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a b s t r a c t

This paper addresses difference flatness for structured LTI discrete-time systems. Two forms of
necessary and sufficient conditions for an output to be a structural flat output are given. First, a
preliminary result algebraically defines a flat output in terms of invariant zeros regardless whether
an LTI system is structured or not. Next, the conditions are expressed in terms of graphical conditions
to define a structural flat output. Checking for the graphical conditions calls for algorithms that
have polynomial-time complexity and that are commonly used for digraphs. The tractability of the
conditions is illustrated on several examples.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is concerned with flatness of discrete-time struc-
ured dynamical systems. Flatness of discrete-time systems is
sually called difference flatness. It has been first reported in Sira-
amirez and Agrawal (2004) and Fliess and Marquez (2000).
t acts as the discrete-time counterpart of differential flatness,
ntroduced in Fliess et al. (1995), that applies for continuous-
ime systems. Let us recall that for a flat continuous-time system,
latness gives a complete parametrization of all system variables
inputs and states) in terms of a finite number of independent
ariables and a finite number of their time derivatives. Those
ariables are called flat outputs. For a flat discrete-time system,
he state variables as well as the input can be written as a func-
ion of the flat output and its backward/forward shifts. This being
he case, flatness is interesting for both control and state recon-
truction perspectives. For control purposes, the parametrization
f the input in terms of outputs of the system provides in a
traightforward manner a constructive way to design a feedfor-
ard control to track a prescribed trajectory of the plant output.

✩ This work was partly supported by the French PIA project ‘‘Lorraine
Université d’Excellence’’, reference ANR-15-IDEX-04-LUE. The material in this
paper was not presented at any conference. This paper was recommended for
publication in revised form by Associate Editor Constantino M. Lagoa under the
direction of Editor Sophie Tarbouriech.

∗ Corresponding author.
E-mail addresses: taha.boukhobza@univ-lorraine.fr (T. Boukhobza),

.w.vanderwoude@tudelft.nl (J. van der Woude),
hristian.commault@grenoble-inp.fr (C. Commault),
illes.millerioux@univ-lorraine.fr (G. Millérioux).
https://doi.org/10.1016/j.automatica.2022.110344
0005-1098/© 2022 Elsevier Ltd. All rights reserved.
The reader may consult Yong et al. (2015) or Chapter 5 in the
book Sira-Ramirez and Agrawal (2004) for illustrative examples
in the case of LTI discrete-time systems. As for state reconstruc-
tion, the parametrization of the state in terms of outputs of the
system provides in a straightforward manner a constructive way
to design an unknown input state observer. Such an issue has
been discussed in Daafouz et al. (2006) in a general statement
or for example in Shoukry et al. (2015) in the context of cyberse-
curity where the state reconstruction allows for detecting sensor
attacks.

Most of the definitions, including the ones given in Sira-
Ramirez and Agrawal (2004) and Yong et al. (2015) dealing with
LTI systems, call for backward flatness or forward flatness, i.e.,
backward or forward shifts exclusively are involved in the ex-
pressions of the state and the input. However, more general
definitions involving both backward and forward shifts have been
recently proposed and motivated in Guillot and Millérioux (2020)
and Diwold et al. (2022) for both linear and nonlinear systems.
Difference flatness is motivated by the fact that some systems
are intrinsically discrete (models of population growth, econ-
omy, biology, finance, discrete automata,. . . ). Besides, it must be
stressed that the property of flatness may not be preserved when
a flat continuous-time system is discretized, even in the linear
case. Hence, difference flatness for sampled-data systems should
preferably be addressed directly within the discrete-time frame-
work. Specific characterizations of flatness have been provided in
the literature according to distinct classes of discrete-time sys-
tems as LTI systems (Sira-Ramirez & Agrawal, 2004; Yong et al.,
2015), switched linear systems (Millérioux & Daafouz, 2009), LPV

systems (Parriaux & Millérioux, 2013), or more general classes of

https://doi.org/10.1016/j.automatica.2022.110344
http://www.elsevier.com/locate/automatica
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onlinear systems (Guillot & Millérioux, 2020; Kaldmäe & Kotta,
013; Kolar, Kaldmäe, et al., 2016; Kolar, Schöberl, & Schlacher,
016; Sato, 2012).
As it turns out, a general framework based on structural and

raph-oriented approaches has never been proposed so far to
eal with difference flatness of structured LTI systems. And yet,
hose approaches have been used with success over the years to
haracterize many structural properties of dynamical systems like
ontrollability, observability (including with unknown inputs),
nd identifiability. The reader may refer to the survey Ramos et al.
2020) that gives an exhaustive overview of the works and appli-
ations of structural analysis from the seminal paper Dion et al.
2003) to most recent ones. We can also mention extension of
esults to other classes of systems like descriptor systems (Clark
t al., 2017), bilinear systems (Boukhobza & Hamelin, 2007),
witching systems (Boukhobza, 2012) or complex nonlinear net-
orks (Kawano & Cao, 2019) to mention a few. An attempt to
stablish results on flatness had been proposed in Boukhobza and
illérioux (2016) but it was restricted to SISO systems and the
pproach was not suitable to tackle general LTI systems. Struc-
ural analysis allows to characterize properties independently
f the exact values of the parameters and thus, to deal with
ystems of which the model equations are not known exactly.
urthermore, structural models usually involve equations derived
rom physical laws where the states are variables that get a phys-
cal meaning. Hence, structural properties are easily interpreted
n terms of physical ones. In this respect, the applicability of
he graph-oriented approaches is large and can also be efficient
or sensor placements, reachability problems, reliability analysis,
ecurity in Cyber Physical Systems as in Dakil et al. (2015) and
racy et al. (2020) but also in life sciences as biology (Liu &
inqiang, 2015) for example.
The aim of this paper is to propose a graph-oriented approach

o address flatness for the class of structured LTI discrete-time
ystems. More specifically, necessary and sufficient graphical con-
itions for an output to be a structural flat output are given. These
onditions can be checked by resorting to well-known algorithms,
ommonly used for finding successors and predecessors of vertex
ubsets, or for computing maximal linkings and essential vertices
n a digraph. As a result, the proposed solution is simple to
mplement and has polynomial complexity.

The paper is organized as follows. Section 2 is devoted to the
roblem statement. The definitions of a difference flat output
nd a difference flat system are recalled and a preliminary result
Theorem 1) is established. It gives an algebraic characterization
f a flat output in terms of invariant zeros. The result is quite
eneral since it does not exclusively apply to structural systems.
n Section 3, structured systems and the notion of structural
latness are introduced. Necessary background on graph-theoretic
ools and recalls on digraph representation of LTI structured
iscrete-time systems are provided. In Section 4, the main re-
ult is established. It gives a necessary and sufficient condition
Theorem 2) for an output of an LTI system to be structurally flat.
n equivalent characterization (Theorem 3) is also provided. In
ection 5, the conditions are illustrated with some basic exam-
les. Section 6 ends this paper with some concluding remarks and
ossible further work.
Standard notation: Ik, (k ∈ N) stands for the k-dimensional

identity matrix. For a vector z of dimension n (n ∈ N), zi with
i ∈ {1, . . . , n} denotes its ith component. For a m× l-dimensional
matrix M (being m and l natural integers), M(i, j) with i ∈

{1, . . . ,m} and j ∈ {1, . . . , l} denotes the entry of M located at
row i and column j.
2

2. Problem statement

2.1. Difference flatness

Let us consider the discrete-time LTI system which admits the
state space representation

x(k + 1) = Ax(k) + Bu(k), (1)

where x(k) ∈ Rn is the state vector and u(k) ∈ Rm is the
control input, with n and m being positive integers. The matrices
A ∈ Rn×n and B ∈ Rn×m are the dynamical matrix and the input
matrix, respectively.

Besides, let us consider for any integer k ∈ N, the output of
system (1) as the m-dimensional vector defined as

y(k) = Cx(k) + Du(k), (2)

with suitable matrices C ∈ Rm×n and D ∈ Rm×m.
The system (1) with output y(k) is square, which means that

the number of control inputs m (dimension of u(k)) is equal to
the number of outputs (dimension of y(k)).

Whenever useful in the sequel, to get more compact notation,
e introduce the forward shift operator ξ as ξy(k) := y(k + 1),

and similarly for ξx(k) and ξu(k). Then, for instance, the double
hift forward and the backward shift can be described by ξ 2y(k) =

(k + 2) and ξ−1y(k) = y(k − 1), respectively.

efinition 1 (Flat Output). The output y in (2) is said to be a flat
utput for the dynamical system (1) if there exists a non negative
nteger k0 such that every variable of the system, i.e., the state
(k) and the input u(k), can be expressed as a function of y(k),
nd a finite number of its backward and/or forward iterates, for
≥ k0. In particular, there exist integers r0, r1, s0 and s1 such

hat r0 ≤ r1 and s0 ≤ s1, and matrices Fr ∈ Rn×m, r0 ≤ r ≤ r1,
nd Gs ∈ Rm×m, s0 ≤ s ≤ s1, such that for k ≥ k0,

(k) =

r1∑
r=r0

Fry(k + r) and u(k) =

s1∑
s=s0

Gsy(k + s),

here x(k) and u(k) satisfy (1), or in more compact notation

(k) = F (ξ )y(k) and u(k) = G(ξ )y(k), (3)

here F (z) =

r1∑
r=r0

Frzr and G(z) =

s1∑
s=s0

Gszs are polynomial matri-

es with entries in the ring R[z, z−1
], consisting of polynomials

ith finitely many positive and/or negative powers of z.

efinition 2 (Flat System). The dynamical system (1) is difference
lat if it admits a flat output.

.2. Some remarks on difference flatness and a basic example

The following remarks are in order.

emark 1. The term difference flat is used for discrete-time
ystems and must be distinguished from the term differentially flat
hat applies for continuous-time systems. However, since only
iscrete-time systems are under concern in this paper, we will
ereafter without ambiguity leave out the adjective difference,
nd shortly use the notions flat output or flat system.

emark 2. Flatness is equivalent to controllability for LTI systems
see Sira-Ramirez and Agrawal (2004) and Fliess and Marquez
2000)). Let us note that such an equivalence includes the partic-
lar class of non reversible LTI systems provided that we accept
state space transformation as pointed out in Fliess (1992) and

s thereby also in accordance with the result given in Guillot and
illérioux (2020).
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emark 3. When only past or, respectively, future outputs
re involved in (3), the flatness is called backward or forward
latness, respectively. Involving altogether backward and forward
hifts (see Diwold et al. (2022) and Guillot and Millérioux (2020))
llows the consideration of outputs of any relative degree for SISO
ystems, or any inherent delay for MIMO systems.

xample. Let us consider an LTI discrete-time system like (1)
efined by:{
x1(k + 1) = ax1(k) + bu(k)
x2(k + 1) = cu(k), (4)

here a, b and c are constant real parameters and b ̸= 0.

Case 1.1: Consider the output defined as y(k) = x1(k). Such an
utput is flat because Eqs. (3) are fulfilled. Indeed, it holds that
1(k) = y(k) and x2(k) = cb−1y(k) − acb−1y(k − 1) that define the
olynomial matrix F and u(k) = b−1y(k+1)−b−1ay(k) that defines

G. Let us notice that backward and forward shifts in the output
are involved. That corroborates Remark 3. Indeed, as it turns out,
the relative degree of (4) with respect to y(k) is equal to 1.

Case 1.2: Consider the output defined as y(k) = ax1(k)+ bu(k).
Again, such an output is flat because Eqs. (3) are fulfilled. Indeed,
we obtain x1(k) = y(k− 1) and x2(k) = cb−1y(k− 1)− acb−1y(k−

2) that define the polynomial matrix F and u(k) = b−1y(k) −
−1ay(k − 1) that defines G. For such an output, only backward
hifts are involved, the relative degree of (4) with respect to y(k)
s equal to zero.

Case 1.3: Consider the output y(k) = x2(k). Such an output is
ot flat because, clearly, x1(k) cannot be exclusively expressed in

terms of shifts in the output y(k).

Remark 4. This simple example illustrates that the parametriza-
tion of the state in terms of a finite number of shifted outputs is
especially interesting for state reconstruction. Indeed, it is clear
from this example that the state vector can be reconstructed de-
spite unknown inputs. It also illustrates that the parametrization
of the input gives explicitly the feedforward control that allows
the tracking of a prescribed output trajectory.

2.3. Algebraic characterization of a flat output

System (1) together with the output (2) defines an input–
output system

Σ :

{
x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k).
(5)

Define the matrix

M(z) :=

(
A − zI B

C D

)
. (6)

Matrix M(z) can be seen as a square matrix with entries in the
ring R[z, z−1

]. Further, note that detM(z) is a polynomial in
[z, z−1

]. Let us give the central result from which the graph-
ased conditions will be derived later on.

heorem 1. System (1) has a flat output in the form of (2) if and
only if the combined system Σ , defined in (5), has no invariant zeros
outside z = 0, i.e., detM(z) = γ zν with real γ ̸= 0 and ν ∈ N,
where M(z) is defined in (6).

Proof. The proof is given in the Appendix. It is constructive since
from Eq. (16), the explicit expression of F and G involved in (3) is
obtained in a straightforward manner. It extends the result estab-
lished in Yong et al. (2015) that was restricted to backward and
forward flatness. No specific assumption is required on system
(1), in particular neither controllability, nor submersivity.
3

3. Structural flatness and graph-theoretic tools

This section is devoted to the definition of structural flatness,
that is flatness when system (5) is structured as detailed in
next subsection. The proposed methodology to check whether an
output is structurally flat, that is the main objective of this paper,
will be jointly based on the algebraic result proved in Theorem 1
and a graph-oriented approach to derive structural conditions
from this result (see Section 4). Thus, necessary background on
graph-theoretic tools is also provided in this section.

3.1. Structured systems and flat outputs

A structural property, also said generic property, is a property
that applies for a structured system, see Dion et al. (2003). More
specifically, structural properties of system (5) are properties
which are true for almost any value of the non-zero entries of
the matrices A, B, C and D. System (5) is structured when its
matrices of the state space representation are defined by their
sparsity pattern. In other words, no specific values in A, B, C and
D are considered but one must merely distinguish between the
entries of A, B, C and D that are fixed zeros and the other ones.
Null entries A(i, j) (resp., null entries B(i, j), null entries C(i, j),
null entries D(i, j)) means that there is no relation (dynamical
interaction) between the state xi(k + 1) at time k + 1 and the
state xj(k) at time k (resp. the state xi(k+ 1) at time k+ 1 and the
nput uj(k) at time k, the output yi(k) at time k and the state xj(k)
t time k, the output yi(k) at time k and the input uj(k) at time
). A given output of (5) in the form y = Cx + Du is structurally
lat, also said generically flat, if it is flat for the structured system
5), that is for almost any values of the non-zero entries of the
atrices A, B, C and D. If such an output exists, the structured
ystem (2) is said to be structurally flat. The objective of the paper
s to provide conditions to check whether a given output in the
orm y = Cx + Du is generically flat or not.

Illustration:
Let us consider again the LTI discrete-time system defined by

4). The output y(k) = x1(k) is a structured flat output. Indeed,
etM(z) = bλ and Theorem 1 is fulfilled for any constant real
arameters a, b and c and b ̸= 0. On the other hand, for real
umbers λ1 and λ2, the output y(k) = λ1x1(k) + λ2x2(k) is not
tructurally flat. Indeed, it follows that generically λ2 ̸= 0 and
1b + λ2c ̸= 0 and detM(z) = λ(bλ1 + cλ2) − acλ2. Thus,
heorem 1 implies that the output y(k) is not structurally flat.
Before proceeding further, the next subsection aims at recall-

ng necessary background on digraphs.

.2. Graph-theoretic tools

Digraph G(Σ)
A digraph G(Σ) describing the structured linear system Σ is

he combination of a vertex set V and an edge set E . The vertices
epresent the state, input and output components of Σ , while
he edges describe the relations between these variables. One has
= X∪U∪Y, where X is the set of state vertices defined as X =

x1, . . . , xn}, U is the set of input vertices U = {u1, . . . , um}, and
is the set of output vertices Y = {y1, y2, . . . , ym}. The edge

et is E = EA ∪ EB ∪ EC ∪ ED, with EA =
{
(xi, xj) |A(i, j) ̸= 0

}
,

B =
{
(xi,uj) |B(i, j) ̸= 0

}
, EC =

{
(yi, xj) |C(i, j) ̸= 0

}
and ED =

(yi,uj) |D(i, j) ̸= 0
}
.

Path and related definitions
In the sequel, we will denote by v or vj a vertex of digraph

(Σ), regardless whether it is an input, state or output vertex.
seful definitions are given below.
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Fig. 1. Example of digraph.

A directed path P is a sequence of successive edges directed in
he same direction which connect a sequence of vertices. It is said
hat the path P covers a vertex if this vertex is the begin or the
end vertex of one of the edges of P. Two paths are disjoint if they
ave no common vertex. The length of a directed path P is equal
o the number of edges involved in P. We denote by ℓ(vi, vj) the
minimal length of a path connecting vi to vj. A simple path is a
directed path where every vertex occurs only once in the path.
A cycle is a simple path linking a vertex vi to vi having length
(vi, vi) > 0.

Linkings
The following definitions apply for two sets of vertices V1 and

2. A simple path P is said to be a V1–V2 path if its begin vertex
elongs to V1 and its end vertex belongs to V2. If the only vertices
f P belonging to V1 ∪ V2 are its begin and its end vertices, then
is a direct V1–V2 path. A V1–V2 linking is a set of disjoint V1–V2
aths. The number of these paths is called the cardinality, or the
ize of the linking. Note that there are possibly several maximum
inkings, but by definition they all have the same size η (V1,V2).
The number of maximum linkings is denoted by nmax (V1,V2). The
length of a maximal V1–V2 linking is the sum of the length of each
of its disjoint V1–V2 paths. µ (V1,V2) is the minimal number of
vertices covered by a maximum V1–V2 linking.

The vertices that are covered by all maximum V1–V2 linkings
are called the essential vertices of the V1–V2 linkings. These
vertices constitute a specific subset denoted, Vess(V1,V2), which
is defined as Vess(V1,V2)

def
={v ∈ V |v is covered by any maximum

V1–V2V1-V2 linking}.
Otherwise characterized, if V i

max(V1,V2) denotes the set of ver-
ices of the ith V1–V2 maximum linking (i = 1, . . . , nmax (V1,V2)),

then Vess(V1,V2) =

nmax(V1,V2)⋂
i=1

V i
max(V1,V2).

The previous definitions are illustrated by means of the di-
graph depicted in Fig. 1. We consider the sets of vertices V1 =

{v1, v2} and V2 = {v6, v7}. The simple paths v1 → v3 → v4 → v7
and v1 → v3 → v6 → v7 are V1–V2 paths, but only the first path
is a direct one. v1 → v3 → v4 → v7, or v2 → v5 → v7 are
V1–V2 linkings with cardinality equal to 1. An example of V1–V2
linking with cardinality equal to 2 is {v1 → v3 → v6, v2 →

v4 → v7}. The set {v1 → v3 → v6, v2 → v3 → v6}
is not a V1–V2 linking because its paths are not disjoint. The
maximum number of disjoint V1–V2 paths is equal to 2. Hence,
the maximum linkings are of size η (V1,V2) = 2. The number of
V1–V2 maximum linkings is 3. They are {v1 → v3 → v6, v2 →

v4 → v7}, {v1 → v3 → v6, v2 → v5 → v7}, {v1 → v3 →

v4 → v6, v2 → v5 → v7}. The respective lengths are 4,4 and
5. The maximum V1–V2 linkings with the minimal number of
vertices µ (V1,V2) = 6 are {v1 → v3 → v6, v2 → v4 → v7}
and {v1 → v3 → v6, v2 → v5 → v7}. In the graph used here,
V (V ,V ) = {v , v , v , v , v }.
ess 1 2 1 2 3 6 7

4

4. Necessary and sufficient conditions for an output to be
generically flat

4.1. Structural flatness based on invariant zeros

The algebraic characterization of flatness has been given in
Theorem 1 does not exclusively apply for structured systems.
From this characterization and using a set of known results re-
lating the graph of a structured system with its generic structure
(rank, finite and infinite zeros) (Dion et al., 2003; van der Woude
& Dion, 2003), we are able to give a necessary and sufficient graph
condition for an output to be generically flat.

Theorem 2. Consider the structured linear discrete-time system Σ

described by (5). The output denoted by y(k) ∈ Rm associated to a
specific vertex set Y is a structural flat output if and only if, in the
associated digraph G(Σ), the following both conditions hold:

(1) η(U,Y)=m, i.e., the size of a maximal (U,Y) linking in G(Σ)
is the number of inputs.

(2) α = β , where α is the minimal number of vertices in X
contained in a size m linking from U to Y, and β is the
maximal number of vertices in X contained in the disjoint
union of a size m linking from U to Y and a cycle family in
X.

Proof. In the digraph G(Σ), decompose the state vertex set X in
four non-intersecting subsets X1,X2,X3,X4 as follows :

— X1 is the set of state vertices xi such that there is no path
from U to xi, and there is no path from xi to Y.

— X2 is the set of state vertices xi such that there is no path
from U to xi, but there is path from xi to Y.

— X3 is the set of state vertices xi such that there is a path
from U to xi, and there is no path from xi to Y.

— X4 is the set of state vertices xi such that there is path from
U to xi, and there is a path from xi to Y, i.e., X4 is composed
of the state vertices which belong to an input–output path.

fter a possible renumbering of the states with respect to the
revious Kalman-like decomposition, the matrix M(z) has the
ollowing form.

(z) =

⎛⎜⎜⎜⎝
A11 − zI1 A12 0 0 0

0 A22 − zI2 0 0 0
A31 A32 A33 − zI3 A34 B3
0 A42 0 A44 − zI4 B4
0 C2 0 C4 D

⎞⎟⎟⎟⎠ ,

(7)

where Ii is the identity matrix of size ni, ni being the cardinality
of the set Xi, for i = 1, . . . , 4. The graph of the matrix Aii, for
i = 1, . . . , 3, is made of the nodes of Xi and edges between nodes
of Xi in G(Σ).

From the particular form of M(z), it can be seen that

detM(z) =

det(A11 − zI1) det(A22 − zI2) det(A33 − zI3) det(M̄(z))

where M̄(z) =

(
A44 − zI4 B4

C4 D

)
.

The condition of Theorem 1 can then be considered separately
in Eq. (7). For i = 1, . . . , 3, det(Aii − zIi) is the characteristic
polynomial of matrix Aii. It is then a non-zero polynomial of
which roots are the eigenvalues of Aii. It is known that there
are eigenvalues of a structured square matrix that are generi-
cally nonzero if and only if the corresponding graph contains
cycles (Reinschke, 1988).
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It remains to study det(M̄(z)). Notice that M̄(z) is a system
atrix associated with the input set U, output set Y, and state set
4, containing all state vertices which belong to an input–output
ath. Hence, the corresponding system Σ̄ is a square system for
hich all state vertices belong to an input–output path. This type
f system has been extensively studied in the literature. First,
he generic rank of M̄(z) is n4 plus the size of a maximal linking
etween U and Y in the graph G ¯(Σ) (van der Woude, 1991).
ince the vertices of Xi, for i = 1, . . . , 3, do not belong to an
nput–output path, it is equivalent to say that det(M̄(z)) ̸= 0, and
herefore det(M(z)) ̸= 0, if and only if the size of a maximal (U,Y)
linking in G(Σ) is equal to the number of inputs, i.e., is equal to
m. The system is then a square and invertible.

From Theorem 5.1 in van der Woude (2000), for a square
invertible system as Σ̄ , for which all state vertices belong to an
input–output path, the generic number of invariant zeros is equal
to n4 minus the minimal number of vertices in X4 contained in
a size m linking from U to Y. Under the same conditions, from
proposition 3.5, van der Woude and Dion (2003), the generic
number of invariant zeros at z = 0 is equal to n4 minus the
maximal number of vertices in X4 contained in the disjoint union
of a size m linking from U to Y and a cycle family in X4.

Assume that the two conditions of Theorem 2 are satisfied.
Since the input–output paths are the same in G(Σ) and in G( ¯(Σ)),
from the previous observations, det(M̄(z)) is a nonzero polyno-
mial with roots in zero. Moreover, since α = β , no cycle may exist
in the set of state vertices out of an input–output path. Therefore,
for i = 1, . . . , 3, det(Aii − zIi) is a nonzero polynomial with only
roots, i.e., eigenvalues, in zero. In conclusion, detM(z) is a nonzero
polynomial with roots in zero, and from Theorem 1, the system Σ

is generically flat. These arguments may be reversed to prove that
conditions (1) and (2) of Theorem 2 are necessary for an output
to be flat.

4.2. Equivalent characterization

We propose now an equivalent formulation of the flatness
conditions of Theorem 2.

Theorem 3. Consider the structured linear discrete-time system Σ

described by Eq. (5). The output denoted by y(k) ∈ Rm, associated
to set of vertices Y, is generically a flat output if and only if, in the
associated digraph G(Σ), the following three conditions hold:

(1) η(U,Y) = m.
(2) All the maximum U − Y linkings have the same length.
(3) Every cycle in the digraph G(Σ) covers at least an element of

Vess(U,Y).

Proof. Condition (1) is the same for both Theorems 2 and 3.
It guarantees a generic invertibility property. Next, consider a
disjoint union of a size m linking from U to Y and a cycle family
in X. If the conditions (2) and (3) of Theorem 3 hold, the linking
cannot contain a cycle because of condition (3), and the number
of state vertices in it is the same as for the minimal length linking
by condition (2). Therefore, α = β . Conversely, α = β clearly
implies conditions (2) and (3) of Theorem 3.

Remark 5. An intuitive explanation of those conditions is the
following. First, the characterization of flat outputs of a system
in terms of invariant zeros that should not be distinct from
zero is equivalent to state that the left inverse system has a
trivial dynamics. In other words, the left inverse system has a
finite memory which in turn, explains why, for a flat system, the
state and the input are expressed in terms of a finite number

of shifted outputs. To obtain such a finite memory property, the

5

Fig. 2. Digraph of Examples 1.1.

location of the cycles in the graph plays a central role. A ‘‘bad’’
location of cycles would induce an infinite memory for the left
inverse system. That is why Condition (2) compares two sets of
vertices with and without considering the cycles. Condition (1) is
equivalent to the left invertibility of the system that guarantees
the existence of the left inverse system, a necessary condition for
an output to be flat.

4.3. Practical consideration and complexity

Checking the conditions of Theorem 2, in order to know if a
specific set of vertices Y, is a structural flat output, implies the
computation of:

— The size of a maximal (U,Y) linking in G(Σ),
— The minimal number α of vertices in X contained in a size

m linking from U to Y,
— The maximal number β of vertices in X contained in the

disjoint union of a size m linking from U to Y and a cycle
family in X.

Several papers dealt with these computational aspects, using flow
techniques as in Yamada (1988) or linear programming. In Com-
mault et al. (2002), the authors proposed a unifying approach
to these problems while reducing them to maximum matching
problems with maximal cost on a bipartite graph associated with
the graph G(Σ). The complexity of the maximum matching prob-
lems with maximal cost is O(N3), where N is the number of
nodes in the bipartite graph (Edmonds & Karp, 1972). Since the
number of nodes in the bipartite graph associated with G(Σ) is
N = 2(n + m), and m ≤ n, it follows that the conditions of
Theorem 2 can be checked in O(n3).

. Examples

Examples 1 aim at illustrating the structural flatness prop-
rty based on the state space representation of a system and
n its digraph counterpart. In particular, they show how, after
aving characterized a flat output, the parametrization in terms
f shifted outputs defined by Eqs. (3) can be obtained. Example 2
nly focuses on the digraph characterization and address the case
here a flat output results from a linear combination of states.

.1. Examples 1

.1.1. Examples 1.1 : basic example
Let us consider again the simple example described by Eq. (4).

he corresponding digraph G is depicted in Fig. 2.
From this digraph, it holds that y(k) = x1(k) is a flat output

ince condition (1) and condition (2) of Theorem 2 are fulfilled
ith m = 1, α = β = 1. The explicit expression of F and G given

in Section 2.2 can be recovered by taking into account Eq. (16) in
the Appendix that reads:(

x
u

)
= M−1(ξ ) = (bξ )−1

( 0 0 bξ
c −b −c(a − ξ )
ξ 0 −(a − ξ )ξ

)(
0
y

)

(8)



T. Boukhobza, J. van der Woude, C. Commault et al. Automatica 142 (2022) 110344

I
a
d
t

5

d

x

w

y

w
g
i
T

R
s
r
u
t
o
s
r

x

w

p
t

y

i

5

d

i

Fig. 3. Digraph of Examples 1.2.

with M(ξ ), as defined in Eq. (6)

M(ξ ) =

( a − ξ 0 b
0 −ξ c
1 0 0

)
ndeed, from (8), we have that x1(k) = y(k) and x2(k) = cb−1y(k)−
cb−1y(k−1) that define F and u(k) = b−1y(k+1)−b−1ay(k) that
efines G. Finally, let us notice that detM(z) = z. It corroborates
hat y(k) is a flat output according to Theorem 1.

.1.2. Examples 1.2 : practical example
First, let us consider the structured system of the form (1)

escribed by

(k + 1) =

(
λ1 λ2 0
λ3 λ4 λ5
0 λ6 λ7

)
x(k) +

(
λ8 0
0 0
0 λ9

)(
u1(k)
u2(k)

)
(9)

here λi ∈ R (i ∈ {1, . . . , 9}) are possibly non-zero parameters.
Let us consider an output of the form (2) reading

(k) =

(
0 λ10 0
0 0 λ11

)
x(k) (10)

here λ10 and λ11 are possibly non-zero real parameters. The di-
raph associated to this system is given in Fig. 3. After inspection,
t turns out that m = 2, α = 3, β = 3 and thus, according to
heorem 2, the output (10) is generically flat.
The practical model considered below and studied in Sira-

amirez and Agrawal (2004) is an instantiation of the structured
ystem (9). The model describes a thin slab homogeneous mate-
ial subject to two external temperature control sources u1 and
2 at the left and right boundaries. The dynamic model of the
emperature in three points of a spatial discretization of the slab
f material involves three state variables c(k), b(k) and a(k). The
tate space description, with state vector x(k) = (c(k) b(k) a(k))T
eads:

(k + 1) =

( 1 − 2p p 0
p 1 − 2p p
0 p 1 − 2p

)
x(k) +

( p 0
0 0
0 p

)(
u1(k)
u2(k)

)
(11)

ith p a real parameter.
Since it is an instantiation of a structured system, although the

arameters λi, i = 1, . . . , 9 are not free (they depend one another
hrough parameter p), the output

(k) = (b(k) a(k))T =

(
0 1 0
0 0 1

)
x(k),

s a flat output.
6

Fig. 4. Digraph of Example 2.

Table 1
α and β with respect to distinct pairs of output vertices for the system associated
to the digraph depicted in Fig. 4.

{y1, y2} {y1, y3} {y1, y4} {y1, y5} {y2, y3}

m 2 2 2 2 2
α 3 2 2 3 3
β 3 2 2 3 3

{y2, y4} {y2, y5} {y3, y4} {y3, y5} {y4, y5}

m 2 2 2 2 2
α 3 3 2 3 2
β 4 5 3 4 3

The explicit expressions of F and G in (3) can be obtained tak-
ing into account Eq. (16) in the Appendix. They respectively read

x(k) =

⎛⎝ −a(k) +
1
pb(k + 1) +

2p−1
p b(k)

b(k)
a(k)

⎞⎠ (12)

u(k) =

⎛⎜⎜⎜⎜⎝
1
p2

(
b(k + 2) − pa(k + 1) − p(2p − 1)a(k)+

2(2p − 1)b(k + 1) − (p2 − (2p − 1)2)b(k)
)

1
p

(
a(k + 1) + (2p − 1)a(k) − pb(k)

)
⎞⎟⎟⎟⎟⎠
(13)

.2. Example 2

Let us consider a structural system associated to the digraph
epicted in Fig. 4.
Let us consider U = {u1,u2}. It can be noticed that accord-

ng to condition (1) of Theorem 2, the cardinality of U being
2, only sets Y of two vertices are admissible. Also notice that
y5 is a generic linear combination of x2 and x4. Generic linear
combination of any number of state components or inputs can be
addressed in a similar way because the pattern of the structured
matrices C or D is totally free.

Table 1 collects the values of m, α and β for all pairs of output
vertices.

Let us inspect Table 1 and apply Theorem 2. First, let us
notice that for all the pairs, Condition (1) is fulfilled. Condition (2)
is fulfilled for the pairs {y1, y2}, {y1, y3}, {y1, y4}, {y1, y5} and
{y2, y3} that are, consequently, flat output. The remaining pairs
are not flat outputs. Indeed, for example, for the pair {y2, y5},
α = 3 because there are two U − {y2, y5} linkings, which are
{u1 → x3 → x1 → y2, u2 → x4 → y5} and {u1 → x3 → x1 →

y2, u2 → x5 → x2 → y5}. The first one involves three X vertices
and the second one involves four X vertices. So the minimal
number of state vertices is equal to 3. On the other hand, β = 5
because there is one cycle covering x4 and this cycle is disjoint
from the linking {u1 → x3 → x1 → y2, u2 → x5 → x2 → y5}
that involves four X vertices. Let us notice that even without the
cycle, the pair {y2, y5} would not be flat because in such a case,
β = 4 ̸= α.
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The same reasoning applies for the other pairs ({y2, y4},
y3, y5} and {y4, y5}) for which α < β .

emark 6. The following remark is devoted to Theorem 3.
The set {y1, y2} defines a flat output y(k) = (x1(k), x2(k)).

Indeed, let us consider Y = {y1, y2} and recall that card(U) = 2.
First, there is only one U−Y maximum linkings. It is {u1 → x3 →

1 → y2,u2 → x4 → y1}. The size of the U − Y maximum
inking is η(U,Y) = 2 and consequently Condition (1) is fulfilled.
ext, the length of the U − Y maximum linking is 5. Since the

U−Y maximum linking is unique, it is clear that Condition (2) is
fulfilled. Finally, the set Vess(U,Y) = {u1,u2, x1, x3, x4}. There is
one cycle which covers x4, which is an element of Vess(U,Y), as it
is the element x4. Hence, Condition (3) is fulfilled.

6. Conclusion

Necessary and sufficient conditions for an output of a LTI
structured system to be a flat output have been proposed. They
are first expressed in terms of algebraic conditions involving the
notion of invariant zeros. Then, the conditions have been recast in
terms of graphical conditions. They can be checked by resorting
to well-known algorithms of polynomial time complexity. To go
further, a more challenging task will be an exact and exhaustive
characterization or construction of all the possible sets of flat
outputs. Indeed, the presented result clearly depends on the
chosen outputs. From this perspective, it can be suspected that
the result presented in this paper is a relevant starting point.

Appendix. Proof of Theorem 1

For convenience, let us notice that Eqs. (1) and (2) can jointly
be described by(

A − ξ I B
C D

)(
x
u

)
=

(
0
y

)
, (14)

where ξ is the shift operator. Let us define

M(ξ ) :=

(
A − ξ I B

C D

)
. (15)

Since in the problem of checking for flat outputs, both types of
shift are allowed, the goal is to find two linear combinations of
finitely many shifts of y, in forward and/or backward direction,
that coincide with x and u, respectively. Hence, the flat output
checking problem amounts to finding polynomial matrices F (z)
and G(z), containing positive and/or negative powers of z, such
that x(k) = F (ξ )y(k), u(k) = G(ξ )y(k) for all k ∈ Z, or,
lternatively, such that x = F (ξ )y and u = G(ξ )y.
When existing, the matrices F (z) and G(z) can be obtained by

olving x and u in Eq. (14) from y. For this, elementary operations
involving powers of z and z−1 can be used. These are operations
in the ring R[z, z−1

], consisting of polynomials with finitely many
positive and/or negative powers of z.

Note that for polynomials p(z), q(z) ∈ R[z, z−1
], there holds

that p(z)q(z) = 1 for all z ∈ C if and only if p(z) = γ zν and
q(z) = γ −1z−ν , with γ ̸= 0 and ν ∈ Z. Indeed, write p(z) = zν p̃(z)
and q(z) = zµq̃(z), with ν, µ ∈ Z and p̃(z), q̃(z) polynomials
with non-negative powers of z for which p̃(0) = γ ̸= 0 and
q̃(0) = ρ ̸= 0. Then p(z)q(z) = zν+µp̃(z)q̃(z) = 1 for all z ∈ C
if and only if ν + µ = 0, γ ρ = 1 and p̃(z)q̃(z) has no zeros at
all. The latter means that both p̃(z) and q̃(z) have no zeros at all
and are non-trivial polynomials of order zero, i.e., are non-zero
constants. Hence, p̃(z) = p̃(0) = γ and q̃(z) = q̃(0) = ρ for all
z ∈ C, so that p(z) = γ zν and q(z) = γ −1z−ν with γ ̸= 0 and
ν ∈ Z.
7

Next note that M(z) can be seen as a matrix with entries in
R[z, z−1

].
Further, note that detM(z) is a polynomial in R[z, z−1

]. Then it
follows easily from the above observation and Cramer’s rule that,
when M(z) is invertible, its inverse has all entries in R[z, z−1

] if
and only if detM(z) = γ zν with γ ̸= 0 and ν ∈ N.

If M(z) is invertible in the above sense, i.e., M−1(z) has entries
in R[z, z−1

], the matrices F (z) and G(z) can be obtained by the
following observation.(

F (ξ )
G(ξ )

)
y =

(
x
u

)
= M−1(ξ )

(
0
y

)
= M−1(ξ )

(
0
I

)
y.

(16)

From this, it is clear that F (z) and G(z) follow from the last block
column of M−1(z).

Hence, considering system (1), the output given by (2) is flat,
whenever detM(z) = γ zν , with real γ ̸= 0 and ν ∈ N. In other
words, the system given by (1) has flat outputs in the form of (2)
if the combination of system and outputs has no invariant zeros
outside z = 0.

It turns out that the converse is true as well, i.e., if the output
(2) is flat output for system (1), then detM(z) = γ zν , with
real γ ̸= 0 and ν ∈ N. To prove this statement, assume that
detM(λ) = 0 for some λ ̸= 0. (This can happen when there are
invariant zeros located outside z = 0, or when detM(z) = 0 for
all z ∈ C, in which case it makes no sense to talk about invariant
zeros.) Then rank M(λ) < n + m, and there exists a (complex)

vector
(

x̄
ū

)
̸=

(
0
0

)
such that M(λ)

(
x̄
ū

)
=

(
0
0

)
. In

particular, it follows that λx̄ = Ax̄ + Bū and Cx̄ + Dū = 0. Now
define x̃(k) = λkx̄, ũ(k) = zkū for all k ∈ Z. Note that at least
one of the two x̃(k) or ũ(k) is nonzero for all k ∈ Z. Hence,
{(x̃(k), ũ(k))|k ∈ Z} forms a nontrivial solution pair of system
(14), but in (16) no matrices F (z) and G(z) of suitable dimensions
with entries in R[z, z−1

] exist such that x̃(k) = F (ξ )ỹ(k) and
ũ(k) = G(ξ )ỹ(k), where ỹ(k) = Cx̃(k) + Dũ(k). This is because
ỹ(k) = 0 for all k ∈ Z, whereas either x̃(k), ũ(k), or both, are
nonzero for all k ∈ Z. Hence, the output given by (2) cannot be a
flat output for the system given by (1).

Conversely, if (2) is a flat output for system (1), then it is
necessary that detM(z) = γ zν , with real γ ̸= 0 and ν ∈ N. □
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