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Abstract

In this article we discuss multi-factor equity-interest rate hybrid models with a full matrix of
correlations. We assume the equity part to be modeled by the Heston model [Heston-1993] with
as a short rate process either a Gaussian two-factor model [Brigo,Mercurio-2007] or a stochastic
volatility short rate process of Heston type [Heidari, et al.-2007]. We develop an approximation for
the discounted characteristic function. Our approximation scheme is based on the observation that√

σt, with σt a stochastic quantity of CIR type [Cox, et al.-1985], can be well approximated by a
normal distribution. Our approximate hybrid fits almost perfectly to the original model in terms of
implied Black-Scholes [Black,Scholes-1973] volatilities for European options. Since fast integration
techniques allow us to get European style option prices for a whole strip of strikes in a split second,
the hybrid approximation can be directly used for model calibration.

Key words: Hybrid, Heston-Gaussian Two-Factor Model (H-G2++), Heston-Stochastic Volatility
Interest Rate (H-H2++), Affine Diffusion, Stochastic Volatility.

1 Introduction
Pricing modern contracts involving multiple asset classes requires well-developed pricing models

from quantitative analysts. Among them the hybrid models, that include features from different asset
classes are of interest.

In this article we analyze hybrids between two particular asset classes: the equity and the interest
rates (IR). It is already well-known [Brigo,Mercurio-2007] that these models can be used for pricing
specific hybrid products or for accurate pricing of long-term equity options. In either case, any
hybrid model needs to be calibrated to some simple, European-style, liquid contracts. Although multi-
dimensional hybrids can be relatively easily defined, real use of the models is guaranteed if the hybrid
model is properly defined for each asset class (i.e., fit to implied volatility structures etc.), and if there
is a non-zero correlation structure among the processes from the different asset classes. Furthermore,
highly efficient pricing of fundamental contracts needs to be available. In this article we aim at models
that satisfy these requirements.

∗The authors would like to thank Natalia Borovykh from Rabobank International and Stefan Singor from Delft University of
Technology for fruitful discussions and helpful comments.

†Corresponding author. E-mail address: L.A.Grzelak@tudelft.nl.
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It is well-known that the Black-Scholes [Black,Scholes-1973] model may lead to significant
option miss-pricing. Although stochastic and local volatility models [Heston-1993; Schöbel,Zhu-1999;
Dupire-2008; Derman,Kani-1998] provide an explanation for the so-called leverage effect, also known
as the market implied volatility smile/skew, these models are not always satisfactory for pricing exotic
hybrid stock and interest rate products. A basic generalization to time-dependent deterministic interest
rates does not allow the calibration of the interest rate part to any interest rate products, except to the
current yield curve. Extending the model with a correlated (multi-factor) stochastic interest rate (short
rate) process increases the flexibility of the model. On the other hand it also increases the model’s
complexity.

Pricing long-maturity options with equity-interest rate hybrid models is common practice in the
market. The basic hybrid model of Black-Scholes for the equity and Hull-White [Hull,White-1996] for
interest rate was presented in [Brigo,Mercurio-2007]. In [Grzelak, et al.,-2008] a stochastic volatility
equity hybrid model with a full matrix of correlations (Schöbel-Zhu-Hull-White) was presented. Since
the model was based on a normally distributed volatility process it was limited in implied volatility
shapes. The Heston-Hull-White hybrid model was then presented in [Grzelak,Oosterlee-2009]. In
the same article the interest rate process of Cox-Ingersoll-Ross [Cox, et al.-1985] was analyzed. Our
current paper is a generalization of that model, since we extend the 1D interest rate process to a multi-
factor process.

In this paper we construct two equity-interest rate hybrid models. We consider hybrids with the
equity part to be driven by the Heston model [Heston-1993] while for the short rate process we
assume either a Gaussian two-factor model [Hull-2006] or a Heston stochastic volatility short rate
process [Heidari, et al.-2007].

The Hull-White two-factor interest rate model [Hull-2008] provides a rich pattern for the term
structure movements and recovers a humped volatility structure observed in the market. However, it
can not model a stable interest rate smile. Unfortunately, the model also allows the rates to become
negative which is an obvious disadvantage. Therefore, as an alternative hybrid model, we also consider
the interest rates to be driven by a square-root stochastic volatility model in this paper.

By approximations we place these hybrid models in the affine diffusion framework for which
the corresponding characteristic function can be obtained. This facilitates the use of Fourier-based
algorithms [Carr,Madan-1999; Fang,Oosterlee-2008] for efficient pricing of plain vanilla contracts.

This article is divided in several parts. In Section 2 we define the main hybrid models. In the
follow-up section we discuss, in detail, approximations for the square root processes appearing. These
approximations are later used in Section 4 when redefining the hybrid model. This is the heart of our
article. In Section 5 we derive the characteristic functions of the introduced hybrid models. Section 6
is dedicated to the numerical experiments of pricing plain vanilla options under the hybrid models. In
an appendix we show how to price swaptions and bonds and calibrate with a stochastic volatility short
rate model.

2 Hybrid with Multi-Factor Short Rate Process
Suppose we have given two asset classes defined by the vectors Xn̄×1

t , n̄ ∈ N+ for the equity and
for the interest rates Rm̄×1

t , m̄ ∈ N+. One can take high-dimensional processes involving stochastic
volatility. In general, we can define the following system of governing stochastic differential equations
(SDEs): 

dXt = a(Xt,Rt)dt+ b(Xt)dWX
t ,

dRt = c(Rt)dt+ d(Rt)dWR
t ,

ZtZT
t = CHdt,

(2.1)

where Ht = [Xt,Rt], Zt = [dWX
t ,dW

R
t ]T, CH is a (n̄+ m̄)× (n̄+ m̄) matrix which represents the

instantaneous correlation between the Brownian motions. Moreover, since the noises dW·
t are assumed

to be multi-dimensional, correlation within the asset classes is allowed, i.e.: CX = (dWX
t )(dWX

t )T,
CY = (dWR

t )(dWR
t )T.

Since the Heston model in [Heston-1993] is sufficiently complex for explaining the smile-shaped
implied volatilities in equity, we take this model as a benchmark for the equity part. In particular, the
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model for the state vector Xt = [xt = logSt, σt]T is described by the following system of SDEs:
dxt =

(
rt −

1
2
σt

)
dt+

√
σtdW x

t , x0 > 0,

dσt = ε (σ̄ − σt) dt+ ω
√
σtdW σ

t , σ0 > 0,

CX
1,2 = ρx,σdt,

(2.2)

with the speed of mean reversion ε > 0; σ̄ > 0 is a long-term mean of stochastic volatility and ω > 0
specifies the volatility of the stochastic volatility process. Note that term σt/2 in the xt process results
from Itô’s formula (see for example [Øksendal-2000]) when deriving the dynamics for logSt.

For the interest rate process we consider multi-factor short rate processes. In the general setup, for
a given state vector Rt = [rt, vt]T we consider the following system of SDEs:

drt = κ(θt + (1− p)vt − rt)dt+ η
√
vt

pdW r
t , r0 > 0,

dvt = λ(v̄p− vt)dt+ γ
√
vt

pdW v
t ,

CR
1,2 = ρr,vdt,

(2.3)

with {
v0 = 0 for p = 0,
v0 > 0 for p = 1,

(2.4)

where p = {0, 1}, κ > 0, λ > 0 are the mean reversion parameters, η > 0 determines the volatility
magnitude, while γ > 0 controls the volatility of the volatility process in interest rate. In the system
above the coefficients θt > 0, ∀t and v̄ > 0 stand for long term interest rate (which usually is calibrated
to the current yield curve) and the long term volatility level, respectively.

In model (2.3) parameter p needs some additional comments. Parameter p can lead to different
models: for p = 0 the model becomes a Gaussian two-factor model [Brigo,Mercurio-2007] (G2++)
(also known as a two-factor Hull-White model):

drt = κ(θt + vt − rt)dt+ ηdW r
t , r0 > 0,

dvt = −λvtdt+ γdW v
t , v0 = 0,

CR
1,2 = ρr,vdt.

(2.5)

The G2++ model provides a satisfactory fit to the At-The-Money (ATM) humped structures of the
volatility of the instantaneous forward rates. Moreover, simple model construction (multivariate normal
distribution) provides closed form solutions for caps and swaptions, allowing fast calibration. On the
other hand, since the model is assumed to be normal, the interest rates can become negative. In order
to improve, an extended model can be applied. In this article, as the alternative model we choose the
recently developed stochastic volatility short rate model of Heston type [Heidari, et al.-2007] (H2++).
Therefore, by taking p = 1 the short rate process rt is driven by the following system of SDEs:

drt = κ(θt − rt)dt+ η
√
vtdW r

t , r0 > 0,
dvt = λ(v̄ − vt)dt+ γ

√
vtdW v

t , v0 > 0,

CR
1,2 = ρr,vdt,

(2.6)

By taking the equity model Xt as introduced in (2.2) and the interest rate part Rt from (2.3) we define
a hybrid model Hp

t = [Xt,Yt]T with the following instantaneous correlation structure:

CH =


1 ρx,σ ρx,r ρx,v

∗ 1 ρσ,r ρσ,v

∗ ∗ 1 ρr,v

∗ ∗ ∗ 1


4×4

. (2.7)

Model Hp
t for p = 0 is the Heston-Gaussian two-factor hybrid model (H-G2++) and for p = 1 it

becomes the Heston-Heston two-factor hybrid model (H-H2++). Note that the equity and the interest
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rate asset classes are linked by correlations in the right-upper and left-lower diagonal blocks of matrix
CH. Our main objective is the preservation of the correlation, ρx,r, between the log-equity and the
interest rate. However, we also show that additional correlations (degrees of freedom) may be used in
the calibration to better fit to the market quotes.

Assuming V := V(t, xt, σt, rt, vt) to represent the value of a European claim, with the help of the
arbitrage free pricing theorem and the use of Itô’s formula, we can derive the corresponding pricing
Partial Differential Equation (PDE) [Gatheral-2006]:

0 = (r − 1/2σ)Vx + ε (σ̄ − σ)Vσ + κ(θ(t) + (1− p)v − r)Vr + λ (v̄p− v)Vv

+
1
2
σVxx +

1
2
ω2σVσσ +

1
2
η2vpVrr +

1
2
γ2vpVvv + ρx,σωσVxσ

+ρx,rη
√
σ
√
v

p
Vxr + ρx,vγ

√
σ
√
v

p
Vxv + ρσ,rηω

√
σ
√
v

p
Vσr (2.8)

+ρσ,vγω
√
σ
√
v

p
Vσv + ρr,vγηv

pVrv − rV + Vt,

where subscripts denote partial derivatives and with state variables x := xt = logSt, σ := σt, r := rt,
v := vt, and specific boundary and final conditions (for details on boundary conditions for similar
problems, see, for example, [Duffie-2006] pp.241).

The solution of the 4D convection-diffusion PDE above can be approximated by means of standard
numerical techniques, like finite differences (see for example [Morton-2005]). This may however result
in substantial CPU time needed for the model evaluation. An alternative is to use the Feynman-
Kac theorem and reformulate the problem to an integral equation related to the discounted expected
payoff. Before doing this, let us derive the associated instantaneous covariance matrix ΣHΣT

H of hybrid
model (2.1) with (2.2) and (2.3):

S := ΣHΣT
H =


σt ρx,σωσt ρx,rη

√
σt
√
vt

p ρx,vγ
√
σt
√
vt

p

∗ ω2σt ρσ,rηω
√
σt
√
vt

p ρσ,vωγ
√
σt
√
vt

p

∗ ∗ η2vp
t ρr,vηγv

p
t

∗ ∗ ∗ γ2vp
t


4×4

. (2.9)

In the next section we discuss in detail the problems associated with the non-affine coefficients in
matrix (2.9).

3 The Square Root Process
Let us have a closer look at the elements in the matrix (2.9). There are similarities between the non-

affine elements. Each of them involves the term
√
σt
√
vt

p. Moreover, for both cases the volatility
processes σt and vt are of square-Bessel mean-reverting CIR type [Cox, et al.-1985]. These two
processes are guaranteed to be positive if the Feller conditions [Feller-1971], i.e., 2εσ̄ ≥ ω2 for σt

and 2λv̄ ≥ γ2 for vt are satisfied. Since the processes σt and vt are of the same type, we continue the
analysis of σt; the results for vt are analogous.

It is shown in [Cox, et al.-1985; Broadie,Kaya-2006] that, for a given time t > 0, σt is distributed
as c(t) times a non-central chi-squared random variable, χ2(d, λ(t)), with d the “degrees of freedom”
parameter and non-centrality parameter λ(t), i.e.:

σt = c(t)χ2 (d, λ(t)) , t > 0, (3.1)

with

c(t) =
1
4ε
ω2(1− e−εt), d =

4εσ̄
ω2

, λ(t) =
4εσ0e−εt

ω2(1− e−εt)
. (3.2)

So, the corresponding cumulative distribution function (CDF) can be expressed as:

Fσt(x) = P(σt ≤ x|σ0) = P
(
χ2 (d, λ(t)) ≤ x/c(t)|σ0

)
= Fχ2(d,λ(t)) (x/c(t)) , (3.3)

where:

Fχ2(d,λ(t))(y) =
∞∑

k=0

exp
(
−λ(t)

2

) (λ(t)
2

)k

k!
Γ
(
k + d

2 ,
y
2

)
Γ
(
k + d

2

) , (3.4)
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with

Γ(a, z) =
∫ z

0

ta−1e−tdt, Γ(z) =
∫ ∞

0

tz−1e−tdt. (3.5)

Further, the corresponding density function (see for example [Moser-2007]) reads:

fχ2(d,λ(t))(y) =
1
2
e−

1
2 (y+λ(t))

(
y

λ(t)

) 1
2 ( d

2−1)
B d

2−1(
√
λ(t)y), (3.6)

with

Ba(z) =
(z

2

)a ∞∑
k=0

(
1
4z

2
)k

k!Γ(a+ k + 1)
, (3.7)

which is a modified Bessel function of the first kind (see for example [Abramowitz-1972;
Gradshteyn,Ryzhik-1996]).

From above, the density for σt can be expressed as:

fσt
(x)

def
=

d
dx
Fσt

(x) =
d
dx
Fχ2(d,λ(t))(x/c(t)) =

1
c(t)

fχ(d,λ(t)) (x/c(t)) . (3.8)

By using the properties of the non-central chi-square distribution the mean and variance of the process
σt are known explicitly:

E(σt|σ0) = c(t)(d+ λ(t)),

Var(σt|σ0) = c2(t)(2d+ 4λ(t)).
(3.9)

In the lemma below we derive the corresponding moments for
√
σt.

Lemma 3.1 (Expectation and variance for
√
σt). For a given time t > 0 the expectation and variance

of
√
σt where σt has a non-central chi-square distribution function with CDF in (3.4) are given by:

E(
√
σt|σ0) =

√
2c(t)e−λ(t)/2

∞∑
k=0

1
k!

(λ(t)/2)k Γ
(

1+d
2 + k

)
Γ(d

2 + k)
, (3.10)

and

Var (
√
σt|σ0) = c(t)(d+ λ(t))− 2c(t)e−λ(t)

( ∞∑
k=0

1
k!

(λ(t)/2)k Γ
(

1+d
2 + k

)
Γ
(

d
2 + k

) )2

. (3.11)

Proof. First of all by [Dufresne-2001] we have that:

E(
√
σt|σ0)

def
=

∫ ∞

0

√
x

c(t)
fχ2(d,λ(t))

(
x

c(t)

)
dx

=
√

2c(t)
Γ
(

1+d
2

)
Γ
(

d
2

) 1F1

(
−1

2
,
d

2
,−λ(t)

2

)
, (3.12)

where 1F1(a; b; z) is a confluent hyper-geometric function, which is also known as Kummer’s
function [Kummer-1936] of the first kind, given by:

1F1(a; b; z) =
∞∑

k=0

(a)k

(b)k

zk

k!
, (3.13)

with (a)k and (b)k being Pochhammer symbols of the form:

(a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1) · · · · · (a+ k − 1). (3.14)

6



Now, using the principle of Kummer (see [Koepf-1998] pp.42) we find:

1F1

(
−1

2
,
d

2
,−λ(t)

2

)
= e−λ(t)/2

1F1

(
1 + d

2
,
d

2
,
λ(t)
2

)
(3.15)

Therefore, by (3.14) and (3.15), Equation (3.12) reads:

E(
√
σt|σ0) =

√
2c(t)e−λ(t)/2 Γ

(
1+d
2

)
Γ
(

d
2

) 1F1

(
1 + d

2
,
d

2
,
λ(t)
2

)
(3.16)

=
√

2c(t)e−λ(t)/2 Γ
(

1+d
2

)
Γ
(

d
2

) ∞∑
k=0

1
k!

(λ(t)/2)k Γ
(

1+d
2 + k

)
Γ
(

1+d
2

) Γ
(

d
2

)
Γ
(

d
2 + k

) (3.17)

=
√

2c(t)e−λ(t)/2
∞∑

k=0

1
k!

(λ(t)/2)k Γ
(

1+d
2 + k

)
Γ
(

d
2 + k

) . (3.18)

In order to calculate the variance we have:

Var (
√
σt|σ0)

def
= E(σt|σ0)− (E(

√
σt)|σ0)

2
. (3.19)

Now, by combining (3.9) and (3.19) with the already derived E(
√
σt|σ0) we obtain:

Var (
√
σt|σ0) = c(t)(d+ λ(t))− 2c(t)e−λ(t)

( ∞∑
k=0

1
k!

(λ(t)/2)k Γ
(

1+d
2 + k

)
Γ
(

d
2 + k

) )2

, (3.20)

which concludes the proof.

3.1 Approximations for the Square Root Process
We develop here the analysis of the distribution of

√
σt. As a start, in the first lemma we show that

for t→∞ the random variable
√
σt, with σt a square root process as in (2.2), can be approximated by

a normally distributed random variable.

Lemma 3.2 (Normal approximation for
√
σt for t→∞). For t→∞, we find:

√
σ∞ := lim

t→∞

√
σt ≈ N

(√
σ̄ − ω2

8ε
,
ω2

8ε

)
, (3.21)

with σ̄, ω and ε as in (2.2), and N (µ, σ) a normally distributed random variable with expectation µ
and variance σ.

Proof. It was already shown that the CDF for σt is given by:

Fσt
(x) = Fχ2(d,λ(t)) (x/c(t)) , (3.22)

where d, λ(t) and c(t) are given in (3.2). For t→∞ we find the limits:

lim
t→∞

λ(t) = 0, and lim
t→∞

c(t) =
ω2

4ε
. (3.23)

For t → ∞ the non-centrality parameter converges to 0, so, by using the properties of the non-central
chi-square distribution, σt converges to the standard chi-square distribution, i.e.,:

lim
t→∞

σt = c(∞)χ2(d, λ(∞))
def
=

ω2

4ε
χ2(d), (3.24)

where χ2(d) is a chi-square random variable with d degrees of freedom.
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We use the result by Fisher [Fisher-1922] that for a given central chi-square random variable χ2(d)
the expression

√
2χ2(d) is approximately normally distributed with mean

√
2d− 1 and unit variance,

i.e.:
Fχ2(d)(x) ≈ Φ

(√
2x−

√
2d− 1

)
. (3.25)

From (3.24) we have:

χ2(d) =
4ε
ω2
σ∞. (3.26)

It follows that: √
8ε
ω2
σ∞ ≈ N

(√
8εσ̄
ω2

− 1, 1

)
.

So, finally we conclude that
√
σ∞ ≈ N

(√
σ̄ − ω2

8ε
,
ω2

8ε

)
, (3.27)

which finishes the proof.

The lemma provides us with an intuition about the behavior of the distribution of
√
σt, however,

since for finite time t the non-centrality parameter λ(t) does not converge to zero another approximation
for finite time t is necessary. In the lemma below this approximation, for finite time t and a non-zero
centrality parameter, is presented.

Lemma 3.3 (Normal Approximation for
√
σt for 0 < t < ∞). For any time, t < ∞, the square root

of σt in (2.2) can be approximated by

√
σt ≈ N

(√
c(t)(λ(t)− 1) + c(t)d+

c(t)d
2(d+ λ(t))

, c(t)− c(t)d
2(d+ λ(t))

)
, (3.28)

with c(t), d and λ(t) from (3.2). Moreover, for a fixed value of x in the cumulative distribution function
F√

σ(t)
(x), and a fixed value for parameter, d, the error is of order O(λ2(t)) for λ(t) → 0 and

O(λ(t)−
1
2 ) for λ(t) →∞.

Proof. As given in [Patnaik-1949] an accurate approximation for the non-central chi-square distribu-
tion, χ2

d(λ(t)), can be obtained by an approximation with a centralized chi-square distribution, i.e.:

χ2(d, λ(t)) ≈ a(t)χ2(f(t)), (3.29)

with a(t) and f(t) in (3.29) chosen so that the first two moments match, i.e.:

a(t) =
d+ 2λ(t)
d+ λ(t)

, f(t) = d+
λ(t)2

d+ 2λ(t)
. (3.30)

From (3.1) and (3.29) we have:
√
σt ≈

√
c(t)
√
a(t)χ2(f(t)). (3.31)

Therefore, by (3.25),

√
σt ≈ N

(√(
f(t)− 1

2

)
c(t)a(t),

1
2
c(t)a(t)

)
. (3.32)

The order of this approximation can be found in [Johnson, et al.-1994].

Remark 1 (Delta method and moments approximations). The mean, E(
√
σt), and variance, Var(

√
σt),

provided in Lemma 3.3 are equivalent with first first order approximations obtained by the delta method,
discussed in [Grzelak,Oosterlee-2009].
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Remark 2 (Remark on Accuracy). As already indicated in [Patnaik-1949] the normal approximation
resembles the non-central chi-square distribution very well for either a large number of degrees of
freedom, d, or a large non-centrality λ(t). As already mentioned, for t → 0, the non-centrality
parameter, λ(t), tends to infinity. Therefore, accurate approximations are expected. In the case of large
maturities, the non-centrality parameter converges to 0, which may give an inaccurate approximation.
In that case, satisfactory results depend on the size of the degrees of freedom parameter d. It is clear
that d in (3.2) is directly related to the Feller condition which by an inequality ensures the process to
be positive. In practical applications however 2εσ̄ is often lower than ω2. In Section 6 we check, by a
numerical experiment, the impact of not satisfying the Feller condition on our approximations.
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Figure 3.1: For maturity T = 0.1; LEFT: a histogram for σt, RIGHT: a histogram for
√
σt and the

theoretical fit of normal distribution. The Monte Carlo simulation was performed with 20.000 paths
with 500 steps for ε = 1.2, ω = 0.2, σ̄ = 0.1, σ0 = 0.05.
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Figure 3.2: For maturity T = 5; LEFT: a histogram for σt, RIGHT: a histogram for
√
σt and the

theoretical fit of normal distribution. The Monte Carlo setup was chosen the same as in Figure 3.1.

Figures 3.1 and 3.2 show that, for the non-central chi-square distributed σt given by (2.2),
√
σt

indeed resembles a normal distribution very well for finite maturities, T = 0.1 and T = 5. In Table 3.1
the accuracy results of the approximations of the first two moments are presented.
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Table 3.1: The expectation and variance of
√
σT for T = 0.1 and T = 5 obtained from Monte Carlo

simulation (20.000 paths and 500 steps), approximation given in Lemma 3.3 and exact representation
from Lemma 3.1. For the exact representation we have truncated the sum at ñ = 100.

Maturity E(·), Var(·) Monte Carlo Proxy (Lem. 3.3) Exact (Lem. 3.1)

E(
√
σt) 0.23602 0.23411 0.23410

T = 0.1 Var(
√
σt) 8.76694E-4 8.46600E-4 8.50367E-4

E(
√
σt) 0.30896 0.30938 0.30952

T = 5 Var(
√
σt) 0.00432 0.00416 0.00407

3.2 Approximation of the Dynamics d
√

σt

Now, let us have a closer look at the dynamics of process
√
σt from another perspective. By using

Itô’s formula one can simply get:

d
√
σt =

(
− ω2

8
√
σt

+
ε

2

(
σ̄
√
σt
−
√
σt

))
dt+

ω

2
dW σ

t ,
√
σ0 > 0. (3.33)

The dynamics of the process
√
σt presented above include a constant volatility coefficient, ω/2,

whereas the drift is of a non-affine form. In the previous subsection, in Lemma 3.3, we have shown
that for any finite time t,

√
σt may be simply approximated by a normal distribution. Instead of using

the approximations for expectation and variance given in Lemma 3.3 we can use the exact moment
estimates, i.e.: √

σt ≈ N (E(
√
σt|σ0),Var(

√
σt|σ0)) , (3.34)

with exact expectation E(
√
σt|σ0) and variance Var(

√
σt|σ0) as given in Lemma 3.1.

The distribution for
√
σt, is then used to construct an approximation for the dynamics of

√
σt by

matching the corresponding moments. The lemma below provides the necessary coefficients.

Lemma 3.4 (Construction of the dynamics of
√
σt). For a given stochastic volatility process, σt,

from (2.2) the process ut modeled by (3.35) has the same first two moments as
√
σt, if:

dut = µu
t dt+ ψu

t dW σ
t , u0 =

√
σ0 > 0, (3.35)

with deterministic time-dependent drift, µu
t , and volatility, ψu

t , given by:

µu
t =

1
2
√

2

Γ
(

1+d
2

)√
c(t)

(
1F̃1

(
−1

2
,
d

2
,−λ(t)

2

)
1
2
ω2e−tε

−1F̃1

(
1
2
,
2 + d

2
,−λ(t)

2

)
4c(t)ε2σ0eεt

(eεt − 1)2 ω2

)
, (3.36)

and:

ψu
t =

(
1
4
ω2e−tε(d+ λ(t))− 4c(t)ε2σ0eεt

(eεt − 1)2 ω2
− 2E(

√
σt|
√
σ0) µu

t

) 1
2

.

Here, E(
√
σt|σ0) is given by Lemma 3.1, d, c(t) and λ(t) are as in (3.2) and the regularized hyper-

geometric function 1F̃1(a; b; z) =: 1F1(a; b; z)/Γ(b).

Proof. By integrating Equation (3.35) we obtain:

ut = u0 +
∫ t

0

µu
s ds+

∫ t

0

ψu
s dW σ

s , u0 =
√
σ0 > 0. (3.37)
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By taking the conditional expectation and variance from both sides we get:
E(ut|u0) = u0 +

∫ t

0

µu
s ds,

Var(ut|u0) =
∫ t

0

E (ψu
s )2 ds.

(3.38)

Now, by matching these equations with E(
√
σt|
√
σ0) and Var(

√
σt|
√
σ0), respectively, the following

equalities need to be satisfied: 
µu

t =
d
dt

E(
√
σt|
√
σ0),

ψu
t =

(
d
dt

Var (
√
σt|
√
σ0)
) 1

2

.

(3.39)

With the expressions in the RHS of (3.39), determined in Lemma 3.1, the proof is finished after some
basic algebra.

In Lemma 3.4 we have derived the functional form of the coefficients µu
t and ψu

t needed for the
construction of process dut which serves as an approximation for process d

√
σt. Both coefficients

are determined in terms of the hyper-geometric function 1F1(·, ·, ·) which is given by an infinite sum
(see Equation (3.13)). Since, we are interested in finite expressions, a truncation of the infinite sum is
necessary. Numerically, we give an indication of the number of terms needed for an accurate function
evaluation. Figure 6.2 shows that a high accuracy is already obtained with the first few terms in the
summation. For both functions we observe a tendency to faster convergence for higher maturities. In
Remark 3 we indicate how to deal with an increasing error for t→ 0.
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Figure 3.3: Speed of convergence related to 1F1 for different maturities. LEFT: µu
t , RIGHT: ψu

t . The
parameters were chosen as ε = 1.5, ω = 0.4, σ̄ = 0.2 and σ0 = 0.05.

Remark 3. Since for t → 0, λ(t) → ∞ and c(t) → 0 some numerical instabilities in calculating the
moments in Lemma 3.1 may arise. Therefore for t → 0 we advise the use of the estimates provided in
Lemma 3.3.

4 Construction of the Affine Hybrid Model
For both hybrid models, the H-G2++ model with p = 0 and H-H2++ for p = 1, the instantaneous

covariance matrices in (2.9) are not affine in all terms on the right-upper block. One can immediately
see that the affinity problem disappears for ρx,r = 0, ρx,v = 0, ρσ,r = 0 and ρσ,v = 0. This, however,
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introduces independence between the asset classes. In order to stay in the affine class while assuming
the correlations between the assets to be non-zero some approximations need to be introduced.

In this section we use the approximation introduced for process d
√
σt to find a proxy for the hybrid

models under consideration, so that we obtain affine hybrid multi-factor models. In matrix (2.9) the
terms that cause affinity problems are all of the same form. For example, element (1, 3) from matrix S
is given by:

S(1,3) = ρx,rη
√
σt
√
vt

p
,

where ρx,r 6= 0, η > 0, p = {0, 1} and both processes, σt and vt, are CIR-type processes given
by (2.2). Now, based on the results from the previous section, let us define an approximation for S(1,3):

S(1,3) ≈ S̃(1,3) = ρx,rηu
σ
t (uv

t )p
, (4.1)

where the processes uσ
t , uv

t are given by:
duσ

t = µσ
t dt+ ψσ

t dW σ
t , uσ

0 =
√
σ0 > 0,

duv
t = µv

t dt+ ψv
t dW v

t , uv
0 =

√
v0 > 0,

ρσ,vdt = dW σ
t dW v

t ,

(4.2)

with µσ
t , µv

t as in Equation (3.36), ψσ
t , and ψv

t as in Equation (3.37). Depending on the values of
parameter p we can distinguish the following cases:{

p = 0 : S̃(1,3) = ρx,rηu
σ
t ,

p = 1 : S̃(1,3) = ρx,rηu
σ
t u

v
t .

(4.3)

For the simplest case, p = 0, S̃(1,3) is already in the affine form, however, for p = 1 it is not. In order
to repair this for the case of p = 1, we introduce an additional variable

zt := uσ
t u

v
t ,

for which we find the following dynamics:

dzt = (µσ
t u

v
t + µv

t u
σ
t + ψσ

t ψ
v
t ρσ,v) dt+ uv

tψ
σ
t dW σ

t + uσ
t ψ

v
t dW v

t . (4.4)

Process (4.4) gives rise to additional affinity problems, but since we have defined the approximations
uσ

t ≈
√
σt and uv

t ≈
√
vt, we can simply write:

dzt = (µσ
t u

v
t + µv

t u
σ
t + ψσ

t ψ
v
t ρσ,v) dt+

√
vtψ

σ
t dW σ

t +
√
σtψ

v
t dW v

t . (4.5)

Now, by combining Equations (2.2), (2.3) with (4.2) and (4.5) we end up with the approximate hybrid
model of our choice:

Hybrid
Model



Equity

dxt =
(
rt −

1
2
σt

)
dt+

√
σtdW x

t ,

dσt = ε (σ̄ − σt) dt+ ω
√
σtdW σ

t ,

Short Rate
{

drt = κ(θt + (1− p)vt − rt)dt+ η
√
vt

pdW r
t ,

dvt = λ(v̄p− vt)dt+ γ
√
vt

pdW v
t ,

Affinity correction

duσ
t = µσ

t dt+ ψσ
t dW σ

t ,
duv

t = µv
t dt+ ψv

t dW v
t ,

dzt = ∆tdt+
√
vtψ

σ
t dW σ

t +
√
σtψ

v
t dW v

t ,

(4.6)

with ∆t given by:
∆t = µσ

t u
v
t + µv

t u
σ
t + ψσ

t ψ
v
t ρσ,v,

and 
uσ

t ≈
√
σt, uσ

0 =
√
σ0 > 0,

uv
t ≈

√
vt, uv

0 =
√
v0 > 0,

zt = uσ
t u

v
t ≈

√
σt
√
vt, z0 =

√
σ0
√
v0 > 0.

(4.7)
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Here x0 > 0 and r0 > 0, and deterministic time-dependent functions µσ
t , µv

t , ψσ
t , ψv

t are given
by Lemma 3.4 with the remaining parameters detailed in Section 2 and a full matrix of correlations
given by (2.7). Since we have defined some additional processes which correspond to the affinity
correction, our original 4D state vector, Xt = [xt, σt, rt, vt]T now turns into a 5D vector H̃0

t :=
H̃p=0

t = [xt, σt, rt, vt, u
σ
t ]T and a 7D vector H̃1

t := H̃p=1
t = [xt, σt, rt, vt, u

σ
t , u

v
t , zt]T.

Let us define a state vector Jt(p) = [xt, σt, rt, vt, u
σ
t ]T. Note that, Jt(0) = H̃0

t . For model Jt(p)
we find the following instantaneous covariance matrix:

ΣJΣT
J(p) =


σt ρx,σωσt ρx,rη

√
σt
√
vt

p ρx,vγ
√
σt
√
vt

p ρx,σψ
σ
t

√
σt

∗ ω2σt ρσ,rωη
√
σt
√
vt

p ρσ,vωγ
√
σt
√
vt

p ωψσ
t

√
σt

∗ ∗ η2vp
t ρr,vηγv

p
t ρr,σηψ

σ
t

√
vt

p

∗ ∗ ∗ γ2vp
t ρσ,vγψ

σ
t

√
vt

p

∗ ∗ ∗ ∗ (ψσ
t )2


5×5

. (4.8)

We can also find an instantaneous covariance matrix for H̃p=1
t :

ΣH̃1
t
ΣT

H̃1
t

=

(
ΣJΣT

J(1) Dt

DT
t At

)
7×7

, (4.9)

with

Dt =


ρx,vψ

v
t

√
σt ρx,σψ

σ
t

√
σtvt + ρx,vψ

v
t σt

ρσ,vωψ
v
t

√
σt ωψσ

t

√
σtvt + ρσ,vωψ

v
t σt

ρr,vηψ
v
t

√
vt

p ρr,σηψ
σ
t vt + ρr,vηψ

v
t

√
vtσt

γψv
t

√
vt

p ρσ,vγψ
σ
t vt + γψv

t

√
vtσt

ρσ,vψ
v
t ψ

σ
t (ψσ

t )2
√
vt + ρσ,vψ

σ
t ψ

v
t

√
σt


5×2

. (4.10)

and

At =
(

(ψv
t )2 ρσ,vψ

v
t ψ

σ
t

√
vt + (ψv

t )2
√
σt

∗ vt(ψσ
t )2 + σt(ψv

t )2 + 2ρσ,vψ
σ
t ψ

v
t

√
σt
√
vt

)
2×2

. (4.11)

Both matrices, (4.8) and (4.9), are not in the affine form, but with the affinity correction variables uσ
t ,

uv
t and zt given in (4.7), we can write:

ΣH̃0
t
ΣT

H̃0
t

=


σt ρx,σωσt ρx,rηu

σ
t ρx,vγu

σ
t ρx,σψ

σ
t u

σ
t

∗ ω2σt ρσ,rωηu
σ
t ρσ,vωγu

σ
t ωψσ

t u
σ
t

∗ ∗ η2 ρr,vηγ ρr,σηψ
σ
t

∗ ∗ ∗ γ2 ρσ,vγψ
σ
t

∗ ∗ ∗ ∗ (ψσ
t )2


5×5

, (4.12)

and for p = 1 we obtain:

ΣJΣT
J(1) =


σt ρx,σωσt ρx,rηzt ρx,vγzt ρx,σψ

σ
t u

σ
t

∗ ω2σt ρσ,rωηzt ρσ,vωγzt ωψσ
t u

σ
t

∗ ∗ η2vt ρr,vηγvt ρr,σηψ
σ
t u

v
t

∗ ∗ ∗ γ2vt ρσ,vγψ
σ
t u

v
t

∗ ∗ ∗ ∗ (ψσ
t )2


5×5

, (4.13)

with

Dt =


ρx,vψ

v
t u

σ
t ρx,σψ

σ
t zt + ρx,vψ

v
t σt

ρσ,vωψ
v
t u

σ
t ωψσ

t zt + ρσ,vωψ
v
t σt

ρr,vηψ
v
t u

v
t ρr,σηψ

σ
t vt + ρr,vηψ

v
t zt

γψv
t u

v
t ρσ,vγψ

σ
t vt + γψv

t zt

ρσ,vψ
v
t ψ

σ
t (ψσ

t )2uv
t + ρσ,vψ

σ
t ψ

v
t u

σ
t


5×2

, (4.14)

and

At =
(

(ψv
t )2 ρσ,vψ

v
t ψ

σ
t u

v
t + (ψv

t )2uσ
t

∗ vt(ψσ
t )2 + σt(ψv

t )2 + 2ρσ,vψ
σ
t ψ

v
t zt

)
2×2

. (4.15)
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Since the functions µσ
t , µv

t , ψσ
t and ψv

t are given deterministic functions of time, the drifts (4.6) are of
a linear form, and the covariance matrices ΣH̃0

t
ΣH̃0

t

T and ΣH̃1
t
ΣH̃1

t

T do not consist of any non-affine
functions of the state variables. So, our modified multi-factor hybrid model (4.6) has an affine structure.
Therefore, we are able to derive the corresponding characteristic functions which form the basis for an
approximation of the solution of the pricing PDE given by (2.8).

5 Approximation of the Characteristic Function
As shown in [Duffie-2006] the relevance of the Fourier transform for PDEs lies in the transformation

to a problem which can be solved efficiently. For this one needs to derive the characteristic function
(CF). As already described in [Lee-2004] once the CF is found, a wide class of options can be efficiently
and accurately priced, with the help of fast numerical routines.

The focus of this section is on the derivation of the CF for the affine versions of the two hybrid
models introduced previously, H-G2++ and H-H2++.

5.1 Characteristic Function for the Heston-G2++ Hybrid Model
Model (4.6), with p = 0, is the Heston-Hull-White two-factor model:

dxt = (rt − 1/2σt) dt+
√
σtdW x

t , x0 > 0,
dσt = ε(σ̄ − σt)dt+ ω

√
σtdW σ

t , σ0 > 0,
drt = κ(θt + vt − rt)dt+ ηdW r

t , r0 > 0,
dvt = −λvtdt+ γdW v

t , v0 = 0,

(5.1)

with the additional state variable for the affinity of the system:

(d
√
σt ≈) duσ

t = µσ
t dt+ ψσ

t dW σ
t , u0 =

√
σ0 > 0, (5.2)

and all the processes correlated as given in (2.7).
By using the standard technique we obtain the pricing PDE for the approximate H-G2++ model:

0 = (r − 1/2σ)Vx + ε(σ̄ − σ)Vσ + κ (θ(t)− r + v)Vr − λvVv + µσ(t)Vu +
1
2
σVxx

+
1
2
ω2σVσσ +

1
2
η2Vrr +

1
2
γ2Vvv +

1
2
(ψσ(t))2Vuu + ρx,σωσVx,σ + ρx,rηuVx,r

+ρx,vγuVx,v + ρx,σψ
σ(t)uVx,u + ρσ,rηωuVσ,r + ρσ,vγωuVσ,v + ψσ(t)ωuVσ,u

+ρr,vγηVr,v + ρr,σηψ
σ(t)Vr,u + ρσ,vγψ

σ(t)Vv,u − rV + Vt,

with state variables x := xt, σ := σt, r := rt, v := vt and u := uσ
t and time-dependent functions θ(t),

µσ(t) and ψσ(t). The PDE given above is linear in its state variables. The discounted characteristic
function for the state vector, H̃0

t = [xt, σt, rt, vt, u
σ
t ]T, is known, under the risk neutral measure, as:

φH-G2++(u, H̃0
t , τ) = EQ

(
e−

∫ T
t

rsdseiuTH̃0
T |F0

)
= eA(u,τ)+BT(u,τ)H̃0

t , (5.3)

with the initial condition:
φH-G2++(u, H̃0

T , 0) = eiuTH̃0
T , (5.4)

with τ = T − t. Here, A(u, τ) and B(u, τ) satisfy the following Riccati ordinary differential equations
(see [Duffie, et al.-2000]):

d
dτ

B(u, τ) = −r1 + aT
1 B+

1
2
BT c1B,

d
dτ
A(u, τ) = −r0 + BTa0+

1
2
BT c0B,

(5.5)
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with ai, ci, ri, i = 0, 1, given by a linear decomposition:

µ(H̃0
t ) = a0 + a1H̃0

t , for any (a0, a1) ∈ Rl × Rl×l, (5.6)

σ(H̃0
t )σ(H̃0

t )
T = (c0)ij + (c1)T

ijH̃
0
t , for arbitrary (c0, c1) ∈ Rl×l × Rl×l×l, (5.7)

r(H̃0
t ) = r0 + rT

1H̃
0
t , for (r0, r1) ∈ R× Rl, (5.8)

where l indicates the dimension of the state vector H̃0
t . Now, we set u = [u, 0, 0, 0, 0]T and finite

maturity τ > 0. The following two lemmas provide us with the coefficients needed for evaluating the
characteristic function.

Lemma 5.1 (CF coefficients for the Heston-G2++ hybrid model). The coefficients of the characteristic
function for the H-G++ model in (5.1) are the solutions of the following Riccati ODEs:

d
dτ
Bx(u, τ) = 0,

d
dτ
Bσ(u, τ) =

1
2

(Bx − 1)Bx + (ρx,σωBx − ε)Bσ +
1
2
ω2B2

σ,

d
dτ
Br(u, τ) = −1− κBr +Bx,

d
dτ
Bv(u, τ) = κBr − λBv,

d
dτ
Bu(u, τ) = ρx,rηBxBr + ρσ,rωηBσBr + ρx,vγBxBv + ρσ,vωγBσBv

+ρx,σψ
σ
τBxBu + ωψσ

τBσBu,

d
dτ
A(u, τ) = εσ̄Bσ + κθτBr + µσ

τBu +
1
2
η2B2

r +
1
2
γ2B2

v +
1
2
(ψσ

t )2B2
u

+ρr,vηγBrBv + ρr,σηψ
σ
τBrBu + ρσ,vγψ

σ
τBvBu.

Lemma 5.2 provides the analytic solutions to the complex-valued ODEs B(u, τ) for the variables
xt, σt, rt, and vt.

Lemma 5.2 (Solutions to the CF coefficients of the H-G2++). The solutions to Bx(u, τ), Bσ(u, τ),
Br(u, τ) and Bv(u, τ), defined in Lemma 5.1, are given by:

Bx(u, τ) = iu, (5.9)

Bσ(u, τ) =
1− e−Dτ

ω2 (1− ge−Dτ )
(ε− ρx,σωiu−D) , (5.10)

Br(u, τ) = (iu− 1)κ−1
(
1− e−κτ

)
, (5.11)

Bv(u, τ) =
ie−κτ (i+ u)

(κ− λ)λ

(
eκτ (κ− λ) + λ− κe(κ−λ)τ

)
, (5.12)

with D =
√

(ρx,σωiu− ε)2 + ω2 (u2 + iu) and g =
−ρx,σωiu+ ε−D

−ρx,σωiu+ ε+D
.

Since κ = λ, the expression for Bv(u, τ) diverges, and we need to use the following limit function:

lim
κ→λ

Bv(u, τ) =
1
λ
ie−λτ (i+ u)

(
eλτ − λτ − 1

)
. (5.13)

The remaining two functions, Bu(u, τ) and A(u, τ), involve the time-dependent ψσ
t and µσ

t from
Lemma 3.4 and therefore need to be solved numerically.

5.2 Characteristic Function for the H-H2++ Hybrid Model
More involved than H-G2++ is the H-H2++ model from (4.6), with p = 1. As we have shown

before, the model is of the affine form if three additional state variables are included in the system,
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leading to the 7-dimensional system H̃1
t = [xt, σt, rt, vt, u

σ
t , u

v
t , zt]T. Although the model is of

high-dimensionality, we show that one can still find the corresponding CF with numerical techniques.
Following the notation from Section 4 the following form for the discounted CF is found:

φH-H2++(u, H̃1
t , τ) = EQ

(
e−

∫ T
t

rsdseiuTH̃1
T |F0

)
= eA(u,τ)+BT(u,τ)H̃1

t , (5.14)

with the initial condition:
φH-H2++(u, H̃1

T , 0) = eiuTH̃1
T , (5.15)

The governing ODEs for the functions of the CF are presented in the following lemma.

Lemma 5.3 (ODEs for the approximate Heston-H2++ hybrid model). The functions Bx(u, τ),
Br(u, τ),Bσ(u, τ),Bv(u, τ), Buσ (u, τ), Buv (u, τ), Bz(u, τ) and A(u, τ) for u ∈ R satisfy the
following system of ODEs:

d
dτ
Bσ(u, τ) = Bx

(
1
2

(Bx − 1) + ψv
τρx,vBz

)
+ ωBσ

(
ρx,σBx −

ε

ω
+

1
2
ωBσ + ψv

τρσ,vBz

)
,

d
dτ
Bv(u, τ) = γBv

(
−λ
γ

+ ηρr,vBr +
1
2
γBv + ψσ

τ ρσ,vBz

)
+ ηBr

(
1
2
ηBr + ψσ

τ ρr,σBz

)
,

d
dτ
Buσ (u, τ) = Bz

(
1
2
(ψv

t )2Bz + µσ
τ + ψσ

τBuσ (ρx,σ + ψv
τρσ,v) + (ψv

τ )2Bv

)
+ ψv

τρx,vBxBuv

+ωBσ (ψσ
τBuσ + ψv

τρσ,vBuv ) ,
d
dτ
Buv (u, τ) = Bz

(
µσ

τ + (ψσ
τ )2Buσ + ψσ

τ ψ
v
τρσ,vBv +

1
2
(ψσ

τ )2Bz

)
+ ψv

τBuv (ηρr,vBr + γBv)

+ψσ
τBuσ (ηρr,σBr + γρσ,vBv) ,

d
dτ
Bz(u, τ) = Bz

(
ψσ

τ

(
ρx,σBx + ωBσ

)
+ ψv

τ

(
ηρr,vBr + γBv + ψσ

τ ρσ,vBz

))
+ ηρx,rBrBx

+ωηρσ,rBrBσ + γBv (ρx,vBx + ωρσ,vBσ) ,
d
dτ
A(u, τ) = εσ̄Bσ + κθτBr + λv̄Bv +Buσ

(
µσ

τ +
1
2
(ψσ

τ )2Buσ

)
+ ψσ

τ ψ
v
τρσ,vBz

+Buv

(
µv

t +
1
2
(ψv

τ )2Buv + ψσ
τ ψ

v
τρσ,vBvσ

)
,

where Bx(u, τ) = iu, and Br(u, τ) is as in the H-G2++ model (see Equation (5.11)).

The ODEs appearing in Lemma 5.3 cannot easily be solved analytically, except for Bx(u, τ) and
Br(u, τ).

In order to calculate Bi(u, τ) and A(u, τ) for a specific u and given τ , these Riccati ODEs need
to be solved numerically. Crucial in determining the CF in (5.14) is a fast computation of these
coefficients. Commonly available explicit Runge-Kutta methods, without any additional features, are
highly efficient for the simultaneous computation of all Bi(u, τ), and A(u, τ) on a given numerical
grid for u. We employ the standard Matlab routine ode45 for this purpose.

The same routine is used to determine the remaining two coefficients, A(u, τ) and Bu(u, τ), from
Lemma 5.1.

5.3 Numerical Method
For obtaining the European option prices at the highest efficiency, we use the COS pricing method

from [Fang,Oosterlee-2008], which is based on the availability of the characteristic function. The
method employs a Fourier cosine expansion of the density function.

From the general risk-neutral pricing formula the price of any claim V (T, ST ) defined in terms of
the underlying stock process ST can be written as:

Π(t, St) = EQ
(
e−

∫ T
t

rsdsV (T, ST )|Ft

)
=
∫

R
V (T, y)f̂Y (y|x)dy, (5.16)
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where f̂Y (y|x) =
∫

R ezfY,Z(y, z|x)dz, with z = −
∫ T

t
rsds. Note that we use the joint distribution

fY,Z(·) since St and rt are correlated.
Assuming fast decay of the density function, we use the following approximation:

Π(t, x) ≈
∫ δ2

δ1

V (T, y)f̂Y (y|x)dy, (5.17)

choosing x = log (St/K), y = log (ST /K), and δ1 < δ2. Now, in order to recover the
density f̂Y (y|x) one can use the following Fourier-cosine expansion, based on the availability of the
characteristic function:

f̂Y (y|x) ≈
N∑

n=0

2ωn

δ2 − δ1
<
(
φ

(
nπ

δ2 − δ1

)
exp

(
− nπiδ1
δ2 − δ1

))
cos
(
nπ

y − δ1
δ2 − δ1

)
, (5.18)

with ω0 = 1/2 and ωn = 1, n ∈ N+. Using this density expansion, we can replace the probability
function f̂Y (y|x) in Equation (5.16), i.e.:

Π(t, x) ≈
N∑

n=0

ωn<
(
φ

(
nπ

δ2 − δ1

)
exp

(
− nπiδ1
δ2 − δ1

))
Γδ1,δ2

n , (5.19)

where the coefficients Γδ1,δ2
n are known analytically for European options, see [Fang,Oosterlee-2008]

for details.
The expansion in (5.19) exhibits an exponential convergence in the number of terms. Typically

small values of N , the number of terms, are needed. Moreover, a whole vector of strikes can be priced
simultaneously. A proper choice for the range of integration in (5.1) is a guarantee for fast convergence
with only a few terms in the Fourier-cosine expansion. In [Fang,Oosterlee-2008], the integration range
was based on some insight in the behavior of the probability density function. There, one choice was
to set δ1 = −L

√
τ and δ2 = L

√
τ , with L = 8. We also use this integration range here.

6 Numerical Experiments
Some numerical experiments are presented in this section. We compare the plain vanilla option

prices obtained by the approximate affine hybrid models (computed by the COS method), with
numerical results from the full-scale two-factor hybrid models, computed by the Monte Carlo approach.

In the table below we first present the time needed for pricing the European option with the two
affine hybrid models, H-G2++ and H-H2++. In both cases we price a whole strip of 50 strikes K =
{0.1, 0.2, . . . , 5}. The table shows timing results and sum-squared-errors (SSE); the total time used
consists of the time needed for the integration of the Riccati ODEs, as well as the time used by the
COS method for pricing the options. For both models the reference prices are calculated with the same
method, using a large number (212) of terms in the expansion.

The tolerance for the explicit Runge-Kutta method for the Riccati ODEs was set to 10−10. The
models were evaluated with the following parameters:

ε = 1.2, σ̄ = 0.1, ω = 0.05, κ = 1.5, θ = 0.05, η = 0.1, λ = 1.5, γ = 0.1,

and a full matrix of correlations:

ρx,σ = −0.4, ρx,r = 0.4, ρx,v = −0.6, ρσ,r = 0.1, ρσ,v = 0.2, ρr,v = 0.3,

and initial values:
S0 = 1, σ0 = 0.05, r0 = 0.03,

For H-G2++ we set v0 = 0 and for H-H2++ v0 = 0.05.
Highly satisfactory results are found in Table 6.1, obtained on a standard PC1. Hundred terms in the

expansion are sufficient regarding the accuracy.
1Intel(R)Core(TM)2CPU, 6400 @ 2.13GHz, 1GB of RAM.
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Table 6.1: Total CPU time and sum-squared-error (SSE) of European calls for a whole set of strikes.
characteristic number of expansion terms (N)

model maturity des. 40 50 100 200
SSE 34.8956 1.06618 5.756E-11 1.011E-16

H-G2++ τ = 1y time [s] 0.0619s 0.0734s 0.0843s 0.0931s
SSE 4.856 2.352E-5 1.357E-11 1.263E-11

τ = 10y time [s] 0.0925s 0.0950s 0.1051s 0.1152s
SSE 4.505E2 16.671 2.746E-8 1.045E-17

H-H2++ τ = 1 time [s] 0.402s 0.450s 0.512s 0.612s
SSE 1.02E2 2.231E-3 8.479E-16 1.453E-16

τ = 10y time [s] 0.723s 0.817s 0.932s 1.023s

In a next experiment we check the accuracy of the approximate hybrid model. The experiment is
as follows. First of all, we generate European call prices with the original hybrid model by Monte
Carlo simulation. Secondly, we compare, in terms of implied volatilities, with the same results from
the approximate affine hybrid models obtained by the COS method. We consider two cases, one where
the parameters appearing satisfy the Feller condition for the stock and a second experiment where they
do not satisfy this condition. For both tests we have performed the Monte Carlo simulation with the
scheme proposed in [Andersen-2006].

Experiment 6.1 (Feller’s condition satisfied i.e.: 2εσ̄ > ω2). We have performed numerical
experiments with both models, i.e., H-G2++ and H-H2++. However, as we have obtained almost
identical results, we only present the results obtained with H-G2++. The parameters are chosen as:

ε = 1.2, σ̄ = 0.1, ω = 0.05, κ = 1.5, θ = 0.05, η = 0.1, λ = 1.5, γ = 0.1,

ρx,σ = −0.4, ρx,r = 0.4, ρx,v = −0.6, ρσ,r = 0.1, ρσ,v = 0.2, ρr,v = 0.3.

The initial conditions set are: S0 = 1, r0 = 0.03, v0 = 0. With the specified parameters the Feller’s
condition for the stock2 is satisfied, i.e.: εσ̄ > ω2: 0.24 > 0.0025. In the experiment we choose three
maturities τ = 1, τ = 5 and τ = 10. For the model H-G2++ Figure 6.1(a) shows an almost perfect
correspondence between the volatilities from the Monte Carlo method (for the full-scale hybrid model)
and the COS method (for the approximate affine hybrid model).
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Figure 6.1: Implied volatilities for the equity, for different maturities. The full-scale hybrid model
(Monte Carlo, with 50.000 paths and 1000 time steps) vs the approximate affine hybrid model (Fourier-
cosine expansion method) (a) Experiment 6.1, (b) Experiment 6.2.

2We discuss here the Feller’s condition for the stock, however, one may also check the Feller condition for the short-rate
process in the H-H2++ model
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Experiment 6.2 (Feller’s condition not satisfied i.e.: 2εσ̄ < ω2). In practice there are many cases
in which the Feller condition is not satisfied. Therefore we check the performance of the approximate
affine hybrid model in such a setup. In this experiment we therefore choose ε = 0.8, σ̄ = 0.05 and
ω = 0.5 and remaining parameters as in Experiment 6.1. Clearly, the Feller condition does not hold
in this case, as 0.08 � 0.25. Therefore, the probability of hitting zero is positive. Figure 6.1(b)
shows however that our approximate hybrid model also performs very satisfactory in this test. In the
experiment the error increases with increasing maturity. This is due to the fact that the noncentrality
parameter, λ(t), converges to zero for large maturities and because the degrees of freedom parameter,
d, is small. The results are in accordance with the discussion in Remark 2.

Experiment 6.3 (Impact of correlation, ρx,r, on implied volatility). In this experiment we investigate
the effect of the correlation, ρx,r, on the implied ATM volatilities. In Figure 6.2 the results obtained are
presented. From the graph we see that the correlations have significant impact on the volatilities. For
both models, H-G2++ and H-H2++, we noticed the following relation: the higher the correlation the
higher is the volatility level. This effect is stronger for the H-G2++ model.
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Figure 6.2: The impact of the correlation, ρx,r, between the log-stock xt and short rate rt, on the equity
implied volatility. The model parameters were set as: ε = 1.2, σ̄ = 0.05, ω = 0.1, κ = 1.2, θ = 0.05,
η = 0.1, λ = 1.2, γ = 0.1, ρx,σ = −0.5 and the remaining correlations equal to 0.

7 Conclusions and Final Remarks
In this article we have constructed an approximation for the characteristic function of the multi-

factor equity interest hybrid models, Heston-Gaussian two-factor (H-G2++) and Heston-stochastic
volatility short rate (H-H2++). The governing stochastic processes are placed in the class of affine
diffusion processes. Our approximations allow us to define a full matrix of correlations between the
processes. By a straightforward implementation we obtain the plain vanilla prices (for a whole strip
of strikes) in less than a second. The numerical experiments confirm a highly accurate approximation
of the prices of plain vanilla products compared to the full hybrid model. These hybrid models can
therefore be used for calibration purposes.

The approximation of the hybrid model is based on replacing the “square-root of square-root”
process by a normal distribution. The experiments show a very satisfactory approximation even if the
Feller condition, which is often ignored in practice, does not hold.
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Measures and Pricing of Options. J. Appl. Prob. 32: 443–458, 1995.
[Gradshteyn,Ryzhik-1996] I. S. GRADSHTEYN, I. M. RYZHIK, Table of Integrals, Series, and Products, 5th ed.,

A. Jeffrey, Ed. Academic Press, San Diego, 1996.
[Grzelak, et al.,-2008] L. A. GRZELAK, C. W. OOSTERLEE, S.VAN WEEREN, Extension of Stochastic

Volatility Equity models with Hull-White Interest Rate Process. Quant. Finance, to appear. Available at:
http://ssrn.com/abstract=1344959.

[Grzelak,Oosterlee-2009] L. A.GRZELAK, C. W. OOSTERLEE, On the Heston model with stochastic interest
rates. SSRN working paper, 2009. Available at SSRN: http://ssrn.com/abstract=1382902.

[Heston-1993] S. L. HESTON, A Closed-Form Solution for Options with Stochastic Volatility with Applications
to Bond and Currency Options. Rev. Finan. Stud., 2(6): 327–343, 1993.

[Heidari, et al.-2007] M. HEIDARI, A. HIRSA, D. B. MADAN, Pricing of Swaptions in Affine Term Structures
with Stochastic Volatility. Advances in Mathematical Finance. Birkhäuser 2007.

[Hull-2006] J. HULL, Interest Rate Derivatives: Models of the Short Rate. Option, Futures, and Other
Derivatives, 6: 657-658, 2006.

[Hull-2008] J. HULL, Options, Futures, and Other Derivatives, Seventh Edition. Prentice Hall, 2008.
[Hull,White-1996] J. HULL, A. WHITE, Using Hull-White Interest Rate Trees, J. Derivatives, 4: 26–36, 1996.
[Jamshidian-1989] F. JAMSHIDIAN, An Exact Bond Option Pricing Formula. J. Finance, 44: 204–209, 1989.
[Johnson, et al.-1994] N. L. JOHNSON, N. L. KOTZ, N. BALAKRISHNAN, Continuous Univariate Distributions,

Volume 2, Second Edition, Wiley, New York, 1994.
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A The Hybrid Model Calibration
In this appendix we outline a calibration procedure for the equity-interest rate hybrid models, and

we give details on the calibration of the interest rate part. Since the calibration of multi-factor models
in general is a very difficult task, we calibrate the hybrid model in the following three steps:

Algorithm 1 Hybrid model calibration procedure
1. Assume the interest rate asset classes to be independent of the equity asset class.
2. Calibrate the interest rate model to the market data available: Bonds, caplets, swaptions etc.
3. Take the equity-interest rate hybrid model (with previously calibrated interest rate parameters and
unknown coefficients for the equity), and calibrate the remaining parameters. In the case of unknown
correlations either:
3.1→ estimate them from historical data, or
3.2→ calibrate them with other hybrid parameters, or
3.3→ estimate some correlations from historical data, and find others determine via the calibration
procedure.

The fundamental interest rate derivatives are bonds and options on the interest rate swaps
(commonly called swaptions). These interest rate contracts correspond to stocks and plain vanilla
options in the equity world. Typically, in the case of swaptions the underlying interest rate swap, can be
seen as a contract for exchanging the coupon-bearing bond with a floating-rate note (for details see for
example [Brigo,Mercurio-2007]). Since the swaptions are basic products in the interest rate world, it is
crucial that new models can be efficiently calibrated to these products. In this section we discuss how
efficient pricing of swaptions under affine processes can be done. Since for the G2++ model analytic
formulas are available, we proceed with the H2++ model [Heidari, et al.-2007].

The class of affine processes is well-studied for many years (see, for example, [Dufresne-2001;
Schrager,Pelsser-2002]). In this section we follow the results of Heidari [Heidari, et al.-2007] where
the characteristic function for the H2++ short rate model was derived. We start with the prices for
zero-coupon bonds, P (t, T ). We use the stochastic volatility short rate process H2++ of the following
form: 

drt = κ(θt − rt)dt+ η
√
vtdW r

t ,

dvt = λ(v̄ − vt)dt+ γ
√
vtdW v

t ,

dW r
t dW v

t = ρr,vdt,
(A.1)

where κ > 0, η > 0, λ > 0, v̄ > 0, γ > 0 and |ρr,v| ≤ 1, as in (2.3).
Since we deal with a two-factor system, Rt = [rt, vt]T, the corresponding characteristic function is

also 2D, i.e., u = [ur, uv]T. From the definition of a characteristic function we simply get:

φH2++(u,Rt, τ)
def
= EQ

(
e−

∫ T
t

rsdseiuTRT |Ft

)
= eA(u,τ)+Br(u,τ)rt+Bv(u,τ)vt , (A.2)
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where τ = T − t, and rt, vt are the processes in (A.1). It is easy to find that A(u, τ), Br(u, τ) and
Bv(u, τ) should satisfy the following system of ODEs:

d
dτ
Br(u, τ) = −1− κBr,

d
dτ
Bv(u, τ) =

(
−λ+

1
2
γ2Bv + ηγρr,vBr

)
Bv +

1
2
η2B2

r ,

d
dτ
A(u, τ) = κθBr + λv̄Bv,

(A.3)

with τ = T − t and the boundary condition B(u, 0) = iu.
The second and third ODE in (A.3) are not easily solved analytically, but for the first equation we

obtain:
Br(u, τ) =

1
κ

(
e−κτ + iuκeκτ − 1

)
.

Now, if we take u = [0, 0] we get the price for a zero-coupon bond, i.e.,:

P (t, T )
def
= EQ

(
e−

∫ T
t

rsds|Ft

)
= eA(0,τ)+Br(0,τ)rt+Bv(0,τ)vt . (A.4)

The zero-coupon bonds can easily be priced via Formula (A.4) and numerical integration for
solving (A.3). Therefore, we derive an approximation for the log-swap rate characteristic function.
Take T0 > 0 as the start time of the interest rate swap, and T > T0 the end time of the swap, and t such
that t < T0 < T . Suppose that fixed payments occur at times Tk, n < k < M where TM = T . For
simplicity, we assume Tn = T0 and take τk = Tk − Tk−1.

By definition the forward swap rate at time t is given by:

SwapT0,T
t =

P (t, T0)− P (t, T )∑M
j=n+1 τjP (t, Tj)

:= ST0,T
t . (A.5)

The swaption price can be expressed as the risk-neutral expectation of the discounted payoff, i.e.:

Π
(
t, ST0,T

t

)
= BtEQ

(
CT0,T

T0

BT0

max
{
ST0,T

T0
−K, 0

}
|Ft

)
, (A.6)

with

CT0,T
t =

M∑
j=n+1

τjP (t, Tj). (A.7)

Now, by changing the risk neutral measure Q to the swap rate measure QΠ (see for exam-
ple [Jamshidian-1989; Geman-1995]) induced by numéraire CT0,T

t we have:

dQ =
BT0

Bt

CT0T
t

CT0,T
T0

dQΠ. (A.8)

Therefore:

Π
(
t, ST0,T

t

)
= EΠ

(
CT0,T

t max
{
ST0,T

T0
−K, 0

}
|Ft

)
, (A.9)

and since CT0,T
t is already determined at time t we have:

Π
(
t, ST0,T

t

)
=

M∑
j=n+1

τjP (t, Tj)EΠ
(
max

{
ST0,T

T0
−K, 0

}
|Ft

)
. (A.10)

The price of a swaption at time t is expressed as an expectation under the swap measure multiplied
by a sum of zero-coupon bonds. Since the swap-rate ST0,T

T0
is a random quantity we want to find its

dynamics. The next lemma provides the necessary results:
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Lemma A.1 (Dynamics of Swaprate ST0,T
T0

). The swap rate given by Equation (A.5) has the following
dynamics:

dST0,T
t

ST0,T
t

=
dP (t, T0)− dP (t, T )
P (t, T0)− P (t, T )

−
∑M

j=n+1 τjdP (t, Tj)∑M
j=n+1 τjP (t, Tj)

. (A.11)

The stochastic differential equation in Lemma A.11 depends on the dynamics of the appropriate
zero-coupon bonds. Since the swap rate under its measure does not contain dt-terms, the dynamics
for the zero-coupon bond also have to be drift-less. From the previous derivations we found that a
zero-coupon bond reads:

P (t, T ) = eA(0,τ)+Br(0,τ)rt+Bv(0,τ)vt . (A.12)

Therefore, the dynamics without the dt-terms are given by:

dP (t, T )
P (t, T )

= Br(0, τ)drt +Bv(0, τ)dvt. (A.13)

By freezing the zero-coupon bonds, see [Schrager,Pelsser-2002], at initial time, t = 0, we obtain the
following approximation:

dST0,T
t

ST0,T
t

≈ P (0, T0)
P (0, T0)− P (0, T )

(Br(0, T0 − t)drt +Bv(0, T0 − t)dvt) (A.14)

− P (0, T )
P (0, T0)− P (0, T )

(Br(0, T − t)drt +Bv(0, T − t)dvt) (A.15)

−
∑M

j=n+1 τjP (0, Tj)∑M
j=n+1 τjP (0, Tj)

(Br(0, Tj − t)drt +Bv(0, Tj − t)dvt) . (A.16)

With,

Γr
t =

P (0, T0)Br(0, T0 − t)
P (0, T0)− P (0, T )

− P (0, T )Br(0, T − t)
P (0, T0)− P (0, T )

−
∑M

j=n+1 τjP (0, Tj)Br(0, Tj − t)∑M
j=n+1 τjP (0, Tj)

,

and,

Γv
t =

P (0, T0)Bv(0, T0 − t)
P (0, T0)− P (0, T )

− P (0, T )Bv(0, T − t)
P (0, T0)− P (0, T )

−
∑M

j=n+1 τjP (0, Tj)Bv(0, Tj − t)∑M
j=n+1 τjP (0, Tj)

,

we end up with the following approximation for the dynamics of the swap rate:

dST0,T
t

ST0,T
t

≈ Γr
tdrt + Γv

t dvt. (A.17)

A.0.1 Swaprate dynamics under swap measure

The swap rate dynamics are given in terms of the dynamics of the underlying processes, rt, vt,
and some time-dependent functions, Γ1

t and Γ2
t . Previously, we found that in order to price swaption

(Equation(A.10)) under the swap measure QΠ one needs to find the dynamics of drt and dvt in that
measure first.

Using Equation (A.8) we can write:

dQT0,T = ΛtdQ, with Λt =
CT0,T

t

Bt

B0

CT0,T
0

. (A.18)

23



From the Girsanov Theorem we know that Λt has to be a martingale under the risk-neutral measure Q.
In order to extract the Girsanov kernel, we need the diffusion term from the dynamics for Λt:

dΛt =
B0

CT0,T
0

d

(
CT0,T

t

Bt

)
, (A.19)

= (. . . )dt− B0

CT0,T
0

CT0,T
t

B2
t

dBt +
B0

CT0,T
0

1
Bt

dCT0,T
t . (A.20)

Recall that the money savings account, Bt, is given by:

dBt = rt exp
(∫ t

0

rsds
)

dt, (A.21)

which gives:

dΛt = (. . . )dt+
B0

CT0,T
0

1
Bt

dCT0,T
t , (A.22)

= (. . . )dt+
B0

CT0,T
0

1
Bt

M∑
j=n+1

τjdP (t, Tj). (A.23)

With Equation (A.13), we obtain:

dΛt = (. . . )dt+
B0

CT0,T
0

1
Bt

M∑
j=n+1

τjP (t, Tj) (Br(0, Tj − t)drt +Bv(0, Tj − t)dvt) .(A.24)

This simply reads:

dΛt

Λt
≈ (. . . )dt+

1

CT0,T
t

M∑
j=n+1

τjP (t, Tj) (Br(0, Tj − t)drt +Bv(0, Tj − t)dvt) , (A.25)

≈ (. . . )dt+
1

CT0,T
0

M∑
j=n+1

τjP (0, Tj) (Br(0, Tj − t)drt +Bv(0, Tj − t)dvt) , (A.26)

Finally, in terms of the independent Brownian motions, dW̃ r
t and dW̃ v

t , the process dΛt can be
expressed as:

dΛt

Λt
= (. . . )dt+

1

CT0,T
0

 M∑
j=n+1

τjP (0, Tj) (Br(0, Tj − t)η
√
vt +Bv(0, Tj − t)γρr,v

√
vt) dW̃ r

t

+
M∑

j=n+1

τjP (0, Tj)
(
γ
√
vt

√
1− ρ2

r,vBv(0, Tj − t)
)

dW̃ v
t

 .

Using the Girsanov transform: {
dW̃ r

t = φr
tdt+ dW̃ r,Π

t ,

dW̃ v
t = φv

t dt+ dW̃ v,Π
t ,

(A.27)

one can simply find that the dynamics of rt and vt under the swap measure are given by:
drt = κ(θ − rt + ζr

t vt)dt+ η
√
vtdW

r,Π
t ,

dvt = λ̃ (ṽ − vt) dt+ γ
√
vtdW

v,Π
t

ρr,vdt = dW r,Π
t dW v,Π

t ,

(A.28)
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where

ζr
t =

1
κ

∑M
j=n+1 τjP (0, Tj)∑M
j=n+1 τjP (0, Tj)

(
Br(0, Tj − t)η2 +Bv(0, Tj − t)γηρr,v

)
,

with
λ̃ = λ− ζv

t ,

ṽ =
v̄

1− ζv
t /λ

,

and,

ζv
t =

∑M
j=n+1 τjP (0, Tj)∑M
j=n+1 τjP (0, Tj)

(
Br(0, Tj − t)ρr,vηγ + γ2Bv(0, Tj − t)

)
.

We know that the swap rate, ST0,T
t , is a martingale under the swap measure, so it does not include

dt-terms. Therefore, we have:

dST0,T
t

ST0,T
t

≈ Γr
t

(
η
√
vtdW

r,Π
t

)
+ Γv

t

(
γ
√
vtdW

v,Π
t

)
. (A.29)

In order to obtain an affine process for the swap rate, we take the log-transform, i.e., logST0,T
t , for

which we find the following dynamics:

d logST0,T
t =

1

ST0,T
t

(dST0,T
t )− 1

2
1

(ST0,T
t )2

(
dST0,T

t

)2

,

= Γr
tη
√
vtdW

r,Π
t + Γv

t γ
√
vtdW

v,Π
t − 1

2

(
Γr

tη
√
vtdW

r,Π
t + Γv

t γ
√
vtdW

v,Π
t

)2

.

So, under the swap measure in the log-space for the state vector, Yt = [πT0,T
t := logST0,T

t , rt, vt], we
need to solve the following system of SDEs:

dπT0,T
t = Ωtvtdt+ Γr

tη
√
vtdW

r,Π
t + Γv

t γ
√
vtdW

v,Π
t ,

drt = κ(θ − rt + ζr
t vt)dt+ η

√
vtdW

r,Π
t ,

dvt = λ̃(ṽ − vt)dt+ γ
√
vtdW

v,Π
t ,

ρr,vdt = dW r,Π
t dW v,Π

t ,

(A.30)

with Ωt = − 1
2 (Γr

t )
2η2 − 1

2 (Γv
t )2γ2 − (Γr

t )(Γ
v
t )ηγρr,v.

Since we deal with a 3D system (A.30) of affine SDEs for pricing the log-swap rate, the
corresponding characteristic function is of the following form:

φπ(u,Vt, τ̃) = eA(u,τ̃)+Bπ(u,τ̃)πt+Br(u,τ̃)rt+Bv(u,τ̃)vt , (A.31)

with τ̃ = T0 − t and πt = logST0,T
t , as in (A.6), and the boundary condition,

φπ(u,V0, 0) = eiuTVT0 .

For the vector u = [u, 0, 0]T we obtain the following set of ODEs for the characteristic function:
Bπ(u, τ̃) = iu, Br(u, τ̃) = 0,

d
dτ̃
Bv(u, τ̃) = ΩtBπ − λBv +

1
2
(
a1(τ̃)B2

π + γ2B2
v

)
+ a2(τ̃)BπBv, (A.32)

and

A(u, τ̃) =
∫ τ̃

0

λ̃ṽBv(u, s)ds, (A.33)

with: a1(τ̃) =
(
(ψ1

τ̃ )2η2 + (ψ2
τ̃ )2γ2 + 2ψ1

τ̃ψ
2
τ̃γηρr,v

)
and a2(τ̃) =

(
ψ1

τ̃ηγρr,v + ψ2
τ̃γ

2
)
.
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