffirm the initial hypothesis
and confirm the need to consider the LC slope in at least two
consecutive anchor points to judge whether a learning curve
is non-monotonic or not to ensure the reliability of the classi-
fication.

Table 2: Ablation Study results. The brackets describe the in-
crease/decrease compared to Experiment 1 Results from Table 1.

Actual
Non-monotonic

Actual
Monotonic

Predicted
Non-monotonic 3166 (+0.82%) 224

Predicted
Monotonic 13 366 (-31.87%)

Results from Step 2 are highlighted in Table 3, which de-
scribes how well the algorithm handles peaking, both in the



initial and in the ablation setup. Considering two consec-
utive anchor point slopes to judge monotonicity proved un-
suited for identifying peaking around one single anchor. Un-
der this setting, only 19 out of 590 LCs with peaking were
correctly classified. This means the initial assumption was
false, and the heuristic cannot identify peaking if it occurs
only at one anchor. On the other hand, the ablated metric per-
formed significantly better, with a 45.25% success rate, but
it still failed to determine more than half of the experimental
learning curves as non-monotonic.

Table 3: Metric evaluation on 590 artificial monotonic LCs with
peaking at anchor index 5.

Correctly classified
as non-monotonic

% of total
curves (590)

Ablation Metric 267 45.25%
Initial Metric 19 3.22%

5.3 Experiment 3: How many learning curves are
non-monotonic in the LCDB?

Table 4 describes the results of the experiment. Figure 1
shows an aggregation of results across all learners. It seems
that for the datasets studied, analysing non-monotonicity
from the beginning of the curve (anchor point with 16 train-
ing samples) considers more LCs as non-monotonic. Thus, it
may be useful to consider studying monotonicity from a cer-
tain point onwards, such as the anchor point with 256 training
samples, as learning is more prone to errors when a minimal
amount of training data is used[1]. This outcome is consistent
with the findings in the LCDB paper. In the case where the
analysis starts at 256 training samples, the experiment iden-
tified that 256 learning curves contained non-monotonic be-
haviour out of 413 total curves (∼ 62%).

Figure 2 brings forth the experiment’s results per classi-
fier. The figure also suggests that non-monotonicity could be
a property of the learner. For example, the Extra Trees Clas-
sifier and the Random Forest Classifier, which both use deci-
sion trees to classify the target attributes, show significantly
less non-monotonic behaviour than the other learners studied
in this experiment. On the other hand, LDA and the SVC
variations showed a consistent increase in number of curves
that exhibit non-monotonicity.

6 Discussion
Section 3.1 introduced an algorithm that can be used to iden-
tify non-monotonicity in empirical learning curves. It does
so by approximating the LC’s slope at key points by training
a Linear Regression (LR) model on 20 points around the an-
chors. The choice of the number of points heavily impacts the
result of the algorithm. If too few points are used, the LR will
be prone to a higher error. If too many points are used, the al-
gorithm’s time complexity will drastically increase, as LR is
trained at every anchor point on the curve multiple times. For
each point used to train, the regressor needs the classifier to be
retrained to retrieve its training error. As a trade-off between
speed and performance, 20 points have been used for slope

Table 4: Monotonicity evaluation of different classifiers. The table
shows the number of classified non-monotonic curves (bolded) and
the total number of curves analysed (between brackets)

Classifiers Non-
monotonic
LCs at first
anchor 16

Non-
monotonic
LCs at first
anchor 64

Non-
monotonic
LCs at first
anchor 256

Linear Dis-
criminant
Analysis
(LDA)

123 (125) 116 (121) 84 (105)

Quadratic
Discrimi-
nant Analy-
sis (QDA)

33 (33) 29 (31) 21 (29)

SGD Classi-
fier (SGD)

69 (69) 57 (67) 36 (57)

Gradient
Boosting
Classifier

13 (17) 11 (17) 11 (14)

Logistic
Regression
(Log.Reg.)

41 (42) 40 (41) 30 (37)

SVC (linear) 28 (30) 22 (29) 13 (24)

SVC (poly) 38 (38) 26 (37) 19 (32)

SVC (rbf) 34 (34) 22 (33) 16 (29)

SVC
(sigmoid)

35 (35) 23 (34) 16 (29)

Extra Trees
Classifier

9 (51) 7 (49) 4 (38)

Random
Forest
Classifier

14 (26) 11 (24) 6 (19)

approximation at each anchor point. However, this amount is
not necessarily ideal. One limitation of using Linear Regres-
sion for slope estimation is its error. Suppose the LC is almost
constant on the points used to train the LR (slope is approx-
imately zero). In that case, the slope resulting from LR may
become positive (or negative) due to LR training error and, in
turn, lead to misclassification.

Experiment 1 showed the effectiveness of the metric pro-
posed in Algorithm 1, correctly classifying most of the curves
used in the experiment. The learning curves used also con-
tain random noise in order to mimic measurement errors in
real LCs. The study concluded that the metric accounts for
small increases in the curve that are caused by noise in the
data and does not classify this as non-monotonic behaviour,
which is intended, thus making the algorithm a good candi-
date for judging non-monotonicity of curves in practice.

Experiment 2 proved the necessity of considering the LC
slope approximations in two consecutive anchor points to
handle data noise better and decrease the misclassification of



Figure 1: Monotonicity evaluation of 500 learning curves, with dif-
ferent anchors as the first point of monotonicity analysis: 16, 64 and
256 training samples, respectively.

Figure 2: Monotonicity evaluation of 500 learning curves, with dif-
ferent anchors as the first point of monotonicity analysis. Results are
displayed per classifier. Learner abbreviations are consistent with
those in Table 4.

monotonicity errors. One limitation of this experiment is that
it only uses the exp3 parametric model to generate artificial
learning curves. Some fits of the exp3 model may not be
very accurate. This is the reason why the half of the fits from
the LCDB with highest MSE errors on last anchor were re-
moved for the purpose of this experiment. Moreover, exp3
tries to best model the true learning curve, but it is still an
estimation. The true function that models the learning curve
is impossible to determine.

Experiment 2 showed that the algorithm performance dras-
tically decreased for classifying monotonic LCs, by more
than 30%. Upon careful inspection, a few of these incorrectly
classified LCs were almost constant (i.e., neither increasing
nor decreasing) on the interval defined by the anchor points.
Adding noise in the data to test how the algorithm handles
the noise to a constant function led to the LC being misclas-
sified. Here we can see the limitations of approximating the
slope using Linear Regression. However, using the algorithm
and checking the condition for two consecutive anchor point
slopes, we were able to mitigate this misclassification and,

thus, again proving the need to consider two anchor points
instead of just one.

Another limitation of the introduced metric is that it fails
to identify peaking in the curve if it is observed around one
single anchor point. This was observed during Step 2 of Ex-
periment 2. This happens as a consequence of using slopes at
two anchor points to judge non-monotonicity. The algorithm
will identify curve peaking if it occurs at more than one con-
secutive anchor point, as it will judge it the same as any other
monotonicity violation.

An important aspect to consider when introducing Algo-
rithm 1 is the time complexity it takes to execute it. To re-
iterate, the algorithm retrains the model 20 times and uses
the training errors from these runs to approximate the LC’s
slope through Linear Regression. This process is repeated
on 25 different randomisation seeds for each anchor point
of the learning curve. As a direct result, the metric runs
slowly, in some cases taking more than one hour to judge
non-monotonicity on large datasets. The worst performance
encountered during Experiment 3 was the Gradient Boosting
Classifier on the dataset with OpenML id 18, which ran for
2.5 hours on a personal machine. From this point of view,
the metric is unfeasible for analysing an extensive collection
of learning curves, such as the LCDB, unless run on more
powerful machines and with parallelisation.

Experiment 3 entailed the execution of the algorithm pro-
posed on a subset of the LCDB. Datasets were considered
based on how fast the chosen classifiers learned them. This
limits the amount of information that can be extracted from
the experiment. For example, some datasets are trained fast
because they contain fewer samples (less than 300). Learning
these datasets may be difficult, as high variance can happen at
small training set sizes [1]. Experiment 3 outlined that a high
number of learning curves are non-monotonic on datasets that
take the least amount of time to train. Around 60% of the
curves used for the experiment were non-monotonic. There
is no way to tell whether the same ratio is obtained on the
other datasets and/or learners that were not included in this
study. It may be the case that non-monotonicity is a property
of these datasets that are learned fast, and datasets that take
longer to train are more monotonic overall. From this per-
spective, Experiment 3 is inconclusive and more research is
needed to identify the true ratio of non-monotonic curves.

7 Responsible Research
An important aspect that surfaces when conducting research
is the reproducibility of the results. The researcher is respon-
sible for showing that their research is conducted ethically
and that they are fully transparent with their work.

We have ensured that the results of this study are reliable
through careful planning and conducting the experiments.
This work has been peer-reviewed by fellow students and the
supervising team at different project stages. Their feedback
has been incorporated into this final work. Moreover, the en-
tire research has been conducted with reproducibility in mind,
and results have been transparently reported in this paper.

To ensure the experiments are reproducible, we have pub-
licly made the experiments and related data, source code and



plots available. These can be found in a GitHub repository,
here [11]. The repository contains one Jupyter Notebook for
each experiment conducted. The ReadME.md file contains
information on how to install all necessary dependencies and
how to run the experiments. Moreover, the experiments will
yield the same results outlined in Section 5 when run just
by following the steps in the Methodology and Experimental
Setup sections or through running the code in the repository
mentioned above.

Finally, the training times discussed in this paper are highly
dependent on the hardware used for running the studies. The
experiments were conducted on a laptop running Intel i5-
1235U (up to 4.4GHz), with 24GB of main memory. Running
the experiments on different hardware specifications may re-
sult in different training times.

8 Conclusions and Future Work
To conclude, this paper introduced the need to identify non-
monotonicity in learning curves (LC). In order to establish
this property, we proposed an algorithm that could be used
to judge whether an LC is monotonic by approximating the
slopes of the LC in the points it is defined on. The pseu-
docode is in Algorithm 1. We then evaluated its accuracy in
Experiment 1. This showed overwhelmingly good results and
indicated that the algorithm might be proper to judge whether
curves are non-monotonic. Experiment 2 proved our hypoth-
esis that using slopes at two neighbouring anchor points to
judge non-monotonicity is necessary. Moreover, it indicated
that the metric could not identify peaking in the curve if it is
only observable around one anchor. Experiment 3 showed
that most learners experience non-monotonic behaviour at
the beginning of the learning curve, but this decreases if the
monotonicity analysis starts at a later anchor point, such as
256. Moreover, the experiment shows that non-monotonicity
may be a property of some classifiers, such as Linear Dis-
criminant Analysis, for the datasets it learns the fastest.

Due to time and processing power limitations, only a frac-
tion of the LCDB was analysed during Experiment 3. It may
prove interesting to run the algorithm proposed in this pa-
per in its entirety. One purpose of doing this could be to
determine which classifiers inherently show non-monotonic
behaviour. The results of Experiment 3 were inconclusive in
determining whether certain datasets also show repeated non-
monotonic behaviour, which may come to light if the metric
is run on the entire LCDB.

Another research direction could be to slightly adapt the
metric described in this paper to rank learning curves based
on, for example, in how many anchor points we identified
positive slopes. This will output an ordered list of LCs based
on the degree of non-monotonicity, which can then be used
to create a comparative analysis with the maximum violation
metric described in [1].

Another improvement to be done could be optimising the
time complexity of the algorithm proposed. A possibility
could be to approximate the slope by calculating the gradient
of two points around the anchor point instead of using Linear
Regression. This will reduce the overhead complexity of re-
training the model 20 times and executing Linear Regression

on every anchor point. However, we hypothesise this would,
in turn, degrade the metric’s performance. Another improve-
ment that could be done on the metric is to run the regressor
only once per anchor point, to improve the time complexity
at the expense of handling the approximation error of LR.
A third option to improve the runtime may be to add paral-
lelisation to the algorithm by running it on multiple threads
simultaneously or even using GPU computing.

The research outlined in this paper builds on top of the
LCDB paper; thus, the experimental setup partially replicates
the environment described there. An example is using error
rate to explore the shapes of learning curves, the same metric
the authors use in the LCDB. However, the LCDB supports
other performance metrics, such as logloss or f1. The learning
curve shape may differ from metric to metric. To this extent,
it may prove useful to analyse how monotonicity is affected
by changing the performance metric.

All in all, this paper aimed to shine more light on the non-
monotonicity of meta-learning of ML classifiers by looking
at how we can properly identify it, and which learners and
datasets exhibit this behaviour. However, this work is not
a definitive answer to the issue of non-monotonicity. The
monotonicity of learning curves still remains an open ques-
tion that requires more research to fully answer.
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