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Preface

Dear reader,

What lies before you is the culmination of nine months of hard work, setbacks and lucky breaks. It also

marks the final step in my journey to become an aerospace engineer, which started a long time ago at

the same place it finishes, at the Aerospace Engineering faculty in Delft. With this thesis I hope to have

demonstrated all the skills and knowledge required to carry this title, and I hope to put these skills to

good use after graduating.

Before you read on, I would like to take a moment to thank a few people. First and foremost my

supervisors for this thesis, Steve Gehly and Marco Langbroek, for helping me throughout the entire

process, by listening to my sometimes incoherent thoughts and giving helpful suggestions to put me on

the right track. I would also like to thank my examination committee, Jeannette Heiligers and Angelo

Cervone, for making time free in their busy schedules to read my thesis and being available for the

graduation.

Without my friends and fellow thesis students in 6.19 this thesis would also not have been finished on

time, so thank you for all the coffee breaks, post-lunch walks and listening to my rants on algorithms

you did not understand. Lastly, I would of course like to thank my family for supporting me throughout

my studies, especially since I took my time to enjoy life in Delft before finally graduating.

Before you continue reading the rest of the thesis full of technical details and plots, I would like to share

something I stumbled upon towards the end of my thesis period, namely a poem about space debris.

We often consider science and art to be complete opposites of each other, but with this poem I would

like to remind you that there is art to science, and science to art. Enjoy!

“The Universe is infinite
But space has its limits

Rockets a launching
Sat’lites are orbiting
Explosions in Space

Oh what a waste
Fragments go flying

And we go crying “Space junk we’ve got” Man-made or not
Then comes Kessler Who knows the better

When things collide
Their debris do multiply

Thanks to partnering
And NASA’s gathering

We look for ways
To manage the spray”

– S. Thuy Nguyen-Onstott
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Abstract

Space debris is an ever-increasing problem in all space applications. As the number of satellites launched

every year grows, so does the number of debris objects orbiting the Earth. Without mitigation this

problem increases exponentially, leading to more collisions and subsequently even more debris objects.

Mitigation techniques exist, and can be divided into passive and active techniques. Active techniques

actively remove debris from orbit, like on-orbit capture and de-orbit or laser debris removal. Passive

techniques include collision avoidance of active satellites. All mitigation techniques require knowledge

about the states and shapes of debris objects, in order to make future predictions of the object states.

Since debris objects do not transmit information about their states, and objects can change shape over

many orbits, acquiring this information becomes a difficult task.

One technique to obtain this information is called light curve inversion. Apparent brightness of objects

over time is measured from the ground. From the variations in brightness it is possible to perform

combined shape characterisation and attitude estimation. In this thesis an established method for

this light curve inversion, called Multiple-Model Adaptive Estimation (MMAE), is implemented and

tested on simulated measurements of existing LEO objects. Extensions to this method that using a

variable model bank, called Variable-Structure Multiple Model (VSMM) estimation methods, are also

implemented.

Performance of the methods on LEO test objects was tested for three spin cases with different rotational

states, called Nadir pointing, Single-axis spin and Tumbling, to investigate what improvements could

be made on the results of the existing MMAE method. An adjusted version of the MMAE method

proved to be very successful in identifying the shapes and estimating the attitude of the test objects for

all test cases. Sensitivity analyses showed robustness of results to changing simulation parameters differ

per spin case examined. Finally, an attempt was made to validate the improved MMAE method with

real brightness measurements of two of the LEO test objects. This validation was unsuccessful in both

shape characterisation and state estimation, highlighting important differences between simulations

and real-life applicability.
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1 Introduction

The past decade has seen an ever-increasing number of new satellites being launched into space, as illustrated

by Figure 1.1. This increase is caused by two main factors. The first is that satellite technology has advanced

significantly, and small satellites like cubesats can be purchased off-the-shelf for a relatively cheap price, making

satellites much more commercially available. The second factor is that is has become much cheaper to launch a

satellite. The average launch cost per kg for commercial satellites has decreased by a factor of 16.5 between 2000

and 2020 [1]. A main contributor to this is SpaceX, which have drastically reduced the cost of launching their

Falcon 9 by reusing the lower stage of the rocket. Additionally, the company has made it possible to launch a

large number of small satellites in a single launch through ridesharing.

Figure 1.1: Number of objects launched per year into Low Earth Orbit since 1958 [2].

These factors combined have lead to a large amount of small satellites being launched in record time. Companies

like Airbus and Starlink are launching large constellations of small satellites for telecommunication purposes.

This trend of launching a large number of small satellites is reflected in Figure 1.1, with the majority of objects

being launched having a mass between 100 and 1000 kg. The growth in number of launches is matched by a

growth in economic worth of the space industry. The global space economy was worth 570 billion USD in 2023
1
,

which is nearly double what it was a decade ago. This number is expected to rise even further to 1.8 trillion USD

by 2035
2
.

However, this growth does not only have upsides. In the same time period the amount of space debris objects

orbiting the Earth has also drastically increased. It is estimated that there are now over 30.000 debris objects

larger than 10 cm, 900.000 objects with size between 1 and 10 cm, and around 128 million objects between 1

cm and 1 mm in geocentric orbit, as per the 2024 edition of the Annual Space Environment Report by ESA [2].

Figure 1.2a shows the distribution of the amount of objects in orbit per size. All of these objects pose a threat to

existing and future space missions. Even small objects could inflict catastrophic damage on a satellite, leaving

the satellite unable to function.

1https://www.spacefoundation.org/2024/07/18/the-space-report-2024-q2/. Accessed on 30-12-2024.

2
https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/space-the-1-point-8-trillion-dollar-opportunity-for-

global-economic-growth. Accessed on 30-12-2024.

1

https://www.spacefoundation.org/2024/07/18/the-space-report-2024-q2/
https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/space-the-1-point-8-trillion-dollar-opportunity-for-global-economic-growth
https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/space-the-1-point-8-trillion-dollar-opportunity-for-global-economic-growth
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The amount of debris is only expected to rise, as debris objects stay in orbit for a long time before naturally

decaying and re-entering the atmosphere, and with more satellites orbiting the same regions as the debris

collisions become increasingly more likely. If nothing is done to mitigate the amount of debris, while satellites

continue to be launched at the current rate, the number of catastrophic collisions will steadily increase, as

shown in Figure 1.2b. Even if no new satellites would be launched the number of catastrophic collisions would

slowly increase, because any catastrophic collision creates more debris objects, which in turn could potentially

create more catastrophic collisions. It is clear mitigation is required to ensure a viable space environment and

continuous access to space.

(a) Distribution of amount of objects in Earth orbit per size. (b) Expected number of catastrophic collisions with and without new launches.

Figure 1.2: Figures highlighting the magnitude of the space debris problem [2].

There are two ways of dealing with space debris in order to reduce the risk of collision with an active satellite:

collision avoidance and active debris removal (ADR). Collision avoidance is what most active missions employ.

For a certain time in the future the likelihoods of a collision with a number of known objects is estimated and

if a certain collision risk level is reached the satellite performs an avoidance maneuver. With ADR the debris

problem is dealt with directly, as objects are actively removed from orbit. For large debris like inactive satellites

or large debris fragments this can be done by launching a new satellite to capture it and collectively de-orbit the

pair. For smaller debris a promising method is hitting debris objects with high energy laser burst so that objects

are slowed down, such that they enter a lower orbit and decay into the atmosphere faster [3]. The ADR field is

in early stages of development, and as of writing no space debris has been removed through ADR.

What these methods have in common is that they require knowledge about the debris objects, either to avoid it

or to capture it. For this objects are modelled and simulated to make predictions of their states in the future.

However, in order to make accurate predictions information of the objects is necessary. This information can be

obtained through estimation of the states and characterisation of the shape of the debris objects. One method

that is used in object characterisation is light curve inversion. This method uses the sunlight reflected by debris

objects, measured from the ground, in order to obtain information about the states and shape of an object. In

this MSc. thesis research this method is investigated further.

The thesis is structured as follows. First, in Chapter 2 the research that is performed in the thesis is described

in more detail, providing more background information, highlighting the knowledge gap and presenting the

research questions. In Chapter 3 the simulation environment in which the thesis research is performed is

established. Then in Chapter 4 the methodology behind the thesis research is described in detail. Chapter 5

defines the test cases and testing strategy with which the implemented methods will be analysed and evaluated.

In Chapter 6 the results of these analyses and evaluations are presented. Finally, in Chapter 7 the conclusions

for the thesis research are drafted, with an answer to the research questions established in the next chapter.

Additionally, a discussion of the results is presented, and recommendations for future work are made.



2 Research description

This chapter gives an overview of the aspects the research performed in this MSc. thesis is based on. In

Section 2.1 first the relevant background information is highlighted. Then in Section 2.2 the knowledge gap that

was identified in the literature review in the space debris object characterisation through light curve inversion

field is presented. Finally, Section 2.3 presents the research questions that drive the thesis research.

2.1. Background
This section gives a summary of background information on which the research questions are based. More

details on all the topics covered can be found in the literature review that was performed as part of the MSc.

thesis process, which is included in this report as Appendix C. In this section it is first explained what light

curves are, and how they can be used for object characterisation. Then a few different methods that have been

developed for object characterisation of space objects are discussed.

Light curves
A light curve is the time history of the apparent brightness of an object measured by an observer [4], for example

an optical telescope on the ground. The act of extracting information from such a light curve is called light curve

inversion. Light curves were already used in 1958 to estimate the rotation period of asteroids [5], and were later

also used to estimate asteroid shapes [6]. At the start of the 21
st

century interest began to gather around using

light curve inversion on man-made or artificial objects. Figure 2.1.1 shows the light curve of such an object, a

rocket body that was left in orbit after payload separation. A periodic variation in apparent brightness is clearly

visible in the graph, indicating that the object is spinning.

Figure 2.1.1: Example of a light curve from a rocket body left in orbit [7].

It is however not straightforward to use the same characterisation techniques on artificial objects as developed

for natural objects like asteroids. Asteroids generally have a relatively smooth surface, and have mostly uniform

reflection properties across their surface [8]. In contrast, artificial objects like satellites are made from very

different materials, reflecting light with varying intensity. Satellite surfaces are generally also much less smooth,

with many protruding components like solar panels, antennae and other instruments. Lastly, attitude states of

satellites are usually more complex than those of asteroids, where the latter can be assumed to be spinning

stably.

3
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Object characterisation
In the literature review it was found that many different methods have been developed to characterise different

parameters of artificial space objects. It was determined that the parameter most of interest to characterise is

object shape, combined with estimation of orbit and attitude states. This is because these aspects have the largest

influence on the magnitude of non-conservative forces like aerodynamic drag and solar radiation pressure,

which over time have a large impact on the orbits of the objects. The main difficulty with extracting these

parameters from a light curve is that there are a lot of different combinations of shapes and attitudes that can

produce similar light curves [9]. To produce good estimates additional information is often required beforehand

or a-priori [10].

Most often some sort of filtering is included in the characterisation method. The Unscented Kalman Filter

(UKF) is commonly employed to estimate orbit and attitude states, possibly with additional parameters, based

on astrometric and photometric measurements, where the first are observations of the orbital positions and

velocities through range and angles measurements, and the latter are the light curves. Unfortunately these filter

methods are very sensitive to the initial guess, especially for the attitude states, and if the initial guess is too far

from the truth the filters do not converge [11].

Another difficulty with using filter methods is that they rely on a constant physical model. This makes it

difficult to estimate object shapes, as the shape is part of the physical model included in the UKF. One method

that attempts to overcome this downside is called Multiple-Model Adaptive Estimation (MMAE). As the name

implies, this method uses multiple shape models in a model bank. Each model is input into a separate UKF.

In the MMAE algorithm these different UKFs are run in parallel, and for each measurement it is compared

which model fits the observations the best. Based on how well each shape model fits the measurements, each

shape is assigned a weight between 0 and 1, with high weights assigned to shapes that fit the measurements

better. These weights are also used to output a fused state estimation, which are weighted averages of the state

outputs of each individual UKF. The goal is to find the shape model or models that best fit the measurements,

and provide a fused state estimation [12]. A flowchart of this method is given in Figure 2.1.2

Figure 2.1.2: Flowchart of MMAE algorithm [12].

This method is further explained in more detail in Section 4.3. A downside to this method is that it is

computationally expensive, with multiple UKFs being run at the same time. There is also a delicate balance in

the number of models included in the model bank, as too few models might lead to poor convergence, but too

many can also degrade performance [13].

As is the case for many fields in the present-day, Machine Learning (ML) has been applied to the object

characterisation problem [14]. The problem with ML is that it requires a lot of data to properly train a ML

algorithm, which in this case means light curves and the true states and shapes that created each curve. There is

not enough real data available to do this, so ML training relies mainly on simulated data. The performance of

these algorithms on real data is very poor, as real data is subject to noise, gaps in data and more parameters that

cannot all be simulated, meaning that these algorithms are not trained on representative data.

A different approach that was developed to estimate object shapes uses the so-called the Extended Gaussian

Image (EGI) of objects [15]. An EGI is a representation of a 3D object on a unit sphere based on surface normal

vectors and surface areas. The method works well for convex objects, but returns much more ambiguous results

for non-convex objects. This makes the method not very suitable for space object shape characterisation, as

satellites are very often non-convexly shaped due to extended solar panels and instruments.
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The last method discussed in the literature review is the Particle Swarm Optimisation (PSO) employed by Burton

[16]. This method addresses the reliance of filtering methods on a-priori information and close initial guess

to achieve convergence. The PSO method tries to find, for a given shape, all the possible attitude states that

correspond to a certain light curve measurement, usually the first measurement. These initial attitude states are

then paired with possible rotational velocity states, and the optimiser attempts to find the initial attitude and

rotational velocity pair so the light curve produced by these states best fits the observations. While the method

produces very good results, it requires the shape of the object for which the states are estimated to be known

beforehand. The method is thus not directly applicable for simultaneous attitude and shape estimation.

2.2. Knowledge gap
Based on the background information and literature review a knowledge gap was identified on three different

areas of the light curve inversion problem. These areas are: a-priori information, measurement data and fixed

model bank.

A-priori information
The first area where a knowledge gap is present is the fact that in most cases a-priori information is required to

generate good estimations. This could mean that a filtering method requires an initial guess that is close enough

to the truth, or that the true shape of an object is known beforehand. Ideally it would be possible to estimate

both the attitude states and object shape from observations without any prior knowledge. While this might be

unfeasible at the moment, there is a lot of potential to improve on this aspect of light curve inversion.

Measurement data
There are two aspects on which a knowledge gap was identified related to measurement data. The first is that in

a lot of papers the data that was simulated in order to develop and test the method was made by modelling

satellites in near-GEO orbits. This ensured that there were continuous measurements available to allow good

convergence of estimations. However, the majority of space debris and satellites are present in LEO. This means

that measurements cannot be made continuously, only for short observational arcs lasting several minutes.

Often sun-illuminated passes of LEO satellites last only between 1 to 2 minutes, and sometimes even shorter.

This is a big limitation that needs to be addressed in order to make the methods relevant for real life applications.

The second aspect is the fact that most methods are only developed and tested using simulated data. There

is a significant lack of validation of these methods using real observation data. This is to be expected, as for

proper validation the true attitude states of objects needs to be known, which for most objects are not readily

available. It is however important to test these methods on real data, as this is in the end what these methods

are developed for, and without this validation it is unknown what limitations need to be overcome in order to

deploy the methods for real object characterisation.

Fixed model bank
Finally, a big limitation encountered in several methods, especially MMAE, is that the algorithms use a fixed

model bank. This requires all the possible models that are used in the estimations to be determined beforehand.

However, as mentioned previously, using more models does not necessarily lead to better performance. Another

issue with having a fixed model bank is that it is not guaranteed that the true model is included. This limitation

could lead to estimations not converging, or converging on an incorrect model.
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2.3. Research questions
Based on the knowledge gap identified in the literature review and discussed in the previous section the

following main research question was drafted for the MSc. thesis:

What improvements can be made on existing techniques for space debris object characterisation
of LEO objects through light curve inversion to estimate attitudes and characterise shapes?

As this question is quite broad, it is broken down into three separate research questions, one for each area of

the knowledge gap as discussed in the previous section. The research questions, abbreviated by RQ, are the

following:

RQ-1: How can the limitations of using a fixed model bank in attitude and shape estimation be overcome?

RQ-2: What is required of the initial guess to ensure good convergence of estimation?

RQ-3: What are requirements on measurement data (e.g. noise, rate, variability) to ensure accurate estimates?

All activities performed over the duration of the MSc. thesis period were done in order to answer these three

questions, with the end goal to give one or multiple answers to the main research question. This work is

presented in the next chapters of this report.



3 Simulation environment

In this thesis research many simulations will be run that model the dynamics of different satellites. These

simulations need to be performed in a simulation environment that includes certain forces and accelerations.

In order to ensure the relevance of the research it is desired that this simulation environment models the real

environment to a certain degree of accuracy. Accurate simulation models are however more complex, and come

with a higher computational cost. Since the time in which the research needs to be completed is limited, there is

a limit on how long a single simulation can run. The accuracy and run time are thus conflicting requirements. In

order to make a trade-off between the two, and define the settings of the simulation environment, some analysis

needs to be performed. This will be discussed in this chapter.

First, in Section 3.1 the objects that were selected to be used in the simulations are highlighted, as well as their

orbits. In Section 3.2 the dynamics that are included in the simulation environment analysis are discussed.

Then in Section 3.3 the analysis that was performed to compare the accuracy and run times of different

simulation environment settings is shown, concluding with the final environment settings that will be used in

the simulations throughout the rest of the thesis.

3.1. Test objects
The first step is to define the objects and orbits for which estimations will be performed. It is of course possible

to define an arbitrarily shaped satellite in any desired orbit and simulate these. However, one of the research

objectives is to validate the results from the estimations with real data. Therefore it is more convenient to select

satellites for which real data is available, as this makes validation possible. The satellites discussed in this

section all have a known shape, so for all satellites the shape estimations can be validated. For two satellites the

attitude data is also available online, which makes it possible to validate both the attitude and shape estimation.

The satellites that were selected are CryoSat 2, the Swarm constellation, BlueWalker 3 and ACS3. Their details

are highlighted next.

3.1.1. CryoSat 2
CryoSat 2 is a LEO satellite from ESA, launched in 2010. It is not shaped like a common box or box wing satellite.

Instead, it has a rectangular underside, and a triangular upper section like a roof, on top of which lie its solar

panels. The satellite is shown in Figure 3.1.1. On the underside there are also two circular dishes placed side by

side, as can be seen in Figure 3.1.1b.

(a) (b)

Figure 3.1.1: Two views of CryoSat 2.

The reason this satellite was selected to be observed is that ESA has made the orbit and attitude data publicly

available. This means that the attitude estimation through light curves can be validated with real light curve

measurements. It also has a shape that is different from the more common box or box-wing satellite design,

which makes it an interesting test case for shape characterisation.

7
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3.1.2. Swarm A/B/C
The Swarm satellites are an ESA LEO constellation consisting of three satellites, Swarm Alpha, Bravo and Charlie

or A, B and C. The goal of the mission was to create a highly detailed survey of the Earth’s geomagnetic field.
1

Swarm A and C were placed in an almost identical orbit so they would orbit side-by-side, while Swarm B was

placed in a higher orbit. A view of the three satellites in their respective orbits is shown in Figure 3.1.2a. It can

be seen that these satellites also have a shape different from the common satellite shape. A front view of one of

the satellites is shown in Figure 3.1.2b. The reason these satellites have been selected as test objects is that light

curve observations for these objects have been made in the past by one of the thesis supervisors, for multiple

different dates. Since their orbit and attitude data is publicly available through ESA, these objects serve as the

ideal cases to perform validations of the algorithms implemented for this thesis with the real measurements.

(a) Swarm A, B and C visualised in their respective orbits. (b) Front view of a Swarm satellite.

Figure 3.1.2: Swarm A, B and C.

3.1.3. BlueWalker 3
The next object is BlueWalker 3. This satellite has the largest commercial communication array ever deployed,

namely 64 m
2
. The satellite is shown in Figure 3.1.3. The deployment of this satellite has led to dissatisfaction

amongst astronomers, as the large array reflects a lot of sunlight, which means the satellite is one of the brightest

objects visible in the night sky, which interferes with astronomical observations. There is a lot of observational

data from this satellite because astronomers wanted to voice their concerns about the threat these types of

satellites pose to astronomy [17].
2

The attitude data for this satellite is not available, but the object is included

because it will be interesting to see if it is possible to perform shape characterisation for such a bright object.

Figure 3.1.3: BlueWalker 3 satellite in a clean room.

1https://earth.esa.int/eogateway/missions/swarm. Accessed on 14-11-2024.

2https://skyandtelescope.org/astronomy-news/the-bright-bluewalker-3-satellite-threatens-astronomy/. Accessed on 14-

11-2024.

https://earth.esa.int/eogateway/missions/swarm
https://skyandtelescope.org/astronomy-news/the-bright-bluewalker-3-satellite-threatens-astronomy/


3.1. Test objects 9

3.1.4. ACS3
The last satellite that will be used as a test object is the Advanced Composite Solar Sail System or ACS3 satellite.

This satellite was launched in April 2024 by NASA and is a technology demonstrator for solar sailing satellites.

The deployed composite sail has a size of 9 by 9 meters, and has an area of 80 m
2
. This size and the fact that the

sail is made from highly reflective material means that this satellite is also bright and clearly visible in the sky. It

has been observed since before and after the deployment of the sail. It is included as a test object because of

similar reasons that BlueWalker 3 is included. Additionally, ACS3 has a very low weight of only 15 kg in order

to be able to use solar sailing as a form of propulsion, which also means it has a low mass moment of inertia.

Because of this, combined with its large surface area, it is expected that its attitude has a higher variability,

as torques caused by low magnitude forces like Solar Radiation Pressure have more effect than on a heavier

satellite with more inertia. This makes it a good case to investigate for the combined attitude estimation and

shape characterisation problem.

Figure 3.1.4: ACS3 satellite.

3.1.5. Orbit data
The orbital parameter data for the different satellites were retrieved in Two-Line Elements (TLEs) form from the

space-track.org website, for the date 14-11-2024. They were then converted to Keplerian parameters using the

conversion functionality of TudatPy, the astrodynamics software used for this thesis, which will be discussed in

more detail in next section. The raw TLE data for each satellite is given in Appendix A. The Keplerian orbital

parameters of the test objects are given in Table 3.1.1.

Table 3.1.1: Orbit parameters for objects to be simulated.

Satellite Norad ID e i hp ha 𝛀 𝝎
CryoSat 2 36508 0.00031934 92.0163° 704.97 km 709.49 km 137.2817° 289.0605°

Swarm A 39452 0.00175787 87.3370° 441.14 km 465.15 km 268.9912° 63.1381°

Swarm B 39451 0.00182824 87.7499° 481.55 km 506.68 km 157.7462° 117.8716°

Swarm C 39453 0.00178117 87.3370° 440.82 km 465.15 km 267.5801° 63.0753°

Bluewalker 3 53807 0.00144233 53.2482° 469.87 km 489.65 km 221.4666° 104.4297°

ACS3 59588 0.00332531 97.5035° 969.01 km 1018.04 km 352.9487° 178.0922°

https://www.space-track.org/
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3.2. Dynamics
The propagations of the orbit and attitude states will be done using TudatPy

3
, the astrodynamics software

developed by the Faculty of Aerospace Engineering, which is readily available to use in Python. The main

reason this software is used instead of writing a new propagation module is that parameters for celestial bodies

like ephemerides and properties like mass can easily be loaded in. This greatly reduces the effort required to set

up simulations. The software has a high flexibility in which bodies and forces can be added to a simulation,

with different levels of complexity and accuracy, allowing simulations with different levels of fidelity to be made

relatively easily.

In order to set up a simulation in Tudat, a selection of bodies and forces to be included needs to be made. For

this an analysis will be performed in the next section. Based on this analysis it will be decided which bodies and

dynamics are included in the final simulation environment used in the rest of the thesis. In this section it will be

highlighted which bodies and dynamics are included in the analysis.

3.2.1. Forces
Earth gravity
The main force acting on the satellite is the gravity exerted by the Earth. However, the Earth is not a perfect sphere,

and its mass is distributed unevenly over the planet. At some points on the planet more mass is concentrated, so

a satellite flying over these parts experiences slightly more gravitational pull, while at other points less mass is

concentrated, so less pull is exerted on the satellite. The distribution of the mass can be modelled with spherical

harmonics, and the effect on gravity is modelled using a spherical harmonic representation of the gravity field

potential. The general equation for the spherical harmonic gravity potential is given in Equation 3.2.1.

𝑈 =
𝜇

𝑟

∞∑
ℓ=0

(
𝑎𝑒

𝑟

)ℓ ℓ∑
𝑚=0

𝑃ℓ ,𝑚(sin 𝜙) [𝐶ℓ ,𝑚 cos𝑚𝜆 + 𝑆ℓ ,𝑚 sin𝑚𝜆] (3.2.1)

Here 𝜇 is the standard gravitational parameter of the body in question; 𝑟, 𝜙 and 𝜆 are the distance, latitude

and longitude of the satellite in the body-fixed coordinate frame, respectively; 𝑎𝑒 is the semi-major axis of the

reference ellipsoid of the body in question; 𝐶ℓ𝑚 and 𝑆ℓ𝑚 are the spherical harmonic coefficients of degree ℓ and

order 𝑚; 𝑃ℓ𝑚 are the associated Legendre functions of degree ℓ and order 𝑚.

For the Earth the coefficients for over degree and order 2000 have been determined. This level of fidelity is not

required for most applications. In Tudat the coefficients are available up to degree and order 200, which is also

too high for most applications. For the simulation setup a benchmark propagation will be created, which will

act as the truth to which errors are compared. For this benchmark the degree and orders up to and including

100 will be used in the gravity model for which the gravitational acceleration of the Earth on the satellite will be

calculated. For the test cases either degree and order 100, 10 or 2 will be used. The latter are commonly known

to be the most important, as they model the flattening of the Earth, and have the largest effect on perturbing the

orbit. In the test cases it will be investigated which degree and order are required in order to achieve certain

requirements, which will be set in the next section.

Aerodynamic drag
As can be seen in Table 3.1.1 all satellites that are included as test objects are in LEO, with semi-major axis values

ranging between 6826 and 7404 km. In this orbit regime there is still thin layer of atmosphere, which means

objects in orbit experience aerodynamic drag to a certain extent. However, it can be seen in Figure 3.2.1 that the

magnitude of this acceleration is between the order of 10
−5

and 10
−7

m/s
2

for the altitudes considered. This is

much lower than the other accelerations acting on the objects. Over long periods of time, meaning multiple

hundreds of orbits, this acceleration would have an effect on the orbit. For this thesis it is however not expected

that such a large number of orbits will be continuously propagated.

In addition to this, the magnitude of the aerodynamic acceleration is dependent on aerodynamic coefficients,

which are in turn dependent on the shape of the object experiencing drag. For this thesis many different objects

with different shape will be considered. Spending a lot of time on determining the right coefficients would take

away from the important research tasks that need to be performed, which would result in unsatisfactory results.

These reasons combined have led to the decision to not include the aerodynamic drag in the forces considered

for the simulations in this thesis.

3https://docs.tudat.space/

https://docs.tudat.space/
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Figure 3.2.1: Magnitudes of perturbing accelerations at different Earth orbit altitudes [18].
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Solar Radiation Pressure
Photons emitted from the Sun carry momentum. When these photons impact an object in orbit they are either

reflected or absorbed. In both cases the photons exchange momentum with the object. The momentum imparted

by a single photon is extremely small, but since there are many photons hitting a surface every second, the

sum of the individual impacts has a cumulative effect. This effect is called Solar Radiation Pressure (SRP).

Multiplying this pressure with the surface area impacted by the photons gives another perturbing force. It can

be seen that the magnitude of the acceleration caused by this force is on the order of magnitude of 10
−7

m/s
2
. It

is therefore again expected that the effect of this force on the small amount of orbits propagated is negligible.

However, since a main part of this thesis research is the determination of attitude from light curves, which are

made by modelling the reflection of light from the object surfaces, it was decided to still include SRP in the

simulation model for the test cases, to investigate whether it needs to be included in the final environment.

Modelling the SRP accurately is a complex task however, since the surface areas impacted by photons change

with changing attitude. With many different shapes considered this again becomes an arduous task to implement

correctly. Instead the the SRP is modelled using the so-called cannonball model. This is a simplified way of

modelling the SRP, where the spacecraft is considered to be a sphere. The acceleration is then calculated using

the cross-sectional area of the sphere given by 𝐴 = 𝜋𝑟2
, where r will be taken as the largest of the actual satellite

dimensions. This area will generally be larger than the actual areas of the spacecraft that the SRP acts on, so this

model will overestimate the effect of SRP in the model. The main advantage of using the cannonball model is

that it does not require the attitude of the satellite and its surfaces, reducing model complexity.

The acceleration due to SRP in the cannonball model is given by Equation 3.2.2.

asrp = − 𝑃

4𝜋𝑐
𝐶𝑅𝐴

𝑚
r̂𝑆𝑢𝑛 (3.2.2)

Here 𝑃 is the total power output of the Sun in W, 𝑐 the speed of light, 𝐶𝑅 the reflectivity coefficient, A the surface

area in m
2
, m the mass of the satellite in kg, and r̂𝑆𝑢𝑛 the Sun position vector measured from the satellite in m.

Third-Body Accelerations
The Earth is not the only celestial body exerting gravitational pull on objects in Earth orbit. Both the Moon and

the Sun have a noticeable effect, the Moon due to its close proximity to the Earth and the Sun, while being much

further away, because it has a very high mass. The third-body gravitational force exerted by these bodies will be

included in the simulation environment for the test cases, to see if they have a significant effect on the model

accuracy.

3.2.2. Torques
In the dynamics of the simulations not only forces need to be considered, since the attitude of the objects is

one of the key aspects of this thesis. Therefore it also needs to be determined if and which torques should be

included in the simulation environment. It was decided that the translational and rotational dynamics will be

simulated independent from each other, in two separate 3 degrees-of-freedom (3DOF) propagations.

Solar Radiation Pressure
The first torque that is considered is caused by SRP. Due to their changing orientation objects will experience a

difference in SRP force across different axes. This induces a rotational acceleration around these axes. However,

since the force exerted by the SRP is very small, the torque caused by SRP will also be very small. This

means it would again only have a noticeable effect on the estimations for very long propagations. Additionally,

implementing this torque would also require complex dependencies on attitudes and surface areas, which was

already determined to be too time consuming for the scope of this thesis.

Aerodynamic
Similar to the SRP, the changing attitudes of the objects also result in a difference of aerodynamic drag force

exerted on different parts of the objects. Implementing this torque would come with the same complexity issue

as the SRP torque, while also only having a noticeable effect over long propagation times, so this torque is also

not included in the simulation environment.

Gravitational
Gravitational torque is caused by mass being separated from the center of mass of the objects, which then

experience a difference in gravitational acceleration, leading to a torque. However, this torque only applies for

large mass differences or very large separations, which will not be the case in this thesis, so this torque is also

not included in the simulation envirnoment.
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3.3. Analysis
In order to make a selection of the combination of simulation settings that will be used in the estimations, an

analysis of different cases with varying simulation environment parameters was performed. This section covers

the different aspects with which this analysis was set up, from the requirements to the orbit and the set up of

the different cases. At the end the simulation environment parameters that are used in the rest of the thesis are

decided.

3.3.1. Requirements
As mentioned at the start of this chapter, the analysis of different simulation environment parameters is done

to trade-off two conflicting requirements: simulation accuracy and runtime. To make this trade-off possible,

specific values for the requirements need to be set. The simulation accuracy requirement is split into two parts,

one for the orbital position and one for the attitude.

For the orbit a requirement is set on the maximum three-dimensional position error, as this parameter indicates

the overall quality of the orbit propagation of a simulation. For the attitude a requirement is set on the maximum

error of all three Euler angle attitude components. This is done because the attitude propagation is one of

the main focuses of the thesis, and it is therefore important that a simulation is able accurately propagate the

attitude in all components. Finally, because simulation runtime is difficult to measure exactly, a requirement is

set for the average runtime of a simulation with the same environment parameters. This means all the different

cases with varying simulation environment parameters will be run multiple times to get an accurate estimation

of the average runtime. The values for each of the requirements are given in Table 3.3.1.

Table 3.3.1: Simulation requirements

Requirement Value Unit
Maximum 3D orbital position error 1.0 km

Maximum attitude component error 0.5 °

Average simulation runtime 2.0 s

The average runtime requirement is set to 2.0 seconds because it is expected that a lot of simulations will have to

be run during throughout the thesis research, so it is necessary that these simulations run quickly while still

adhering to the required accuracy.

3.3.2. Orbit and attitude
For the analysis the CryoSat 2 orbit will be simulated for 1000 minutes for each case, which comes down to

approximately 10 full orbits. The starting time was set to 2024-09-18 04:33:42 TDB. The initial Cartesian orbital

position and velocity states are given in Table 3.3.2a. The quaternion attitude and body-axis rotational velocities

are given in Table 3.3.2b.

Table 3.3.2: Initial states for CryoSat 2 propagation used in analysis.

(a) Initial Cartesian orbit states.

rx [km] ry [km] rz [km] vx [km/s] vy [km/s] vz [km/s]
−3.8555 × 10

3
4.0479 × 10

3 −4.3494 × 10
3 −2.9348 3.5392 5.9156

(b) Initial attitude and rotational velocity states.

q1 [-] q2 [-] q3 [-] q4 [-] 𝝎1 [°/s] 𝝎2 [°/s] 𝝎3 [°/s]
0.860254 0.1 0.1 0.3 1.0 1.0 1.0

The satellite is given high rotational velocities of 1 °/s on each axis, which is higher than is expected to be

encountered in real life. This is done in order to more rigorously test the different simulation environment

parameters on their accuracy.

3.3.3. Cases
To make a selection of the combination of simulation parameters to be used, 9 cases with different simulation

parameters were set up. Each subsequent case is lower in complexity than the previous model in one parameter.

This way the performance of the different cases on the requirements can be compared to each other. The goal of

this analysis is to determine the best parameter combination that balance the runtime and accuracy requirements.

The cases and their respective simulation parameters are given in Table 3.3.3.
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Table 3.3.3: Simulation environment parameters of analysis cases.

Case Integrator Time step [s] Earth SHG coefficients SRP Sun PMG Moon PMG
Benchmark RKF1412 0.1 (100, 100) x x x

0 RKF1412 0.1 (100, 100) x

1 RKF1412 1.0 (100, 100) x

2 RKF56 1.0 (100, 100) x

3 RKF56 5.0 (100, 100) x

4 RKF56 5.0 (10, 10) x

5 RK4 5.0 (10, 10) x

6 RK4 5.0 (10, 10)

7 RKF56 5.0 (2, 2) x

8 RK4 5.0 (2, 2) x

9 RKF56 5.0 (2, 2)

The position and attitude errors for each case were calculated with respect to a benchmark propagation. This

benchmark was set up as the most accurate propagation by using a high order, fixed-step propagator, namely

RKF1412 of order 12, a small time step of 0.1 s, Earth Spherical Harmonic Gravity (SHG) coefficients of (100,

100), cannonball SRP and both Sun and Moon Point Mass Gravity (PMG). Setting the results of this propagation

as the base makes it possible to compare the errors of the other cases to each other.

3.3.4. Results
The results for the all the test case propagations are shown in Table 3.3.4. It can be seen that as the complexity of

the propagations decrease the average runtimes decrease and the errors increase. Only case 5, 6 and 8 have

average runtimes that fall below the runtime required of 2.0 s. However, case 8 has an orbital position error

higher than 1.0 km. Only case 5 and 6 fall within all the requirements for accuracy and runtime.

Table 3.3.4: Results for simulation environment analysis cases.

Case Avg. runtime [s] Max 𝒆𝒓 [km] Max 𝒆𝜽1[
◦] Max 𝒆𝜽2[

◦] Max 𝒆𝜽3[
◦]

0 5009 0.068 0.0 0.0 0.0

1 563 0.068 1.0265 * 10
−10

1.0764 * 10
−11

1.0328 * 10
−10

2 141 0.068 7.0791 * 10
−11

1.2323 * 10
−11

7.8554 * 10
−11

3 28 0.068 2.8888 * 10
−6

1.9954 * 10
−7

3.0412 * 10
−6

4 3.01 0.139 2.8888 * 10
−6

1.9954 * 10
−7

3.0412 * 10
−6

5 1.82 0.139 0.3158 0.0022 0.3325

6 1.76 0.147 0.3158 0.0022 0.3325

7 2.71 7.461 2.8888 * 10
−6

1.9954 * 10
−7

3.0412 * 10
−6

8 1.60 7.461 0.3158 0.0022 0.3325

9 2.59 7.447 2.8888 * 10
−6

1.9954 * 10
−7

3.0412 * 10
−6

Between case 5 and 6 the only difference is that in case 5 cannonball SRP is included, and in case 6 it is not. The

only difference this makes is that the orbital position error for case 6 is slightly higher than that of case 5, and

the runtime for case 6 is slightly lower.

3.3.5. Final environment settings
It is decided to use the simulation environment parameters of case 6 for the environment settings used in the

rest of this thesis. This means that the cannonball SRP is not included in the dynamics of the simulations.

The reason for this is that the cannonball SRP model is an oversimplification of the real life dynamics that

overestimates the effects of SRP on the propagation. Since the inclusion of the model in the simulation only

leads to a negligible decrease in position error, it was determined that including it in the simulations only adds

unnecessary complexity to the simulations.

The analysis for the simulation environment was only performed for the CryoSat 2 orbit. This is seen as a

representative orbit, having an altitude that is in-between the lowest and highest orbit altitudes in Table 3.1.1. It

can be seen in Figure 3.2.1 that the magnitudes of the forces and torques not included in the final environment

are also very low for the different altitudes. Analyses for the other orbits would therefore produce very similar

results, and lead to the same conclusion for the final environment settings.



4 Methodology

In this chapter the methods that have been used and developed for the thesis are explained. In Section 4.1 the

method used to simulate light curves for the estimations are discussed. In Section 4.2 the attitude estimation

algorithm is explained. In Section 4.3 the process of Multiple-Model Adaptive Estimation is highlighted. Next a

method not yet applied to the light curve inversion problem called Variable-Structure Multiple-Model estimation

is detailed in Section 4.4.

4.1. Light curve simulation
In this thesis the attitude and shape estimation will be done using light curves. A light curve is the variation

in apparent brightness over time measured from an observer on the ground. It is possible to measure this

light curve for many different objects. However, for most of these satellites the attitude is either not known,

or not publicly available. This makes it impossible to verify whether the attitude estimated by the model is

close to the real attitude, or completely wrong. Therefore it is necessary to produce simulated light curves from

known propagated attitudes. In order to do this use is made of so-called Bidirectional Reflectance Distribution

Functions (BRDFs). These functions model the way light is reflected diffusely and specularly off a surface. In

this section the equations for one such BRDF model is highlighted.

4.1.1. Bidirectional Reflectance Distribution Functions
The BRDFs model the way light is scattered from a surface due to incident light. At any point on the surface a

BRDF is a function of two directions, the direction from which the light is originating and the direction from

which the scattered light is observed. The BRDF is usually decomposed into a specular and a diffuse component.

The diffuse component represent light that is scattered uniformly in all directions, while the specular component

represents light that is concentrated in a certain direction, like a mirror. A visualisation of the difference between

these reflections is given in Figure 4.1.1.

Figure 4.1.1: Specular and diffuse reflections off a surface towards an observer [19].

There exist models that can calculate the BRDF for any continuous arbitrary surface. In practice it is more

convenient to use a simplified model that works for flat surfaces, and represent an object with a finite number

of flat surfaces or facets. The total observed brightness of an object is then calculated to be the sum of the

individual brightnesses of each facet. For a curved surface more facets would be required to accurately model

the brightness. The observation geometry of a single facet is shown in Figure 4.1.2.

15
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Figure 4.1.2: Facet reflection geometry for BRDF calculations [12].

The basis vectors of the facet are the unit vectors u𝐵𝑛 , u𝐵𝑢 and u𝐵𝑣 , where the superscript B denotes that the vector

is expressed in the body frame of the object. The vector u𝐵𝑛 is the surface normal vector of the facet. The vectors

u𝐵𝑢 and u𝐵𝑣 are in the plane of the facet. The objects that are modelled are assumed to be rigid bodies, so these

three vectors do not change over time in the body frame. For the brightness calculations in the BRDFs the

vectors need to be expressed in the inertial coordinate frame. Since the body is rotating, the vectors will change

in this coordinate frame. The body vectors can be rotated to the inertial frame via quaternion rotation, using the

quaternion that defines the rotation from the body frame to the inertial frame at the corresponding time, given

by Equation 4.1.1. In this thesis the scalar part of the quaternion is defined as 𝑞1, and the vector part 𝝔 consists

of 𝑞2 , 𝑞3 and 𝑞4. The complete definition of the quaternion attitude representation is given in Subsection 4.2.2.

u𝐵𝑖 = 𝐴(q𝐼𝐵)u𝐼𝑖 (4.1.1)

𝐴(q) = 𝚵𝑇(q)Ψ(q) (4.1.2)

Ξ(q) ≡
[

−𝝔𝑇
𝑞1𝐼3𝑥3 + [𝝔×]

]
(4.1.3a)

Ψ(𝒒) ≡
[

−𝝔𝑇
𝑞1𝐼3𝑥3 − [𝝔×]

]
(4.1.3b)

[𝝔×] ≡


0 −𝑞4 𝑞3

𝑞4 0 −𝑞2

−𝑞3 𝑞2 0

 (4.1.4)

The additional vectors uI
sun

and uI
obs

are the unit vectors pointing from the facet in the direction of the sun and

the observer, respectively. Lastly, the vector uI
h is the normalised half vector or bisector between uI

sun
and uI

obs
.

For this thesis the so-called Ashikmin-Shirley model is implemented. It is based on a complex model that works

for any arbitrary continuous surface, and was simplified by Wetterer et al. [20] to work only for flat surfaces.

The defintion of this model is given in the next subsection.

4.1.2. Ashikmin-Shirley model
This BRDF model is based on an anisotropic Phong light diffusion model defined by Ashikmin and Shirley [21].

In general the BRDF is calculated as a function of the diffuse bidirectional reflectance 𝑅diff and the specular

bidirectional reflectance 𝑅spec, and the fraction of each to the total reflectance, which are d and s, respectively,

with 𝑑 + 𝑠 = 1. For the Ashikmin-Shirley model these reflectances are constant, and are given by Equation 4.1.5.

Here 𝜌 is the diffuse reflectance and 𝐹0 is the specular reflectance of the surface at normal incidence. Both

parameters have a value between 0 and 1. The second part of the equation defines that energy has to be

conserved in the system.
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𝑅diff = 𝑑 ∗ 𝜌, 𝑅spec = 𝑠 ∗ 𝐹0 (4.1.5a)

𝑅diff + 𝑅spec ≤ 1 (4.1.5b)

The equations to calculate specular and diffuse terms of the BRDF 𝜌spec and 𝜌diff are adapted from Linares et al.

[12]. The specular term is calculated using Equation 4.1.6. The parameters 𝑛𝑢 and 𝑛𝑣 define the anisotropic

reflectance properties of a surface.

𝜌spec =

√
(𝑛𝑢 + 1) (𝑛𝑣 + 1)

8𝜋

(
u𝐼𝑛 · u𝐼ℎ

) 𝑧(
u𝐼
ℎ
· u𝐼

sun

)
max

(
u𝐼𝑛 · u𝐼sun

, u𝐼𝑛 · u𝐼
obs

) 𝐹reflect (4.1.6a)

𝑧 =
𝑛𝑢

(
u𝐼
ℎ
· u𝐼𝑢

)
2

+ 𝑛𝑣
(
u𝐼
ℎ
· u𝐼𝑣

)
2

1 −
(
u𝐼𝑛 · u𝐼sun

)
2

(4.1.6b)

𝐹reflect = 𝑅spec + (1 − 𝑅spec)(1 − u𝐼
ℎ
· u𝐼

sun
)5 (4.1.6c)

The dot products in the equation are functions of the reflection geometry described by Figure 4.1.2, with all

vectors being expressed in the inertial coordinate frame. The diffuse term of the BRDF is given by Equation 4.1.7.

𝜌diff =

(
28𝑅diff

23𝜋

) (
1 − 𝑅spec

) [
1 −

(
1 − u𝐼𝑛 · u𝐼sun

2

)5

] 1 −
(
1 −

u𝐼𝑛 · u𝐼obs

2

)
5 (4.1.7)

The total BRDF is then given by the sum of the specular and diffuse terms, as given by Equation 4.1.8.

𝜌total = 𝜌spec + 𝜌diff (4.1.8)

The fraction of visible sunlight that hits a facet and is not absorbed is calculated by Equation 4.1.9. Here 𝐶sun,vis

is the power per square meter on a facet due to visible light hitting the surface, and is equal to 455 W/m
2

at 1AU.

𝐹sun = 𝐶sun,vis𝜌total(u𝐼𝑛 · u𝐼sun
) (4.1.9)

If the angle between the surface normal and the direction of the observer or the angle between the surface

normal and the direction of the sun is larger than 90° or 𝜋/2 rad then no light is reflected from that facet to the

observer. The value of 𝐹sun is then set to 0.

The fraction of sunlight that hits a facet and is reflected is calculated by Equation 4.1.10. Here 𝐴facet is the area

of the facet in m
2
, and ||robs||2 is the range from the observer to the object in m.

𝐹obs =
𝐹sun𝐴facet(u𝐼𝑛 · u𝐼obs

)
||robs||2

(4.1.10)

The 𝐹obs value is calculated for each facet seperately, and all the values are summed to one value of 𝐹obs,total for the

entire object. The apparent brightness magnitude of the full object can then be calculated with Equation 4.1.11.

The -26.7 value is the apparent brightness of the sun.

𝑚app = −26.7 − 2.5 log
10

����𝐹obs,total

𝐶sun,vis

���� (4.1.11)

4.1.3. Verification
The implementation of the Ashikmin-Shirley BRDF model can be verified by simulating different cases and

checking if the light curves produced by the model conform to expectations based on the physics and geometry

of the specific cases. The aspects that will be looked at with these cases are the influence of observation geometry,

object rotation and reflectivity coefficients.
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Geostationary sphere
The first case that will be analysed is a spherical object with a radius of 2.0 m in geostationary orbit. The sphere

is given 0 body-axis rotational velocity, and is observed from a station at the equator at 0°N latitude and 0°W

longitude and 0 m altitude. At the start of propagation the sphere is placed directly above the observer. This

orientation will stay constant during the propagation because of the geostationary orbit. In setting up the case

this way the effects of the object shape and attitude on the light curve are removed, leaving only the influence of

the geometry of the observation.

The sphere is modelled using 5120 triangular facets, in order to make the shape very smooth while still running

in reasonable time. The model is shown in Figure 4.1.3a. The BRDF constants of all the facets are: 𝑛𝑢 = 1000,

𝑛𝑣 = 1000, 𝑅spec = 0.5, 𝑅diff = 0.5. The light curve is simulated for an orbit duration of 24 hours, with a timestep

of 100 s. Shadowing of the Earth is not taken into account. The resulting light curve is shown in Figure 4.1.3b.

(a) Sphere model consisting of 5120 triangular facets.

(b) Simulated light curve of non-spinning sphere of 2.0 m radius in geostationary

orbit, observed from equator.

Figure 4.1.3: Spherical model and simulated light curve.

As mentioned the only aspect influencing the shape of the light curve is the observation geometry, meaning the

relative positions of the observer, satellite and the sun. Since the sphere is in geostationary orbit, the relative

position between the sphere and the observer does not change during the orbit. The only change is thus the

position of the sun with respect to the observer and the sphere. This is reflected very clearly in Figure 4.1.3b.

At local midnight, both at 0 and 24 hours propagation time, the apparent brightness of the sphere is at a

maximum. This is in line with expectations, as the satellite is in full view of the sun, and thus the largest part of

the sphere is illuminated and reflects light towards the observer. Conversely, at local noon the brightness is at a

minimum, highlighted by the sharp peak in the figure. At this point in time the satellite is positioned between

the sun and the Earth. This means only a small part of the sphere is visible to the observer, as mostly the back of

the satellite will be illuminated, which does not reflect light towards the observer. In between local midnight

and noon the visibility gradually changes from more to less visible, and vice versa. This behaviour is again what

is expected from the brightness of a spherical satellite.

It can be concluded that the implemented Ashikmin-Shirley BRDF model works correctly in the case of a

geostationary sphere. However, this is a very simple case, and not representative of the type of objects and

orbits that will be encountered during the thesis. The verification of the BRDF model is therefore continued

with more realistic test objects next.

Spinning cuboids
It has been established that the Ashikmin-Shirley algorithm works as expected for the simple case of a non-

spinning sphere in geostationary orbit. This is of course not the type of object that is gonna be simulated during

the thesis. To examine the results of the BRDF functions the next cases that are going to be looked contain two

cuboids of different sizes. In the first case both cuboids are given 0 rotational velocity. In the second case they

are given a slow rotational velocity around one body axis. The two cuboids that are chosen are similarly shaped,

but one of them has the x- and z-dimensions doubled compared to the other. This is done to assess whether the

effect of facets having larger cross-sectional areas is translated correctly in the light curves.
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The cuboids are shown in Figure 4.1.4. The first has dimensions (x=5.0 m, y=2.0 m, z=5.0 m), while the second

has the x- and z-dimensions doubled to 10.0 m. Both cuboids have an initial quaternion attitude equal to the

identity quaternion q𝐼 = [1, 0, 0, 0]. The cuboids are propagated in the same geostationary orbit as the sphere,

but are only propagated for 120 minutes, with a time step of 1 s.

(a) Cuboid with dimensions (x=5.0 m, y=2.0 m, z=5.0 m). (b) Cuboid with dimensions (x=10.0 m, y=2.0 m, z=10.0 m).

Figure 4.1.4: Cuboids used in verification case.

The light curves for both cuboids propagated without rotational velocities are shown in Figure 4.1.5. Here the

effect of the larger surface areas of the larger cuboid can be seen clearly. The light curve is shifted down by about

1.5 brightness values for the larger cuboid compared to the small one, while the shape of the curve remains the

same. As is expected, the large cuboid thus appears brighter than the smaller cuboid, because the larger surface

areas of the large cuboid reflect more light. What is interesting is that the maximum brightness in both curves

does not occur at 0 minutes propagation time, but around 50 minutes. This is the case because at the start of the

propagation the sun, Earth and satellites are not exactly in line. At 50 minutes they are aligned, meaning the

satellites are maximally illuminated by the sun and reflect the most light to the observer.

(a) Light curve of smaller cuboid, non-spinning. (b) Light curve of larger cuboid, non-spinning.

Figure 4.1.5: Light curves of non-spinning cuboids.

Next the spinning cuboids are examined. Both cuboids are given the same body-axis rotational velocity

𝝎 = [0, 0.0025, 0] rad/s, meaning a rotational velocity of 0.14 °/s around the y-axis. The corresponding light

curves are shown in Figure 4.1.6.

The effect of the rotations is clearly visible in both curves. Initially they start at the same brightness magnitudes

as the non-spinning case, but these quickly decrease as the facet with the largest surface sectional area spins

away. After this initial decrease the brightness only slowly decreases, and after a peak it slowly increases again

until a sharp increase around 20 minutes. This peak corresponds exactly with the time it takes to rotate 180°

with a rotational velocity of 0.14°/s, namely 1286 seconds or 21.4 minutes, and therefore corresponds to the

other large area facet rotating into full view.
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(a) Light curve of smaller cuboid, spinning. (b) Light curve of larger cuboid, spinning.

Figure 4.1.6: Light curves of non-spinning cuboids.

Both light curves show these sharp peaks every 21 minutes, which is as expected as they have the same rotational

velocity. Similar to the non-spinning case, the curve for the larger cuboid is shifted down compared to the curve

of the small cuboid, again matching the fact that the larger cuboid appears brighter. The effect of the changing

observation geometry is also still visible, as the values of the increased brightness peaks are the largest around

50 minutes, which is when the satellites are positioned to receive and reflect the most sunlight.

The last aspect that is studied is the effect of the reflectivity coefficients 𝑅spec and 𝑅diff. These determine the

way light is reflected off the facet surfaces. If a surface has a higher diffuse coefficient, light is spread more in

all different directions, while a higher specular coefficient means light is reflected more mirror-like. To study

this effect light curves were simulated for the large cuboid, in one case where all the surfaces have coefficients

𝑅spec = 0.1 and 𝑅diff = 0.9 (Figure 4.1.7a), and the other 𝑅spec = 0.9 and 𝑅diff = 0.1 (Figure 4.1.7b).

(a) Light curve for large cuboid with 𝑅spec = 0.1 and 𝑅
diff

= 0.9 (b) Light curve for large cuboid with 𝑅spec = 0.9 and 𝑅
diff

= 0.1

Figure 4.1.7: Light curves for large cuboid with different reflectivity coefficients 𝑅spec and 𝑅
diff

.

It is clear that for the diffuse surfaces in Figure 4.1.7a the light curve is much more constrained, with only small

peaks for the large area facets. This is in line with expectations, as in this case the light is spread in a lot of

different directions, so an observer receives less direct light and the objects appears less bright. However, overall

the objects appears more bright for a longer time period, as throughout the entire observation more light is

reflected towards the observer. In contrast, the peaks in Figure 4.1.7b are much larger, as at the right time a lot

more light is reflected to the observer. However, this also means less light is directly reflected to the observer in

between these peaks, causing the object to appear less bright most of the time.

Conclusion
The light curves simulated by the Ashikmin-Shirley algorithm match the results expected by looking at the

physics and geometries of both cases. The case with the non-rotating sphere clearly demonstrates the capability

of the algorithm to simulate the effects caused by the orbit and changing observational geometry. Then the

cases with the spinning cuboids showed that the algorithm models both the effect of larger facet surface areas

and rotations correctly. The effect of different reflectivity coefficients is also clearly visible in the curves. The

algorithm is thus ready to be used for the estimation of orbit and attitude states and the characterisation of

object shape, the methodology for which is explained in the next sections.
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4.2. Attitude estimation through light curve inversion
The method that was implemented for attitude and angular velocity estimation was first introduced by Crassidis

and Markley [22], and was later adapted by Wetterer and Jah [4] and Linares et al. [12][23].

4.2.1. Unscented Kalman Filter
The method uses an Unscented Kalman Filter (UKF) to estimate attitudes and angular velocities, next to orbital

positions and velocities. The UKF works by generating so-called sigma points. These sigma points are sampled

from a Probability Density Function (PDF) around the mean state prediction. The reasoning behind this is

that it is easier to propagate samples from a PDF trough a non-linear function, like attitude propagation,

than to propagate the PDF itself. The idea is that Gaussian distributions can be represented by finite set of

deterministically selected samples, which are the sigma points. Given a state vector x𝑘 with mean 𝒘𝑘 of size n
and a state error-covariance P𝑘 of size n x n, a sigma point matrix 𝝌 with 2n + 1 sigma points is constructed

using Equation 4.2.1.

𝝈𝑘 ← 2𝑛 columns from ±
√
(𝑛 + 𝜆)P𝑘 (4.2.1a)

𝜒𝑘(0) = 𝒘𝑘 (4.2.1b)

𝜒𝑘(𝑖) = 𝒘𝑘 + 𝜎𝑘(𝑖), 𝑖 = 1, 2, . . . , 2𝑛 (4.2.1c)

Here

√
𝑀 is shorthand notation for a matrix 𝑍 such that 𝑀 = 𝑍𝑍𝑇 . The scalar 𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛 is a composite

scaling parameter. The constant 𝛼 controls the spread of the sigma point distribution and should be a number

between 0 and 1, with a typical lower bound being 10
−4

. Constant 𝜅 provides an extra degree of freedom that can

be used to fine-tune the higher order moments. As the sigma points are selected to represent the distribution of

the state vector, each point is given a weight that preserves the information contained in the initial distribution,

which are given by Equation 4.2.2.

𝑊mean

0
=

𝜆
𝑛 + 𝜆 (4.2.2a)

𝑊cov

0
=

𝜆
𝑛 + 𝜆 +

(
1 − 𝛼2 + 𝛽

)
(4.2.2b)

𝑊mean

𝑖 =𝑊cov

𝑖 =
1

2(𝑛 + 𝜆) , 𝑖 = 1, 2, . . . , 2𝑛 (4.2.2c)

The parameter 𝛽 is used to incorporate prior knowledge of the distribution by weighting the mean sigma point in

the covariance calculation step. Typically 𝜅 = 3 − 𝑛 and 𝛽 = 2 are used as good starting guesses to tune the filter.

4.2.2. State representation
Because Euler angle attitude representations have the shortcoming of singularities and gimbal lock, the attitude

is represented with body-frame quaternions. Propagating and estimating quaternions also come with an

important limitation, namely that they need to abide a normalisation constraint. The quaternion is based on the

Euler angle/axis parametrisation, and is defined by Equation 4.2.3. Here ê and 𝜈 are the Euler axis of rotation

and rotation angle, respectively. The quaternion has to satisfy the unit norm constraint q𝑇q = 1.

q ≡
[
𝑞1

𝝔

]
(4.2.3a)

𝑞1 = cos(𝜈/2) (4.2.3b)

𝝔 = ê sin(𝜈/2) (4.2.3c)

In the UKF the quaternions are not directly propagated themselves. Instead, a 3-dimensional attitude error

represented by Generalised Rodrigues Parameters (GRPs) is used in the state vector to propagate the attitude.

This is done in order to better utilise the capabilities of the UKF. This representation does come with a singularity,

either at 180
◦

or 360
◦
, but according to Crassidis et al. [22] this is not encountered in practice. The update steps

in the UKF are performed using quaternion multiplication, which leads to a natural way of maintaining the

normalization constraint.
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The full state vector that is used in the joint attitude and position estimation is given by Equation 4.2.4. Here

𝜹p̂ is the error GRP associated with the quaternion q̂𝐵
𝐼

and ·̂ is used to denote the parameter in question is an

estimate. The vector 𝝎 is the angular velocity of the body with respect to the inertial frame, expressed in body

frame coordinates. The full notation 𝝎𝐵
𝐵/𝐼 is omitted for clarity. Both r and v are expressed in the inertial frame.

x̂+
𝑘
=


r̂𝐼+
v̂𝐼+
𝜹p̂+
𝝎̂+


�������
𝑡𝑘

(4.2.4)

4.2.3. Observation models
Measurements are given as a combination of astrometric and photometric observations. The astrometric

observations are used for the orbit estimation in the UKF, and the photometric observations are used for the

attitude estimation. Both types of observations are made from an optical ground station. The photometric

observations are the apparent brightness measurements that form a light curve as discussed in Section 4.1, using

the Ashikmin-Shirley BRDF model to simulate the brightness measurements.

The astrometric observations are the azimuth, elevation and range to the object that is measured, as seen from

the ground station. These parameters are defined in the topocentric reference frame, as shown in Figure 4.2.1a.

The origin of this frame is the position of the observer, located at r𝑠 from the center of the Earth. The topocentric

coordinates consist of 𝑥𝑡 pointing east, 𝑦𝑡 pointing north and 𝑧𝑡 pointing toward the local vertical direction.

(a) Topocentric reference frame on Earth. (b) Local view of topocentric reference frame.

Figure 4.2.1: Visualisations of topocentric frame [24].

In order to calculate the azimuth and elevation angles of a satellite passing over an observer the position of the

satellite in the Earth-Centred Earth-Fixed (ECEF) coordinate frame r needs to be known. With this the line of

sight vector 𝝆 can be calculated, which is given by r− rs. Knowing the longitude 𝜆 and latitude 𝜙 of the observer

position on the Earth, the position of the satellite in the topocentric frame can be calculated using Equation 4.2.5.

rt =


𝑟𝑒
𝑟𝑛
𝑟𝑢

 = 𝑇𝑡(r − rs) = 𝑇𝑡𝝆 (4.2.5a)

𝑇𝑡 =


− sin𝜆 cos𝜆 0

− sin 𝜙 cos𝜆 − sin 𝜙 sin𝜆 cos 𝜙
cos 𝜙 cos𝜆 cos 𝜙 sin𝜆 sin 𝜙

 (4.2.5b)

With 𝑟𝑒 , 𝑟𝑛 and 𝑟𝑢 being the east, north and up coordinates of the satellite in the topocentric frame, as shown in

Figure 4.2.1b, the azimuth angle Θ and elevation angle Φ can be calculated with Equation 4.2.6.

Θ = tan
−1
𝑟𝑒

𝑟𝑛
(4.2.6a)

Φ = sin
−1

𝑟𝑢

||𝝆|| (4.2.6b)
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4.2.4. Prediction step
At the start of the prediction the error GRPs 𝜹p̂+ in the initial state vector are set to 0. Sigma points are

then calculated for the error GRPs, with the 0 GRP vector as mean. These are then first converted into error

quaternions so that the quaternion sigma points can be computed. The error quaternion 𝜹q+
𝑘
(𝑖) corresponding

with the ith error GRP sigma point is calculated with Equation 4.2.7. In this equation 𝑎 is a parameter with a

value between 0 and 1, and 𝑓 is a scaling factor, which is often set to 𝑓 = 2(𝑎 + 1).

𝜹𝝔+
𝑘
(𝑖) = 𝑓 −1

[
𝑎 + 𝛿𝑞+

1𝑘
(𝑖)

]
𝝌
𝛿𝑝
𝑘
(𝑖) (4.2.7a)

𝛿𝑞+
1𝑘
(𝑖) =

−𝑎



𝝌𝛿𝑝

𝑘
(𝑖)




2

+ 𝑓
√
𝑓 2 + (1 − 𝑎2)




𝝌𝛿𝑝
𝑘
(𝑖)




2

𝑓 2 +



𝝌𝛿𝑝

𝑘
(𝑖)




2

(4.2.7b)

𝜹q+
𝑘
(𝑖) =

[
𝛿𝑞+

1𝑘
(𝑖)

𝛿𝝔+
𝑘
(𝑖)

]
(4.2.7c)

The ith quaternion sigma point is given by a rotation of 𝜹q+
𝑘
(𝑖) about the initial quaternion estimate q̂+

𝑘0

using

Equation 4.2.8.

q̂+
𝑘
(𝑖) = 𝜹q+

𝑘
(𝑖) ⊗ q̂+

𝑘0

(4.2.8)

The symbol ⊗ represent a quaternion multiplication. Given two quaternions p = [𝑝1 , 𝑝2 , 𝑝3 , 𝑝4]𝑇 and q =

[𝑞1 , 𝑞2 , 𝑞3 , 𝑞4]𝑇 where 𝑝1 and 𝑞1 are the scalar part of the quaternions and p𝑣 = [𝑝2 , 𝑝3 , 𝑝4]𝑇 and q𝑣 = [𝑞2 , 𝑞3 , 𝑞4]𝑇
the vector parts, quaternion multiplication is defined by Equation 4.2.9.

p ⊗ q =

[
𝑝1𝑞1 − p𝑣 · q𝑣

𝑝1q𝑣 + 𝑞1p𝑣 + p𝑣 × q𝑣

]
=


𝑝1𝑞1 − 𝑝2𝑞2 − 𝑝3𝑞3 − 𝑝4𝑞4

𝑝1𝑞2 + 𝑞1𝑝2 + 𝑝3𝑞4 − 𝑝4𝑞3

𝑝1𝑞3 + 𝑞1𝑝3 + 𝑝4𝑞2 − 𝑝2𝑞4

𝑝1𝑞4 + 𝑞1𝑝4 + 𝑝2𝑞3 − 𝑝3𝑞2

 (4.2.9)

The quaternion sigma points are then propagated through the system dynamics given in Equation 4.2.10. For

this thesis f(𝝌, q̂) is the attitude propagation using Tudat, which is defined in Chapter 3.

¤𝝌(𝑖) = f(𝝌(𝑖), q̂(𝑖)) (4.2.10)

The estimated mean propagated sigma point q̂−
𝑘+1
(0) is stored, and the error quaternions corresponding to each

propagated quaternion sigma point are calculated with Equation 4.2.11, where the conjugate quaternion q−1
is

given by Equation 4.2.12.

𝜹q̂−𝑘+1
(𝑖) = q̂−𝑘+1

(𝑖) ⊗
[
q̂−𝑘+1
(0)

]−1

(4.2.11)

q−1 ≡
[
𝑞1

−𝝔

]
(4.2.12)

The error GRP sigma points are then calculated by Equation 4.2.13. The error GRPs for the mean sigma point

are again set to 0.

𝜹p−𝑘+1
(𝑖) = 𝑓

𝜹𝝔̂−𝑘+1
(𝑖)

𝑎 + 𝛿 𝑞̂−
1𝑘+1

(𝑖) (4.2.13)

The propagated mean and covariance predictions are calculated as the weighted sum of the sigma points using

Equation 4.2.14 and Equation 4.2.15 respectively, with the weights calculated in Equation 4.2.2. In the covariance

calculation Q𝑘+1 is the discrete-time process noise covariance.
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x̂−𝑘+1
=

2𝑛∑
𝑖=0

𝑊mean

𝑖 𝝌−𝑘+1
(𝑖) (4.2.14)

P−𝑘+1
=

2𝑛∑
𝑖=0

𝑊cov

𝑖

[
𝝌−𝑘+1
(𝑖) − x̂−𝑘+1

] [
𝝌−𝑘+1
(𝑖) − x̂−𝑘+1

]𝑇 +Q𝑘+1 (4.2.15)

4.2.5. Correction step
Measurements are given in the form described in Subsection 4.2.3 describing the observation model. The

estimated observations are computed for each sigma point using Equation 4.2.16. Because the state vector

contains error GRPs for the attitude, the quaternion q̂−
𝑘
(𝑖) is added separately into the observation model.

𝜸𝑘(𝑖) = h
[
𝝌−𝑘 (𝑖), q̂

−
𝑘 (𝑖)

]
(4.2.16)

The mean estimated output is calculated using Equation 4.2.17.

ŷ−𝑘 =

2𝑛∑
𝑖=0

𝑊mean

𝑖 𝜸𝑘(𝑖) (4.2.17)

The output, innovation and cross-correlation covariances 𝑃
𝑦𝑦

𝑘
, 𝑃𝑣𝑣

𝑘
and 𝑃

𝑥𝑦

𝑘
are calculated with Equation 4.2.18.

𝑃
𝑦𝑦

𝑘
=

2𝑛∑
𝑖=0

𝑊cov

𝑖

[
𝜸𝑘(𝑖) − ŷ−𝑘

] [
𝜸𝑘(𝑖) − ŷ−𝑘

]𝑇
(4.2.18a)

𝑃𝑣𝑣
𝑘

= 𝑃
𝑦𝑦

𝑘
+ 𝑅𝑘 (4.2.18b)

𝑃
𝑥𝑦

𝑘
=

2𝑛∑
𝑖=0

𝑊cov

𝑖

[
𝝌−𝑘 (𝑖) − x̂−𝑘

] [
𝜸𝑘(𝑖) − ŷ−𝑘

]𝑇
(4.2.18c)

The Kalman gain is given by Equation 4.2.19.

𝐾𝑘 = 𝑃
𝑥𝑦

𝑘

(
𝑃𝑣𝑣
𝑘

)−1

(4.2.19)

The updated predictions for the mean state and covariance are given by Equation 4.2.20.

x̂+
𝑘
= x̂−𝑘 + 𝐾𝑘

[
ỹ𝑘 − ŷ−𝑘

]
(4.2.20a)

𝑃+
𝑘
= 𝑃−𝑘 − 𝐾𝑘𝑃

𝑣𝑣
𝑘
𝐾𝑇
𝑘

(4.2.20b)

Additionally, the updated error quaternion 𝜹q̂+
𝑘

is calculated using Equation 4.2.21.

𝛿𝑞1 =
−𝑎∥𝜹𝒑∥2 + 𝑓

√
𝑓 2 + (1 − 𝑎2) ∥𝜹𝒑∥2

𝑓 2 + ∥𝜹𝒑∥2

(4.2.21a)

𝜹𝝔 = 𝑓 −1
(
𝑎 + 𝛿𝑞1

)
𝜹𝒑 (4.2.21b)

𝜹q+
𝑘
=

[
𝛿𝑞1

𝜹𝝔

]
(4.2.21c)

The updated quaternion estimate is then calculated using Equation 4.2.22. After this the error GRPs are set to 0

in the state vector, and the filter process repeats for the next time step.

q̂+
𝑘
= 𝜹q+

𝑘
⊗ q̂−𝑘 (0) (4.2.22)
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4.2.6. Algorithm summary
The full algorithm of the attitude and orbit estimation using light curve inversion is quite complex with a lot of

equations. To explain the algorithm more clearly and in one overview the steps of the algorithm are summarized

in Table 4.2.1 below.

Table 4.2.1: Summary of steps in attitude and orbit estimation through light curve inversion algorithm.

Step Description
0 Initialize dp

0
= [0, 0, 0].

Prediction
1 Input initial state x0 = [r0 , v0 , dp

0
,𝝎0], quaternion q0, covariance P0, and

process noise covariance Q.

2 Compute sigma points 𝝌 from x and P.

3 Compute error quaternion sigma points 𝝌dq from dp sigma points, then

compute quaternion sigma points 𝝌q.

4 Construct sigma points state vector for propagation:

𝝌prop = [𝝌r , 𝝌v , 𝝌q , 𝝌𝝎].
5 Propagate sigma points.

6 Compute propagated error quaternions.

Set the first propagated error quaternion to [1, 0, 0, 0].
7 Compute propagated error GRP sigma points 𝝌dp from propagated error

quaternions. Construct the full propagated sigma points:

𝝌prop = [𝝌prop

r , 𝝌
prop

v , 𝝌
prop

dp , 𝝌
prop

𝝎 ].
8 Compute predicted mean xpred and error covariance Ppred.

Set the mean propagated quaternion as qpred.

9 If no measurement is available:
Reset error GRPs dp in xpred to [0, 0, 0].
Set inputs: x = xpred, P = Ppred, q = qpred.

Repeat from step 2.

Correction
10 If a measurement is available:

Compute predicted measurement for all propagated sigma points:

𝝌
pred

z = h[𝝌prop , 𝝌
prop

q ].
11 Compute weighted predicted measurement zpred.

12 Compute innovation, covariance, and gain matrices: S, P𝑥𝑧 , and K.

13 Compute corrected state mean xcor and error covariance Pcor.

14 Convert dp values in xcor to qcor using the mean propagated quaternion.

15 Reset dp values in xcor to [0, 0, 0].
16 Set inputs: x = xcor, P = Pcor, q = qcor.

17 Repeat from step 2.
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4.2.7. Verification
In order to verify the implementation of the attitude estimation through light curve inversion works correctly

some verification is required. The verification is based on the paper by Wetterer et al. [4], where they attempt to

estimate the attitude of an Atlas-Centaur II upper-stage rocket body. The verification is divided in three steps.

In the first step the implementation of the UKF is verified. Then an attempt is made to replicate the results from

Wetterer et al., and lastly the simulation time is extended to investigate long term behaviour of the algorithm.

Initialisation
The Keplerian orbit element of the true rocket body orbit and the initial guess used in the estimation are given in

Table 4.2.2. The elements were converted from TLEs retrieved from space-track.org for March 24
th

2003 14:04:00

UTC, which is the start epoch of the estimation. The orbit is a geosynchronous transfer orbit. The initial guess

orbit is generated by adding 1 km to the true orbit positions and [5, -5, 2.5] m/s to the orbital velocities. The

initial attitudes in Euler angles and rotational velocities for the truth and initial guess are given in Table 4.2.3.

Table 4.2.2: Keplerian orbit elements for Atlas-Centaur II rocket body.

a [km] e [-] i [°] 𝝎 [°] 𝛀 [°] 𝝂 [°]
Truth 7,305.607 0.0635484 30.38 328.94 73.97 68.23

Guess 7,304.597 0.0627248 30.42 329.04 74.00 68.10

Table 4.2.3: Initial attitude and rotational velocities for truth and guess of Atlas-Centaur II rocket body.

𝜽1 [rad] 𝜽2 [rad] 𝜽3 [rad] 𝝎1 [rad/s] 𝝎2 [rad/s] 𝝎3 [rad/s]
Truth 0.2 -0.3 1.4 0.0 0.0 0.252

Guess 0.6 -0.9 1.0 0.001 0.001 0.253

The rocket body is modelled as a cylinder with two flattened hemispherical end caps. The cylinder has a height

and radius of 9 m and 1.5 m respectively, and the end caps have a height of 1.0 m and the same radius as the

cylinder, giving the rocket body a total height of 11 m. The shape is created by dividing the body in facets, with

20 facets for the cylinder around its diameter and 180 for each of the end caps. A 3D visualisation of the rocket

body shape model is given in Figure 4.2.2.

(a) Full 3D shape model of the rocket body. (b) Zoomed in rocket body end cap. Each cap consists of 180 facets.

Figure 4.2.2: Shape model of the Atlas-Centaur II upper-stage rocket body. Full model made up of 380 facets.

The initial covariance matrix 𝑷0 and the process noise matrix Q for the estimation are given in Equation 4.2.23.

𝑷0 = diag

[
(1000 m)2 ∗ 𝐼3 (10 m/s)2 ∗ 𝐼3 0.22 ∗ 𝐼3 (10

−3
rad/s)2 ∗ 𝐼3

]
(4.2.23a)

𝑸 = diag

[
(100 m)2 ∗ 𝐼3 (0.1 m/s)2 ∗ 𝐼3 (2 ∗ 10

−4)2 ∗ 𝐼3 (10
−12

rad/s)2 ∗ 𝐼2 (10
−5

rad/s)2 ∗ 𝐼1
]

(4.2.23b)

www.space-track.org
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UKF implementation
To verify the implementation of the UKF an estimation is run where the filter is fed direct measurements of Euler

angle attitude and orbital position, instead of light curve and angles measurements. This way the behaviour of

the UKF can be checked independently from the combined implementation with the light curve inversion. The

measurements are generated by taking the state values of the truth at each time step and adding zero-mean

Gaussian noise, for the orbital position with a standard deviation of 1 km, and for the Euler angle attitude with

a standard deviation of 1°. The estimation is run for 60 minutes, with a time step of 1 s, with measurements

available at each time step. In Figure 4.2.3 the error plots for the attitude and angular velocities are shown for

the verification of the UKF.

(a) Euler angle errors with 3𝜎 uncertainty bounds. (b) Angular velocity errors with 3𝜎 uncertainty bounds.

Figure 4.2.3: Attitude and omega error for verification of UKF with direct position and Euler angle measurements.

An important note that should be mentioned concerns the way the uncertainty bounds for the Euler angle

attitude error plots are obtained. In the UKF the attitude states that are propagated are the error GRPs. This

means the attitude covariance values that are calculated and output by the UKF are also those of the error

GRPs. However, Crassidis and Markley state [22]: "for small errors, the attitude part of the covariance is closely

related to the attitude-estimation errors." In their paper Wetterer and Jah state [4]: "The Euler angles at each step

are derived from the quaternion with the uncertainty derived by equating the error GRP portion of the state

covariance to the square of the uncertainties in the Euler angles." This means the covariance bounds for the

Euler angle errors can be converted from the covariance values of the error GRPs that are output by the UKF,

using Equation 4.2.24.

𝜎2

𝜽 = 𝜎dp (4.2.24)

It can be seen in Figure 4.2.3 that for both the attitude and angular velocities the the UKF converges quickly to

low errors. The uncertainty bounds for both parameters also quickly decrease. Both are expected behaviour for

the UKF. After 30 minutes there are some error spikes that can be seen in the attitude plots, and for the first and

third Euler angle 𝜃1 and 𝜃3 these spikes exceed the uncertainty bounds. These spikes are caused by the errors in

the angular velocity increasing slightly at the same times, as can be seen in Figure 4.2.3b, which directly leads to

larger attitude errors. These slight increases in rotational velocity errors are most likely caused by the process

noise that is added during the estimation. Process noise is added to ensure the estimation does not get stuck

once it has converged, which can cause slight changes in the estimation values throughout the estimation, which

is seen here in the rotational velocity errors increasing slightly. These errors quickly converge back towards zero

however, conforming to expected behaviour of a filtering algorithm like the implemented UKF.
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Figure 4.2.4 shows the error plots for the orbital positions and velocities. It can be seen that both errors are nicely

constrained between the uncertainty bounds. The errors for the orbital positions are noisily spread around zero

error. This matches the expected results of the UKF perfectly, as these states are directly measured with random

noise, and the error is affected by this noise. In the orbital velocity errors the effect of noise can also be seen, but

it is much less prominent compared to the overall behaviour of the error, which acts on a larger scale than the

noise.

(a) Orbital position errors with 3𝜎 uncertainty bounds. (b) Orbital velocity errors with 3𝜎 uncertainty bounds.

Figure 4.2.4: Position and velocity error for verification of UKF with direct position and Euler angle measurements.

Overall the results obtained from the UKF where the filter uses direct measurements of the Euler angle attitudes

and orbital positions match the behaviour that is expected of a filter implementation like the UKF. It is therefore

concluded that the implemented UKF for attitude and orbit estimation works as expected. Next it will be

investigated whether the algorithm works well in combination with light curve inversion.
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Paper result replication
Next an attempt is made to replicate the results obtained by Wetterer et al. [4] for the attitude estimation of the

Atlas-Centaur II rocket body through light curve inversion. For this case angles and range measurements of

the orbital positions and apparent brightness measurements are generated by simulating observations from a

ground station at the Maui Space Surveillance Complex, located at 20.708°N latitude, 156.257°W longitude and

3.075 km altitude. Measurements are made at the same time step as the estimation of 1 s. Zero-mean Gaussian

noise is added to each measurement, with a standard deviation of 1*10
−5

rad for the azimuth and elevation

observations, 1 km for the range and 0.01 for the brightness observations. In the paper the estimation is run for

2000 s, producing the Euler angle and rotational velocity error plots in Figure 4.2.5a and 4.2.6a, respectively.

Running the implemented attitude estimation algorithm results in the error plots in Figure 4.2.5b and 4.2.6.

(a) Euler angle errors from Wetterer et al. [4]. (b) Euler angle error from result replication.

Figure 4.2.5: Euler angle errors from paper and result replication.

Looking at the Euler angle error plots, it is clear the plots are not identical. The errors for the replication attempt

converge much quicker than those in the paper. The other difference is that at the end of the replication plot the

covariance bounds increase again. This happens because the visible pass of the simulated rocket body does

not last the full 2000 seconds. For the paper result the covariance bounds do decrease for the full estimation,

indicating that there the measurements lasted until the end of the propagation. This difference is caused by the

fact that the orbital state parameters in the paper were not described in full detail. For the replication the orbit

data was therefore retrieved from TLE data. This means the orbits used in the paper and the replication are

most likely not the same, leading to the difference in results.

However, it can be seen that the implemented algorithm is still able to estimate the attitude with low errors,

with the errors remaining low after the visible pass of the rocket body is over.

The rotational velocity error plots in Figure 4.2.6b also do not look the same as the results from the paper.

Initially the errors for the replication are much larger than those in the paper. However, after about 250s the

errors converge to low errors, remaining like this for the rest of the estimation. This shows that the algorithm is

also able to estimate the rotational velocity states of the rocket body correctly.
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(a) Rotational velocity errors from Wetterer et al. [4]. (b) Rotational velocity errors from result replication.

Figure 4.2.6: Rotational velocity errors from paper and result replication.

To conclude this part of the verification, while the results do not look identical to the results from Wetterer,

overall they show that the implemented version of the attitude estimation from light curve algorithm works as

expected, and is able to estimate the attitude states with low error values.

In the paper the only states that are estimated are the attitude and rotational velocities. However, in this thesis

the orbit states are also included in the estimation. The orbit estimation results for this case will therefore still be

examined, to see if the implementation with the azimuth, elevation and range angles work correctly.
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Orbit estimation
The orbital position and velocity errors for the verification case are shown in Figure 4.2.7. Initially the orbit errors

are quite large, and stray outside of the covariance bounds. However, around 500s the estimation converges to

low position errors inside the covariance bounds. When the visible pass of the rocket is over the covariance

bounds increase again, just like was seen in the attitude error plots. This is exactly what should happen, because

there are no measurements to correct the predictions in the UKF, so the uncertainties increase. Likewise, the

errors also start to increase again, as the predictions are not corrected with measurements, so the orbit estimation

starts to drift from the true orbit.

(a) Orbital position errors. (b) Orbital velocity errors.

Figure 4.2.7: Orbital state errors for replication case.

The orbital velocity error plots looks different. The covariance bounds appear to say constant throughout the

entire estimation. The errors also show different behaviour from the position errors. These differences are

caused by the fact that the velocity errors are relatively a lot smaller than the position errors. The position errors

are on the order of magnitude of km, and initially even tens of km, while the velocity errors stay between -25

and 25 m/s. Because the UKF is able to estimate the velocity to such accuracy, the uncertainties only change in

such small ways that they appear constant.

Conclusion
Overall it can be concluded that the implemented algorithm for attitude and orbit estimation through light curve

inversion works as expected, producing orbit and attitude state estimates with low errors. Even though the

results do not look exactly like those produced by Wetterer et al. [4] with their implementation of the algorithm,

the implemented algorithm produces similar results, finding the correct attitude and rotational velocities for the

rocket body through light curve measurements. Additionally, it was shown that the implemented algorithm

is also able to correctly estimate the orbital states using azimuth, elevation and range measurements. The

implement algorithm forms the basis for the methods that are described in the next sections of the methodology

chapter, starting with a well-developed method called Multiple-Model Adaptive Estimation.



4.3. Multiple-Model Adaptive Estimation 32

4.3. Multiple-Model Adaptive Estimation
Estimation is relatively straightforward when the physical model underlying the observations is well known. In

the case of space debris it is however not always known what shape an objects has, next to its orbit and attitude.

This makes it very difficult to estimate especially the latter, as brightness observations are highly dependent on

shape and attitude. One approach to tackle this issue is to run multiple UKFs in parallel, each with a different

underlying physical model like object shape, and compare which model outputs correspond the best with the

observations. This is the basis for the Multiple-Model Adaptive Estimation (MMAE) method.

4.3.1. Estimation weights
The method of MMAE has been applied to object characterisation through light curve inversion by Linares et al.

[12][23] in multiple contexts. A visualisation of the MMAE process is given in Figure 4.3.1. In essence there is a

model bank with M different models that could be the correct physical model driving the real system. Each of

these models has a different hypothesis, giving the finite set of hypotheses {p(ℓ ); ℓ = 1, ..., M}.

The goal of the estimation process is to determine the conditional PDF of each hypothesis p(ℓ ) given all

the measurements Ỹ𝑘 = {ỹ0 , ỹ1 , ..., ỹ𝑘}. Bayes’ Theorem can be applied to find this conditional probability

𝑝
(
p(ℓ ) | Ỹ𝑘

)
as given by Equation 4.3.1.

𝑝
(
p(ℓ ) | Ỹ𝑘

)
=

𝑝
(
Ỹ𝑘 | p(ℓ )

)
𝑝
(
p(ℓ )

)∑𝑀
𝑗=1

𝑝
(
Ỹ𝑘 | p(𝑗)

)
𝑝
(
p(𝑗)

) (4.3.1)

The posterior probabilities can be calculated using Equation 4.3.2. Here 𝑝
(
ỹ𝑘 , p(ℓ ) | Ỹ𝑘−1

)
is the joint probability

of observing the current measurement ỹ𝑘 and that hypothesis p(ℓ ) is true, given all previous measurements Ỹ𝑘−1.

𝑝
(
p(ℓ ) | Ỹ𝑘

)
=
𝑝
(
ỹ𝑘 , p(ℓ ) | Ỹ𝑘−1

)
𝑝
(
ỹ𝑘 | Ỹ𝑘−1

) =

𝑝
(
ỹ𝑘 | x̂−(ℓ )𝑘

)
𝑝
(
p(ℓ ) | Ỹ𝑘−1

)
∑𝑀
𝑗=1

[
𝑝
(
ỹ𝑘 | x̂−(𝑗)𝑘

)
𝑝
(
p(𝑗) | Ỹ𝑘−1

) ] (4.3.2)

The probabilities of observing ỹ𝑘 given the state estimate for a certain hypothesis x̂(ℓ )
𝑘

are given by Equation 4.3.3.

𝑝
(
ỹ𝑘 | x̂−(ℓ )𝑘

)
=

1

det

(
2𝜋𝑆(ℓ )

𝑘

)
1/2 exp

{
−1

2

e(ℓ )𝑇
𝑘

𝑆
(ℓ )−1

𝑘
e(ℓ )
𝑘

}
(4.3.3)

Here the measurement residual for the ℓ th hypothesis e(ℓ )
𝑘

is given by Equation 4.3.4 and the corresponding

residual covariance matrix 𝑆
(ℓ )
𝑘

is equal to the innovation covariance matrix 𝑃𝑣𝑣
𝑘

given in Equation 4.2.18b.

e(ℓ )
𝑘

= ỹ𝑘 − ŷ−(ℓ )
𝑘

(4.3.4)

Equation 4.3.2 can be rewritten as a recursion formula to define MMAE weights 𝑤
(ℓ )
𝑘

to give Equation 4.3.5,

where 𝑤
(ℓ )
𝑘
≡ 𝑝

(
p(ℓ ) | Ỹ𝑘

)
. Only the current time likelihood function is needed to update the weights. The

second part of the equation is necessary to normalise the weights.

𝑤
(ℓ )
𝑘

= 𝑤
(ℓ )
𝑘−1
𝑝
(
ỹ𝑘 | x̂(ℓ )𝑘

)
, 𝑤

(ℓ )
𝑘
←

𝑤
(ℓ )
𝑘∑𝑀

𝑗=1
𝑤
(𝑗)
𝑘

(4.3.5)

The weights correspond to how well each hypothesis fits the observations, relative to the others. It can be

seen in Equation 4.3.3 that a hypothesis with lower residuals e(ℓ )
𝑘

will have probabilities that increase with

time. This means that hypotheses that fit the observations better are favoured in the MMAE algorithm. In this

equation it can also be seen that hypotheses with small values for the determinant of 𝑆
(ℓ )
𝐾

will have increasing

probabilities. This means hypotheses with smaller variances are also favoured, assuming all filters have the

same measurement noise covariance 𝑅𝑘 . The MMAE algorithm will thus tend to select the minimum variance

hypothesis from the full hypotheses set.
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4.3.2. Fusion of estimates
The MMAE method has an additional capability next to assigning conditional probabilities to hypotheses.

Depending on the type of parameters being estimated the MMAE algorithm can output a fused state estimate

and error covariance, usually being a weighted average of the different filters post-update state estimates. This

so-called conditional mean typically is calculated as a weighted sum of all of the filters estimates and is given by

Equation 4.3.6.

x̂+
𝑘
=

𝑀∑
ℓ=1

𝑤
(ℓ )
𝑘

x̂+(ℓ )
𝑘

(4.3.6)

However, since in this case quaternions are part of the state vector being estimated, it is not possible to sum up

the different quaternion estimates, as this would give a quaternion not abiding the unit norm constraint. A

different approach is required to determine the conditional mean and covariance for the quaternion estimates.

Luckily, Linares et al.[12][23] have already implemented this.

For their approach a reference quaternion attitude q𝑘 needs to be defined, from which all the different quaternion

estimates are referenced. In this case this reference quaternion is the weighted average quaternion from the set

of all UKF quaternion estimates. This average quaternion is given by the normalized eigenvector corresponding

to the maximum eigenvalue of matrixℳ, whereℳ is calculated using Equation 4.3.7.

ℳ = −
𝑀∑
ℓ=1

𝑤
(ℓ )
𝑘
Ξ

(
q̂+(ℓ )
𝑘

)
𝑃
+(ℓ )−1

𝛼𝛼 Ξ𝑇
(
q̂+(ℓ )
𝑘

)
(4.3.7)

Here Ξ(q) is the function given by Equation 4.1.3b. The matrix 𝑃
+(ℓ )
𝛼𝛼 is the 3 x 3 part of the covariance matrix

corresponding to the attitude estimates for each hypothesis.

With the reference attitude calculated, the attitude correction corresponding to the estimate of the ℓ th filter

is given by Equation 4.3.8. This quaternion correction is then converted to a GRP correction 𝜹p+(ℓ )
𝑘

using

Equation 4.2.13.

𝜹q̂+(ℓ )
𝑘

= q̂−(ℓ )
𝑘
⊗ q̂−1

𝑘
(4.3.8)

With x+(ℓ )
𝑘
≡

[
r̂𝐼+(ℓ )𝑇
𝑘

v̂𝐼+(ℓ )𝑇
𝑘

𝜹𝒑
𝐼+(ℓ )𝑇
𝑘 𝝎̂𝐼+(ℓ )𝑇

𝑘

]
the mean estimate is calculated using Equation 4.3.9.

x+𝑘 =

𝑀∑
ℓ=1

𝑤
(ℓ )
𝑘

x+(ℓ )
𝑘

(4.3.9)

Finally, the conditional mean is given by Equation 4.3.10. Here the mean quaternion is calculated as q̂+
𝑘
= 𝜹q̂+

𝑘
⊗q+𝑘

and 𝜹q̂+
𝑘

is the quaternion formed from 𝜹p̂+
𝑘

from x+𝑘

x̂+
𝑘
=


r̂𝐼+
𝑘

v̂𝑘 𝐼+
q̂+
𝑘

𝝎̂+𝑘

 (4.3.10)

The conditional covariance can then be calculated using Equation 4.3.11.

𝑃+
𝑘
=

𝑀∑
ℓ=1

𝑤
(ℓ )
𝑘

(
𝑃
+(ℓ )
𝑘
+

[
x+(ℓ )
𝑘
− x+𝑘

] [
x+(ℓ )
𝑘
− x+𝑘

]𝑇 )
(4.3.11)
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4.3.3. Flowchart
For better visualisation and understanding of the MMAE process the flowchart in Figure 4.3.1 was created.

Figure 4.3.1: Flowchart of MMAE algorithm for M shape models.

For M different shape models there are M UKFs that are run in parallel. Given an initial state x0, the UKFs

perform a prediction step at time k. If there is no measurement at this time, the next prediction at time k + 1
is made, with the prediction from t𝑘 as starting value. When there is a measurement at time 𝑡𝑘𝑚𝑒𝑎𝑠 the UKF

correction step is executed. With the corrected estimates, measurement residuals and S matrices the probabilities

𝑝(ℓ ) are calculated. With these the weights are updated and the conditional mean is calculated. This is then

input into each UKF as the new initial state, and the process repeats.
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4.3.4. Verification
The verification of the MMAE algorithm is done in two parts. For the first part only a few different shape models

are included in the model bank in order to test the capabilities of the algorithm. In the second part it is attempted

to replicate the results obtained by Linares et al. [23] with their implementation of the MMAE algorithm.

Initialisation
For both cases the initial states and BRDF parameters are taken from the paper by Linares et al. [23]. The

simulation epoch is set to March 15
th

2010 at 04:00:00 UTC. The Keplerian orbital elements for the true orbit and

the orbit guess that is input in each UKF are given in Table 4.3.1. The initial attitude and rotational velocities for

the true case and the guess for each UKF are given in Table 4.3.2.

Table 4.3.1: Keplerian orbit elements for true orbit and orbit guess.

a [km] e [-] i [°] 𝝎 [°] 𝛀 [°] 𝝂 [°]
True orbit 42,364.17 2.429 ∗ 10

−4
30 0.0 0.0 91.121

Orbit guess 42,364.148255 2.429 ∗ 10
−4

30.0083 -1.172 0.0 92.165

Table 4.3.2: Initial attitude and rotational velocities for truth and guess.

q0 [-] q1 [-] q2 [-] q3[-] 𝝎1 [°/hr] 𝝎2 [°/hr] 𝝎3 [°/hr]
Truth 0.7041 0.0199 0.0896 0.7041 206.26 103.13 540.41

Guess 0.7500 0.0712 0.0947 0.6508 220.26 117.13 554.41

All shape models are made up from facets. For all the facets the apparent brightness is calculated using the

Ashikmin-Shirley BRDF model discussed in Subsection 4.1.2. Each facet is given the same reflectivity coefficients

𝑅spec = 0.7, 𝑅diff = 0.3. The parameters 𝑛𝑢 and 𝑛𝑣 are set to be equal to 1000 for all facets. The brightness and

orbit measurements are simulated with a ground station located at 20.71°N latitude, 156.26°W longitude and

3058.6 m altitude. Zero-mean Gaussian noise is added to the measurements, with a standard deviation of 1

arcsecond on the azimuth and elevation observations, 100 m on the range and 0.1 on the brightness observations.

Observations are made every 5 s, while the estimation runs at a time step of 1 s.

The initial covariances in P are set to 300 km and 3 km/s for the orbital position and velocity respectively, 0.2 for

the error GRPs and 72 °/hr for the rotational velocities. The process noise covariances in Q are all set to zero.

Simple test case
For the simple case three shape models are included: a hexagonal prism, a sphere, and rectangular cuboid. The

hexagonal prism is defined by two dimensions, the length of the hexagon sides s and height h. The sphere is

defined by the radius r and number of facets 𝑛 𝑓 . The rectangular cuboid is defined by the dimensions of the

sides x, y and z. The shapes are visualised in Figure 4.3.2. These shapes were selected because they are very

distinct from each other, so it is expected that the MMAE algorithm is able to correctly identify the true model.

(a) Hexagonal prism. s = 1.0466 m, h = 2.6199 m (b) Sphere. r = 1.0 m, 𝑛 𝑓 = 80 (c) Rectangular cuboid. x = 5 m, y = 2 m, z = 1 m

Figure 4.3.2: Shape models included in simple test case.

The MMAE algorithm is run three times, each time one of the three models is selected as the true model from

which measurements are generated. The MMAE weights over time for all three cases are shown in Figure 4.3.3.

For the cases where the hexagonal prism (Figure 4.3.3a) and the sphere (Figure 4.3.3b) are the true shape model

the MMAE algorithm is able to quickly find the correct true model. However, in the case where the cuboid is

the true model (Figure 4.3.3c) the algorithm incorrectly determines that the hexagonal prism is the true model.
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(a) (b) (c)

Figure 4.3.3: MMAE weights for simple test cases with different true shape model.

The reason the MMAE algorithm incorrectly determines the hexagonal prism to be the true model is explained

by the brightness measurements for each shape model in Figure 4.3.4. The brightness measurements for the

sphere are clearly very distinct from the other two, so it is expected that the MMAE algorithm can correctly

identify it. The brightness measurements for the other two are nearly identical. This makes it almost impossible

for the MMAE algorithm to distinguish between the two models, and it happens to favour the hexagonal prism.

(a) (b) (c)

Figure 4.3.4: Brightness measurements for the three shape models.

It is interesting that the measurements for the hexagonal prism and the cuboid are so similar, even though the

objects have a distinctly different shape. A clue behind this is given by the values of the apparent brightnesses.

For both shapes the values are relatively high, which means they have a low brightness in the sky. This is

caused by the specific geometry of the positions of the sun, observer and satellite during the time period of

the estimation. This is confirmed by shifting the simulation epoch back by 4 hours, giving the brightness

measurements in Figure 4.3.5.

(a) (b) (c)

Figure 4.3.5: Brightness measurements for the three shape models, simulation epoch 4 hours earlier.

The observation geometry is now different, leading to different brightness measurements for all three shapes.

Now the measurements for the hexagonal prism and the cuboid are very different from each other. The MMAE

weights for the three cases for this simulation epoch are shown in Figure 4.3.6. The MMAE algorithm is as

expected now able to correctly identify the correct true model in each case.
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(a) (b) (c)

Figure 4.3.6: MMAE weights for simple test cases with different true shape model, simulation epoch shifted 4 hours back.

Paper result replication
With the basic functionality of the MMAE algorithm verified, the next step is to try and replicate the results

obtained by Linares et al. [23], as the MMAE algorithm implemented is mostly based on their paper.

In the paper 50 different shape models are used, 25 regular polygon prisms and 25 rectangular cuboids. The

regular polygon prisms are either triangular, square or hexagonal. The dimensions of the polygon prisms are

defined by the s of the sides of either the triangle, square or hexagon and height h. The rectangular cuboids are

again defined by length, width and height, but for consistency with the paper they are now denoted by 𝑠1, 𝑠2

and h, respectively. To create 50 shapes they randomly generated the dimensions from a uniform distribution on

the interval [0.01, 5] m. The number of sides for the polygon prisms were randomly selected on the interval [3,

6], with any instance of five sides being set to four, as pentagonal prisms are not included. The dimensions of

the 50 models used can be found in the paper [23].

The true model used in the paper is one of the 25 polygon prisms, namely a hexagonal prism with the dimensions

s = 1.0466 m and h = 2.6199 m, which is why these dimensions were also used in the simple case. The MMAE

weights obtained in the paper are shown in Figure 4.3.7a. In their case the MMAE algorithm was able to correctly

identify the true hexagonal prism from the 49 other shape models. Figure 4.3.7b shows the weights for the case

where these results were attempted to be replicated. It can be seen that while the implemented MMAE algorithm

is also able to identify the correct shape model, the weight plots do not look identical. The implemented MMAE

algorithm finds the correct shape model much quicker than the algorithm in the paper does.

(a) MMAE weights from paper. (b) MMAE weights for replication attempt.

Figure 4.3.7: MMAE weights for 25 regular polygon prism and 25 rectangular cuboid shape models. Left plot obtained from Linares et al.

[23], right plot attempted replication of results.

There is no clear reason as to why these results differ from each other. Most likely it is caused by the differences

in the exact implementations of the algorithms. For example, in the implemented version for this thesis the

orbit and attitude states are propagated using Tudat, while in the paper this is not the case. These and other

differences have an effect on the overall estimation results. Still, it can be seen that the implemented MMAE

algorithm also finds the correct shape out of the model bank of 50 models, showcasing that it works as expected.
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While the results look good, it might be the case that the shapes used in the paper were tuned such that the

algorithm exactly found the correct shape model. Therefore, to further verify the capabilities of the MMAE

algorithm, another case was run with the same number of shape models, but with different randomly generated

dimensions. The dimensions are generated from the same intervals as in the paper. The dimensions of the

new polygon prisms and cuboids are given in Table 4.3.3. The same hexagonal prism was added as one of the

polygon prism, to again act as truth model for the estimation. In Table 4.3.3a it has replaced Prism 10.

Table 4.3.3: Dimensions of regular polygon prisms and rectangular cuboids used in successful result replication.

(a) Regular polygon prism number of sides and dimensions.

Prism # of Sides s [m] h [m]
1 6 4.9945 3.6032

2 6 4.7125 2.2873

3 6 3.3695 3.3989

4 6 2.9267 4.424

5 6 2.7632 4.777

6 6 2.6546 1.3485

7 6 2.4244 4.3458

8 6 1.4163 1.7505

9 6 1.3488 1.4997

10 6 1.0466 2.6199

11 4 3.2091 2.5259

12 4 2.8915 2.6896

13 4 2.09 0.1038

14 4 1.3626 4.6914

15 4 1.2478 0.9977

16 4 1.2076 2.9334

17 4 0.7221 0.1233

18 3 4.6387 2.8739

19 3 3.4742 3.2473

20 3 3.4196 2.5113

21 3 2.6869 0.6329

22 3 2.2566 4.933

23 3 2.2333 2.0019

24 3 1.919 0.653

25 3 1.8313 0.632

(b) Rectangular cuboid dimensions.

Cuboid s1 [m] s2 [m] h [m]
1 4.976 1.7099 2.6031

2 4.7939 2.3149 0.9233

3 4.7263 3.0607 2.5697

4 4.4159 1.983 3.4651

5 4.3825 3.2072 0.7348

6 3.7736 4.7121 2.0078

7 3.0962 2.1312 0.9224

8 2.9998 0.4546 1.8168

9 2.7188 3.5834 2.5

10 2.6196 2.5301 1.1105

11 2.1998 4.0259 0.7255

12 2.146 1.3382 1.2344

13 2.1407 4.7461 1.0894

14 2.1277 3.1094 1.767

15 1.7383 4.8529 2.9993

16 1.4658 0.6511 3.0736

17 1.021 4.5468 0.0216

18 0.876 1.7406 3.9317

19 0.6713 0.383 2.0789

20 0.6457 2.6036 0.8397

21 0.5733 3.6726 3.7491

22 0.539 4.2862 2.8323

23 0.4139 4.8817 2.3854

24 0.0917 1.5792 1.5757

25 0.0732 2.6599 2.0288

With these shape models a new estimation was performed. The weights for this estimation are shown in

Figure 4.3.8. For this case the algorithm was also able to identify the hexagonal prism as the true shape model,

showcasing that the MMAE algorithm also works for a model bank with different shapes than in the paper.

Figure 4.3.8: MMAE weights for case with new random generated shapes. The same hexagonal prism was used as truth model.
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The identification of the shape is not the only task of the MMAE algorithm. At the same time the attitude and

orbit states are estimated. To asses the capabilities of the algorithm on the state estimation, the estimation errors

for the case with the newly generated shapes are plotted. In Figure 4.3.9 the Euler angle attitude and rotational

velocity errors are shown, together with the 3𝜎 covariance bounds. Overall the MMAE algorithm is able to

estimate both the attitude and rotational velocities with low errors, bounded by the covariance bounds. However,

in the attitude plots for 𝜃1 and 𝜃3 between 30 and 40 minutes large error increases can be seen. While the

algorithm is able to converge to low errors again after these peaks, this result does require further investigation.

(a) Euler angle attitude error. (b) Rotational velocity error.

Figure 4.3.9: Attitude state errors for MMAE estimation with new shapes.

To explain the large error peaks the true and estimated attitude states are plotted in Figure 4.3.10.

Figure 4.3.10: True and estimated Euler angle attitude for MMAE estimation with new shapes.
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At the time of the large error peaks, between 30 and 40 minutes, there are indeed large differences between the

estimated and true attitudes for 𝜃1 and 𝜃3. While both attitude lines have an angle roll-over to the opposite sign,

the roll-over for the estimated states is delayed, leading to a divergence between the truth and estimation. After

a few minutes the algorithm is able to correct the attitudes and converge closely on the true attitudes again. For

𝜃3 it can be seen that a delay in angle roll-over compared to the truth happens again around 55 minutes, but this

causes lower errors than before. The reason for this is that the error values in Figure 4.3.9 are adjusted such that

they also fall within the [-180°, 180°] range.

There are multiple aspects that could contribute to the estimations having this delay in angle roll-over. The first

is that the states in the MMAE algorithm are fused from the estimations from all the shapes included in the

model bank. Even though the weights of the other models are very low at this point in the estimation, this could

have had an effect early on in the estimation, leading to the offset between the estimation and the truth.

Another aspect that could result in the differences is that shape used to simulate the measurements used in

the estimation, the hexagonal prism, is a very symmetric shape. This means that different attitude states can

produce very similar brightness measurements. Thus when the estimated attitude is close to the truth, but

not exactly equal, the predicted measurements would result in very similar values as the true measurements.

Because the measurement residuals are in such a case very low, the covariance values of the estimation are also

not increased by much, which is exactly what is seen Figure 4.3.9, where the covariance bounds only slightly

increase during the error peaks, while the error lines do cross these bounds. In the case of Figure 4.3.10 it can

be seen that for 𝜃1 the estimated attitude around 30 minutes is lower than the true attitude. The estimation is

then continued, causing the angle roll-over to occur later than in the true attitude. After this delayed roll-over

the algorithm is quickly able to correct the estimated attitude, most likely due to the predicted measurements

differing enough for the algorithm to register the estimated attitude is incorrect.

Even with this behaviour of the estimation it is clear that the MMAE algorithm is able to correctly estimate the

attitude states of the true shape. It also needs to be seen whether this is the case for the orbital states estimations.

The orbital position and velocity errors of the estimation are shown in Figure 4.3.11.

(a) Position errors. (b) Velocity errors.

Figure 4.3.11: Orbital state errors for MMAE estimation with new shapes.

It can be seen that while initially some of the errors are very large and outside of the covariance bounds, like for

𝑟𝑥 and 𝑣𝑥 , the algorithm is able to converge on the correct position and velocity states with lower errors. In

the position error plot it can be seen that the errors are essentially 0, and are only offset from the truth by the

random noise that is added to the angles and range measurements.



4.3. Multiple-Model Adaptive Estimation 41

Overall it has thus been shown that the implemented MMAE algorithm works as intended and expected, with it

being able to identify the correct shape model out of a model bank of 50 shape models of similar shape but with

different dimensions, and at the same time estimate the rotational and orbital states with low errors. There is

however one final aspect that needs to be discussed.

Up until now all the estimation performed in the thesis have included simulated range measurements for the

orbit estimation, next to angles measurements in the form of azimuth and elevation angles. However, in real

life apparent brightness measurements are most often made using passive optical sensors. These sensors only

measure the apparent brightness and the azimuth and elevation angles from the sensor. Therefore it needs to

be investigated if the MMAE algorithm is still able to perform without simulated range measurements. For

this the same estimation with the newly generated shapes was performed, but with only brightness, azimuth

and elevation measurements simulated. It was found that the algorithm was still able to find the correct shape

model, but the estimation results were different from those in Figure 4.3.9 and Figure 4.3.11. To show this only

the orbital position and velocity states are shown, given by Figure 4.3.12.

(a) Position errors. (b) Velocity errors.

Figure 4.3.12: Orbital state errors for MMAE estimation with new shapes, without range measurements.

The position errors continuously increase throughout the estimation, completely diverging from the true orbital

states by hundreds of km in all directions. The orbital velocity errors are also far larger than before.

While attempts were made to figure out why the orbit estimation results are so much worse without range

measurements, due to the limited time available for the thesis it was decided to continue the research by keeping

the range measurements in the simulations. This means all the other estimations performed in this thesis include

simulated measurements for the apparent brightness, azimuth, elevation and range.

This approach is justified by the fact that the files with real measurements of real satellites that were used in the

validation in Section 6.4 also contain range data for each measurement. This range data was added after the

measurements were made using TLE data. It can therefore be assumed that for estimations of real satellites this

range data can be acquired through TLEs. Since the objects for which the methods implemented in this thesis

are real satellites, the inclusion of simulated range measurements in the estimations is thus a valid approach to

the problem of shape characterisation and state estimation through light curves.

Conclusion
Overall it can be concluded that the implemented MMAE algorithm works as expected. It is able to identify the

true shape out of a model bank of 50 shapes, and simultaneously estimate attitude and orbit states with lower

errors. Next new methods for shape characterisation and state estimation are explored.
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4.4. Variable-Structure Multiple-Model estimation
The previous section covered a method where multiple models were run simultaneously in order to characterize

object shape and estimate attitude and orbit states. In this method the model bank used stays the same

throughout the estimation. This means the method is a fixed-structure multiple-model (FSMM) estimation

method. While the method proved capable of correctly identifying model shapes and providing accurate state

estimates, such an FSMM method has a few downsides.

The first is that in an FSMM method like MMAE all models in the model bank are run at every time step,

including models that after a certain time have low weights and are thus unlikely to be the true model. Running

all these models is computationally expensive, and not efficient. Secondly, determining which models need to

be included in the model bank is a non-trivial task. If too few models are used the true model might not be in

the model bank, but if too many models are included the algorithm can become overwhelmed by the amount

of options, leading to deteriorated results, for example because the algorithm is not able to converge on any

one model, or because the estimations of the different models are so different that the fused state estimation

diverges from the true states. The final downside is that the model bank needs to be determined before running

the estimation, which restricts the search for the true model to only models included in the model bank.

Variable-Structure Multiple-Model (VSMM) estimation is a method of multiple-model estimation that has the

potential to overcome these downsides. The word variable means that the model bank is not fixed during the

estimation, but can vary based on different rules and circumstances. Two types of VSMM method are explored

in this section, called Model-Group Switching and Model Generation.

4.4.1. Model-Group Switching
As the name suggests, in the Model-Group Switching (MGS) method of VSMM estimation there are different

predetermined groups of models. The method is considered variable because during the estimation the

algorithm switches between model groups, depending on the measurements and certain rules.

There are different options for the way an MGS implementation can choose to switch between groups. The two

main options are so-called ’soft switching’ and ’hard switching’. In soft switching the assumption is that at any

time each group has a certain probability of having one of its models being correct, and the overall estimate is a

probabilistically weighted sum of all model-group estimates [13]. With hard switching only one model-group

is run at a time. The MGS method implemented for this thesis uses hard switching. This makes the method

applicable to the shape characterisation problem, as the objects which are characterised do not change shape

throughout the estimation, and only one shape will be the true shape per estimation.

Basics
The implementation of the MGS algorithm for the object characterisation and attitude estimation problem is

based on the chapter on VSMM in the book by Li, Bar-Shalom and Blair [13], and was adapted to work for the

shape characterisation problem. The estimation starts with one central group, called M0, consisting of models

of different distinct shape types, for example a sphere and a hexagonal prism. Each shape type in the central

group has a corresponding separate model group, consisting of models of the same shape type with different

dimensions, an example for which is shown in Figure 4.4.1 below.

(a) Group of sphere models. (b) Group of hexagonal prism models.

Figure 4.4.1: Example of different model groups in MGS method.
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The models in the central group are input into an MMAE algorithm, run for a single time step at a time. When

measurements are received, the MGS algorithm decides if and which one of the specific shape type groups

needs to be activated, based on the switching rules, which will be discussed shortly. If a new group is activated,

the models of this group are run in the MMAE algorithm. It might be that the wrong group is activated, and

that the true shape is in another group. The algorithm can switch to the correct model group, but only by first

switching back to the central model. Direct switching between other model groups is not possible. The key

aspect that makes this switching work is that all the models in the central group are also included in their shape

type model group.

The orbit and attitude states are continuously estimated by the MMAE runs, outputting the weighted state

estimation for the models active at each time step. In the end the MGS algorithm outputs the weights of the

models in each model group that was activated, as well as the state estimations with corresponding covariance

matrix. The goal for the algorithm is to activate the model group of the right shape type, and identify the model

with the dimensions matching that of the true shape model.

Switching rules
The switching rules are based on the likelihoods 𝐿𝑘 and weights 𝑤𝑘 of the models active at time k, which are

output by the MMAE algorithm. The likelihoods L are calculated with Equation 4.3.3 and the weights 𝑤 with

Equation 4.3.5. With the central group being 𝑀0, the other model groups are called 𝑀 𝑗 , with j going from 1

until the number of model groups n. The models in the central group are called 𝑚 𝑗 , with each model 𝑚 𝑗 being

the model in 𝑀 𝑗 linking 𝑀 𝑗 to 𝑀0. This means model 𝑚1 is present in both group 𝑀0 as group 𝑀1. Lastly, there

is a set of thresholds, 𝑇0 and 𝑇1, that determine whether a group is activated or not.

The following sets of logic are implemented to determine which groups are activated at which times:

• Activate group 𝑀 𝑗 while 𝑀0 is active, if both of the following conditions for the likelihood and weights are

satisfied:

𝐿
(𝑗)
𝑘

= max

𝑚𝑙∈𝑀1

𝐿
(𝑙)
𝑘
, 𝑤

(𝑗)
𝑘

> 𝑇0 (4.4.1)

For example, if model 𝑚3 has the highest likelihood of group 𝑀0 and its weight is higher than threshold

𝑇0, then group 𝑀3 is activated.

• Activate group 𝑀0 while 𝑀 𝑗 is active, if both of the following conditions for the likelihood and weights are

satisfied:

𝐿
(1)
𝑘

= max

𝑚𝑙∈𝑀𝑗

𝐿
(𝑙)
𝑘
, 𝑤

(1)
𝑘

> 𝑇1 (4.4.2)

For example, if model 𝑚2 has the highest likelihood of group 𝑀2 and its weight is higher than threshold

𝑇1, then group 𝑀0 is activated.

The mangitude of thresholds 𝑇0 and 𝑇1 thus determines how difficult it is to switch from group 𝑀0 to a group

𝑀 𝑗 , or switch back from a group 𝑀 𝑗 to 𝑀0, respectively. For the initial implementation of the MGS algorithm

both thresholds are assigned a value of 0.5.

Additional rules
There is a final set of rules in the algorithm that further regulate which model groups are activated and fed

into the MMAE algorithm for the next time step, 𝑘 + 1. Let the model group active at time 𝑘 be 𝑀𝑘 . When

the switching rules Equation 4.4.1 or Equation 4.4.2 determine a new model group is activated, the models in

this group are first put into an MMAE run for time 𝑘. Here the linking model that is in both model groups

is not input in the MMAE algorithm again, so this model is only run once. Defining the initial active model

group to be 𝑀𝑜 = 𝑀𝑘 , and the newly activated group 𝑀𝑎 , weights and marginal likelihoods of model groups

𝑀𝑙 = 𝑀𝑜 , 𝑀𝑎 can be calculated using Equation 4.4.3.

𝑤
𝑀𝑙

𝑘
=

∑
𝑚𝑖∈𝑀𝑙

𝑤
(𝑖)
𝑘

(4.4.3a)
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(𝑖)
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(4.4.3b)
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The final set of activation rules determines which models group will be active in the next time step, defined

to be group 𝑀𝑘+1. These rules use an additional set of thresholds, namely 𝑇𝑤
1

, 𝑇𝑤
2

, 𝑇𝐿
1

and 𝑇𝐿
2

. Again, for the

initialisation of the MGS algorithm these thresholds are all assigned a value of 0.5. The final activation rules are

as follows:

• If

𝑤
𝑀𝑎

𝑘

𝑤
𝑀𝑜

𝑘

< 𝑇𝑤
1

or

𝐿
𝑀𝑎
𝜅

𝐿
𝑀𝑜
𝜅

< 𝑇𝐿
1

(4.4.4)

is true, terminate group 𝑀𝑎 . Set 𝑀𝑘+1 = 𝑀𝑜 .

• If

𝑤
𝑀𝑎

𝑘

𝑤
𝑀𝑜

𝑘

> 𝑇𝑤
2

and

𝐿
𝑀𝑎
𝜅

𝐿
𝑀𝑜
𝜅

> 𝑇𝐿
2

(4.4.5)

is true, terminate group 𝑀𝑜 . Set 𝑀𝑘+1 = 𝑀𝑎

• If neither are true, fuse the state estimates, covariances and weights of both model groups. Set 𝑀𝑘+1 to the

union of both model groups, 𝑀𝑘+1 = 𝑀𝑜 ∪𝑀𝑎 .

The last rule means that it is possible to run central group 𝑀0 and a group 𝑀 𝑗 at the same time. This is however

undesirable behaviour, as this increases the amount of models run at the same time. The rule is left to catch the

cases where neither Equation 4.4.4 nor 4.4.5 are true.

Algorithm summary
For clarity all the steps in the MGS algorithm are summarized in Table 4.4.1 below.

Table 4.4.1: Summary of steps in MGS algorithm.

Step Description
0 Set 𝑀𝑘 = 𝑀0

1 Run MMAE with group 𝑀𝑘

2 Check Equation 4.4.1 and 4.4.2 if new group is activated. If so, set new group to be 𝑀𝑎 .

If not, output state estimate, covariance and weights and return to Step 1.

3 If group 𝑀𝑎 is activated, run MMAE with 𝑀𝑎 , excluding the model that is in both 𝑀𝑘

and 𝑀𝑎 .

4 Set 𝑀𝑜 = 𝑀𝑘 . Calculate 𝑤
𝑀𝑙

𝑘
and 𝐿

𝑀𝑙

𝑘
for groups 𝑀𝑙 = 𝑀𝑜 , 𝑀𝑎 using Equation 4.4.3.

5 If Equation 4.4.4 is true, terminate group 𝑀𝑎 . Set 𝑀𝑘+1 = 𝑀𝑜 .

6 If Equation 4.4.5 is true, terminate group 𝑀𝑜 . Set 𝑀𝑘+1 = 𝑀𝑎 .

7 If neither are true, fuse state estimates, covariance and weights of both model groups.

Set 𝑀𝑘+1 = 𝑀𝑜 ∪𝑀𝑎

8 Set 𝑀𝑘 = 𝑀𝑘+1 and return to step 1.

The MGS algorithm can be considered a VSMM method because the active model bank changes throughout the

estimation. However, in essence the method still works with a fixed model bank, as the different models in the

model groups need to be determined before the start of an estimation. The next method, Model Generation, can

be considered truly variable in this sense.
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4.4.2. Model Generation
The Model Generation method, shortened to MGen, that is implemented for this thesis also starts with a central

group of models of different shape type, similar to the MGS method. The difference is that the MGen algorithm

does not switch to a model group of a certain shape type, but generates new models of that shape type from

scratch. This makes this method truly variable, as the total model bank used in an estimation can not be

determined beforehand, and will be different for each estimation.

Generation algorithm
There are different ways a MGen algorithm could be implemented. For this thesis a simple algorithm was

developed, mainly based on the model likelihoods previously encountered in the MGS algorithm. First a certain

likelihood threshold 𝑡𝐿 is set. The MGen algorithm then starts by running an MMAE algorithm with the central

group 𝑀0, consisting of models 𝑚 𝑗 , with j ranging from 1 to the number of models in the central group n. When

measurements are received, the algorithm checks whether any of the model likelihoods exceed 𝑡𝐿. If multiple

models exceed the threshold, the model with the maximum likelihood is selected. For the selected model new

models are generated by increasing and decreasing the dimensions of the model by fixed increments. This

means if a model is defined by 2 dimensions, like the hexagonal prisms with side length s and height h, four new

models are generated, and are designated 𝑚 𝑗0 up to and including 𝑚 𝑗3. This process is visualised in Figure 4.4.2.

Figure 4.4.2: Diagram of how MGen algorithm generates new models starting from model 𝑚𝑗 with dimensions s and h.

These new models are added to the model bank, and are run in the MMAE algorithm for the next time step. The

process then starts again, with the model that exceeds the likelihood threshold becoming the next center model

in the model generation as shown in Figure 4.4.2.

Model removal
If this process is left unchecked it is possible that new models are continuously added to the model bank,

causing it to grow very large. Additionally, there is a chance that duplicate models are added to the model

bank, like models 𝑚 𝑗01 and 𝑚 𝑗10, as first adding Δ𝑠 and then Δℎ to model 𝑚 𝑗 is the same as first adding Δℎ and

then Δ𝑠. This is of course undesired behaviour. To avoid duplicate models being added to the model bank the

dimensions of each newly generated model are checked against all the models that are in the current model

bank. If a newly generated model has the same dimensions, it is not added to the model bank.

To avoid the continuous growing of the model bank the following system was decided upon. Once a model has

exceeded the threshold 𝑡𝐿 and new models are added to the model bank, the new model bank is run in the

MMAE algorithm. Any models that have likelihoods below the threshold after this are removed from the model

bank. Because the goal is to generate models that fit the measurements better, it is likely that after a while the

model bank consists only of models exceeding the threshold, but still grows too large. Therefore an additional

rule that was added is that if the number of models is larger than 10, the threshold 𝑡𝐿 attains the value of the

largest model likelihood at that time. If however the number of models then drops below 5, the threshold value

is divided by 10.

In theory this should only leave models in the model bank that fit better to the measurements, and thus have high

likelihoods. This method of model removal is quite simple, and it will be investigated during the verification of

the MGen algorithm whether this works sufficiently, or if changes to the algorithm are required.
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4.4.3. Verification
To verify that the MGS and MGen algorithms work as intended, and are able to correctly identify object shape

and estimate attitude and orbit states, both models are tested on the same test case as the MMAE algorithm

was verified with in Subsection 4.3.4. The same orbit and attitude states, initial covariance matrices, BRDF

parameters and time steps are used as this test case. One constraint that was added was a lower limit on the

apparent brightness magnitude of 20 on the measurements simulated, as this is a realistic limiting magnitude

for ground-based telescopes [25].

MGS
For the MGS algorithm a central group M0 is created, consisting of four differently shaped models. The model

shapes are hexagonal prism (m1), sphere (m2), triangular pyramid (m3) and cuboid (m4). Like the prisms

the triangular pyramid is defined by the length of the base sides s and height h. The central models and their

dimensions are given in Figure 4.4.3.

(a) Hexagonal prism m1. s = 2.0 m, h = 2.5 m (b) Sphere m2. r = 2.5 m, 𝑛 𝑓 = 20

(c) Pyramid m3. s = 4.0 m, h = 4.0 m (d) Cuboid m4. x = 1.5 m, y = 2.5 m, z = 3.0 m

Figure 4.4.3: Shape models in central group of MGS verification.

Each model in the central group has a corresponding model group consisting of 4 additional models of the

same shape with different dimensions. These shape model groups also contain the central group model of that

shape. Group M1 thus contains 5 hexagonal prism models with different dimensions, with m1 being the prism

that is in the central group. The dimensions of the 4 model groups are given in Table 4.4.2.
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Table 4.4.2: Model groups used in MGS verification.

(a) Group M1 - Hexagonal prisms

Model s [m] h [m]
m1 2.0 2.5

m11 0.5 2.0

m12 2.0 0.5

m13 1.5 1.0

m14 0.5 4.5

(b) Group M2 - Spheres

Model 𝒏 𝒇 r [m]
m2 20 2.5

m21 20 1.5

m22 20 2.0

m23 20 3.0

m24 20 4.0

(c) Group M3 - Triangular pyramids

Model s [m] h [m]
m3 4.0 4.0

m31 4.0 2.0

m32 4.0 8.0

m33 1.0 4.0

m34 1.0 1.0

(d) Group M4 - Cuboids

Model x [m] y [m] z [m]
m4 1.5 2.5 3.0

m41 2.5 2.5 3.0

m42 2.5 0.5 3.0

m43 1.0 1.5 4.0

m44 1.5 1.5 1.5

For the verification one model from each group is selected as the truth model as a test case. The MGS algorithm

then has to activate the right model group and identify the model with the correct dimensions, as well as

estimate the attitude and orbit. The weights for the cases where models m13, m24, m32 and m43 are the true

shape model are shown in Figure 4.4.4a, 4.4.4b, 4.4.5a and 4.4.5b, respectively. For all cases initially group M0 is

active. As soon as measurements are available the algorithm switches to a different model group. Because of

this all plots of M0 weights are left out, as these do not provide any insight.

(a) Weights of group M1 for case with m13 as truth. (b) Weights of group M4 and M2 for case with m24 as truth.

It can be seen that in all cases the MGS algorithm activates the correct model group and identifies the true

shape model. The outlier in this is the case where spherical model m24 is used as the truth. Here the algorithm

first incorrectly activates group M4. After a short while the model corrects this and activates group M2, and

immediately finds the true shape model.
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(a) Weights of group M3 for case with m32 as truth. (b) Weights of group M4 for case with m43 as truth.

Next to finding the right shape model the MGS algorithm needs to estimate the attitude and orbit states of the

different objects. The attitude error for the four different estimations are shown in Figure 4.4.6a, 4.4.6b, 4.4.7a

and 4.4.7b.

(a) Attitude error for case with m13 as truth. (b) Attitude error for case with m24 as truth.

For the cases where the algorithm only activates the correct model group the attitude errors converge nicely

around 0 error, bounded by the uncertainty bounds. For the m24 case the errors start low but significantly

grow towards the end of the estimation. This shows that while the algorithm did find the correct shape model

in the end, the act of first activating the wrong model group comes at the cost of the attitude estimation.

Additionally, model m24 is a spherical model, which means it is highly symmetric. This could also make it

difficult for the algorithm to properly estimate the attitude, since many attitude states would produce very

similar measurements.
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(a) Attitude error for case with m32 as truth. (b) Attitude error for case with m43 as truth.

Another aspect the attitude error plots of m13, m32 and m43 have in common is a spike in the errors for 𝜃1 and

𝜃3 between 30 and 40 minutes runtime. This spike can be explained by looking at the plot of the Euler angle

states next to the rotational velocity error plots in Figure 4.4.8. The 𝜔2 error is negative, meaning this estimated

rotational velocity is larger than the truth. The algorithm therefore thinks the model spins faster than it actually

does, causing it to reach the angle overshoot points in Figure 4.4.8a too soon, leading to the error spikes.

(a) Euler angle states over time. (b) Rotational velocity errors.

Figure 4.4.8: Euler angle states and rotational velocity errors for m13 truth case.
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Finally, it needs to be checked whether the orbit estimation of the MGS algorithm also conforms to expectations.

The orbital position and velocity error plots for the case with m13 as truth model are shown in Figure 4.4.9.

(a) Orbital position errors. (b) Orbital velocity errors.

Figure 4.4.9: Orbital position and velocity errors for m13 truth case.

It is clear that the orbit estimation for the MGS algorithm works as well as that of the MMAE algorithm. At

times with measurements the errors for both the positions and velocities are near 0. In between measurement

times the uncertainty and the errors slowly increase, converging toward 0 when measurements become available

again.

MGen
For the MGen algorithm only the central group needs to be defined. Other models are then generated from

the models in the central group, based on the likelihood threshold set. Just like for the MGS verification four

different shape models are included in the central group. However, instead of a sphere model a triangular

prism is included. This was done because the sphere only has one dimension it can vary, its radius, while for

the triangular prism the side length s and height h can be varied. This makes it possible to more extensively

test the MGen algorithm. The central group hexagonal prism, triangular pyramid and cuboid have the same

dimensions as in Figure 4.4.3. The triangular prism in the central group has dimensions s = 2.0 m and h = 4.0 m.

To generate measurements it was decided to have the same truth shape models as in the MGS verification, m13

for the hexagonal prism, m32 for the triangular pyramid and m43 for the cuboid. For the triangular prism the

true model was set to have dimensions s = 4.0 m and h = 8.0 m.

The goal for the MGen algorithm is to find the correct models by generating new models and converging on a

model with the right shape and matching dimensions. The model weights of the four different truth cases are

shown in Figure 4.4.10. Since a lot of different models are generated during the estimation, only models that

receive a model weight larger than 0.5 at any point during the estimation or have a weight larger than 0.05 at the

final time step are included in the legends. The different model shapes are abbreviated as hex, tri, pyr and cub for

the hexagonal prisms, triangular prisms, triangular pyramids and cuboids, respectively.

It can be seen that only for the case with the hexagonal prism (Figure 4.4.10a) and the cuboid (Figure 4.4.10d) as

truth the algorithm finds the correct shape type. In both cases it is however not able to find the exact correct

dimensions of the true models, but it gets close for most dimensions. The algorithm shows that it is not confident

in any single model, as at the final timestep multiple models have a higher weight, with the highest weights

being 0.5 for two separate models. This results stands in contrast to those found for the MMAE and MGS

algorithms, with these algorithms converging on a single model each time.
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(a) Case with m13 as truth model. (b) Case with triangular prism (s = 3.0 m, h = 2.5 m) as truth model.

(c) Case with m32 as truth model. (d) Case with m43 as truth model.

Figure 4.4.10: Weights for MGen algorithm of 4 different truth cases.

For the triangular prism (Figure 4.4.10b) and pyramid (Figure 4.4.10c) truth cases the MGen algorithm is not

able to find the correct shape type, and subsequently also not the correct dimensions. The reason the algorithm

only finds cubesats for the triangular prism case and triangular prisms for the pyramid case is that models that

score below the likelihood threshold are removed from the model bank, because otherwise the model bank

would continuously grow as new models are generated. This means that if the correct shape type does not score

a high enough likelihood, it is removed, and therefore new models of this shape are also not generated.

One way to avoid this could be to never remove the central group models. The results for this will be shown

later. First the attitude errors of the above estimations are examined, which are shown in Figure 4.4.11. It can be

seen that the attitude errors for all cases end up within the uncertainty bounds, and are close to 0 error, even for

the cases where the algorithm finds the wrong shape type. The reason this happens is that the measurement

plots of all the different shapes look very similar for this combination of orbits and attitude. Since the different

shapes all start with the same initial guess, the algorithm can estimate the attitude states reasonably well, even if

the wrong shape type and dimensions are identified.
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(a) Case with m13 as truth model. (b) Case with triangular prism (s = 3.0 m, h = 2.5 m) as truth model.

(c) Case with m32 as truth model. (d) Case with m43 as truth model.

Figure 4.4.11: Attitude errors for MGen algorithm.



4.4. Variable-Structure Multiple-Model estimation 53

As previously mentioned, a possible solution to the MGen algorithm not being able to identify the correct shape

type might be to change the algorithm so that the central models are never removed, even if their likelihoods fall

below the threshold. This makes it possible for the algorithm to select the right shape type later in the estimation,

and generate new models of the correct shape type. Adding this change to the algorithm while leaving the other

workings exactly the same, and running the same estimation cases leads to the weight plots in Figure 4.4.12.

(a) Case with m13 as truth model. (b) Case with triangular prism (s = 3.0 m, h = 2.5 m) as truth model.

(c) Case with m32 as truth model. (d) Case with m43 as truth model.

Figure 4.4.12: Weights for MGen algorithm without removing central models.

It can be seen that the results are vastly different from those in Figure 4.4.10. Overall the results are not better

than before. For example, for the case where the hexagonal prism was the true model, the MGen algorithm

ended with four hexagonal prisms in Figure 4.4.10a. Now in Figure 4.4.12a no hexagonal prisms are found.

Instead, only the central models of the three other shape types are assigned high weights during the estimation.

For the other cases the results also do not improve compared to those of Figure 4.4.10.
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Conclusion
It was shown that the MGS algorithm works as expected, with the algorithm being able to find the right models

for all test cases. The attitude errors of the estimations are low except for the case with the sphere model as truth,

where initially the wrong group is activated. However, it would be possible to rerun the attitude estimation

with only the true model, so these errors could still be decreased for this case.

The MGen algorithm does not fully work as intended. The algorithm does not find the correct shape type in all

cases, and thus also not the right shape dimensions. When the right shape type is found the algorithm gets

closer to the right dimensions, but is not able to converge exactly on the correct dimensions. Changing the

algorithm so the central models are never removed only made the results worse for all cases, so the original

algorithm will be used in the remainder of the thesis.

In summary, the implemented MGS and MGen algorithm demonstrate that VSMM estimation is a viable

technique that is able to a certain extent to correctly identify the shape and estimate the attitude of space objects.

While the algorithms perform with different quality of results, both will be included in the testing and analysis

of the LEO test objects defined in Chapter 3. In the next chapter it will be explained how the performance of

these algorithms will be tested on these realistic test cases, where they will also be compared to the MMAE

algorithm, which has previously been used in literature for the attitude estimation and shape characterisation

problem. This testing will be the base on which the research questions drafted in Chapter 2 will be answered.



5 Testing setup

Now that the different algorithms mentioned in Chapter 4 are implemented their performance can be tested.

The goal of this testing is to create more insight into the workings of these algorithms, with the goal to answer

the research questions. As mentioned previously in Chapter 3 it was decided to test the algorithms on different

LEO satellites. This is done because the majority of space debris is present in LEO, and therefore it is important

to test the algorithms on this orbit regime, as this is where they can make the biggest impact. In this chapter the

ways these algorithms will be tested and analysed are discussed. First in Section 5.1 the test cases on which the

algorithms will be run are defined. In Section 5.2 the subsequent testing strategy is highlighted.

5.1. Test cases
First the different test cases need to be defined. The aspects that need to be set up are how the test objects are

modelled in order to simulate measurements, in terms of object shape and reflectivity coefficients of their facet

surfaces. The other parameters that are required to set up the simulations are also defined.

5.1.1. Test object shapes
The objects for which light curve measurements need to be simulated were introduced in Section 3.1 and are:

CryoSat 2, Swarm A/B/C, BlueWalker 3 and ACS3. As seen in the methodology chapter, the method to generate

these light curves requires the object to be divided into facets. The light reflected off these facets towards the

observer is then summed over all facets and the apparent brightness is calculated. It is possible to model any

object accurately, as long as enough facets are used. However, it was decided to only model the test objects based

on the overall larger structure shape, and not to full detail. There are two reasons behind this decision. The first

is that it is difficult to find the exact dimensions of all the different parts of these satellites, as this information

is not readily available to the public. The second is that the shape of a light curve is dominated by the light

reflected off large surface areas. It is therefore also not necessary to model the objects to the smallest detail, as

long as the large surface areas match those of the real objects closely.

CryoSat 2
The x-y-z dimensions of the spacecraft are 4.6 m x 2.34 m x 2.20 m.

1
However, the satellite is not shaped like

a box, as can be seen in Figure 5.1.1a. It was decided to model the satellite as a triangular prism. This was

done because the MGS and MGen algorithms work by having models of the same shape type with different

dimensions. In this way the CryoSat shape model can be included in the triangular prism model group. The

triangular prism model has dimensions s = 2.30 m and height h = 4.60. The simplified CryoSat shape model is

shown in Figure 5.1.1b.

(a) Render of complete satellite. (b) Simplified shape model.

Figure 5.1.1: CryoSat 2 shape model compared to real satellite.

1https://www.eoportal.org/satellite-missions/cryosat-2#spacecraft. Accessed on 26-02-2025.
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Swarm satellites
The Swarm satellites are all identically shaped, consisting of a main body and a trailing boom at the end, as

shown in Figure 5.1.2a. The x-y-z dimensions of the satellite main body are 5 m x 1.5 m x 0.85 m.
2
. Seeing as the

boom is very slender, it was assumed to not contribute much to the apparent brightness of the satellites, and is

therefore not modelled. Furthermore, the satellite is tapered at the back. For simplicity it was decided to also

model this satellite as a triangular prism. This shape is slightly too small at the front, but too large at the back,

so these shortcomings cancel each other out, making it a good approximation to use in the simulations. The

modelled dimensions are s = 1.5 m and height h = 5.0 m. The modelled shape is shown in Figure 5.1.2b.

(a) Render of two Swarm satellites. (b) Simplified shape model.

Figure 5.1.2: Swarm model compared to real satellite.

BlueWalker 3
The BlueWalker 3 satellite shape is very simple, consisting of a central cubesat surrounded by a very large

communication array of 64 m
2
. This large surface area dominates the apparent brightness of the satellite.

Because of this the satellite is simply modelled as a large square plate with 8 m sides. Since no data could be

found on the thickness of the array, it is assumed to be 0.1 m thick. The shape model is shown in Figure 5.1.3a.

ACS3
This satellite also has a simple shape, consisting of a small central cuboid with a large square solar sail with sides

of 9 m. Since the large surface area of the solar sail will dominate the apparent brightness, the satellite is also

modelled only as a flat plate. The sail is however much thinner than the communication array of BlueWalker 3,

so the thickness is assumed to be 0.01 m. The model is shown in Figure 5.1.3b.

(a) BlueWalker 3 model. (b) ACS3 model.

Figure 5.1.3: Shape models of BlueWalker 3 and ACS3 satellites.

2https://www.eoportal.org/satellite-missions/swarm#space-segment-concept. Accessed on 26-02-2025

https://www.eoportal.org/satellite-missions/swarm#space-segment-concept
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5.1.2. Reflectivity coefficients
One aspect that needed to be determined for all models was the value of the BRDF coefficients, in particular

the specular and diffuse coefficients 𝑅spec and 𝑅diff. These coefficients have a large impact on the shape of the

light curve, with high specular coefficients leading to more sharp brightness peaks but overall lower apparent

brightness, while high diffuse coefficients lead to less sharp peaks but overall higher brightness. The different

facets of the models do not all have the same coefficients in reality, as some surfaces will be covered with solar

panels, which reflect light more specularly, while other surfaces will reflect light more diffusely.

The information of the reflectivity coefficient values of the real satellites is not readily available, but also not

necessary. This is because the shape of the light curve is what holds the most information about the attitude

states, meaning the location and steepness of peaks and overall behaviour of the curve, while the actual

brightness values matter less. This means that the difference in reflectivity coefficients between the different

surfaces is more important than the actual values themselves. Therefore it was decided to assign values of 0.5 for

both coefficients to facets which are any arbitrary surface of a satellite, while solar panels are assigned a specular

coefficient 𝑅spec = 0.9 and diffuse coefficient 𝑅diff = 0.1. The exception to this is the solar sailing satellite ACS3.

For this satellite the reflectivity coefficients were found, having a specular reflectivity coefficient of 0.74 on one

side of the sail, and 0.23 on the other side [26].

5.1.3. Model bank
The full model bank used in the testing consists of 24 models, for the MGS algorithm divided into 6 model

groups of different shape types, consisting of 4 models per group. The central group for the MGS and MGen

algorithm therefore consists of 6 models of different shape type. The different shape types of the model groups,

as well as the dimensions of the models within each group, are given in Table 5.1.1. The dimensions of all the

models were selected so that in each model group there is a lot of variation between the different models.

Table 5.1.1: Model group dimensions used in testing.

(a) Group M1 - Triangular prisms

Model s [m] h [m]
m1 3.0 8.0

m11 4.0 4.0

m12 1.5 5.0

m13 2.3 4.6

(b) Group M2 - Spheres

Model 𝒏 𝒇 r [m]
m2 50 1.0

m21 50 0.5

m22 50 2.0

m23 50 4.0

(c) Group M3 - Flat plates

Model x [m] y [m] z [m]
m3 0.5 6.0 6.0

m31 0.5 4.0 4.0

m32 0.1 8.0 8.0

m33 0.01 9.0 9.0

(d) Group M4 - Cuboids

Model x [m] y [m] z [m]
m4 4.0 2.0 4.0

m41 5.0 5.0 5.0

m42 4.0 6.5 2.0

m43 2.0 2.5 8.0

(e) Group M5 - Rocket bodies

Model r [m] 𝒉cyl [m] 𝒉cap [m]
m5 1.85 8.9 1.85

m51 1.5 9.0 1.0

m52 0.75 5.0 1.125

m53 2.7 4.8 2.7

(f) Group M6 - Box-wing satellites

Model x [m] y [m] z [m] 𝒏sp 𝒘sp [m] 𝒉sp [m]
m6 4.0 3.0 5.0 2 10.0 2.0

m61 2.8 0.1 4.6 1 8.0 2.8

m62 2.0 2.0 6.5 2 8.0 2.8

m63 4.0 3.0 5.0 1 15.0 4.0

There are two reasons the sphere, cuboid, rocket body and box-wing satellite groups are included in the

simulations. The first is that all these object types are present in LEO, and could be objects that need to be

characterised. Therefore it makes sense to include these groups now, so the testing mimics how the algorithms

could be used in a real-life scenario. The second reason is that these shapes types are all distinct from each other,

so the algorithms should be able to distinguish between them and identify the true shape and dimensions.

To further increase the realism of the simulations, it is assumed that the cuboids have two sides covered in solar

panels, similar to how real cuboid satellites have sides covered in solar panels. It was decided to select the

facets facing in the positive and negative y-direction of each cuboid for this. This means these facets have BRDF

coefficients 𝑅spec = 0.9 and 𝑅diff = 0.1, as mentioned previously.
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Lastly it needs to be explained how the box-wing satellite shapes are defined. The box part of these shapes are

just cuboids, defined by their x-y-z dimensions. Next the number of solar panels 𝑛sp can be set to 1 or 2. If this

number is 2, solar panels are added to the center of the facets facing in the positive and negative x-direction. If

𝑛sp is 1 only a solar panel to the center of the positive x-facing facet is added. The solar panels are assigned no

thickness, only a width 𝑤sp in x-direction and height ℎsp in z-direction. An example of both a model with two

solar panels (m6) and a model with only one panel (m63) are shown in Figure 5.1.4.

(a) Box-wing model m6 with two solar panels. (b) Box-wing model with one solar panel.

Figure 5.1.4: Two box-wing satellite shape models, with 𝑛sp = 2 and 𝑛sp = 1. Cuboid shown in red, solar panel in blue.

The solar panels consist of two facets each, one facing in the positive y-direction and the other in the negative

y-direction. The facets facing in the positive direction were chosen as the front of the solar panels, and are

therefore assigned coefficients 𝑅spec = 0.9 and 𝑅diff = 0.1. The negative facing facets are assigned equal

coefficients of 0.5, as it is assumed the backsides are not as specularly reflective as the front.

5.1.4. Simulation parameters
Next to modelling the different objects, the simulation parameters of the test cases need to be defined. These

parameters are the spin cases on which the algorithms will be tested, the initial guess that is used at the start of

the simulations and the dates on which the simulations performed.

Spin cases
Since space debris can have any attitude state possible, it is necessary to test the performance of the algorithms

on different attitude states. For this three distinct cases were made, named Nadir pointing, Single-axis spin
and Tumbling. The first is a case where the object has no body-axis rotational velocity relative to the orbital

frame, and is therefore in a nadir pointing attitude state. This is a common attitude state for active satellites, and

is therefore a relevant case to examine. The next case is where the object has a rotational velocity along one of its

body axes. In the last case the object is given a rotational velocity along all three body axes, causing the object to

tumble through space. For all three cases the objects are given an initial Euler 313 rotation of 10° on all three

Euler angles. The subsequent rotational velocity values for each spin case are given in Table 5.1.2 below.

Table 5.1.2: Body-axis rotational velocity values for different spin cases.

Spin case 𝝎1 [rad/s] 𝝎2 [rad/s] 𝝎3 [rad/s]
Nadir pointing 0.0 0.0 0.0

Single-axis spin 0.1 0.0 0.0

Tumbling 0.1 0.1 0.1

Initial guess
One of the research questions that these test cases will try to answer is RQ-1: What is required for the initial guess
to ensure good convergence of estimation? This question can not be analysed without a starting point. As a start the

first simulations are given an initial guess that is not too far from the true states, so that convergence is likely.

The results from these simulations will then be used to investigate the requirements of the initial guess.
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For all spin cases the objects will be given an initial guess that is a fixed offset from the true orbit and attitude

states. For the orbit the positional states are each given an offset of 1 km, and the velocities an offset of 1 m/s.

The attitude states are given an offset of 2.5° for each Euler angle axis. The rotational velocities are given an

offset of 0.01 °/s on each body axis.

Dates
The simulations will be run on three different dates, for a period of 1 hour. Because the different objects are in

different orbits (defined in Chapter 3) they will be visible at different times of the day. The dates and starting

times of the simulations for each objects are given in Table 5.1.3. The dates are formatted as day-month-year,
and the times are given in hours:minutes UTC.

Table 5.1.3: Dates and starting times of simulations of different test objects.

07-09-2024 12-10-2024 14-11-2024

Object Time
[hr:min]

Time
[hr:min]

Time
[hr:min]

CryoSat 2 08:57 06:00 04:39

Swarm A 08:08 05:05 02:38

Swarm B 13:35 09:52 06:39

Swarm C 20:20 17:15 01:04

ACS3 09:10 19:01 19:28

BlueWalker 3 16:42 05:05 17:30

Three different dates are chosen for multiple reasons. The first is to check whether or not the algorithms are able

to consistently find the correct shapes for each case. An algorithm might get lucky on one date and identify the

correct model, but not for the other two dates, so its overall performance would be judged better than it actually

is if it would only be tested on the one date. The second reason is that using multiple observation passes could

be an observation strategy used in real applications to improve characterisation and estimation results.

Observer location
The Faculty of Aerospace Engineering of the Delft University of Technology, located in Delft, the Netherlands,

was selected as the location of the observer from which observations are simulated. This location was selected

because it serves as a realistic location where research into object characterisation takes place, so it is useful to

examine whether the algorithms make this possible. The coordinates of the observer location are 51°59’24.2"N

latitude, 4°22’31.1"E latitude and 0.0 m altitude.

Timesteps
The timesteps with which both the truth orbit and attitude propagations and the estimation are performed are

1.0 s. Measurements are also made available every 1.0 s. In further analysis these time steps might be changed,

to see what their impact is on the performance of the models. For this especially the time step defining the rate

at which measurements are generated is going to be relevant to investigate.

Covariance matrices
The initial state covariance matrix 𝑷0 and noise covariance matrix 𝑸 used in the simulation are given in

Equation 5.1.1. The values are taken from the verification of the MMAE and MGS algorithms, because with

these values good initial results were obtained.

𝑷0 = diag

[
(300 km)2 ∗ 𝐼3 (3 km/s)2 ∗ 𝐼3 0.22 ∗ 𝐼3 (3.1 ∗ 10

−4
rad/s)2 ∗ 𝐼3

]
(5.1.1a)

𝑸 = diag

[
(100 m)2 ∗ 𝐼3 (0.1 m/s)2 ∗ 𝐼3 (2 ∗ 10

−4)2 ∗ 𝐼3 (10
−12

rad/s)2 ∗ 𝐼2 (10
−5

rad/s)2 ∗ 𝐼1
]

(5.1.1b)

Similar to the initial guess, the measurement noise is related to a research question, namely RQ-2: What
are requirements on measurement data (e.g. rate, noise, variability) to ensure correct estimates? The impact of the

measurement noise will thus be further investigated. As a starting point the same measurement noise covariance

matrix 𝑹 as used in the aforementioned verifications will be used. For the apparent brightness measurements a

covariance value of 0.1 will be used. For the orbital position measurements covariance values of 100 m for the

range and 5 ∗ 10
−6

rad for the azimuth and elevation will be used, the latter of which is close to 1 arcsecond.
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5.2. Testing strategy
Now that the testing cases have been defined, the strategy of how testing will be performed and analysed is

discussed next. The strategy consist of three different parts, which will be explained in this section.

5.2.1. Performance metrics
An important aspect to define first is how the performance of the different algorithms is going to be evaluated.

The goal of the algorithms is to identify the true shape model used to generate the measurements, and estimate

the attitude of the object with low errors. Because of this the algorithms will be evaluated by the performance

metrics of root mean square error (RMSE) for the estimates of the attitude in Euler angles, as well as whether or

not the true model was identified.

The latter metric is deemed to be the most important one. It was previously seen that it is possible for an

algorithm to identify the correct model in the end, but first identify an incorrect model. The identifying of

the incorrect model leads to the attitude estimation diverging far from the truth. If the correct model is still

identified in the end, it is possible to run the estimation with just this model, which can then be expected to

provide an estimation with lower errors.

5.2.2. Fixed versus variable estimation
As a baseline for the testing the test cases will be run on the MMAE, MGS and MGen algorithms. It will be

checked for which cases algorithms are able to correctly identify the true shapes and converge on the true states,

and why these cases and not the others. In this part of the testing the three algorithms can be directly compared

to one another as well, to see where the strengths and weaknesses of the algorithms lie.

Here it will also be investigated if there are any changes that can be made to the algorithms themselves in order

to improve the results. These changes could be changing the thresholds used in the MGS algorithm, or the

removal of the fusion of attitude estimates in the MMAE algorithm. This part of the testing is directly related to

the first research question, RQ-1: How can the limitations of using a fixed model bank in estimation be overcome?

5.2.3. Initial guess dependency
After the baseline testing of the algorithms it will be investigated what the impact of changing the initial guess

of the estimation is on the results. This will be performed in two ways. First it will be investigated what the

influence is of the initial attitude guess on the estimation results, while keeping the rotational velocities the

same. This analysis is done because it is not always possible to make a guess of the initial attitude that is close to

the truth. It is therefore important to analyse what happens when the initial guess is further off from the truth.

Likewise, in the second part of the analysis the impact of changing the initial rotational velocity guess will be

examined. Here the initial attitude guess will be kept fixed, in order to be able to independently compare the

impacts of the two aspects. The impact of the orbital parameters initial guess will not be investigated. The

reason for this is that it is much easier to generate an accurate guess for the orbital positions and velocities from

range and angles data, and it is more important to analyse the effects of the attitude and rotational velocities.

Investigating the results on these two aspects should give a better understanding of the limitations of the

algorithms, and give an answer to RQ-2: What is required of the initial guess to ensure good convergence of estimation?.

5.2.4. Measurement data requirements
The final part of the testing focuses on RQ-3: What are the requirements on measurements data (e.g. noise, rate,
variability to ensure correct estimates? Here it will be investigated how the different aspects of the measurement

data like the amount of noise, the rate and variability of the data impact the quality of the estimation results.

It is expected that this research question will already partially be answered in the first part of the testing

(Subsection 5.2.2), as the different test cases will come with different variability in the measurement curves.

Additionally, in this part it will also be examined whether the algorithms can successfully characterise the shape

and estimate the states of the test objects based on real measurement data. For some of the objects (CryoSat

and Swarm A/B/C) the true orbit and attitude states are available, so with these objects it will be seen if the

algorithms can be validated on the real data. For the other objects it will be interesting to see what the results of

the estimations will look like.
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5.3. Light curve comparison
An important aspect impacting the performance of the algorithms that was previously encountered is whether

light curves of different objects are distinct from each other. If the light curves of two objects with the same

orbit and attitude states look very similar, the algorithms struggle to distinguish between them, leading to poor

results. It is therefore important to check how the light curves of the test objects compare to each other.

For this only the light curves of the objects in the central model group will be examined. For all three spin cases

the light curves will be compared to each other. This analysis is done to support the analysis of the results in the

next chapter. For each spin case the orbits of one of the six test objects was selected. For this orbit the light

curves of the different objects of the central group were plotted. For the single-axis spin and tumbling cases it

was decided to propagate the attitude with rotational velocities of 0.01 rad/s. If these velocities are increased

the light curves become to chaotic to be able to compare the different curves to each other.

5.3.1. Nadir pointing
For the Nadir pointing cases the objects were propagated for the ACS3 orbit on 14-11-2024. The resulting light

curves are given in Figure 5.3.1. In the beginning of the plot the curves of the different objects show very similar

behaviour, only with different apparent brightness magnitudes. After around 7 minutes there are some peaks

that distinguish the curves of the different objects more, for example the large brightness peak for the triangular

prism curve, and some smaller brightness peaks in the sphere curve. At the end of the plot some curves again

show similar behaviour, with magnitudes that are much closer to each other than before. Especially the cuboid

and box-wing satellite curves match very closely.

Figure 5.3.1: Comparison of light curves - ACS3 orbit 11-14-2024

The fact that the curves show similar behaviour for large part of the curves is caused by the fact that the objects

do not have rotational velocities around their body-axes. This means that the only variations in the light curves

are caused by the changing observation geometries caused by the objects moving through the orbits. This

means overall changes in the light curve are slow, as different sides of objects only become visible gradually. The

only differences between the light curves of the different objects are then purely caused by the amount of light

reflected to the observer, resulting in the only major difference between the curves being the magnitudes.

The reason the cuboid and box-wing satellites initially have very different magnitudes, but at the end look very

similar is because both object types are shaped like cuboids, only the box-wing satellites have solar panels. If

the solar panels are in the right orientation, their large surface areas reflect a lot of light towards the observer,

leading to an increased apparent brightness. However, if the orientation changes such that the panels no longer

reflect light towards the observer, the box-wing satellites essentially look like cuboids from the observers’ point

of view. This results in the light curves of the two objects with the same orbit and attitude to look very similar.

It has been seen in the verification of the MMAE and MGS algorithms that the estimation results can suffer

from light curves of different objects looking very similar, because it becomes difficult for the algorithms to

distinguish between the objects, resulting in the wrong shapes being identified and the attitude estimations

having larger errors. It will have to be seen in the results whether this will also happen for the test cases.
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5.3.2. Single-axis spin
The Single-axis spin cases were propagated for the Swarm A orbit on 12-10-2024. The resulting curves are shown

in Figure 5.3.2. It can be seen that there are more distinguishing features than in the Nadir pointing curves, with

many curves having brightness peaks at different times. However, there is still some overlap present between

curves of different objects. For example, the curves of the sphere and triangular prism model overlap almost

exactly between 5.5 and 7.5 minutes. Between 7 and 9 minutes the rocket body and box-wing curves overlap

closely as well. These similarities between the curve could negatively impact the results of the test cases.

Figure 5.3.2: Comparison of light curves - Swarm A orbit 12-10-2024

5.3.3. Tumbling
For the Tumbling cases the central group objects were propagated for the Swarm B orbit on 07-09-2024. The

light curves are shown in Figure 5.3.3. There are various straight lines visible in the curves. This happens

because values are only plotted if they are below the visibility limit of 20. Since the objects now rotate more in

different directions, it occurs more often that objects becomes less visible to the observer, attaining values larger

than 20. The straight lines are a by-product of the plotting functions in Python, with the function connecting

two consecutive measurements with a straight line. If an object is not visible for larger periods of time, these

measurements are spaced apart, leading to the large straight lines in the plot. There are different ways of

plotting, but this way shows the light curves the most clearly overall, so curves will be unchanged.

Figure 5.3.3: Comparison of light curves - Swarm B orbit 07-09-2024

In the curves themselves there are again many more distinguishing features at different points in time, caused by

the objects rotating around all body-axes, resulting in more variation of the light curves for differently shaped

objects. There are however still a few times where the curves overlap, for example between 7.5 and 9 minutes.

Again, this might have an impact on the results in Chapter 6, which starts on the next page.



6 Results

In this chapter the results of the test cases defined in the previous chapter are presented. In Section 6.1 the

results of the baseline estimations of the MMAE, MGS and MGen algorithms are discussed. Then in Section 6.2

the impact of the initial guess for a few cases is investigated. In Section 6.3 the requirements for the measurement

data are looked into. Finally, in Section 6.4 a validation of the algorithms is presented.

6.1. Baseline performance analysis
As described in the previous chapter, the performance of the different algorithms is analysed based on the

performance metrics of Euler angle RMSE and whether an algorithm was able to find the true shape for each

case. These metrics for the baseline test case estimations are given in Appendix B.1. In the last columns of these

tables it is indicated whether the algorithm was able to identify the true model for that case, or if it was able to

find the right shape type but not the correct dimensions, or neither.

6.1.1. MGen
The results for the MGen algorithm in Appendix B.1.3 show that this algorithm was not able to find the true

shape for any of the cases. Next to this, the attitude RMSEs are high for all cases, even the cases where the correct

shape type was identified. The algorithm thus performs even less satisfactorily than during the verification. It

can therefore be concluded that this algorithm is not suitable to use for the problem in its current form, and

requires further development and testing to determine whether it could be a viable method, which is outside of

the scope of this thesis. Further discussion of this algorithm and results are presented in Section 7.3.

6.1.2. MMAE and MGS
The results for the MMAE and MGS algorithm look much more promising, with both algorithms finding the

true shapes or shape types more often. The attitude errors are also much lower for these cases, highlighting the

capability of both algorithms for estimating the attitude and characterising the shape of the objects for the LEO

test cases. A colour map summarising the model identification part of the results is shown in Table 6.1.1.

Table 6.1.1: True model identification colour map for MMAE and MGS algorithms.

Green - True shape identified. Yellow - Correct shape type. Red - Incorrect model and shape type.

07-09-2024 12-10-2024 14-11-2024
Satellite Spin Case MMAE MGS MMAE MGS MMAE MGS

CryoSat 2

Nadir pointing

Single axis spin

Tumbling

Swarm A

Nadir pointing

Single axis spin

Tumbling

Swarm B

Nadir pointing

Single axis spin

Tumbling

Swarm C

Nadir pointing

Single axis spin

Tumbling

ACS3

Nadir pointing

Single axis spin

Tumbling

BlueWalker 3

Nadir pointing

Single axis spin

Tumbling

63
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In total each algorithm ran 18 cases per date, giving a total of 54 cases per algorithm. A count shows that the

MMAE algorithm was able to find the true shape in 21 of these cases, and found just the correct shape type in 6

cases. The MGS algorithm in turn found the true shape in 15 cases, and the correct shape type in 9 cases. These

are quite similar results, with the MMAE algorithm performing slightly better. However, the MMAE algorithms

has an average runtime of 16 minutes, while the MGS algorithm has an average runtime of 3 minutes. The MGS

algorithm thus gives similar results to the MMAE algorithm much faster.

Looking more in-depth at results for the individual cases found that in a lot of cases where the MGS algorithm

identified the incorrect model group, it incorrectly identified group M2, the group consisting of spherically

shaped models. This is an interesting results, as there is no immediately clear reason why the MGS algorithm

would consistently choose this model group over the others. Further investigation into this behaviour is therefore

warranted.

In Figure 6.1.1 the weights for two cases where the algorithm incorrectly identified and activated group M2 are

shown. Figure 6.1.1a shows the Swarm A - Single-axis spin case on 12-10-2024, and Figure 6.1.1b the CryoSat 2 -

Single-axis spin case on 07-09-2024. In the Swarm A case the algorithm first incorrectly identifies group M2, but

eventually correctly identifies group M1. In the CryoSat 2 case initially M1 is correctly identified, but eventually

the algorithm incorrectly switches to group M2.

(a) Weights for Swarm A - Single-axis spin - 12-10-2024 (b) Weights for CryoSat 2 - Single-axis spin - 07-09-2024

Figure 6.1.1: Weights of MGS algorithm for Swarm A & CryoSat 2 - Single-axis spin cases.
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The reason the algorithms incorrectly identify the sphere models is most likely because of what was found

in Section 5.3. It was seen that there are multiple times where light curves of different objects in the central

model group look very similar, or even overlap completely. When this happens the algorithms have no way

of distinguishing between the models, which increases the chances that they incorrectly identify one of the

spherical models as the true shape.

The spherical models in group M2 were added to the model bank to act as dummy models, to test whether

the algorithms are able to correctly identify these models as incorrect. However, it seems that the inclusion of

the spherical models leads to less optimal results, as the models confuse the algorithms. In the ideal case the

spherical models would be included in the model bank. However, it was decided to remove the spherical models

from the model bank, and run the test cases again. This makes it possible to better examine the performance

of algorithms, and investigate what further improvements can be made. The raw results for the estimations

without the spherical models can again be found in Appendix B.2. The resulting colour map for the shape

identification for these cases is shown in Table 6.1.2.

Table 6.1.2: True shape identification colour map for MMAE and MGS algorithms. Sphere models excluded from model bank.

Green - True shape identified. Yellow - Correct shape type. Red - Incorrect model and shape type.

07-09-2024 12-10-2024 14-11-2024
Satellite Spin Case MMAE MGS MMAE MGS MMAE MGS

CryoSat 2

Nadir pointing

Single axis spin

Tumbling

Swarm A

Nadir pointing

Single axis spin

Tumbling

Swarm B

Nadir pointing

Single axis spin

Tumbling

Swarm C

Nadir pointing

Single axis spin

Tumbling

ACS3

Nadir pointing

Single axis spin

Tumbling

BlueWalker 3

Nadir pointing

Single axis spin

Tumbling

There are now a few more cases coloured green. The MMAE algorithm now identifies the correct shape in 24

cases. In 8 cases it finds only the correct shape type. The MGS algorithm finds the correct shape in 16 cases,

which is only one more than previously, and in 7 cases the correct shape type. The exclusion of the spherical

models thus slightly improved the results for both algorithms. However, there is still room for improvement. In

order to see what further adjustment could be made to improve the results, a few of the test cases are analysed

in more detail.

6.1.3. Detailed case analysis
Before cases can be analysed in detail, it needs to be decided which cases are going to be investigated. Looking

back at Table 6.1.2, it can be seen that the Swarm C - Tumbling cases have inconsistent results for the three

different dates. On 07-09-2024 the MMAE algorithm finds the correct shape, but the MGS algorithm not. On

12-10-2024 both algorithms do not find the correct shape or shape type, and on 14-11-2024 the MGS algorithm

finds the correct shape, but not MMAE. It will be interesting to see why this happens. For this the cases on

12-10-2024 will be examined.
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MMAE - Swarm C - Tumbling - 12-10-2024
The weight and Euler angle attitude for the MMAE algorithm are shown in Figure 6.1.2. In the first few minutes

no measurements are available yet, so the attitude is propagated from the initial guess. Just after 2 minutes the

measurements are available. In Figure 6.1.2a it can be seen that initially the correct shape is assigned a high

weight. However, quickly after this the algorithm assigns high weights to incorrect models, and does not assign

the correct shape a high weight again. At the same time as this happens the attitude estimation in Figure 6.1.2b

becomes very chaotic, and completely diverges from the true attitude states.

(a) MMAE weights. (b) True and estimated Euler angle attitude states.

Figure 6.1.2: MMAE weights and Euler angle attitude for Swarm C - Tumbling on 12-10-2024.

The reason the attitude estimation becomes so chaotic is because the estimated attitude states in the MMAE

algorithm are fused estimates of all the estimated attitude states of all shape models included in the model bank.

This means that if an incorrect shape model is assigned a high weight, its attitude estimate will start to dominate

the attitude estimation. This is exactly what happens in Figure 6.1.2. Because the MMAE algorithm assigns high

weights to multiple incorrect shapes, the algorithm tries to fit the measurements to multiple wrong attitude

estimations, causing the overall estimation to diverge.

A possible adjustment to the MMAE algorithm that could solve this problem is to remove the fusion of the

attitude states, and have a separate attitude estimation for each shape in the model bank. When an incorrect

model diverges in attitude estimate from the truth, the other estimations are not affected by it. This could allow

the algorithm to also find the correct shape much easier, and lead to better attitude estimations.
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MGS - Swarm C - Tumbling - 12-10-2024
For the MGS algorithm the weight for the case are shown in Figure 6.1.3. It can be seen that as soon as

measurements are available, the algorithm activates group M3, which is an incorrect group. The algorithm stays

in this group until around 9.5 minutes. The algorithm then switches back to central group M0, only to quickly

activate group M4 for the rest of the estimation, which is also an incorrect model group.

Figure 6.1.3: MGS weights for Swarm C - Tumbling on 12-10-2024.

It seems that the problem with the algorithm lies in the activation of model groups from group M0. The MGS

algorithm does not keep group M0 active for very long after measurements are available, but quickly switches to

one of the specific shape type groups. Even when the algorithm switches back to group M0, it quickly activates

another group. This means the algorithm does not use a lot of information to make decisions to switch groups,

which results in it more often activating an incorrect group than the correct group.

A way to adjust the algorithm to avoid this early switching could be to increase the weight threshold 𝑇0. This

threshold determines the weight a model in group M0 needs to have before the algorithm switches to the shape

type group corresponding to that model. In the initialisation of the MGS algorithm this threshold was set to 0.5.

This might be too low of a value, causing the behaviour as seen in Figure 6.1.3 to occur.
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6.1.4. Algorithm improvements
Based on the case analysis in previous subsection it was decided to test whether certain changes to the MMAE

and MGS algorithms can improve the shape identification and attitude estimation results from Subsection 6.1.2.

The updated algorithms will then be run for the same test cases as before. Since the exclusion of the sphere

models from the model banks significantly improved the results, these models are still excluded from the model

bank in the following estimations. The algorithms will be compared using the shape identification and average

Euler angle attitude RMSE results.

MMAE
For the MMAE algorithm the problem is that the attitude states of all the different shapes in the model bank

that are run in parallel are fused to one state estimation by weighted averaging. Because the shapes in the model

bank are very different from each other, the attitude estimate for each shape can differ from each other by large

amounts. When these varying attitudes are fused together the overall estimate can then diverge too far from

the truth, causing the algorithm to be unable to find both the correct attitude and identify the true shape. The

MMAE algorithm is therefore adjusted so that this fusion of attitude states is removed. This means each model

in the model bank retains its own attitude estimation. An important note is that the state fusion for the orbital

states is kept in the algorithm. This is done because the orbital position measurements affect the brightness

measurements much less directly, so using the averaged orbital position states would not lead to significant

changes.

MGS
The issue for the MGS algorithm is that it will activate an incorrect model group in the beginning of the

estimation and not switch to any other groups. There are multiple possible algorithm adjustments that could

address this problem. The adjustment that is implemented is regarding the threshold 𝑇0. This threshold

determines when the algorithm initially switches from group M0 to any of the other groups. This threshold

was initially set to 0.5, meaning if any models in group M0 attained a weight of 0.5 or higher the subsequent

model group of this shape type is activated. Since this initial activation of the wrong model group is a recurring

issue, it was decided to increase this threshold to a value of 0.9. This means the first activation of a model group

should take longer, as a better fit to the measurements is required for any model in group M0 to attain a weight

of 0.9 or higher.

Shape identification
The raw results for the estimations with updated algorithms are found in Appendix B.3 The results for the true

shape identification of are shown in Table 6.1.3.
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Table 6.1.3: True shape identification colour map for MMAE and MGS algorithms. Sphere models excluded from model bank.

MMAE without attitude fusion, MGS with 𝑇0 = 0.9
Green - True shape identified. Yellow - Correct shape type. Red - Incorrect model and shape type.

07-09-2024 12-10-2024 14-11-2024
Satellite Spin Case MMAE MGS MMAE MGS MMAE MGS

CryoSat 2

Nadir pointing

Single axis spin

Tumbling

Swarm A

Nadir pointing

Single axis spin

Tumbling

Swarm B

Nadir pointing

Single axis spin

Tumbling

Swarm C

Nadir pointing

Single axis spin

Tumbling

ACS3

Nadir pointing

Single axis spin

Tumbling

BlueWalker 3

Nadir pointing

Single axis spin

Tumbling

For a clear comparison between the previous cases, the counts of how many times each algorithm was able to

identify the correct shape, shape type or neither are visualised in Figure 6.1.4.

(a) MMAE (b) MGS

Figure 6.1.4: Shape identification results comparison for different runs of MMAE and MGS algorithms.

It is clear that the MMAE results have significantly improved. MMAE is now able to correctly identify the true

shape in 49 out of the 54 cases, which is almost all of them. It is only fully incorrect in 4 cases. The removal of

the fusion of attitude states can therefore be concluded to be a good improvement on the MMAE algorithm seen

in literature, like the paper by Linares et al. [23].

In contrast, the increase of threshold 𝑇0 in the MGS algorithm does not improve the results, but decreases

the amount of times the algorithm finds the correct shape. The conclusion is made that further research and

development is required in order to fine-tune the workings of the MGS algorithm, so that the issues encountered
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with the algorithm are solved, and the results are similar to or better than those of the MMAE algorithm. This

research is outside of the scope of this thesis, and will be added to the recommendations in the next chapter.

Attitude estimation
In order to compare the attitude estimation performance between the results for the Original, No spheres and

Updated cases, the Euler angle attitude RMSE values per spin case are averaged for all three dates over all three

angles. For the MMAE algorithm this plot of averages is shown in Figure 6.1.5. Every point on the plot is the

average of 9 RMSE values, for each spin case three angles and three estimation dates. The data is plotted in this

way so that the overall performance of the different cases can be compared to each other. For clarity the spin

cases have been abbreviated to NPT (Nadir Pointing), SAS (Single Axis Spin) and TBL (Tumbling).

Figure 6.1.5: Averaged Euler angle attitude RMSE for different cases - MMAE

It can be seen that while the No spheres errors on average are quite similar to the Original values, the Updated

algorithm performs much better in the attitude estimation. This improved performance is illustrated in the plots

for Swarm C Tumbling on 12-10-2024 shown in Figure 6.1.6.
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(a) MMAE weights. (b) Euler angle attitude error.

Figure 6.1.6: MMAE weights and Euler angle attitude errors for Swarm C - Tumbling on 12-10-2024 for updated algorithm.

Comparing the results to those obtained earlier in Figure 6.1.2, it can be seen that the attitude estimation has

indeed improved significantly. The algorithm is able to converge very closely on the true attitude, with a total

attitude RMSE of [2.9°, 1.5°, 3.7°] for the Euler angles 𝜃1, 𝜃2 and 𝜃3, respectively. It is clear that the removal of

attitude state fusion from the MMAE algorithm is an effective improvement to the algorithm. In the weights

plot in Figure 6.1.6a the algorithm also sticks to the correct model after identifying it, and does not switch.

The average RMSE values for the MGS algorithm are plotted in Figure 6.1.7. It can be seen that the algorithm

with threshold 𝑇0 changed to 0.9 overall also performs worse in the attitude estimation, just like it performs

worse in the shape identification. Overall the MGS algorithm performs similarly for all three cases.

Figure 6.1.7: Averaged Euler angle attitude RMSE for different cases - MGS
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6.2. Initial guess dependence
The first part of the results analysis focused on the performance of the different algorithms on the baseline test

cases as defined in Chapter 5. It was seen that after a few improvements the MMAE algorithm performs very

well, identifying the true shape in 49 out of 54 cases and estimating the attitude with low errors for these cases.

However, this analysis only shows part of the picture. The cases were setup to start with an initial guess for the

attitude states with a 2.5° offset from the true initial attitude. This is a small error in the initial guess, while in

reality most of the time the true initial state is not known to such accuracy, or might not be known at all. It is

therefore important to investigate what happens to the performance when the initial guess errors become larger.

For this analysis only the MMAE algorithm is looked at. This is done because this algorithm performs much

better than the MGS and MGen algorithms, so it makes more sense to look into this algorithm in more

detail. Secondly, the main research question is focused on the improvements of existing techniques for object

characterisation and attitude estimation. Since the MGS and MGen algorithms were implemented for this thesis,

they do not count as existing methods. Thus, to answer the main research question only the MMAE algorithm is

further analysed.

The analysis for the initial guess dependence of the MMAE algorithm is split into two parts. In the first part the

influence of the attitude initial guess is examined. In the second part the impact of the rotational velocity initial

guess is looked at. This is done so the effect of the two state parameters can be investigated independently. The

effect of the orbital states initial guess is not investigated, because these parameters can be estimated accurately

from the angles and range measurements. This means that the initial errors for the orbital parameters will not

be large, and it is not necessary to perform the investigation for these states.

6.2.1. Attitude
In the baseline test cases the initial attitude guess was set to be equal to the true initial attitude with an offset of

2.5° for all three Euler angles. For the initial guess dependence analysis estimations will be run with different

values of the initial attitude offset, both in the positive and negative direction. The offset values that are

investigated range from -30° up to and including +30°, in steps of 2.5°. The initial rotational velocities are kept at

the same offset of 0.01 °/s from the true rotational velocities, just like for the baseline estimation.

For each test object the average Euler angle RMSE will be plotted against the value of the initial attitude offset.

An important note is that an RMSE value for a case is only plotted if the MMAE algorithm finds the true shape

for that test case. This is done because the RMSE values are generally much higher when the algorithm gets the

shape incorrect, which would give a skewed view of the results if included in the plots.

Additionally, because many estimations had to be run and time was limited, the estimation were run with a

measurement data rate 5.0s, while the estimations were run with a time step of 1.0s. This means during the

estimation the UKFs in the MMAE algorithm perform 5 prediction steps before making a correction to the state

estimations. In Subsection 6.3.2 it is shown that estimations with a measurement data rate of 5.0s still produce

results with low errors, making it possible to run the estimations in this section with this time step.

07-09-2024
Nadir pointing
The average RMSE for different values of the initial attitude offset for the Nadir pointing case of 07-09-2024 is

shown in Figure 6.2.1. What is interesting is that the algorithm finds the correct shape much more often for the

negative offsets for this case. There seems no immediately clear reason as to why this is the case. For the rest

it can be seen that generally the average RMSE errors increase when the offsets from the true initial attitude

become larger. This is entirely in line with expectations, with it being more difficult for the algorithm to properly

converge on the correct attitude when the initial guess is farther from the true initial states.

It can be seen that the errors for the CryoSat 2 satellite are much higher than for the other satellites. It is also the

only satellite for which the MMAE algorithm was not able to find the correct shape for any of the positive offset

values. Looking back at Table 6.1.3, it can be seen that this combination of satellite and spin case was one of

the few cases where the algorithm did not find the correct shape. It appears that the measurements for the

CryoSat 2 satellite for the Nadir pointing case are difficult for the algorithm to invert to good results. Still, for the

negative offset values it was able to find the correct shape for almost all values, albeit with high attitude errors.
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Figure 6.2.1: Average Euler angle attitude RMSE for different values of initial attitude guess offset - Nadir pointing - 07-09-2024

Single-axis spin
The RMSE plot for the Single-axis spin case is given in Figure 6.2.2. For this spin case the algorithm finds the

correct shape a similar amount of times for both positive an negative offsets. The errors are slightly lower than

those for the Nadir pointing case in Figure 6.2.1.

Figure 6.2.2: Average Euler angle attitude RMSE for different values of initial attitude guess offset - Single-axis spin - 07-09-2024

In the plot one outlying results is noticeable, namely the error for the Swarm C satellite at a +12.5° offset. For an

offset of +10.0° the average RMSE error for this satellite is around 45°, but then the error jumps to over 110°.

After this the algorithm does not find the correct shape for increased offset values until 27.5°, where the error

has dropped down to 60°. To explain why this happens the Euler angle attitude plots for the offset values of

10.0° and 12.5° will be examined. The plots are shown in Figure 6.2.3.
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(a) Offset value 10.0° (b) Offset value 12.5°

Figure 6.2.3: Truth and estimated Euler angle attitudes for initial attitude offset values of 10.0° and 12.5°.

In both plots it can be seen that when measurements become available the attitude estimation diverges from the

true attitudes. However, for the 10.0° offset in Figure 6.2.3a the algorithm is able to mostly correct the estimation,

resulting in an estimation that is very close to the true attitude. For the 12.5° offset this is not the case. The

algorithm is not able to correct the estimation, and converges on incorrect attitude values. It has been seen at

multiple times during the thesis that this is a matter of luck. Sometimes the MMAE algorithm is able to correct

estimations that are diverged from the truth by a lot, and other to times not. This specific case is one example of

this, and can be treated as an outlying result in the overall analysis of the initial guess dependence results.

Tumbling
The average RMSE error plot for the Tumbling cases on 07-09-2024 is shown in Figure 6.2.4. This plot shows very

consistent results, with errors increasing gradually with higher offset values, and no extreme outliers.

Figure 6.2.4: Average Euler angle attitude RMSE for different values of initial attitude guess offset - Tumbling - 07-09-2024
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12-10-2024
Nadir pointing
The average RMSE plot for the Nadir pointing cases on 12-10-2024 is given by Figure 6.2.5. It can be seen that

now the algorithm finds the correct shape for positive offset values much more often than in Figure 6.2.1. The

errors for positive offsets are also slightly lower than those for negative offsets, with the exception of the Swarm

A satellite, which has higher errors than all other satellites for all positive offset values. Overall the results

conform to expectations.

Figure 6.2.5: Average Euler angle attitude RMSE for different values of initial attitude guess offset - Nadir pointing - 12-10-2024

Single-axis spin
The Single-axis spin case RMSE plot is shown in Figure 6.2.6. Here there are some outlying points visible for

positive offset values, mainly for Swarm A, Swarm C and CryoSat 2. For some offset values these satellites have

a high average error, but for increased offset values these errors drop back down again, for example for Swarm

A at 12.5° and 15.0° offset values. This is caused by the same behaviour as encountered in Figure 6.2.3, where

the MMAE algorithm is not always able to correct a diverged attitude estimation, while for other estimations

with a different initial guess it is able to convert on an attitude estimate with low errors.

Figure 6.2.6: Average Euler angle attitude RMSE for different values of initial attitude guess offset - Single-axis spin - 12-10-2024

For the rest the plot shows similar results as before, with errors gradually increasing as offset magnitudes are

increased, meaning that the initial guess of the estimations become farther from the truth at each step.
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Tumbling
The average RMSE plot for the Tumbling cases on 12-10-2024 are shown in Figure 6.2.7. It can be seen that

the plot looks much smoother, with errors gradually increasing for larger offset values, and not showing large

outliers. This is similar to the plot for the Tumbling cases on 07-09-2024 in Figure 6.2.4. This gives an indication

that the estimation results for the Tumbling cases are more robust, being affected less by changes in the initial

guess than the other two spin cases.

Figure 6.2.7: Average Euler angle attitude RMSE for different values of initial attitude guess offset - Tumbling - 12-10-2024

14-11-2024
Nadir pointing
For the Nadir pointing cases on 14-11-2024 the average RMSE values are plotted in Figure 6.2.8. It can be seen

that the plot has much more variation than that for the Tumbling cases, for example those in Figure 6.2.7. The

algorithm also finds the correct shape much less often for higher positive offsets than for negative offsets. Taking

this plot and the plots for the Nadir pointing cases on the other dates it can be concluded that the Nadir pointing

cases results are limitedly robust to changing initial guess values, producing the best results when the initial

guess is close to the true initial state of the test objects.

Figure 6.2.8: Average Euler angle attitude RMSE for different values of initial attitude guess offset - Nadir pointing - 11-14-2024

Single-axis spin
The average RMSE values for the Single-axis spin cases on 14-11-2024 are shown in Figure 6.2.9. While overall

the errors increase for larger offset values according to expectations, it can be seen that the errors for the negative

offset values are higher than those for the positive offsets. It seems that for the negative offsets the algorithm is

not able to correct the diverged attitude estimations, just like was previously seen. Still, the algorithm is able to

find the correct shape for a most of the offset values for all satellites.



6.2. Initial guess dependence 77

Figure 6.2.9: Average Euler angle attitude RMSE for different values of initial attitude guess offset - Single-axis spin - 11-14-2024

Tumbling
The final plot in the initial attitude offset analysis is the RMSE plot for the Tumbling cases on 14-11-2024, which

is shown in Figure 6.2.10. It can again be seen that the errors for the Tumbling cases are much lower than those

for the other spin case, and shows much fewer outliers. This clearly shows that the results for the Tumbling

cases are much more robust to changes in the initial guess, producing low error results for a larger range of

attitude offset values.

Figure 6.2.10: Average Euler angle attitude RMSE for different values of initial attitude guess offset - Tumbling - 11-14-2024

The result that the Tumbling spin case results are more robust to changing initial guess values than the Nadir

pointing and Single-axis spin case results make a lot of sense. With the objects spinning around all body-axis

there is a lot of variation in the simulated light curves, with apparent brightness fluctuating a lot. This means

the MMAE algorithm has a lot of information to use in the attitude estimations. Conversely, the other spin cases

are less robust to changing initial guess values, because there is generally less variability in their light curves,

making it more difficult for the MMAE algorithm to converge on accurate estimation results for larger initial

attitude offsets. A deeper investigation into the relation between measurement variability and estimation results

is given in Subsection 6.3.3.
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Averaged results
To create a more general overview of the initial guess dependence for the attitude offsets the results from the

previous plots are averaged over all the satellites and simulation dates, for each spin case separately. With these

plots an analysis of the overall behaviour of the errors with increasing attitude offsets can be made. To show the

variation in the data the averaged plots per data are also shown.

Furthermore, to be able to concretely analyse the differences between the results for the different spin cases, it

was decided to set an upper limit for average RMSE error. Below this limit results are deemed to be of high

enough accuracy to be considered good results. With this limit set it becomes possible to identify a range of

offset values that lead to these good results. The error limit is set to 20° average RMSE.

Nadir pointing
The averaged plot of the RMSE values for the Nadir pointing cases is shown in Figure 6.2.11. It can be seen that

there is a slight spread between the results for the different results, but overall the average behaviour is clearly

visible. For low offset values the errors are the lowest, and as the offsets become larger, so do the errors. The

errors for negative offsets are on average higher than those for the positive offsets. What is also notable is that

the average errors for the largest positive offsets are lower. However, the reason for this is that there were much

fewer cases where the MMAE algorithm was able to find the correct shape for these positive offsets, as seen in

the previous plots. This means this part of the plot shows results biased towards lower errors, while actually the

performance of the algorithm for these offsets is bad.

Figure 6.2.11: RMSE errors averaged over all satellites and all simulation dates - Nadir pointing

Looking at the error limit of 20°, it appears that the Nadir pointing cases only produce accurate results in an

offset range between positive and negative 5.0°. This is quite a small range, and confirms the fact that the Nadir

pointing case results are less robust to changes in the initial guess, and an initial guess close to the true initial

guess is required to produce accurate estimation and shape characterisation results.

Single-axis spin
The averaged RMSE results for the Single-axis spin cases are plotted in Figure 6.2.12. It can be seen that the

spread between the different simulation dates is small for low offset values, and increases as offset values

become larger. As seen previously the errors also increase as the offsets become larger, in similar fashion for

both the positive and the negative offsets.

The Single-axis spin case results appear to be slightly more robust to a change in initial guess, with an offset

range between -7.5° and +7.5° producing results with average errors below the limit of 20°. This means the

initial guess can be slightly more off from the true initial state and still produce accurate results. This increased

robustness is caused by the fact that there is more variation in the light curves for Single-axis spin cases, which

means the MMAE algorithm has more information to use in the estimations.
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Figure 6.2.12: RMSE errors averaged over all satellites and all simulation dates - Single-axis spin

Tumbling
Lastly, the averaged RMSE values for the Tumbling cases are plotted in Figure 6.2.13. Again, the spread between

the simulation dates is small for low offset values, and slightly increases with increasing offset values. The

errors increase with increasing offset values in a very symmetric way, meaning that positive and negative offsets

lead to results with similar errors.

Figure 6.2.13: RMSE errors averaged over all satellites and all simulation dates - Tumbling

Looking at the error limit, it is apparent that the Tumbling cases are the most robust to changing initial guess

values, as offsets between -12.0° and +12.5° produce results below the 20° error limit. This is again caused by

there being more variation in the light curves of the Tumbling cases, providing a lot of information to the MMAE

algorithm to use and produce accurate estimations and shape characterisations.

6.2.2. Rotational velocity
Next the influence of the rotational velocity initial guess on the attitude estimation and shape characterisation

results will be examined. Similar to the initial attitude analysis, estimations will be run with the initial rotational

velocity guess being offset by a fixed value from the true initial rotational velocities.

In the baseline estimations the offset from the true rotational velocities was set to 0.1 °/s. The different estimations

will be run for offset values ranging from -0.1 °/s up to and including +0.1 °/s, in steps of 0.01 °/s. The initial

attitude guess will be fixed to a 2.5° offset from the true initial attitude. Again for each case the average RMSE

value will be plotted against the value of the initial rotational velocity offset value.
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07-09-2024
Nadir pointing
The RMSE plot for the Nadir pointing cases on 07-09-2024 is shown in Figure 6.2.14. It can be seen that there are

not a lot of data points for the negative offset values. This means for these values the MMAE algorithm was not

able to correctly identify the correct shape for most satellites. For the positive offset values this was not the case.

The average errors increase quickly for larger positive offsets, leaving only a small range of offset values that

result in estimations with errors below 20°.

Figure 6.2.14: Average Euler angle attitude RMSE for different values of initial rotational velocity guess offset - Nadir pointing - 07-09-2024

Single-axis spin
The average RMSE values for the Single-axis spin case on 07-09-2024 are shown in Figure 6.2.15. Here there

are data points for all satellites for both positive and negative offsets, meaning the algorithm found the correct

shape type more often than for the Nadir pointing cases. The errors grow more slowly for larger offset values,

and quite symmetric for around the zero-offset line, except for the ACS3 and BlueWalker 3 satellites. The ACS3

satellite has higher errors than other satellites overall, and no data for positive offsets above 0.06 °/s. The

BlueWalker 3 satellite has higher errors for positive offsets than for negative offset values.

Figure 6.2.15: Average Euler angle attitude RMSE for different values of initial rotational velocity guess offset - Single-axis spin - 07-09-2024

It is curious that these outlying results are both for flat plate satellites. If this would be the case for the other

spin cases and simulation dates this would warrant deeper analysis. However, it can be seen in the other plots

that this is not the case. Therefore these results will be seen as unlucky combination of spin case, simulation

date and test object, leading to less accurate estimation results.
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Tumbling
The average RMSE values for different values of the rotational velocity offsets for the Tumbling cases on

07-09-2024 are shown in Figure 6.2.16. The results are again mostly symmetric around the zero-offset point. The

errors for larger offset values, for both positive and negative offsets, are higher than those for the Single-axis

spin cases in Figure 6.2.15. This could indicate that the Tumbling cases are more sensitive to the initial guess of

the estimation than the Single-axis spin cases. This would not be a surprising results, seeing as the Tumbling

cases have a rotational velocity around all three body-axes, while the Single-axis spin cases only have rotational

velocity around on axis, so it would make sense that a large offset in initial rotational velocity affect the Tumbling

cases more negatively. This result will be further investigated for the other simulation dates.

Figure 6.2.16: Average Euler angle attitude RMSE for different values of initial rotational velocity guess offset - Tumbling - 07-09-2024

12-10-2024
Nadir pointing
The Nadir pointing RMSE values are plotted in Figure 6.2.17. It can again be seen that for large values of

rotational velocity offset there are fewer data points, meaning that the algorithm did not find the correct shape

for these offset values. This is similar to what happend for the Nadir pointing cases on 07-09-2024, as seen in

Figure 6.2.14. This gives strong indication that the accuracy of the Nadir pointing results are very dependent on

the initial rotational velocity guess, and a close guess is required to produce accurate results.

This behaviour is not unexpected. The Nadir pointing cases are defined by the fact that they are not assigned

body-axis rotational velocities. This means that the body-axis attitude stays constant throughout the estimations.

The initial guess of the estimations are assigned rotational velocities however. This means the estimated attitudes

drift away from the constant true attitude, if not corrected by the MMAE algorithm. It appears that the algorithm

is able to do this correction for low values of the initial rotational velocity offsets, but not for the larger offset

values, as the estimated attitudes will have drifted to far from the truth to make correction possible.

Figure 6.2.17: Average Euler angle attitude RMSE for different values of initial rotational velocity guess offset - Nadir pointing - 12-10-2024
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Single-axis spin
The average RMSE values for the Single-axis spin cases on 12-10-2024 are shown in Figure 6.2.18. These errors

are again much lower than those for the Nadir pointing cases, and very symmetric for both positive and negative

offsets, with only a few outlying points. This result and that of 07-09-2024 indicate that the Single-axis spin case

results are more robust to changes in initial rotational velocity guess, with larger offsets from the true initial

guess still producing accurate estimation results.

Figure 6.2.18: Average Euler angle attitude RMSE for different values of initial rotational velocity guess offset - Single-axis spin - 12-10-2024

Tumbling
In Figure 6.2.19 the RMSE values for the Tumbling cases are shown. It can be seen that for low offset values

the errors are very low, and the results for the different satellites are very close to each other, but these diverge

for larger rotational velocity offset values. For some satellites the errors grow much quicker with larger offset

values, for example those of CryoSat 2 and Swarm B.

Figure 6.2.19: Average Euler angle attitude RMSE for different values of initial rotational velocity guess offset - Tumbling - 12-10-2024

Overall the errors for large offset values are higher than for the Single-axis spin cases, giving further evidence

that the Tumbling cases require slightly better initial rotational velocity guesses than the Single-axis spin cases.

However, the Tumbling case errors are still lower and more consistent than those of the Nadir pointing cases.

This is also in line with expectations, as the Tumbling case light curves have much more variation than those of

the Nadir pointing cases, which means there is much more information for the MMAE algorithm to use in the

attitude estimation.



6.2. Initial guess dependence 83

14-11-2024
The RMSE values for the Nadir pointing cases on 14-11-2024 are shown in Figure 6.2.20. There are now a lot

more data points for the negative offset values. However, the errors for the negative offsets are much higher

than those for the positive offsets. This behaviour falls in the same trend as the other Nadir pointing results,

showing that it is more difficult for the MMAE algorithm to produce accurate estimations for these cases for

negative rotational velocity offsets.

Nadir pointing

Figure 6.2.20: Average Euler angle attitude RMSE for different values of initial rotational velocity guess offset - Nadir pointing - 14-11-2024

Single-axis spin
The results for the Single-axis spin cases are plotted in Figure 6.2.21. Again, the errors are very symmetric, with

both large positive and negative offsets leading to similar magnitude errors for the same satellites. The errors

for this simulation date are slightly higher for larger offset values than for the Single-axis spin case results of the

other dates. The results still indicate that the Single-axis spin case results are more resilient to initial rotational

velocity guesses that are more offset from the true rotational velocities.

Figure 6.2.21: Average Euler angle attitude RMSE for different values of initial rotational velocity guess offset - Single-axis spin - 14-11-2024

Tumbling
Finally, the average RMSE values for different values of the initial rotational velocity offset for the Tumbling

cases on 14-11-2024 are shown in Figure 6.2.22. Just like for the results on 12-10-2024, the errors for the different

satellites for low offset values are low and close together. For larger offsets the values for the different satellites

diverge more, and generally the errors grow larger. The errors are again larger than for the Single-axis spin

cases, highlighting that the Tumbling cases are more reliant on an initial guess that is closer to the true initial

state than the Single-axis spin cases.
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Figure 6.2.22: Average Euler angle attitude RMSE for different values of initial rotational velocity guess offset - Tumbling - 14-11-2024

Averaged results
Just like was done for the results of the initial attitude offset analysis, the average RMSE values for all the

satellites and simulation dates are averaged for the different spin cases. This makes it possible to analyse the

general behaviour of the results for the different spin cases with increasing rotational velocity offsets. To show

the spread in the results the averaged values for the different simulation dates are also shown in each plot.

Nadir pointing
The averaged RMSE values for the Nadir pointing cases are shown in Figure 6.2.23. This plot shows the trend

that was observed before, that for the Nadir pointing cases the errors are higher for negative offsets than for

positive offsets. This asymmetric behaviour of the error plot is also caused by the fact that for the negative offset

values the MMAE algorithm was not able to find the correct shape for most of the negative offset values. This

means that the averaged results in Figure 6.2.23 for the negative offset values only consist of these high error

results. Still, both aspects indicate that is is more difficult for the algorithm to produce accurate results for

negative rotational velocity offsets for the Nadir pointing cases.

Figure 6.2.23: RMSE errors averaged over all satellites and all simulation dates - Nadir pointing

Single-axis spin
The averaged RMSE values for the Single-axis spin cases are shown in Figure 6.2.24. As was seen in the results

for each simulation date separately, the errors for the Single-axis spin cases behave very symmetrically for both

positive and negative offsets. The spread between the errors for the different simulation dates is also very small.

This plot shows confirms that the Single-axis spin case results are very robust to changes in the initial rotational

velocity guess. Offsets in the range -0.05 °/s and +0.05 °/s all produce results below the accuracy limit of 20 °,

which is half of the full offset range tested.
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Figure 6.2.24: RMSE errors averaged over all satellites and all simulation dates - Single-axis spin

Tumbling
Finally, the averaged results for the Tumbling cases are shown in Figure 6.2.25. As was seen previously, for low

offset values the errors are very low, and the spread between the simulation dates is also small. For larger offset

values the errors grow more quickly compared to the Single-axis spin cases. The spread between the different

simulation dates is also slightly higher for larger offset values. This confirms that the Tumbling case results are

more sensitive to a change in the initial rotational velocities. However, the offset range that results in errors

below the 20°limit for the Tumbling cases is around -0.045 °/s to +0.045 °/s, which is very close to the offset

range for the Single-axis spin cases. So while the errors for large offset values are larger for the Tumbling cases,

both cases produce the same accuracy results for a similar offset range.

Figure 6.2.25: RMSE errors averaged over all satellites and all simulation dates - Tumbling

6.2.3. Summary
Overall it was seen that for both the initial attitude and the rotational velocity offsets the errors are low around

the true initial states, but grow with growing offset values. Especially errors for the Nadir pointing cases grow

quickly, showing that these cases require an initial guess close to the truth for accurate estimation results. The

Single-axis spin and Tumbling cases proved to be more robust, having a wider range of offset values for which

estimations with average attitude RMSE values below 20° are produced. The offset ranges for each spin case for

the initial attitudes and rotational velocities are summarised in Table 6.2.1.

Table 6.2.1: Ranges of offsets from true initial state resulting in accurate results per spin case.

Spin case Attitude offset range [°] Rotational velocity offset range [°/s]
Nadir pointing [-5.0, 5.0] [-0.01, 0.02]

Single-axis spin [-7.5, 7.5] [-0.05, 0.05]

Tumbling [-12.0, 12.5] [-0.045, 0.045]
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6.3. Data requirements
A vital aspect driving the estimations performed in the thesis is the measurement data that are simulated for all

the different cases. Without measurements there would be no estimations to perform. In this section it will be

analysed what happens to the estimation results when different aspects of the measurement data are changed.

The goal of this analysis is to give an answer to the third research sub-question RQ-3: What are requirements on
measurement data (e.g. noise, rate, variability) to ensure accurate estimates?

As the research question implies, there are three aspects of interest in this analysis. The first is the measurement

noise. For the estimations measurements are simulated converting the true propagated states to the measurement

variables and adding zero-mean Gaussian noise to the values. Depending on the magnitudes of the standard

deviations that are used measurements become more or less noisy. In Subsection 6.3.1 it will be investigated

what happens to the results when different levels of noisy measurements are used in the estimations.

The second aspects that is looked into is the frequency at which measurements are made available in the

estimations, called the measurement data rate. In Subsection 6.3.2 the effect of different data rates on the results

will be examined. The last aspect of interest is the variability of the measurements. Here variability is seen

as the amount of variation in a set of measurements, for example how close subsequent measurements are to

each other, if there are sharp peaks in the measurements and how large of a range the measurements span. The

relation between variability and estimation results is explored in Subsection 6.3.3.

6.3.1. Noise
For the measurement noise analysis only the effect of the noise of the apparent brightness measurements will be

looked at. This is done because these measurements have the most direct impact on the quality of the attitude

estimation and shape characterisation results. Just like was done for the initial guess dependence analysis,

estimations for all 54 test cases will be run with different values of the apparent brightness noise standard

deviation 𝜎. In the baseline estimations the standard deviation was set to a value of 0.10. Estimations will be

run with both higher and lower noise values. The range of standard deviation values that are investigated is:

[0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0].

To illustrate the effect of different standard deviation values on the measurements an example is given. In

Figure 6.3.1 two light curves are shown for the same test case, namely the Swarm C - Nadir pointing case on

07-09-2024. In Figure 6.3.1a the measurements were simulated with a 𝜎 value of 0.10, the same value that was

used in the baseline estimations. The measurements in Figure 6.3.1b were simulated using a 𝜎 value of 1.0, ten

times higher than used in the baseline estimations.

(a) Apparent brightness 𝜎 = 0.10 (b) Apparent brightness 𝜎 = 1.0

Figure 6.3.1: Simulated light curves with different values of measurement noise for Swarm C - Nadir pointing - 07-09-2024

While the overall shape of the curve is still visible in the high noise plot, it is clearly less sharp than the curve with

a 𝜎 of 0.10. In this section it will be examined what happens to the results of the MMAE algorithm estimations

for the test cases with these different levels of noisy measurement data.
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07-09-2024
The average RMSE values for different values of the apparent brightness noise for the Nadir pointing case on

07-09-2024 are shown in Figure 6.3.2. It can be seen that the errors for most satellites and noise values are above

20°, which was set to be the upper limit for accurate estimation results in the previous section. What is also

interesting is that the errors for the lowest noise values are higher than those for higher noise values. This is a

counter-intuitive result, as it would be expected that estimations with less noise would result in more accurate

estimations. This behaviour will be investigated at the end of this subsection.

Figure 6.3.2: Average RMSE for different values of apparent brightness measurement noise - Nadir pointing - 07-09-2024

Next the results for the Single-axis spin and Tumbling cases are looked at, which are shown in Figure 6.3.3. It is

clear that these errors are much lower than those of the Nadir pointing case. The errors are also more consistent

for different values of the noise, showing less variation than the errors in Figure 6.3.2. However, in these plots it

can also be seen that for the lowest noise value there are not successful shape characterisations for all satellites,

and for a few satellites the errors are higher for low noise values.

(a) Single-axis spin (b) Tumbling

Figure 6.3.3: Average RMSE for different values of apparent brightness measurement noise - Single-axis spin and Tumbling - 07-09-2024
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12-10-2024
The RMSE values for the Nadir pointing case on 12-10-2024 are shown in Figure 6.3.4. The results are very

chaotic, even more so than those for the Nadir pointing case on 07-09-2024. The errors are also even higher for

most satellites and noise values. These results indicate that the Nadir pointing results are not very robust to

changes in simulation parameter settings, with different settings producing vastly different results.

Figure 6.3.4: Average RMSE for different values of apparent brightness measurement noise - Nadir pointing - 12-10-2024

In Figure 6.3.5 the RMSE results for the Single-axis spin and Tumbling cases are shown. It is clear that these

results are much more consistent compared to those of the Nadir pointing cases. Most of the errors are below

20°. In both plots it can also be seen that the errors increase slightly when the noise values become larger for

most satellites. This is exactly what is expected, as more noisy measurements make it more difficult for the

MMAE algorithm to accurately estimate the attitudes. However, it can also be seen that for the lowest noise

values the errors are again higher for some satellites, just like has been seen before.

(a) Single-axis spin (b) Tumbling

Figure 6.3.5: Average RMSE for different values of apparent brightness measurement noise - Single-axis spin and Tumbling - 12-10-2024
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14-11-2024
The average RMSE values for the Nadir pointing cases on 14-11-2024 are shown in Figure 6.3.6. Again, errors for

this spin case are very high, with only the ACS3 satellties estimations scoring below 20°. For all satellites the

errors are also the highest for the lowest noise value, except for Swarm A.

Figure 6.3.6: Average RMSE for different values of apparent brightness measurement noise - Nadir pointing - 14-11-2024

Lastly the RMSE values for different values of apparent brightness measurement noise are shown in Figure 6.3.7.

The errors for these cases are again much lower than those of the Nadir pointing cases, with almost all errors

being below 20°. The errors also slightly increase for larger noise values, which is in line with expectations.

There is again an outlying result for the low noise values, this time the Swarm C satellite for the Single-axis spin

case. This results will be investigated in more detail to explain why this occurs multiple times in the results.

(a) Single-axis spin (b) Tumbling

Figure 6.3.7: Average RMSE for different values of apparent brightness measurement noise - Single-axis spin and Tumbling - 14-11-2024

In Figure 6.3.8 the estimated Euler angle attitudes are plotted, as well as the true attitude states, for the Swarm

C satellite. The estimation in Figure 6.3.8a was performed using a 𝜎 value of 0.10, which corresponds to the

outlying result with high error in Figure 6.3.7a. The plot in Figure 6.3.8b corresponds to the estimation with a 𝜎
value of 0.10. It can be seen that at the beginning, until around 2.5 minutes, both estimations look identical,

with both estimations being almost 360° offset from the truth. The fact that the estimations are almost the same

makes sense., since in essence both estimations use the same measurements, only with slightly different noise

values. However, after this 2.5 minutes the estimations start differing from each other.
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(a) Apparent brightness 𝜎 = 0.01 (b) Apparent brightness 𝜎 = 0.10

Figure 6.3.8: True and estimated Euler angle attitude for Swarm C - Single-axis spin cases on 14-11-2024 with different noise values.

The estimation with 𝜎 = 0.10 manages to converge on the correct attitude after 2.5 minutes, and remains this way

for the rest of the estimation. The estimation with 𝜎 = 0.10 on the other hand remains offset by large amount

for a longer period. Around 5.5 minutes the estimation does converge more closely to the correct attitude, but

remains slightly offset from the truth for the rest of the estimation. This confirms that the attitude error for the

low measurement noise case in Figure 6.3.7a is higher than for the higher values. The question remains why this

different behaviour of the estimation happens.

A clue is given in the plot for the 𝜃1 angle estimation in Figure 6.3.8a. The estimation for this angle appears to

be the mirrored version of the true attitude. The reason this might happen is that the object from which the

measurements are simulated, Swarm C, is a very symmetric shape (see Figure 5.1.2). This means that rotations

around the same axis but in opposite direction could result in the same apparent brightness measurement. If

this happens for multiple measurements sequentially the estimation could end up being the mirrored version of

the true estimation, just like in Figure 6.3.8a.

The final aspect that needs explaining is why the estimation for 𝜎 = 0.10 manages to recover the estimation to

the non-mirrored states, and the estimation with 𝜎 = 0.01 does not. The most likely answer is that this happens

due to chance. For both estimations random noise is added to the brightness measurements. This means at

each time step the estimations with different 𝜎 values receive slightly different values for the same brightness

measurements. For most estimations the MMAE algorithm manages to correct the attitude estimations with

these measurements, but for others, like the 𝜎 = 0.01 case, the measurement is just not right for this to happen,

leading to higher estimation errors overall. This means a bit of luck can sometimes make the difference between

accurate and less accurate results.

Summary
The effect of different apparent brightness measurement noise values on the attitude estimation results were

investigated in this subsection. It was found that overall the Single-axis spin and Tumbling cases are more robust

to changing noise values, producing results with low errors consistently for all noise values. The errors for

these cases do slightly increase with higher noise values, which is in line with expectations. The Nadir pointing

cases showed less robustness, with comparatively high errors, and less consistent behaviour for the different

noise values. Finally, it was seen that the symmetry of the test objects can lead to the attitude estimation being

mirrored from the truth. For most cases the MMAE algorithm is able to correct this, but due to chance this does

not always happen, leading to outlying results with higher errors.
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6.3.2. Data rate
The next aspect of the measurement data that is investigated is the frequency with which measurements are

made available to the MMAE algorithm, the data rate. This is an important aspect, as the measurements are

what drive the estimations. If the data rate is lower, meaning the time between consecutive measurements is

higher, the same estimation will have a lower number of measurements, thus less information to correct the

estimations with. However, since more measurements lead to more correction steps, runtime increases with an

increased data rate. It is therefore important to analyse what happens to the baseline results of Subsection 6.1.4

for different values of the data rate.

The baseline estimations were run with an estimation time step of 1.0s, with measurements being available at

the same time step, meaning for every estimation timestep there was both a prediction and a correction step in

the MMAE algorithm. For the analysis estimations were run with both higher and lower time steps. The range

of measurement time steps for which estimations were run is: [0.1s, 0.5s, 1.0s, 5.0s, 10.0s, 20.0s, 30.0s]. To analyse

the results the average Euler angle attitude RMSE per case is plotted against the value of the measurement time

step, only if the MMAE algorithm was able to correctly identify the true shape for that case.

An important note is that if the measurement time step was higher than 1.0s, the estimation time step was

still kept at 1.0s. This means that if the measurement time step was 10.0s, the MMAE algorithm performed 10

prediction steps before a correction step with the new measurements was made. Conversely, if the measurement

time step was lower than 1.0s, the estimation time step was set to be equal to the measurement time step, because

otherwise these extra measurements would be skipped.

07-09-2024
In Figure 6.3.9 the results for the Nadir pointing cases on 07-09-2024 are plotted. What is striking is that there

are only two satellites for which there is a data point for a measurement time step of 0.1 s, which means only

for these two cases the MMAE algorithm found the correct shape. For the other time step values there is also

not a data point for every satellite. Looking back at Table 6.1.3, it can be seen that this case was one of the few

where the MMAE algorithm did not find the correct shape, namely for the CryoSat 2 and Swarm B satellites.

Figure 6.3.9 shows that this combination of simulation date and spin case is difficult for the MMAE algorithm,

even if more measurements and thus more information are made avalaible.

Figure 6.3.9: Average RMSE for different values of measurement data rate - Nadir pointing - 07-09-2024

In Figure 6.3.10 the results for the Single-axis spin and Tumbling cases are shown. For both cases there are more

data points in the plots, also for the low measurement time steps. For the Tumbling cases the errors are low for

all values of the measurement time step, with almost all errors being below 20°. For the Single-axis spin case

some of the errors for the low time steps are however much higher than for the higher time steps. To see why this

happens the results for Swarm A and CryoSat 2 with a measurement time step of 0.1s are looked at more closely.
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(a) Single-axis spin (b) Tumbling

Figure 6.3.10: Average RMSE for different values of measurement data rate - Single-axis spin and Tumbling - 07-09-2024

In Figure 6.3.11 the rotational velocity errors for CryoSat 2 and Swarm A for the Single-axis spin case with a

measurement time step of 0.1s are shown. It can be seen that for both curves at the times the measurements

become available the errors increase drastically, especially those for 𝜔1, which are in the order of magnitude of

full degrees per second. Because the estimated rotational velocities diverge this much and this quickly from the

true states, the attitude estimation also diverges a lot, leading to the large errors seen in Figure 6.3.10.

(a) CryoSat 2 (b) Swarm A

Figure 6.3.11: Rotational velocity error plots for CryoSat 2 and Swarm A - Single-axis spin for a measurement time step of 0.1s

It is not clear why the estimated rotational velocities diverge this much for low measurements time steps. More

in depth investigation would be required to figure this out, which is beyond the scope of this thesis.

12-10-2024
The RMSE plot for the Nadir pointing cases is shown in Figure 6.3.12. For this date there are more data points

for this spin case compared to those on 07-09-2024 in Figure 6.3.9. Overall most errors are also lower, with the

exception of the Swarm A errors and the ACS3 errors for the lowest two measurement time steps.
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Figure 6.3.12: Average RMSE for different values of measurement data rate - Nadir pointing - 12-10-2024

The results for the Single-axis spin and Tumbling cases are shown in Figure 6.3.13. For both cases the errors are

low across all time step values, noting that for the Tumbling cases there are not data points for all satellites for the

lowest time steps. There is also again a large outlier in the Single-axis spin case, namely the CryoSat 2 satellite

on the measurements time step of 0.1s. This is similar to the results for the Single-axis spin case on 07-09-2024,

and is caused by the same divergence of the rotational velocity estimation at the start of the estimation.

(a) Single-axis spin (b) Tumbling

Figure 6.3.13: Average RMSE for different values of measurement data rate - Single-axis spin and Tumbling - 12-10-2024

14-11-2024
The results for the Nadir pointing cases on 14-11-2024 are shown in Figure 6.3.14. It can again be seen that there

are not many data points for the lowest measurement time steps, meaning that for only two satellites the MMAE

algorithm was able to find the correct shape for these time steps. For the other time steps the errors range from

values below 20° to above, for example for Swarm C and CryoSat 2.

Looking back at Table 6.1.3, it can be seen that this combination of simulation date, satellites and spin case

resulted in the few cases where the MMAE algorithm was not able to identify the correct shape. This is reflected

in the results in Figure 6.3.14. Interestingly, the algorithm was able to identify the correct shape for these

satellites for the higher time steps. This shows that a low measurement time step, thus more measurements

used in the estimation, does not always lead to the best results.
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Figure 6.3.14: Average RMSE for different values of measurement data rate - Nadir pointing - 14-11-2024

Lastly, the results for the Single-axis spin and Tumbling cases on 14-11-2024 are shown in Figure 6.3.15. For both

cases the errors are mostly below 20°, with a few outlying data points with higher errors. It can again be seen

that for the lowest measurement time step no all satellites have data points, just like was seen before.

(a) Single-axis spin (b) Tumbling

Figure 6.3.15: Average RMSE for different values of measurement data rate - Single-axis spin and Tumbling - 14-11-2024

Summary
The effect of different measurement timesteps on the attitude estimation results were investigated in this

subsection. There are a few similarities that were seen in the results over the three simulation dates. The first is

that for all spin cases the MMAE algorithm was able to identify the correct shape for the lowest measurement

time step values the least often. If it did identify the correct shape, it was sometimes with high attitude errors.

Analysis showed that this behaviour is caused by the rotational velocity estimation diverging at the first few

measurements for these cases, the reason for which is not entirely clear.

One possible method that could be used to improve the results for the low measurement time steps is called

epoch folding, a technique that is used in data analysis to extract periodicity from data [27]. It has been applied

to satellite light curves before [28], and could be used to give a better initial guess of the rotational velocities,

possibly solving the diverging estimations as seen in Figure 6.3.11.

Overall the errors for the Nadir pointing cases were slightly higher than those for the Single-axis spin and

Tumbling cases. This result is in line with the other results examined so far, namely those of the initial guess

dependence and noise characteristics. All these analyses show that the results for the Single-axis spin and

Tumbling cases are more robust to changes in the simulation parameters that were used to obtain the baseline

results in Subsection 6.1.4, while the Nadir pointing case results vary a lot more, with higher errors.
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6.3.3. Variability
The relation between variability of measurement data and quality of estimation results is the final aspect that is

investigated in this section. In order to be able to do a direct analysis between variability and results it was

decided to define a variability score that can be calculated for the light curves of each satellite and spin case

combination. The reasoning behind this score and the equation to calculate the score are given first.

For the variability analysis there are two main parameters of interest. The first is how close two subsequent

measurements are to each other, in other words how large the difference is between measurements at two

consecutive timesteps. If two consecutive measurements differ from each other by large values, the variability

score should increase. This would give light curves with many sharp peaks a higher score, which is exactly one

of the aspects of light curves that warrants investigation. The second aspect of interest is the overall range of

brightness values that a light curve covers. If a curve only covers a small range of values it should receive a

lower score compared to a curve that covers a larger range of brightness values.

With these aspects as key parameters the variability score calculation is defined as follows. First all the differences

between two pairs of consecutive measurements in a light curve are summed together. These are then divided

by the total amount of measurements making up the respective light curve. This is done to normalise the

scores, as the light curves of the different satellites and spin cases all have different durations, and therefore a

different number of measurements included in the curve. The normalised sum of differences is then multiplied

by the range of brightness values in the light curve, which is calculated by subtracting the minimum apparent

brightness value from the maximum apparent brightness value. Finally, the score is multiplied by a factor of 10

and are rounded to the nearest integer, so that the scores are more convenient to analyse. The calculation of the

variability score is summarised by Equation 6.3.1.

variability score = 10 ∗ (𝑚max
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Here 𝑛 is the number of measurements making up a light curve, and 𝑚app are the apparent brightness values.

The superscripts max and min indicate the maximum and minimum value of the light curve, respectively. The

superscripts 𝑡𝑘 and 𝑡𝑘+1 indicate measurements at two consecutive timesteps.

An example of two light curves with a different variability score is given in Figure 6.3.16. The ACS3 - Nadir

pointing light curve in Figure 6.3.16a is quite flat throughout the full duration of the pass, with no peaks or

bumps of fast changing brightness. Additionally, it covers only a small range of brightness values throughout,

only attaining values between 8 and 12. This is thus an example of a curve with low variability, and therefore

receives a low variability score of 3.

The light curve from the Swarm B - Tumbling case in Figure 6.3.16b on the other hand shows much more

variation throughout the visible pass, with many sharp peaks of increased and decreased brightness. Overall

the curve also span a much larger range of brightness values, attaining values between 0 and 18. This light

curve therefore reaches a higher variability score of 85.

(a) ACS3 - Nadir pointing - Variability score: 3 (b) Swarm B - Tumbling - Variability score: 85

Figure 6.3.16: Two light curves on 14-11-2024 with different variability score.

Next the variability scores for all 54 test cases will be compared to each other. They will be shown per simulation

date, for all satellites and spin cases.
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Test case variability scores
The variability scores for the light curves of the test cases on 07-09-2024 are shown in Figure 6.3.17. As expected

the Nadir pointing cases score very low on variability, as these curves were seen to be mostly flat and covering

only a small range of apparent brightness values. The Single-axis spin and Tumbling cases score much higher,

with the Tumbling cases for CryoSat 2, Swarm A and B coring the highest overall. Interestingly, the Tumbling

cases do not always score higher than the Single-axis spin cases.

Figure 6.3.17: Variability scores for test cases on 07-09-2024.

In Figure 6.3.18 the variability scores for the test case light curves on 12-10-2024 are shown. It can be seen that

overall the light curves score lower than those on 07-09-2024. The Nadir pointing cases still score very low for all

satellites. The Single-axis spin cases score higher than the Tumbling cases for all satellites except for Swarm

A. To explain why this happens the light curves for the Single-axis spin and Tumbling cases for Swarm C are

examined.

Figure 6.3.18: Variability scores for test cases on 12-10-2024.
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The Single-axis spin and Tumbling light curves for Swarm C on 12-10-2024 are shown in Figure 6.3.19. It can

be seen that the Tumbling curve in Figure 6.3.19b has faster changing brightness values than the Single-axis

spin curve in Figure 6.3.19a. However, the Single-axis spin curves has a few very sharp increases in brightness.

These are caused by a short-term increase in received specular reflection, where the observation geometry is

aligned such that the specular reflection points directly towards the observer. It appears that for the Tumbling

case this alignment does not happen, and the sharp peaks do not appear in the light curve. These sharp peaks

and the fact that the light curve covers a larger range of brightness values are the reason that the Single-axis spin

light curve has a higher variablity score than the Tumbling curve.

(a) Single-axis spin - Variability score: 133 (b) Tumbling - Variability score: 77

Figure 6.3.19: Light curves for Swarm C satellite on 12-10-2024 - Single-axis spin and Tumbling

Lastly, the variability scores of the light curves from the test cases on 12-11-2024 are shown in Figure 6.3.20. It

can be seen that for half of the satellites the Tumbling cases score higher than the Single-axis spin cases, and for

the other half the opposite is the case. The Nadir pointing cases still have very low variability scores, just like for

the other dates.

Figure 6.3.20: Variability scores for test cases on 14-11-2024.

Overall there is a large variety in variability scores for all the different test cases. Next it will be analysed if there

is a relationship between variability scores and successful shape characterisation and attitude estimation.
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Shape characterisation
The first aspect that is analysed is the shape characterisation. To get a wider view of the relation between

variability and successful shape identification, the results for all of the cases obtained in the initial guess analysis

from Section 6.2 were included in this analysis. The results were divided up in variability ranges of variability

score size 10, and it was counted how many times the MMAE algorithm was able to correctly identify the true

shape in each variability range. The results of this analysis is shown in Figure 6.3.21.

Figure 6.3.21: Count of correct shape identifications per variability score range.

From these results it looks like estimations with low variability scores are more likely to get a correct shape

identification, with only scores between 70 and 80 correctly identifying shapes a similar number of times. In

actuality this plot gives a skewed view of the results. To see this the number of light curves that have a variability

score within each variability range are plotted in Figure 6.3.22. This plot has almost the exact same pattern as

the previous plot. To get a proper idea of the relation the results in Figure 6.3.21 are normalised by dividing the

counts by the results from Figure 6.3.22. The normalised results are shown in Figure 6.3.23.

Figure 6.3.22: Number of light curves per variability range
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The normalised results look vastly different from the first plot. On average the cases with the lowest (0-20) and

highest (180-190) variability scores identified the correct shape the fewest times. The results for all scores in

between are very similar, mostly ranging between 35 and 45 correct identifications. These results only indicate a

slight relation between variability score and shape characterisation, with scores ranging between 30 and 180

performing slightly better than scores above and below this range.

Figure 6.3.23: Normalised count of correct shape identifications per variability score range.

Attitude estimation
In order to analyse the relation between variability and accuracy of attitude estimation results the attitude RMSE

values are plotted in Figure 6.3.24 against the variability score for the respective test case for the 54 baseline

estimation results for the updated MMAE algorithm. The RMSE values are shown for all three Euler angles

separately, to give a wider picture of the error values. The y-axis of the plot is given in a logarithmic scale. This

is done to make it easier to compare the magnitudes of the errors for the different variability scores.

Figure 6.3.24: Euler angle RMSE plotted against variability score of the respective test case.

It can be seen that for low variability scores, between 0 and 20, the majority of error values lie between magnitudes

10° and 100°. Only a few times the errors are below 10°, and those times are mostly for the 𝜃2 angle, which

can be seen to have lower errors for all variability scores. For variability scores higher than 20 most errors lie

between 1° and 10°. A few times the errors are even below 1°, but again only for the 𝜃2 angles. For a few cases

the error values for higher variability scores are above 10°. From this plot it can be concluded that variability of

light curve measurements is an important factor impacting the accuracy of attitude estimation results.
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6.4. Algorithm validation
At the start of this thesis (Chapter 2) the lack of validation with real measurement data of methods for shape

characterisation and attitude estimation of space objects through light curves was identified as one of the

research gaps in literature. One of the goals for this thesis was to perform such validation for the methods

implemented in the thesis. In this section the setup and results of this validation are discussed.

However, first it has to be stated that performing the validation proved more challenging than initially expected.

The validation was planned to be done towards the end of the thesis work, and due to setbacks there was

less time available than desired to properly perform this validation. Additionally, only an attempt was made

to validate the updated MMAE algorithm, since this is the algorithm that most of the results in Chapter 6

are focused on. The results that were achieved are still presented in this section, to highlight the difficulties

inherent to the validation, and provide extra input to the discussion and recommendations for future research

in Chapter 7.

In Subsection 6.4.1 it is discussed how the validation was set up, highlighting the measurement and truth data

that were used to validate the MMAE algorithm, as well as the settings of the estimation parameters that were

used to set up the estimations. Subsection 6.4.2 covers the results of the respective validations.

6.4.1. Setup
Measurement data
Measurements were available for the Swarm A and B satellite on multiple dates. The measurements consisted

if apparent brightness measurements, as well as azimuth, elevation and range data. The range data in the

measurement files were obtained from TLEs. The time between consecutive measurements in the data files is

0.04s. However, there are several time gaps present in the data, so there are periods with no measurements in

between.

Results for the validation will be shown for a single date for both satellites. For Swarm A the measurements for

27-03-2023 were used for validation, for Swarm B the measurements on 19-04-2023. The raw measurement data

can be found in the GitHub repository. Here the truth data that was used in the validations are also located.

The real brightness measurements for both validation cases are shown in Figure 6.4.1.

(a) Swarm A (b) Swarm B

Figure 6.4.1: Real apparent brightness measurements of Swarm A and B used in validation estimations

Truth data
To calculate estimation errors truth data of the orbit and attitude states are required. Both are publicly available

on an online ESA database
1
. However, this data is stored in different reference frames than used in the

estimations. For example, the orbit data is stored in the ITRF frame, while the estimation is performed in the

ECI frame.

With some assistance it was possible to convert the attitude truth data into body-axis quaternions, which is the

same frame in which the attitude is estimated in the MMAE algorithm. This data was then linearly interpolated

1https://earth.esa.int/eogateway/missions/swarm/data

https://github.com/WiegerVerbeek/Thesis
https://earth.esa.int/eogateway/missions/swarm/data
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to obtain data for all the time points required. However, in the limited time available it was not possible to

convert the orbit data to the ECI frame such that azimuth, elevation and range data from the measurement files

fit the truth data. The following was done to still have truth data to calculate estimation errors with.

The first data entries for the azimuth, elevation and range data were converted into an initial orbit position

state in the ECEF frame, which was then converted into the ECI frame. This was also done for the next data

entry. The two position states were then used to calculate the initial orbit velocity, by subtracting them from

each other and dividing by the time between the data entries. The initial orbital position and velocity were

then propagated in Tudat for the full duration of the measurement files. This resulted in a ’pseudo-truth’ orbit,

which was used to calculate the estimation errors of the respective validations.

To justify this approach the azimuth, elevation and range values obtained from the propagated pseudo-truth

orbit are plotted next to those from the measurement files. For both the Swarm A and B these plots are shown

in Figure 6.4.2. In all the figures it can be seen that the values for the propagation and the measurements are

initially very close to each other, but diverge slightly towards the end of the time periods. The differences are

however considered to be small enough to allow the pseudo-truth orbit to be used as truth data in the validation.

(a) Azimuth - Swarm A (b) Azimuth - Swarm B

(c) Elevation - Swarm A (d) Elevation - Swarm B

(e) Range - Swarm A (f) Range - Swarm B

Figure 6.4.2: Propagated angles and range values compared to measurement data for Swarm A and Swarm B.
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Estimation parameters
While the measurements data is available at time steps of 0.04s, it was decided to run the validation estimations

with a time step of 0.4s. This was done because it was found in Subsection 6.3.2 that low values for the

measurement timesteps sometimes lead to very high error results. The cause for this was not exactly determined,

so to avoid this behaviour the slightly higher estimation time step was selected.

The validation estimations were performed with the same model bank as used in the testing, defined in Chapter 5,

with the sphere models excluded, because this is the same model bank with which the best results for the

MMAE algorithm were obtained in Subsection 6.1.4. The model bank thus consists of 20 models.

The next parameters are the covariance matrices. For the initial covariance matrix 𝑷0 and the process noise

covariance matrix 𝑸 the same values that were used to produce the results in the previous sections were kept

for the attitude and rotational velocity values. For the orbital position and velocity the values in the 𝑷0 matrix

were slightly adjusted. Since the difference between the measurements and pseudo-truth orbit grows over time,

it was decided to reflect this in the 𝑷0 matrix. For the orbital positions a 𝜎 value of 10 km was assigned, and for

the orbital velocities a value of 10 m/s. The covariance matrices 𝑷0 and 𝑸 are given by Equation 6.4.1.

𝑷0 = diag

[
(10km)2 ∗ 𝐼3 (10 m/s)2 ∗ 𝐼3 0.22 ∗ 𝐼3 (3.1 ∗ 10

−4
rad/s)2 ∗ 𝐼3

]
(6.4.1a)

𝑸 = diag

[
(100 m)2 ∗ 𝐼3 (0.1 m/s)2 ∗ 𝐼3 (2 ∗ 10

−4)2 ∗ 𝐼3 (10
−12

rad/s)2 ∗ 𝐼2 (10
−5

rad/s)2 ∗ 𝐼1
]

(6.4.1b)

The last matrix that is defined is the measurement noise covariance matrix 𝑹. To reflect the differences between

the measurements and the pseudo-truth orbit, the 𝜎 values for the azimuth and elevation angle measurements

were set to 0.5°, or about 0.0087 radians. The range noise standard deviation was set to 1.0 km. For the

brightness measurements the standard deviations differ for each measurement. However, the MMAE algorithm

as implemented works with fixed measurement noise values. Therefore it was decided to assign the average

standard deviation value from each validation case, so Swarm A - 27-03-2023 and Swarm B - 19-04-2023, as

the respective values in the noise covariance matrix 𝑹. This was done both because there was not enough

time to update the algorithm, and because the algorithm was verified and tested with this functionality, so for

proper validation it is best to keep the algorithm unchanged. For the Swarm A validation the average standard

deviation is 0.135, and for Swarm B it is 0.183.

The initial orbital states guess that were used as input for the estimations are 3 km offset from the initial positions

of the pseudo-truth orbit, and 1 m/s for the initial velocities calculated from the first two pseudo-truth orbital

positions. The attitude initial guess was set to be the true initial attitude from the interpolated ESA data, offset

by 10° for each Euler angle. Since the true initial rotational velocities of the real satellite are very small, the

initial rotational velocity guess was set to 0.0001 rad/s for all three body-axes.

6.4.2. Results
Swarm A - 27-03-2023
In Figure 6.4.3 the estimation errors for the attitude and orbital position states for the Swarm A validation

estimation are plotted. In both plots the errors initially stay around 0 error, but diverge later on in the estimation.

Especially the attitude estimation diverges by a lot, ending with errors larger than 100° for the 𝜃1 and 𝜃3 angles.

The final orbital position errors are not as large, but do go beyond the covariance bounds of the estimation.
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(a) Euler attitude error (b) Orbital position error

Figure 6.4.3: Attitude and orbital position errors for the Swarm A validation estimation

These results are much less accurate than were achieved with the simulated data for the test cases in the previous

sections of this chapter. To explain this first the MMAE weights for the estimation in Figure 6.4.4 are looked at.

It can be seen that the algorithm assigns higher weights to many different models throughout the estimation.

Only at the end of the estimation it converges on a single model. This is not the model the Swarm satellites were

modelled as, but it is a model of the correct shape type, namely a triangular prism. The algorithm is thus able to

get close to the shape of the Swarm satellites from the real measurements.

Figure 6.4.4: MMAE weights for Swarm A validation estimation
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It does need to be kept in mind that the real Swarm satellites are not completely shaped like a triangular prism,

so there is a natural mismatch between the real measurements and the predicted measurements calculated in

the MMAE algorithm, which has a significant impact on how well the algorithm can characterise the object

shape and estimate the attitudes. This is reflected in the attitude error plot in Figure 6.4.3a. The reason the

errors are so high is most likely caused by the mismatch between the simplified shape model of the Swarm

satellite and the real shape of the satellite from which the measurements originate. This means that even though

the algorithm performs a separate attitude estimation for each shape in the model bank, the difference between

simulation and reality are too big to lead to accurate results.

The reason that the orbital position errors in Figure 6.4.3b are less extreme, but still high, is most likely caused

by the differences between the pseudo-truth and measurements as seen in Figure 6.4.2. The measurements the

MMAE algorithm uses for the estimation are made from the real orbit, and since the pseudo-truth orbit is not

the same as this orbit the estimation errors that are calculated with the pseudo-truth will be larger. The errors in

Figure 6.4.3b are around the same order of magnitude as the differences in range values in Figure 6.4.2e, so it

can safely be assumed that this is indeed what causes the large errors. This means that the estimated orbital

positions could in fact represent the true orbit better than the pseudo-truth orbit. This would however need to

be confirmed with the true orbit data from ESA, which was unfortunately not possible in the remaining time for

the thesis.

Swarm B - 19-04-2023
The errors for the estimated attitude and orbital positions for the Swarm B validation estimation are shown in

Figure 6.4.5. It can be seen that the attitude errors very quickly diverge from the truth, with only the 𝜃2 errors

ending within the covariance bounds.

The orbital position errors also diverge from the pseudo-truth orbit, with larger errors than the Swarm A

validation estimation. However, it can be seen in Figure 6.4.2f that the differences between the range values of

the pseudo-truth orbit and the measurements are also larger than those for Swarm A. This difference is reflected

by the higher position errors in Figure 6.4.5, since these are calculated with the pseudo-truth orbital positions.

Again, proper validation with the ESA orbit data would be required to provide better insight into the orbital

position errors.

(a) Euler attitude error (b) Orbital position error

Figure 6.4.5: Attitude and orbital position errors for the Swarm B validation estimation
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To explain the high attitude errors the estimation weights in Figure 6.4.6 are examined. For almost the entire

estimation the weights are quite low. This means the algorithm has low confidence that any one model is

the correct model, because the estimations do not fit the measurements well. Only at the end the algorithm

converges on one model, which is a model of the wrong shape type, namely a box-wing satellite. This is a

similar result as what was seen for Swarm A, where the simplified shape model used in the model bank does

not match reality close enough, so when real measurements are used in the estimation the MMAE algorithm is

not able to find the correct model, and is thus also not able to accurately estimate the attitude.

Figure 6.4.6: MMAE weights for Swarm B validation estimation



7 Conclusions

In this thesis the problem of object characterisation and attitude estimation of LEO objects through light curve

inversion stood central. In particular, the main research question that drove the activities performed throughout

the thesis period was the improvement of existing techniques for this problem. The first step that was taken

was determining the objects and orbits on which the characterisation and estimation would be performed in

Chapter 3, as well as setting up the simulation environment in which this would be done.

Next, in Chapter 4 the method for simulating light curve measurements was implemented, namely the Ashikmin-

Shirley BRDF model. After this a method that is commonly used for the characterisation problem in literature

called MMAE was implemented. One of the research sub-questions was centred around the limitations of fixed

model estimation methods like the MMAE algorithm. Therefore two new methods were implemented, called

MGS and MGen, that are variable model estimation methods. In the following chapter, Chapter 5, the test cases

with which the three algorithms would be tested and analysed were defined, as well as the strategy as to how

the testing would be performed. Finally, in Chapter 6 the results of this testing were presented and explained.

In this chapter the conclusions that were made based on these results are presented, with the goal to answer the

research questions that drove the thesis research. First, in Section 7.1 the three research sub-questions will be

answered. Then in Section 7.2 an answer to the main research question will be given. In Section 7.3 a discussion

of the results and conclusions is presented. Section 7.4 closes off the thesis by giving recommendations for

future research that could be undertaken to further advance the field of object characterisation and attitude

estimation of LEO objects through light curve inversion.

7.1. Answers to sub-questions
In Chapter 2 the main research question was drafted based on the knowledge gaps identified in literature. Since

this question was quite broad, three supporting sub-questions were set up to guide the research activities of the

thesis. These questions, labelled RQ-1, RQ-2 and RQ-3, are individually answered in this section.

7.1.1. Fixed model bank limitations
The first sub-question addresses the limitations that inherent to fixed model estimation techniques like MMAE:

RQ-1: How can the limitations of using a fixed model bank in estimations be overcome?

The VSMM type algorithms MGS and MGen were implemented in order to see if variable model estimation

methods could outperform traditional fixed bank estimators such as MMAE. The MGen algorithm, which

generates new object shapes based on model likelihoods determined from measurements, does not perform

well in its current form on the test cases. The algorithm achieves poor results in both object characterisation and

attitude estimation. One main reason for this is that models that score below a certain likelihood threshold are

removed from the model bank. This often resulted in the model of the right shape type to be removed from the

model bank, which made identifying the true shape impossible. Even if the correct shape type is not removed

from the model bank, the algorithm does not yet have the capability to converge on the correct dimensions of

the true shape. Major reworking of the algorithm would be required to improve its capabilities, but even then it

is unsure if this method could improve on the results of the established MMAE algorithm.

The MGS algorithm shows more promise, but still underperforms compared to the MMAE algorithm. The

algorithm is computationally more efficient than the MMAE algorithm because it only runs smaller groups of

models in parallel, compared to the MMAE algorithm which runs all models in the model bank simultaneously.

However, the idea behind the MGS algorithm is that different model groups are activated based on which shape

model in the central model group best fits the measurements at a certain time. Unfortunately, it often occurs

that the algorithm initially activates the incorrect model group, and does not switch back to the central model

group, making it impossible to identify the true shape. The algorithm was however able to correctly find the

true shape for quite a few cases, and has potential to be an algorithm that can effectively be used in the shape

characterisation field. Further development would be required to further improve the results of this algorithm

on the object characterisation and state estimation through light curve problem.

Lastly, the limitations of the MMAE algorithm were addressed for the algorithm itself. It was found that

removing the fusion of weighted average attitude state estimation resulted in significant improvement of

performance of the MMAE algorithm, with the adjusted algorithm finding the correct shape for almost all test

106
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cases with low attitude errors. With the fusion of attitude states removed each for shape model in the model

bank a separate attitude estimation is performed, instead of one averaged estimation for all shape models. This

makes it possible for the MMAE algorithm to find the true shape much more often, as the estimated states for

incorrect models will over time diverge much more from the measurements than the shape models that are close

to the true shape. This proved to be a very effective change to the existing MMAE algorithm, and is considered

as the most important result obtained in the thesis. The remaining sub-questions can be seen as a sensitivity

analysis on the baseline results of the test cases achieved by the MMAE algorithm.

7.1.2. Initial guess dependence
The next sub-question focuses on the initial guess of the estimations, specifically:

RQ-2: What is required of the initial guess to ensure good convergence of estimation?

To answer this question only the performance of the improved MMAE algorithm was analysed, as this model

performed much better than the newly implemented VSMM methods, and because the main research question

focuses on existing techniques, which only applies to the MMAE algorithm. It was analysed what the effects on

the baseline results were of changing the offset of the initial guess from the true initial state for the attitude and

rotational velocities. In essence this analysis functioned as a sensitivity analysis of the results on the initial guess

used in the estimations. The effect of changing the initial attitude and rotational velocity guess was investigated

separately.

It was deemed that estimations with average error values below 20° were accurate enough to be considered

good estimates. The analysis found that the different spin cases allow different ranges of offset values from the

true initial states that still produce results that are considered accurate. The table containing the offsets for each

spin case is repeated in Table 7.1.1. The Nadir pointing case results showed to be the most sensitive to changes

in the initial guess, requiring an initial guess that is close to the true initial state to produce estimations with

errors below the limit of 20°. The Single-axis spin and Tumbling case results proved to be more robust, allowing

larger ranges for both the initial attitude and rotational velocity offsets that still lead to accurate results.

Table 7.1.1: Ranges of offsets from true initial state resulting in accurate estimations, per spin case.

Spin case Attitude offset range [°] Rotational velocity offset range [°/s]
Nadir pointing [-5.0, 5.0] [-0.01, 0.02]

Single-axis spin [-7.5, 7.5] [-0.05, 0.05]

Tumbling [-12.0, 12.5] [-0.045, 0.045]

7.1.3. Measurement data requirements
The last research sub-question addresses the measurement data with which estimations are made:

RQ-3: What are requirements on measurement data (e.g. noise, rate, variability) to ensure correct estimates?

To answer this question two types of analyses were performed. For the noise and data rate a similar analysis as

for the initial guess dependence was performed, where estimation were run with values for the noise and data

rate that were different from the values used in the baseline estimations. In both analyses a similar result as

the initial guess dependence result was found, namely that the Single-axis spin and Tumbling case results are

more robust to changes to the parameters used to simulate the measurements, producing estimations with low

attitude errors for a large range of data rate and apparent brightness noise values. The Nadir pointing results

again proved to be less resilient, producing estimations with much higher errors for different values of the

measurement parameters. Interestingly, it was found that for all spin cases the lowest values of data rate and

measurement noise do not directly lead to more accurate results.

The link between measurement variability and estimation results was investigated on two aspects. To allow this

analysis a variability score was defined, that was calculated for the light curve of each of the 54 test cases. First

the relation between this variability score and the ability of the MMAE algorithm to correctly identify the true

shape was examined. This was done by looking at all the results from the initial guess dependence analysis, to

have a larger set of data to investigate. It was found that there is only a small direct link between variability

score and successful shape characterisation, with low variability scores resulting in slightly fewer cases with

successful shape identifications.

The link between attitude estimation accuracy and variability score was only examined for the baseline results

of the 54 test cases from the improved MMAE algorithm. Here it was seen that there exists a stronger relation

between measurement variability and estimation errors, with higher variability scores consistently leading to



7.2. Answer to main research question 108

results with lower attitude errors. This relation was indirectly already seen in the initial guess dependence

and the noise and data rate analysis results. The Single-axis spin and Tumbling case light curves have higher

variability scores than the Nadir pointing curves for all test cases. This is the reason that the Single-axis spin

and Tumbling case results are more resilient to changes in the simulation parameters, as light curves with more

variability have more information for the MMAE algorithm to use to produce accurate attitude estimations.

7.1.4. Validation
Lastly, it was attempted to validate the MMAE algorithm with real measurement data for the Swarm A and B

satellites. Lack of validation with real measurement data was namely identified as one of the research gaps in

the literature. For both satellites a validation estimations was performed on one observation date.

Both validation estimations were unsuccessful in both shape characterisation and state estimation. For the

Swarm A estimation the MMAE algorithm identified a shape of the correct shape type as the simplified Swarm

satellite model, but with high attitude and orbital position errors. For the Swarm B estimation the algorithm

found a completely incorrect shape, namely a box-wing model, and produced even larger estimation errors.

These unsuccessful validations highlight the differences between reality and simulation, and difficulties in

applying estimation methods like MMAE for real-life applications, as will be further discussed in Section 7.3.

7.2. Answer to main research question
The main research question driving the tasks performed in the thesis research is the following:

What improvements can be made on existing techniques for space debris object characterisation
of LEO objects through light curve inversion to estimate attitudes and characterise shapes?

In this thesis it was found that adjusting the existing technique MMAE such that the attitude of each shape

model in the estimation model bank is performed separately in the algorithm, without fusing the attitude

estimates of all the shapes, leads to improved results on the shape characterisation and attitude estimation of

LEO test objects for simulated measurements. Extensions of this technique to a VSMM method like MGS and

MGen proved to be ineffective at improving on these results. Validation of the improved MMAE algorithm with

real measurement data was unsuccessful, and highlighted difficulties that still need to be overcome in order to

use the method in real-life applications.

7.3. Discussion
Range measurement simulation
There are a few aspects of the results and conclusions that need to be addressed. The first is that all the estimation

results obtained in this thesis included simulated range measurements. As mentioned in Subsection 4.3.4,

in reality most apparent brightness observations are made with passive optical sensors, that do not measure

range. In the limited time available it was not achieved to get the implemented methods working without

including these range measurements however. For further development and research on these methods this

would be an important aspect that would need to be solved to make the methods applicable to practical use in

real estimations.

Validation
Secondly, the validation attempts of the MMAE algorithm highlighted a crucial shortcoming to the results

obtained. Some of the shapes included in the model bank that represented real satellites, like the Swarm and

CryoSat 2 satellites, were modelled in a highly simplified way using basic shapes. In reality these satellites

have a more complex and detailed shape, which would produce different measurements than the simplified

models. The validation attempts showed that this disconnect between the simplified shape models and real

measurements is large enough to lead to poor results when using real data.

Relevance of research
The last aspect that needs to be addressed is the title of this thesis: Space Debris Object Characterisation through
Light Curve Inversion. The first two words are space debris, but in all the test cases and results only existing,

active satellites were looked at, no debris objects. The question thus stands: how is any of the research in this

thesis relevant to space debris?

There are two parts to answering this question. The first is that real satellites, like the ones investigated in this

thesis, can turn into debris objects once they are no longer active. This could happen due to a number of reasons,

like critical malfunctions leaving the satellite uncontrollable, or simply because a satellite has exceeded its

lifetime and becomes no longer active. Once these satellites are no longer actively controlled, non-conservative

forces like aerodynamic drag and solar radiation pressure, and torques caused by these forces, will overtime
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lead to these objects drifting from their original orbit and attitude states. Since they are no longer active,

information on these new states is no longer downlinked to the ground, making these states unknown. This is

what makes techniques like shape characterisation and state estimation through light curves important, as they

allow these states to be estimated so that predictions can be made about their future states, which is crucial for

the operational of other still-functioning satellites.

Additionally, satellites could be impacted by other debris objects, both while they are still active and when they

have become debris objects. These impacts are always high-energy collisions, which can drastically alter the

orbit and attitude states of a satellite, as well as its shape. This is again where the techniques covered in this

thesis become relevant, as they make it possible to estimate these post-collision states and characterise the shape

of the satellite after these collisions.

The second part of the answer to why the research in this thesis is relevant is the fact that the methods covered

are still very much in development, and have mostly only be used in theoretical settings. In order to become

proper methods that could be used to characterise the shapes and estimate the states of real debris objects these

methods need to be tested and validated. It is basically impossible to use real debris objects for this, because

their true shapes and states are almost always unknown. It is thus not possible to assess whether these methods

work properly, unless they are tested and validated on objects for which the shapes and states are known, which

are currently active satellites.

All this being said, there are still a lot of aspects on which the methods implemented in this thesis could be

improved. A few of these aspects are covered in the next and final section of this thesis.

7.4. Recommendations for future work
There is still a lot of potential to improve the methods discussed and implemented in this thesis to tackle the

problem of object characterisation and attitude estimation. The aspects of most importance or with the most

potential are presented here.

VSMM
The variable model methods implemented in this thesis did not perform better than the existing fixed model

method MMAE. However, they could be improved in different ways to potentially match or even improve

on this algorithm. The MGS method for example might deliver better results if a delay was implemented

in the mechanism of switching between model groups. Doing this would give the algorithm more time to

identify which model in the central group best fits the measurements, before switching to this group. The

MGen algorithm needs a lot of refining before it performs as well as the MMAE or MGS algorithms. One such

refinement could be to run estimations of different shape types completely parallel to each other. This would

result in many models generated for each shape type, which could improve the chances of the algorithm finding

the correct shape.

Glint
A major obstacle in the attitude estimation is the small range of initial guesses that result in good convergence of

estimations, as was seen in the initial guess dependence analysis. One method that could improve on this aspect

uses the sharp peaks in light curves caused by short dominance of specular reflectance, called glint. Matsushita

et al. [29][30] use this information in the light curve to constrain the possible attitudes the objects can attain, and

project states that are outside of this constraint on the constraint boundary. They found that they could correctly

estimate attitudes that started with much larger initial attitude errors.

Validation
As has been mentioned multiple times, the methods in this thesis will only become of practical use for real-life

applications once they have been validated with real measurement data. Future research should focus on what

is required to ensure estimations run with real data produce accurate estimation results and correct shape

characterisations. One way to do this would be to include more detailed shape models of objects from which

measurements are made, like the Swarm and CryoSat 2 satellites. This would bring reality and simulation closer

together, making it possible to identify the areas in the methods that need to be further improved.



References

[1] Nodir Adilov et al. “An Analysis of Launch Cost Reductions for Low Earth Orbit Satellites”. In: Economics
Bulletin (Mar. 2024). url: https://www.researchgate.net/publication/379335390_An_Analysis_
of_Launch_Cost_Reductions_for_Low_Earth_Orbit_Satellites_accepted_for_publication_
Economics_Bulletin_2022.

[2] ESA Space Debris Office. ESA’s Annual Space Environment Report. Tech. rep. Version 8.0. European Space

Agency, July 2024. url: https://www.sdo.esoc.esa.int/environment_report/Space_Environment_
Report_latest.pdf.

[3] Claude R. Phipps et al. “A Laser Optical System to Remove Low Earth Orbit Space Debris”. In: Proceedings
of the 6th European Conference on Space Debris. Ed. by L. Ouwehand. Vol. 6. 1. Conference paper. ESA, 2013.

url: https://conference.sdo.esoc.esa.int/proceedings/sdc6/paper/29/SDC6-paper29.pdf.

[4] Charles J. Wetterer and Moriba Jah. “Attitude Determination from Light Curves”. In: Journal of Guidance,
Control, and Dynamics 32.5 (2009), pp. 1648–1651. doi: 10.2514/1.44254. eprint: https://doi.org/10.
2514/1.44254. url: https://doi.org/10.2514/1.44254.

[5] Ingrid van Houten-Groeneveld and C.J. van Houten. “Photometrics Studies of Asteroids. VII.” In:

Astrophysical Journal 127 (Apr. 1958), p. 253. doi: 10.1086/146459.

[6] M. Kaasalainen and J. Torppa. “Optimization Methods for Asteroid Lightcurve Inversion: I. Shape

Determination”. In: Icarus 153.1 (2001), pp. 24–36. issn: 0019-1035. doi: https://doi.org/10.1006/icar.
2001.6673. url: https://www.sciencedirect.com/science/article/pii/S0019103501966734.

[7] Jiří Šilha et al. “Space debris observations with the Slovak AGO70 telescope: Astrometry and light curves”.

In: Advances in Space Research 65.8 (2020), pp. 2018–2035. issn: 0273-1177. doi: https://doi.org/10.1016/j.
asr.2020.01.038. url: https://www.sciencedirect.com/science/article/pii/S0273117720300727.

[8] D. Hall et al. “Separating Attitude and Shape Effects for Non-Resolved Objects”. In: The 2007 AMOS
Technical Conference Proceedings. Conference paper. Kihei, Maui, HI: Maui Economic Development Board,

Inc., 2007, pp. 464–475. url: https://amostech.com/TechnicalPapers/2007/NROC/Hall.pdf.

[9] Alexander Burton and Carolin Frueh. “Multi-Hypothesis Light Curve Inversion for Space Object Attitude

Determination”. In: Proceedings of the 8th European Conference on Space Debris. Vol. 8. Conference paper.

Purdue University. ESA Space Debris Office, 2021. url: https://conference.sdo.esoc.esa.int/
proceedings/sdc8/paper/18/SDC8-paper18.pdf.

[10] Joanna C. Hinks, Richard Linares, and John L. Crassidis. “Attitude observability from light curve

measurements”. In: AIAA Guidance, Navigation, and Control (GNC) Conference. American Institute of

Aeronautics and Astronautics Inc., 2013. isbn: 9781624102240. doi: 10.2514/6.2013-5005.

[11] Andrew Dianetti and John Crassidis. “Resident Space Object Characterization Using Polarized Light

Curves”. In: Journal of Guidance, Control, and Dynamics 46 (Oct. 2022), pp. 1–18. doi: 10.2514/1.G006847.

[12] Richard Linares et al. “Astrometric and Photometric Data Fusion for Resident Space Object Orbit, Attitude,

and Shape Determination Via Multiple-Model Adaptive Estimation”. In: AIAA Guidance, Navigation, and
Control Conference. Aug. 2010. isbn: 978-1-60086-962-4. doi: 10.2514/6.2010-8341.

[13] Xiao-Rong Li, Yaakov Bar-Shalom, and William Dale Blair. “Engineer’s guide to variable-structure

multiple-model estimation for tracking”. In: Multitarget-multisensor tracking: Applications and advances.
3 (2000), pp. 499–567. url: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
ee1365d32d153bf1f60d99d27859180c4f30066e.

[14] Richard Linares, Roberto Furfaro, and Vishnu Reddy. “Space Objects Classification via Light-Curve

Measurements Using Deep Convolutional Neural Networks”. In: Journal of the Astronautical Sciences 67 (3

Sept. 2020), pp. 1063–1091. issn: 21950571. doi: 10.1007/s40295-019-00208-w.

[15] Liam Robinson and Carolin Frueh. “(AAS 22-574) Light Curve Inversion for Reliable Shape Reconstruction

of Human-Made Space Objects”. In: Conference paper. Aug. 2022. url: https://www.researchgate.net/
publication/366781300.

[16] Alexander Burton. “Attitude Estimation Using Light Curves”. In: Purdue University (July 2024). doi:

10.25394/PGS.26383684.v1. url: https://hammer.purdue.edu/articles/thesis/ATTITUDE_
ESTIMATION_USING_LIGHT_CURVES/26383684.

110

https://www.researchgate.net/publication/379335390_An_Analysis_of_Launch_Cost_Reductions_for_Low_Earth_Orbit_Satellites_accepted_for_publication_Economics_Bulletin_2022
https://www.researchgate.net/publication/379335390_An_Analysis_of_Launch_Cost_Reductions_for_Low_Earth_Orbit_Satellites_accepted_for_publication_Economics_Bulletin_2022
https://www.researchgate.net/publication/379335390_An_Analysis_of_Launch_Cost_Reductions_for_Low_Earth_Orbit_Satellites_accepted_for_publication_Economics_Bulletin_2022
https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf
https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf
https://conference.sdo.esoc.esa.int/proceedings/sdc6/paper/29/SDC6-paper29.pdf
https://doi.org/10.2514/1.44254
https://doi.org/10.2514/1.44254
https://doi.org/10.2514/1.44254
https://doi.org/10.2514/1.44254
https://doi.org/10.1086/146459
https://doi.org/https://doi.org/10.1006/icar.2001.6673
https://doi.org/https://doi.org/10.1006/icar.2001.6673
https://www.sciencedirect.com/science/article/pii/S0019103501966734
https://doi.org/https://doi.org/10.1016/j.asr.2020.01.038
https://doi.org/https://doi.org/10.1016/j.asr.2020.01.038
https://www.sciencedirect.com/science/article/pii/S0273117720300727
https://amostech.com/TechnicalPapers/2007/NROC/Hall.pdf
https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/18/SDC8-paper18.pdf
https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/18/SDC8-paper18.pdf
https://doi.org/10.2514/6.2013-5005
https://doi.org/10.2514/1.G006847
https://doi.org/10.2514/6.2010-8341
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ee1365d32d153bf1f60d99d27859180c4f30066e
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ee1365d32d153bf1f60d99d27859180c4f30066e
https://doi.org/10.1007/s40295-019-00208-w
https://www.researchgate.net/publication/366781300
https://www.researchgate.net/publication/366781300
https://doi.org/10.25394/PGS.26383684.v1
https://hammer.purdue.edu/articles/thesis/ATTITUDE_ESTIMATION_USING_LIGHT_CURVES/26383684
https://hammer.purdue.edu/articles/thesis/ATTITUDE_ESTIMATION_USING_LIGHT_CURVES/26383684


References 111

[17] Sangeetha Nandakumar et al. “The high optical brightness of the BlueWalker 3 satellite”. In: Nature
623.7989 (2023), pp. 938–941. issn: 1476-4687. doi: 10.1038/s41586-023-06672-7. url: https://doi.
org/10.1038/s41586-023-06672-7.

[18] Andreja Gomboc, Martin Horvat, and Uroš Kostić. ESA PECS Study Arrangement Report: Relativistic GNSS.

2014. url: https://www.esa.int/gsp/ACT/doc/STUDIES/ACT-RPT-PHY-PEC-400010374111NLKML-
Relativistic_GNSS_Final_Report.pdf.

[19] Sangho Jo et al. “S-LIGHT: Synthetic Dataset for the Separation of Diffuse and Specular Reflection Images”.

In: Sensors 24.7 (2024). issn: 1424-8220. doi: 10.3390/s24072286. url: https://www.mdpi.com/1424-
8220/24/7/2286.

[20] Charles J. Wetterer et al. “Refining space object radiation pressure modeling with bidirectional reflectance

distribution functions”. In: Journal of Guidance, Control, and Dynamics 37 (1 2014), pp. 185–196. issn: 15333884.

doi: 10.2514/1.60577.

[21] Michael Ashikhmin and Peter Shirley. “An Anisotropic Phong Light Reflection Model”. In: Journal
of Graphics Tools 5 (Jan. 2001). url: https://www.researchgate.net/publication/2523821_An_
Anisotropic_Phong_Light_Reflection_Model.

[22] John L. Crassidis and F. Landis Markley. “Unscented filtering for spacecraft attitude estimation”. In:

Journal of Guidance, Control, and Dynamics 26 (4 2003), pp. 536–542. issn: 15333884. doi: 10.2514/2.5102.

[23] Richard Linares et al. “Space object shape characterization and tracking using light curve and angles data”.

In: Journal of Guidance, Control, and Dynamics 37 (1 2014), pp. 13–25. issn: 15333884. doi: 10.2514/1.62986.

[24] Byron D. Tapley, Bob E. Schutz, and George H. Born. “Chapter 4 - Fundamentals of Orbit Determination”.

In: Statistical Orbit Determination. Ed. by Byron D. Tapley, Bob E. Schutz, and George H. Born. Burlington:

Academic Press, 2004, pp. 85–86. isbn: 978-0-12-683630-1. doi: https://doi.org/10.1016/B978-
012683630-1/50023-0.

[25] Eric Bellm and Shrinivas Kulkarni. “The unblinking eye on the sky”. In: Nature Astronomy 1.3 (Mar. 2017).

issn: 2397-3366. doi: 10.1038/s41550-017-0071. url: http://dx.doi.org/10.1038/s41550-017-0071.

[26] Keats Wilkie and Johnny Fernandez. Advanced Composite Solar Sail System (ACS3) Mission Update. Pre-

sentation slides. Presented at The 6th International Symposium on Space Sailing, New York, NY, USA,

June 5-9, 2023. Hampton, Virginia, United States: NASA Langley Research Center, June 2023. url:

https://ntrs.nasa.gov/api/citations/20230008378/downloads/Wilkie_ACS3_mission_update_
ISSS_2023_20230530_rev_a.pdf.

[27] Larsson, S. “Parameter estimation in epoch folding analysis”. In: Astron. Astrophys. Suppl. Ser. 117.1 (1996),

pp. 197–201. doi: 10.1051/aas:1996150. url: https://doi.org/10.1051/aas:1996150.

[28] Jean-Noël Pittet et al. “Space debris attitude determination of faint LEO objects using photometry:

SwissCube CubeSat study case”. In: May 2017.

[29] Y. Matsushita et al. “Light Curve Analysis and Attitude Estimation of Space Objects Focusing on Glint”.

In: First International Orbital Debris Conference. Vol. 2109. LPI Contributions. Dec. 2019, 6091, p. 6091. url:

https://ui.adsabs.harvard.edu/link_gateway/2019LPICo2109.6091M/PUB_PDF.

[30] Yuri Matsushita et al. “Conceptual Study of Improved Photometric Attitude Estimation Using Glint”. In:

Transactions of the Japan Society for Aeronaturical and Space Sciences, Aerospace Technology Japan 22 (2024),

pp. 59–65. doi: 10.2322/tastj.22.59.

https://doi.org/10.1038/s41586-023-06672-7
https://doi.org/10.1038/s41586-023-06672-7
https://doi.org/10.1038/s41586-023-06672-7
https://www.esa.int/gsp/ACT/doc/STUDIES/ACT-RPT-PHY-PEC-400010374111NLKML-Relativistic_GNSS_Final_Report.pdf
https://www.esa.int/gsp/ACT/doc/STUDIES/ACT-RPT-PHY-PEC-400010374111NLKML-Relativistic_GNSS_Final_Report.pdf
https://doi.org/10.3390/s24072286
https://www.mdpi.com/1424-8220/24/7/2286
https://www.mdpi.com/1424-8220/24/7/2286
https://doi.org/10.2514/1.60577
https://www.researchgate.net/publication/2523821_An_Anisotropic_Phong_Light_Reflection_Model
https://www.researchgate.net/publication/2523821_An_Anisotropic_Phong_Light_Reflection_Model
https://doi.org/10.2514/2.5102
https://doi.org/10.2514/1.62986
https://doi.org/https://doi.org/10.1016/B978-012683630-1/50023-0
https://doi.org/https://doi.org/10.1016/B978-012683630-1/50023-0
https://doi.org/10.1038/s41550-017-0071
http://dx.doi.org/10.1038/s41550-017-0071
https://ntrs.nasa.gov/api/citations/20230008378/downloads/Wilkie_ACS3_mission_update_ISSS_2023_20230530_rev_a.pdf
https://ntrs.nasa.gov/api/citations/20230008378/downloads/Wilkie_ACS3_mission_update_ISSS_2023_20230530_rev_a.pdf
https://doi.org/10.1051/aas:1996150
https://doi.org/10.1051/aas:1996150
https://ui.adsabs.harvard.edu/link_gateway/2019LPICo2109.6091M/PUB_PDF
https://doi.org/10.2322/tastj.22.59


A Test object TLE data

The TLE data for all satellites were retrieved from the space-track.org website for the date 14-11-2024.

Table A.1: CryoSat 2

CryoSat 2
Line 1 1 36508U 10013A 24318.77506330 .00000661 00000-0 16335-3 0 9990

Line 2 2 36508 92.0154 137.2273 0003801 110.1730 249.9886 14.51895234773864

Table A.2: Swarm A

Swarm A
Line 1 1 39452U 13067B 24319.15485474 .00014358 00000-0 40044-3 0 9993

Line 2 2 39452 87.3377 268.9331 0003430 92.0643 268.1003 15.36630797616804

Table A.3: Swarm B

Swarm B
Line 1 1 39451U 13067A 24318.81141188 .00005961 00000-0 25517-3 0 9993

Line 2 2 39451 87.7501 157.8044 0002801 87.9629 272.1938 15.22616637594743

Table A.4: Swarm C

Swarm C
Line 1 1 39453U 13067C 24319.08965172 .00014308 00000-0 39903-3 0 9991

Line 2 2 39453 87.3378 267.5457 0003440 92.2500 267.9147 15.36632294616759

Table A.5: BlueWalker 3

BlueWalker 3
Line 1 1 53807U 22111AL 24319.06106888 .00011899 00000-0 41321-3 0 9998

Line 2 2 53807 53.2357 221.1658 0008002 173.3430 186.7679 15.30184266121145

Table A.6: ACS3

ACS3
Line 1 1 59588U 24077B 24319.07684548 .00001775 00000-0 19527-2 0 9992

Line 2 2 59588 97.5074 353.0061 0034766 189.6307 170.4184 13.72806455 27912
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B Baseline estimation results

B.1. Original cases
B.1.1. MMAE

Table B.1.1.1: Performance metrics for MMAE - 7-9-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 51.2 11.7 58.8 Correct shape type

CryoSat 2 Single axis spin 136.2 63.6 113.4 No

CryoSat 2 Tumbling 15.9 8.9 17.2 Correct shape type

Swarm A Nadir pointing 87.1 102.3 118.8 No

Swarm A Single axis spin 120.9 65.9 147.9 No

Swarm A Tumbling 19.8 5.5 17.9 Yes

Swarm B Nadir pointing 136.9 46.6 126.8 No

Swarm B Single axis spin 91.1 12.6 64.5 No

Swarm B Tumbling 132.2 63.8 77. No

Swarm C Nadir pointing 121.7 89.1 99. No

Swarm C Single axis spin 136. 61. 98.3 No

Swarm C Tumbling 8. 4.9 7. Yes

ACS3 Nadir pointing 73.8 89.5 43. No

ACS3 Single axis spin 2.3 0.7 2.3 Yes

ACS3 Tumbling 5.9 2.8 4.3 Yes

BlueWalker 3 Nadir pointing 101.3 103.8 36.6 No

BlueWalker 3 Single axis spin 120.2 63.1 109.6 No

BlueWalker 3 Tumbling 72.7 48.2 112.3 Yes

Table B.1.1.2: Performance metrics for MMAE - 12-10-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 73.4 89.4 82.5 No

CryoSat 2 Single axis spin 110.1 66. 118.9 No

CryoSat 2 Tumbling 108.4 53.2 154.6 No

Swarm A Nadir pointing 58.3 27.8 57.3 Yes

Swarm A Single axis spin 6.2 1.3 6.5 Yes

Swarm A Tumbling 3.1 1.4 4.2 Yes

Swarm B Nadir pointing 52.6 45. 97. No

Swarm B Single axis spin 151.9 67. 120.3 No

Swarm B Tumbling 79.9 42.8 84.4 No

Swarm C Nadir pointing 46.7 22. 48.9 Correct shape type

Swarm C Single axis spin 8.6 2. 9.1 Yes

Swarm C Tumbling 129.6 55.1 136.3 No

ACS3 Nadir pointing 86.1 79.2 88.6 No

ACS3 Single axis spin 9.4 1.1 6.3 Yes

ACS3 Tumbling 8.3 2. 8.4 Yes

BlueWalker 3 Nadir pointing 27.4 3.9 18.9 Yes

BlueWalker 3 Single axis spin 26.4 5.7 24.3 Yes

BlueWalker 3 Tumbling 2.8 1.3 2.9 Yes
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Table B.1.1.3: Performance metrics for MMAE - 14-11-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 130.4 58.3 123. No

CryoSat 2 Single axis spin 5. 1.2 5.3 Yes

CryoSat 2 Tumbling 72.6 46.2 172.6 Correct shape type

Swarm A Nadir pointing 12.2 67.4 50. No

Swarm A Single axis spin 35.3 3.7 35.6 Yes

Swarm A Tumbling 132.7 64.1 179.2 No

Swarm B Nadir pointing 26.1 17.1 27. Yes

Swarm B Single axis spin 132.6 50.5 120.4 No

Swarm B Tumbling 81.2 41.8 77.7 No

Swarm C Nadir pointing 58. 30.4 34.5 Correct shape type

Swarm C Single axis spin 120.4 52.3 155.1 Yes

Swarm C Tumbling 135.4 66.7 175.1 No

ACS3 Nadir pointing 134.4 85. 116.7 No

ACS3 Single axis spin 6.1 1. 5.8 Yes

ACS3 Tumbling 106.9 51. 165. Yes

BlueWalker 3 Nadir pointing 14.2 31.1 43.2 Correct shape type

BlueWalker 3 Single axis spin 53.2 26.5 78. Yes

BlueWalker 3 Tumbling 57.3 18.7 53.8 No

B.1.2. MGS
Table B.1.2.1: Performance metrics for MGS - 7-9-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 125.4 70.9 74.2 No

CryoSat 2 Single axis spin 124. 64.1 114.5 No

CryoSat 2 Tumbling 117.7 49. 136.8 No

Swarm A Nadir pointing 56.5 96.1 119.3 No

Swarm A Single axis spin 118.3 60.7 131.1 No

Swarm A Tumbling 13.9 1.9 13.4 Yes

Swarm B Nadir pointing 76.1 55.9 159.1 No

Swarm B Single axis spin 140.8 70.1 135.2 No

Swarm B Tumbling 111.4 51.5 139.9 No

Swarm C Nadir pointing 121.2 87.2 128.1 Correct shape type

Swarm C Single axis spin 128.9 70.8 120.3 Correct shape type

Swarm C Tumbling 62.5 33.4 162.1 Correct shape type

ACS3 Nadir pointing 90.1 74. 56.4 No

ACS3 Single axis spin 142.7 83.3 158.1 No

ACS3 Tumbling 86.3 57.7 68.5 Correct shape type

BlueWalker 3 Nadir pointing 105. 76.9 19.1 No

BlueWalker 3 Single axis spin 84.3 42.9 99.5 Yes

BlueWalker 3 Tumbling 54. 36.3 115.7 No
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Table B.1.2.2: Performance metrics for MGS - 12-10-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 13.3 5.6 21.7 Yes

CryoSat 2 Single axis spin 88.1 57.3 154.5 No

CryoSat 2 Tumbling 5.5 2.8 6.1 Yes

Swarm A Nadir pointing 142.9 98.4 157.1 No

Swarm A Single axis spin 136.7 70.6 107.3 Correct shape type

Swarm A Tumbling 99.6 53.3 108.9 Correct shape type

Swarm B Nadir pointing 136.2 53. 137. No

Swarm B Single axis spin 103.3 59.5 150.3 Yes

Swarm B Tumbling 31.6 12.8 34.3 Yes

Swarm C Nadir pointing 19.3 11. 47.1 No

Swarm C Single axis spin 75.6 39.7 78.7 Yes

Swarm C Tumbling 139.9 60.8 121.3 No

ACS3 Nadir pointing 77.9 67.3 62. No

ACS3 Single axis spin 85.2 52.8 130. No

ACS3 Tumbling 113.3 44.6 147. No

BlueWalker 3 Nadir pointing 82.6 47.8 86.2 Yes

BlueWalker 3 Single axis spin 107.4 69. 130.4 No

BlueWalker 3 Tumbling 98.2 44.9 107.8 Correct shape type

Table B.1.2.3: Performance metrics for MGS - 14-11-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 128.7 83.1 40.6 No

CryoSat 2 Single axis spin 6.6 1.6 11.5 Yes

CryoSat 2 Tumbling 19.3 8.1 22.5 Yes

Swarm A Nadir pointing 63.8 86.6 114.5 Yes

Swarm A Single axis spin 121.6 63.8 143.7 Correct shape type

Swarm A Tumbling 56.3 23.9 170.6 Yes

Swarm B Nadir pointing 129.9 69.7 102. No

Swarm B Single axis spin 150.4 67.6 129.6 No

Swarm B Tumbling 11.1 2.9 11.3 Yes

Swarm C Nadir pointing 24.8 75.6 5.3 Correct shape type

Swarm C Single axis spin 60.6 13.2 51.9 Yes

Swarm C Tumbling 98.7 45.8 117.7 Yes

ACS3 Nadir pointing 91.3 86.8 110.6 No

ACS3 Single axis spin 99.7 55.7 153.9 No

ACS3 Tumbling 55.4 36.8 50.8 No

BlueWalker 3 Nadir pointing 47.9 21.8 16.9 No

BlueWalker 3 Single axis spin 103.1 42.1 83.3 No

BlueWalker 3 Tumbling 79.3 40.7 79.2 No
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B.1.3. MGen
Table B.1.3.1: Performance metrics for MGen - 7-9-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 80.3 86.7 88.9 No

CryoSat 2 Single axis spin 143.3 63.1 121.7 Correct shape type

CryoSat 2 Tumbling 106.8 52.8 133.9 No

Swarm A Nadir pointing 52.8 99.2 83.8 Correct shape type

Swarm A Single axis spin 132.7 67.6 118.4 No

Swarm A Tumbling 132.9 61.3 114.8 Correct shape type

Swarm B Nadir pointing 86.5 74.9 50. No

Swarm B Single axis spin 116. 62.8 128.3 Correct shape type

Swarm B Tumbling 106.9 55.7 148.8 No

Swarm C Nadir pointing 140. 91.3 114.5 No

Swarm C Single axis spin 95.4 62.9 132.8 No

Swarm C Tumbling 147.2 58.3 129.9 No

ACS3 Nadir pointing 84.4 71.3 125.1 No

ACS3 Single axis spin 111.7 59.2 163.1 No

ACS3 Tumbling 119.1 57.4 143.9 No

BlueWalker 3 Nadir pointing 61.4 71.1 114.5 No

BlueWalker 3 Single axis spin 118.4 53.3 139.9 No

BlueWalker 3 Tumbling 88.8 43.1 150.9 No

Table B.1.3.2: Performance metrics for MGen - 12-10-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 113.2 105.4 65.1 No

CryoSat 2 Single axis spin 115.2 59.1 126.6 No

CryoSat 2 Tumbling 108.6 55.5 123.4 No

Swarm A Nadir pointing 94.3 83.9 104.3 Correct shape type

Swarm A Single axis spin 118.2 50.5 145.4 Correct shape type

Swarm A Tumbling 95. 46.8 103.2 Correct shape type

Swarm B Nadir pointing 86.1 91.6 93.4 No

Swarm B Single axis spin 129.9 57.1 116.7 Correct shape type

Swarm B Tumbling 126.3 59.1 124. No

Swarm C Nadir pointing 87.4 62.9 110.8 No

Swarm C Single axis spin 141.8 59. 134.1 No

Swarm C Tumbling 79.1 39.7 114.3 No

ACS3 Nadir pointing 117.7 76.3 113.7 No

ACS3 Single axis spin 147.2 49.8 117.3 Correct shape type

ACS3 Tumbling 114.5 54.4 135.4 No

BlueWalker 3 Nadir pointing 32.3 69.4 90.8 No

BlueWalker 3 Single axis spin 134.6 74.2 115.9 No

BlueWalker 3 Tumbling 85.5 47.9 159.4 No
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Table B.1.3.3: Performance metrics for MGen - 14-11-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 100.1 86.5 103. No

CryoSat 2 Single axis spin 94.9 55.4 139.1 No

CryoSat 2 Tumbling 105.2 49.6 137.6 No

Swarm A Nadir pointing 128.4 87.6 130.5 No

Swarm A Single axis spin 122.7 67.8 126.3 No

Swarm A Tumbling 112. 59.7 136.2 Correct shape type

Swarm B Nadir pointing 71.4 85. 138.8 No

Swarm B Single axis spin 126.3 70.3 119.2 Correct shape type

Swarm B Tumbling 125.8 62.5 125.9 No

Swarm C Nadir pointing 82.8 98.2 121.7 No

Swarm C Single axis spin 123.1 69.9 138. No

Swarm C Tumbling 102.3 55.4 133.4 No

ACS3 Nadir pointing 61.4 44.7 104.9 No

ACS3 Single axis spin 133.5 61.7 128.4 No

ACS3 Tumbling 101.8 47.6 119.7 No

BlueWalker 3 Nadir pointing 120.2 91.2 91.1 No

BlueWalker 3 Single axis spin 104.8 54.7 150.8 No

BlueWalker 3 Tumbling 94.7 34.2 103.4 No
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B.2. No sphere cases
Table B.2.0.1: Performance metrics for MMAE - No spheres - 7-9-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 51.2 11.7 58.8 Correct shape type

CryoSat 2 Single axis spin 8. 1.8 8.7 Yes

CryoSat 2 Tumbling 28.6 17.8 26.4 No

Swarm A Nadir pointing 55.4 83.5 130.6 No

Swarm A Single axis spin 166.1 54.9 119.2 Yes

Swarm A Tumbling 3.2 1.2 3.5 Yes

Swarm B Nadir pointing 95.8 13. 105.5 No

Swarm B Single axis spin 15.3 1.9 12.6 Yes

Swarm B Tumbling 9.3 5.4 9.1 Yes

Swarm C Nadir pointing 107.6 103.1 107.5 No

Swarm C Single axis spin 125.5 64.3 117.7 Correct shape type

Swarm C Tumbling 2.3 3. 2.5 Yes

ACS3 Nadir pointing 69.7 56. 75.6 No

ACS3 Single axis spin 1.9 0.6 1.9 Yes

ACS3 Tumbling 6. 2.9 4.5 Yes

BlueWalker 3 Nadir pointing 106.9 78.2 21.5 No

BlueWalker 3 Single axis spin 22.6 5.1 27.9 Yes

BlueWalker 3 Tumbling 20.2 11.2 29.3 Yes

Table B.2.0.2: Performance metrics for MMAE - No spheres - 12-10-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 102.7 53.1 90.7 No

CryoSat 2 Single axis spin 123.4 73.8 131.2 No

CryoSat 2 Tumbling 100.7 54.5 178.4 No

Swarm A Nadir pointing 60.4 30.1 59.3 Yes

Swarm A Single axis spin 10.2 1.3 6.7 Yes

Swarm A Tumbling 2.9 1.3 4. Yes

Swarm B Nadir pointing 60. 60.7 78.5 No

Swarm B Single axis spin 99. 58.2 124.2 Correct shape type

Swarm B Tumbling 143. 66.2 153.8 No

Swarm C Nadir pointing 44.6 28. 49.3 Correct shape type

Swarm C Single axis spin 8. 1.8 8.3 Yes

Swarm C Tumbling 137.1 57.7 134.3 No

ACS3 Nadir pointing 117.1 92.4 105.5 No

ACS3 Single axis spin 9.4 1.1 6.3 Yes

ACS3 Tumbling 80.6 39. 85.4 No

BlueWalker 3 Nadir pointing 26.1 3.6 17.2 Yes

BlueWalker 3 Single axis spin 22.1 6. 22.9 Yes

BlueWalker 3 Tumbling 2.9 1.3 3. Yes
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Table B.2.0.3: Performance metrics for MMAE - No spheres - 14-11-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 130.3 58.5 126.8 No

CryoSat 2 Single axis spin 5.4 1.3 5.7 Yes

CryoSat 2 Tumbling 92.7 48.7 139.7 Correct shape type

Swarm A Nadir pointing 12.1 67.3 50.1 No

Swarm A Single axis spin 157.3 59.4 150.1 No

Swarm A Tumbling 155.1 59.8 143.8 Yes

Swarm B Nadir pointing 26.2 13.6 27.2 Yes

Swarm B Single axis spin 7.4 0.8 7.6 Yes

Swarm B Tumbling 133.4 59.7 152.4 Correct shape type

Swarm C Nadir pointing 58. 30.4 34.5 Correct shape type

Swarm C Single axis spin 158.6 79. 130.8 No

Swarm C Tumbling 164.8 75.5 174.8 No

ACS3 Nadir pointing 98.4 81.7 126.5 No

ACS3 Single axis spin 6.1 1. 5.8 Yes

ACS3 Tumbling 108.2 50.7 121.7 Yes

BlueWalker 3 Nadir pointing 14.2 31.1 43.2 Correct shape type

BlueWalker 3 Single axis spin 104.9 69.8 134.9 No

BlueWalker 3 Tumbling 56. 17.9 52.4 No

B.2.1. MGS
Table B.2.1.1: Performance metrics for MGS - No spheres - 7-9-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 32.5 13.3 45.5 Correct shape type

CryoSat 2 Single axis spin 100.6 53.9 141.7 Correct shape type

CryoSat 2 Tumbling 2.9 1.3 4.1 Yes

Swarm A Nadir pointing 57.8 73.8 10.2 No

Swarm A Single axis spin 121.7 61.6 151.7 No

Swarm A Tumbling 152.3 60.1 135.9 Yes

Swarm B Nadir pointing 41.5 7. 47.3 Yes

Swarm B Single axis spin 7.3 1.4 8. Yes

Swarm B Tumbling 109.7 48.7 98.5 No

Swarm C Nadir pointing 121.2 87.2 128. Correct shape type

Swarm C Single axis spin 117.7 63.7 113.2 No

Swarm C Tumbling 91.5 53.2 141.5 No

ACS3 Nadir pointing 57. 122. 59.3 Correct shape type

ACS3 Single axis spin 124.5 68.5 148.6 No

ACS3 Tumbling 139.6 59.4 158.6 Correct shape type

BlueWalker 3 Nadir pointing 26.8 59.1 34.7 No

BlueWalker 3 Single axis spin 87.1 57.5 127.4 Yes

BlueWalker 3 Tumbling 54. 36.3 115.7 No
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Table B.2.1.2: Performance metrics for MGS - No spheres - 12-10-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 13.3 5.6 21.7 Yes

CryoSat 2 Single axis spin 88.4 57.4 157.5 No

CryoSat 2 Tumbling 5.5 2.8 6.1 Yes

Swarm A Nadir pointing 142.9 98.4 157.1 No

Swarm A Single axis spin 129. 38.7 131.8 No

Swarm A Tumbling 59. 25. 90. Yes

Swarm B Nadir pointing 100. 62.5 127.7 No

Swarm B Single axis spin 119.3 70.5 96. No

Swarm B Tumbling 92.3 51.3 144.1 No

Swarm C Nadir pointing 86.8 75.9 134.2 No

Swarm C Single axis spin 80.8 43.9 133.4 No

Swarm C Tumbling 82.3 48. 134. No

ACS3 Nadir pointing 104.1 98.2 44. Yes

ACS3 Single axis spin 100.4 63.8 123.3 No

ACS3 Tumbling 82.4 31.9 98.2 No

BlueWalker 3 Nadir pointing 8.2 2. 7.6 Yes

BlueWalker 3 Single axis spin 39.4 8.7 35.1 Yes

BlueWalker 3 Tumbling 113.3 54.6 181.1 Correct shape type

Table B.2.1.3: Performance metrics for MGS - No spheres - 14-11-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 143.9 23.8 138.7 No

CryoSat 2 Single axis spin 6.6 1.6 11.5 Yes

CryoSat 2 Tumbling 91.8 33.7 166. No

Swarm A Nadir pointing 94.8 97. 95. No

Swarm A Single axis spin 157. 85.6 86.8 No

Swarm A Tumbling 109.5 54.5 146.9 Yes

Swarm B Nadir pointing 26.5 13.9 27.4 Yes

Swarm B Single axis spin 98.6 44.5 134.9 No

Swarm B Tumbling 11.2 3. 11.4 Yes

Swarm C Nadir pointing 24.8 75.6 5.3 Correct shape type

Swarm C Single axis spin 158.1 78.8 130.6 No

Swarm C Tumbling 3.8 1.8 5. Yes

ACS3 Nadir pointing 99. 92.5 147.5 No

ACS3 Single axis spin 152.4 78.5 151.8 No

ACS3 Tumbling 33.3 15.9 35. No

BlueWalker 3 Nadir pointing 47.9 21.8 16.9 No

BlueWalker 3 Single axis spin 93.2 46.6 116.8 No

BlueWalker 3 Tumbling 53.6 25.1 58.8 No
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B.3. Updated cases
B.3.1. MMAE

Table B.3.1.1: Performance metrics for MMAE - Updated - 7-9-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 46.2 14.1 53. Correct shape type

CryoSat 2 Single axis spin 78.7 51.1 106.9 No

CryoSat 2 Tumbling 3.7 1.5 4.7 Yes

Swarm A Nadir pointing 37.8 3.4 44.1 Yes

Swarm A Single axis spin 5.8 1.4 6.3 Yes

Swarm A Tumbling 2.2 1. 3. Yes

Swarm B Nadir pointing 125.3 35.4 135.3 No

Swarm B Single axis spin 7.4 1.4 8. Yes

Swarm B Tumbling 7.6 2.5 8.2 Yes

Swarm C Nadir pointing 20.7 6.6 29. Yes

Swarm C Single axis spin 7.3 1.3 7.7 Yes

Swarm C Tumbling 5.9 2.5 6.4 Yes

ACS3 Nadir pointing 33.5 8. 32.1 Yes

ACS3 Single axis spin 16.3 4.4 14.3 Yes

ACS3 Tumbling 9.4 4.8 12.7 Yes

BlueWalker 3 Nadir pointing 20.1 4.6 28.6 Yes

BlueWalker 3 Single axis spin 15.4 5. 12.3 Yes

BlueWalker 3 Tumbling 5.7 2.8 6.7 Yes

Table B.3.1.2: Performance metrics for MMAE - Updated - 12-10-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 13.6 5.4 22.5 Yes

CryoSat 2 Single axis spin 3.6 1.4 3.7 Yes

CryoSat 2 Tumbling 3.5 2. 3.7 Yes

Swarm A Nadir pointing 92.2 16.1 91.6 Yes

Swarm A Single axis spin 32.2 3.8 25.7 Yes

Swarm A Tumbling 25.3 9.1 30.7 Yes

Swarm B Nadir pointing 7.2 5.7 8.1 Yes

Swarm B Single axis spin 18.7 2.3 19.6 Yes

Swarm B Tumbling 8.1 4.2 7.8 Yes

Swarm C Nadir pointing 12.5 6.1 11.7 Yes

Swarm C Single axis spin 8.2 1.7 8.1 Yes

Swarm C Tumbling 2.9 1.5 3.7 Yes

ACS3 Nadir pointing 27. 2.2 14.9 Yes

ACS3 Single axis spin 9.2 1.1 9.5 Yes

ACS3 Tumbling 2.3 1.1 3.2 Yes

BlueWalker 3 Nadir pointing 29.6 5. 21.9 Yes

BlueWalker 3 Single axis spin 2.1 0.8 2.6 Yes

BlueWalker 3 Tumbling 9.4 4.1 11.5 Yes
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Table B.3.1.3: Performance metrics for MMAE - Updated - 14-11-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 81.2 94.9 63.9 No

CryoSat 2 Single axis spin 4.3 0.9 4.7 Yes

CryoSat 2 Tumbling 10.2 2.3 10.2 Yes

Swarm A Nadir pointing 54.3 39.8 65.7 Yes

Swarm A Single axis spin 5.6 1.5 5.7 Yes

Swarm A Tumbling 1.4 0.6 1.8 Yes

Swarm B Nadir pointing 26. 13.6 26.9 Yes

Swarm B Single axis spin 19.7 1.5 15.5 Yes

Swarm B Tumbling 4.9 2.1 4.9 Yes

Swarm C Nadir pointing 146.9 78.2 49.4 No

Swarm C Single axis spin 20.1 3.7 20.3 Yes

Swarm C Tumbling 4.4 1.9 5.2 Yes

ACS3 Nadir pointing 12.2 12.7 17. Yes

ACS3 Single axis spin 4.5 0.9 4.6 Yes

ACS3 Tumbling 5. 2.3 5.5 Yes

BlueWalker 3 Nadir pointing 48. 8.5 55.3 Yes

BlueWalker 3 Single axis spin 4. 1.1 4. Yes

BlueWalker 3 Tumbling 2.1 1.4 2.8 Yes

B.3.2. MGS
Table B.3.2.1: Performance metrics for MGS - Updated - 7-9-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 69. 12.9 74.2 Yes

CryoSat 2 Single axis spin 116.2 52.6 114.5 No

CryoSat 2 Tumbling 22.5 13.3 24. No

Swarm A Nadir pointing 62.8 102.3 102.4 No

Swarm A Single axis spin 106.6 66.1 118.7 Correct shape type

Swarm A Tumbling 122.9 57.4 181.6 No

Swarm B Nadir pointing 103. 15.3 107.5 No

Swarm B Single axis spin 7.5 1.6 8.2 Yes

Swarm B Tumbling 121.8 52.6 120.9 No

Swarm C Nadir pointing 121.2 87.2 128. Correct shape type

Swarm C Single axis spin 171.7 76.1 127.9 No

Swarm C Tumbling 125.6 64.1 118.9 Correct shape type

ACS3 Nadir pointing 62.9 90.2 58.6 Yes

ACS3 Single axis spin 147. 61.9 132.2 No

ACS3 Tumbling 119.5 57.1 151.3 No

BlueWalker 3 Nadir pointing 87.1 96. 32.1 No

BlueWalker 3 Single axis spin 17.8 6.7 19.4 Yes

BlueWalker 3 Tumbling 23. 12.6 22.7 No
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Table B.3.2.2: Performance metrics for MGS - Updated - 12-10-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 13.3 5.6 21.7 Yes

CryoSat 2 Single axis spin 88.4 57.4 157.5 No

CryoSat 2 Tumbling 5.5 2.8 6.1 Yes

Swarm A Nadir pointing 93.7 83.3 87.6 No

Swarm A Single axis spin 141.8 50.5 100.3 No

Swarm A Tumbling 133.1 58.4 119.6 No

Swarm B Nadir pointing 100. 62.5 127.7 No

Swarm B Single axis spin 119.3 70.5 96. No

Swarm B Tumbling 92.3 51.3 144.1 No

Swarm C Nadir pointing 93.6 83.5 34. No

Swarm C Single axis spin 126.6 80.3 145.2 No

Swarm C Tumbling 129.2 57. 130. No

ACS3 Nadir pointing 57. 71. 104. No

ACS3 Single axis spin 132.3 64.3 139. No

ACS3 Tumbling 120.4 62.2 120.3 No

BlueWalker 3 Nadir pointing 8.2 2. 7.6 Yes

BlueWalker 3 Single axis spin 39.4 8.7 35.1 Yes

BlueWalker 3 Tumbling 150.2 68.8 143.8 No

Table B.3.2.3: Performance metrics for MGS - Updated - 14-11-2024

Satellite Spin Case RMSE 𝜽1[°] RMSE 𝜽2[°] RMSE 𝜽3[°] True shape identified
CryoSat 2 Nadir pointing 143.9 23.8 138.7 No

CryoSat 2 Single axis spin 6.6 1.6 11.5 Yes

CryoSat 2 Tumbling 168.3 58.7 127.6 No

Swarm A Nadir pointing 66.8 91.9 104.7 No

Swarm A Single axis spin 164.5 64.1 109.1 No

Swarm A Tumbling 101.3 56.4 105.7 No

Swarm B Nadir pointing 26.5 13.9 27.4 Yes

Swarm B Single axis spin 148.2 58.4 144.1 No

Swarm B Tumbling 11.2 3. 11.4 Yes

Swarm C Nadir pointing 24.8 75.6 5.3 Correct shape type

Swarm C Single axis spin 151.2 65.9 131.6 No

Swarm C Tumbling 116.2 59.3 141.3 No

ACS3 Nadir pointing 99. 92.5 147.5 No

ACS3 Single axis spin 144.1 62.5 110.8 Yes

ACS3 Tumbling 33.3 15.9 35. No

BlueWalker 3 Nadir pointing 47.4 21.6 15.8 No

BlueWalker 3 Single axis spin 115.4 71.8 156.7 Yes

BlueWalker 3 Tumbling 53.6 25.1 58.8 No



C Research proposal

124



D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Literature Review
Object Characterisation by Light Curve Inversion

Wieger Verbeek



Literature Review
Object Characterisation by Light Curve

Inversion

by

Wieger Verbeek

Student number: 4675150

Date: Thursday 10
th

October, 2024

Thesis supervisors: Dr. S. Gehly & Dr. M. Langbroek



Contents

Nomenclature ii

1 Introduction 1

2 Light curve inversion 2

3 Characterisation parameters 3
3.1 Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Mass and area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.3 Surface properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.4 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.5 Attitude and angular velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Characterisation methods 7
4.1 Light curve simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Multiple-Model Adaptive Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3 Variable-Structure Multiple-Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . 8

4.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.5 Particle Swarm Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.6 Extended Gaussian Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Research proposal 10
5.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 Research planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

References 13

i



Nomenclature
Abbreviations

ADR Active Debris Removal

AMR Area-to-Mass Ratio

BRDF Bidirectional Reflectance Distribution Function

DL Deep Learning

EGI Extended Gaussian Image

FSMM Fixed-Structure Multiple-Model

GA Genetic Algorithm

LEO Low Earth Orbit

ML Machine Learning

MLI Multi-Layer Insulation

MMAE Multiple-Model Adaptive Estimation

PSO Particle Swarm Optimiser

SRP Solar Radiation Pressure

UKF Unscented Kalman Filter

VSMM Variable-Structure Multiple-Model

ii



1 Introduction
In recent decades the amount of space debris objects orbiting the Earth has drastically increased. It is estimated

that there are now over 30.000 debris objects larger than 10 cm, 900.000 objects with size between 1 and 10 cm,

and around 128 million objects smaller than 1 cm in geocentric orbit, as per the 2024 edition of the Annual Space

Environment Report by ESA [1]. The current estimated distribution of the amount of objects per size is shown in

Figure 1.1a.

(a) Distribution of amount of objects in Earth orbit per size. (b) Expected number of catastrophic collisions with and without mitigation.

Figure 1.1: Figures highlighting the magnitude of the space debris problem [1].

All these objects pose a threat to existing and future space missions, as even the smaller objects could inflict

catastrophic damage on a satellite, leading to the end of mission. Additionally, with the amount of objects

ever increasing annually the risk of losing access to the space environment entirely becomes ever larger. This

phenomenon is commonly known as the Kessler syndrome, and is a scenario where the number of objects

especially in Low Earth Orbit (LEO) is so large, that even if no new objects are launched, the existing debris

population is still dense enough to produce collisions, which would result in more debris and again more

collisions [2]. This effect is shown in Figure 1.1b, which is the expected number of catastrophic collisions in orbit

for the scenario where no satellites are launched after 2023, and for the case where the current rate of launching

satellites is extrapolated. It is clear that in both cases mitigation is required to ensure a viable space environment

and continuous access to space.

There are two ways that space debris can be dealt with to reduce the risk of collision with an active satellite:

collision avoidance and active debris removal (ADR). In both cases it is necessary to know the state of a debris

object. Estimating these states is a difficult task because of a few different reasons. The first is that there are so

many objects that not all can be continuously tracked. Secondly, the majority of objects are too small (< 10 cm) to

be tracked from the ground [3]. The last reason is that debris objects are not active anymore, so they do not

transmit any information about their states, so state estimation can solely be done externally.

This problem of estimating the state and other parameters of a space object is called object characterisation.

There are many parameters that could be characterised, like the shape, mass, attitude, angular velocities, surface

properties and the orbit of an object. This characterisation is important because the more is known about an

object, the more accurate it can be modelled. Accurate modelling is necessary for ADR missions and collision

avoidance, the first because it is very difficult to capture an object in-orbit, especially if it is rotating, and the

latter because risk analyses depend on the accuracy of modelled orbits.

One method that has been the topic of many research papers the last few years is the use of light curves of

space objects to estimate certain states and parameters, like in Linares et al. [4] and Šilha et al. [5]. This object

characterisation with light curves will be investigated in this literature review. First, in Chapter 2 the concept of

light curve inversion will be explained. Then in Chapter 3 the different parameters that can be estimated and

characterised using light curve inversion will be discussed. In Chapter 4 different methods that have previously

been researched and used in characterisation will be highlighted, as well as a novel method. Finally, in Chapter 5

the research questions and objectives that will form the basis of the MSc. thesis following the literature review

are drafted, and the research planning is shown.
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2 Light curve inversion
A light curve is the time history of the observed brightness of an object in orbit, measured from the ground [6].

Changes in this observed brightness could be caused by the rotation of the space object, with different sides

of for example a satellite reflecting a different amount of light towards an observer, leading to a variation in

measured brightness. An example of a light curve is given in Figure 2.1a.

(a) Example of the light curve of a rocket body. A periodic variation in

observed brightness is clearly visible.

(b) Synodic rotation period extracted from light curve.

Figure 2.1: Example of a light curve and a parameter that can be extracted from it [7].

It is possible to use the light curve to extract information about the space object in question, like shape [4],

attitude [8] and surface parameters [9]. This extraction of parameters is called light curve inversion, and there are

different methods to characterise different aspects of a space object, which will be covered in the next chapters.

One example is given in Figure 2.1b, where the apparent or synodic rotation period is extracted from the light

curve shown in Figure 2.1a. As Šilha et al. [10] say: "The apparent (synodic) rotation period [...] is a period of an
object with respect to the observer. It can be directly extracted from the light curve and it is a direct function of the object’s
own rotation period in the inertial frame also referred to as the sidereal period." This is an example of how relatively

simple information can be extracted from a light curve. For other parameters, like shape and attitude, this is less

straightforward.

The reason that properties like shape and attitude are important to estimate is that these are required to more

accurately model the orbits of space objects, as non-conservative forces like aerodynamic drag (mainly at LEO)

and solar radiation pressure (SRP) highly depend on these properties. This accurate modelling is important for

both ADR missions and collision avoidance.

One main difficulty in the characterisation of space objects using light curve inversion is mentioned by Burton

and Frueh [11]: "There are many different orientations for any diffuse measurement that could all produce that exact
measurement, and there are multiple attitude-time histories that could have produced any individual light curve." It is

therefore not trivial to obtain complex information like attitude and tumble rates from a light curve. Often

additional a-priori information is needed to make detailed estimations as Hinks et al. mention [12].

The aforementioned problem has to do with a property called observability. In orbit estimation this property

refers to the ability to obtain a unique estimate of the spacecraft state, as defined by Tapley, Schutz and Born [13].

A problem is not observable if multiple possible solutions exist for a given set of measurements. Friedman et al.

[14] investigated observability for a few different cases. In their results it is clear that the more measurements

there are over a longer time period, the better the observability and therefore the easier it becomes to estimate

parameters. Unfortunately, in real life this is not always possible, as for example LEO satellites are only visible

for short passes at a time, decreasing the observability of parameters and making the light curve inversion

problem increasingly difficult. In the following chapters it will be highlighted how it is still possible to extract

information and estimate parameters from light curves, and what the limitations are.
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3 Characterisation parameters
In this chapter an overview is given of parameters that can be characterised using light curve inversion, along

with one or multiple examples. The parameters that are discussed are class (Section 3.1), mass and area

(Section 3.2), surface properties (Section 3.3), shape (Section 3.4) and attitude and angular velocities (Section 3.5).

3.1. Class
One aspect that might be important to characterise is to what class a space object belongs to, e.g. active satellite,

defunct satellite, rocket body or debris fragment. This is precisely what Linares et al. [15] have tried. Using

a method called Multiple-Model Adaptive Estimation (MMAE), which will be discussed in more detail in

Chapter 4, they use simulated light curve data to give a classification to a space object. The different classes they

use are shown in Figure 3.1.

Figure 3.1: Overview of classes used by Linares et al. [15].

To test their method they simulated light curves for four different spacecraft: a spin stabilised bus, an uncontrolled

bus, a nadir pointing bus and a rocket body. The results look promising, as the algorithm was able to correctly

classify each of the 4 spacecraft. Their method was however not validated using real data, so it remains to

be seen how well the method holds up in that case. Additionally, it was not tested whether the model could

correctly identify a debris fragment, which would be important if this method were to be deployed for real

object classification.

3.2. Mass and area
Other parameters that might be of interest to estimate are the mass and (albedo-)area of a space object. The

reason for this is that the effects of non-conservative forces like aerodynamic drag and SRP are highly dependent

on the mass that is accelerated and the area that light is reflected off. Linares et al. [16] estimate these parameters

by combining photometric data, meaning light curves, and astrometric data, meaning observations of the orbital

positions and velocities like range and/or angles measurements, in order to make the parameters observable.

In the paper they apply 3 different methods to estimate combinations of the different parameters. The first

method only estimates mass using an assumed value for the albedo coefficients of the simulated object, a cuboid

satellite with the same albedo for all 6 sides. The second method estimates mass, areas and albedo-areas, and

the third method mass, albedo-areas and albedo coefficients.

Figure 3.2a shows the error plot of the mass estimate of the method with assumed albedo coefficient values.

Clearly, the estimate converges to a low error for the mass estimate, with 3𝜎 bounds of 55 kg. However, it can be

seen that this required a very large amount of measurement samples, over 7000. They achieved this by placing

the simulated space object in a near-geosynchronous orbit, so that each observation data arc was 3 hours, with

30 second measurement intervals for 20 orbits.

3
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(a) Mass estimation of method using assumed albedo coefficient values. (b) Mass covariances for different AMR objects against # of measurements.

Figure 3.2: Figures showing mass estimate and mass estimate covariances from Linares et al. [16].

In Figure 3.2b the covariance values for mass estimates for objects they simulated with a different area-to-mass

ratio (AMR) are shown plotted against the number of measurement samples in the estimates. They found that

the estimates for high AMR objects converge much faster, as the perturbing effect of SRP is higher for these

objects, leading to the mass and areas becoming observable sooner. It can however be seen that over 2000

measurement samples are still required to get an estimate with a covariance below 10 kg. This method therefore

does not have a broad use case, as most debris objects reside in LEO, where visible arcs only last a few minutes.

3.3. Surface properties
For some applications it could be of interest to determine what materials the surface of a space objects consists

of. This is what Zigo et al. [17] have looked into. The underlying assumption they use is that space debris

objects are inactive, and therefore do not emit any light, so the only measured light is reflected sunlight. As they

put it: "This assumption means that any measured changes in the spectrum of the visible light or in the colour indices
will be caused by the surface properties and materials of the target body." In their paper they attempt to do this with

a combination of reflectance spectroscopy and BVRI photometery, in order to extract information about the

surface materials from the colours. Their results show a limited ability to distinguish between copper-gold

multi-layer insulation (MLI), aluminium and solar panels.

Other surface properties that can be estimated are reflectance coefficients. These coefficients are commonly used

to simulate light curves using Bidirectional Reflectance Distribution Functions (BDRFs), which will be discussed

in more detail in the next chapter. These functions work by assigning diffuse and specular reflectance coefficients

to the surfaces that make up a space object. In Wetterer et al. [9] they instead add these coefficients, in a slightly

modified way, to the state vector to be estimated using an Unscented Kalman Filter (UKF). To test their method

they simulate the light curve of a cube shaped satellite, with the same surface reflectance parameters for all

sides. Their results show reasonably good convergence for the reflectance parameters, but it is important to keep

in mind that this was tested using a simple case. More complex satellites have different materials at different

surfaces, with different reflectance coefficients, so this method might not produce as good results then.

A different approach was taken by Linares et al. [16], as mentioned in the previous section. They use the albedo

and albedo-area as parameters to be estimated in the UKF. Their results show good convergence on the true

albedo values except for one side of the satellite, where the albedo value is not observable due to the specific

observation geometries, and thus an estimate can not be made by the algorithm. These results were however

also achieved by simulating a cuboid shaped satellite with the same reflectance values for all sides, which is

an unlikely case for real space objects, where different sides could be covered with MLI or solar panels. The

method used by Zigo et al. could perhaps be combined with this method, to identify the materials on each side

based on the colour, and giving each side a better initial guess for surface parameters like diffuse and specular

reflectance coefficients.
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3.4. Shape
One parameter which is often important to be estimated is the shape of a space object. This is again related to

accurately modelling aerodynamic drag and SRP, but it could also be important to know the shape of a satellite

after a collision, which could be of importance to ADR missions.

Again, Linares et al. [4][18] have attempted to do this using MMAE. In both papers they randomly generate

dimensions for a few different reference shapes to be used in the shape models of the UKF’s in the MMAE

algorithm. This algorithm then estimates both the orbit states, attitude, rotation rates and the shape of the object.

They ran the algorithm for two cases. In the first case the shape model selected as the truth was included in the

model bank the MMAE algorithm uses to estimate the shape. In the second case the true model is not included,

but a few models that are close to the truth are included. They found that in the first case the algorithm is

able to quickly converge on the true shape, as shown in Figure 3.3a. In the second case the algorithm does not

converge on a single model, but fluctuates between the two models that are closest to the truth, as can be seen in

Figure 3.3b. This means that even if the true shape is not included, the algorithm is able to root out the models

that are far from the truth, and still provide information about the true shape. This information could be used

in further refinement of the estimate, like they mention: "This information could be further used to redefine the model
bank to find a better shape model estimate or for classifying a piece of debris (e.g., such as a sheared-off solar panel)".

(a) Shape estimate with true shape in model bank. (b) Shape estimate without true shape in model bank.

Figure 3.3: Plots showing the estimates of the object shape for two cases [18].

While the results shown above look very good, it is important to interpret them in the right context. The shape

models used in the model bank in both cases only included very similar shapes, only with different sizes. In [4]

they used a blend of 25 regular polygon prisms and 25 cuboids with randomly generated dimensions, and the

algorithm shows similar results as in Figure 3.3. It remains to be seen how well the algorithm performs when

many different shape models are included.

A different approach of shape estimation is taken by Robinson and Frueh [19]. They use Extended Gaussian

Image (EGI) for light curve inversion of shapes. This way they try to recover both convex and non-convex shapes

from light curves. Non-convex shape recovery is important because most satellites are non-convex shaped, for

example by having extended solar panels like in a box-wing design. Figure 3.4 shows their attempt to reconstruct

such a shape from a simulated light curve. On the left is the true shape, and on the right are the convex and

non-convex guesses of their algorithm, respectively. It can be seen that even the non-convex guess is not very

accurate, highlighting the difficulty of accurately reconstructing these shapes from light curves.

Figure 3.4: Light curve inversion of non-convex box-wing shape by Robinson and Frueh [19]. From left to right: true shape, angular

velocities, normalised light curve, convex guess and non-convex guess.
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3.5. Attitude and angular velocities
The attitude and angular velocities of space objects are the most frequently estimated parameters using light

curve inversion, as these largely determine the accelerations the objects experience due to drag and SRP,

combined with shape. One of the methods to estimate these parameters is MMAE, as seen before in Linares et

al. [18]. It is also possible to use just a single UKF, like in Wetterer et al. [6] and Linares et al. [20]. In all cases

the attitude, angular velocities, position and velocity states are estimated using UKFs, sometimes with extra

parameters like shape, mass and surface parameters, as discussed in the previous sections. One set of error

results for attitude and angular velocities estimation is shown in Figure 3.5.

(a) Attitude errors. (b) Angular rate errors.

Figure 3.5: Error plots for the attitude and angular rate estimations by Linares et al. [20].

It can be seen that the errors converge very nicely around 0 in all cases, which is the case in the results from

most papers. However, it has been shown by Dianetti et al. [21] that the convergence of these filter methods is

very sensitive to initial guess in attitude and angular velocities, and if the guesses are too far from the truth

they do not converge. This is quite an important limitation, which will be discussed further in the next chapter.

Additionally, Linares et al. [18] discovered that the attitude and angular rate estimation are very sensitive to

the shape model used in the estimation, and that a wrong shape model leads to high errors in both parameter

estimations.

A different approach to estimate angular velocities is taken by Binz et al. [22]. They analyse the light curves

using frequency based method, like the Fourier transform, in order to estimate an upper bound of the possible

angular velocities of retired GEO satellites, from real brightness measurements of these objects. They introduce

an interesting new method, which they have named the cross-residual technique. It works by taking a part of

the light curve and overlaying this on other parts, subtracting the curves from each other and calculating the

squared and average residuals. In this way several possible rotational periods are extracted from the signal

where the curves overlapped the most, and by some extra analysis a most likely upper bound rotation rate is

determined. This method is subject to some ambiguities, as high-frequency peaks that are due to repeated

reflections in a single rotation, like those from solar panels on opposite sides, are also picked out, but that is why

they determine upper bounds, with the comment that actual rotation rates are most likely (much) lower.

Others have attempted to estimate only the spin axis orientation. Santoni et al. [23] estimate the spin axis

orientation for cylindrical objects, i.e. rocket bodies, assuming the object is undergoing a flat spin, meaning that

the rotation axis is perpendicular to the cylinder central axis. They observed a real rocket body for multiple

passes, and made an estimate for the spin axis by overlapping the possibilities for the different light curves. The

results look to be of good quality, but this method is of course only valid for rocket bodies undergoing simple

rotation.

Koshkin et al. [24] estimate the spin axis for more complicated satellite shapes. Similar to Binz et al. they

make use of similar patterns in light curves, but this time from different light curves from different observation

stations. They call these photometric patterns, and they use these to extract the spin axis orientation based on

the geometries of the observations. Their method seems to work well, but mainly due to the fact that they use

multiple observation stations. This increases the observability of the parameters, but it takes more effort to

measure an object with multiple observation stations, and this is also not always possible. Ideally, parameters

are estimated using a single observation station, from a single observation pass. This is however the other

extreme, and would most likely lead to poor observability, and is not likely to be possible in real life.



4 Characterisation methods
In this chapter a few methods used in space object characterisation using light curve inversion will be discussed in

more detail. Some methods have already been mentioned previously, while others have not been covered in this

literature review yet. The methods that will be discussed are light curve simulation (Section 4.1), Multiple-Model

Adaptive Estimation (Section 4.2), Variable-Structure Multiple-Model Estimation (Section 4.3), Machine Learning

(Section 4.4), Particle Swarm Optimisation (Section 4.5) and Extended Gaussian Image (Section 4.6).

4.1. Light curve simulation
In most papers the light curves that are used for characterisation are simulated. This is because some sort of truth

is required in order to assess the performance of a method, and in most cases this is not available for real objects,

like attitude data of inactive satellites. One difficulty in simulating the light curve of a satellite as mentioned by

Robinson and Frueh [19] is that often these objects are non-convex, which can cause self-shadowing. This makes

it not straightforward to accurately calculate the amount of light an object reflects to an observer. A very accurate

way of dealing with this is ray tracing, like used by Kobayashi and Frueh [25], where the paths of individual

light rays are followed to determine if they are reflected to an observer. This method is very computationally

expensive, and therefore not suited for many applications.

One commonly used method to model the light reflections are bidirectional reflectance distribution functions

(BDRFs) as described by Wetterer et al. [26]. For this method the shape of a space object is divided in different

facets. For each facet the amount of light reflected diffusely and specularly is determined based on geometry

and the reflective properties of the surface. The amount of light reflected to an observer is then summed over

all the facets comprising the object, and a light curve measurement is created. In this way self-shadowing can

be modelled to a certain extent. There are different types of BDRFs, like non-Lambertian [27], Phong [28] and

Cook-Torrance [6][29]. These methods differ in the way the diffuse and specular reflectances are calculated.

4.2. Multiple-Model Adaptive Estimation
A method that is frequently used in space object characterisation, mainly by Linares et al. [4][15][18], is called

Multiple-Model Adaptive Estimation (MMAE). The workings of the algorithm is as follows. An unknown

system is modelled with different physical models, like different shapes and spin states. Each physical model is

implemented in a respective estimator. Most commonly used is the Unscented Kalman Filter (UKF), as it is well

suited for non-linear problems like light curve inversion [30]. All the different estimator implementations with

their respective physical models are called the model bank. The MMAE algorithm tries to fit the observations,

so measurements of the real system, to the different physical models in the estimator. This is done by

calculating conditional probabilities of how well each model fits the observations. This process is repeated for

all observations, with the goal for a single model to converge on a probability approaching 1, meaning that that

model matches the real system the best. A flow chart of this process is shown in Figure 4.1.

Figure 4.1: Flow chart visualising MMAE process [18].
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An important characteristic of this method is that it uses a fixed amount of models in the model bank. This can

be called a Fixed-Structure Multiple-Model (FSMM) estimator. If too few models are included in the model bank,

this could lead to the algorithm not converging, according to Li et al. [31], but if too many models are included

this could overcrowd the algorithm, next to increasing the computational cost, which would also deteriorate the

performance. It was seen in Section 3.4 that Linares et al. [18] only used a few shape models based on similar

reference shapes, and good convergence was obtained. This might not be the case anymore if more models and

models with different shapes are added to the model bank. Next section introduces a possible solution to this.

4.3. Variable-Structure Multiple-Model Estimation
This method can be seen as a continuation on MMAE. As the name implies, a Variable-Structure Multiple-Model

(VSMM) estimator does not have a fixed structure, meaning that the models it uses in the model bank during

estimation can change. At every time instance the estimator determines which models should be included

in the filters, and which should be removed or ’switched off’. This could be a good way to improve on the

shortcomings of MMAE discussed previously. At the time of writing there has been no study yet on the use of

VSMM for space object characterisation.

There are a couple of ways VSMM could improve on the performance of MMAE. It is mentioned by Li et al. in

[31] that a VSMM estimator has the capability of using additional information encountered during estimation,

apart from the measurements. They give the example of a car driving on a highway. When driving on a

straight section of the road, it is not necessary to include models for turning in the model bank, as this results in

unnecessary computational cost. When the car encounters an intersection however, it is possible that the car

will make a turn, so then it becomes necassary to include turning models in the model bank.

For the light curve inversion problem this additional information could be glint, which is defined as a rapid

change or a spike in brightness in a light curve. Matsushita et al. [32] have shown that this phenomenon can

be used to improve attitude estimations, as glint only occurs for specific observation geometric conditions.

Using this information it is possible to correct attitude estimates, especially when the initial guess used in the

estimation is far from the truth, which has been previously established as a problem for filter based estimation

methods in Section 3.5.

Another powerful characteristic of VSMM that could be used is the way it is determined which models are

included in the model bank and thus used in the estimation filters. According to Li et al. [31] there are two

main categories that can be distinguished: active model-set and model-set generation. In active model-set all

the models that could be used in the estimation, called the total model-set, are determined in advance. This

means the total model-set is finite. The VSMM estimator then selects at each time which models are used in

the estimation and which are not, with different possibilities on how these decisions are made. In model-set

generation new models are generated in real time during the estimation process, so the total model-set can not

be determined in advance.

Especially a VSMM estimator of model-set generation type could be a powerful tool in the space object

characterisation of for example shapes, where it is not possible to predetermine all possible shapes and sizes a

space object could have. This could be a solution to a problem encountered in Section 3.4, where in Linares et al.

[18] the MMAE could not converge on a single shape model, but alternated between two shape models that

were close to the true model. With model-set generation new shapes could be generated starting from these two

close shapes in order to converge on the true shape.

4.4. Machine Learning
As with many fields in the current day and age, the concept of Machine Learning (ML) and more specifically

Deep Learning (DL) has been applied to space object characterisation from light curves. So has Linares et al.

[33], an author who has been encountered in many papers in this literature review. One major downside of

using ML is that it requires a lot of training data. For space object characterisation this would mean a lot of

light curves, with knowledge about the true states of the satellites in question. These are not available in the

quantities required for ML training, so use is made of simulated data to train the ML algorithm.

While the ML algorithms are able to quite accurately characterise the test objects using simulated test data, the

performance on real data is significantly worse. Reasons for this are that the real data is subject to noise, gaps in

data and a lot of different lighting conditions. A good example of this was encountered by Antón et al [28]. They

observed the same satellite throughout different periods of the year, and for some cases the light curves had

significantly different features due to shadowing of the satellite by the Earth. All of these effects would need to

be included in the generation of simulated training data, otherwise the ML algorithm does not know how to

deal with them. While running ML algorithm itself is computationally not expensive, the proper training of the

algorithm to accurately handle real data becomes a very labour intensive and non-trivial task.
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4.5. Particle Swarm Optimisation
A method that looks to tackle a few of the challenges previously mentioned about filter based estimation

methods is the Particle Swarm Optimiser (PSO) implemented by Burton [34]. More specifically, they tackle the

issue of filter methods’ convergence depending on an initial guess that is close to the true initial state. The PSO

itself is an optimisation method that uses particles and neighbours that move through a state space in order to

minimise a cost function.

Their attitude estimation method works by first generating possible initial attitude vectors corresponding to the

first (or if necessary another) measurement of a light curve using a specific PSO. The motion of one particle in

this process is shown in Figure 4.2a. After this a full state PSO generates possible initial angular velocity state

vectors within a certain constrained bound, as shown in Figure 4.2b. Each initial angular velocity vector is paired

with each of the initial attitude vectors found by the first PSO, and these pairs are used in the optimisation to

estimate the true initial state, both attitude and angular velocities, that best fits the respective light curve. The

best possible initial states found by the optimiser are then put into a refinement algorithm to further improve

the fit to the light curve. The results show the method is able to find initial states matching the light curves of

differently shaped objects quite well.

(a) Motion of a particle through attitude space. (b) Generated initial angular velocity vectors.

Figure 4.2: Plots showing the workings of PSO attitude estimation [34].

A similar method is used by Cimino et al. [35]. They however use two optimisation algorithms to estimate the

initial state to fit a light curve, one based on a PSO and one based on a Genetic Algorithm (GA). Their results

also come close to finding the correct initial states for different satellites. It could be interesting to explore if such

a method can be combined with MMAE or VSMM, where a PSO algorithm generates possible initial guesses for

the filters, which perform the rest of the parameter estimation using these initial guesses.

4.6. Extended Gaussian Image
A method that was seen in Section 3.4 was the Extended Gaussian Image (EGI) for the inversion of shapes

from light curves. Robinson and Frueh [19] found that this method was able to accurately recover the shape of

convex objects, but not those of non-convex objects, such as the box-wing shapes common to satellites. A similar

conclusion was made by Vallverdú Cabrera et al. [36]. Instead, they attempted to determine an equivalent

convex shape for a box-wing satellite. The result is shown in Figure 4.3, with the satellite shown in black and the

equivalent convex shape in red. While this might not be the desired outcome in shape estimation, it could still

provide information about the approximate dimensions and shape of an object.

Figure 4.3: Equivalent convex shape estimation of a non-convex box-wing satellite [36]. Left: 3D visualisation. Rest: plane projections.



5 Research proposal
5.1. Research questions
Based on the literature reviewed in this report it is clear that space object characterisation through light curve

inversion is a field where lots of research is being performed. Over the years performances and results have

improved, for example by making use of advanced estimation techniques like MMAE and ML. There is still a lot

of room for improvement however. Next to this there is also need for this improvement, as the space debris

problem continues to grow every year, and more effort is required to characterise objects in orbit that are a

potential threat to missions. Based on this the following main research question for the MSc. thesis is drafted:

What improvements can be made on existing techniques for space object characterisation via light curve
inversion (MMAE, ML, PSO and others) to estimate attitudes, angular velocities and shapes?

It was decided to focus on the parameters of attitude, angular velocity and shapes because it was shown, for

example in Wetterer et al. [9], that these parameters are strongly related, and the most important parameters to

estimate in order to more accurately model the orbits of these objects for ADR and collision avoidance purposes.

Additionally, there are two research questions drafted that are related to the main question, which will be

attempted to be answered during the thesis if time allows it. The first additional research question is stated as:

How can filtering methods be made less dependent on a close initial guess for good convergence?

This question is based on the fact that filtering methods, like the UKFs used in MMAE by Linares et al. [18], are

very powerful methods to estimate object parameters, but have as main flaw that they require an initial guess

that is close to the true initial state in order to properly converge on an estimate. In real life scenarios this might

not be possible, for example if an unknown object is detected and needs to be characterised. Therefore it is

important to investigate whether this dependence can be reduced, so that these methods can be applied in more

scenarios. The second additional research question that is drafted is as follows:

What are the requirements on light curve measurements (quality, data rate, amount) to get correct estimates?

The reason this question is added is that throughout the literature light curve data is dealt with in numerous

different ways. In most cases the data is simulated, but sometimes with thousands of measurements and hours

of observations, and sometimes without any noise. In real life scenarios there are often much less preferable

observation conditions, with a lot of noise or very short observation passes. It is therefore of interest to investigate

what limits there are on these conditions that still make it possible to provide accurate enough estimations.
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5.2. Research objectives
Based on the research questions a few research objectives are made. They are listed in Table 5.1 below, in order

of priority for the thesis. The main focus will lie on the development of a VSMM estimation algorithm that can

estimate the attitude, angular velocities and shape of a space object, and the comparison of the performance

from this algorithm with the performance of some of the other methods encountered in this literature review.

Next, validation is an important step in the development of any algorithm. It is therefore desired to validate the

VSMM estimation algorithm with real light curve data, in order to prove or disprove its use in real life space

object characterisation. It has been seen in the literature that this is difficult to do, but an attempt will be made

nonetheless. After this the focus is on the two additional research questions, where the question related to the

initial guess of filtering methods was deemed to be of higher importance than the second additional question.

Table 5.1: Research objectives.

# Objective
1 Develop a VSMM estimation algorithm to estimate space object shape, attitude and angular velocity.

2 Compare VSMM estimation results with current techniques like MMAE.

3 Validate the VSMM estimation algorithm with real light curve data.

4 Look into the viability of combining PSO initial guess generation with filter methods to improve initial

guess independence.

5 Investigate different aspects that influence measurements, like quality, amount and rate, in order to

assess minimum performance requirements.

The research objectives can be broken down in distinct tasks, which are given in Table 5.2 below. The task

number corresponds to the research objective in Table 5.1. In the table there is an additional Task 0, which

corresponds with setting up the simulation environment to be used in the subsequent estimations. A few

decisions for this environment need to be made, based on some analyses, like the choice of integrator and

propagator to be used in the simulations.

Table 5.2: Research tasks overview

(a) Task 0: Simulation environment

Task Description
0.1 Determine test object orbits

0.2 Perform integrator/propagator analysis

0.3 Select force models

0.4 Select degrees of freedom (DOF)

(uncoupled 3DOF or coupled 6DOF)

(b) Task 1: Base estimations

Task Description
1.1 Implement attitude propagation & estimation

1.2 Verify attitude estimation

1.3 Implement light curve simulation

1.4 Verify light curve simulation

1.5 Implement shape estimation from light curves

(c) Task 2: VSMM estimation

Task Description
2.1 Implement MMAE algorithm

2.2 Verify MMAE shape estimation

2.3 Develop VSMM algorithm

2.4 Compare VSMM results to MMAE

(d) Task 3: Validation

Task Description
5.1 Prepare real measurement data for validation

5.2 Validate MMAE algorithm

5.3 Validate VSMM algorithm

5.4 Compare validation results

(e) Task 4: PSO initial guess generation

Task Description
3.1 Implement PSO algorithm

3.2 Verify PSO initial guess generation

3.3 Combine PSO with VSMM

3.4 Validate PSO-VSMM algorithm

(f) Task 5: Measurement requirements

Task Description
4.1 Investigate influence of data quality

4.2 Investigate influence of data amount

4.3 Investigate influence of data rates

4.4 Perform cross-analysis

It can be seen that there are also some verification tasks. In order to check that implemented algorithms work as

expected it will be attempted to verify the algorithms with those found in papers. For the attitude estimation in

Task 1.2 this would be comparing the results with those from Crassidis et al. [30]. The light curve simulation

verification in Task 1.4 might be compared to Wetterer et al. [26]. For Task 2.2 the shape estimation can be

compared to that in Linares et al. [18]. The PSO verification of Task 3.2 can be done with comparison to [34].

Not all tasks will take up the same amount of time. It is for example expected that the implementation of the

MMAE (Task 2.1) and the development of the VSMM algorithm (Task 2.3) will take up the majority of the time

available until the Midterm. The goal is to have the first results from these algorithms available for the Midterm.

It will then be evaluated how many of the remaining tasks can be executed in the time remaining for the thesis.
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5.3. Research planning
In the plots below the planning for the MSc. thesis research is shown, divided in the time before and after the

midterm, in Figure 5.1 and Figure 5.2 respectively. The planning is broken down in hours spent per week on the

three main research activities: literature, code and writing.

Figure 5.1: Research planning until midterm.

Figure 5.2: Research planning after midterm.
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