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A B S T R A C T

Travel to intercity transportation hubs, such as railway stations and airports, can be the most
troublesome and inefficient part of the entire air/railway travel journey, as travelers often
carry large luggage and have stringent arrival time requirements. Taking public transportation,
such as metro and bus services, is inconvenient to carry luggage and less reliable in arrival
time while taking taxi services could be less economical. As a result, providing reliable and
convenient yet economical on-demand first-mile services for travelers to intercity transportation
hubs is essential. This paper proposes a ridesharing approach for the first-mile transport system
for travelers heading towards the intercity transportation hub and develops a mixed-integer
linear programming (MILP) model with the objective of minimizing the total operating costs
for ridesharing service operators. The MILP model considers (1) large luggage that may occupy
seats when the car trunk is not large enough to place them; (2) passengers’ requirements
on arrival time and ride time; and (3) travel time uncertainty ensuring that riders’ arrival
time and ride time can be satisfied. A tailored adaptive large neighborhood search algorithm
with an acceleration strategy is developed for obtaining robust near-optimal solutions within
a reasonable time. To assess the solution quality, the MILP model is reformulated as a set-
partitioning model, and the column generation algorithm is leveraged to determine a tight lower
bound; a greedy algorithm is introduced to obtain an upper bound. Computational experiments
on Shanghai South Railway Station demonstrate that ridesharing is an effective strategy for
reducing overall travel costs while meeting the first-mile travel demand. In addition, it is
essential to consider luggage and travel time uncertainty for determining ridesharing schemes.

1. Introduction

High-speed rail and air transportation have seen a sharp increase in passenger volume over the past 20 years as a result of their
crucial role in intercity travel (Chen and Lin, 2016; Wang et al., 2020). However, travel to a high-speed rail station or airport (also
known as the intercity transportation hub) from the home, office, or hotel often has problems of inconvenience, poor economy, and
low reliability, which can be defined as the first-mile problem heading to intercity transportation hubs. Passengers usually take the
metro or bus to intercity transportation hubs (Zhou et al., 2022), which is inconvenient for riders with large luggage (Fang et al.,
2015). Some passengers take taxis or online ride-hailing services to the transportation hub, but this is less economical, the arrival
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time is unreliable, and it is susceptible to factors like traffic congestion (Zhou et al., 2022), which could result in travelers missing
their next trip. As a result, it is crucial to provide passengers heading toward an intercity transportation hub with convenient,
affordable, and stable on-demand first-mile (FM) transportation services.

Ridesharing by passenger cars has been considered an effective way to provide FM/LM (last-mile) door-to-door services (Shaheen
nd Chan, 2016; Bian and Liu, 2019b; Bian et al., 2020; Chen et al., 2020), as it can offer riders high-quality and low-cost
ransportation services. Nonetheless, most of the existing studies focus on FM ridesharing to metro hubs while only a few
tudies (Bian and Liu, 2017) focus on the intercity transit hub. It is more challenging to design first-mile ridesharing services to the
ntercity transportation hub than to the metro station, which necessitates taking the following factors into account.

First, passengers heading for an intercity transportation hub often need to transfer to the train or airplane to catch up with
he next trip, so they want to arrive at the hub earlier than the scheduled departure time of the next trip. Second, riders may
ave different tolerances on the maximum ride time. For instance, riders closer to the transportation hub typically request shorter
ide times. Third, when planning ridesharing routes, the travel time uncertainty must be considered to ensure that passengers
an smoothly transfer to the next trip and that riders’ ride times do not exceed their tolerances. Although some literature on FM
idesharing to metro hubs considers maximum ride times (Bian and Liu, 2019a; Bian et al., 2020; Chen et al., 2020) and arrival
eadlines of riders (Bian and Liu, 2019a; Bian et al., 2020), they neglect to consider the impact of travel time uncertainty. Fourth,
he target passengers often carry large luggage. If permitted by local laws and regulations, large luggage may be placed on seats
hen the number of pieces of large luggage exceeds the car trunk’s carrying capacity.

This study focuses on the first-mile ridesharing to the intercity transportation hub (FMRITH), where passenger cars are used
o provide FM ridesharing services to passengers within a specified service radius (for instance, 15 kilometers) of an intercity
ransportation hub. Since passengers know their exact departure time for the next trip, they can book FM services with service
roviders in advance, for instance, 2 h, according to their transportation requirements. The service provider can utilize the rolling
orizon method to dynamically group requests according to their latest arrival time, then assign passengers to cars, plan routes
or cars, and notify requests accordingly. To render on-demand door-to-door services, the service provider needs to make decisions
ased on the objective of minimizing the total operation cost as well as constraints such as large luggage occupying seats, riders’
atest arrival times and maximum ride times, and travel time uncertainty. This cost-effective, stable, and flexible mode can tackle
he problem of FM travel to intercity transportation hubs to some extent since it not only considers some special factors, such as
assengers’ larger luggage and the arrival time requirement, but also avoids the expensive operating costs for public transportation
perators, high travel costs for passengers, and the inconvenience of fixed pickup times and places for public transportation.

Our contributions consist of: (a) proposing a ridesharing approach for the first-mile transport system for travelers heading
owards an intercity transportation hub; (b) developing a MILP model that minimizes the total operating cost for the ridesharing
ervice provider and that considers key factors including large luggage, arrival time and ride time requirements, and travel time
ncertainty; (c) presenting a tailored adaptive large neighborhood search algorithm (ALNS) with an acceleration strategy to solve
eal-world instances and introducing the column generation algorithm and a greedy algorithm to evaluate the solution quality of
he ALNS algorithm; (d) demonstrating through computational experiments that the large luggage and travel time uncertainty must
e considered in the FM problem to an intercity transportation hub and that the proposed models and algorithms can effectively
olve the FMRITH problem.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature and positions our work. Section 3
laborates on the FMRITH problem and introduces a MILP model. The customized ALNS algorithm is developed in Section 4. In
ection 5, we introduced a set-partitioning model derived from the MILP model and the column generation algorithm as well as a
reedy algorithm. Numerical experiments for several cases are conducted in Section 6. Conclusions and future work are summarized
n Section 7.

. Literature review

The existing travel modes for the FM/LM problem include walking, shared bicycles, feeder buses, private cars, taxis, etc (Liu
t al., 2012; Huang et al., 2021). Walking is the primary way for FM travel problems, but walking distances to metro/bus stations
re often long bringing great disutility to passengers (El-Geneidy et al., 2014). Compared to walking, the bicycle can travel faster
nd easily reach longer distances (Hochmair, 2015; Lee et al., 2016). Bicycles can effectively render door-to-door service (Zuo et al.,
018) and improve transit accessibility (Boarnet et al., 2017; Zuo et al., 2020). However, traveling by bicycle can be affected by
eather conditions (El-Assi et al., 2017; Kim, 2018). In northeast China, for instance, the weather conditions are not suitable for
icycles for half a year. In addition, there are no bicycle lanes on the roads in many cities (Winters et al., 2011; Zuo et al., 2018). As a
esult, riding bicycles to transit stations is not available in some cities (Campbell and Brakewood, 2017). The feeder bus is safer and
ess affected by the weather than the bicycle. Demand-responsive transportation (DRT) (Dessouky et al., 2003; Quadrifoglio et al.,
008; Masson et al., 2014; Chen and Nie, 2017; Mahéo et al., 2019; Xiong et al., 2015) is the most common operation mode for
eeder buses since it is more economical than conventional bus operating modes. However, most DRTs do not provide door-to-door
ransportation, so they cannot completely tackle the passenger’s FM problem. In addition, riders may await the DRT service for a
ong time due to limited service capabilities, especially during peak hours. The taxi service is convenient and flexible (Mahéo et al.,
019) and can render door-to-door transportation, but passengers’ travel costs are relatively high (Ma et al., 2019).

Based on the above-mentioned situations, Shen et al. (2018), Stiglic et al. (2018), Bian and Liu (2019a,b), Bian et al. (2020),
nd Chen et al. (2020) put forward utilizing the ridesharing mode of passenger cars to offer affordable and flexible door-to-door
2

irst-mile transportation services for riders. For instance, Shen et al. (2018) simulated a public transit system integrating shared
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Table 1
The comparison of some first-mile access modes.

First-mile
access modes

Characteristics Application conditions

Walking Low speed, flexible Short walking distance (<500 m)
Bicycle Faster than walking, flexible Good weather, bicycle lanes available
Shuttle bus Fixed pick-up stations High population density
Taxi Flexible but expensive Any conditions are applicable
Ridesharing Flexible and affordable Any conditions are applicable

Fig. 1. An illustrative example of applying the rolling horizon approach to the first-mile ridesharing problem.

utonomous vehicles to provide first-mile travel services during morning peak hours. Stiglic et al. (2018) investigated a seamless
ntegration of ridesharing and public transit, which can effectively solve the first- and last-mile problems and increase the use of
ublic transport. Table 1 summarizes the characteristics and application scenarios for FM travel modes based on the aforementioned
tudies. In comparison to the other modes, ridesharing appears as a versatile and affordable approach for first-mile travel problems.

In the literature on FM ridesharing, most studies (Shen et al., 2018; Bian and Liu, 2019a,b; Chen et al., 2020; Jiang et al., 2020;
ing et al., 2021; Kumar and Khani, 2021; Huang et al., 2022) focus on FM ridesharing to metro/bus transit hubs, while there is
omparatively scarce research on the FM ridesharing to intercity transit hubs, such as airports and railway stations. For instance, Bian
nd Liu (2019a,b) designed a novel mechanism for FM ridesharing services to metro stations and a heuristic algorithm to solve this
roblem. Chen et al. (2020) explored leveraging AVs to provide FM ridesharing services to metro stations and designed a cluster-
ased solution method for it. To the best of our knowledge, there is only one paper that focuses on the first-mile ridesharing to
he intercity transit hub: Bian and Liu (2017) devised a simulated-based algorithm to solve the first-mile ridesharing problem for
railway station, which considers passengers’ latest arrival time and the connection with the train schedule. Therefore, we find

hat the existing literature has not considered the characteristics of FM to intercity transportation hubs, such as passengers often
arrying large luggage and riders’ requirements on arrival time and maximum ride time.

Motivated by the above, this study focuses on the FM ridesharing problem of intercity transportation hubs with consideration
f minimizing total operational costs for ridesharing service operators, riders’ large luggage and requirements on the latest arrival
ime as well as the maximum ride time, and the uncertainty of travel time. To address this new and challenging problem efficiently,
e propose a MILP model and design three algorithms.

. First-mile ridesharing to the intercity transportation hub

.1. Problem description

Consider an airport as the transportation hub, a group of passengers who need to travel from their locations to the airport, and
ridesharing service operator who runs a fleet of homogeneous passenger cars and provides on-demand FM transportation services

o passengers. Since the next flight’s departure time is already known, passengers who need the on-demand FM services can book
service with the service provider in advance (for instance, 2 h) based on their travel information: the geographical locations, the
umber of riders, the number of pieces of large luggage, the latest arrival time, the maximum ride time, and the earliest pickup
ime. The latest arrival time is indispensable for each rider since they need to transfer to their flight. Detour tolerance varies among
iders, and as a result, different riders may have different maximum ride time requirements. Riders typically decide the earliest
ickup time based on their distance to the airport and the scheduled departure time of their flights. If the car arrives earlier than
he rider’s earliest service time, it needs to wait until the earliest service start time to pick up riders. Riders’ latest pickup time
an be determined by subtracting the direct ride time to the transportation hub from the latest arrival time or by adding a certain
mount of time, such as 30 min, to the earliest pickup time.
3
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Fig. 2. An illustrative example of first-mile ridesharing to an intercity transportation hub.

Based on the received reservation information, the ridesharing service operator decides the ridesharing route for each rider. To
better meet riders’ dynamic demands and reduce the dimension of decision-making, the common practice for designing first-mile
ridesharing schemes is utilizing the rolling horizon method to group requests according to their preferred pickup time (Chen et al.,
2020). The entire planning period [0, T] is typically divided into a series of time slots, and a ridesharing decision is made before
the start of each time slot for those travel demands whose earliest pickup times fall within this time slot. For passengers going to an
intercity transportation hub, their first-mile travel distances are often long (generally greater than 10 km), and passengers with close
earliest pickup times are often less likely to be visited by the same route, so the conventional way of dividing time slots according to
passengers’ earliest pickup times would not be applicable. The operator can divide time slots according to passengers’ latest arrival
times and design ridesharing routes a certain amount of time (𝛿) in advance, such as two hours, before the end of each time slot.
Fig. 1 shows three time slots, and riders whose latest arrival times fall within each time slot should book the service at least 𝛿
hours in advance, as the service provider needs time to schedule cars to pick them up and take them to the transit hub. We assume
that the operator can schedule enough cars to service requests of each time slot. After completing the ridesharing decision, the
operator dispatches cars to pick up riders and notifies them of their ridesharing information. Fig. 2 shows an illustrative example of
a first-mile ridesharing scheme for riders of a time slot, which is a time-space figure with the horizontal axis representing continuous
time and the vertical axis representing discrete spatial locations. Two homogeneous cars are scheduled to serve six requests (each
request consists of riders and pieces of large luggage), and the blue car departs later than the orange car.

The goal of the problem is to determine the lowest cost ridesharing scheme which needs to satisfy the following constraints:
(1) Cars depart from and eventually return to the intercity transportation hub; (2) The number of passengers and pieces of large
luggage carried by each car cannot exceed its carrying capacity; (3) Each request must be serviced; (4) Requests’ pickup time must
be met; (5) Even in the case of uncertain travel time, the cars should arrive at the transportation hub no later than the latest arrival
time of requests it serves, and the riders’ ride time cannot exceed their maximum ride time.

3.2. Mathematical model

We represent the problem on a directed graph 𝐺 (𝑁,𝐴), 𝑁 and 𝑁1 correspond to the set of all nodes and request nodes
respectively. 0 and 𝑛 + 1 are used to denote the intercity transportation hub. 𝐴 represents the set of arcs between all nodes. The
general nomenclature is shown in Table 2.

3.2.1. Travel time uncertainty
For each arc (𝑖, 𝑗) ∈ 𝐴, we assume that the travel time takes values in the range [𝑡𝑖𝑗 , 𝑡𝑖𝑗 + 𝑡𝑖𝑗 ], where 𝑡𝑖𝑗 is the nominal value of

travel time and 𝑡𝑖𝑗 denotes the maximum deviation. Note that while the range would be defined as [𝑡𝑖𝑗 − 𝑡𝑖𝑗 , 𝑡𝑖𝑗 + 𝑡𝑖𝑗 ] in some of the
robust optimization problems, the worst-case scenario only occurs at the right-hand side of the range for the travel time (Munari
et al., 2019), since arriving early at request nodes or destination does not affect passengers’ travels. Therefore, the one-sided range
[𝑡𝑖𝑗 , 𝑡𝑖𝑗 + 𝑡𝑖𝑗 ] is adequate to portray the travel time uncertainty. In this study, we employ the uncertain parameter Γ, also known as
‘‘budgets’’ proposed by Bertsimas and Sim (2004), to control the uncertainty level of travel time. Γ = 0 means the uncertainty is not
4
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a

Table 2
Parameters and decision variables.

Notations Descriptions

Set
𝑁 Set of all nodes, 𝑁 = 𝑁1 ∪ {0, 𝑛 + 1}
𝑁1 Set of request nodes, 𝑁1 = {1, 2, 3,… , 𝑛}
𝐴 Set of arcs, 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗}
Parameters
𝑀 A sufficiently large positive constant
Γ Budget of the travel time uncertainty
γ Travel time uncertainty level, γ ∈ {0, 1, 2,… ,Γ}
𝑝𝑖 Number of passengers of request 𝑖, 𝑖 ∈ 𝑁1
𝜌𝑖 Number of pieces of large luggage of request 𝑖, 𝑖 ∈ 𝑁1
𝑒𝑖 Earliest service start time for request 𝑖, 𝑖 ∈ 𝑁1
𝑙𝑖 Latest service start time for request 𝑖, 𝑖 ∈ 𝑁1
𝑄 Number of seats in each car
𝐵 Number of pieces of luggage that can be placed on the trunk of each car
𝐿 Number of pieces of luggage that can be placed on a seat
𝑑𝑖𝑗 Travel distance between requests 𝑖 and 𝑗 (𝑘𝑚), 𝑖, 𝑗 ∈ 𝑁
𝑐 Transportation cost per kilometer

(

$
)

, 𝑖, 𝑗 ∈ 𝑁
𝑑𝑖 Latest arrival time at the transportation hub of request 𝑖, 𝑖 ∈ 𝑁1
𝑟𝑖 Maximum ride time for request 𝑖, 𝑖 ∈ 𝑁1
𝑡𝑖𝑗 Travel time between requests 𝑖 and 𝑗, 𝑖, 𝑗 ∈ 𝑁
𝑡𝑖𝑗 Maximum deviation of travel time 𝑡𝑖𝑗 𝑖, 𝑗 ∈ 𝑁
Decision
variables
𝑥𝑖𝑗 ∈ {0, 1}. 1 if arc (𝑖, 𝑗) is traversed; otherwise, 0
𝜉𝑖 ∈ {Z+ ∪ {0}}. Number of riders carried after leaving request 𝑖
𝜁𝑖 ∈ {Z+ ∪ {0}}. Number of pieces of luggage carried after leaving request 𝑖
𝜛𝑖𝛾 ≥0. Service start time for request 𝑖 under uncertainty level γ
𝜏 𝑖𝑛+1,𝛾 ≥0. Arrival time for request 𝑖 under uncertainty level γ

taken into account, which assumes that travel times are deterministic. Then, we can use  , a polyhedral uncertain set, to describe
ll the travel time uncertainty for each route.

𝑘 =

{

�̃� ∈ R|𝐴|
+

|

|

|

𝑡𝑖𝑗 = 𝑡𝑖𝑗 + 𝜉𝑖𝑗 𝑡𝑖𝑗 ,
∑

(𝑖,𝑗)∈𝐴
𝜉𝑖𝑗 ≤ Γ, 0 ≤ 𝜉𝑖𝑗 ≤ 1, (𝑖, 𝑗) ∈ 𝐴

}

(1)

Restricted by the service time window of each request, the pickup time at each request cannot be directly modeled as the
departure time of the vehicle plus the travel time of arcs traversed by the vehicle (𝑡𝑗 ≥ 𝑡0+

∑

𝑚
∑

𝑛𝑡𝑚𝑛𝑥𝑚𝑛, 𝑡𝑚𝑛 denotes the travel time
on arc (m,n), and 𝑥𝑚𝑛 ∈ {0, 1} denotes whether the arc (m,n) is traversed), and it can only be modeled with the recursive approach
(𝑡𝑗 ≥ 𝑡𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗 , 𝑠𝑖 is the service duration at request node 𝑖). The classical robust optimization method based on the dual theory is
only applicable to deal with the uncertainty of 𝑡𝑚𝑛 in ∑

𝑚
∑

𝑛𝑡𝑚𝑛𝑥𝑚𝑛, and it is not applicable to deal with the travel time uncertainty
in this recursive inequality (𝑡𝑗 ≥ 𝑡𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗). However, the travel time uncertainty can be portrayed accurately via the recursive
Eq. (2) based on the uncertainty set defined in (1), just like Munari et al. (2019) and Zhang et al. (2022) did. Let 𝒯𝑖,γ be the earliest
visiting time at the node 𝑁𝑖 when up to γ (≤ Γ) route segments’ travel times reaching the worst-case values. 𝒯𝑖,γ can be computed
according to the following recursion equations:

𝒯𝑖,γ =

{

𝑚𝑎𝑥{𝑒𝑖,𝒯𝑖−1,γ + 𝑡𝑖−1,𝑖}, if γ = 0
𝑚𝑎𝑥{𝑒𝑖,𝒯𝑖−1,γ + 𝑡𝑖−1,𝑖,𝒯𝑖−1,γ−1 + 𝑡𝑖−1,𝑖 + 𝑡𝑖𝑗}, if γ > 0

(2)

To ensure the route feasibility, each route must satisfy 𝒯𝑖,γ ≤ 𝑙𝑖 for all γ ∈ {0, 1,… ,Γ} and each request 𝑖 visited by the route.
Since the deviations in travel time may be offset by the waiting time at the request node, the value of Γ usually does not take a too
large value. The detailed analysis can be found in Munari et al. (2019) and it is consistent with the numerical experimental results
in Section 6.4. This recursive equation efficiently handles the travel time uncertainty of route segments.

3.2.2. Mathematical model
Based on the notations defined in Table 2 and the idea of modeling travel time uncertainty, we developed the following

mathematical formulation for the first-mile ridesharing to the intercity transit hub:

𝑚𝑖𝑛
∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝑐𝑑𝑖𝑗𝑥𝑖𝑗 (3)

subject to:
∑

𝑥𝑖𝑗 = 1,∀𝑖 ∈ 𝑁1 (4)
5

𝑗∈𝑁∩𝑗≠{𝑖∪0}
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∑

𝑗∈𝑁∩𝑗≠{𝑖∪0}
𝑥𝑖𝑗 =

∑

𝑗∈𝑁∩𝑗≠𝑖
𝑥𝑗𝑖,∀𝑖 ∈ 𝑁1 (5)

𝜉𝑗 ≥ 𝜉𝑖 + 𝑝𝑖 −𝑀(1 − 𝑥𝑖𝑗 ),∀𝑖, 𝑗 ∈ 𝑁1 (6)

𝜁𝑗 ≥ 𝜁𝑖 + 𝜌𝑖 −𝑀(1 − 𝑥𝑖𝑗 ),∀𝑖, 𝑗 ∈ 𝑁1 (7)

𝜉𝑖 + 𝑚𝑎𝑥
{

0,
⌈

𝜁𝑖 − 𝐵
𝐿

⌉}

≤ 𝑄,∀𝑖 ∈ 𝑁1 (8)

𝜛𝑗𝛾 ≥ 𝜛𝑖𝛾 + 𝑡𝑖,𝑗 −𝑀(1 − 𝑥𝑖𝑗 ),∀𝑖, 𝑗 ∈ 𝑁1,∀𝛾 ∈ {0,… ,Γ} (9)

𝜛𝑗𝛾 ≥ 𝜛𝑖𝛾−1 + 𝑡𝑖,𝑗 + 𝑡𝑖𝑗 −𝑀(1 − 𝑥𝑖𝑗 ),∀𝑖, 𝑗 ∈ 𝑁1,∀𝛾 ∈ {1,… ,Γ} (10)

𝑒𝑖 ≤ 𝜛𝑖𝛾 ≤ 𝑙𝑖,∀𝑖 ∈ 𝑁1,∀𝛾 ∈ {0,… ,Γ} (11)

𝜏𝑗𝑛+1,𝛾 ≥ 𝜏 𝑖𝑛+1,𝛾 −𝑀(1 − 𝑥𝑖𝑗 ),∀𝑖, 𝑗 ∈ 𝑁1,∀γ ∈ {0,… ,Γ} (12)

𝜏𝑗𝑛+1,𝛾 ≤ 𝜏 𝑖𝑛+1,𝛾 +𝑀(1 − 𝑥𝑖𝑗 ),∀𝑖, 𝑗 ∈ 𝑁1,∀γ ∈ {0,… ,Γ} (13)

𝜏𝑗𝑛+1,𝛾 ≥ 𝜛𝑗𝛾 + 𝑡𝑗,𝑛+1 −𝑀(1 − 𝑥𝑗,𝑛+1),∀𝑗 ∈ 𝑁1,∀γ ∈ {0,… ,Γ} (14)

𝜏𝑗𝑛+1,𝛾 ≥ 𝜛𝑗,𝛾−1 + 𝑡𝑗,𝑛+1 + 𝑡𝑗,𝑛+1 −𝑀(1 − 𝑥𝑗,𝑛+1),∀𝑗 ∈ 𝑁1,∀γ ∈ {1,… ,Γ} (15)

𝜏𝑗𝑛+1,𝛾 ≤ 𝑑𝑗 ,∀𝑗 ∈ 𝑁1,∀γ ∈ {0,… ,Γ} (16)

𝜏𝑗𝑛+1,Γ −𝜛𝑗0 ≤ 𝑟𝑗 ,∀𝑗 ∈ 𝑁1 (17)

𝑥𝑖𝑗 ∈ {0, 1} ,∀𝑖, 𝑗 ∈ 𝑁 (18)

𝜉𝑖 ∈ {Z+ ∪ {0}},∀𝑖 ∈ 𝑁1. (19)

𝜁𝑖 ∈ {Z+ ∪ {0}},∀𝑖 ∈ 𝑁1. (20)

𝜛𝑖𝛾 ≥ 0,∀𝑖 ∈ 𝑁1,∀γ ∈ {0,… ,Γ} (21)

𝜏 𝑖𝑛+1,𝛾 ≥ 0,∀𝑖 ∈ 𝑁1,∀γ ∈ {0,… ,Γ} (22)

The objective function (3) minimizes the overall transportation cost. Constraint (4) guarantees that each request must be serviced.
Constraint (5) ensures flow conservation. Constraints (6) and (7) respectively denote the carried number of riders and pieces of large
luggage. Constraint (8) ensures that the total number of riders and pieces of luggage at each request node cannot exceed the carrying
capacity of cars. Constraints (9)–(11) confine the pickup time at each request, which is based on the recursive Eq. (2). Constraints
(12) and (13) impose that two requests sharing a trip reach the hub at the same time. Constraints (14) and (15) denote the latest
arrival time for each request. Constraint (16) ensures that the arrival time at the intercity transportation hub must meet passengers’
requirements. Constraint (17) ensures that riders’ ride times must be less than their maximum ride times. Constraints (18)–(22)
define the domain of decision variables. Constraint (8) is a nonlinear constraint, which can be linearized into constraints (23) and
(24).

𝐿𝜉𝑖 − 𝜁𝑖 − 𝐵 ≤ 𝐿𝑄,∀𝑖 ∈ 𝑁1 (23)

𝜉𝑖 ≤ 𝑄,∀𝑖 ∈ 𝑁1 (24)

4. Solution methodology

The FMRITH problem can be solved by off-the-shelf solvers (for instance, CPLEX and GUROBI) for small-scale cases, while it is
time-consuming to solve large-scale instances since the MILP model contains a large set of integer variables and big-M constraints.
To solve the large-scale FMRITH problem more efficiently, we design an algorithm based on the framework of Adaptive Large
6

Neighborhood Search (Pisinger and Ropke, 2007).
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4.1. Framework of the ALNS algorithm

Algorithm 1 lays out the main steps of the ALNS algorithm, including initial solution generation and iteratively neighborhood
earch by removal and repair operators, which are selected by roulette-wheel procedure. To adaptively adjust the search scope, the
umber of removed and inserted nodes of requests is dynamically adjusted by the parameter Π, which increases gradually with the

iteration numbers of non-improved solution (NIIts). 𝜁 ∈ [0,1] is the ratio of removing the requests. To avoid local optimal solutions
in the search process, we adopt the Metropolis rule (Metropolis et al., 1953) to accept new solutions. Parameter 𝑇 is the temperature
for the Metropolis rule, and the linear cooling rate ℛ is employed to lower the temperature. The ALNS is terminated when a given
number of iterations are finished. Please see Algorithm 1 for the detailed adaptive large neighborhood search procedure.

Algorithm 1: A robust adaptive large neighborhood search
1 Input: instance data, removal operators, repair operators, and other algorithm parameters
2 Output: the best solution (𝑆𝑏𝑒𝑠𝑡)
3 construct an initial solution 𝑆𝑛𝑒𝑤 by insert algorithm;
4 set 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑛𝑒𝑤, 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆𝑛𝑒𝑤, NIIts ← 0;
5 while the termination conditions of ALNS are not met do
6 Π ← 𝑚𝑖𝑛

{

𝜁𝑚𝑖𝑛 + 𝜁𝑟𝑎𝑡𝑒 × NIIts , 𝜁𝑚𝑎𝑥
}

×total number of requests;
7 select removal operator (R0) and destroy 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 by R0;
8 select repair operator (R1) and repair 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 by R1;
9 if 𝑆𝑛𝑒𝑤 is better than 𝑆𝑏𝑒𝑠𝑡 then
10 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑛𝑒𝑤, 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆𝑛𝑒𝑤, NIIts ←0;
11 else if 𝑆𝑛𝑒𝑤 is better than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then
12 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆𝑛𝑒𝑤, NIIts ← 0;
13 else if 𝑆𝑛𝑒𝑤 is accepted by the Metropolis criterion then
14 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆𝑛𝑒𝑤, NIIts= NIIts+1;
15 else
16 NIIts= NIIts+1;
17 update Π, T, scores, and weights of removal and repair operators;
18 return 𝑆𝑏𝑒𝑠𝑡;

4.2. Initial solution

We use the randomly insert algorithm to construct an initial solution. The basic idea is that we first construct an empty route
nd then insert unvisited requests to this route one by one. If no more requests can be inserted into this route, we generate another
mpty route and continue to insert requests into it until all the requests are inserted into routes. Algorithm 2 defines the detailed
rocedure of generating initial solution.

Algorithm 2: Insert algorithm
1 Input: requests, cars
2 Output: set of routes (R)
3 uninserted requests ← all requests;
4 while |uninserted requests| > 0 do
5 generate a new empty route r ;
6 for each uninserted request do
7 for all positions in the route do
8 new route ← insert the request to this position;
9 check the feasibility of the new route by Algorithm 3;
10 if the new route is feasible then
11 delete this uninserted request, r ← new route, and break;

12 add r to R;
13 return R

4.3. Feasibility check

During the process of initial solution generation and neighborhood search, the feasibility check for routes is a crucial step.
egarding this problem, the carrying capacity, the pickup time window, and the maximum ride time as well as the latest arrival time
7
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considering travel time uncertainty need to be checked, which is more complicated than traditional routing problems. Consequently,
we design a tailored algorithm (Algorithm 3) to verify the route feasibility for this problem.

To begin, we check whether the carried number of passengers and pieces of large luggage meet the car’s capacity constraint.
hen, the actual pickup time window for each request and the minimum cumulative route duration from the depot to this node can
e determined by ‘‘moving’’ the departure time window to each node and calculating the intersection of the time window of the
ode (see Algorithm 4). More details can be found in Algorithm 4, in which the idea of dynamic programming has been leveraged
o compute corresponding time information. Based on these computational results, the feasibility of each passenger’s latest arrival
ime at the intercity transportation hub can be checked trivially. Last, we can check whether the worst minimum duration of the
ub-route starting from the incumbent node, with an initial time window of [𝑒𝑠0𝑘, 𝑙𝑘] and the new feasible latest arrival time, is less

than the rider’s maximum ride time.
Algorithm 3: Route feasibility check

1 Input: a route
2 Output: feasibility of the route
3 set initial parameters: 𝑒𝑠γ𝑘, 𝑙𝑠γ𝑘 ← 0 (the earliest and latest service start time for request 𝑘 under uncertainty level of γ),

𝑑𝑟γ𝑘 ← 0 (route duration from depot to 𝑘);
4 //check the capacity feasibility for this route;
5 if the capacity constraint is infeasible then
6 return false;
7 //calculate the total route duration and service time windows;
8 for each request k in this route do
9 for each uncertainty level of γ (γ ≤ Γ) do
10 calculate 𝑒𝑠γ𝑘, 𝑙𝑠γ𝑘, 𝑎𝑛𝑑 𝑑𝑟γ𝑘 by Algorithm 4;

11 get the worst minimum duration of this route (𝑑𝑟𝛤 ) ← 𝑑𝑟𝛤𝑘 of the last request in the route;
12 //check the latest arrival time for each request;
13 for each request k in this route do
14 if the 𝑒𝑠𝛤𝑛+1 exceeds the latest arrival time of request k then
15 return false;

16 //check the maximum ride time for each request;
17 for each request k in this route do
18 generate a sub-route starting from k of this route and set the initial time window for k being [𝑒𝑠0𝑘, 𝑙𝑘];
19 for each request j in the sub route do
20 for each uncertainty level of γ (γ ≤ Γ) do
21 calculate 𝑒𝑠𝛾𝑗 , 𝑙𝑠𝛾𝑗 , 𝑑𝑟

𝛾
𝑗 by Algorithm 4;

22 get the worst minimum route duration of the sub-route (𝑑𝑟𝛤 );
23 if 𝑑𝑟𝛤 > the maximum ride time of request k then
24 return false;

25 return true;

4.4. Neighborhood operators

Four removal operators and four repair operators are designed to obtain a neighborhood solution.

.4.1. Removal operators
Random Removal. Requests can be randomly chosen and removed from the routes.
Worst Removal. The route cost may be quite high if requests are placed in undesirable positions. Therefore, it is necessary to

dentify and remove these requests. To begin with, we calculate the cost reduction for each request after it is removed. Then, the
equest with the biggest cost reduction is removed from the current solution. Finally, the previous two steps are repeated until the
umber of removed requests meets the requirement.
Route Removal. To begin with, a route is chosen randomly and removed. Then, if the number of requests on the route is less than

he number that needs to be removed, the worst removal is used to remove the remaining number of requests.
Shaw Removal. For the FMRITH, we define the closeness of two requests 𝑖 and 𝑗 as 𝐶𝐿(𝑖, 𝑗) = 𝑡𝑖𝑗 + 𝜗 × |𝑒𝑖 − 𝑒𝑗 |+ 𝜎 × |𝑙𝑖 − 𝑙𝑗 |+ 𝜇 ×

𝑑𝑖 − 𝑑𝑗 |, where 𝑡𝑖𝑗 is the travel time from request 𝑖 to request 𝑗, 𝜗, 𝜎, and 𝜇 are the penalty parameters of deviation for the earliest
ervice start time, the latest service start time, and the latest arrival time at the intercity transportation hub. We set the value of
8

.5 to these penalty parameters.
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Algorithm 4: Robust service start time window computation

1 Input: current request, predecessor request, 𝑒𝑠γ𝑘−1, 𝑙𝑠
γ
𝑘−1, 𝑑𝑟

γ
𝑘−1, 𝑒𝑠

γ−1
𝑘−1, 𝑙𝑠

γ−1
𝑘−1, 𝑑𝑟

γ−1
𝑘−1 of predecessor request, time window,

travel time(TT ) and uncertainty travel time (𝑇𝑇 ) between two requests
2 Output: the earliest and latest service start time for request k under γ (𝑒𝑠γ𝑘, 𝑙𝑠

γ
𝑘), and route duration from depot to current

request under γ (𝑑𝑟γ𝑘)
3 //assume that the travel time from the predecessor to k is deterministic;
4 calculate 𝑒𝑠γ𝑘, 𝑙𝑠

γ
𝑘, 𝑑𝑟

γ
𝑘 ∶ 𝑒𝑠γ𝑘 ← 𝑒𝑠γ𝑘−1 + 𝑇𝑇 , 𝑙𝑠γ𝑘 ← 𝑙𝑠γ𝑘−1 + 𝑇𝑇 , 𝑑𝑟γ𝑘 ← 𝑑𝑟γ𝑘−1 + 𝑇𝑇 ;

5 if 𝑒𝑠γ𝑘 > 𝑙𝑘 then
6 return false //violate the service time window of k;
7 else if 𝑙𝑠γ𝑘 < 𝑒𝑘 then
8 𝑑𝑟γ𝑘 ← 𝑑𝑟γ𝑘 + (𝑒𝑘 − 𝑙𝑠γ𝑘), 𝑒𝑠

γ
𝑘, 𝑙𝑠

γ
𝑘 ← 𝑒𝑘 //wait for picking up the request;

9 else
10 𝑒𝑠γ𝑘 ← 𝑚𝑎𝑥{𝑒𝑠γ𝑘, 𝑒𝑘}, 𝑙𝑠

γ
𝑘 ← 𝑚𝑖𝑛{𝑙𝑠γ𝑘, 𝑙𝑘};

11 //assume that the travel time from the predecessor to k is uncertain;
12 calculate 𝑒𝑠γ𝑘, 𝑙𝑠γ𝑘, 𝑑𝑟γ𝑘 ∶ 𝑒𝑠γ𝑘 ← 𝑒𝑠γ−1𝑘−1 + 𝑇𝑇 , 𝑙𝑠γ𝑘 ← 𝑙𝑠γ−1𝑘−1 + 𝑇𝑇 , 𝑑𝑟γ𝑘 ← 𝑑𝑟γ−1𝑘−1 + 𝑇𝑇 ;
13 if 𝑒𝑠γ𝑘 > 𝑙𝑘 then
14 return false //violate the service time window of k;

15 else if 𝑙𝑠γ𝑘 < 𝑒𝑘 then
16 𝑑𝑟γ𝑘 ← 𝑑𝑟γ𝑘 + (𝑒𝑘 − 𝑙𝑠γ𝑘), 𝑒𝑠γ𝑘, 𝑙𝑠

γ
𝑘 ← 𝑒𝑘 //wait for picking up the request;

17 else
18 𝑒𝑠γ𝑘 ← 𝑚𝑎𝑥{𝑒𝑠γ𝑘, 𝑒𝑘}, 𝑙𝑠

γ
𝑘 ← 𝑚𝑖𝑛{𝑙𝑠γ𝑘, 𝑙𝑘};

19 return 𝑒𝑠γ𝑘 ← 𝑚𝑎𝑥
{

𝑒𝑠γ𝑘, 𝑒𝑠γ𝑘
}

, 𝑙𝑠γ𝑘 ← 𝑚𝑖𝑛
{

𝑙𝑠γ𝑘, 𝑙𝑠
γ
𝑘

}

, 𝑎𝑛𝑑 𝑑𝑟γ𝑘 ← 𝑚𝑎𝑥
{

𝑑𝑟γ𝑘, 𝑑𝑟
γ
𝑘

}

;

4.4.2. Repair operators
Random Repair. Each request is randomly inserted into a feasible insertion position, and if the request cannot be inserted into

any positions, an empty route will be generated to insert this request.
Best Repair. For each request, it will be inserted into the lowest-cost position if feasible insertion positions exist in the available

routes. Otherwise, a new empty route will be generated for the insertion.
Greedy Repair. Regarding this operator, the insertion costs per request inserted in each available position are calculated. Then,

the lowest-cost request-position pair is selected, which means this request will be inserted into this position. If the lowest insertion
cost equals 𝑀 (an extremely large number; note that if a route is infeasible, we set the route cost to 𝑀 .), which means that there
is no feasible position to insert this request, and a new empty route will be generated to insert this request.

Regret Repair. The regret repair operator (Pisinger and Ropke, 2007) is a variant of the greedy repair operator, which uses the
look-ahead information to choose the request and position for insertion. We use 𝛥𝐶𝑟

𝑖 to denote the minimum insert cost of inserting
the request 𝑖 into route 𝑟. Let 𝛥𝐶𝑟

𝑖 be 𝑀 , if route 𝑟 will be infeasible after inserting 𝑖 into it. Furtherly, we use 𝑟(𝑘) to denote the route
which has the 𝑘th lowest cost for inserting request 𝑖. The regret value (𝑅𝑉 ) of request 𝑖 can be evaluated by 𝑅𝑉 (𝑖) = 𝛥𝐶𝑟(2)

𝑖 −𝛥𝐶𝑟(1)
𝑖 ,

and request 𝑖 with the maximum regret value should be inserted in this iteration, 𝑖 ∶= 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖(𝛥𝐶
𝑟(2)
𝑖 − 𝛥𝐶𝑟(1)

𝑖 ). The regret repair
ethod can also be extended to regret-k repair operators, 𝑖 ∶= 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖

∑

𝑘 (𝛥𝐶
𝑟(𝑘)
𝑖 − 𝛥𝐶𝑟(1)

𝑖 ). In our research, the value of 𝑘 is set to
and 3, which can be randomly selected in each iteration.

.5. Adaptive mechanism

The roulette-wheel procedure is employed to determine which destroy and repair operators are selected in each iteration of the
LNS. The selection is based on the weight of each operator. Each operator’s weight is assigned based on its past performance (also
nown as ‘‘score’’) in previous iterations. Let 𝑤𝑖, which is initialized to 1, denote the weight of the destroy (or repair) operator 𝑖.
iven 𝑘 destroy (or repair) operators, the probability of selecting operator 𝑖 is 𝑤𝑖/

∑𝑘
𝑖=1 𝑤𝑖. The operators’ weights are adjusted via

q. (25) after 𝜙 iterations (also known as ‘‘segment’’, see Pisinger and Ropke, 2007). During the iteration process of each segment,
he scores of each operator are recorded. At the beginning of each segment, all scores are set to 0. Then, scores are increased by 𝜎1,
2, 𝜎3 depending on the new solution’s quality (see Pisinger and Ropke, 2007 for the definition of 𝜎1, 𝜎2, 𝜎3).

𝑤𝑖 =

{

(1 − 𝑅)𝑤𝑖 + 𝑅 𝛱𝑖
𝛯𝑖
, if 𝛯𝑖 > 0

𝑤𝑖, if 𝛯𝑖 = 0
(25)

Where 𝛱𝑖 is the score of operator 𝑖 recorded in the last segment. 𝑅 ∈ [0, 1] is the reaction factor controlling the speed of the weight
adjustment. 𝛯 records the number of times operator 𝑖 is called during the last segment.
9
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Fig. 3. An illustrative example of routes storing in trie.

4.6. Acceleration strategy

There are many identical routes during the process of the neighborhood search. Accordingly, the routes which have been checked
can be preserved, and the information on these routes can be directly used if they reappear, which can efficiently speed up the
algorithm’s computation time since it avoids some repeated computations. The route information can be preserved by the trie, an
rdered tree data structure also known as ‘‘digital tree’’ proposed by De La Briandais (1959), which has been widely applied in string
etrievals, predictive text, spell-checking, and term indexing (Park et al., 2007). Trie has been utilized in time-consuming feasibility
hecks or calculations by Wei et al. (2015) and Zhang et al. (2021).

According to the characteristic of this problem, we utilize the trie to record requests’ ID and total costs of each route. For any
ew route generated in the process of the neighborhood search, we can try to retrieve the route from the trie before we check its
easibility and calculate its cost. To reduce the memory space occupied by the trie, we can set the cost of an infeasible route to a
ufficiently large number, so we can retrieve the feasibility of the route directly from its cost value. If the route can be retrieved
rom the trie, we can immediately get the cost and feasibility of the route. Otherwise, we need to check the feasibility, compute the
ost of the route, and store this information in the trie. Fig. 3 illustrates the storage and retrieval of route information. The current
rie preserves 6 routes, including 0-3-2-0, 0-3-2-1-0, 0-2-0, 0-2-3-0, 0-2-1-0 and 0-3-5-4-0. If we have two routes now, 0-3-2-0 and
-2-4-0, respectively, the first route’s cost and feasibility can be directly retrieved, but the second route does not exist in the trie,
hich needs to compute related information and store it into the trie.

Note that the trie can effectively reduce the overall running time of the algorithm only when the path length is limited by the
apacity of the car, for instance, 4–7 requests per car. If the path is too long, it may decrease the read and storage speeds of the
rie and thus cannot ensure that the algorithm’s runtime is reduced.

. Lower-bound and upper-bound solutions for the FMRITH problem

To evaluate the solution quality of the tailored ALNS algorithm, information about the lower-bound and upper-bound solutions
or the FMRITH problem can be utilized. In this section, we introduce the column-generation algorithm and a greedy algorithm to
et a tight lower-bound and an upper-bound solution for this problem, respectively.

.1. A column-generation algorithm for the lower-bound solution

We first reformulate the MILP model as a set-partitioning model via the Danzig–Wolfe decomposition technique since the linear
elaxation of the set-partitioning model can provide a tighter bound than the original MILP model (see, for instance, Li and Jia,
019, Liu et al., 2021). Then, the column generation algorithm can be leveraged to solve the set-partitioning model and obtain the
ower-bound information about the original problem. In this model, each decision variable (column) denotes a ridesharing scheme
onsisting of the served requests, the serving sequence, and the latest arrival time.

Let 𝛩 represent the set of ridesharing schemes. The original problem becomes selecting the best combination of a subset from
. The decision variable is defined as 𝛿𝜃 such that 𝛿𝜃 = 1 if ridesharing scheme 𝜃 ∈ 𝛩 is employed as part of the solution, and
𝜃 = 0 otherwise. Moreover, we define binary parameter 𝜒𝜃

𝑖 such that 𝜒𝜃
𝑖 = 1 if request 𝑖 is served by the ridesharing scheme 𝜃, and

otherwise. The cost of each ridesharing scheme can be denoted as 𝛹𝜃 . With these notations, the first-mile ridesharing to intercity
ransportation hubs problem can be reformulated as the following set-partitioning model:

[𝐌𝐏]
∑

𝛹𝜃𝛿𝜃 (26)
10
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subject to:
∑

𝜃∈𝛩
𝜒𝜃
𝑖 𝛿𝜃 = 1,∀𝑖 ∈ 𝑁1 (27)

𝛿𝜃 ∈ {0, 1},∀𝜃 ∈ 𝛩 (28)

The objective function (26) minimizes the total operating cost for rendering ridesharing services. Constraint (27) ensures that
ach request is served exactly by one ridesharing scheme. Constraint (28) defines the range of variable 𝛿𝜃 . Note that the number

of complete columns in MP grows exponentially with the scale of the problem. Enumerating all columns is computationally
intractable in most cases, and the common practice is repeatedly solving the restricted master problem (RMP) by focusing on a
subset 𝛩 ∈ 𝛩 (Song et al., 2017). In addition, decision variables 𝛿𝜃 are relaxed to be continuous variables (𝛿𝜃 ≥ 0,∀𝜃 ∈ 𝛩). To
nsure RMP is always feasible, we introduce an artificial decision variable 𝜇𝑖 ≥ 0 for each request.

[𝐑𝐌𝐏]
∑

𝜃∈𝛩

𝛹𝜃𝛿𝜃 +
∑

𝑖∈𝑁1

𝑀𝜇𝑖 (29)

subject to:
∑

𝜃∈𝛩

𝜒𝜃
𝑖 𝛿𝜃 + 𝜇𝑖 = 1,∀𝑖 ∈ 𝑁1 (30)

𝛿𝜃 ≥ 0,∀𝜃 ∈ 𝛩 (31)

Let 𝜋𝑖 denote dual variable associated with each request 𝑖 of constraint (30) in RMP. Then the reduced cost corresponding to
ach ridesharing scheme 𝜃 is:

𝛹𝜃 = 𝛹𝜃 −
∑

𝑖∈𝑁1

𝜋𝑖𝜒
𝜃
𝑖 =

∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝑐𝑑𝑖𝑗𝑥𝑖𝑗 −

∑

𝑖∈𝑁1

𝜋𝑖𝜒
𝜃
𝑖 (32)

Then, the pricing sub-problem (PSP) can be formulated as:

[𝐏𝐒𝐏] 𝑚𝑖𝑛 𝛹𝜃 =
∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝑐𝑑𝑖𝑗𝑥𝑖𝑗 −

∑

𝑖∈𝑁1

𝜋𝑖𝜒
𝜃
𝑖 (33)

subject to:
∑

𝑗∈𝑁∩𝑗≠{𝑖∪0}
𝑥𝑖𝑗 ≤ 1,∀𝑖 ∈ 𝑁1 (34)

(6) − (7), (9) − (24) (35)

The objective function (33) aims to identify a ridesharing scheme with the lowest reduced cost. Constraint (34) denotes that
each request is served at most once by the ridesharing scheme.

The sub-problem is a variant of the elementary shortest path problem with resource constraints (ESPPRC). Employing the labeling
algorithm to obtain the optimal solution for the ESPPRC and its variants is a common practice (see for example Feillet et al.,
2004, Irnich and Desaulniers, 2005). The process of the CG algorithm is repeatedly solving the RMP and passing values of dual
variables to the PSP. Then, solving the PSP to obtain columns with negative reduced costs. The CG algorithm halts when the PSP
cannot find a column with a negative objective value, which implies that we have identified the optimal solution for the RMP and
a tight lower bound for the MILP model.

5.2. A greedy algorithm for an upper-bound solution

We introduce a greedy algorithm based on the solution’s characteristic of the FMRITH problem, in which cars typically visit the
farthest requests first since their maximum ride time is longer than that of other requests that are closer to the intercity transit hub.
The detailed procedure for the greedy algorithm is summarized as follows, and Fig. 4 shows an illustrative example.

Step 1: Select the k farthest requests as the first request node of k routes;
Step 2: Pick out the n closest nodes for each farthest request, and obtain k × n new routes by extending these nodes to the ends

of the k routes, respectively;
Step 3: For each new feasible route, select n new requests closest to the last node of the route and extend them to the route,

which can get n new partial routes. Repeat this process until no more feasible extensions can be found for each route;
Step 4: Obtain the set of feasible routes starting from the k farthest requests. Then, we choose the route with the most riders

from the set as an ‘‘optimal’’ route and mark requests traversed by the ‘‘optimal’’ route as serviced;
Step 5: Repeat steps 1–4 for the remaining requests until each request is serviced, and utilize these ‘‘optimal’’ routes as a solution;
Step 6: Output the ‘‘optimal’’ route set.
Note that we can run different combinations of k and n and select the solution with the lowest cost as the upper-bound solution

for the FMRITH problem. In this paper, we set the maximum values of k and n to be 𝑚𝑎𝑥{5, ⌈ |𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠|
⌉} and 3, respectively.
11
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Fig. 4. An illustrative example for the greedy algorithm with k = 3 and n = 2.

Fig. 5. Locations of some sample requests heading for the SSRS.

6. Case study

In this section, we conduct computational experiments to validate the performance of the proposed model and algorithms. The
Shanghai South Railway Station (SSRS) is selected as the intercity transport hub, and passenger demand is randomly generated within
15 km of the hub station (for instance, see Fig. 5, which consists of 1 transportation hub and 25 request nodes). The algorithms are
coded in C++, and CPLEX 12.7 is used to solve the MILP, MP, and RMP models. All computational experiments are conducted on
a PC with 8 GB of RAM and a 2.3 GHz CPU.
12
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Table 3
Values of some basic parameters for the case study.

Parameters Value

Transportation cost per kilometer 0.2
Number of passenger seats in the car 7
Number of pieces of luggage that can be placed on one seat 2
Number of pieces of luggage that can be placed in the trunk 2
Budget of travel time uncertainty (Γ) 3
Deviation coefficients of travel time (𝛼) 0.15/0.3/0.5
Limit of computation time (seconds) by CPLEX 7200
Maximum number of iterations for the ALNS 10000
Number of iterations for each segment (𝜙) 50
Maximum number of iterations for the NIIts 500
Ratio of requests removed according to the NIIts (𝜁𝑟𝑎𝑡𝑒) 0.0002
Minimum ratio of requests removed (𝜁𝑚𝑖𝑛) 0.1
Maximum ratio of requests removed (𝜁𝑚𝑎𝑥) 0.3
Initial temperature (𝑇 ) 100
linear cooling rate (ℛ) 0.01

Table 4
Values of several parameters for the ALNS algorithm.

Parameters Range Best value

𝑅 [0,1; 0.2; 0.5] 0.1
𝜎1 [10; 20; 30] 30
𝜎2 [10; 20; 30] 10
𝜎3 [5; 10; 20; 30] 5

6.1. Parameters setting and instances generation

The values of some basic parameters are shown in Table 3. The proposed ALNS algorithm has several parameters (𝑅, 𝜎1, 𝜎2,
𝜎3) to be tuned, and we conduct a sensitivity analysis to determine the best combination for these parameters. To avoid the
exponential explosion of these combinations, we first give each parameter a set of values according to experiences in the literature
(for instance, Luo et al., 2016) and some preliminary experiments. Then, we calibrate the values of parameters 𝑅, 𝜎1, 𝜎2, 𝜎3 by
running 108 (3 × 3 × 3 × 4) different combinations for the instance with 50 requests. The best combination of parameters is
etermined based on the objective value, and the best values for the weight-adjustment parameters are shown in Table 4.

Regarding the instance generation, we first randomly generate coordinates, the number of riders, and the number of pieces of
arge luggage for each request. We assume that the number of riders is 1 or 2, with probabilities of 80% and 20%, respectively, and
he number of pieces of large luggage is 0, 1, or 2, with probabilities of 50%, 40%, and 10% (Li et al., 2021). The distance between
ll nodes (consisting of request nodes and the depot at the SSRS) is extracted via the Python package OSMnx (Boeing, 2017). Then,
e randomly generate the latest arrival time (within the same time slot, for instance, 8:00 to 8:15), the maximum travel time, which

s between 1.5 and 2 times the direct ride time to the hub station, and the earliest pickup time for each request. The latest pickup
ime is derived by adding 30 min to the earliest pickup time. Data can be found on this webpage.

.2. Computational performance of the ALNS algorithm

To assess the computational performance of the ALNS, we compare the results with three methods: directly solving the proposed
odel by the CPLEX solver, the CG algorithm, and the greedy algorithm. As mentioned in Section 5, the CG algorithm and the

reedy algorithm can provide a tighter lower bound and an upper bound, respectively. In addition, the CG algorithm can identify
near-optimal solution by solving the MP model when the RMP model finds all the negative columns, which is also known as the
G heuristic (CGH) algorithm. Table 5 reports the computational results for instances with the request number ranging from 5 to
0 and the uncertainty level of 0, 1, and 3. The deviation coefficient of travel time is 0.5. Note that the ALNS runs 10 times for
ach instance.

As can be seen, CPLEX can only solve small-scale instances with less than 20 requests to optimality. The ALNS algorithm
utperforms the CPLEX as it finds either the same or better solutions. The CG algorithm finds optimal solutions for small-scale
nstances with less than 15 requests and better solutions than CPLEX for large-scale instances with more than 30 requests. Although
he greedy algorithm has the shortest computation time, its solutions are unstable. The greedy algorithm cannot find the optimal
olutions for some small-scale instances, such as instance ‘‘R10𝛤0’’. The maximum gap (Gap2) between the greedy solution and the

lower bound solution is up to 16.93%, while for the ALNS algorithm, the gap (Gap3) is less than 8.14%. In addition, the standard
deviation of objective values for the ALNS algorithm is less than 1.76. Although the CG algorithm finds better solutions for some
larger-scale instances than the ALNS and the greedy algorithm, it takes a much longer time to determine the solution, and the
ALNS shows higher performance on the computation efficiency as instances with less than 50 requests can be solved within one
13

minute, and most of the large-scale instances can be solved within three minutes. Moreover, we find that the uncertainty level has

https://github.com/underway-hp/FMRITH/blob/main/readMe.txt
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Table 5
Computational performance of the ALNS.

Insta
nces

CPLEX solver CG algorithm Greedy algorithm ALNS algorithm

𝑂𝑏𝑗 Time Gap 𝑂𝑏𝑗𝐶𝐺 𝑂𝑏𝑗𝐶𝐺𝐻 Time Gap1 𝑂𝑏𝑗𝐺𝑅𝐷 Time Gap2 𝑂𝑏𝑗𝐵𝐸𝑆𝑇 𝑂𝑏𝑗𝐴𝑉 𝑅 STD Time Gap3
($) (s) (%) ($) ($) (s) (%) ($) (s) (%) ($) ($) ($) (s) (%)

R5Γ0 13.43 0.1 0.00 13.43 13.43 0.2 0.00 13.43 0.1 0.00 13.43 13.43 0.00 5.0 0.00
R5Γ1 14.99 0.1 0.00 14.99 14.99 0.2 0.00 14.99 0.1 0.00 14.99 14.99 0.00 6.2 0.00
R5Γ3 16.90 0.1 0.00 16.90 16.90 0.2 0.00 16.90 0.1 0.00 16.90 16.90 0.00 6.9 0.00
R10Γ0 29.86 0.1 0.00 28.80 29.86 0.6 3.68 30.02 0.1 4.24 29.86 29.86 0.00 6.5 3.68
R10Γ1 30.07 0.1 0.00 30.07 30.07 0.5 0.00 30.07 0.1 0.00 30.07 30.07 0.00 8.6 0.00
R10Γ3 33.27 0.1 0.00 33.27 33.27 0.2 0.00 33.27 0.1 0.00 33.27 33.27 0.00 10.1 0.00
R15Γ0 32.61 3.2 0.00 32.61 32.61 1.4 0.00 33.75 0.1 3.50 32.62 32.62 0.00 10.2 0.03
R15Γ1 37.90 0.4 0.00 37.90 37.90 0.7 0.00 39.66 0.1 4.64 37.90 37.90 0.00 11.1 0.00
R15Γ3 41.51 0.2 0.00 41.51 41.51 0.5 0.00 41.52 0.2 0.02 41.51 41.51 0.00 15.8 0.00
R20Γ0 37.75 950.9 0.00 37.00 38.27 13.7 3.43 38.78 0.5 4.81 37.75 37.96 0.42 13.2 2.59
R20Γ1 41.76 90.6 0.00 41.09 42.12 4.5 2.51 42.47 0.3 3.36 41.76 41.76 0.00 15.5 1.63
R20Γ3 46.41 16.9 0.00 46.41 46.41 2.8 0.00 46.42 0.3 0.02 46.41 46.41 0.00 22.5 0.00
R30Γ0 55.77 7200.0 21.35 48.64 50.49 120.4 3.80 53.26 1.5 9.50 50.07 50.93 0.54 21.6 4.71
R30Γ1 59.00 7200.0 12.77 52.25 52.72 31.2 0.90 60.12 1.0 15.06 52.72 52.72 0.00 27.4 0.90
R30Γ3 66.91 7200.0 16.33 62.16 66.01 85.1 6.19 66.21 0.8 6.52 65.06 65.13 0.10 36.5 4.78
R40Γ0 67.88 7200.0 25.57 61.84 64.14 356.3 3.72 68.80 4.6 11.25 63.46 64.48 0.71 39.9 4.27
R40Γ1 70.58 7200.0 25.61 64.27 69.30 94.2 7.83 69.78 3.9 8.57 66.98 67.69 0.57 43.8 5.32
R40Γ3 80.75 7200.0 33.07 76.95 79.87 65.0 3.79 84.02 2.5 9.19 78.67 79.45 0.28 59.2 3.25
R50Γ0 85.13 7200.0 34.61 74.60 76.35 1779.1 2.35 85.35 14.1 14.41 76.40 77.69 1.22 55.9 4.14
R50Γ1 87.80 7200.0 32.81 80.62 84.90 582.1 5.31 90.63 11.4 12.42 82.24 83.86 1.02 62.9 4.02
R50Γ3 99.08 7200.0 39.75 91.77 95.45 186.5 4.01 103.46 6.1 12.74 94.88 95.40 0.85 103.2 3.96
R60Γ0 104.43 7200.0 44.93 85.71 89.17 5926.7 4.04 94.26 29.5 9.98 88.54 91.34 1.62 93.2 6.57
R60Γ1 118.72 7200.0 48.73 90.89 96.12 1137.7 5.75 105.26 16.8 15.81 93.11 93.80 0.57 90.7 3.20
R60Γ3 120.83 7200.0 48.08 104.92 108.49 496.6 3.40 111.96 11.8 6.71 107.74 107.85 0.22 124.7 2.79
R70Γ0 129.07 7200.0 53.81 94.65 97.89 5605.0 3.42 110.67 66.2 16.93 97.37 100.05 1.61 113.8 5.71
R70Γ1 132.52 7200.0 53.96 99.57 101.43 1214.5 1.87 114.75 28.7 15.25 100.90 102.25 1.76 125.1 2.69
R70Γ3 144.26 7200.0 57.20 121.61 127.99 692.2 5.25 128.51 21.4 5.67 123.81 125.63 1.14 199.8 3.31
R80Γ0 147.15 7200.0 58.34 109.19 115.47 20450.9 5.75 125.91 105.7 15.31 115.49 118.08 1.48 160.2 8.14
R80Γ1 152.94 7200.0 54.32 113.85 121.37 4022.6 6.61 131.75 46.6 15.72 118.28 120.17 1.47 179.8 5.55
R80Γ3 163.58 7200.0 58.98 135.11 137.60 2040.7 1.84 144.14 33.8 6.68 136.42 137.15 0.52 249.2 1.51

Note: ‘‘Obj’’, ‘‘𝑂𝑏𝑗𝐶𝐺 ’’, ‘‘𝑂𝑏𝑗𝐶𝐺𝐻 ’’, and ‘‘𝑂𝑏𝑗𝐺𝑅𝐷 ’’ denote the objective values identified by the CPLEX solver, the CG algorithm, the CG heuristic algorithm, and
he greedy algorithm. ‘‘𝑂𝑏𝑗𝐵𝐸𝑆𝑇 ’’ and ‘‘𝑂𝑏𝑗𝐴𝑉 𝑅 ’’ are the best and average objective values determined by running the ALNS algorithm 10 times, respectively.
ap refers to the difference between the upper and lower bounds determined by the CPLEX solver; Gap1 = (𝑂𝑏𝑗𝐶𝐺𝐻 - 𝑂𝑏𝑗𝐶𝐺)/ 𝑂𝑏𝑗𝐶𝐺 ×100%; Gap2 = (𝑂𝑏𝑗𝐺𝑅𝐷

𝑂𝑏𝑗𝐶𝐺)/ 𝑂𝑏𝑗𝐶𝐺 ×100%; Gap3 = (𝑂𝑏𝑗𝐴𝑉 𝑅 - 𝑂𝑏𝑗𝐶𝐺)/ 𝑂𝑏𝑗𝐶𝐺 × 100%. ‘‘STD’’ shows the standard deviation between the 10 objective values (found by the ALNS
lgorithm) of each instance.

significant impact on the computation time of the ALNS, and the higher the uncertainty level, the longer the computation time.
s the uncertainty level increases, it causes an increase in the computation of time-related information (for instance, the ride time)

or each route, which leads to an increase in the overall running time. For CG and greedy algorithms, the lower the uncertainty
evel, the larger the search space for solutions, and the longer the computation time.

.3. Analysis of the large luggage impacts on route feasibility

To demonstrate the significance of considering large luggage in route planning, we use the Monte Carlo simulation method to
valuate the feasibility of routes without considering large luggage. Two simulation cases are analyzed. For the first case, three
outes with 0, 1, and 2 seats unused are generated, and we assume that requests served by the route only have one rider. For the
econd case, we obtain 118 routes from 5 instances, each with 100 requests. To check the feasibility of these routes considering
uggage constraints, we randomly generate the number of pieces of luggage for requests according to the parameters setting of
ection 6.1. Then, 10,000 simulations are performed for each route to identify the feasible probability. Detailed results are shown
n Fig. 6.

It can be seen that, when the proportion of requests with large luggage is small, such as less than 10%, the impact of large
uggage on the route’s feasibility is insignificant, and the large luggage can be ignored in route planning. As a result, large luggage
an be ignored in the ridesharing scheme design for the FM ridesharing to bus or metro stations. The proportion of passengers
arrying large luggage is relatively high at intercity railway stations and airports, so the impact of luggage on route feasibility must
e considered. As shown in Fig. 6(b), the probability of route infeasibility increases as the proportion of requests with large luggage
ncreases. In particular, when the proportion reaches 50 or more, the probability of infeasibility is greater than 22.52%.

.4. Analysis of routes’ robustness

This section leverages the Monte Carlo simulation method to evaluate the robustness of the solutions. To begin with, three request
ensity cases (low, medium, and high) are generated, which correspond to 25, 50, and 100 requests, respectively. Then, for each
14
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Fig. 6. Probability of infeasible routes without considering large luggage.

Table 6
Risk and PoR for cases with 25, 50, and 100 requests.

Requests Γ 15% deviation 30% deviation 50% deviation

Risk (%) PoR (%) Risk (%) PoR (%) Risk (%) PoR (%)

25

0 36.29 0.00 48.43 0.00 49.89 0.00
1 5.13 8.44 14.94 9.49 28.67 10.45
2 0.00 9.49 0.56 9.83 1.33 31.21
3 0.00 9.49 0.00 15.11 0.00 35.20

50

0 24.97 0.00 35.11 0.00 51.25 0.00
1 0.00 0.76 12.83 2.88 25.11 6.59
2 0.00 0.76 0.59 5.15 5.33 10.05
3 0.00 1.98 0.00 9.43 0.00 19.62

100

0 33.64 0.00 74.95 0.00 92.14 0.00
1 0.27 1.66 6.79 3.07 10.97 6.56
2 0.27 2.36 2.14 3.50 3.72 10.08
3 0.00 3.53 0.00 3.93 0.00 13.93

case, the near-optimal solution is determined under different uncertainty levels: 0, 1, 2, and 3, and different deviation coefficients
of travel time: 15%, 30%, and 50%, respectively. We randomly generate the travel times for each route segment in the half-interval
[𝑡𝑖𝑗 , 𝑡𝑖𝑗 + 𝑡𝑖𝑗 ], to evaluate whether the route is feasible. Furthermore, the simulation process is performed 10,000 times for each route
o estimate the probability of the route being infeasible (i.e., Risk). Finally, we evaluate the price of robustness (PoR, the increase
n the route cost) under uncertain travel time in contrast to deterministic travel time.

Regarding the route feasibility, the results in Table 6 show that the solution’s robustness is poor if the uncertainty of travel time
s not considered, which is the case of Γ = 0. In particular, the probability of routes being infeasible exceeds 90% for the case with
00 requests when the deviation coefficient of travel time is 50%. The robustness of the route increases as the level of uncertainty
ises. 2 budgets of travel time uncertainty make the robustness of routes excellent, and the infeasible probability of the route is less
han 10%. To ensure that the solution can well withstand the uncertainty of travel time, 3 budgets are indispensable.

Regarding the route cost, it varies significantly for the case of low request density with the increase in uncertain budgets,
specially in instances with fewer requests. The increase in the uncertain budgets with fewer requests can make the route vary
onsiderably, thus increasing the cost of the solution. This conclusion is illustrated in Fig. 7, which shows the ridesharing solution
nder 25 requests, with (a) representing the solution without considering uncertainty and (b) showing the solution under 3 budgets
f travel time uncertainty. The average number of requests served per car is more for (a), and the solution in (a) used only 6 cars,
hile the solution in (b) used 10 cars, which means more no-load mileages (occurring before picking up the first request), so the

ost difference between the two solutions is significant.
However, for cases with a medium and high density of requests, the budgets of travel time uncertainty have a smaller impact

n the cost, and the impact becomes smaller as the density of requests increases. Since the requests in these two cases are more
umerous and more evenly distributed, the variation of the routes after considering the uncertainty of travel times is not significant,
hus making the cost variation small.

.5. Average service cost of each request

This subsection conducts experiments to identify the impact of service radius and the number of requests on the average service
ost for each request. The service radius ranges from 10 to 15 km, and the number of requests ranges from 20 to 100. We randomly
enerate 5 instances for each combination of radius-request and take their average objective value as the service cost for each
15
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Fig. 7. Routes of whether to consider the uncertainty of travel time.

Fig. 8. Average serving cost of each request with different combinations of service radius and number of requests.

combination. The average service cost of each combination is reported in Fig. 8. It can be seen that, in a given service area with
a fixed service radius, more requests generate lower average service costs, while fewer requests incur higher costs. For instance,
as the number of requests increased from 20 to 100 within a 10 km service radius, the average service cost decreased by 40%.
Similarly, with the same number of requests, the larger area they distribute over, the more cost it generates. The average cost for
serving each request with different radius-request combinations is helpful for service providers to determine the best service radius
and fare level.

6.6. Impact of car types on total travel distances

Two commonly used car types, 4-seat and 7-seat(number of seats for passengers) cars, are selected to analyze the impact of
the car type on total travel distances, which may be useful for estimating total operating costs. We directly use the instances in
Section 6.2 and set the number of requests from 10 to 80 and the level of travel time uncertainty to 3. Fig. 9 shows the total travel
16



Transportation Research Part C 150 (2023) 104082P. He et al.
Fig. 9. Total travel distances for different car types with different request numbers.

distances for 4-seat and 7-seat cars with the different numbers of requests. Compared to 4-seat passenger cars, total travel distances
are lower for 7-seat cars, and the distances saved increase as requests increase. Therefore, when the transportation cost per kilometer
is similar for 7-seat and 4-seat passenger cars, it is recommended that the service provider should leverage 7-seat cars to render
first-mile ridesharing services, especially when the request number is high.

7. Conclusion

In the quest to provide economical, reliable, and flexible first-mile travel services for passengers heading to intercity transporta-
tion hubs, this study proposes a ridesharing approach to this problem. A mixed-integer linear programming model is developed with
the objective of minimizing the cost of the ridesharing service operator while considering riders’ requirements on the latest arrival
times and maximum ride times, large luggage, and travel time uncertainty. A robust adaptive large neighborhood search algorithm
with an acceleration strategy, a greedy algorithm, and a column generation algorithm are designed to solve real-world problems.

The case study shows that (1) the method proposed in this paper can effectively solve the first-mile ridesharing problem. (2)
Ridesharing service operators must consider large luggage when dispatching cars for the first-mile problem to intercity transportation
hubs to ensure the capacity limits of cars are respected. (3) Considering the travel time uncertainty effectively improves the
robustness of the routes and does not make the cost increase significantly for the scenarios with a medium and high density of
requests. (4) The average cost of providing first-mile ridesharing services for each request is strongly associated with the request
density, which should be considered by ridesharing service providers to determine the best service radius and the fare level. (5)
When the transportation cost per kilometer is similar for 7- and 4-seat passenger cars, it is recommended that the service provider
should leverage 7-seat cars to render first-mile ridesharing services, especially when the request number is high.

This study assumes that passenger cars depart from the depot in the intercity transportation hub and are homogeneous, which
may contribute to a lot of no-load mileages before picking up the first passenger and low-load mileages on some routes. In future
research, we will therefore investigate the problem of first-mile ridesharing to intercity hubs with heterogeneous passenger cars,
which may enhance the flexibility of the services and reduce the overall operating cost for service providers. The integration of
first- and last-mile services also deserves further research, which could reduce the empty mileages occurring in first-mile services.
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