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summary

This thesis investigates whether and how optimizing offshore wind farm layouts for expected day-ahead
market revenue rather than the conventional Annual Energy Production (AEP) objective affects tech-
nical and economic performance. Using historical hourly wind and day-ahead price data, wake and
power models, and a layout optimization framework, the study compares layouts optimized for AEP
with layouts optimized for expected revenue across several locations and three case studies.

Key findings show that revenue-optimized layouts deliver small but consistent improvements in pro-
jected revenues while keeping reasonable AEP performance. Site-dependent examples illustrate this
trade-off: at one site, the revenue-optimized layout increases revenue by 0.22% while reducing AEP
by 0.44%, and at another site, revenue increases by 0.20% with a negligible change in AEP (0.03%).
Layouts optimized on an earlier period (2015-2020) retain performance when evaluated on later data
(2022-2024), with objective-function losses remaining below 0.12%. Scenario experiments further
show that long-term market structure predictions matter: changing the assumed correlation between
wind speed and electricity prices in future scenarios can impact revenue substantially.

Overall, the study concludes that incorporating price information into layout optimization yields eco-
nomic benefits and enhances robustness to realistic market variability. The results recommend that
developers consider revenue-based objectives alongside traditional energy metrics when designing
offshore wind farms operating in merchant electricity markets.
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Introduction

The global shift toward renewable energy sources has intensified in recent years due to climate change
concerns and the depletion of fossil fuels. Offshore wind farms play a critical role in transitioning to-
wards sustainable energy systems due to their high capacity and reliability. Compared to onshore wind
sources, offshore installations generally experience stronger and more consistent wind speeds, allow-
ing for greater energy output. Additionally, the strategic placement of these farms in maritime zones
reduces land use conflicts and minimizes the visual and noise impacts often associated with terrestrial
wind turbine generators (WTGs). As a result, offshore wind energy is developing rapidly, with an addi-
tional 11 GW of capacity installed in 2023, taking the total installed capacity worldwide to more than 75
GW [1].

1.1. Motivation and scope

The energy transition intensifies the need to integrate large shares of renewable generation into liberal-
ized electricity markets. Offshore wind in particular plays an increasingly central role in decarbonizing
electricity systems. This trend raises new technical and economic questions: how should wind farms
be designed to maximize value in electricity markets with hourly variability, and exposed to growing
wind energy penetration?

A key market mechanism motivating this work is cannibalization: as renewable generation increases,
periods with high wind output can depress spot prices, reducing the market value of additional wind
generation during those periods. This effect creates a mismatch between maximum energy output and
maximum revenue, motivating a revenue-aware design approach [2, 3]. A concise introduction to the
cannibalization concept is given here; a fuller description appears later in the market trends section.

The design aspect addressed by this work is the optimization of the layout of the wind farm. Optimiza-
tion is the mathematical process of selecting the best configuration of design variables to minimize or
maximize an objective function subject to constraints. In the broadest sense, an optimization problem
can be stated as:
min f(z) st gi(2) <0, hy(z) =0,

where z denotes the decision variables, f the objective function, and g;, h; the constraints. In the wind-
farm context, the decision vector x typically collects turbine coordinates (and possibly control settings),
f might be energy production or revenue, and the constraints capture spacing and boundary limits.

The schematic in Figure 1.1 visually represents the fundamental goal of optimization: finding the point
(or set of points) that minimizes an objective function. In convex problems, there is a single global mini-
mum that is easy to find. However, in non-convex problems like wind farm layout optimization, multiple
local minima may exist. The figure shows how an optimizer starting from different initial positions may
become trapped in a local minimum rather than reaching the global one. This underlines the impor-
tance of algorithm choice and initialization strategy, particularly when dealing with complex, nonlinear
design problems such as offshore wind farm layout optimization.
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Starting pt.

Local minima

Global minima

Figure 1.1: Schematic illustration of a generic optimization problem

1.2. The wind farm layout optimization problem

Wake losses are due to the extraction of energy from the flow to activate the blades, decreasing down-
stream velocity, and increasing turbulence intensity, reducing the efficiency of downstream WTG. Op-
timizing offshore wind farm layouts is paramount to maximizing the energy output by strategically posi-
tioning WTG to minimize these wake losses [4].

1.2.1. Standard objective functions

A common practice in the industry is to optimize the layout of offshore wind farms by maximizing the
annual energy production (AEP), particularly for farms selling electricity at fixed prices, as this equates
to optimizing revenues.

For instance, Pérez et al. [5] introduce such a methodology. They model wind distribution using a wind
rose and discretize it into directional bins to define the frequency of each wind speed and direction. They
set the coordinates of each WTG as optimization variables and define constraints of minimum spacing
between WTGs and boundaries of the wind farm area. Their optimization is applied to a test-case
study and increases the annual energy production by 3.5 % compared to the base layout. Similarly,
Gebraad et al. [6] optimize the AEP of a wind plant by coupling a yaw control system optimization
and a layout optimization. In their model, WTG coordinates remained optimization variables, but they
also incorporated WTG yaw angles as additional variables. When considering the case study of the
redesign of an offshore wind plant, this resulted in a significant increase in AEP of 5. 3 % compared to
the baseline layout.

However, optimizing layouts using AEP as the objective function is limited because it does not account
for the costs associated with WTG, their installation, and their operation. Consequently, it is not the
most relevant metric for maximizing revenue from a developer’s perspective. A more suitable metric is
the Levelized Cost Of Energy (LCOE). This is especially the case with more complex site conditions,
with variations in bathymetry or ground types, and with costs of WTG implementations varying in the
design space.
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A commonly used calculation of the LCOE is:

v It +0+F;
t=0 " (1 L .\t
(1+7) 7 (1.1)
ZT Et
t=0 (I+7r)t

LCOE =

where [; are investment expenditures, O, operating expenditures, F; fuel/variable costs (if any), F; the
energy produced in year t, r the discount rate, and T the project lifetime.

For example, Stanley et al. [7] analyze the impact of different objective functions and optimization
algorithms on wind farm performance. Their research shows that when the number of WTGs is not
fixed, optimizing for AEP can lead to significant profit losses. This is due to wake effects, where the
addition of extra WTGs reduces the efficiency of others by lowering the electricity output per WTG.
Furthermore, Gualtieri [8] compares LCOE, capacity factor, and AEP as objective functions for wind
farm layout optimization. By analyzing a wide range of commercially available WTG and optimizing
layouts for different configurations, the study concludes that AEP optimization alone does not lead to a
lower LCOE, which is often found to be the primary goal. However, it was discovered that, in most wind
scenarios, optimizing for capacity factor produces results comparable to LCOE-based optimization.
Another scenario involving a non-homogeneous wind farm (different WTG models in the farm) was
studied by Ziyaei et al. [9], where two different types of WTG and a variable number of WTGs were
available. The study applied both a single-objective algorithm (minimizing the cost of energy) and a
multi-objective algorithm (balancing cost minimization and power output maximization). The wind farm
layout was discretely modeled, using a grid of possible WTG positions. The results showed that layouts
optimized by both algorithms were similar, indicating no clear advantage of using a multi-objective
approach for this problem.

1.2.2. Optimizing for revenues

Although LCOE, AEP, and capacity factor are the predominant objective functions in the industry as of
today, the rate of wind energy development and the integration perspective of numerous wind farms into
the day-ahead market raise some concerns regarding their efficiency in determining the most profitable
wind farm layout for developers, should they sell on the day-ahead market.

As offshore wind technology matures, improvements in turbine efficiency, farm design, and operational
strategies continue to enhance the overall performance of projects. According to Cox [10], LCoE for
offshore wind halved between 2016 and 2020, and this downward trend is expected to continue, with
BloombergNEF forecasting a further 22% reduction by 2035 [11]. This increasing cost-efficiency has
prompted governments to reconsider subsidy schemes, leading offshore wind farms to enter competi-
tive electricity markets such as the day-ahead market [10].

Several offshore wind farm tenders have already been issued without any subsidy mechanisms. The
first such tender in the Netherlands was launched in 2017 [12]. Although uncertainties led some compa-
nies to refrain from bidding in this round [13], the trend has persisted. For example, Germany awarded
nearly 1 GW of zero-subsidy licenses for projects scheduled to be operational in 2026 [14].

As the industry expands and the conditions of the electricity sale change, it becomes crucial to explore
how incorporating revenues in electricity markets as an objective function can influence the optimization
of wind farm layouts. Indeed, Loth et al. [15] and Dykes [16] present the limit of the LCOE as a driving
objective function for renewable energies and introduce the Cost of Valued Energy (COVE) as an
alternative for renewable energy developers. It is explained that LCOE does not take into account
the variability of hourly electricity prices when COVE weights electricity production with the spot market
price. Here, the spot market refers to the actual selling price of electricity, taking into account day-ahead
markets and intraday trading markets. COVE is calculated as:

Annual Costs

where p = %Ug is the actual hourly spot selling price divided by the annual averaged electricity price,
G is the hourly energy generation, and Annual Costs are all project-related expenditures distributed
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evenly per year over the plant lifetime.

This is, in particular, essential in a high renewable energy penetration market (above 5% according
to Loth et al. [15]), where high generation of energy by renewable sources can lead to low and even
negative prices, considerably reducing the profit for developers. Test cases have demonstrated that
minimizing LCOE can significantly increase COVE compared to COVE-optimized designs.

In their layout optimization for revenue, Stanley et al. [7] consider a fixed electricity price instead of a
variable hourly spot price data, to model the situation of a wind farm under a feed-in-tariff (FiT), while
taking into account a variable number of WTG. One of this study’s results is that layouts optimized for
annual profit as an objective function tend to have slightly higher LCOE than LCOE-optimized ones
but manage to yield significantly more energy, resulting in considerable improvements in revenues.
This FiT has been one of the main electricity selling mechanisms for offshore wind farms, along with
Contracts for Difference (CfDs), both allowing them to sell their electricity at constant rates instead
of on the spot market. This explains the standard consideration of fixed electricity prices for layout
optimization in the literature. But the increasing share of renewable energies makes these contracts
harder to secure with more recent projects, as is explained in the next Section.

Optimizing WTG design for revenue in the day-ahead market has been researched by Mehta et al.
[17]. A simple market model is used to easily generate several market scenarios and several metrics
including LCOE, Net Present Value (NPV), Profitability Index (Pl), Modified Internal Rate of Return
(MIRR), and COVE are compared. This study concludes that the benefits raised by designing WTGs for
profits remain marginal compared to the LCOE-optimized designs for most market scenarios. However,
they underline that the difference is more significant for very low prices market scenarios.

To the author’s best knowledge, wind farm layout optimization considering revenues in the day-ahead
market has not been extensively studied in the literature. However, Zhang & Jiang [18] explored this
aspect by proposing a joint optimization of the number, type, and layout of WTG for an offshore wind
farm participating in the day-ahead market. A bi-level optimization model is proposed, where the upper-
level model focuses on investment optimization, maximizing profit by selecting the optimal number, type
and location of WTG, while the lower-level model represents the day-ahead electricity market clearing.
This electricity market model includes conventional generating units with fixed generation capacity and
offering prices. Regarding the selection of the number and type of WTG, results show their crucial role
in maximizing profit, finding a difference of profit of 38% between the best and worst combination of
type and number of WTG. However, the analysis does not include a comparison between the optimal
layout found and a reference layout, optimized for AEP, for example, or profit in a fixed-price market.

Recently, Nguyen et al. [4] propose a layout optimization method to account for wind farm participation
in the day-ahead electricity market and in the secondary reserve markets. They use the market data
from the year 2023 and build an inner optimization algorithm to determine the power sold on the day-
ahead market and on the secondary market. It is found that, compared to the base layout of the farm,
the optimized layout for profit in day-ahead and reserve markets features wider spacing between rows of
WTGs, while maintaining a similar outer boundary layout (i.e., WTGs placed along the farm perimeter).
However, WTGs within each row are positioned more closely together, resulting in denser rows but
increased inter-row spacing. Performance-wise, the layouts optimized for combined day-ahead and
reserve market profit outperformed AEP-optimized layouts, both in profit and in AEP. The conclusions
are the same when the different layouts optimized for 2023 are faced with 2024 wind and market data.
While this research shows the potential advantages of optimizing layouts for revenue with wind farms
participating in electricity markets, it does not directly compare day-ahead-only optimized layouts with
AEP-optimized ones. Comparisons between AEP and profit are made on the joint day-ahead and
reserve market. However, profits are displayed on the day-ahead market for both layout types (day-
ahead-only and joint market optimization), showing that layouts optimized for both markets also perform
strongly in the day-ahead market alone. This supports the idea that similar improvements from AEP
optimizations could be found when considering the day-ahead market optimization only.
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1.2.3. Optimization algorithms

Wind farm layout optimization is a particularly difficult problem for several reasons. First, the problems
are non-convex, meaning that multiple layouts can yield local optima, making it hard to guarantee
a global optimum. This is displayed in Figure 1.1, where a simple algorithm following the gradient
decrease starting in the initial given point wouldn’t find the global minima. Second, the increased size
of today’s offshore wind farms also increases the number of design variables (each WTG’s position, and
sometimes also their control settings). Third, evaluating candidate layouts is computationally expensive
because wake-loss calculations require modeling the interactions among all the WTGs. Researchers
have developed and utilized various optimization algorithms to address this challenge, each with its
own strengths and limitations. Early approaches relied on mathematical programming techniques like
gradient-based methods, which use derivatives of the objective function to guide the search for an
optimum. While these often perform well, they require objective functions to be continuous, which
can not be the case depending on the wake models. More recent methods incorporate data-driven
algorithms and metaheuristic algorithms. Metaheuristics, such as genetic algorithms or particle swarm
optimization, are derivative-free and flexible, making them well-suited for the non-convex nature of wind
farm layout problems. They are efficient in avoiding local optima and handling discontinuous objective
functions, but they can also come with slower convergence.

Stanley et al. [7] analyze different optimization algorithms for wind farm layout optimization, considering
a variable number of WTGs. They compare the commonly used greedy algorithm, genetic algorithm,
and gradient-based methods to a novel repeated-sweep algorithm. Greedy algorithms work by select-
ing the best local evolution option at each step, without requiring any additional calculations. They
work fast but can lack precision because of their non-consideration for history or further trends. Ge-
netic algorithms work by evolving a population of potential solutions over multiple generations. They
select at each step the best solutions, and combine or modify them to recreate new sets of potential
solutions. They are commonly used for non-linear and complex problems. Findings show that greedy
algorithms are computationally efficient but struggle when increasing the size of wind farms, while ge-
netic algorithms perform well but require high computational resources. The repeated-sweep algorithm,
which works with a gridded potential positions layout where WTGs are randomly assigned, removed, or
swapped to work, is found to be an effective alternative. Itindeed balances well computational cost and
solution quality, particularly for large wind farms. The gradient-based algorithm was only studied for a
low-complexity wind farm and was found to be efficient, although computationally expensive. The study
also highlights that algorithm choice depends on the problem’s complexity and the objective functions
considered (with AEP, LCOE, and profit being studied in the article).

Similarly, Kunakote et al. [19] conduct a comparative study of twelve metaheuristic algorithms for wind
farm layout optimization, evaluating their efficiency in minimizing the LCOE. The study evaluates these
algorithms across four test cases, with a combination of variable and fixed numbers of WTG and differ-
ent wake models. The results highlight that, among all the studied algorithms, moth-flame optimization
performs best with fixed WTG numbers, while ant colony optimization for continuous domains excels
when the number of WTGs is variable. Other algorithms like particle swarm optimization and differential
evolution are also found to be efficient, but can present some issues of often being trapped at a local
optimum. It is worth noting, however, that this benchmark focuses exclusively on metaheuristic solvers.
Gradient-based methods, which can sometimes offer faster convergence when the objective function
is continuous and differentiable, are not included in the comparison.

Other articles in the literature study specific algorithms and their performance for particular test cases.
Feng & Shen [20] develop a random search algorithm for wind farm layout, and show that it can help
improve layouts, even if already optimized, namely by helping them escape local minima. They also
study its robustness, showing constant improvement from base layouts, even with unexpected wind
conditions. Long et al. [21] build a data-driven evolutionary algorithm that uses an adaptive differential
evolution algorithm to easily evaluate the performance of generated layouts, to avoid computing their
wake losses and objective function, and a general regression neural network to filter the layouts to eval-
uate, ruling out the least efficient ones and saving computational time. This methodology has proved
very efficient compared to other benchmark algorithms, especially when considering high-complexity
layouts, where the data-driven algorithm’s computational time outperforms the other algorithms. Quick
et al. [22] also develop an efficient algorithm for high-complexity wind farms. They present a stochastic
gradient descent algorithm that uses Monte Carlo simulation to maximize the AEP, which proves to be
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faster and to produce better results than the deterministic approaches to which it was compared. Re-
cent work by Baricchio et al. [23] applies a genetic algorithm custom-made for layout optimization, that
co-optimizes layout and yaw control. They find that the co-design yields AEP gains between 0.3—0.6%,
indicating that improved control integration can enhance layout performance.

Finally, Thomas et al. [24] present a comprehensive evaluation of various optimization techniques ap-
plied to a complex wind farm layout problem with the goal of AEP maximization. The methodology
involves comparing eight different optimization methods, including gradient-based, gradient-free, and
hybrid approaches. Each method was managed by researchers experienced with the respective algo-
rithms to ensure fair comparisons. The results indicate that all methods performed similarly, achieving
optimized wake loss values between 15.48% and 15.70%, compared to 17.28% for the unoptimized
layout. The optimized layouts consistently showed tightly packed WTGs along the outer boundaries
and more spaced WTGs in internal regions. This is shown in Figure 1.2, where an unoptimized layout
and an optimized one are displayed for comparison. The discrete exploration-based optimization, a
novel gradient-free method, found the layout with the highest AEP among the eight methods. This
highlights the effectiveness of both gradient-based and gradient-free methods in improving wind farm
performance, and it is found that the main differences lie in computational efficiency.
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(a) Base layout provided (b) Layout optimized by discrete exploration-based optimization
Figure 1.2: Comparison of an unoptimized layout and an optimized layout achieving the highest AEP for this case study.
Reproduced from Thomas et al. [24]: "A comparison of eight optimization methods applied to a wind farm layout optimization
problem”.
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In summary, no single solver is found to be universally superior. The study from Thomas et al. [24]
demonstrates the wide variety of optimization strategies used across the literature and shows that,
when carefully applied, these diverse methods often produce similar improvements in AEP and com-
parable turbine-placement patterns on the same case study. The broader literature indicates that both
gradient-based and gradient-free approaches can be effective, and algorithm choice is usually driven by
problem specifics. For example, gradient-based methods tend to be faster when the objective function
is smooth and differentiable, and when derivatives can be obtained efficiently. In contrast, gradient-
free algorithms are more suited for discontinuous objectives [24]. Kunakote et al. [19] details the
performance comparison of twelve gradient-free algorithms, showing that their effectiveness varies
across different case studies. This underscores that case dependence is not only a matter of choos-
ing between gradient-based and gradient-free algorithms, but also applies to the selection of specific
algorithms within each family. However, several algorithms like the random selection, the stochastic
gradient descent, and the genetic algorithm are consistently found in recent works as effective strate-
gies. These are among the most commonly used in the literature across various scenarios.

1.3. Electricity market forecasts

Beyond technical optimization, the financial viability of offshore wind farms depends heavily on elec-
tricity market conditions. To avoid exposing renewable energy developers to variable prices, subsidy
mechanisms were implemented; most notably, CfDs and FiTs have been widely used. FiTs guarantee
that producers sell their electricity at a fixed, determined price, while double-sided CfDs set a strike
price and allow electricity to be sold on the day-ahead market. If the market price falls below the strike
price, the producer is compensated for the difference, but if the market price exceeds the strike price,
the producer must reimburse the surplus. However, as the share of renewable energy in the mix contin-
ues to grow, maintaining such subsidy schemes is more and more challenged by state authorities, and
so exposure to fluctuating market prices poses greater financial uncertainty for wind farm developers.
With this new paradigm, electricity price forecasting becomes primordial to ensure the profitability of
offshore wind farm projects that would be exposed to the electricity markets, as being able to match
high electricity price periods with higher production becomes more crucial.

1.3.1. Market trends prediction

The transition to a renewable-based electricity system presents significant pricing challenges. The
increasing penetration of renewable energy in the electricity mix has significantly changed spot price
dynamics, with wind energy playing a central role in this transformation.

Paraschiv et al. [25] analyze the impact of renewable energy penetration and renewable-enhancing
policies on the German EEX day-ahead electricity market, showing that wind and solar energy lower
market prices due to the merit order effect. These low prices hurt the traditional electricity producers,
because they reduce their margins, and they don’t anymore profit from being at the end of the merit
order curve.

Similarly, Djerup et al. [26] analyze the effects of a 100% renewable mix with wind energy dominance
on electricity markets, particularly in Denmark, where it is the 2050 target, demonstrating that current
market structures may not be financially sustainable for high shares of wind power. Indeed, as the share
of renewable energy in the electricity mix grows, their typically low bidding prices in day-ahead mar-
kets drive spot prices down and reduce profit margins for developers. It is proposed to either redesign
the electricity market or to keep subsidies like feed-in tariffs in place. Blickwedel et al. [27] assess
the general economic viability of non-subsidized wind farms in Germany, highlighting how fluctuating
market prices and uncertain revenue streams may discourage investment in new capacity. Their fore-
casting model also suggests that without revenue mechanisms such as power purchase agreements
or long-term market contracts, profitability remains uncertain. Overall, the role of policy and market-
based instruments is critical in shaping future revenue models for renewable energy. Busch et al.[28]
emphasize the need for these revenue stabilization mechanisms. These measures are necessary to
enhance renewable energy development by limiting the risks for the constructors.

On the other hand, Jansen et al. [29] focus on offshore wind energy and its competitiveness without
subsidies, demonstrating that recent cost reductions have made offshore wind increasingly viable in
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mature markets. Their study highlights that, in the future, wind farm developers may be able to develop
fully merchant offshore wind farms without government subsidies. This would depend on future energy
prices and integration costs. For example, in France, a country where subsidies are still the core of the
profit for developers, the MO mechanism [30] was introduced for some tenders to reward wind farms
selling electricity in high electricity price hours. This permitted to secure the CfD implementation by
encouraging the developers to design their wind farm considering price variations of the day-ahead
electricity market. Other technological options have been explored. For example, Mauch et al. [31]
explore the possibility of coupling a wind farm with a Compressed Air Energy Storage system (CAES).
This would help a wind farm selling in the day-ahead market, as energy would be stored when high-wind
speeds but low electricity prices are expected, and distributed back to the grid when it would be more
economically profitable. Overall, the study finds that this kind of power plant would not be profitable
given the actual costs of the technology, limiting its potential to support the profitability of renewables
operating on the electricity markets.

However, a higher penetration of wind energy in the electricity mix can also damage its competitiveness
by reducing its market value; this is the cannibalization phenomenon, introduced in Section 1.1. This
occurs when increased wind generation capacity leads to lower electricity prices during periods of high
wind output, thereby decreasing revenues for wind energy producers.

Indeed, Hirth [2] introduces the concept of the value factor to measure the relative price of variable
renewable energies compared to the base price, finding that their market value falls significantly with
higher penetration, with wind and solar value factors dropping to around 50-80% of the average power
price at high penetration levels. Reichenberg et al. [3] develop an analytical framework to model the
correlation between renewable energy production and electricity prices, finding that the cannibalization
effect, where high wind energy output depresses market prices and reduces revenues for these wind
farms, significantly reduces projected profits relative to investment costs.

According to these studies, the future of the electricity market remains uncertain, especially in the
context of growing renewable penetration. But the intermittence of wind energy is predicted to cause
and require some changes in policy and market design. In a context where the revenue mechanisms
of wind farms are changing, it is necessary to rethink their design to ensure their profitability in a market
influenced by variable prices.

1.3.2. Electricity prices forecasting

Long-term electricity price forecasting is critical for wind farm development in volatile, renewable-dominated
energy markets. Yet, it presents significant challenges in balancing high temporal resolution with the
need to capture evolving market trends. Researchers have developed various methods that reflect
these challenges, each targeting different forecast horizons and employing diverse techniques.

As of today, most of the research conducted on Electricity Price Forecasting (EPF) is done on a short-
term basis (from one day to the other), to help power plant operators bid in the day-ahead market. For
instance, Saetherg’s work on constructing hourly price forward curves (HPFCs) forms a foundational
approach by merging historical spot prices with futures market data. His method, elaborated in his doc-
toral thesis [32] and further refined in the collaborative paper with Kiesel and Paraschiv [33], focuses
on calibrating seasonal patterns and adjustment functions to produce detailed hourly forecasts. How-
ever, this approach is primarily geared toward short (days) to medium-term (several years) applications
rather than extending explicitly to multi-decade horizons.

In contrast, Ziel and Steinert [34] introduce a probabilistic framework that simulates supply and demand
curves to generate hourly forecasts over medium-term horizons, typically up to three years. Their
method delivers probabilistic forecasts and quantifies uncertainty through prediction intervals, effec-
tively capturing risks such as price spikes and periods of negative pricing. Although this represents
a significant advancement beyond day-ahead forecasting, its reach is limited when considering the
extended timeframes necessary for investment and wind farm development and operation.

De Marcos et al. [35] apply co-integration and vector error correction models to the Spanish electricity
market for long-term forecasting of prices. The study addresses the limitations of traditional models,
such as the Black-Scholes model, in capturing the complex dynamics of electricity prices over extended
periods. Their method uses the relationships among electricity prices, fuel spot prices, and futures data
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to produce forecasts typically covering horizons of one year or more. While theoretically robust, such
econometric models may struggle to fully account for multi-decade structural changes in the market.

Broader reviews, such as Weron'’s survey of electricity price forecasting methods [36], provide valuable
context by comparing traditional statistical and econometric approaches with modern computational
intelligence techniques. Although not focused exclusively on long-term horizons, Weron’s work under-
scores the persistent difficulties in achieving both high granularity and robust uncertainty quantification
across different forecast periods.

Expanding the focus to longer-term horizons, Gabrielli et al. [37] propose a data-driven model based on
Fourier analysis. By decomposing electricity price time series into their principal periodic components
and residual fluctuations, the model predicts the main frequencies of the electricity price profile using
regression techniques and incorporates annual values of energy and market quantities as inputs. This
approach is designed to support investment planning over horizons of 10 years or more. It demon-
strates the ability to generalize across different electricity markets and shows comparable performance
to market-based models. The integration of data-driven and market-based approaches is highlighted
as a promising direction for improving forecast accuracy and capturing market dynamics.

Additionally, Oh et al. [38] propose a hybrid scenario generation method that targets a 30-year fore-
cast horizon. Their approach decomposes the system marginal price into annual, monthly, and daily
components using oil price scenarios to drive the long-term annual trend, neural networks for capturing
monthly variations, and statistical methods for daily fluctuations. This multi-scale strategy allows for the
synthesis of detailed hourly scenarios over an extended period, although the complexity of integrating
multiple modeling techniques can challenge reproducibility.

Finally, Gea-Bermudez et al. [39] present a mathematical model for electricity price forecast up to
2050, considering high renewable energy penetration, using the market model Balmorel and focused
on Denmark. The study emphasizes the importance of including generator unit commitment modeling
in such analyses to reflect the realistic operational behavior of energy units, despite the increased
computational complexity. The findings suggest that the impact of unit commitment depends on the
energy system’s configuration and that careful consideration of the modeling approach is crucial for
operational planning in those systems.

Together, these studies illustrate that while most of the research on electricity price forecasting is done
on short to medium-term forecasts, only a subset is explicitly designed to address the complexities
of forecasting over horizons extending to 10 or even 30 years. However, some of these long-term
forecasting techniques can be difficult to adapt in this study, due to their complexity.

1.4. Research question

Although several works consider market effects on wind farm performances, to the author’s best knowl-
edge, no study explicitly optimizes wind farm layout for revenue with a fixed WTG number under day-
ahead only market forecasts. While Mehta et al. [17] consider market forecasts for wind turbine de-
sign, Stanley et al. [7] consider layout optimization with a fixed hourly electricity price. Zhang et al.
[18] and Nguyen et al. [4] both perform layout optimization with hourly variable electricity prices, but
they respectively consider a variable number of WTG and optimize for a joint day-ahead and reserve
electricity market.

This gap motivates the work of this report. This study aims to assess how revenue-optimized wind farm
layouts perform in comparison to those optimized for Annual Energy Production, and in the context of
an uncertain electricity market. Specifically, this research aims to answer the following questions:

* How does a revenue-optimized wind farm layout compare to AEP-optimized layouts in
terms of financial returns and energy generation when participating in the day-ahead mar-
ket?

* How do market conditions influence revenue-based layout optimization?

* How resilient are revenue-optimized layouts when subjected to market conditions and
wind patterns different from those used in their initial optimization?
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To address these research questions, this study employs a methodology combining wind farm layout op-
timization, electricity market modeling, and scenario-based analysis. The optimization process uses the
TopFarm framework, integrating wake modeling (TurbOPark) and stochastic gradient descent (SGD)
algorithms to maximize either AEP or revenue, the latter incorporating variable day-ahead electricity
prices. Three case studies are conducted:

+ Case study 1 — Baseline comparison. Compare layouts optimized for AEP and for expected
day-ahead revenue using historical wind and price data for each site; quantify differences in
revenue and AEP.

» Case study 2 — Out-of-sample robustness. Optimize layouts on an earlier historical period
and evaluate performance on later yer-to-be seen wind and price data to measure robustness
and objective-function loss.

» Case study 3 — Market-scenario sensitivity. Generate parametric future price scenarios (using
the parametric approach proposed by Mehta et al. [17], varying the Pearson correlation between
wind speed and price) and assess how layouts optimized for a reference scenario perform across
alternative market futures.

By addressing these questions, this study seeks to provide valuable insights into the future wind farm
layout optimization. Indeed, results could help developers understand how exposure to hourly fluctuat-
ing market prices can impact the performance of the farms. It will also test the resilience of revenue-
based layouts under unseen price scenarios, to assess how a switch in the objective function could
improve future wind farms.



Methodology

This chapter presents the methodology used to optimize offshore wind farm layouts under various
wind and market conditions. The approach includes data processing, modeling of wind power and
revenue, and the application of optimization algorithms under defined constraints. The study is split
into three case studies, each providing further information to evaluate the impact of optimizing layouts
for revenues.

2.1. Overview

The numerical simulations are conducted within the TopFarm framework [40] that enables wind farm
layout optimization. It allows for the use of a vast number of sites, wake models, objective functions,
and optimization algorithms, offering flexibility and adaptability for advanced simulation needs. Top-
Farm integrates external libraries such as PyWake, for modeling wake effects, and OpenMDAO, for
optimization routines and multidisciplinary analysis.

2.2. Models and Data

2.2.1. Site Characterization and Modeling Assumptions
Four offshore wind-farm projects are selected as case studies for the layout optimizations. These are
not hypothetical designs, but existing or in-development projects chosen to represent a diversity of
geographical and technical conditions. Figure 2.1 shows their locations.

11
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Figure 2.1: Map of the selected wind-farm sites: Méditerranée Il (France), Borssele 111&IV (Netherlands), Nordsee Ost
(Germany), and Thor (Denmark).

Table 2.1: Characteristics of the original wind-farm sites

Site Bidding Zone / Country Location Number of WTGs WTG Type
Thor DK1 / Denmark 22 km off the Danish west coast 72 15 MW
Nordsee Ost DE / Germany 57 km north of Heligoland 48 6.15 MW
Borssele Il & IV NL / Netherlands 22 km offshore Zeeland 7 9.5MW
Méditerranée Il FR / France 22 km offshore Gulf of Fos (Western ~ Unknown Unknown

Mediterranean), floating project,

Each site with its own specificity, as summarized in Table 2.1. The Borssele Il & IV project, originally
comprising 77 WTGs and multiple inclusion zones, is used as the principal reference case because of
its spatial complexity and frequent use in previous layout-optimization studies [24].

To help with computational time and problem description, several simplifications are introduced. Internal
exclusion zones are removed, allowing each site to be treated as a single, continuous buildable area.
This avoids WTG subdomain allocation issues and allows the algorithm to focus purely on optimizing
the WTGs’ locations. Then the original site is scaled down from originally 77 WTGs to 30, which speeds
up the computation time and allows optimization runs to finish in 8 to 10 hours. To be representative
of existing wind farms and to avoid the spread of WTGs, the furthest away from one another without
accounting for wake effects, the boundaries of the site retrieved from Thomas et al. [24] are also scaled
down. The aim is to achieve a power density of about 10 MW/km?, which is reasonable for modern
offshore farms. The resulting scaled-down site is shown in Figure 2.2.
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Figure 2.2: Scaled-down “mini” Borssele Il & IV site used for layout optimization.

In all simulations, 10 MW IEA reference WTGs [41] originating from IEA Task 37 are used, with a hub
height of 119 m, and a rotor diameter of 198 m. This reference WTG is selected due to its frequent use
in the literature, and its power and thrust curve can be seen in Figure 2.3.
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Figure 2.3: Power curve (left) and power coefficient (Cp) curve (right) of IEA 10 MW reference WTG taken from [42]

Wind resources are assumed to be spatially uniform across the site. This means that wind speed
distributions, directional statistics, and turbulence levels are homogeneous, with wake losses being

the only source of spatial variability.

2.2.2. Wind and Electricity Price Data
Historical wind and electricity price data are collected for the longest available periods in order to capture
a broad range of values and ensure robust modeling of both wind resource and market conditions.

Wind data are obtained from the EMD-WRF database [43], which provides long-term mesoscale data of
wind conditions across Europe. EMD-WREF is generated using the Weather Research and Forecasting
(WRF) model, which assimilates historical meteorological observations into a numerical weather model.
This process produces high-resolution, hourly wind fields that are suitable for long-term wind energy
assessments. The dataset provides, in particular, wind speeds at a reference height of 100 m above
ground level for each site, covering the period 1999 to 2025. Wind speeds are later extrapolated to the
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WTG hub height of 119 m using the empirical power law:

U(z) = Ulrer) - ()

Zref

2.1)

where 2 is the hub height, zf = 100 m, and « is the shear exponent. For offshore conditions, vertical
shear is generally weak due to the low surface roughness of the sea, and a representative value of
« = 0.10 is adopted here. This standard approach ensures that the wind data are consistent with the
physical characteristics of the wind WTGs used in the simulations.

Electricity price data are retrieved from Ember Energy which sources data from ENTSO-E [44]. ENTSO-
E (the European Network of Transmission System Operators for Electricity) coordinates electricity trans-
mission across Europe and provides data on wholesale day-ahead electricity prices, collected from mul-
tiple transmission system operators across European bidding zones. Ember Energy aggregates these
ENTSO-E data and other market sources to produce validated historical price time series, spanning
the years 2015 to 2025.

Both wind and price datasets are retrieved as hourly time series. To ensure comparability across
years, the electricity price data are inflation-adjusted so that all values are expressed in constant 2025
euros. Annual inflation rates are taken from Eurostat [45], and the adjustment prevents the optimization
algorithm from being biased toward more recent years with higher nominal prices.

Before use, the raw time series are checked and cleaned. Occasional irregularities occur in the form of
missing timestamps or duplicate entries. Gaps are corrected by applying linear interpolation between
neighboring values, ensuring temporal continuity. Duplicates are removed directly, since in all cases
the repeated entries contain identical values. This cleaning process guarantees a one-to-one match
between wind and price time series and avoids inconsistencies during optimization.

Given the size of the datasets and computational limits, the cleaned data are then transformed from time
series into a frequency distribution. Wind direction is discretized into 12 bins of 30° each, while wind
speed is discretized into 26 bins (1 m/s increments from 0 to 24 m/s, plus a final bin for all speeds above
24 m/s). For each wind condition bin, the corresponding electricity prices are gathered and averaged,
and a probability of occurrence is computed from the frequency of the wind data. This results in a
concise, probabilistic representation of the wind-price distribution at each site, which enables rapid
evaluation of many layouts.

To illustrate this transformation, Table 2.2 presents an example of the resulting wind-price frequency
matrix for the French location dataset. Each row corresponds to a wind direction sector (12 bins of
30°), and each column corresponds to a wind speed bin (1 m/s increments up to 24 m/s). The entries
indicate the frequency of occurrence in percentage for each wind condition, with a total sum across the
table of 100.

Table 2.2: Example of the wind—price distribution matrix (French location). Values represent percentages of occurrence per
wind condition bin. Dots indicate omitted bins for readability.

Direction Bin | -0.5-0.5 | 0.5-1.5 | 1.5-2.5 21.5-22.5 | 22.5-23.5 | 23.5-24.5
-15-15 0.011 0.190 0.628 0.107 0.011 0.000
1545 0.019 0.190 0.342 0.000 0.000 0.000
45-75 0.004 0.213 0.415 0.000 0.000 0.000

315-345 0.019 0.346 0.514 0.167 0.084 0.034

2.2.3. Wake and Power Modeling

The wake losses in this study are computed using the TurbOPark model (Turbulence Optimized Park
model) [46], an engineering model designed for efficient and robust simulation of large wind farms. Like
traditional wake models, TurbOPark uses a Gaussian wind speed deficit profile. The specificity of this
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model is the use of a non-linear wake expansion formulation, driven by the turbulence intensity in the
wake.

The normalized velocity deficit at a downstream position = and lateral distance r from the wake center-
line when considering the wake of one WTG can be written as

2

= C(z) exp ( T) : 2.2)

AU(r,x) B
202(x)

Uso

where U, is the free mean wind speed at hub height, o(z) is the wake width, which grows with the
distance from the rotor, and C(z) is the peak deficit at the center of the wake and is computed as

follows:
Cr
Cx)=1-,/1— ——, 23
) \/ 8 (o(x)/D)? (23)

with D being the rotor diameter, and Cr the thrust coefficient. Wake deficits from multiple upstream
WTGs are then combined using linear superposition, where the wind speed deficits are summed to
compute the wind speed at each location of the design space.

The TurbOPark model has been shown to improve accuracy for modern large-scale offshore wind
farms while maintaining low computational cost, making it suitable for layout optimization studies [47].
To illustrate the wake structure predicted by TurbOPark, Figure 2.4 shows the normalized wind speed
deficit AU/U, induced by the TurbOPark wake model, behind a single 180 m diameter wind turbine.
The plot corresponds to a horizontal slice at hub height and highlights how the wake expands laterally
and recovers with distance downstream. Note that the deficit near «/D = 0 is artificially low compared
to the true velocity drop because TurbOPark is used to model far wake (after 2 to 3 rotor Diameters
downstream).

TurbOPark Wake Deficit behind a Single Turbine
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Figure 2.4: Normalized wake deficit AU/U behind a single 180 m diameter wind turbine, computed using the TurbOPark
model.

Power production per WTG is calculated for each bin of wind speed and direction using the power curve
of the 10 MW IEA reference WTG. The effective WTG power outputs are aggregated over all bins using
the wind data probabilities to compute both energy and revenue outputs.

2.3. Optimization Problem

The wind farm layout optimization problem aims to determine the spatial arrangement of wind WTGs
that maximizes a chosen performance metric while satisfying operational and physical constraints. The
key components of this problem include the selection of objective functions, the definition of design
variables (WTG positions), the consideration of constraints (e.g., minimum spacing, site boundaries),
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and the choice of an optimization algorithm. In this study, we consider two distinct objective functions:
AEP and revenue, which are optimized independently to assess trade-offs between energy output and
economic return.

2.3.1. Objective Functions
Two objective functions are considered:

* Annual Energy Production (AEP): Represents the total energy generated by the wind farm in
one year, normalized per MW of installed capacity (MWh/MW). Mathematically:

N Npins

AEP = Z Z Pi(vjv ej)f(vjv oj)Tyeara (2.4)

i=1 j=1

where P;(v;,0;) is the power output of WTG ¢ for wind speed v; and direction §;, f(v;,6;) is the
occurrence frequency of that bin, and Ty, is the total hours in one year (8760 h).

For each wind speed and wind direction, the wind farm production is estimated by proceeding
from the most upstream WTG to the most downstream WTG and estimating wind speed deficits
at the downstream WTGs.

The computation is performed in four steps:

— Binning the wind climate into discrete wind speed and direction bins,
— Calculating WTG power per bin, including wake effects,

— Weighting the power outputs by the frequency of each bin,

— Summing over all WTGs and bins to obtain total AEP.

* Revenue: Represents the expected annual income from selling electricity on the day-ahead mar-
ket, in k€/MW/year. It is calculated as

N Nbins

Revenue = > > Pu(vn, 0,) f (n) Tyear 7(vn, b)), (2.5)

a=1n=1

where P,(v,,0,) is the power output of WTG «, f(n) the occurrence frequency of bin n, Tyear
the total hours in one year (8760 h), and =(n) the average electricity price for that bin. The
computation follows the same sequence as for AEP, with the additional step of multiplying the
power in each bin by the corresponding electricity price.

These objective functions are used independently to generate optimized layouts. Layouts optimized
for one objective are then evaluated against the other metric to assess trade-offs.

2.3.2. Design Variables and Constraints
The design variables are the coordinates of the N = 30 WTGs:

s = (331ay17--~»$N7yN)7

representing their Easting and Northing positions within the farm.
To initialize the layout, an algorithm is implemented to ensure an efficient starting point:

1. A grid with 200 m spacing is built within the site boundary.
2. One grid point is chosen randomly.

3. Remaining WTGs are placed iteratively at the grid point furthest from all previously placed WTGs,
ensuring an even initial spread.

This method allows the creation of an evenly spread grid that represents a balanced start for the op-
timization algorithm. A randomizing step is also added to the initial positions setter. Before each run
of the optimization, a random number between 0 and 500 meters is added to each value of the set
of WTGs coordinates. The goal is to help the algorithm explore the entirety of the design space and
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consider a variety of initial positions while maintaining an even spread of the WTGs. Figure 2.2 is an
example of a starting position for the optimization.

A series of constraints is then applied to these design variables to ensure the feasibility of the final
layout.

* Boundary Constraints: For a WTG located at position (z;, y;) within a site defined by its bound-
aries [Zmin, Tmax] @nd [ymin, Ymax), the following equation is enforced:

Zmin £ Z; < Tmax,  Ymin < Yi < Ymax

* Minimum Spacing Constraints: For any two WTGs i and j with positions (z;, ;) and (z;, y;),
the distance between them must satisfy:

\/(%‘ —x;)% + (yi —y;)? > 4D
where D is the rotor diameter of the WTGs, 198 m here.

Constraints are enforced via a penalty mechanism: if a constraint is violated, a penalty term is added
to the objective function:
Fpenalized = I:original - Z 5ia (2-6)
violations
where ¢; measures the extent of violation, A is a scaling factor and F' is the objective function. This
allows the solver to explore the design space while naturally discouraging infeasible solutions.

2.3.3. Optimization Algorithm

Optimization is performed using a stochastic gradient descent (SGD) algorithm [22]. The principle of
SGD is to replace the exact gradient of the objective function with an unbiased stochastic approxima-
tion. Instead of evaluating the full wind climate (all wind speed and direction bins) at every iteration,
which would be computationally heavy, the algorithm draws a small random subset of conditions and
estimates the gradient from these samples. This significantly reduces the computational burden while
still providing a search direction that, on average, points toward improved layouts. Over many iterations,
the randomness cancels out and the algorithm converges to a near-optimal solution.

Formally, the gradient of the objective function (AEP or revenue) is approximated via Monte Carlo
sampling of K wind speed and direction pairs:

dF 8760 <&
R Y

k=1

),0%)). (2.7)

8’\%’

where K is the number of sampled wind conditions, fixed at 50 in this study, s contains all WTG coor-
dinates, and (u &), (k) are the free-stream velocity and direction for sample .

At each iteration, the WTG positions are updated according to:

Si+1 = S; — N5 - %, (28)
where m; and ©; are exponential moving averages of the gradient and its square, and 7; is the learning
rate.

In summary, SGD optimization sacrifices the precision of a full gradient evaluation in favor of a cheaper
stochastic approximation, which is sufficient to guide the optimizer toward high-performing wind farm
layouts.

To accelerate the convergence, there is a speed-up option within the SGD algorithm, allowing the reuse
of previous gradient samples for a few iterations and reducing the number of Monte Carlo samples as
the algorithm progresses. This reduces computational cost without sacrificing too much accuracy. This
also smooths the convergence of the algorithm.
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Proper parameter tuning is also crucial: setting changes favoring convergence speed may lead to
unstable behavior and non-convergence, while overly conservative values increase runtime without
significant benefit. To tune the algorithm in the most efficient way possible, several test simulations
were run to find the best set of parameters for the specific site and the available computational power:

Initial learning rate (1)): Although studies suggest the use of an initial learning rate of D/5, best
performing layouts were found with higher values of 7y, and the value is set at 300. This is found
to allow the algorithm to explore more of the design space before converging towards a solution.

Maximum iterations (max_iter): Defines the maximum number of iterations before the stopping
of the algorithm, and is set in this study to 2500. Even if the simulations often stopped before 2000
iterations, this number influences the decay of the learning rate, and having a longer max_iter
value allowed for a slower decrease of this learning rate and better results.

Threshold (sgd_thresh): This threshold parameter determines how far the learning rate can
decrease before stopping the optimization. In this study, it was set to 0.025, meaning that the
optimization runs while n/no > 0.025. Then, after reaching this threshold, an additional number of
iterations is computed, with only constraint component gradients, to ensure that the final solution
is feasible. The value of 0.025 allowed the algorithm to stop when no significant progress was
anymore possible.

Constant learning-rate phase: Starting with a fixed learning rate for an initial number of itera-
tions encourages broader exploration and helps escape local minima. But testing different values
of constant learning rate iterations showed very little improvement in final performance while in-
creasing the computational time. This value was then kept at 0 for the optimizations.

This configuration ensures efficient exploration of the design space and convergence to high-performance
layouts. SGD was chosen for its computational efficiency and better observed performance compared
to other TopFarm drivers, such as Random Choice, SLSQP, and COBYLA. These performances are,
for example, increased by 3% to 6%, depending on the sites and objective functions, when compared
with the COBYLA algorithm.

A typical evolution of the objective function during optimization is shown in Figure 2.5.
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Figure 2.5: Typical evolution of the objective function during SGD optimization.
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2.4. Case Studies

This section describes the numerical experiments used to assess the optimization methodology. A

single numerical experiment is characterised by:

1. Objective function: either AEP or expected annual revenue (k€/MW/year).

2. Optimization period and data: the wind (historical or synthetic / scenario) climate and price data
used during the optimization phase.

3. Evaluation period and data: the (possibly different) wind climate and price data used to compute
final performance metrics of the obtained layouts.

. Table 2.3 summarises the three case studies considered in this work.

Table 2.3: Overview of simulation phases

Case study Optimization Evaluation pe- | Objective func- | Purpose
period riod tion(s)

1) Same-period compari- | 2022—-2024 2022-2024 AEP, Revenue Compare layouts opti-

son mised for AEP and for
revenue under identi-
cal wind and market
conditions

2) Cross-period compari- | 2015-2020 2022-2024 AEP, Revenue Test robustness of lay-

son outs optimised on past
data when evaluated
on future conditions

3) Forecast-based sce-| 2035-2040 2035-2040 AEP, Revenue Assess sensitivity of

nario test revenue-optimised lay-
outs to alternative mar-
ket scenarios

For the first case study, the objective is to directly compare layouts optimized for revenue with those
optimized for AEP. The aim is to quantify the performance differences between the two, assess the
degree of compatibility or conflict between the objectives, and observe how each criterion influences
the resulting layouts.

The second case study focuses on robustness. By evaluating the layouts on a future time interval, we
can assess how well designs optimized for AEP or revenue preserve their performance when subjected
to different wind and market conditions.

Finally, the third case study is designed to reflect the perspective of wind farm developers. Here, the
goal is to investigate the impact of electricity market forecasts, particularly assumptions about wind
energy penetration, on layout optimization. Layouts are optimized for specific 2035-2040 market sce-
narios, but evaluated against alternative electricity price trajectories for the same period, to highlight
the sensitivity of revenue performance to forecast uncertainties.

2.4.1. Numerical experiment protocol

To account for the stochastic nature of the algorithm and the sensitivity to initial layouts and local minima,
each optimization run (defined by a choice of objective, location, and period) is solved 20 times with
different randomized starting positions. For each case study, we follow the same reproducible protocol:

1. Define inputs: all the necessary numerical experiments are listed in an Excel file (20 per configu-
ration), with the optimization period, the evaluation period, the location and the objective function.

2. Solve optimization problems: each entry of this Excel file is fed to the optimization algorithm, a
full optimization (SGD driver) is run, and the final layouts are retained.

3. Evaluate solutions: each final layout is evaluated using the evaluation period data to compute
both AEP and revenue (even when a layout was produced using only one of those objectives).
This provides cross-metric comparison and robustness assessment.
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4. Aggregate results: statistics across the 20 runs (mean, standard deviation, best/worst) for each
metric (AEP and revenue) are then computed.

2.4.2. Iterations count
The number of optimization runs is shown in table 2.4.

Table 2.4: Run-count summary of the simulations

Case study Objectives Runs per configuration Locations Total runs
1) Same-period comparison  AEP, Revenue 20 4 2x20x4=160
2) Cross-period comparison  AEP, Revenue 20 4 2x20x4=160
3) Forecast-based scenarios AEP, Revenue 20 1 2x20x1=40
Total (all case studies) 360 runs

Each optimization run takes approximately 8- 10 hours on one core; therefore, the total time for the opti-
mization campaign is between 2740 and 3420 hours. This computational time is considerably reduced
with parallelization and the use of a multi-core solving cluster.

2.5. Market Scenario Generation

To evaluate how wind farm layouts perform under different market conditions, synthetic hourly electricity
price scenarios are constructed. A key driver for these scenarios is the expected cannibalization effect,
where increased wind penetration lowers wholesale electricity prices during high wind periods [3]. This
effect can alter the economic attractiveness of different wind speed and direction sectors: high-wind
conditions, typically favorable for energy yield, may coincide with depressed prices, while low-wind
periods may see higher prices. Accounting for this dynamic is essential when comparing AEP- and
revenue-optimized layouts.

Forecasting future hourly prices with full system models, such as Balmorel [39], is possible but requires
significant data and modeling effort. Instead, this study adopts the simpler but flexible stochastic ap-
proach of Mehta et al. [17], which generates plausible hourly price series by controlling a small set of
key statistical parameters: the long-term mean price , the price volatility (expressed as a coefficient
of variation, CV), and the target Pearson correlation p between hourly prices and local wind speeds.

2.5.1. Scenario construction procedure
Each synthetic price series is obtained in four steps:

1. Long-term baseline: A deterministic baseline py.s.(¢) is built to reflect the long-term expected
mean price p for each hour of the projection horizon py...(t) = p.

2. Seasonal and diurnal patterns: Hourly scaling factors are applied to replicate observed sea-
sonality and intraday variability:

Ptrend (t) = pbase(t) . fseason(m(t)) : fdiurnal(h(t))v

where m(t) is the calendar month and Ai(¢) is the hour of the day. fieason @nd faiurna1 are derived
from historical ENTSO-E price data.

3. Stochastic perturbation with controlled correlation: A zero-mean random perturbation y(t)
with prescribed volatility o, and correlation p with the standardized wind speed time series W (t) is
constructed. Let = be a standard normal random vector independent of W. Then we decompose
z into a component parallel to W and an orthogonal component:

oz W
W2

w W, w, =z—w.

A correlated perturbation is formed as

w w
yzﬂm+v1*/?2 =

[l
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Finally, y is scaled to the desired standard deviation o, and shifted to zero mean.
4. Price series assembly: The final hourly price scenario is

Pp(t) = Puena(t) +y(t).

Multiple realizations are created by varying the random seed to test sensitivity to unpredictable
short-term price noise.

This procedure directly enforces the target long-run mean and volatility while prescribing the linear
correlation p between price and wind speed. It allows constructing scenarios such as:

* p = 0 — no cannibalization (wind has no impact on prices);
* p = —0.3 — baseline current market conditions;
* p = —0.6 — stronger future cannibalization.

2.5.2. Advantages of the method

Compared to full system models, this approach:

* isolates the price—wind correlation as a tunable parameter, directly linking market scenarios to
the physical drivers of cannibalization;

* preserves realistic intra-annual and daily price patterns based on historical data;

» enables generation of large scenario ensembles at low computational cost, suitable for layout
optimization studies.

An illustration of a resulting scenario is provided in Figure 4.17, showing the hourly price series after
seasonal and diurnal modulation and the stochastic correlated perturbation. This scenario generation
is used throughout Case Study 3 to evaluate the robustness of revenue-optimized layouts to possible
future market structures.



Analysis of the wind and price
distribution of the sites

Before running the first case study, it is essential to examine the site characteristics of each location to
better understand the expected impact of changing the objective function. In wind farm design, the wind
rose is typically used to characterize the wind resource at a site, providing the frequency distribution
of wind speeds and directions. For each study area, the wind rose is plotted in Figure 3.1, highlighting
the prevailing wind directions and speed classes.

22
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Figure 3.1: Wind roses for each studied location for the time period 01/01/2022 to 31/12/2024.

However, the focus of this study is on the difference between energy yield and revenue. To capture
this, we compute two analogous “roses”. Specifically, for each wind speed bin v; and direction bin 6;
(with annual frequency f(v;,6;)), the expected gross energy output per turbine is

E(v;,05) = f(vi, 05) P(vs,05),

where P(v;, 6;) is the turbine power curve output at speed v; and direction 6,. The corresponding annual
revenue is

R(?}i79j) = E(Un@j) C(Ui, 9]‘),

where c(v;, 0;) is the average electricity price in that speed—direction bin. Summing these over all speed
bins for a given direction 6§, yields the directional energy rose E; = . E(v;,6;), and similarly the rev-
enue rose R; = ) . R(v;, ;). In Figure 3.2, the normalized energy and revenue roses (values normal-
ized to their respective maxima) are plotted for each site. This visualization illustrates the comparison
between the directional distribution of potential power production (left panels) and the distribution of
potential revenue (right panels) at each location.
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Figure 3.2: Comparison of normalized potential energy and revenue roses for each location.
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From Figure 3.2, one observes that some sites have energy and revenue roses of similar shape (e.g. the
Netherlands), whereas others differ more (France, Denmark, Germany). Visual comparison alone can
be inconclusive, so we use a quantitative metric. We adopt the 1D Wasserstein distance (Earth Mover’s
Distance, without unit) to measure the dissimilarity between the energy and revenue distributions [48].
Intuitively, this distance represents the “work” needed to transform one distribution into the other by
moving probability mass between bins. In one dimension, the 1-Wasserstein distance has the form

oo

W1(Q1,Qs) = / \Fo. () — Fo, (x)| dx,

where F, and Fy, are the cumulative distribution functions. In our discrete binned case, we compute
two distances:

Nir Nspeed
Wair = Z |FQ1,dir(j) - FQz,dir(j” ) Wspeed = Z |FQ1,speed(i) - FQQ,speed (Z)| .
j=1 i=1

Here, Fg, 4ir(j) is the cumulative distribution of @; per directional bin, and Fy,, qi(j) is the analogous
cumulative distribution for Q2; similarly, Fg, speed(?) and Fg, speed () are the cumulative distributions
over wind speed bins instead of direction bins. A larger W indicates a stronger discrepancy (i.e. a
large displacement of distribution “mass” between bins), implying that optimizing for QQ; may vyield a
layout significantly different from optimizing for Q1. Conversely, a small W suggests the two objectives
should favor similar layouts. The resulting values of Wg;r and Wpeeq for each site are given in Table 3.1.

Table 3.1: 1D Wasserstein distances between Q1 and Q2 distributions for wind direction and speed

Location Wdir(Qla QZ) Wspeed(Qla Q2)
France 0.469 0.225
Denmark 0.279 1.046
Germany 0.257 0.917
Netherlands 0.396 0.693

One can notice from Table 3.1 that, for all locations, the Wasserstein distance with respect to wind
speed bins is greater than the one with respect to directional bins (Wspeed > Wair). This indicates that
differences between @Q; and Q. distributions are stronger for the wind speed dimension than for the
wind direction. In other words, optimizing for Q- is likely to emphasize certain wind speed ranges more
than optimizing for @), for example, favoring high-value but less frequent wind speeds due to their
association with higher market prices. By contrast, the preferred wind directions of @); and @, are
more aligned, leading to lower values of W.

But by treating wind direction and speed independently, these results cannot capture how misalign-
ments in both dimensions interact. As a result, 1D Wasserstein distances may underestimate the over-
all divergence between ;- and @);-oriented distributions, potentially leading to misleading conclusions
regarding the sensitivity of layout optimization to the choice of objective function.

To overcome the limitations of 1D metrics, we compute the 2D Wasserstein distance between the joint
distributions of wind direction and wind speed.

Let P(i,j) and Q(z,7) represent the normalized joint probability distributions of energy and revenue,
where i indexes direction bins and j indexes speed bins. Each bin can be associated with a point in
the 2D plane, using the center values of the direction and speed bins.

M is then defined as the cost matrix that contains the distance between every pair of bins in P and Q.
The distance between bin (4, j) in P and bin (k,1) in Q is computed using the Euclidean formula:

Mi w1 = \/(;vi —zx)? + (5 — ) (3.1)

where z; and z;, are the direction bin centers, and y; and y; are the speed bin centers. This represents
the “effort” required to move a unit of probability from one bin to another.
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The 2D Wasserstein distance W,p is obtained by finding the optimal transport plan v that moves the
probability mass from P to @ with minimal total cost:

Wop = min i d M k1, 3.2
2D veH(P,Q)ijZle’j’k’l ksl (3.2)

subject to the constraints that all ‘mass” in P is moved to @ and the row/column sums of v match the
distributions.

Table 3.2: 2D Wasserstein distance between energy and revenue distributions for all sites

Location Wop
France 14.100
Denmark 8.530
Germany 7.852
Netherlands | 11.942

Table 3.2 shows that the largest overall difference between energy- and revenue-oriented distributions
occurs at the French site (Wop = 14.100), followed by the Netherlands (11.942), Denmark (8.530),
and Germany (7.852). While this ranking differs from the W,,..q computation, W, seems to play
an important role in the characterization of the sites, as the ranking remains the same for W5p. This
indicates that the difference between the sites of this study is mainly driven by differences in direction
bins rather than speed bins.

For France and the Netherlands, these results indicate that layout optimization under revenue objec-
tives could produce configurations that differ considerably from AEP-optimized layouts. In contrast,
Denmark and Germany display smaller 2D distances, suggesting that changing the objective function
is likely to have a more limited impact. However, it is important to interpret these metrics carefully. For
example, at the Dutch site, the largest directional shift in revenue emphasis occurs in a sector roughly
opposite the main energy-producing direction (see Figure 3.2d, where the strongest increase in red
is in the 45°-75° sector). Although the optimization problem is not perfectly symmetric, there is still a
partial symmetry—for instance, wake effects under northerly wind are mirrored under southerly wind.
While it is not straightforward to quantify how this influences performance differences between the two
objective functions, such symmetry may limit the actual impact.

Overall, the 2D Wasserstein distance provides a more comprehensive measure of misalignment, cap-
turing interactions between wind direction and speed, although direction misalignment seems to drive
the differences in this study. It is still found to be the most informative metric for quantifying differences
between energy and revenue in this study. Nevertheless, it should always be interpreted in context,
alongside visual inspection of the roses, to fully understand the implications for layout optimization.



Results

In this chapter, the case studies are presented and evaluated with the aim of answering the research
questions. Each case study is first briefly reintroduced, and then results are presented as performance
evaluations, or layout comparisons.

4.1. Case Study 1

For the first case study, the layouts are optimized for the time period 01/01/2022— 31/12/2024. The
selection of this time frame was constrained by the availability of data. Day-ahead electricity prices
are available only from 01/01/2015 up to the retrieval date (31/03/2025). The time period 01/01/2020
to 31/12/2022 was excluded from the optimization window, as it was characterized by abnormally high
electricity prices driven by geopolitical factors. Similarly, the data from 2025 were not considered. This
choice is justified by the fact that the transformation of time-series data into probabilistic input files
requires balanced seasonal representation. Including only the first months of 2025 would artificially
overweight winter months (e.g., January and February would be represented three times, while summer
months only twice), biasing the probabilistic distributions.

4.1.1. Performance Comparison

The first research question is addressed here: To what extent does switching the objective function
from AEP to revenue affect the resulting AEP and revenue of the optimized layouts? Figures 4.1,
4.2, 4.3, and 4.4 illustrate this relationship, showing scatter plots of AEP versus revenue for each
optimization run alongside box plots that summarize the results for both objective functions.

27
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Figure 4.1: Scatter plots and boxplots for the French project.
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Objective Function Comparison - Germany
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A first observation from these plots is that high AEP and high revenue tend to be linked. In all cases,
the best-performing layouts in terms of AEP are also among the best in terms of revenue for the same
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objective function. This is reflected in the regression lines, which all have positive slopes, showing a
clear correlation between the two objectives.

The slopes of these regression lines are generally similar across objective functions, with the exception
of France. This exception is not considered meaningful in this work, as it disappears in further Case
Study 4.2.

Additionally, the expected trade-off is evident: revenue-optimized layouts yield higher revenue on av-
erage, while AEP-optimized layouts yield higher AEP. This is clearly illustrated by the red regression
line (revenue optimization) lying in the top left section of the plot compared to the blue one (AEP opti-
mization). This can also be observed in the boxplots.

The magnitude of these improvements, however, varies across sites. To quantify this effect, Tables
4.1 and 4.2 show, respectively, the average increase in revenue when using revenue as the objective
function, and the corresponding decrease in AEP.

Table 4.1: Comparison of average revenues in k€/MW/year for layouts optimized for AEP vs. revenue, with relative

improvement.
Site location | Optimized for AEP | Optimized for revenue | Improvement
France 480.05 481.76 0.36%
Denmark 452.37 452.94 0.13%
Germany 478.96 479.39 0.09%
Netherlands 470.85 471.30 0.10%

Table 4.2: Comparison of average AEP in MWh/MW/year for layouts optimized for AEP vs. revenue, with relative loss.

Site location | Optimized for AEP | Optimized for revenue Loss

France 3748.7 3726.5 -0.60%
Denmark 4334.2 4331.2 -0.07%
Germany 4102.2 4099.2 -0.07%
Netherlands 3886.0 3885.5 -0.01%

These results confirm the larger trade-off between AEP and revenue in France, while Denmark, Ger-
many, and the Netherlands also exhibit notable but smaller differences.

This ranking is partly consistent with the 2D Wasserstein (Earth Mover’s Distance) analysis introduced
in Chapter 3. France, which displayed the largest trade-off between AEP- and revenue-optimized lay-
outs, also has the highest 2D Wasserstein distance (1W,p = 14.100). Similarly, Germany and Denmark,
where performance differences are smaller, exhibit comparatively low Wasserstein distances (7.852
and 8.530, respectively).

The Netherlands, however, provides a counterexample. Despite having a relatively large 2D Wasser-
stein distance (Wop = 11.942), the observed trade-off in layout performance is similar to the Germany
and Denmark ones, and much smaller than in France. This discrepancy highlights one limitation of us-
ing Wasserstein distance as a predictive criterion: while it captures the overall misalignment between
energy and revenue roses, it does not always reflect how such differences propagate into layout op-
timization outcomes. In particular, the Dutch site exhibits a form of directional symmetry: the largest
shifts between energy and revenue occur in sectors roughly opposite the main energy-producing direc-
tions. Because wake interactions in opposite sectors can be similar, the effective impact on optimized
layouts is reduced, even though the statistical distance between roses remains high.

Overall, the 2D Wasserstein distance provides valuable insight into the potential divergence between
AEP and revenue optimization, and it successfully identifies France as the most sensitive site. Yet it
must be interpreted with caution, as site-specific characteristics such as symmetry in the wind resource
can limit the translation of statistical misalignment into actual performance differences.

However, for developers, the most relevant value is not the average of all optimization runs, but the
performance of the best layouts, since those would ultimately be selected for implementation. In this
optimization setup, it is not possible to ensure the finding of the best possible layout within a set number
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of optimizations, and Figures 4.1, 4.2, ??, and 4.4 show that the best-performing layout depends on
individual optimization performance. Notably, the layout yielding the highest revenue is not always
obtained from the revenue-optimized runs. For instance, in Germany and the Netherlands, the highest-
revenue layout was actually produced by an AEP-optimized run.

This observation highlights an important limitation: while the choice of objective function influences the
resulting layouts, the stochastic nature of the optimization and its reliance on local search can mean
that the best single design sometimes emerges from the “wrong” objective. To address this, and to
provide a fairer comparison, the analysis uses the average of the three best layouts for each objective
function, filtering out low-performing solutions (Tables 4.3 and 4.4). Itis also worth noting that this effect
may diminish with a larger number of optimization runs, as additional runs would increase the likelihood
of approaching the true global optimum for each objective.

Table 4.3: Comparison of average revenues in k€/MW/year for the three best layouts optimized for AEP vs. revenue, with
relative improvement.

Site location | Optimized for AEP | Optimized for revenue | Improvement
France 482.04 483.11 0.22%
Denmark 453.37 454.26 0.20%
Germany 480.75 480.83 0.02%
Netherlands 472.81 472.72 -0.02%

Table 4.4: Comparison of average AEP in MWh/MW/year for the three best layouts optimized for AEP vs. revenue, with

relative loss.
Site location | Optimized for AEP | Optimized for revenue Loss
France 3755.9 3739.6 -0.44%
Denmark 4343.0 4341.6 -0.03%
Germany 4113.0 4112.8 0.00%
Netherlands 3898.4 3895.7 -0.07%

The trends observed here generally mirror those of the full averages. Denmark stands out and shows
a relatively higher revenue gain (comparable to France) and a very small loss in AEP. This is explained
by the outstanding performance of a single revenue-optimized layout at 4346 MWh/MW/year, and 55
k€/MW/year. This highlights the importance of running multiple optimization runs to mitigate the risk of
outliers dominating the results.

It is also worth noting that the relative magnitude of revenue gains versus AEP losses differs across
sites, with no generalizable rule emerging from this study.

In the French case, a 0.22% increase in revenue corresponds to 1.06 k€/MW/year. For a 300 MW site,
this translates into approximately 318,000 € per year. While this value is non-negligible, it remains
modest compared to major sources of uncertainty, such as wake modeling. Lee and Fields [49] report
wake-related loss uncertainties typically ranging between 10% and 20% of overall wkae loss magni-
tude. Nevertheless, the magnitude of improvements found here is consistent with other algorithmic
enhancements reported in the literature. For instance, Nguyen et al. [4] observed a 0.18% increase in
revenues when accounting for reserve markets in addition to day-ahead markets for a Belgian offshore
wind farm.

Finally, these results can also be contextualized by comparing them to the standard deviation of the
layout performances. For France, the standard deviation of revenue is 0.93 k€/MW/year, representing
0.20% of the mean. Improvements of 0.22%-0.36% are therefore on the same order of magnitude,
suggesting a significant improvement.

One major conclusion to take from this performance comparison is that the change in revenue and AEP
following the change in the objective function ranges from relevant to almost immaterial, depending on
the considered location and its wind and market conditions. In particular, while the observed revenue
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improvements when switching from AEP to revenue optimization remain modest (below 0.4% in most
cases), they are systematic and measurable. These values, although small in absolute terms, can still
represent non-negligible additional income when scaled to the size of a commercial offshore wind farm.
For instance, the 0.22% increase in revenue observed for France translates to roughly 318,000 € per
year for a 300 MW project.

A second important conclusion is that the choice of objective function is not the only driver of layout per-
formance. The stochastic nature of the optimization process means that some of the highest-revenue
solutions occasionally emerge from AEP-driven runs. This underlines the need for multiple optimization
attempts and robust post-processing of results rather than relying on a single run outcome. Averaging
the performance of the best few layouts, as done in this analysis, provides a more reliable basis for
comparison and for practical design decisions.

From a developer’s perspective, these findings suggest a balanced approach. When time and com-
putational resources are limited, optimizing for AEP alone is unlikely to result in severe economic un-
derperformance, especially in sites where the energy and revenue roses are well aligned. Yet, when
market signals indicate a strong potential for wind energy price cannibalization, or when the long-term
correlation between wind and prices is expected to increase in absolute value, explicitly optimizing for
revenue can bring small but tangible financial benefits.

4.1.2. Impact on Layouts

The objective of this section is to assess how changing the optimization objective (from AEP to revenue)
affects the final positions of the WTGs. We focus on the French and Danish sites because these
locations exhibited the largest changes in performance metrics in Section 4.1.1. For both sites, the
three best layouts obtained for each objective (AEP and revenue) are again analyzed, and their spatial
arrangements and directional wake behavior are compared.

Figures 4.5 and 4.6 display the three best layouts found for each objective function at the French and
Danish sites, respectively. Each subfigure contains two rows: the top row shows the three best AEP-
optimized layouts, and the bottom row shows the three best revenue-optimized layouts. In each panel,
a dot marks the turbine hub position and a dashed line indicates the turbine displacement with respect
to the initial layout.
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Figure 4.5: France — comparison of the best layouts per objective. Top row: best AEP layouts. Bottom row: best revenue
layouts. Dots: WTGs; dashed lines: displacement from initial layout; circles: enforced spacing constraint between WTGS.
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Visual inspection of the panels in Figures 4.5 and 4.6 reveals only modest positional differences be-
tween the two objective sets: WTGs generally occupy similar regions of the farm, and the overall spatial
structure is preserved.

First, perimeter WTGs remain broadly stable between AEP- and revenue-optimized layouts, with most
WTGs along the farm boundary moving only slightly. This stability is expected since boundary WTGs
are less affected by upstream wakes and already benefit from high free-stream exposure. Revenue
optimization therefore rarely relocates these machines.

For the interior part of the farm, no clear systematic trend emerges. Some central WTGs are displaced
by one or two rotor diameters between the two optimization objectives, but the direction and magni-
tude of these shifts vary across sites and runs. In some cases, inner WTGs are slightly re-spaced or
reoriented, but there is no consistent pattern of movement linked to the change from AEP to revenue
optimization. This variability reflects both the complex wake interactions in the dense core of the array
and the stochastic nature of the optimization process, making it difficult to generalize how inner WTGs
adapt when switching objectives.

To better understand trends and patterns emerging from these layouts, two quantitative diagnostics
averaged over the three best layouts for each objective are considered:

+ spatial density map obtained via kernel density estimation (KDE)
» wake roses (directional wake loss profiles),

A KDE provides a smooth estimate of the spatial probability density of WTG locations and is useful to
detect systematic clustering or shifts between layout ensembles. It is widely used in spatial analyses
because it transforms discrete points into a continuous density field that can be compared between
ensembles.

KDE maps were computed for the three best layouts under each objective (see Appendix A). The
KDEs did not reveal any systematic large-scale displacement between objectives at either site. Small,
localized changes are visible (slight increases in density along certain site edges), but no consistent
shift of turbines from one sector of the farm to another is observed.

On the other hand, wake roses quantify the directional dependence of wake-induced energy losses and
are central to interpreting how layout differences favor some directions. For a given inflow direction 6,
AEPayout(9) is the annual energy production associated with the layout. The wake loss for direction
0 is then defined as the relative reduction of production with respect to the gross yield without wakes
AEPref(b’):

(4.1)

- _ AEPIayout(e)

In this study, to compute the AEP without wake effects, the free-stream production of one turbine at the
same inflow conditions is calculated, and multiplied by the number N = 30 of wind turbines in the farm:

%i(6) = N - AEPsingie(0), (4.2)

where AE Psingie(6) is the annual production of a single isolated turbine under the specific direction
wind-speed distribution. The wake loss per direction is therefore obtained by substituting (4.2) into
(4.1).

The averaged wake-loss roses for the three best layouts at each site are shown in Figures 4.7 and 4.8.
In the left panels of Figures 4.7a and 4.8a, the mean directional wake loss is plotted for the three best
AEP-optimized layouts (blue) and the three best revenue-optimized layouts (orange). The right panels
show the difference (revenue minus AEP) in wake loss, highlighting directions where one objective
yields larger directional losses than the other on average.
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(b) France — normalized directional energy rose (left) and revenue rose (right) used to interpret the wake-rose differences.

Figure 4.7: Wake-rose comparison for France (ensemble average of three best layouts per objective).

The main observable trend is that, for both sites, the largest directional wake losses tend to occur in
directions that correspond to little objective function potential (i.e. sectors with low energy or revenue
in the objective function roses). This is evident in France for the 70° and 250° sectors (Figure 4.7a) and
in Denmark near 0° (Figure 4.8a). Because the baseline production in these directions is small, even
moderate absolute wake-induced reductions translate into substantial percentage values in Eq. (4.1);
this demands cautious interpretation.

One interesting phenomenon is the very small wake losses exhibited for the French location near 180°
(southerly inflow). Two factors explain this: (i) the farm-scale layouts are, for this site, arranged to mit-
igate wakes from the dominant northerly directions; because wake interactions have some symmetric
properties, mitigation strategies that reduce wakes for northing winds also reduce wakes for southing
winds (partial directional symmetry), and (ii) the baseline production for 180° is very small in the wind
speed distribution, so the ratio in Eq. (4.1) is comparatively smaller than for other directions. The com-

bination of partial symmetry in turbine placement and negligible baseline potential yields the observed
near-zero wake-loss values at 180°.
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(b) Denmark — normalized directional energy rose (left) and revenue rose (right).

Figure 4.8: Wake-rose comparison for Denmark (ensemble average of three best layouts per objective).

To provide a more localized view, direction-binned histograms of wake loss are presented in Figure 4.9.
Each bar corresponds to a direction bin; blue bars show the AEP ensemble, orange bars the revenue

ensemble. These histograms clarify where AEP and revenue layouts differ most in their directional
exposure to wakes.

In the French site, the histograms and roses reveal alternating intervals where AEP layouts have larger
wake loss and intervals where revenue layouts lose more (notably in 15°~75° and 195°-255°). This pat-
tern aligns with the angular shift between the energy and revenue roses (Figures 4.7b and 4.7a): AEP-
optimised layouts tend to reduce wakes for directions where energy is concentrated, while revenue-
optimized layouts shift toward directions that are more valuable in electricity prices. Because wake

losses are generally largest perpendicular to main resource directions, a rotation of the preferred direc-
tion produces the observed alternating pattern.

For Denmark, the wake-loss distribution is more even; the histograms show that AEP layouts have
larger losses at the highest-loss bins, whereas revenue layouts tend to show slightly larger losses in
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(b) Denmark — histogram of directional wake losses (blue: AEP, orange: revenue, grey: areas of equal wake loss for AEP and revenue).

Figure 4.9: Histograms of wake loss per direction for the averaged three-best layouts.

lower-loss bins. One plausible explanation is that revenue-optimised layouts in this site place relatively
more emphasis on lower-speed regimes (where prices are favourable), producing a somewhat flatter
wake-loss profile. This can be seen from the one-dimensional Wasserstein distance realtive to speed
bins that was presented in Chapter 3 , where Denmark has the highest Wy, of 1.046.

4.1.3. Importance of Revenue Consideration

This next section aims to study differences between layouts having similar AEPs but different rev-
enue performances. This is particularly interesting when taking the viewpoint of a wind farm developer.
Indeed, even if the developer chooses to use a traditional AEP-based layout optimization algorithm,

having an evaluation of expected revenues can help decide between layouts performing very similarly
in AEP.

To illustrate why revenue matters even when AEP is almost unchanged, Figure 4.10 plots AEP vs.
revenue for all optimization runs at the French site.
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Figure 4.10: Selected layouts with similar AEP for comparison

The circled cluster contains layouts with nearly identical AEP (3754.9 to 3756.8 MWh/MW, only 0.05%
variation) but differing revenues (480.415 to 482.74 k€/MW/yr, about 0.48%). In other words, layouts
that are similar in energy production can differ by roughly 0.5% in expected revenue. Given the signifi-
cant uncertainty associated with AEP, such revenue differences can significantly influence the choice

among near-equal layouts.

Figure 4.11 compares the two extreme layouts from this cluster (highest vs. lowest revenue). Both
achieve the same direction-averaged wake loss (=11%), but their directional profiles tilt differently: the
higher-revenue layout (left) favors winds near 0° (north), while the lower-revenue layout (right) favors
winds near 270° (east—west). This remark is consistent with the pattern in Figure 4.7, and confirms that
the difference in revenue performance between layouts is associated by this tilt of the wake rose. This
phenomenon has now been observed both when comparing revenue- and AEP-optimized layouts, and
when contrasting high-revenue and low-revenue layouts among the AEP-optimized cases.
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Figure 4.11: Selection of wake rose examples for France. Best revenue layout on the left and worst revenue layout on the right
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4.1.4. Results Summary

Optimization runs for the 2022—2024 period show that AEP and revenue are strongly correlated: lay-
outs optimized for one objective generally perform well for the other. Revenue-based optimizations
consistently yield slightly higher revenues, while AEP-based ones provide marginally higher energy
output. The magnitude of these differences remains modest and varies by site. The largest improve-
ment is observed in France, where switching from AEP to revenue optimization increases revenues by
about 0.36% on average, with an associated AEP loss of roughly 0.60%. Denmark exhibits smaller
but measurable gains, whereas the Netherlands and Germany show minimal differences. Spatially,
both optimization strategies produce similar WTG configurations, typically placing turbines near site
boundaries to mitigate wake effects. Nevertheless, wake rose analyses reveal directional differences
for the French site.

These results broadly correspond to the 2D Wasserstein (EMD) metric: sites with higher W2D val-
ues, such as France, show larger differences between energy- and revenue-optimized layouts, while
Denmark and Germany, with lower W2D values, exhibit smaller variations. The Netherlands is an ex-
ception, where a relatively high W2D does not translate into a significant performance gap, likely due
to the symmetry of the shift between energy and revenue roses, which mitigates the impact of switch-
ing the optimization objective. This demonstrates both the usefulness and the limitations of the EMD
metric. Overall, although average improvements are modest, explicitly incorporating revenue in the
optimization can help refine top-performing layouts and support better economic decision-making for
offshore wind projects.

4.2. Case Study 2

For this case study, the layouts are optimized for the time period 01/01/2015- 31/12/2020, before being
evaluated in 01/01/2022- 31/12/2024 to be compared with the performances of the layouts from Case
Study 1. The goal here is to assess how robust each objective function is when presented to real,
yet-to-be-seen market and wind data.

4.2.1. Performance Comparison

The conditions for which these layouts have been optimized are relatively close to those of their per-
formance evaluation. Although the study of the difference between conditions between the two time
intervals was not pursued in this work, one can still find the corresponding energy and revenue roses
in the Appendix B. The performance of these layouts evaluated in the time period 2022 to 2024 is
displayed in Figures 4.12, 4.13, 4.14, and 4.15
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Figure 4.12: Scatter plot and boxplot of optimization results for France (2015-2020).
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Figures 4.12, 4.13, 4.14, and 4.15 confirm that the positive AEP-revenue correlation persists for all
sites. In particular, the regression lines from the French location are now nearly parallel (unlike in Case
Study 1), indicating the previous anomaly was due to a few outlier layouts. Otherwise, the qualitative
patterns mirror those of Case Study 1.

Tables 4.5 and 4.6 report the average revenue and AEP (with percentage change) for the top-three
layouts at each site, evaluated in the time period 2022 to 2024. The results are similar to Case Study
1: revenue-based optimization still manages to yield a revenue gain (a few tenths of a percent) with
a reasonable AEP sacrifice. This suggests that, even without knowing future conditions precisely,
revenue-optimized layouts perform comparably to those optimized with full foresight when considering
these two intervals. An interesting observation is that the magnitude of the trade-offs between AEP and
revenue varies across sites. In particular, the French location shows a noticeably larger reduction in
AEP when optimizing for revenue compared with the other sites (0.36% increase in revenue, and 0.67%
decrease in AEP). However, this effect is not uniform: some sites show only minimal AEP penalties for
revenue optimization, and no clear general trend can be established regarding the amplitude of these
trade-offs.

Table 4.5: Comparison of average revenue (k€/MW/yr) for the three best layouts optimized for AEP vs. revenue (2015-2020
data), with relative improvement.

Site AEP-optimized Revenue-optimized Improvement (%)
France 481.24 482.95 0.36%
Denmark 453.45 454.20 0.17%
Germany 480.54 480.68 0.03%
Netherlands 472.24 472.20 -0.01%

Table 4.6: Comparison of average AEP (MWh/MW/yr) for the three best layouts optimized for AEP vs. revenue (2015-2020
data), with relative loss.

Site AEP-optimized Revenue-optimized Loss (%)
France 3759.61 3734.52 -0.67%
Denmark 4343.56 4343.63 0.02%
Germany 4111.60 4108.63 -0.07%
Netherlands 3895.72 3893.16 -0.07%

Revenue optimization requires both wind resource and electricity market data, whereas AEP optimiza-
tion relies solely on wind resource information. A plausible concern is that increasing cannibalization
effects over time might reduce the performance of revenue-optimized layouts under unforeseen future
conditions. However, the time horizons considered in this case study are relatively short, and such
structural market shifts may not yet be visible between the optimization and test periods. Within these
limited timescales, the transfer functions between the energy potential and revenue potential roses ap-
pear to have remained consistent, which explains why revenue-optimized layouts retain performance
comparable to those optimized under known conditions.

4.2.2. Performance Comparison between Case Studies 1 and 2

After evaluating the performance of these layouts under the conditions of Case Study 1, it is essential to
compare them with those optimized directly for the 2022—-2024 period. This comparison helps assess
how crucial precise knowledge of future wind and market conditions is for achieving significant revenue
improvements.

Figure 4.16 compares the performance of layouts from Case Study 2 (2015-2020 optimization) with
those optimized on 2022—-2024 data (Case 1). Panel (a) shows the average revenue for each country
under both optimization intervals: the 2015-2020 layouts (blue bars) achieve almost the same revenue
as the 2022-2024 layouts (orange bars). Revenue losses for the older layouts are tiny (e.g. 0.02% in
Germany, up to 0.12% in Denmark). This indicates that the slight shift in input data has a negligible
effect on layout revenue. Panel (b) illustrates the worst-case France example: even the layout with the
largest drop shows only a modest change in its wake-loss profile.
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Figure 4.16 compares the performance of layouts from Case Study 2 (optimized for 2015-2020, blue
bars) with those optimized for 2022-2024 (Case Study 1, orange bars). AEP differences remain min-
imal, with variations below 0.1% across all countries. These small performance variations seem to
be caused by individual optimization performances, which could be expected as the potential energy
profile is very similar between the two time periods.

Panel (b) shows the comparison of average revenue performance for the same layouts. Revenue
losses for layouts optimized with the earlier period remain very small, ranging from 0.02% in Germany
t0 0.12% in Denmark. This indicates that the moderate shift in underlying wind and market data between
these two intervals has only a minor impact on overall revenue performance.

Overall, these results suggest that layouts optimized for an earlier period maintain strong performance
under updated conditions. This reinforces the robustness of the optimization framework: close devi-
ations in wind or market inputs do not significantly alter the relative performance of AEP- or revenue-
optimized layouts.

Comparison of average revenue performance in 2022-2024
Comparison of average AEP performance in 2022-2024 20152020
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- 2022-2025 1002

100.2
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(a) Comparison of average AEP performance per location and per (b) Comparison of average revenue performance per location and per
interval of optimization interval of optimization

Figure 4.16: France - comparison of performance in 2022-2024 across different optimization intervals

4.2.3. Results Summary

Case Study 2 confirms that layouts optimized on historical data remain effective when evaluated under
slightly different future conditions. Across all sites, both revenue and AEP changes stayed below about
0.12%, showing that small updates in wind and market data do not significantly degrade performance.
This means that, at least over short time horizons, the optimization framework is robust: a layout
optimized using several recent years of data remains nearly optimal when exposed to new but similar
conditions.

It is important to note, however, that this stability is observed because the optimization and test periods
are close to one another, and the underlying market structure appears to have changed little between
them. Over longer time spans, where structural changes such as stronger cannibalization effects could
emerge, larger performance deviations could be expected.

Another practical implication is that revenue optimization, even though it requires additional price data,
did not prove more fragile than AEP optimization. Both approaches maintained their performance,
suggesting that integrating revenue considerations does not make layouts overly sensitive to moderate
uncertainty in market inputs. This is encouraging for projects exposed to merchant markets: a revenue-
based approach appears at least as stable as the traditional AEP-driven design while offering small but
consistent economic advantages.

4.3. Case Study 3

This case study imagines the thought process of a wind farm developer aiming to design an offshore
wind farm optimized for future revenue generation. The objective is to assess how predictions about
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future market conditions influence the expected revenues of the farm.

4.3.1. Market Scenario Creation
To build the necessary hourly market price scenarios, the methodology from 2.5 is applied.

This study focuses on the impact of wind energy penetration on electricity prices and revenues, partic-
ularly the cannibalization effect. Therefore, the primary variable for scenario creation is the correlation
factor p. The mean electricity price (1:) and coefficient of variation (CV) are held constant across scenar-
ios: CVis setto 0.25, based on Mehta et al. [17], and the yearly mean electricity price is set at 60€/MWh.
This simplification avoids complexities related to inflation or Net Present Value (NPV) considerations.

Three correlation factors are selected to represent different scenarios:

» p = 0: No cannibalization effect, with no correlation between electricity prices and wind speed.

» p = —0.3: Moderate correlation, reflecting a scenario where the electricity grid significantly de-
pends on wind energy (e.g., Denmark’s current yearly averaged correlation is approximately -
0.37) [17].

» p = —0.6: High correlation, indicating a future scenario with substantial wind energy penetration.

The choice was made to use the Danish location for this Case Study because of the good performance
of revenue-based layouts at this location, and also the standard shape of the wind profile. Indeed, while
the French location seemed to raise higher differences between AEP and revenues, the singularity of
the energy and revenue roses did not make it the most suitable choice for a more general analysis

The period 01/01/2035-31/12/2040 is arbitrarily chosen as an objective period for this case study, the
aim being to have a relatively large time interval, corresponding to an operation period of a future wind
farm project. The actual interval was selected randomly, and this doesn’t impact the study. Wind data
from Denmark (2015-2020) are used, assuming similar wind resource conditions for 2035-2040. This
choice is based on the consistent performance of AEP-based layouts in Denmark and the standard
wind profile observed.

The constructed scenarios, based on different values of the correlation coefficient p, are displayed in
Figures 4.17a and 4.17b.
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Figure 4.17: Constructed market scenarios based on varying correlation coefficients between wind speed and electricity prices.

4.3.2. Results and Discussion

Once the three market scenarios are defined, wind farm layouts are optimized for the scenario with a
correlation coefficient of —0.3 (the baseline scenario). The other two scenarios (zero correlation and
a stronger —0.6 correlation) serve as boundary cases: a 0 correlation scenario corresponding to a
case with no cannibalization (wind generation has no impact on prices), and a -0.6 correlation scenario
representing a future with roughly double the current cannibalization effect. Optimizing the layout for the
—0.3 scenario and then evaluating its performance under these different scenarios aims at mimicking
the strategy of a wind farm developer who designs for the most likely conditions but wants to assess how
the design would perform if market dynamics turn out less favorably or more favorably than expected.

In addition, an extra test scenario is generated using the same —0.3 correlation but with a different
random seed for the stochastic price perturbations (denoted as the -0.3 correlation (test) scenario).
This test scenario represents a situation where the expected long-term cannibalization effect is the
same as in the baseline, but the exact hourly price fluctuations differ. By comparing the baseline and
test scenarios, we can gauge the impact of unpredictable short-term price variations on the optimized
layout’s revenue. (A detailed description of this test scenario is provided in Appendix C, similar to the
format of Figure 4.17.) The optimized layout from the baseline —0.3 scenario is evaluated across all
these scenarios, and the resulting average annual revenues per unit capacity are summarized in Table
4.7.

The first observation from Table 4.7 is that the revenues under all scenarios are very close to one an-
other (within roughly 0.5%). In particular, the baseline —0.3 optimized layout achieves 257.34 k€/MW/year
in its own design scenario, and in the perturbed -0.3 correlation (test) scenario it achieves 257.11
k€/MW/year. This difference of about 0.09% in revenue is negligible, indicating that the inability to
precisely predict hourly prices has virtually no impact on the optimized layout’'s annual revenue. This
analysis is also supported by the previous section and Figure 4.16 In other words, small random devia-
tions in hourly electricity prices do not meaningfully reduce the revenue of a layout that was optimized
for the correct long-term price—wind correlation. This confirms that when performing wind farm layout
optimization for day-ahead market revenue, perfect foresight of hourly price patterns is not essential.
A layout optimized using the expected statistical relationship between wind and price remains near-
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Table 4.7: Average annual revenues of the layout optimized for the —0.3 correlation scenario, evaluated under different
scenarios.

. . Average Revenue (k€/MW/year)
Evaluation Scenario .
of the -0.3 optimized layouts
Baseline —0.3 correlation scenario 257.34
- 0.3 correlation (test) 257.11
0 correlation scenario 257.67
-0.6 correlation scenario 256.51

optimal even if real hourly prices fluctuate unpredictably around that expectation.

More noticeable are the revenue changes when the wind—price correlation differs from the design as-
sumption of —0.3. As expected, the layout optimized for the —0.3 scenario yields the highest revenue
in the 0 correlation scenario, at 257.67 k€/MW/year, which is about 0.13% higher than in the base-
line case. This slight increase occurs because a zero correlation scenario imposes no cannibalization
penalty on high wind output. Under these conditions, times of strong wind are not associated with lower
electricity prices. The optimized layout was originally tuned to favor wind conditions that produce good
revenue under moderate cannibalization; when that penalty is removed (correlation = 0), those same
wind conditions become even more profitable, hence a modest increase in revenue is observed.

Conversely, under the -0.6 correlation scenario (stronger cannibalization), the layout’s revenue drops
to 256.51 k€/MW/year, about a 0.32% decrease relative to the baseline. In this scenario, high wind
periods incur even steeper price drops than assumed in the design, so the layout’s emphasis on those
periods yields slightly lower returns. These results demonstrate that the assumed correlation between
wind generation and price is an important factor for revenue optimization: changing the correlation has
a more pronounced impact on revenue than the random price noise does.

Finally, we compare the revenue performance of a layout optimized for revenue (under the —0.3 sce-
nario) with that of a layout optimized purely for Annual Energy Production (AEP), to highlight the ben-
efit of including price effects in the optimization. Table 4.8 summarizes the average revenues for both
the revenue-optimized and AEP-optimized layouts across the scenarios, along with the percentage
revenue loss when using the AEP-optimized layout. Notably, the revenue-optimized layout achieves
slightly higher revenues in every scenario. The advantage is small(on the order of 0.05%), but it is
consistent. Even in scenarios that differ from the one used for optimization, the layout tailored for mar-
ket revenue maintains a marginal lead. This indicates that accounting for the price—wind correlation in
the design (even an uncertain future correlation) can consistently improve financial performance com-
pared to a layout optimized only for AEP. In practical terms, a wind farm developer stands to gain a
modest but reliable increase in expected revenue by using a revenue-optimization approach as op-
posed to a traditional AEP-maximization approach, even if the future market conditions deviate from
the predictions.

Table 4.8: Performance of the revenue-optimized vs. AEP-optimized layouts across different scenarios. All values are
expected annual revenues in k€/MW/year. The Loss column indicates how much less revenue (in percent) the AEP-optimized
layout earns relative to the revenue-optimized layout for the given scenario.

Correlation Revenue-Optimized | AEP-Optimized | Loss
0.3 (baseline) 257.34 257.21 0.05%
0.3 (test seed) 257.11 256.99 0.05%

0 257.67 257.55 0.05%
-0.6 256.51 256.38 0.05%

In summary, this case study suggests that a wind farm layout optimized for revenue under a realistic
baseline scenario is highly robust to both short-term price volatility and to plausible shifts in the long-
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term wind—price correlation. The extreme scenarios considered (one with zero cannibalization and
one with a doubled cannibalization effect) bound the range of potential outcomes, yet the optimized
layout’s performance varies only marginally across this range. In real-world project development, one
would expect more narrowly informed projections for the future cannibalization effect (for example, an
expected correlation coefficient somewhere between 0 and —0.6 rather than these extremes). Such
informed estimates would further reduce the uncertainty in revenue outcomes. Importantly, the results
consistently show that explicitly optimizing for market revenue yields a small but consistent benefit in
expected revenues compared to optimizing for AEP alone. Therefore, beyond the precise prediction
of hourly prices, the key factor for revenue-maximizing layout design is anticipating the strength of the
wind-price correlation in the market, and incorporating that expectation into the optimization process.



Conclusion

This study investigates how optimizing offshore wind farm layouts for expected day-ahead market rev-
enues compares with the traditional approach based on AEP. The analysis combines historical wind and
electricity price data with an advanced layout optimization framework to quantify potential performance
differences between the two objectives. Through three complementary case studies, the research ex-
amines (1) the direct comparison of AEP- and revenue-based layouts under known conditions, (2) the
robustness of revenue-optimized layouts under unseen wind and price scenarios, and (3) the sensitivity
of results to future market predictions and cannibalization effects. Together, these analyses provide a
comprehensive understanding of whether revenue-aware optimization can improve financial outcomes
and enhance the efficiency of offshore wind farms operating in merchant electricity markets.

5.1. Answers to the Research Questions

Does optimizing an offshore wind farm layout for expected day-ahead market revenue (instead of AEP)
improve performance?

Yes — revenue-based layouts consistently achieve slightly higher revenues than AEP-based ones,
while leaving energy production acceptable. Across all case studies, the revenue gains remain small
(typically on the order of 0.05-0.35%), and the associated AEP trade-offs remain below 1%. These
improvements are modest but systematic: the revenue objective provides a subtle but measurable
economic advantage without compromising energy production.

How do market conditions influence revenue-based layout optimization, and how robust are revenue-
optimized layouts to out-of-sample wind and market conditions?

Revenue-optimized layouts show strong robustness to both short-term and structural uncertainties in
market conditions. When tested on unseen wind and price years, layouts retain their performance with
objective-function losses below 0.15%. Even when tested against alternative future market assump-
tions regarding the wind—price correlation — a critical factor driving price cannibalization — the impact
remains small. For example, layouts optimized under a baseline correlation p = —0.3 achieve 257.34
k€/MW/year in its design scenario and 257.11 k€/MW/year when hourly price fluctuations are perturbed
with a random noise (a negligible 0.09% reduction). When the price—wind correlation itself is altered, the
same layouts perform slightly better under no cannibalization (p = 0, 257.67 k€/MW/year, +0.13%) and
slightly worse under stronger cannibalization (p = —0.6, 256.51 k€/MW/year, —0.32%). These small
differences confirm that layouts optimized for revenue remain efficient across a wide range of plausi-
ble market conditions. It is also shown that these revenue-optimized layouts consistently outperform
AEP-optimized layouts on future scenarios.
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5.2. Practical Implications for Stakeholders

For developers and operators, revenue-aware layout optimization offers an enhancement to conven-
tional design. Even though the revenue differences compared to AEP optimization are modest, they are
consistently positive across all tested scenarios — including those deviating from the market conditions
used in optimization. This means that a developer optimizing for revenue is unlikely to be worse off,
and can expect slightly higher project income without sacrificing significant energy yield. Importantly,
exact hourly price forecasts are not needed; robust layouts can be obtained by using statistical market
relationships (such as expected wind—price correlation).

For policy makers and market designers, the findings emphasize that while layout optimization can
marginally increase project revenue, long-term market structures remain the dominant driver of eco-
nomic performance. Market frameworks that reduce uncertainty about the wind—price relationship
would help developers plan and finance merchant-exposed projects with greater confidence. Encour-
aging the use of revenue objectives can also improve the overall resilience of new offshore wind devel-
opments.

5.3. Further Work

Several extensions could strengthen and expand the findings of this study. First, refining the version
SGD optimization algorithm, including hyperparameter tuning and convergence diagnostics, could help
ensure that layouts found are close to global optima. Indeed, the tuning of this algorithm was performed
in this study with a limited number of test runs, due to time availability.

Second, future research could focus on predictive indicators of when revenue-based optimization is
likely to yield meaningful gains over AEP. Identifying site and market characteristics that correlate with
larger revenue improvements would help practitioners decide when this additional modeling step is
justified. The 2D Wasserstein distance proposed in this work does not account for the symmetric
component of the wind resource in layout optimization. Future work should first assess the significance
of this symmetry and, if it proves relevant, adapt the 2D Wasserstein distance or develop an alternative
metric to incorporate its effect.

Finally, future scenario analysis of Case Study 3 could be expanded. While this work evaluated layouts
optimized for one correlation assumption across a few alternative futures, optimizing layouts for each
scenario separately and cross-comparing them would clarify how wrong correlation assumptions trans-
late to lost revenue. A study of this type could help conclude as to what would be the optimal design
strategy for a wind farm developer facing uncertainties in future cannibalization (e.g., is the best overall
performance found with low or high correlation coefficients optimizations). It could also be helpful to
extend this case study to other locations, to evaluate the impact of the site on the expected revenues
yielded by the layouts.

5.4. Closing Statement

Revenue-aware layout optimization is a low-risk enhancement to standard offshore wind farm design
practice. Although the financial improvements are small in absolute terms, they are systematic and
require little additional market foresight beyond an expected price—wind correlation. The approach
produces layouts that remain efficient under realistic price and wind variability and even under plausi-
ble shifts in market structure. As offshore wind transitions further into competitive merchant markets,
integrating market-based revenue optimization alongside energy production-based design can help
developers reduce financial risk and improve long-term project resilience.
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KDE plots
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Figure A.1: Kernel Density Estimation of the French location, estimating spatial positioning preferences per objective function,
red zones corresponding to areas favored by Revenue-based optimizations, and blue zones favored by AEP-based
optimizations
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Figure A.2: Kernel Density Estimation of the Danish location, estimating spatial positioning preferences per objective function,

red zones corresponding to areas favored by Revenue-based optimizations, and blue zones favored by AEP-based
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Wind and market conditions for Case
Study 2
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(d) Netherlands - Symmetric directional annual potential Energy (left) and Revenue (right)

Figure B.1: Comparison of potential Energy and Revenue roses for each location considered, for the time period 2015-2020,
used to optimize layouts for case study 2
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Noisy Scenario with -0.3 correlation
between wind speed and electricity
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Annual Mean Price Trend
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(a) On the left, yearly average of electricity prices. Small variations around 60 correspond to yearly wind resource variation. On the right, seasonal
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(b) On the left, average wind prices per hour of the day. On the right, wind speed and price for each scenario, during a specific day.
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(c) Evolution of hourly electricity prices during the simulated 2037 year.

Figure C.1: Constructed scenario based on a correlation coefficient between wind speed and electricity prices of -0.3, but with
a different random seed than the original used for layout optimization
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